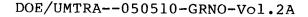

UMTRA-DOE/AL 050510 .GRN0


2

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

DE93 008968

APPENDIX D SUPPLEMENT, SITE CHARACTERIZATION

DISCLAIMER

.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

The second the liter where the strend and an

NOTE: This volume incorporates by reference Sections D.1., D.2, D.3, D.6, and D.7 of the February 1988 RAP. It also incorporates by reference the revised portions of Section D.4, which were presented in the January 1989 Supplement to Appendix D.

TABLE OF CONTENTS

•

<u>Sect</u>	lon						<u>Page</u>
D.5	GROUND D.5.1	WATER HYDR Introduct	LOGY	· · · · · · · ·	•••	• • • •	D-27 D-27
	D.5.2	Site char D.5.2.1 D.5.2.2 D.5.2.3 D.5.2.4 D.5.2.5 D.5.2.6 D.5.2.7	cterization summar Summary Previous investiga Geology and hydros Hydraulic characte Groundwater flow . Background groundw Extent of existing	tions tratigraphy . ristics ater quality .	· · · · · · · · · · · ·	· · · · ·	D-28 D-28 D-30 D-31 D-34 D-37 D-42 D-46
		D.5.2.8 D.5.2.9 D.5.2.10	Tailings and milli characterization . Geochemical condit Groundwater use, v supplies	ng process ions alue, and alte	ernativ	••••	D-48 D-51 D-56
REFE	RENCES	• • • • •			• • •	• • • •	D-181

'n

•

LIST OF FIGURES

•

<u>Figure</u>		<u>Page</u>
D.5.1	Locations of cross sections, monitor wells, lysimeter, abandoned boreholes, test pits, and surface water	
D.5.2	sampling sites, Green River, Utah, tailings site	D-59
D.5.3	tailings site	D-60 D-61
D.5.4	Hydrogeological cross section C-C', Green River, Utah, tailings site	D-62
D.5.5	Hydrogeological cross section D-D', Green River, Utah, tailings site	D-63
D.5.6	Hydrogeological cross section E-E', Green River, Utah, tailings site	D-64
0.5.7	Water table contour map and monitor wells, top hydrostratigraphic unit, Green River, Utah, tailings	0.65
D.5.8	site, October 1987	D-65
D.5.9	site, October 1987	D-66
D.5.10	site, October 1987	D-67
D.5.11	site, October 1987	D-68
A E 10	and sulfate for bottom unit background monitor wells 586, 587, and 818	D-69
0.5.12	Maximum observed activities and extent of gross alpha contamination in the top hydrostratigraphic unit, Green River, Utah, tailings site	D-70
D.5.13		0-70
D.5.14	Green River, Utah, tailings site	D-71
D.5.15	Green River, Utah, tailings site	0-72
D.5.16	contamination in the top hydrostratigraphic unit, Green River, Utah, tailings site	D-73
0.5.17	contamination in the top hydrostratigraphic unit, Green River, Utah, tailings site	D-74
	contamination in the top hydrostratigraphic unit, Green River, Utah, tailings site	D-75
D.5.18	Maximum observed activities and estimated extent of gross alpha contamination in the upper-middle	_
	hydrostratigraphic unit, Green River, Utah, tailings site	D-76

•

1

LIST OF FIGURES (Concluded)

.

·

<u>Figure</u>		<u>Page</u>
D.5.19	Maximum observed concentration and estimated extent of molybdenum contamination in the upper-middle	
D.5.20	hydrostratigraphic unit, Green River, Utah, tailings site Maximum observed concentration and estimated extent of nitrate contamination in the upper-middle	D-77
	hydrostratigraphic unit, Green River, Utah, tailings site	D-78
D.5.2 1	Maximum observed concentration and estimated extent of selenium contamination in the upper-middle	
	hydrostratigraphic unit, Green River, Utah, tailings site	D-79
D.5.22	Maximum observed concentration and estimated extent of uranium contamination in the upper-middle	
	hydrostratigraphic unit, Green River, Utah, tailings site	D-80
D.5.23	Diagrammatic cross section of proposed disposal cell and	
	foundation, Green River, Utah, tailings site	D-81
D.5.24	Disposal cell cover system, Green River, Utah, tailings site	D-82
D.5.25	Locations of registered water wells in Township 21 South,	
	Range 16 East, near Green River, Utah	D-83

•

.

LIST OF TABLES

<u>Table</u>		Page
D.5.1	Water quality standards and maximum concentration limits	
	applicable to the Green River UMTRA Project site	D-84
D.5.2	Monitor well data, Green River, Utah, tailings site	D-85
D.5.3	Summary of aquifer hydraulic characteristics,	
	Green River, Utah, tailings site	D-86
D.5.4	Triaxial hydraulic conductivities of selected rock core	
	from monitor wells 907, 813, 816, and 818,	
	Green River, Utah, tailings site	D-87
D.5.5	Groundwater elevations, Green River, Utah, tailings site	D-88
D.5.6	Summary of aquifer hydraulic characteristics for	
	the top hydrostratigraphic unit, Green River, Utah,	n
	tailings site	D-90
D.5.7	Groundwater flux within the top hydrostratigraphic	
	unit beneath the present tailings, Green River, Utah,	D-90
	tailings site	0-90
D.5.8	Summary of aquifer hydraulic characteristics for the	
	upper-middle hydrostratigraphic unit, Green River,	0.01
	Utah, tailings site	D-91
D.5.9	Groundwater flux within the upper-middle hydrostratigraphic	
	unit beneath the present tailings, Green River, Utah,	
	tailings site	D-91
D.5.10	Summary of aquifer hydraulic characteristics for the	
	lower-middle hydrostratigraphic unit, Green River, Utah,	
	tailings site	D-92
D.5.11	Summary of aquifer hydraulic characteristics for the	
	bottom hydrostratigraphic unit, Green River, Utah,	
	tailings site	D-92
D.5.12	Summary of vertical hydraulic gradients beneath	
	the present tailings pile, Green River, Utah,	0.00
D C 10	tailings site	D-93
D.5.13	Summary of vertical hydraulic gradients beneath	
	the proposed disposal site, Green River, Utah,	0 00
	tailings site	D-93
D.5.14	Description of groundwater samples, Green River, Utah,	
	tailings site	D-94
0.5.15	chemical analyses of groundwater, Green River, Utan,	0.06
0 6 16	tailings site	D-96
D.5.16		
	hydrostratigraphic unit, Green River, Utah, tailings site	D-166
D.5.17	Background groundwater quality summary for the	D-100
0.3.17		
	upper-middle hydrostratigraphic unit, Green River, Utah,	D-167
D.5.18	tailings site	0-107
0.3.10	lower-middle hydrostratigraphic unit, Green River, Utah.	
	tailings site	D-168
D.5.19	Background groundwater quality summary for the bottom	U-100
0.3.13	hydrostratigraphic unit, Green River, Utah,	
	tailings site	D-169
	Laiiiiy))ile	201-0

LIST OF TABLES (Concluded)

Page

Ta	b	1	e
	1	-	-

D.5.20	Summary of maximum and minimum observed concentrations	
	in the top hydrostratigraphic unit from tailings seepage,	
	Green River, Utah, tailings site	D-170
D.5.21	Summary of maximum and minimum observed concentrations	
	in the upper-middle hydrostratigraphic unit from	
	tailings seepage, Green River, Utah, tailings site	D-170
D.5.22	Permeability test results and physical properties from	
	tailings samples, Green River, Utah, tailings site	D-171
D.5.23	Chemical analyses for lysimeter GRN01-714	D-172
D.5.24	Analyses of Cedar Mountain Formation groundwater,	
	Green River, Utah	D-173
D.5.25	Field measured and theoretical redox potentials (Eh)	
0.3.23	controlling uraninite precipitation within the	
	Cedar Mountain Formation, Green River, Utah	D-174
		0-174
D.5.26	Field pH, field Eh, total uranium, and saturation indices	
	for Cedar Mountain Formation, Green River, Utah	D-175
D.5.27	Chemical analysis of batch leaching and column	
	extraction solutions from tailings, buffer material,	
	and wind blown soil samples, Green River, Utah	D-176

D.5.1 INTRODUCTION

The U.S. Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent groundwater contamination resulting from processing activities at inactive uranium mill tailings sites (40 CFR 192). The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 designated responsibility to the U.S. Department of Energy (DOE) for assessing the tailings sites. This assessment includes the following:

- Definition of hydrogeologic characteristics of the environment, including the hydrostratigraphy, aquifer hydraulic parameters, areas of aquifer recharge and discharge, potentiometric surface, and groundwater velocity.
- Comparison of existing water quality with background water quality and applicable EPA standards. Some discussion of EPA secondary drinking water quality parameters is included to define the general quality of the groundwater.
- o Definition of physical and chemical characteristics of the potential contaminant source, including concentration and leachability in relation to migration of contaminants in groundwater and hydraulically connected surface water.
- o Description of water resource use, including availability, current and future use, value, and alternative supplies.
- o Evaluation of current impacts to the groundwater system resulting from uranium processing activities.

On January 5, 1983, the EPA promulgated final standards for the disposal and cleanup of the inactive uranium processing sites under the UMTRCA (48 FR 590). On September 3, 1985, the groundwater provisions of the regulations (40 CFR 192.20(a)(2)-(3)) were remanded to the EPA by the U.S. Tenth Circuit Court of Appeals. On September 24, 1987, the EPA issued proposed groundwater regulations to replace those set aside (52 FR 36000). The DOE has commented on the proposed standards.

Water quality at the Green River tailings site was characterized and compared with the EPA's proposed groundwater standards for inactive uranium processing sites (Table D.5.1). The constituents listed in Table D.5.1 are most commonly associated with uranium mill tailings. The numerical concentration limits associated with the constituents reflect safe levels for public drinking water and are therefore the same as maximum concentration limits (MCLs) for EPA primary drinking water standards. Appendix VIII of the EPA's proposed standards includes a complete list of hazardous constituents that should be evaluated on a site-specific basis. These constituents include both organic and inorganic compounds and elements. Section E.3.1.1 of Appendix E contains a complete discussion of hazardous constituents that are associated with the uranium mill tailings at the Green River site. The DOE has characterized conditions at the Green River processing site and does not anticipate that any changes to the remedial action will be required when the final EPA standards are issued. Upon issuance of these standards, the DOE will reevaluate the groundwater protection plan and determine the need for institutional controls on the public use of groundwater at the site, aquifer restoration, or other measures, and take appropriate action to comply with the final standards.

