Liquid Chromatographic Analysis of Coal Surface Properties

DOE/PC/91283--T1
DE92 014201

Quarterly Progress Report
For the Period January - March 1992

K. C. Kwon
Chemical Engineering Department
School of Engineering and Architecture
Tuskegee University
Tuskegee, Alabama 36088

Prepared for the United States
Department of Energy under
the Contract No. DE-FG22-91PC91283

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
CONTENTS

Page

I. Statement of Work ... 1
II. Project Status.. 3
III. Future Work Plans.. 4

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
I. Statement of Work

The main objectives of this proposed research work are to refine further the inverse liquid chromatography technique for the study of surface properties of raw coals, treated coals and coal minerals in water, to evaluate relatively surface properties of raw coals, treated coals and coal minerals by inverse liquid chromatography, and to evaluate flotability of various treated coals in conjunction with surface properties of coals.

Coals such as Pittsburgh seam coal, Illinois #6 coal, Wyodak coal are chosen as representatives of high-rank bituminous coal, high volatile bituminous coal and subbituminous coal, respectively. Coal minerals such as pyrite and dolomite are chosen as representative coal minerals.

Alcohols such as methanol, ethanol, isopropanol, isobutanol, tert-butanol, heptanol, 1-hexadecanol, 2-methyl-pentanol, 4-methyl-2-pentanol (methylisobutyl carbinol), n-octanol, s-octanol, and cyclohexanol as probe compounds are utilized to evaluate hydrophilicity of coals and coal minerals.

N-alkanes such as hexane, heptane and octane, and stearic acid are employed as probe compounds to evaluate hydrophobicity of coals and coal minerals. Aromatic compounds such as benzene and toluene as probe compounds are used to examine aromaticity of coal surface. Aromatic acids such as o-cresol m-cresol, p-cresol, phenol and B-naphthol are used to detect aromatic acidic sites of coal surface.

Hydrophilicity, hydrophobicity and aromaticity of surfaces for either raw coals or treated coals in water are relatively determined by evaluating both equilibrium physical/chemical adsorption and dynamic adsorption of probe compounds on various raw coals and treated coals to compare affinities of coals for water.

Dynamic adsorption experiments will be conducted in a batch reactor equipped with a magnetic stirrer. A given amount of raw/treated coals or coal
minerals, and a given amount of an aqueous solution with a known concentration of a probe compound are introduced in a batch reactor at room temperature. Concentrations of probe compounds at various contact durations are determined with a HPLC, equipped with a RI detector.

Equilibrium adsorption experiments are performed in either a batch reactor or a packed column at room temperature. A given amount of coals or coal minerals is packed in an empty HPLC column. An aqueous solution of a probe compound of interest is passed through the bed packed in the column. Concentrations of the effluent from the column are evaluated with the RI detector.

Two students are assigned for the first year to the development of precise laboratory procedures for the inverse liquid chromatography technique, using various probe compounds and coals. This involves developing procedures for the proper operation of a liquid chromatograph. Hydrophilicity, hydrophobicity and aromaticity of raw coals are detected with chromatography. Hydrophilicity and hydrophobicity of coal minerals also are determined with chromatography.

During the second year, the above students begin treating various coals and coal minerals with oxygen and nitrogen, using either a microreactor or an in-situ coal-packed column in a gas chromatograph. Hydrophilicity, hydrophobicity and aromaticity of treated coals are determined with chromatography. Hydrophilicity and hydrophobicity of treated coal minerals also are evaluated with inverse liquid chromatography.

Our research efforts should contribute significantly to the understanding of the nature of coal surface in water, and to developing further the inverse chromatography method for the evaluation of surface properties of coal in water. This work should also provide background data for improving chemical technology in coal cleaning processes.
II project Status

Research activities and efforts of the research project were idle during the period of September-December 1991, although the new research project was planned to begin in September 1991. The PI of this research project has been assigned as acting head of the Chemical Engineering Department since the Fall Semester 1991. The PI was not released from the academic duty in order to carry on this research project during the Fall Semester 1991, but the PI has been released from the academic duty (25 % FTE) in order to carry on this research project for this semester, by hiring Prof. Leo J. Hirth from Auburn University as an adjunct professor.

