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ABSTRACT

Hydrogels are being investigated as drug delivery mechanisms. Gels can be impregnated
with a drug and then stimulated through various means to release it. Having the capability to
numerically predict the dynamic behavior of the release process would benefit the design and
control of the such a process. In this paper, a finite element analysis is used to simulate the
dynamic behavior of an eroding polyelectrolyte gel. The gel is impregnated in a collapsed state.
It is then subjected to a higher pH environment causing it to swell. When it has swollen to a
specified extent, the gel erodes, thereby releasing the drug agent. Such gels are currently being
investigated in drug delivery schemes to the colon.

INTRODUCTION

Time released delivery of drugs is a very important technique in the administration of
medication. Such methods allow for a therapeutically desirable concentration to be sustained as
a function of time. Researchers are currently investigating more efficient and safer techniques
than conventional oral and intravenous delivery methods.

Polymeric gels have been investigated for medical applications for the last twenty years.
Some hydrogels have shown great potential as the drug release reservoir in drug delivery systems
(DDS). At least three different DDS schemes have been investigated. In the first, a thermo-
sensitive gel is used to control the rate of drug release as the environmental temperature is
changed. The second uses a chemo-sensitive gel whose diffusion properties are sensitive to a
chemical concentration in its environment. The third uses an erodible gel to disseminate the
internally contained drug. Experimentation has shown very successful results for each of these
schemes.

Having the capability to numerically predict the dynamic behavior would be very valuable
in the design phase of these systems. In addition to drug release performance, real-time control
strategies can be evaluated. This paper describes how a method of weighted residuals has been
used to solve the two-dimensional system of governing equations by finite element analysis.

Formulation of a mathematical model that accurately describes the dynamic behavior of the
gel requires proper accounting for the swell or contraction of the polymer network, the fluid
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transfer into and out of the gel, and the coupled effects between the two phenomena. Also, large
deformation kinematics must be used. The interaction between solvent and gel requires the use
of two internal state variables to completely describe the system. Complete dynamic model
descriptions have been offered by Grimshaw et al. (1990) and Segalman et al. (1992a).

Theoretical predictions based on a finite element analysis solution scheme were first
investigated by Segalman et al (1992b, 1993). They solved the one and two-dimensional,
dynamic analysis problem of a swelling and contracting gel sphere and disk, respectively.

In this presentation, theoretical results of the eroding drug delivery system are shown.
Computational results of drug release rates and other important states are presented. These
calculations provide some insight into the mechanisms of these systems and their relative
advantages.

THEORETICAL MODEL OF GEL DYNAMICS

A slightly modified form of the theoretical model presented in Segalman et al.(1992) is used
in this analysis. Modifications include representing the solvent concentration in terms of a mass
fraction instead of a density value. In this formulation, the mass transport relationships and the
elasticity equations are cast in a Lagrangian, or convected, framework.

To properly describe the polyelectrolyte gel/solvent system, three components (polymer,
solvent, and hydrogen ions) must be accounted for. It is often convenient to express concentration
states in terms of mass fraction. In the solution of these relationships, since the mass fraction of
hydrogen ions is always small, the mass fraction of the polymer component is simply calculated

as one minus the mass fraction of solvent, Using this assumption, the solvent concentration, cs ,

is expressed as a function of _s, the mass fraction by:

Pp_s (EQ 1)
cs = g(_s) = l__s(l_pp/ps)

where pp is the mass density of pure polymer and ps is the mass density of pure solvent. (The

mass fraction of polymer and hydrogen ions are represented by _p and _n, respectively.)

Recall since there are three system components, two independent diffusion equations must
be formulated with each involving the gradients of at most two of the components. The
isothermal diffusion equations describing the evolution of solvent and hydrogen ion
concentration in a Eulerian, or fixed, framework are

OCs (--, )O'_t = V* D sp (Cs, CH) VCs + _'DHs (Cs, CH) VCH - Ve(CsV ) (EQ2)

_}.-.-_= Ve DH(Cs, CH) Vc H -Ve(CHV ) +I:t (EQ 3)
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where v (x, t) is the gel velocity at location x and time t, and cs (r, t) is the mass of solvent

per unit volume of gel at that time and position and cH (x, t) is the mass of hydrogen ions per

unit volume of gel at that time and position. In terms of the solvent mass fraction, _s, and the

hydrogen mass fraction, _H' the equations become

_s_)...t_- Vo (Dsp (_s, _H) V_s + DHs (_s, _H) V_H) - V,(pg_sV) (EQ 4)

Pg'_'i = V'[DH(_s, _H) V (pg_H) ]-V (pg_H) • V + pg_Hs (EQ 5)

where p g is the current density of the gel. Note the inclusion of source terms for H+ ions.