The following sections present details of the hydrogeologic characterization at the Green River site. Appendix E presents an assessment of future impacts to the groundwater system resulting from the proposed remedial actions, and a strategy for protecting water resources at the Green River site. Figures and tables are presented at the end of the text for ease in reading.

D.5.2 SITE CHARACTERIZATION SUMMARY

0.5.2.1 <u>Summary</u>

To comply with EPA standards for remedial actions at inactive uranium processing sites (40 CFR 192), the DOE has characterized the hydrogeology, water quality, and water resources at the Green River, Utah, designated site. Major points are summarized below, followed by a detailed discussion of the site characterization.

- Four distinct hydrostratigraphic units occur within the upper 200 feet of Quaternary and Cretaceous sediments beneath the site. In decending order these are:
 (1) Brown's Wash alluvium (top hydrostratigraphic unit);
 (2) shale and limestone of the Cedar Mountain Formation (upper-middle hydrostratigraphic unit);
 (3) sandstone, siltstone, and conglomerate of the Cedar Mountain Formation (lower-middle hydrostratigraphic unit);
 (3) sandstone, siltstone, and conglomerate of the Cedar Mountain Formation (lower-middle hydrostratigraphic unit);
 (3) sandstone, siltstone, and conglomerate of the Cedar Mountain Formation (lower-middle hydrostratigraphic unit); and (4) Buckhorn Conglomerate Member of the Cedar Mountain Formation. The Dakota Sandstone is present in some areas beneath the proposed disposal site. These units are underlain by the Jurassic-aged Morrison Formation.
- Average hydraulic conductivities of aquifer materials range from a low of 1.6 feet per day (ft/day) in the upper-middle shale unit to a high of 25.0 ft/day in the Brown's Wash alluvium. Average linear groundwater velocities range from 0.08 ft/day to 1.14 ft/day in the two units, respectively.
- o Groundwater flow in the upper- and lower-middle hydrostratigraphic units is controlled by connected fractures and joints; strong, upward, vertical hydraulic gradients; and the attitude (dip) and lateral extent of the hydrostratigraphic units. Groundwater flow in the Brown's Wash alluvium and the upper-middle shale

unit, where it lies beneath the alluvium, is also controlled by paleo-erosion of the upper-middle unit near the present tailings pile by a meandering Brown's Wash channel, and by the subsequent deposition of the Brown's Wash alluvium.

- o Background groundwater quality in all four hydrostratigraphic units is characterized by concentrations of total dissolved solids (TDS), sulfate, and chloride that exceed EPA and state of Utah secondary drinking water standards. Groundwater in all four units is classified as Class II based on TDS (TDS greater than 1000 but less than 10,000 milligrams per liter (mg/l)), but it may be classified as Class III because of the concentrations of selenium, chromium, nitrate, and uranium in background samples that exceed proposed EPA MCLs for these constituents.
- Background groundwater quality in the top hydrostratigraphic unit is characterized by concentrations of chromium, molybdenum, nitrate, and selenium that exceed proposed EPA MCLs and state of Utah primary drinking water standards (except for molybdenum, which does not have a Utah standard).
- Background groundwater quality in the upper-middle hydrostratigraphic unit is characterized by concentrations of nitrate and selenium that exceed proposed EPA MCLs and state of Utah primary drinking water standards.
- o Background groundwater quality in the lower-middle hydrostratigraphic unit is characterized by concentrations of molybdenum, nitrate, selenium, uranium, and gross alpha activity that exceed proposed EPA MCLs and state of Utah primary drinking water standards (except for molybdenum, which does not have a Utah standard).
- Background groundwater quality in the bottom hydrostratigraphic unit is characterized by concentrations of chromium, molybdenum, and selenium that exceed proposed EPA MCLs and state of Utah primary drinking water standards (except for molybdenum, which does not have a Utah standard).
- o Contamination by tailings seepage is limited to the Brown's Wash alluvium and the upper-middle shale unit of the Cedar Mountain Formation beneath the present tailings pile. Major contaminants introduced by tailings seepage to these units include: molybdenum, nitrate (chemically reduced, in part due to ammonium), selenium, uranium, and gross alpha activity.

o The tailings seepage has been neutralized by the alluvium and shale bedrock beneath the tailings (the pH of the groundwater is near 7.0). Uranium concentrations in the alluvium and shale have not exceeded 3.11 mg/l in any of the wells, while concentrations in the tailings pore water (lysimeter samples) have been measured as high as 675 mg/l. Dilution by groundwater underflow and attenuation, probably as cation exchange in the alluvium and precipitation in the shale, have significantly lowered uranium concentrations, as well as other seepage contaminants, to well below the relatively high concentrations found in the tailings pore water.

D.5.2.2 <u>Previous investigations</u>

Bibliographies (ONWI, 1985; USGS, 1971-1985, 1972, 1964; La Pray and Hamblin, 1980; Buss and Geoltz, 1974; Childers and Smith, 1970; Buss, 1951) were reviewed to identify geological, hydrological, and hydrogeological investigations of the Green River site and vicinity. A number of regional studies (USGS, 1964; Howard and Love, 1945; Waring and Knechtel, 1936; Reeside, 1930, 1923; La Rue, 1916) were identified; however, much of the information contained in these reports is either outdated or not sufficient to aid in characterizing the hydrogeology of the site.

Five reconnaissance studies of the Paradox Basin, which contains the Green River site, were conducted as part of a program to evaluate the potential for storage of nuclear waste in salt deposits (Weir et al., 1983); one of these studies (Rush et al., 1982) included the area of the Green River tailings site.

A one-time sampling effort at the Green River tailings site was conducted by Geochemistry and Environmental Chemistry Research, Inc. (GECR, 1983). Data from this report are from sampling and analyses of groundwater and surface water from background areas, the area adjacent to the site, and the site. Soils samples were collected and archived, and have not been analyzed. Because of questionable quality assurance and control on the water sample analyses from the GECR report, the data were not used for analyses in this report.

An unpublished report by the DOE (1983) on the Green River site contains the results of drilling, groundwater sampling, and aquifer hydraulic testing of eight monitor wells; surface water sampling of Brown's Wash adjacent to and downstream of the site; and climatological data for the vicinity. Some of the data from the DOE (1983) report were used in this report. An engineering assessment (FBDU, 1981) includes site information as well as a summary of the milling operations and a history of the Green River site. Hydrogeological data, including borehole logs, well completion records, groundwater elevations, aquifer hydraulic parameters, and water quality data, were collected at the Green River tailings site by the DOE during three drilling and testing phases from the fall of 1985 to the fall of 1987. Much of this information was included in an environmental assessment of the Green River tailings site (DOE, 1988a). All field and laboratory procedures and calculations were performed in accordance with the DOE's Standard Operating Procedures as contained in the Albuquerque Operations Manual (DOE, 1985).

Five two-inch diameter polyvinyl chloride (PVC) monitor wells, 28 four-inch diameter PVC monitor wells, and three two-inch diameter, low-carbon, galvanized steel well points were installed to characterize the Green River tailings and proposed disposal sites. The depths of these installations range from seven to 185 feet. Twelve exploratory geotechnical boreholes were also drilled, and ranged in depth from 16.5 to 32.5 feet. Lithologic logs were obtained from these boreholes prior to their abandonment by grouting and bentonite sealing from total depth to land surface. In addition, three suction lysimeters were installed in the unsaturated zone within the present tailings pile to characterize the pore water within Since their installation, only one lysimeter the tailings. has worked sufficiently to obtain samples. The locations of all monitor wells, lysimeters, abandoned boreholes, test pits, and surface water sampling sites included in this investigation are shown in Figure D.5.1. Following installation and development of the monitor wells, slug injection/withdrawal tests and short-duration (less than 25 hours) pumping drawdown/recovery tests were performed to estimate the hydraulic properties of the aguifer materials within the screened zones of the wells. The monitor wells were surveyed and static groundwater elevations in the wells were measured to determine vertical and horizontal hydraulic gradients and directions of groundwater flow. Table D.5.2 summarizes monitor well information for the Green River tailings site.

D.5.2.3 Geology and hydrostratigraphy

The Green River site is in east-central Utah on the nose of a shallow, northward plunging anticline that is repeated by the arcuate east-northeast to west-northwest trending Little Grand Wash fault, which lies three miles to the south of the site. Bedrock exposed at the surface in the site area consists of sedimentary units of Cretaceous and Jurassic age. Rock units lying beneath the surface range in age from Jurassic to Pennsylvanian and, at depth, include the salt- and gypsumbearing Paradox Member of the Pennsylvanian Hermosa Formation.

In descending sequence, the geologic units within 200 feet of the surface in the Green River site area are as follows:

- o Brown's Wash alluvium beneath the present tailings pile, and alluvial terrace deposits beneath the proposed disposal site (Quaternary age).
- o Tununk Shale Member of the Mancos Shale (Cretaceous age).
- o Dakota Sandstone (Cretaceous age).
- o Cedar Mountain Formation (Cretaceous age).

The Brown's Wash alluvium consists of a mixture of silt, sand, gravel, and some small cobbles. The alluvium is limited to an area that extends 300 to 400 feet on either side of Brown's Wash, and varies in thickness from zero to 35 feet. The tailings pile directly overlies the Brown's Wash alluvium. The terrace deposits consist mostly of silt and sand and are approximately 20 feet thick in the vicinity of the proposed disposal site.

The Tununk Shale Member of the Mancos Shale consists of carbonaceous shale interbedded with thin beds of sandstone. It subcrops beneath the Brown's Wash alluvium in the eastern half of the site but is mostly eroded away by the channel of Brown's Wash in the western half of the site area. This unit is exposed in the east-central section of the site, and forms the bluff at the south end of the existing tailings pile. This shale unit forms a wedge that thins toward the south and disappears completely between the tailings pile and the proposed disposal site. South of the tailings pile, the Tununk Shale is between zero and 25 feet thick.

In the site area, the Dakota Sandstone consists of fractured to unfractured, weathered to fresh sandstone, shale, and conglomerate. It rests unconformably on top of the Cedar Mountain Formation. This unit varies from zero to 10 feet thick and extends both east and west of the tailings and disposal sites. The Dakota lies between unconformable contacts with either the Mancos Shale, the Brown's Wash alluvium, or the alluvial terrace deposits (top contact), and the Cedar Mountain Formation (bottom contact). Where it has not been eroded away, the shale and dense, well-cemented sandstone, and conglomerate of the Dakota Sandstone are either not saturated or only partly saturated beneath the tailings pile.