Several pieces of experimental equipment have been ordered, as shown in Table 1. The major equipment such as the RI detector and the solvent delivery system, placed on order in January 1992, have not been delivered. The strip chart recorder only is on hand.

The coals such as Illinois #6 coal (DECS-2; Randolph county), Adaville #7 coal (DECS-7; Wyoming state, Lincoln county), Wyodak coal (DECS-8; Wyoming state, Campbell county) and Pittsburgh #8 coal (DECS-12; Pennsylvania state, Greene county) have been obtained from the coal bank of the Pennsylvania State University (PSU). The proximate analysis and ultimate analysis of the coals were provided by the PSU coal bank, as shown in Table 2.

Most probe chemicals for the analysis of coal surface properties in water have been placed on order, as shown in Table 3. Pyrite and dolomite were selected as representative coal minerals. Graphite and activated carbon as simulating coal materials, and glass and Teflon as simulating coal mineral materials will be used for preliminary experiments and developments of experimental procedures.
III Future Experimental Plans

The PI visited the Coal Preparation Division of the Pittsburgh Energy Technology Center (PETC) to discuss future initial experimental plans of this research project with the PETC experts (Rohrer, Finseth, Gray, Jones, Rhee, Wen, Warzanski, Lai and Olson). The PETC experts suggested that initial experiments for the analysis of coal surface properties might start with graphite and activated carbon rather than raw coal. The PETC experts agreed on participation of experimental plan processes on request of the PI in order to obtain practically-useful experimental data on coal surface properties and apply these data to real coal cleaning processes. Physical characterizations of coal such as particle distributions, particle sizings, and zeta potential analysis will be accomplished with the help of the PETC experimental equipment.
<table>
<thead>
<tr>
<th>Equipment</th>
<th>Supplier</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cole-Parmer 250 mm strap chart with a single channel</td>
<td>Cole-Parmer</td>
<td>on hand</td>
</tr>
<tr>
<td>2. HP 1050 series isocratic pump</td>
<td>Hewlett-Packard</td>
<td></td>
</tr>
<tr>
<td>3. HP 1047-A refractive index detector</td>
<td>Hewlett-Packard</td>
<td></td>
</tr>
<tr>
<td>4. Rheodyne syringe-loading sample injector with 20 μl sample loop</td>
<td>Rainin Instrument</td>
<td></td>
</tr>
<tr>
<td>5. Eldex high pressure metering pump, 5,000 psi, 100 rpm</td>
<td>Rainin Instrument</td>
<td></td>
</tr>
<tr>
<td>6. High pressure filter with 2 μm filter element, 1/16" SS1 fitting connection</td>
<td>Rainin Instrument</td>
<td></td>
</tr>
<tr>
<td>7. Adjustable back-pressure regulator, 0 - 60 psi</td>
<td>Rainin Instrument</td>
<td></td>
</tr>
<tr>
<td>8. Microsorb-MV C18 HPLC column, 5-μm, 4.6-mm ID, 25-cm long</td>
<td>Rainin Instrument</td>
<td></td>
</tr>
<tr>
<td>9. Empty column, 1/4"-OD, 4.6-mm ID, 250-mm long, female fitting</td>
<td>Alltech</td>
<td></td>
</tr>
<tr>
<td>10. Rheodyne low-pressure 3-way slider valve, 1.5 mm bore, 1/4-28 threaded tube end fitting</td>
<td>Alltech</td>
<td></td>
</tr>
<tr>
<td>11. Pressure gauge, 0-5000 psig, 1/16" tubing connection</td>
<td>Alltech</td>
<td></td>
</tr>
<tr>
<td>12. Tee, 1/16"</td>
<td>Alltech</td>
<td></td>
</tr>
<tr>
<td>13. Ohaus GT series precision balance, 4100 g, 0.01 g readability</td>
<td>PGC Scientific</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Proximate analysis (as received), ultimate analysis (dry basis), and sulfur analysis of coals obtained from the coal bank of the Pennsylvania state University.