Through the source term a tunable parameter is available that may be varied through electrical or
chemical means.

The diffusion relationships are taken from Flory-Huggins Theory (Flory, 1969). The
hydrogen diffusion coefficient is represented as

D H Dr(l-_' ]2 I0-5_ (EQ6)= H l+_p) =

The diffusioncoefficientforthesolventinthepolymerisgivenas

I(
The hydrogen diffusion coefficient through solvent is formulated as

Ls,E 1DHs = _ 2 (EQ 8)
gp Cra+53.)

The nomenclature for material parameters used above is that of Flow: Z is the Flory-

Huggins interaction parameter, N is the number of effective cross-links, Lsp is the Onsager
coefficient and Ka is the disassociation coefficient.

Transforming the diffusion relationships from a fixed frame into a convective frame
involves defining concentrations at gel particles rather than at positions in space. For reasons of
clarity, the kernel of the process of transforming diffusion equations from Eulerian to Lagrangian
frames is presented for the case of diffusion of a single component; the process is identical for
multi-component systems.

In this development, the transformation is done in terms of concentrations and then
converted into mass fractions at the end. If each particle of gel is labelled by its original position



X at time t0, movement of the gel at any time, t, is determined by the spacial coordinate

x (X, t). The moving frame solvent concentration, Cs (X, t), is redefined in a convected

viewpoint by

Cs (X, t) = cs (x (X, t), t) (EQ 9)

Note that the two concentration fields are identical at time to . The time derivative of

Cs (X, t) is evaluated as

(X,t) _-_-iCs = -_icts (x (X, t), t) + v- cs (x, t) • v (EQ 10)

Substituting Equation 9 into the Eulerian diffusion equation, the convected form of the diffusion
equation is formulated:

_C s (X, t) = V. (DVc s (x (X, t), t) ) -c s (x (X, t), t) V.v (EQ 11)

Using continuity and the assumption of no volume change of mixing, the swell term Vov can be
evaluated from:

V.v = -_C s (X, t) / (Ps- Cs) (EQ 12)

Substitution of the swell relationship into the diffusion equation and setting to = t yields

(Ps_Cs)-_Cs(X,t) = V.(DVCs(X,t)) (EQ 13)

Note that the above equation shows that as Cs approaches Ps, ever increasing amounts of

influx of solvent are required to achieve given increments in solvent concentration. Similarly, the

equation for the evolution, in convected frame, of the H+ concentration is

(x, t)3
-_CH (x, t) = V. (D_tVCt_ (x, t) ) _ C_t"_'iCsPs- Cs (EQ 14)

Equation 13 is transformed into terms of mass-fraction through use of Equation 1:

(p_--_g) _ = V. (Dg' (_s) V_s) (EQ 15)



where g' (_s) = dg/d_s" (This takes on a slightly more familiar form where gradients are small

and the term g' is distributed out of the divergence and factored from each side.)

The stress relationships for large deformation elasticity require the use of large deformation

strain quantities. The deformation gradient F (t) is defined as
i

3xg
F(t) = _ (EQ16)

where Xg is the location of the particle in the unstrained state. In this problem, it is useful to factor
the deformation gradient into its unimodular part and a part representing isotropic swell:

F (t) = Funi (t) • (al) (EQ 17)

1/3 3
where a (t) = det (F (t)) , a (t) is the volumetric swell of the gel, and I is the identity
tensor. The swell is calculated by determining the rate of solvent absorbed. Assuming no volume
change of mixing this relationship is

3 DcDOL3 t_ s
= (EQ 18)

Dt (9s-Cs) Dt

In terms of mass fraction this relationship becomes

D_ 3 ot3 dg D_s

D'-T = (Ps- g (_s)) d_s Dt (EQ 19)

For a solvent-concentration dependent neo-Hookean type solid, the Cauchy stress, S (t),
resulting from a given deformation is

S (t) = G (Cs) [I - E (t) TE (t) ] - pl (EQ 20)

where

-1
E (t) = Funi(t ) (EQ 21)

G is the shear modulus, and p is a Lagrange multiplier dual to the incompressibility constraint on
the swollen polymer. Because of the assumed incompressibility of the gel/solvent system, the
above equation presents stress only up to an unknown pressure. (Constitutive modeling of
rubber-like materials is discussed with good clarity in Lodge (1964).) The incompressibility
condition on the swollen polymer is simply a statement that the volume of the material is not a
function of the imposed pressure, though volume will swell through a change in solvent
concentration.

The conservation of momentum for the gel is



pggg = V,S + psfb (EQ 22)

where J'o contains all local body forces, such as gravitational or electromagnetic loads.

Method of Weighted Residuals
The numerical problem is solved in a fully Lagrangian sense: all field variables are

expressed as functions of time, t, and of gel particle coordinates (_, rl). This approach is natural
for problems of large deformation, for which the finite element mesh will undergo significant
deflection.