The Cedar Mountain Formation consists of mudstone, shale, limestone, sandstone, conglomerate, and occasional interbedded coal. The Cedar Mountain Formation lies unconformably beneath the Dakota Sandstone and in the site area is at least 150 feet thick. Lithologic units within the Dakota Sandstone and Mancos Shale can be distinguished from units within the Cedar Mountain Formation by visual inspection. The Dakota and Mancos sandstones and shales are generally black (shale) to light tan (sandstone); units within the Cedar Mountain are generally shades of gray to marcon in color. Fractured and unfractured sandstone, sandstone conglomerates, and fractured shales or limestones within the Cedar Mountain Formation are the primary water-bearing units.

Figure D.5.1 shows the locations of cross sections (Figures D.5.2 through D.5.6) that show the hydrostratigraphy at the Green River tailings site. Figure D.5.7 is a fence diagram of the Green River site. The surface topography shown on the cross sections and fence diagram was developed from a topographic survey of the site. Subsurface lithologic data were obtained from borehole logs, visual inspection of rock core, and correlation of subsurface data with surface geology.

Hydrological investigations have shown that horizontal and vertical fracturing occurs in the Dakota Sandstone and Cedar Mountain Formation beneath the proposed disposal site. Core samples from monitor wells 562, 807, 812, 813, 814, 816, and 818 at the disposal site (see Figure D.5.1) show that vertical and near-vertical fractures exist in the bedrock and start at the top of the bedrock section. Fracturing is uniform and consistent through the Cedar Mountain Formation at least in the upper 60 feet of bedrock. The degree of fracturing varies from moderate to intense and is typical of the fracturing observed in outcrops of the Cedar Mountain Formation in the vicinity of the disposal site. Fracturing of the bedrock beneath the present tailings pile is variable. The flowing monitor well (581). completed in the sandstone unit beneath the pile, is evidence that the confining unit for the sandstone unit at this location (the overlying shale) must be relatively impermeable. Evidence (aquifer hydraulic conductivities and water levels) suggests that joints. fractures, or minor faulting may be controlling groundwater flow in the shallow bedrock approximately along the alignment of Brown's Wash.

Within the upper 200 feet of Quaternary and Cretaceous sediments, four distinct water-bearing units were defined at the Green River tailings site. These units are described as follows:

o The top hydrostratigraphic unit is the Brown's Wash alluvium. Groundwater in this unit is locally perched by the dense, well-cemented sandstone conglomerate of the Dakota Sandstone and the shale and limestone of the Cedar Mountain Formation (where these bedrock units are not fractured). Directly beneath the tailings pile, a paleochannel of Brown's Wash has eroded away the Dakota Sandstone, and the Brown's Wash alluvium directly overlies shale of the Cedar Mountain Formation.

- o The upper-middle hydrostratigraphic unit is the alternating layers of shale, limestone, and mudstone of the Cedar Mountain Formation.
- o The lower-middle hydrostratigraphic unit is a relatively thick, but laterally limited, sandstone of the Cedar Mountain Formation. The unit intertongues with the upper-middle unit and is beneath the present tailings pile and the proposed disposal site.
- The bottom hydrostratigraphic unit is the Buckhorn Conglomerate Member of the Cedar Mountain Formation. This basal sandstone and sandstone conglomerate unit is 15 to 25 feet thick beneath the site area and is confined by overlying shale and mudstone.

Neither the lower-middle or bottom hydrostratigraphic units have been adversely affected by seepage through the present tailings pile. The lower-middle unit subcrops beneath the proposed disposal site and is therefore a potentially affected unit; the bottom unit is protected from any current or future contamination by strong, vertically upward hydraulic gradients and a thick, low-hydraulic-conductivity shale that overlies this unit. The following sections present more detailed discussions about the hydraulic characteristics and flow of groundwater within these units.

D.5.2.4 <u>Hydraulic characteristics</u>

A summary of the hydraulic characteristics of the top, upper-middle, lower-middle, and bottom hydrostratigraphic units is presented in Table D.5.3. A number of methods were used to calculate values of hydraulic conductivity for the units. The methods of analyses include the following:

- o Ferris-Knowles slug test analysis (Ferris and Knowles, 1963).
- o Cooper, Bredehoeft, and Papadopulos slug test analysis (Cooper et al., 1967).
- o Bouwer-Rice slug test analysis (Bouwer and Rice, 1967).
- o Pumping drawdown analyses.
- o Pumping recovery analyses.

Slug test data from monitor wells 561, 581, 582, 583, 584, 585, 586, 587, 588, 701, 704, 707, 806, 807, 811, 813, 815, and 818 were analyzed by the Ferris-Knowles method. This method is best suited for fully developed wells that are open to the full thickness of an artesian aguifer of small to moderate

transmissivity (less than 50,000 gallons per day per foot (gpd/ft)); it is also suited to some unconfined aquifers (Ferris and Knowles, 1963). The Ferris-Knowles equation is as follows:

$$k = \frac{q(1/t)}{4\pi sL}$$

where

- k = hydraulic conductivity (ft/day).
- q = slugged volume (cubic ft).
- t = time (days).
- $s = residual drawdown at time t_s (ft)$.
- L = length of interval being tested (ft).

The values of 1/t and s are obtained from a straight-line fit through the plotted data points. These data are available from the Albuquerque UMTRA Project Office, Albuquerque, New Mexico.

Slug test data from monitor wells 561, 582, 583, 584, 585, 586, 587, 588, 701, 704, 707, 806, 807, 811, 813, 815, and 818 were analyzed using the Cooper, Bredehoeft, and Papadopulos (Cooper et al., 1967) method, which has requirements similar to the Ferris-Knowles method, and is as follows:

$$k = \frac{r^2}{tL}$$

where

- k = hydraulic conductivity (ft/day).
- r = radius of well casing (ft).
- t = time for point in "matched-type curve" (days).
- L =length of interval being tested (ft).

The value t is obtained by matching data points of residual drawdown versus time (log scale) to a "type curve" referenced by Cooper, Bredehoeft, and Papadopulos (Lohman, 1972).

Short-duration aquifer pumping tests were analyzed from monitor wells 581, 582, 586, 587, 588, and 813 by the singlewell pumping drawdown or recovery method, formally recognized as the modified Theis nonequilibrium formula (Freeze and Cherry, 1979). The pumping drawdown or recovery formula is as follows:

$$k = \frac{264q}{sL}$$

where

- k = hydraulic conductivity (gpd/ft²).
- q = average pumping rate for the duration of the test
 (gpm).
- s = drawdown per one log cycle (ft).
- L = length of interval being tested (ft).

An aquifer pumping drawdown test was conducted on alluvial well 702 (DOE, 1983). Also, slug tests were performed and analyzed from monitor wells 701, 702, 704, 705, 706, and 707 using the Bouwer-Rice method (DOE, 1983).

Assumptions inherent in the analyses of the aquifer hydraulic test data, regardless of the method of analysis, are as follows:

- o The unit being tested is homogeneous and isotropic.
- o The radius of the well is small in comparison to the extent of the aquifer.
- o The removal of the slug and the development of initial, residual drawdown are instantaneous.
- o The influence of the filter pack is negligible.

To obtain the average hydraulic conductivity values listed in Table D.5.3, values from each analysis were summed and an arithmetic mean was calculated. Wells 701, 704, and 707 were tested in 1983 and 1986. Alluvial wells 702, 705, and 706 were only tested in 1983. All other wells listed in Table D.5.3 were tested in 1986 and 1987.

Average linear velocities listed in Table D.5.3 were calculated as follows (Freeze and Cherry, 1979):

$$v = \frac{ki}{n}$$

where

- v = average linear velocity (ft/day).
- k = average saturated hydraulic conductivity (ft/day).
- i = average hydraulic gradient (ft/ft).
- n = assumed porosity of aquifer material (dimensionless).

The saturated hydraulic conductivity of the unfractured bedrock of the Cedar Mountain Formation was measured by the triaxial backpressure falling head method (Table D.5.4). The measured conductivity is low, ranging from 2.4 x 10^{-8} centimeters per second (cm/s) to 2.4 x 10^{-11} cm/s. These values indicate that flow of groundwater in the bedrock is controlled by interconnected fractures and joints.

More detailed discussions of the hydraulic characteristics of the four hydrostratigraphic units are presented in the following sections. Table D.5.5 presents static groundwater elevations in the monitor wells for four sampling periods: June, 1986; September, 1986; March, 1987; and October, 1987.

D.5.2.5 Groundwater flow

Top hydrostratigraphic unit

Shallow, unconfined groundwater is present in Brown's Wash alluvium beneath the present tailings pile. The occurrence of this shallow groundwater is limited by the lateral extent of the alluvium. The top unit is a maximum of 600 feet wide near the tailings pile. Monitor wells 702, 704, 705, 706, 707, 708, 808, and well points 563, 564, and 821 are completed in this unit.

A water table contour map of the top hydrostratigraphic unit is presented in Figure D.5.8. This contour map was developed from water level data and the surveyed elevations of the wells in October, 1987 (see Table D.5.5). The depth to groundwater ranges from nine to 17 feet below the surface in the top unit. The hydraulic gradient within the top unit ranges from 0.0029 ft/ft near monitor well 707 to 0.0125 ft/ft near monitor wells 702 and 808.

Table D.5.6 presents a summary of aquifer hydraulic characteristics for the top hydrostratigraphic unit. The calculated geometric mean linear velocity of groundwater in the top unit is 1.14 ft/day. Groundwater in the top unit is recharged by flow from the upper-middle shale unit from the south, and by infiltration of surface runoff and precipitation in the channel of Brown's Wash. Groundwater discharges from Brown's Wash alluvium into the channel of Brown's Wash at a point west of the tailings pile where the site access bridge crosses Brown's Wash (see Figure D.5.1). From this point west to the Green River, the Dakota Sandstone and Cedar Mountain Formation inhibit the downward movement of water in the channel: however, a portion of this water likely infiltrates into the bedrock, especially where fractures are present. Water that flows west in the channel eventually mixes with backwater from the Green River (at surface-water sampling site 526, shown on Figure D.5.1). Groundwater also discharges from the Brown's Wash alluvium into the underlying upper-middle shale

unit of the Cedar Mountain Formation, to the atmosphere as evaporation, and to the tamarisk vegetation that lines the channel of Brown's Wash. The DOE (1988a) measured the base flow in Brown's Wash channel in November, 1985, at 2.3 gallons per minute (gpm). The measurement was made immediately west of the access bridge to the site near well point 564 (see Figure D.5.1). The remainder of the shallow alluvial groundwater from beneath the present tailings pile is lost to evapotranspiration and vertical downward leakage into the Cedar Mountain Formation. Since well points 564 and 821 and monitor well 706 are dry (see Figure D.5.1), very little flow is assumed to move downgradient to the alluvium west of monitor wells 706.