<table>
<thead>
<tr>
<th>PSU #</th>
<th>DECS-2</th>
<th>DECS-7</th>
<th>DECS-8</th>
<th>DECS-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seam Name</td>
<td>Illinois #6</td>
<td>Adaville #7</td>
<td>Wyodak</td>
<td>Pittsburgh #8</td>
</tr>
<tr>
<td>Coal Rank</td>
<td>HVC</td>
<td>HVC</td>
<td>Subbit C</td>
<td>F:A</td>
</tr>
</tbody>
</table>

Proximate Analysis
(As received), w%

<table>
<thead>
<tr>
<th></th>
<th>DECS-2</th>
<th>DECS-7</th>
<th>DECS-8</th>
<th>DECS-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>10.43</td>
<td>17.34</td>
<td>28.42</td>
<td>2.40</td>
</tr>
<tr>
<td>Ash</td>
<td>14.47</td>
<td>3.45</td>
<td>9.90</td>
<td>10.00</td>
</tr>
<tr>
<td>Volatile</td>
<td>34.16</td>
<td>38.11</td>
<td>32.38</td>
<td>35.16</td>
</tr>
<tr>
<td>fixed carbon</td>
<td>40.93</td>
<td>41.11</td>
<td>29.30</td>
<td>52.44</td>
</tr>
</tbody>
</table>

Ultimate Analysis
(Dry, w%)

<table>
<thead>
<tr>
<th></th>
<th>DECS-2</th>
<th>DECS-7</th>
<th>DECS-8</th>
<th>DECS-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ash</td>
<td>16.16</td>
<td>4.17</td>
<td>13.83</td>
<td>10.25</td>
</tr>
<tr>
<td>Carbon</td>
<td>65.49</td>
<td>73.90</td>
<td>64.14</td>
<td>74.78</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>4.56</td>
<td>5.30</td>
<td>4.51</td>
<td>5.11</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1.11</td>
<td>0.99</td>
<td>0.86</td>
<td>1.23</td>
</tr>
<tr>
<td>Total Sulfur</td>
<td>4.52</td>
<td>0.98</td>
<td>0.73</td>
<td>1.12</td>
</tr>
<tr>
<td>Oxygen (Diff)</td>
<td>8.16</td>
<td>14.66</td>
<td>15.93</td>
<td>7.51</td>
</tr>
</tbody>
</table>

Sulfur Forms, w%

<table>
<thead>
<tr>
<th></th>
<th>DECS-2</th>
<th>DECS-7</th>
<th>DECS-8</th>
<th>DECS-12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyritic</td>
<td>2.27</td>
<td>0.10</td>
<td>0.28</td>
<td>0.38</td>
</tr>
<tr>
<td>Sulfatic</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Organic</td>
<td>2.24</td>
<td>0.87</td>
<td>0.43</td>
<td>0.73</td>
</tr>
<tr>
<td>Total</td>
<td>4.52</td>
<td>0.98</td>
<td>0.73</td>
<td>1.12</td>
</tr>
</tbody>
</table>
Table 3 Equipment, their replacement parts and chemicals placed on order.

1/3/1992

School of Engineering and Architecture
Chemical Engineering Department

Cole-Parmer Instrument Co.
7425 North Oak Park Avenue
Chicago, Illinois 60646
TEL: 1-800-323-4340

<table>
<thead>
<tr>
<th>Line No</th>
<th>Cat No</th>
<th>Description</th>
<th>QTY</th>
<th>Unit</th>
<th>Unit Price</th>
<th>Total Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L-08386-40</td>
<td>Replacement Chart Paper, 30 m long 250 mm with 0 to 100 grid, pkg/6 rolls</td>
<td>1 pkg</td>
<td></td>
<td>47.50</td>
<td>47.50</td>
</tr>
<tr>
<td>2</td>
<td>L-08379-30</td>
<td>Red short replacement pens, pkg/6 pkg/25 ft</td>
<td>1 pkg</td>
<td></td>
<td>9.90</td>
<td>9.90</td>
</tr>
<tr>
<td>3</td>
<td>L-08373-10</td>
<td>Cole-Parmer 250 mm strap chart, single channel recorder</td>
<td>1 ea</td>
<td></td>
<td>1,180.00</td>
<td>1,180.00</td>
</tr>
</tbody>
</table>

1/10/1992

Hewlett-Packard Company
Attn: Jan Mann
P.O. Box 105005
Atlanta, GA 30348
Tel: 800-441-8380
Fax: 404-916-5285