The governing differential equations are transformed into a system of algebraic equations
through a standard Galerkin-finite element formalism (See Hughes (1987), for instance.)
However, because of the Lagrangian formulation, all interpolation is over a material manifold
rather than over space. For instance, the configuration field of the gel is interpolated:

xe (_, rl, t) = __xei (t) ox (_, rl) (EQ23)

The other fields are also represented as linear combinations of appropriate basis functions:

_s (_, rl, t) = _ _s, i(t) t_ (_, 1"1) (EQ 24)

_n(_, rl, t) = Z_H,i (t) _Hi(_, rl) (EQ25)

p (_, r I, t) = Zp i (t) _ (_, 1]) (EQ 26)

X

t_(_, TI,t) = _ui(t)_ i (_,rl) (EQ27)

x; (_, T1) = ___Xo,i (t)t_xi (;, 11) (EQ 28)
A

where x 0 (_, 1"1,t) is the initial location of particle (_, 11) and fi (_, r I, t) is the displacement of

that particle at time t-

3: (_, r I, t) = 3:0(_, 1"1)+ t_ (_, 11,t) (EQ 29)

Gradients are take using the chain rule in the following m_ner:

(_,ri, t) = b(_,rl) 3(_,rl (EQ30)
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The basis functions for pressure must be one order lower than the basis functions for
displacement such that the LBB condition (Hughes 1987) is satisfied, or else some additional
constraints must be imposed on the pressure field, as has been suggested by Hughes et. al. (1986).
Both methods have been employed successfully in our code, though using the low-order pressure
field results in simpler code. Our realization of that simpler form employed quadrilateral

H
elements with linear shape functions for _ix , _i u , _i c , and _i , each having a value of 1 on node

i and a value of 0 on every other node. The basis functions for pressure are taken to be piecewise

constant, _i p having a value of 1 on element i and a value of 0 on every other element. Note

that there are twice as many displacement unknowns as there are nodes and there are exactly as
many pressure unknowns as there are elements.

There are as many solvent concentration unknowns and as many pH concentration
unknowns as there are nodes. The weak form of the solvent diffusion equation:

A, Ps-- g (_s) g' (_s) _s + DspV_s • v_iC+ DHsV_H • V_i c (EQ 31)

_}(x, y) d_dq)
-'_'0

C

where Ai is the support of _i and the gradients are taken with respect to current spacial

configuration via Equation 30.

The pH diffusion equation becomes

.- H .- H D V 0 (x, y) d_dr I = 0 (EQ 32)
{Pg_H_i --Pg_Hs_i -- H (Pg_H) • Viii H} _ (_, 11)

A_

The above two equations yield one scalar equation for each of _s and _H at every node. A

sequential solution strategy was chosen to solve the diffusion equations, but in the examples
presented below the pH field was specified a priori and the solvent field was calculated. Once the
mass transfer equations have been solved, these results are piped into the elasticity relationships
to calculate the resulting expansion/contraction.

The elasticity equations become:

x _ (x, y) d_drl = 0 (EQ 33)v¢i'+ }
A_

Note that the above vector-valued equation is equivalent to two scalar-valued equations in

the unknown fields u I , u2 , and p. When displacement is specified at node i, the above equation

is replaced by the two scalar specifications:
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U ! = U l,spec and u 2 = u 2, spec (EQ 34)

Between Equation 32 and Equation 33 there are exactly as many discretized equations as there
are displacement unknowns.

The weak form of the incompressibility equation becomes

(x, y) (_, rl) } _ (x, y) d_dr I = 0 (EQ 35)f 0_3{ (;, rl)
'J _ (Xo, Yo) _ (_, 11)
Ei

In this equation, Ei is the area of element i. There are exactly as many distinct equations of

constraint as there are unknown pressures.

Drug Delivery Example
The numerical analysis solution scheme is demonstrated in an eroding gel drug delivery

example (see Figure 1). This example mimics similar gel dynamics behavior as that demonstrated
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t1, @ pH 1 t2, @ pH 2 > pH 1 t3, @ pH 2

Figure1: ErodingDrugDeliveryProblem- Gel isequilibratedat tl andpH1.At t2gelhasswollenin
responseto pH2 environment.Att3outershellof gelhasreachedthecriticalconcentrationforerosion
andflakesoff.