The groundwater flux through the top hydrostratigraphic unit beneath the present tailings pile can be estimated by using Darcy's Law (Todd, 1980) as follows:

Q = WDki

where

- $Q = groundwater flux (ft^3/day).$
- W = saturated width of aquifer perpendicular to groundwater flow beneath the tailings.
- D = saturated height of aquifer beneath the tailings (ft).
- k = saturated hydraulic conductivity of the alluvium
 (ft/yr).
- i = hydraulic gradient (ft/ft).

To calculate the groundwater flux in the alluvium beneath the tailings, the projected area perpendicular to the flow was divided into three areas represented by monitor wells 702 and 808 for the eastern area; monitor well 704 for the middle area; and monitor well 705 for the western area. The groundwater flux for each of these areas and the total flux in the alluvium beneath the tailings is summarized in Table D.5.7. The total flux is estimated to be 9.9 gpm beneath the tailings.

Upper-middle hydrostratigraphic unit

Confined and semiconfined groundwater is present in the upper-middle unit beneath the Green River tailings site. This unit consists mostly of limestone and shale of the Cedar Mountain Formation. Beneath the tailings and the proposed disposal site, the upper-middle unit is separated into two units by a sandstone and conglomerate channel deposit. To the west and east of the tailings and proposed disposal site this sandstone and conglomerate is not present or intertongues as thin layers with the upper-middle shale unit (see Figures D.5.2, D.5.3, and D.5.4).

Beneath the proposed disposal site, fracturing occurs in the upper- and lower-middle units. A total of six core holes were drilled beneath and peripheral to the proposed disposal Core from all of these holes shows moderate to intense site. vertical and horizontal fracturing and fractures extending from the upper-middle unit down into the lower-middle unit (DOE. 1987a). Monitor wells completed in the upper-middle unit include 583, 584, 585, 701, 806, 807 (completed below the sandstone and conglomerate channel deposit), 809, 810, 812, 814, 816, 822, and 823. Monitor wells 812, 814, 816, 822, and 823 were installed at the disposal site; only well 816 encountered groundwater (at a depth of 60 feet). Depth to groundwater in the upper-middle unit beneath the tailings surface is about 26 feet at monitor well 701.

A potentiometric contour map of the upper-middle hydrostratigraphic unit is presented in Figure D.5.9. This contour map was developed from water level data and the surveyed water elevations in the wells in October, 1987 (see Table D.5.5). The hydraulic gradient within the upper-middle hydrostratigraphic unit ranges from 0.0063 to 0.0083 ft/ft. Groundwater flux in the upper-middle unit is controlled by fractures, joints, or minor faulting, which is most evident in the vicinity of the tailings pile. A "trough" is present in the potentiometric surface, which trends east-west and is just south of the channel of Brown's Wash (see Figure D.5.9). Groundwater flux in the upper-middle unit is also controlled by vertical recharge from the overlying alluvial aquifer and the underlying lower-middle unit.

Table D.5.8 presents a summary of aquifer hydraulic characteristics for the upper-middle unit. The calculated average linear velocity of groundwater in the upper-middle unit ranges between 0.01 and 0.71 ft/day; the geometric mean velocity is 0.08 ft/day. Groundwater flux through the upper-middle unit beneath the present tailings pile was calculated based on the calculated hydraulic conductivities and water levels from monitor wells 584 and 701. The method for calculating groundwater flux was the same as that used to calculate flux through the top hydrostratigraphic unit. The total flux is estimated to be 4.9 gpm beneath the tailings in the upper-middle unit (Table D.5.9).

Lower-middle hydrostratigraphic unit

The lower-middle hydrostratigraphic unit is the sandstone and conglomerate channel deposit within the upper-middle geologic unit of the Cedar Mountain Formation. This unit is a maximum of 30 feet thick and is confined in the area of the present tailings pile by overlying shales and limestones of the upper-middle unit. The lower-middle unit does not appear to be present, or it intertongues as thin lenses with the limestone and shale, east and west of the tailings (see Figures D.5.2, D.5.3, and D.5.4). Monitor well 581 is drilled and completed in this unit beneath the tailings, and it flows at the surface. Monitor wells 561 and 562 are screened in both the upper-middle and lower-middle units and data collected from these wells may not represent actual conditions in either However, monitor well 562 is completed beneath the prounit. posed disposal site and well 561 is west of the disposal site; because of the fracturing present in the upper-middle and lower-middle units at the disposal site, these two units are probably somewhat hydraulically connected, and the screened intervals in monitor wells 561 and 562 probably include the zone of hydraulic connection. Other monitor wells drilled and completed in the lower-middle unit include 811. 813. and 815. Background monitor well 811, east of the tailings pile near Brown's Wash (see Figure D.5.1), encountered only thin, separated lenses of sandstone that are probably of the lowermiddle unit.

A potentiometric contour map of the lower-middle unit is presented in Figure D.5.10. This map was developed from water level data for October 1987 (See Table D.5.4) and the surveyed elevations of the monitor wells. The potentiometric surface in the lower middle unit is two to three feet above the surface of the tailings at monitor well 581. The depth to water in this unit is approximately 60 feet at the proposed disposal site. The hydraulic gradient within the lower-middle unit ranges from 0.0083 to 0.025 ft/ft.

The flow of groundwater in the lower-middle unit is strongly influenced by the attitude (dip) of the unit, its limited lateral extent to the east and west, and its recharge by underlying aquifers. Rock cores from monitor wells 562, 807, and 813 indicate this unit is fractured and is probably hydraulically connected with the overlying upper-middle shale unit beneath the proposed disposal site; however, the lowermiddle unit is confined by the shale beneath the present tailings. Additionally, monitor well 581, which is drilled and completed in the lower-middle unit, flows at the surface. The strong, vertically upward hydraulic gradient between the uppermiddle and lower-middle units beneath the tailings pile has prevented any tailings seepage from moving into the lowermiddle unit.

Table 0.5.10 presents a summary of aquifer hydraulic characteristics for the lower-middle hydrostratigraphic unit. The calculated average linear velocity of groundwater in the lower-middle unit ranges between 0.02 and 2.7 ft/day; the geometric mean is 0.14 ft/day. Groundwater flux through the lower-middle unit beneath the tailings was not calculated since this unit has not been affected by tailings seepage.

Bottom hydrostratigraphic unit

The Buckhorn Conglomerate Member of the Cedar Mountain Formation has been defined as the bottom hydrostratigraphic Confined groundwater is present beneath the tailings unit. site vicinity in this unit. The unit is 15 to 25 feet thick in the site vicinity and is confined by the maroon to grayblue shales and mudstones that separate the bottom unit from the overlying hydrostratigraphic units. Monitor wells 582 and 819, drilled and completed near Brown's Wash west of the tailings, flow at the surface. The other monitor wells completed in this formation (586, 587, 588, and 818) do not flow because they are at a higher elevation than the flowing wells. Monitor well 817, located east of the tailings near Brown's Wash (see Figure D.5.1), was thought to be drilled and completed in the bottom unit. Detailed analyses and comparison with other well data showed that well 817 is probably screened somewhere below the lower-middle unit (see Figure D.5.3). Because of the uncertainty associated with the completion of monitor well 817. data from the well have not been included in hydrogeologic analyses of any of the units.

A potentiometric contour map of the bottom unit is presented in Figure D.5.11. This contour map was developed from water level data for October 1987 (see Table D.5.4) and the surveyed elevations of the monitor wells. The potentiometric surface in the bottom unit is five to 14 feet above land surface in the vicinity of the present tailings, and 56 to 71 feet below land surface in the vicinity of the proposed disposal site. The hydraulic gradient within the bottom unit ranges from 0.040 to 0.044 ft/ft.

Table D.5.11 presents a summary of aquifer hydraulic characteristics for the bottom unit. The calculated average linear velocity of groundwater in the bottom unit ranges from 0.072 to 0.17 ft/day; the geometric mean is 0.12 ft/day. Groundwater flux through the bottom unit beneath the tailings was not calculated since tailings seepage has not affected this unit. Because of overlying confining layers and strong, vertically upward hydraulic gradients between the bottom unit and the two presently contaminated units, the bottom unit will not become contaminated from tailings seepage.

Vertical hydraulic gradients

Strong, vertically upward hydraulic gradients exist between the bedrock units in the vicinity of the Green River tailings site. These gradients have prevented the downward movement of tailings seepage into the lower-middle and bottom hydrostratigraphic units beneath the present tailings pile. Beneath the proposed disposal site these gradients may limit the amount of mixing of any tailings seepage (as a result of the proposed remedial action) between the upper-middle and lower-middle units. Additionally, the strong gradients will restrict the movement of any tailings seepage into the bottom unit. Tables D.5.12 and D.5.13 summarize the vertical hydraulic gradients at the present tailings site and the proposed disposal site, respectively.

D.5.2.6 Background groundwater quality

Background groundwater quality in the four hydrostrati-graphic units at the Green River site was determined for the following constituents listed in the proposed EPA standards (40 CFR 192): chromium; molybdenum; nitrate; selenium; radium-226 and 228; uranium; and gross alpha activity. The other constituents listed in the proposed EPA standards (see Table D.5.1) were found to have levels below detection for the first two rounds of sampling in June 1986 and September 1986; consequently, these remaining constituents were excluded from subsequent sampling rounds and are not considered to be present as contamination in groundwater at the Green River tailings site. Table D.5.14 describes all of the groundwater sampling locations and Table D.5.15 presents the results of the chemical analyses for all of the wells and well points. Figure D.5.12 is a trilinear plot of the monitor wells at the Green River site. The trilinear plot shows the general types of groundwater in the alluvium and Cedar Mountain Formation.