<table>
<thead>
<tr>
<th>Line No</th>
<th>Cat No</th>
<th>Description</th>
<th>QTY</th>
<th>Unit</th>
<th>Unit Price</th>
<th>Total Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>79851-A</td>
<td>HP 1050 series isocratic pump option 301, for use with HP 1050 series. modules remote control cable</td>
<td>1 ea</td>
<td></td>
<td>5,535.00</td>
<td>5,535.00</td>
</tr>
<tr>
<td>2</td>
<td>79851A/301</td>
<td>HP 1047-A refractive index detector</td>
<td>1 ea</td>
<td></td>
<td>46.80</td>
<td>46.80</td>
</tr>
<tr>
<td>3</td>
<td>1047-A</td>
<td>HP 1047-A refractive index detector</td>
<td>1 ea</td>
<td></td>
<td>6,021.00</td>
<td>6,021.00</td>
</tr>
<tr>
<td>4</td>
<td>1047A/100</td>
<td>HP 1047-A to HP 3340/92/93 integrators</td>
<td>1 ea</td>
<td></td>
<td>45.90</td>
<td>45.90</td>
</tr>
<tr>
<td>5</td>
<td>1047A/105</td>
<td>HP 1047-A to universal</td>
<td>1 ea</td>
<td></td>
<td>45.90</td>
<td>45.90</td>
</tr>
</tbody>
</table>
March 1, 1992

School of Engineering and Architecture
Chemical Engineering Department

Thomas Scientific
99 High Hill Road at I-295
P. O. Box 99
Swarthmore, PA 19081-0098
Tel: 1-800-345-2100

<table>
<thead>
<tr>
<th>Line No</th>
<th>Cat No</th>
<th>Description</th>
<th>QTY</th>
<th>Unit</th>
<th>Unit Price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M-08258-60</td>
<td>wide-mouth wash bottles, 500 ml, box/6</td>
<td>1</td>
<td>bx</td>
<td>16.40</td>
<td>16.40</td>
</tr>
<tr>
<td>2</td>
<td>M-08256-62</td>
<td>1/8"-OD, 1/16"-ID, Teflon FEP tubing, pkg/25 ft</td>
<td>1</td>
<td>pkg</td>
<td>11.25</td>
<td>11.25</td>
</tr>
<tr>
<td>3</td>
<td>M-08256-82</td>
<td>transparent polyethylene cowboy with a spigot, 5 gal, roll/50 ft</td>
<td>1</td>
<td>ea</td>
<td>30.00</td>
<td>30.00</td>
</tr>
<tr>
<td>4</td>
<td>M-08256-86</td>
<td>1/8"-OD, 1/16"-ID, Teflon FEP tubing, pkg/25 ft</td>
<td>1</td>
<td>pkg</td>
<td>11.25</td>
<td>11.25</td>
</tr>
</tbody>
</table>

March 11, 1992

School of Engineering and Architecture
Chemical Engineering Department

Cole-Parmer Instrument Co.
7425 North Oak Park Avenue
Chicago, Illinois 60648
TEL: 1-800-323-4340