by the colon drug delivery system described earlier. These doped gels are designed to swell in
high pH environments. At the higher pH an enzymatic reaction can occur which causes the gel
to erode thereby releasing the dopant. In the numerical example an equilibrated gel disk (at
pH=3) is subjected to changes in its environmental conditions (pH increased to 8) so that it must
swell by absorbing solvent to attain its new equilibrium. These pH levels are comparable to those
the gel would have encountered passing from the stomach into the gastrointestinal tract (actual
published pH levels are 2 for the stomach and 7.4 for the GI-tract (Brondsted and Kopecek, 1992).
Once the gel has swollen to a certain extent (the criterion is specified by a solvent concentration
limit) the gel is eroded. In the numerical problem finite elements are eliminated from the mesh.
The geometry of the physical device is a disk. Because of symmetry only a quarter of the gel disk
is modeled. The finite element mesh having 147 elements is shown in Figure 2 (along with
boundary conditions). The quadrilateral elements are linear in displacement and discontinuous,
piecewise constant in pressure. (Calculation with a system of elements that are linear in both
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Figure2:ErodingDrugDeliveryProblem- InitialFiniteElementMesh(147elements).

displacement and pressure and made non-singular by the method of Hughes, Franca, and Balesta
(1986) gave results indistinguishable from those presented here.)

In the problem presented, the physical parameters and state variables are chosen to resemble
typical values for a polyacrylamide gel system. Initially, the gel is assumed to be equilibrated at
a pH of 3 with a corresponding equilibrium solvent mass fraction equal to 0.775. Then the gers
pH is changed to 8 (with a corresponding solvent mass fraction equal to 0.989). This will cause
the gel to absorb solvent and swell. Physical model parameters were derived from experimental

observations (Ka=6 xl0 "5, g = 0.2, Lsp = 1 x 10-5 cm2/s, and N=4). The erosion concentration
criterion was set at 0.85. Therefore, when the average concentration of a finite element attained
a value of 0.82 it was "eroded" from the mesh.

The change in equilibrium conditions causes the gel to absorb solvent through its outer edge.
Therefore, solvent enters first from the outer edge region into the inner region causing
concentration gradient rings. Figure 3 shows different solvent concentration profiles of the disk
at five different time steps (2000, 3000, 4000, 5000, 5400 seconds.) As expected, the gel starts to
swell until the outer layer solvent concentration reaches the critical limit for erosion where it
"flakes" off. Each finite element's solvent concentration value is determined from the average of
all of its nodal solvent concentration values. In the numerical analysis program, when the outer
layer is removed the boundary condition gets transferred to the new outer layer of gel. When the
new outer edge reaches the critical concentration limit it also flakes off. Over time, the inward
motion of the boundary accelerates as the diameter of the disk gets smaller and its perimeter/area
ratio increases. However, the area of gel that is lost per time step decreases as inward motion of
the boundary represents smaller increments of area. Figure 4a shows the area of the gel disk as a
function of time. The discretization of the mesh is reflected in small increases in total area just
before the catastrophic loss of a layer of element. This continues until the gel is almost
completely eroded. Figure 4b shows the area of material lost as a function of time which is related
to the dopant release rate. Note that after the initial swell period (before any material is lost) the
area lost rate is almost linear. Of course this is dependent on mesh used. We would expect to find
the true rate functionality using a very fine mesh density.

As mentioned above, the numerical solution scheme first solves the diffusion calculations

and then uses these results in the elasticity calculations to produce a new deformed geometry.
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time = 0 sec time = 2000 sec
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Figure3: Eroding Drug DeliveryProblem- Solvent concentrationprofilesare shown as a function of
time. As a finite elementsconcentrationvalue reachesa criticallimitof 0.82 it is removedfromthe
mesh.
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Figure 4: Eroding Drug Delivery Problem - 4a shows the area of gel as a function time; 4b shows the area
of gelerodedasa functionof time.

This can be a numerically unstable procedure if the selected time steps are too large. A time step
must be chosen that allows the elasticity to deform the mesh in small amounts. By assuring that
the diffusion relationships produce small concentration gradients throughout the gel small

changes in swell result. This is done by selecting a time step which is of the same order of
magnitude as the rate of diffusion.

CONCLUSIONS

Polymeric gels arc being investigated as drug delivery mechanisms. Gels can be
impregnated with a drug and then stimulated through various means to release it. Having the
capability to numerically predict the dynamic behavior of the release process would benefit the
design and control of such a process. In addition to drug release performance, real-time control
strategies can be evaluated.

In this paper a finite element analysis is used to simulate the dynamic behavior of an eroding
polyelectrolyte gel. The gel is impregnated in a collapsed state. It is then subjected to a higher pH
environment causing it to swell. When it has swollen to a specified extent the gel erodes, thereby
releasing the drug agent. The numerical analysis capability allows the prediction of gel erosion
which is related to the drug release rate. Therefore, release rates can be predicted for different
dopant loading schemes. This will allow for a larger number of schemes to be investigated. Also,
the functionality of how gel properties affect release rates can be studied. Thereby, a new gel can
be engineered for a specific release pattern.
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