Top hydrostratigraphic unit

The locations of background monitor well 707 and well point 563 are shown on Figure D.5.1. These monitoring locations are upstream and upgradient of the tailings.

A background groundwater quality summary of the top unit is presented in Table D.5.16. The maximum background concentration of the range exceeds the proposed EPA MCL for all the constituents in the table except for Ra-226 and 228. Many other constituents exceed EPA secondary and state of Utah drinking water MCLs. These include (but are not limited to): chloride (>250 mg/l), sulfate (>5500 mg/l), and TDS (>9000 mg/l). (See Table D.5.15 for specific concentrations of these constituents.) The general water type for the top unit is calcium or sodium sulfate; the water is Class II based on TDS (greater than 1000 mg/l TDS but less than 10,000 mg/l), but is Class III based on the high levels of chromium, molybdenum, nitrate, selenium, and uranium that occur naturally.

<u>Upper-middle hydrostratigraphic unit</u>

The locations of background monitor wells 816 and 806 are shown on Figure D.5.1. Monitor well 806 is upgradient of the tailings, and monitor well 816 is upgradient and updip of the tailings.

A background groundwater quality summary of the uppermiddle unit is presented in Table D.5.17. The wide range of background quality reflects the range in concentrations found at each well. High concentrations of the contaminants listed in Table D.5.17 are found at well 816, which is located south (upgradient) of the tailings at the proposed disposal site. Proposed EPA MCLs for nitrate, selenium, and gross alpha activity are exceeded in monitor well 816. The measured uranium concentration is very close to the proposed MCL and chromium has been measured at levels as high as the MCL. The nature of the contamination present in this well suggests the source may be from the surface. as well as from recharge by naturally contaminated water from underlying aguifers. The general water type in background well 806 is sodium bicarbonate. The concentrations of both sodium and sulfate are much higher in monitor well 816 than in monitor well 806, but since alkalinity was not determined for well 816 (limited sample quantity), well 816 is not plotted on the trilinear plot. The water in the upper-middle unit is Class II based on TDS. but is Class III based on the high nitrate and selenium concentrations found in monitor well 816.

Monitor well 807 is completed in the upper-middle shale unit below the lower-middle sandstone (see Figure D.5.2). The screened interval in well 807 is from 78 to 98 feet (see Table D.5.2). The water quality analysis of a sample taken from this well in July 1988 (see Table D.5.15) shows that cadmium (0.125 mg/l), chromium (0.06 mg/l), nitrate (1280 mg/l), and selenium (0.322 mg/l) concentrations exceed proposed EPA and state of Utah MCLs for these constituents. In addition, the boron concentration was measured at 0.84 mg/l, which is slightly greater than the state of Utah maximum concentration limit for boron (see Table 0.5.1). Finally, total dissolved solids were measured at 11.700 mg/l. and the sulfate concentration was 6450 Since this saturated zone within the Cedar Mountain mg/1. Formation is isolated from surface contamination by strong, vertically upward hydraulic gradients, the source for the contaminants formed within this unit is from somewhere off the site, and possibly from below the elevation of the well screen. It is possible that contaminants were discharged into this zone by injection. but there is no evidence that this is the case (Day, 1988).

Lower-middle hydrostratigraphic unit

The locations of background monitor wells 562, 811, and 813 are shown on Figure D.5.1. Monitor well 811 is upgradient of the tailings, and monitor wells 562 and 813 are upgradient and updip of the tailings.

A background groundwater quality summary of the lower-middle unit is presented in Table D.5.18. The background quality range for this unit is similar to that of the upper-Beneath the proposed disposal area, the uppermiddle unit. and lower-middle hydrostratigraphic units may be hydraulically connected by numerous vertical fractures. In the north, away from the disposal area and toward the present tailings pile, the vertical fractures are not as intense or abundant and the lower-middle unit is confined by the overlying shales and limestones of the upper-middle unit. Background concentrations of chromium, molybdenum, nitrate, selenium, uranium, and gross alpha activity exceed the proposed EPA MCLs south (upgradient) of the tailings at the proposed disposal site. The source of this contamination, like that found in the upper-middle unit, is probably from upgradient sources south of the disposal area. There is no evidence at the ground surface that the proposed disposal site is a source of contamination. The general water type in the lower-middle unit is sodium sulfate; the water is Class II, based on TDS, but is Class III based on high levels of chromium, molybdenum, nitrate, selenium, uranium, and gross alpha activity.

Bottom hydrostratigraphic unit

The locations of background monitor wells 586, 587, 588, 817, and 818 are shown on Figure D.5.1. These monitor wells are upgradient and updip of the tailings.

Groundwater in this unit is much better in quality than the three shallower units; TDS levels are near 2000 mg/l. The general water type is sodium sulfate and the water is at the lower end of Class II, based on TDS, but is also Class III because of high levels of chromium, molybdenum, selenium, and gross alpha activity.

For the September 1986 and March 1987 rounds of water sampling, monitor wells 586 and 587 were considered to be cement grout contaminated since the time the wells were drilled and completed. The pH of the water samples from these wells ranged from 9.92 to 11.61 standard units. For the October, 1987, sampling, the pH was measured as 8.10 in monitor well 586 and 9.35 in monitor well 587, indicating the majority of the grout was removed from the producing intervals during the purging (sampling) process. The pH values for all of the

sampling dates for monitor wells 586, 587, and 818 were plotted versus molybdenum, nitrate, selenium, uranium, and sulfate concentrations on a linear-linear graph (Figure D.5.13) to show the effect of pH on the concentrations of these constituents. A linear regression was done for each constituent. the coefficient of determination (r^2) was calculated, and Student's "t" statistic (McClave and Dietrich. 1979) was calculated to test the null hypothesis that the slopes of the best-fit regression lines for each parameter are not different from zero. The calculated "t" statistics indicate that at a 99 percent level of confidence there does not appear to be any linear relationship between pH and the concentrations of the constituents tested. Based on these results, values for these constituents and all other constituents analyzed from wells 586. 587. and 818 were included in the background water quality calculations. regardless of the water pH at the time of sampling.

A background groundwater quality summary of the bottom unit is presented in Table D.5.19. Concentrations of chromium, molybdenum, selenium, and gross alpha activity in the bottom unit are slightly higher than the proposed EPA standards for these constituents. These levels probably reflect high natural levels of these constituents, and indicate that the high levels of these constituents found in the over-lying hydrostratigraphic units may also be (at least in part) from natural sources.

Summary

The range of background groundwater quality in the upperand lower-middle (Cedar Mountain Formation) hydrostratigraphic units is wide because background monitor wells are located both east (upstream) and south (updip) of the tailings. The wells south of the tailings (at the proposed disposal site) indicate there is a source of contamination upgradient of the disposal site that is not related to the milling processes since it would be outside the boundary of the mill site. If the high nitrate levels are an indication of the source. it may be from activities associated with the White Sands Missile Range test complex (DOE, 1988a). High levels of chromium, molybdenum, and selenium in the bottom hydrostratigraphic unit indicate these constituents are from natural sources; because this unit is confined by a thick shale unit in the vicinity of the tailings site contamination from the surface is unlikely. Because the high background levels of nitrate, molybdenum, chromium, and selenium indicate contamination from natural sources, groundwater in all four hydrostratigraphic units at the Green River site may be classified as Class III. according to 40 CFR 192.21(g), which states that Class III groundwater includes water that is not a current or potential source of drinking water because widespread. ambient contamination not due to activities involving residual radioactive materials

from a designated processing site exists that cannot be cleaned up by using treatment methods reasonably employed in public water-supply systems.

The town of Green River currently takes water from the Green River upstream of its confluence with Brown's Wash for domestic use and irrigation. Because an ample supply of good-quality surface water is available for domestic use, the development of groundwater in the potentially affected environment of the Green River tailings site is highly unlikely. See Section D.5.2.10 for a more complete discussion of groundwater use, value, and alternate supplies at the Green River tailings site.

D.5.2.7 Extent of existing contamination

Percolation of tailings seepage into the groundwater system beneath the tailings pile has adversely impacted the water quality in both the top and upper-middle hydrostratigraphic units. The vertical extent of contamination is confined to these two shallow units by strong, vertically upward hydraulic gradients between the upper-middle unit and the underlying units. The maximum potential depth of contamination in groundwater beneath the surface of the present tailings pile is about 65 feet.

Top hydrostratigraphic unit

Gross alpha activity, molybdenum, nitrate, selenium, and uranium concentrations exceed background levels and proposed EPA and state of Utah groundwater MCLs beneath and downgradient of the tailings. Table D.5.20 shows the maximum and minimum observed concentrations of contaminants in the top unit and the proposed EPA maximum concentration limits. The range in concentrations of contaminants varies widely from sampling to sampling, probably in response to evaporation and percolation of rainfall and snowmelt through the tailings; this type of variation is also seen in the pore water sample analyses for the same reasons (see Section D.5.3.5). Figures D.5.14 through D.5.18 show the lateral extent of contamination as gross alpha activity, molybdenum, nitrate, selenium, and uranium, respectively, in the top unit (Brown's Wash alluvium) and in the channel of Brown's Wash, based on the maximum observed concentrations.

The contamination resulting from tailings seepage travels downgradient through the alluvium toward the northwest and the channel of Brown's Wash. Once in Brown's Wash, the contaminants move west with groundwater flow in the shallow alluvium or on the surface. Surface water sample analyses from Brown's Wash (DOE, 1988a) indicate contaminated groundwater discharges to Brown's Wash; however, flow in the channel is intermittent and the concentrations of contaminants (as well as major anions and cations) are a function of the evaporation of water in the channel (i.e., evaporation causes a relative increase in concentration of the contaminants). The contaminated water travels downstream (west) in Brown's Wash and mixes with backwater from the Green River approximately 400 feet west of surface water sampling station 710 (see Figures D.5.14 through D.5.18). Water quality analyses from samples of Green River water upstream and downstream from its confluence with Brown's Wash show that the discharge of contaminated water from Brown's Wash to the Green River has no adverse affect on the water quality of the Green River (DOE, 1988a). This is because the contaminants are diluted by a factor of 10^5 to 10^6 once they mix with the Green River.