<table>
<thead>
<tr>
<th>Line No</th>
<th>Cat No</th>
<th>Description</th>
<th>QTY</th>
<th>Unit</th>
<th>Unit Price</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M-08258-30</td>
<td>wide-mouth wash bottles, 500 ml, box/6</td>
<td>1</td>
<td>bx</td>
<td>16.40</td>
<td>16.40</td>
</tr>
<tr>
<td>2</td>
<td>M-08256-62</td>
<td>1/8"-OD, 1/16"-ID, Teflon FEP tubing, pkg/25 ft</td>
<td>1</td>
<td>pkg</td>
<td>11.25</td>
<td>11.25</td>
</tr>
<tr>
<td>3</td>
<td>M-08256-82</td>
<td>transparent polyethylene cowboy with a spigot, 5 gal, roll/50 ft</td>
<td>1</td>
<td>ea</td>
<td>30.00</td>
<td>30.00</td>
</tr>
<tr>
<td>4</td>
<td>M-08256-86</td>
<td>1/8"-OD, 1/16"-ID, Teflon FEP tubing, pkg/25 ft</td>
<td>1</td>
<td>pkg</td>
<td>11.25</td>
<td>11.25</td>
</tr>
<tr>
<td>Item</td>
<td>Cat #</td>
<td>Description</td>
<td>Quantity</td>
<td>Unit</td>
<td>Unit Price</td>
<td>Price</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------------</td>
<td>----------</td>
<td>------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>1125</td>
<td>Rheodyne syringe-loading sample injector with 20 µl sample loop</td>
<td>1</td>
<td>ea</td>
<td>640.00</td>
<td>640.00</td>
</tr>
<tr>
<td>2</td>
<td>ELO-1011</td>
<td>Eldex high pressure metering pump, model #: 8-100-S, 5,000 psi, 100 rpm, 10 lbm inlet tubing connection; 1/4-28 fittings for 1/8</td>
<td>1</td>
<td>ea</td>
<td>1,195.00</td>
<td>1,195.00</td>
</tr>
<tr>
<td>3</td>
<td>1160-010</td>
<td>Right angle mounting bracket for Rheodyne sample injector</td>
<td>1</td>
<td>ea</td>
<td>21.00</td>
<td>21.00</td>
</tr>
<tr>
<td>4</td>
<td>R71O5M</td>
<td>Hamilton rheodyne injector syringe, 100 µl</td>
<td>10</td>
<td>ea</td>
<td>23.00</td>
<td>230.00</td>
</tr>
<tr>
<td>5</td>
<td>219940</td>
<td>Safety coated reagent bottle, 1000 ml, 45 mm white polypropylene screw cap with wedge-shaped inner sealing ring, case of 12</td>
<td>1</td>
<td>cs</td>
<td>106.00</td>
<td>106.00</td>
</tr>
<tr>
<td>6</td>
<td>AI-PCSR-2</td>
<td>Safety coated solvent reservoir with female 29/32 SF neck and stopper, 2 liter</td>
<td>3</td>
<td>ea</td>
<td>35.00</td>
<td>105.00</td>
</tr>
<tr>
<td>7</td>
<td>AI-GBSR-5</td>
<td>Safety coated graduated solvent reservoir with 45 mm screw cap closure, 5 liter</td>
<td>1</td>
<td>ea</td>
<td>98.00</td>
<td>98.00</td>
</tr>
<tr>
<td>8</td>
<td>AI-SFA-PS</td>
<td>Polyethylene 29/32 stopper with two 1/8" holes</td>
<td>2</td>
<td>ea</td>
<td>5.00</td>
<td>10.00</td>
</tr>
<tr>
<td>9</td>
<td>05-0108</td>
<td>High pressure filter with 2 µm filter element, 1/16" SSI fitting connection</td>
<td>1</td>
<td>ea</td>
<td>62.00</td>
<td>62.00</td>
</tr>
<tr>
<td>10</td>
<td>05-0107</td>
<td>Replacement filter element, 2 µm, pkg/2</td>
<td>1</td>
<td>pkg</td>
<td>25.00</td>
<td>25.00</td>
</tr>
<tr>
<td>11</td>
<td>02-0115</td>
<td>Adjustable back-pressure regulator, a standard chemically 1/4-28 fitting connection</td>
<td>1</td>
<td>ea</td>
<td>98.00</td>
<td>98.00</td>
</tr>
<tr>
<td>12</td>
<td>01-0315</td>
<td>Column fitting kits</td>
<td>1</td>
<td>ea</td>
<td>150.00</td>
<td>150.00</td>
</tr>
<tr>
<td>13</td>
<td>B6-200-CS</td>
<td>Microsorb-MV C18, 5 µm, 4.6 mm ID, 25 cm long, HPLC column</td>
<td>2</td>
<td>ea</td>
<td>99.00</td>
<td>198.00</td>
</tr>
<tr>
<td>Line No</td>
<td>Cat No</td>
<td>Description</td>
<td>QTY</td>
<td>Unit</td>
<td>Unit Price</td>
<td>Total Price</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--</td>
<td>-----</td>
<td>------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>1180</td>
<td>1/16" tubing cutting kit</td>
<td>1</td>
<td>ea</td>
<td>26.00</td>
<td>29.00</td>
</tr>
<tr>
<td>2</td>
<td>1181</td>
<td>spare knife files for 1/16" tubing cutting kit</td>
<td>1</td>
<td>ea</td>
<td>15.00</td>
<td>15.00</td>
</tr>
<tr>
<td>3</td>
<td>3206</td>
<td>plastic tubing cutter</td>
<td>1</td>
<td>ea</td>
<td>18.00</td>
<td>18.00</td>
</tr>
<tr>
<td>4</td>
<td>44701100</td>
<td>1 cc plastic syringe, pkg/12</td>
<td>1</td>
<td>pkg</td>
<td>15.00</td>
<td>15.00</td>
</tr>
<tr>
<td>5</td>
<td>2429</td>
<td>25-mm syringe filters, PTFE membrane, polypropylene housing, 1 mm pore, pkg/100</td>
<td>1</td>
<td>pkg</td>
<td>90.00</td>
<td>90.00</td>
</tr>
<tr>
<td>6</td>
<td>97055</td>
<td>pre-cut stainless steel connecting tubing, 1/16" OD, 0.010" ID, 10 cm</td>
<td>6</td>
<td>ea</td>
<td>2.00</td>
<td>12.00</td>
</tr>
<tr>
<td>7</td>
<td>97065</td>
<td>pre-cut stainless steel connecting tubing, 1/16" OD, 0.010" ID, 10 cm</td>
<td>6</td>
<td>ea</td>
<td>2.75</td>
<td>16.50</td>
</tr>
<tr>
<td>8</td>
<td>97045</td>
<td>pre-cut stainless steel connecting tubing, 1/16" OD, 0.010" ID, 5 cm</td>
<td>4</td>
<td>ea</td>
<td>2.00</td>
<td>8.00</td>
</tr>
<tr>
<td>9</td>
<td>30161</td>
<td>1/16" OD, 0.030"-ID, 316 stainless steel tubing</td>
<td>5</td>
<td>ft</td>
<td>2.00</td>
<td>10.00</td>
</tr>
<tr>
<td>10</td>
<td>28860</td>
<td>slip-on mobile phase filter, 2 mm, pkg/5 stainless steel</td>
<td>1</td>
<td>pkg</td>
<td>40.00</td>
<td>40.00</td>
</tr>
<tr>
<td>11</td>
<td>9471C</td>
<td>1/4"-OD, 4.6-mm ID, 250-mm long empty column, female fitting</td>
<td>10</td>
<td>ea</td>
<td>48.00</td>
<td>480.00</td>
</tr>
<tr>
<td>12</td>
<td>53020</td>
<td>Rheodyne low-pressure 3-way slider valve, 1.5 mm bore, 1/4-28 threaded tube end fitting</td>
<td>1</td>
<td>ea</td>
<td>60.00</td>
<td>60.00</td>
</tr>
<tr>
<td>13</td>
<td>9229</td>
<td>0-5000 psi pressure gauge, 1/16" tubing connection</td>
<td>1</td>
<td>ea</td>
<td>93.00</td>
<td>93.00</td>
</tr>
<tr>
<td>14</td>
<td>28629</td>
<td>1/16" tee</td>
<td>1</td>
<td>ea</td>
<td>30.00</td>
<td>30.00</td>
</tr>
<tr>
<td>Line No</td>
<td>Cat No</td>
<td>Description</td>
<td>QTY</td>
<td>Unit</td>
<td>Unit Price</td>
<td>Total Price</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
<td>-----</td>
<td>------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>3-1148-21</td>
<td>Ohaus GT series precision balance, 4100 g, 0.01 g readability</td>
<td>1 ea</td>
<td>1,750.00</td>
<td>1,750.00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4-1800-13</td>
<td>disposable plastic weightrays, blue, 5/8" x 5/8" x 5/16", pkg/500</td>
<td>1 pkg</td>
<td>25.95</td>
<td>25.95</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>29-5600</td>
<td>disposable aluminum dish, 43-mm diameter, pkg/100</td>
<td>2 pkg</td>
<td>7.75</td>