As part of the site characterization, monitor well 705 (on-site and completed in the alluvium) was sampled and analyzed for EPA priority organic pollutants in July 1986. The analyses measured 13 parts per billion (ppb) of methylene chloride, but it is noted by the analytical laboratory that the elevated value may be a result of laboratory contamination. Two other unknown, semivolatile compounds were tentatively identified by the lab to have concentrations of 100 and 40 ppb. In July 1988, monitor well 705 together with monitor wells 561, 562, 583, 806, 807, and 816, and lysimeter 714 (see Figure D.5.1 for locations) were sampled for volatile and semi-volatile organic compounds. The analyses showed that the only compound detected in confirmable concentrations was methylene chloride; methylene chloride was also detected in the trip blank for this batch of samples. Based on these results, methylene chloride is suspected of being present as a result of contamination by the analytical laboratory. These analytical results are on file at the UMTRA Project Office in Albuquerque, New Mexico.

Contamination as ammonium was also identified in the top unit. Figure D.5.19 shows the extent of ammonium contamination in Brown's Wash alluvium and the channel of Brown's Wash. Ammonium was used in the milling process (see Section D.5.2.8) and may be present in groundwater beneath the tailings by the reduction of nitrate (NO_3^-) within the tailings to ammonium (NH_4^+) . The chemical characteristics of the tailings pore fluid are discussed in detail in Section D.5.2.8; geochemical conditions present in the Green River site area are discussed in Section D.5.2.9.

Upper-middle hydrostratigraphic unit

Gross alpha activity, molybdenum, nitrate, selenium, and uranium exceed background levels and proposed EPA and state of Utah groundwater standards beneath and downgradient of the tailings. Table D.5.21 shows the maximum observed concentrations of contaminants in the upper-middle unit and the proposed EPA MCLs. Figures D.5.20 through D.5.24 show the lateral extent of contamination as gross alpha activity, molybdenum, nitrate, selenium, and uranium, respectively, in the uppermiddle hydrostratigraphic unit, based on the maximum observed concentrations.

Contamination from tailings seepage in the upper-middle unit extends northwest from the tailings pile (from monitor well 701, on the site), roughly following the "trough" shown by the potentiometric contours (see Figures D.5.20 through D.5.24). This trough probably is a result of higher secondary permeability in the shale caused by joints, fractures, or minor faulting that is oriented the same direction as the trough. Groundwater flow in the upper-middle unit is discussed in more detail in Section D.5.2.4.

Contamination is also present in monitor well 583 west of the tailings and Brown's Wash (see Figures D.5.20 through D.5.24). This contamination is probably a result of seepage of contaminated water in Brown's Wash down into the bedrock channel bottom. As discussed previously, the contaminated water in Brown's Wash is a result of the discharge of contaminated alluvial groundwater into the channel adjacent to and downgradient of the tailings.

Contamination as ammonium was identified in monitor well 701 on the site; however, the ammonium appears to be limited to the area directly beneath the tailings because elevated levels of ammonium are not found in any of the off-site monitor wells. The maximum observed concentration of ammonium observed in monitor well 701 was 47 mg/1.

D.5.2.8 Tailings and milling process characterization

<u>Tailings</u>

The tailings pile at the Green River site is eight acres in area. The tailings are not presently saturated and there is no evidence of a groundwater mound beneath the tailings. The depth to groundwater beneath the base of the tailings ranges from four to ten feet, using the available monitor well and water level information.

The tailings are a fairly well-sorted, white to pink sand with some silt. Based on laboratory test data (Table D.5.22), the average saturated hydraulic conductivity of compacted tailings is 1.5×10^{-4} cm/s. This value is probably representative of the tailings since there are no slimes within the pile and the tailings are uniform in texture. Under natural, uncompacted conditions, the vertical hydraulic conductivity is probably greater than 10^{-4} cm/s. The horizontal hydraulic conductivity of the underlying Brown's Wash alluvium (top hydrostratigraphic unit) is near 1 x 10^{-2} cm/s, based on average hydraulic conductivities at monitor wells 702, 704, 705, and 708 (see Table D.5.7). Considering that the alluvium is anisotropic (Bouwer, 1978), the vertical hydraulic conductivity is probably in the range of 5 x 10^{-3} to 1 x 10^{-3} cm/s.

In an attempt to calculate the current percolation rate through the present tailings pile, the following mixing relationship was used:

 $C_{b}(Q_{r} - Q_{t}) + C_{t}Q_{t} = C_{r}Q_{r}$

where

- Cb = concentration of water quality constituent upgradient (background) of the tailings (mg/l).
- Q_r = volume flux rate of alluvial groundwater beneath the tailings (resultant volume flux rate from mixing the background groundwater with the fluid percolating through the tailings) (gpm).
- Qt = volume flux rate (percolation) through the tailings (gpm).
- Ct = concentration of water quality constituent in tailings pore fluid (lysimeter sample) (mg/l).
- Cr = concentration of water quality constituent in the alluvium beneath the tailings (resultant concentra- tion from mixing background alluvial water with tailings pore water) (mg/l).

Using $Q_r = 9.9$ gpm (see Table D.5.8), average pore water concentrations from lysimeter GRN01-714 (Table D.5.23), average background groundwater concentrations from alluvial monitor wells 563 and 707, and resultant groundwater concentrations from alluvial on-site wells 702, 704, and 705, Q_t was calculated to be 0.010 gpm using both uranium and manganese concentrations. Other constituents were considered but were not useful either because their background concentrations were higher than resultant concentrations or pore water analyses were not available.

Based on the calculated Q_t , the continuous infiltration rate over the eight-acre area of the tailings is 6.4 x 10^{-11} feet per second (ft/s) (2.0 x 10^{-9} cm/s); the average annual rate is equal to 0.024 inches per year (in/yr) (0.06 cm/yr), or 0.4 percent of the average annual precipitation. While this method of calculating Q_t has inherent uncertainties (e.g., averages are used and geochemical attenuation is not considered), it indicates that the percolation of water through the tailings is very little, and is probably within the range estimated by Rush et al. (1982). Detailed mixing calculations to estimate Q_t are on file in the UMTRA Project Office, Albuquerque, New Mexico.

Tailings pore water samples were collected and analyzed from lysimeter 714 located at the east end of the pile (see Figure D.5.1) in September 1986 and March 1987 (Table D.5.23). Less than 500 milliliters could be obtained from the lysimeter each time, so only a select number of parameters could be analyzed. No pore water at all could be collected during October 1987 and January 1988 samplings. Since radionuclide analyses require one liter of water or more, radionuclide concentrations in the pore water could not be determined. In addition, since only a select number of constituents were analyzed, a cation/anion balance could not be accurately performed and the reliability of the results are uncertain. Finally, the pore water samples are highly sensitive to fluctuations in soil moisture content (responses to rainfall and evaporation); this seems to be reflected by the high variance in pore water parameters like chloride, potassium, nitrate. sulfate. TDS. and uranium.

Uranium mill tailings, buffer material, and contaminated windblown soils samples were collected from representative stockpiles at the Green River site in March 1989. The stockpiles for tailings, buffer material, and windblown soils are located near test pit 544, between monitor wells 588 and 561, and near test pit 577, respectively (see Figure D.5.1). The samples were used to determine the mobility of contaminants in the materials to be placed in the disposal cell. Batch leach and column extraction tests were conducted on the samples, and the batch solutions and column feed solutions were analyzed for all of the hazardous constituents identified at the site (see Table D.5.27). Radionuclides were not analyzed because of the limited quantity of solution from the batch leach and column extraction tests.

Results show that, for all of the hazardous constituents identified at the Green River site, except for uranium and vanadium, the extract concentrations from batch experiments using windblown soils are below the interim concentration limits proposed by NRC (see Table E.1.1). Concentrations of vanadium slightly exceed the NRC-proposed interim concentration of 0.09 mg/l, but are well below the observed range of maximum values from background groundwater samples beneath the disposal site (0.38 mg/l maximum). Uranium concentrations from the windblown extract are above both the interim concentration limit of 0.044 mg/l (which is EPA's established MCL) and the maximum observed value in groundwater of 0.146 mg/l. However, the column feed experiments show that uranium is attenuated by the buffer material to a concentration greater than one order of magnitude less than the feed concentration (from tailings solution). Based on the batch and column experiments, it can be assumed that the windblown soils are "clean" and are "buffer" material in addition to the clean select-fill buffer material placed in the bottom of the cell. With this assumption, travel of contaminants can be assumed to be from the base of the tailings (top of the windblown soils) through the base of the buffer materials.

Milling process

The Green River processing plant was operated from March 1958 to January 1961 (FBDU, 1981). Ore from uranium mines at Temple Mountain, Utah, was upgraded, and the ore concentrate was shipped by railroad to Rifle, Colorado, for further processing.

The uranium ore was sandstone loosely cemented with clay and asphaltic material, with part of the uranium intimately associated with carbonaceous minerals. After crushing and grinding, the ore was screened, with minus-35 mesh material going to flotation and the plus-35 mesh material joining the flotation concentration to form a carbonaceous concentrate. The flotation tailings were separated into sand and slime fractions. The sands were leached with acid, the leached slurry washed, and the spent sands discarded to the tailings area. The recovered slimes and pregnant solution were then joined with a portion of the initial slime fraction. Anv excess acid was neutralized with ammonia. This mixed product plus the remainder of the primary slimes were then dewatered and dried for shipment to the Rifle. Colorado, processing plant.

D.5.2.9 Geochemical conditions

The presence of pyrite and organic matter in the Cedar Mountain Formation aquifer of the Green River site indicates that groundwater at the site is relatively reducing (DOE, 1988b). The Cedar Mountain Formation contains mudstones with occasional thin and discontinuous calcareous beds. Groundwater flow is controlled by fractures, joints, and faults, which are continuous through the upper middle portion of the stratum. Fracture surfaces in the unsaturated zone contain significant quantities of ferric oxyhydroxide, calcite, gypsum, and oxidized pyrite. The presence and movement of groundwater beneath the tailings impoundment is controlled by connected fractures. Strong, upward, vertical hydraulic gradients are prevalent through the entire saturated hydrostratigraphic sections.

Results of selected water-quality analyses of the Cedar Mountain Formation aquifer are provided in Table D.5.24. The monitor wells were sampled in May 1988 and the water-quality data collected during this period are representative of the aquifer. This groundwater generally is a sodium sulfate type and the TDS content is higher than 4500 mg/l. Monitor wells 562 and 813 are upgradient of the tailings impoundment; however, groundwater samples from these monitor wells have high concentrations of nitrate, sulfate, and TDS. Monitor well 701 is completed beneath the tailings impoundment and groundwater samples from this well are contaminated from tailings leachate. Concentrations of nitrate, ammonium, selenium, and macrosolutes are elevated above background. The groundwater remains buffered by limestone lenses within the aquifer.

Monitor wells 581 and 584 are downgradient from the tailings impoundment, and groundwater samples from these wells contain relatively low concentrations of nitrate and most other macro-solutes. Dissolved hydrogen sulfide occurs in monitor well 581, where field Eh measurements indicate relatively reducing conditions. Field alkalinity values recorded at monitor well 581 are relatively high, which may be the result of the oxidation of solid organic matter in the presence of hydrogen sulfide. Sulfate reduction is a bacterial reaction in which bacteria use the oxygen in SO_4^{2-} to oxidize organic matter to CO_2 , which contributes to alkalinity, producing sulfide species. Sulfate reduction is represented by the following equation with pH values above 7:

 $SO_4^{2-} + 2C_{\text{organic}} + 2H_2^{0} = HS^- + H^+ + 2HCO_3^-$ (1)

Petrographic analyses of core material taken near monitor well 581 show unoxidized, euhedral pyrite crystals in a matrix of solid organic matter, calcite, and quartz. Groundwater chemistry and mineralogy indicate that the Cedar Mountain Formation is relatively reducing downgradient of the tailings impoundment.

Uranium concentrations within the Cedar Mountain Formation decrease by several orders of magnitude within 600 feet downgradient of the tailings pile. For example, the concentration of uranium in groundwater samples from monitor well 701, completed beneath the tailings pile, is 2.69 mg/l, whereas the concentrations of uranium in groundwater samples from monitor wells 581 and 584 are below 0.001 mg/l. Figure D.5.24 shows the distribution of uranium in the upper-middle hydrostratigraphic unit at the Green River site.

The Cedar Mountain Formation consists of a Cretaceous marine limestone with lenses of sandstone and siltstone (see

Section D.5.2.3). Many secondary minerals are found on the fracture surfaces in the foundation bedrock beneath the disposal site. These include, but are not limited to, calcite, gypsum, and iron and magnesium oxides; pyrite is abundant on the fracture surfaces in the lower-middle sandstone unit.

Core samples collected above the water table contain fracture coatings consisting of calcite, gypsum, and iron and manganese oxides. The fractures have a higher permeability than the matrix permeability.

In general, the core samples collected below the water table indicate a considerable amount of carbonate is present, primarily as cement and vein filling, in the siltstones and sandstones. The sulfide (pyrite) content of the core samples ranged from 0.1 percent to 1.0 percent; in some cases oxidation to iron oxides affects the outer surfaces of individual grains.

The porosity appears to be low in the siltstones and moderate to low in the sandstones, and increases with increasing grain size. Fracture permeability probably has a significant role in fluid migration through these rocks. The fractures observed in the core samples are generally cemented with carbonate, and contain coatings of iron oxides. Fracture porosity is variable, but in general the existing fractures have moderate to low porosity.

Geochemical modeling using PHREEQE (Parkhurst et al., 1980) was performed to mix the tailings leachate with the ambient groundwater. Results of the modeling show that most heavy metals and trace elements have the potential to adsorb or precipitate from solution as a result of contact with the calcite and iron oxides in the aquifer. Where reducing conditions exist in the saturated zone and pyrite is present, the groundwater is predicted to be oversaturated with uraninite and amorphous UO_2 , and precipitation of uranium would occur.

The solubility of uranium within the Cedar Mountain Formation aguifer may be controlled by precipitation of tetravalent uranium minerals such as uraninite and coffinite, by adsorption of uranium onto ferric oxyhydroxides and clay minerals, or by a combination of precipitation and adsorption processes. Cedar Mountain Formation groundwater is sufficiently reducing downgradient of the tailings pile to account for uraninite precipi-Table 0.5.25 shows the measured field Eh and the tation. theoretical Eh required for Cedar Mountain Formation groundwater to be in equilibrium with uraninite. The measured field Eh value for monitor well 581 is more reducing than the theoretical Eh value calculated by the computer code PHREEQE. For monitor well 584, the measured Eh is approximately 0.02 volts more oxidizing than the theoretical Eh value required for uraninite equilibrium. The discrepancy between the field Eh

and theoretical Eh values may be insignificant with respect to uraninite precipitation. Uranium concentrations, however, in groundwater samples from monitor wells 581 and 584 are in the low microgram/liter range.

Reduction of the uranyl ion (UO_2^{2+}) by aqueous sulfide forming poorly crystalline uraninite has been investigated by Mohogheghi and Goldhaber (1982). Their investigation shows that uranium concentrations greater than 2.75 ppm results in the precipitation of uraninite within 24 hours. Adsorption of hexavalent uranium may be necessary prior to chemical reduction. The partial pressures of hydrogen sulfide and carbon dioxide during their experiments were 4.3 x 10^{-2} atmospheres. Based on their experiments, concentrations of hydrogen sulfide within the Cedar Mountain Formation should provide conditions favorable for uraninite precipitation.

Speciation and saturation index calculations by PHREEOE can be made using either field Eh or calculated Eh values. Determining the most appropriate redox couple to use for model simulations is very difficult because internal disequilibrium exists between the redox couples (Lindberg and Runnells, 1984). Field Eh values were used as input for the PHREEQE simulations because they are intermediate to the calculated redox couples. It must be shown, however, that electron-transfer reactions taking place between the aqueous species of interest and the electrode surface are similar to reactions taking place between the aqueous species and the electron donor/acceptor present in the Cedar Mountain Formation aguifer. Small uncertainties in the measured electrode potentials and in the calculated Eh values from the redox couples may be important for simulating whether solubility control or adsorption is the major attenuation mechanism for uranium in the Cedar Mountain Formation The Fe³⁺/Fe²⁺ and Sato dissolved oxygen redox aquifer. couples appear to be in close agreement with the measured Eh values for monitor wells 562, 701, and 813 upgradient from the tailings impoundment, whereas the HS⁻/Rhombic S redox couple approximates measured Eh values for monitor wells 581 and 584 downgradient from the tailings impoundment. Berner (1963) has shown that the HS-/Rhombic S couple is reversible for marine sediments and this redox couple is useful for approximating redox conditions in certain portions of the Cedar Mountain Formation aguifer where detectable concentrations of agueous hydrogen sulfide are present.

The saturation indices for uraninite, coffinite, calcite, gypsum, pyrite, and amorphous $Fe(OH)_3$ with $PCO_2 = 10^{-2}$ atmospheres were computed by PHREEQE from analytical results (Tables D.5.23 and D.5.24) obtained from the groundwater analyses from monitor wells 562, 581, 584, 701, and 813. These modeling results are shown in Table D.5.26. Groundwater samples from monitor wells 562, 701, and 813 are undersaturated with respect to uraninite, coffinite, and pyrite and are oversaturated with respect to gypsum and amorphous $Fe(OH)_3$. Cedar Mountain Formation groundwater is in equilibrium with calcite. Therefore, uranium is likely to be mobile in the Cedar Mountain Formation aquifer at the proposed disposal site and downgradient towards the existing tailings pile.

Petrographic analysis has shown the ubiquitous occurrence of calcite, gypsum, and ferric oxyhydroxide within the $U0_{2}(C0_{3})_{2}^{2-}$ Uranium. stable as fractures. and $UO_2(CO_3)_3^{4-}$ complexes, is likely to be mobile in this portion of the aguifer. Conversely, groundwater is predicted to be oversaturated with respect to uraninite and pyrite downgradient of the tailings impoundment where uranium concentrations are below 0.001 mg/l. Pyrite occurs as euhedral crystals with no detectable oxidation coatings, indicating that oxidizing solutions are not presently in contact with the sediments. The analytical detection limit for total uranium is <0.001 mg/land the saturation index values for uraninite and coffinite are maximum values. If the actual concentrations are less than 0.001 mg/1, then groundwater samples from monitor wells 581 and 584 could be undersaturated with respect to uraninite and coffinite. The occurrence of uraninite and coffinite in this portion of the Cedar Mountain Formation has not been established by petrographic techniques.

Solubility experiments conducted by Ryan and Rai (1983), however, show that $U(OH)_5^-$ may not be as strong a complex of U(IV) because no evidence for the predominance of $U(OH)_5^-$ was observed under alkaline pH conditions. In addition, thermochemical data (hydrolysis constant) for $U(OH)_5^-$ may be suspect (Bruno et al., 1987) and the stability fields for dissolved U(IV) species can be much larger than what are reported in the literature. This implies that the stability fields for U(IV) species may be much more restricted in nature.

In light of these concerns, additional speciation calculations which did not include $U(OH)_5^-$ in the database still show that Cedar Mountain Formation groundwater remains oversaturated with uraninite using analytical data from monitor well 581. Uranyl tricarbonate becomes the dominant solution species of uranium in the absence of $U(OH)_5^-$. Input Eh value is the dominant control, in addition to uranium concentrations, for calculating the saturation index of uraninite.

Adsorption of uranium onto ferric oxyhydroxides, clay minerals, and other adsorbents present in the Cedar Mountain Formation (DOE, 1988b) may partially account for the observed concentration decrease of uranium. Complete adsorption of uranium onto ferric oxyhydroxide under relatively oxidizing conditions, however, is inhibited by the formation of $UO_2CO_3^o$, $UO_2(CO_3)_2^{2-}$, and $UO_5(CO_3)_3^{4-}$ complexes (Hsi and Langmuir, 1985; Tripathy, 1984). Speciation calculations for uranium show that the hydrolysis species $U(OH)_5^-$ is the dominant uranium species predicted for groundwater samples from monitor well 581, whereas $UO_2(CO_3)_3^{4-}$ is the dominant species in groundwater samples for monitor well 584. Adsorption of uranium onto minerals such as goethite, amorphous Fe(OH)₃, and hematite may occur to a greater extent where uranium hydroxo complexes are more abundant than uranyl carbonato complexes (Hsi and Langmuir, 1985; Tripathy, 1984).