<td>15.50</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5-7005-60</td>
<td>Kimax graduated low form Siffin beakers, 1000 ml, pkg/6</td>
<td>1 pkg</td>
<td>37.35</td>
<td>37.35</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1-1120</td>
<td>black nylon beaker brush, 5" long, 2 1/8" - 2 3/8" diameter, overall 18" long</td>
<td>1 ea</td>
<td>15.36</td>
<td>15.36</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10-08-10</td>
<td>chemical glassware cleaner, 1 liter</td>
<td>1 ea</td>
<td>35.00</td>
<td>35.00</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>19-0951-01</td>
<td>Kimwipes, 5" x 8", box of 280, pkg/6 boxes</td>
<td>1 pkg/60 boxes</td>
<td>49.24</td>
<td>49.24</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>28-460A-54</td>
<td>Kimble white line single graduated cylinder, SAFE-GARD bumper, 500 ml</td>
<td>2 ea</td>
<td>29.68</td>
<td>59.36</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>28-460A-60</td>
<td>Kimble white line single graduated cylinder, SAFE-GARD bumper, 1000 ml</td>
<td>2 ea</td>
<td>41.25</td>
<td>82.50</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>35-9480-66</td>
<td>Kimax filtering glass with tubulation, 2000 ml, #9 stopper</td>
<td>1 ea</td>
<td>52.48</td>
<td>52.48</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>36-5200-60</td>
<td>Pyrex fleaker, 1200 ml, pkg/10</td>
<td>1 pkg</td>
<td>103.40</td>
<td>103.40</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>36-9800-21</td>
<td>Buchner porcelain funnel with fixed perforated plate, plate diameter of 116 mm, perforated area diameter of 95 mm</td>
<td>1 ea</td>
<td>46.50</td>
<td>46.50</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>34-4920</td>
<td>Whatman filter paper, grade B 113, box/100 diameter of 11 cm</td>
<td>2 bx</td>
<td>8.05</td>
<td>16.10</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>11-5199-90</td>
<td>disposable plastic transfer pipets, 10 ml, 3-mm diameter stem, pkg/250</td>
<td>1 pkg</td>
<td>19.10</td>
<td>19.10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>76-7560</td>
<td>stainless steel wire micro spatula, 9" long, spoon end 1 1/8" x 9/16", flat end 1 1/8", pkg/3</td>
<td>1 pkg</td>
<td>21.10</td>
<td>21.10</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>77-8659-11</td>
<td>magnetic stirring bar retriever, flexible 1/8" Teflon rod, white</td>
<td>1 ea</td>
<td>12.00</td>
<td>12.00</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>19-0984-03</td>
<td>Kimtex heavy duty wipers, 1/8" x 11", box/80, case/4 box</td>
<td>1 cs</td>
<td>86.13</td>
<td>86.13</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>27-0940-06</td>
<td>brass corks borer sets with handles, 6 pieces in set, 3/16" - 3/8"</td>
<td>1 set</td>
<td>19.20</td>
<td>19.20</td>
<td></td>
</tr>
<tr>
<td>Line No</td>
<td>Cat No</td>
<td>Description</td>
<td>QTY</td>
<td>Unit</td>
<td>Unit Price</td>
<td>Total</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--</td>
<td>-----</td>
<td>------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>27,0474-4</td>
<td>Methanol, 99.9 %, A.C.S. HPLC grade, 100 ml</td>
<td>1</td>
<td>ea</td>
<td>13.00</td>
<td>13.00</td>
</tr>
<tr>
<td>2</td>
<td>18,738-0</td>
<td>Ethyl alcohol, 100 ml, water < 0.15 % denatured</td>
<td>1</td>
<td>ea</td>
<td>7.70</td>
<td>7.70</td>
</tr>
<tr>
<td>3</td>
<td>27,049-0</td>
<td>2-Propanol, 99.5 % mol pure, HPLC grade, 100 ml</td>
<td>1</td>
<td>ea</td>
<td>12.00</td>
<td>12.00</td>
</tr>
<tr>
<td>4</td>
<td>32,004-8</td>
<td>2-Methyl-1-propanol (iso-butanol), 99 %, 25 ml ACS reagent, water < 0.1 %</td>
<td>1</td>
<td>ea</td>
<td>10.55</td>
<td>10.55</td>
</tr>
<tr>
<td>5</td>
<td>30,825-0</td>
<td>2-Methyl-2-propanol (tert-butyl alcohol), 99.5 %, HPLC grade, 100 ml</td>
<td>1</td>
<td>ea</td>
<td>10.00</td>
<td>10.00</td>
</tr>
<tr>
<td>6</td>
<td>H280-5</td>
<td>1-Heptanol (heptyl alcohol), 99 %, 100 g</td>
<td>1</td>
<td>ea</td>
<td>7.80</td>
<td>7.80</td>
</tr>
<tr>
<td>7</td>
<td>25,874-1</td>
<td>1-Hexadecanol, 99 %, 100 g</td>
<td>1</td>
<td>ea</td>
<td>7.35</td>
<td>7.35</td>
</tr>
<tr>
<td>8</td>
<td>21,401-9</td>
<td>2-Methyl-1-pentanol, 99 %, 50 ml</td>
<td>1</td>
<td>ea</td>
<td>9.80</td>
<td>9.80</td>
</tr>
<tr>
<td>9</td>
<td>10,991-6</td>
<td>4-Methyl-2-pentanol, 99 %, 100 ml</td>
<td>1</td>
<td>ea</td>
<td>5.46</td>
<td>5.46</td>
</tr>
<tr>
<td>10</td>
<td>28,324-5</td>
<td>1-Octanol, 99 %, HPLC grade, 100 ml</td>
<td>1</td>
<td>ea</td>
<td>17.00</td>
<td>17.00</td>
</tr>
<tr>
<td>11</td>
<td>0-450-4</td>
<td>2-Octanol, 99 %, 100 ml</td>
<td>1</td>
<td>ea</td>
<td>5.40</td>
<td>5.40</td>
</tr>
<tr>
<td>12</td>
<td>10,589-9</td>
<td>Cyclohexanol, 99 %, 1 liter</td>
<td>1</td>
<td>ea</td>
<td>11.30</td>
<td>11.30</td>
</tr>
<tr>
<td>13</td>
<td>13,938-6</td>
<td>Hexane, 99 % mol pure, 500 ml</td>
<td>1</td>
<td>ea</td>
<td>24.20</td>
<td>24.20</td>
</tr>
<tr>
<td>14</td>
<td>27,051-2</td>
<td>Heptane, HPLC grade, 99 %, 100 ml</td>
<td>1</td>
<td>ea</td>
<td>15.00</td>
<td>15.00</td>
</tr>
<tr>
<td>15</td>
<td>28,698-8</td>
<td>Octane, 99 %, 100 ml</td>
<td>1</td>
<td>ea</td>
<td>16.00</td>
<td>16.00</td>
</tr>
<tr>
<td>16</td>
<td>26,838-0</td>
<td>Stearic acid, 99 %, 25 g</td>
<td>1</td>
<td>ea</td>
<td>32.20</td>
<td>32.20</td>
</tr>
<tr>
<td>17</td>
<td>27,070-9</td>
<td>Benzene, 99.9 %, HPLC grade, 100 ml</td>
<td>1</td>
<td>ea</td>
<td>12.00</td>
<td>12.00</td>
</tr>
<tr>
<td>18</td>
<td>27,037-7</td>
<td>Toluene, 99.8 %, HPLC grade, 1 liter</td>
<td>1</td>
<td>ea</td>
<td>17.00</td>
<td>17.00</td>
</tr>
<tr>
<td>19</td>
<td>24,232-2</td>
<td>Phenol, loose crystals, 99 %, 25 g</td>
<td>1</td>
<td>ea</td>
<td>10.15</td>
<td>10.15</td>
</tr>
<tr>
<td>20</td>
<td>28,572-7</td>
<td>M-Cresol, 99 %, 100 g</td>
<td>1</td>
<td>ea</td>
<td>15.75</td>
<td>15.75</td>
</tr>
<tr>
<td>21</td>
<td>28,570-0</td>
<td>o-Cresol, 99 %, 100 g</td>
<td>1</td>
<td>ea</td>
<td>11.30</td>
<td>11.30</td>
</tr>
<tr>
<td>22</td>
<td>28,575-1</td>
<td>p-Cresol, 99 %, 100 g</td>
<td>1</td>
<td>ea</td>
<td>6.00</td>
<td>6.00</td>
</tr>
<tr>
<td>23</td>
<td>18,550-7</td>
<td>2-Naphthol, 99 %, reagent, 100 g</td>
<td>1</td>
<td>ea</td>
<td>10.40</td>
<td>10.40</td>
</tr>
<tr>
<td>24</td>
<td>27,071-7</td>
<td>Acetonitrile, 99.9 %, HPLC grade, 4 x 4 liter</td>
<td>1</td>
<td>cs</td>
<td>235.00</td>
<td>235.00</td>
</tr>
</tbody>
</table>