In nature, uranium can become chemically reduced and concentrated to form an ore deposit. Uranium roll-front deposits consist of naturally occurring ore-grade uranium and the geochemical environment of these deposits may be similar to that of the Cedar Mountain Formation. The ore deposits are formed by several geochemical processes including dissolution. chemical reduction, complexation, sorption, and precipitation. The Eh of groundwater in contact with the ore deposit is relatively reducing (Eh <-0.100 V) and dissolved uranium concentrations can vary from 0.001 to 2000 mg/l (Deutsch and Serne, 1984; Runnells and Lindberg, 1984; Chathan et al., 1981; Cowart and Osmond. 1980). Downgradient from the ore deposit. uranium concentrations are in the low mcg/l range under chemically reducing conditions. Uranium rollfront and tabular deposits are found throughout the world in different geologic strata. The Cedar Mountain Formation is chemically reducing and uranium is being attenuated downgradient from the tailings pile through geochemical processes. Hydrogen sulfide, pyrite, and solid organic matter occur in the Cedar Mountain Formation and these materials are chemical reducing agents for uranium and other metals. Generation of hydrogen sulfide within the Cedar Mountain Formation has been occurring for millions of long-term reducing conditions are vears. Subsequently. established for this formation.

D.5.2.10 Groundwater use, value, and alternative supplies

Existing use and value

There are 15 registered wells in Township 21 South, Range 16 East (State of Utah, 1985). Thirteen of these wells are on the west side of the Green River; one well is on the east side of the river one mile northeast of the tailings site (Figure D.5.25). The final well, the Crystal Geyser well, is in the southeastern corner of Section 34, Township 21 South, Range 16 East on the east bank of the Green River. Most or all of these wells, except for Crystal Geyser, are shallow (less than 20 feet deep) and are completed in the Green River alluvium. Information was obtained regarding 10 of the 15 wells. The majority of the wells are not being used because of the poor quality of the water, disrepair of the wells, and the availability of better-quality water from the city of Green River. This is consistent with Rush et al. (1982) on groundwater use on a regional basis. The reported past use of water from these wells was for watering gardens or livestock. Groundwater in the Green River area is not considered potable (Rush et al., 1982). The city of Green River provides water to residents on the eastern side of the Green River. The nearest resident to the tailings site hauls potable water from a coin-operated outlet in the city of Green River (Casper, 1985). In summary, there are no known uses of groundwater within the potentially affected hydrogeologic setting of the tailings site.

It is difficult to assign an absolute value to water resources, especially those of lesser quality. Qualitatively, it can be stated that the shallow groundwater affected by the Green River mill tailings has a very low value due to its origin in an area affected by the Mancos Shale and other shale and limestone deposits of the Cedar Mountain Formation. The Utah Division of Water Resources (DWR, 1975) states, "Water originating from this [Mancos Shale] formation has little value . . . "

Future use and value

Future use of shallow groundwater for domestic consumption in the site area is not expected due to the poor natural quality and low yield of aquifers in the area. Groundwater in the area of Green River is not considered to be potable (Rush et al., 1982).

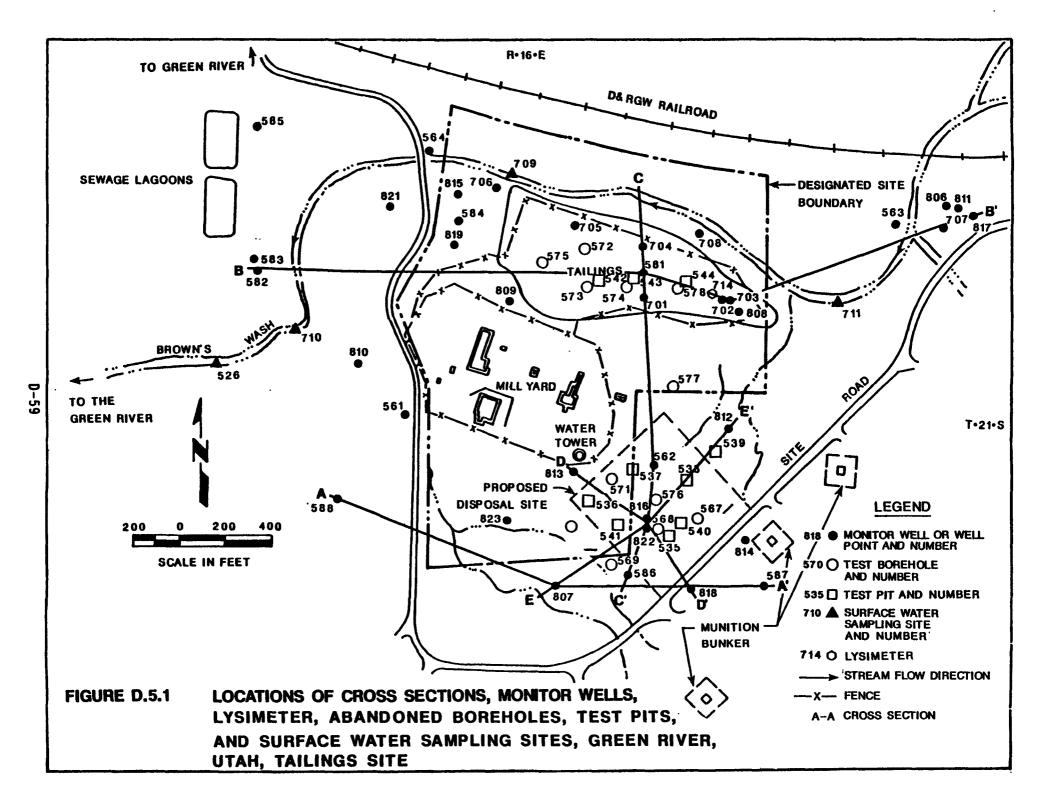
Drill stem tests have indicated that the relative ability of the shallow groundwater system to yield fluid during testing is small and permeability values are low (Rush et al., 1982). Other studies in the region also report a lack of groundwater resources. The water found during oil and gas drilling corroborates these reports (DWR, 1975):

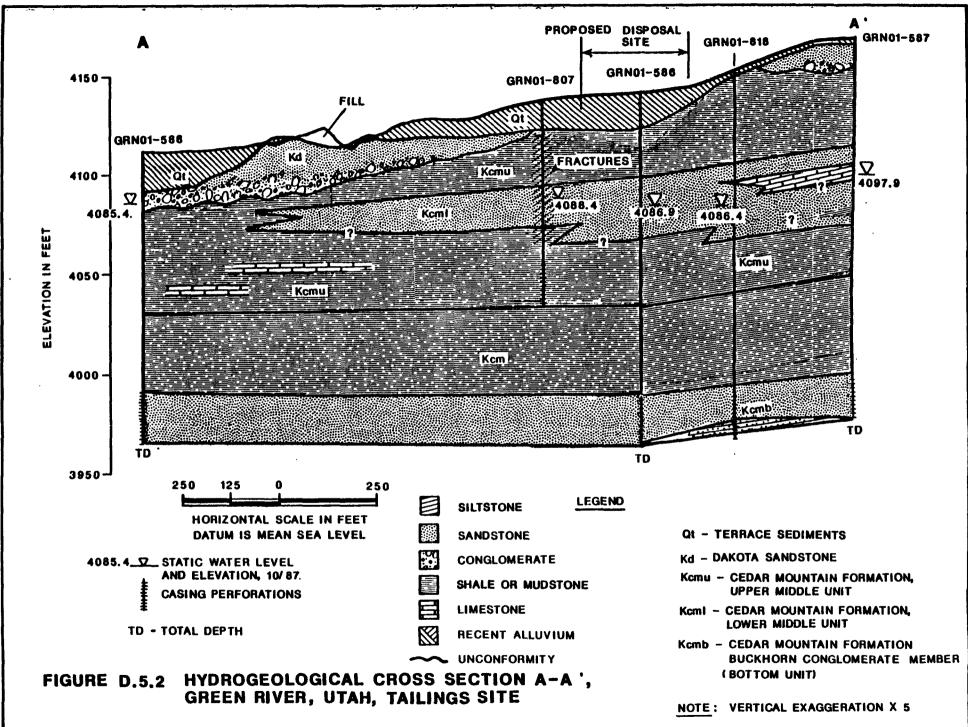
"Most all wells that were drilled contacted water, but the quality of this water has been such that it was not fit to drink."

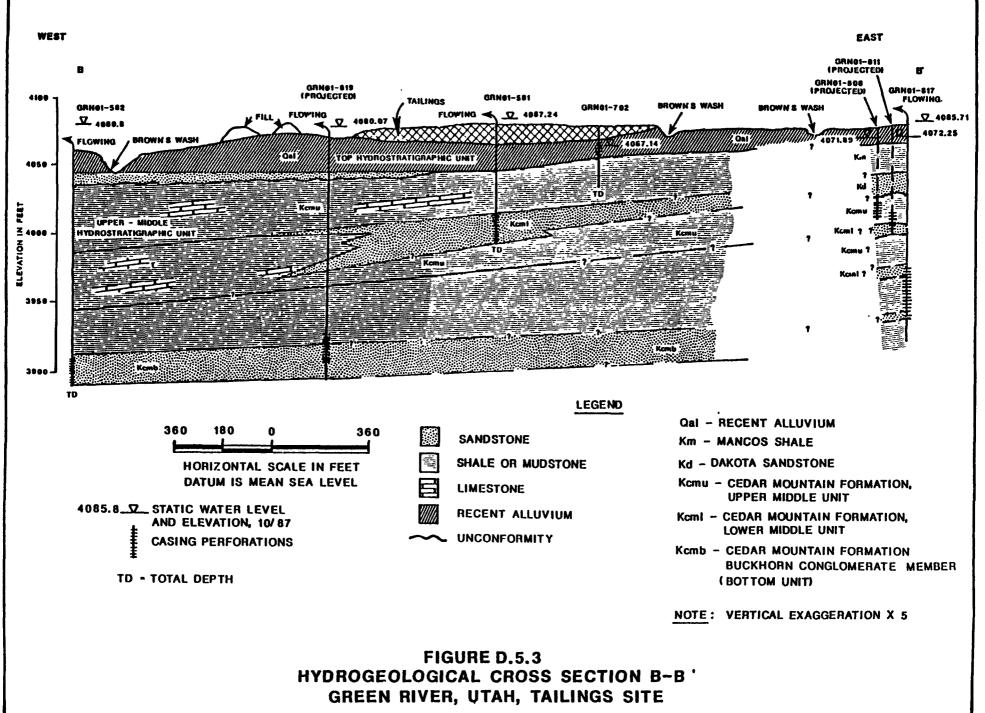
The detrimental effects of the Mancos Shale on the availability of good-quality groundwater is one of the main factors limiting future development of groundwater in the area (DWR, 1976):

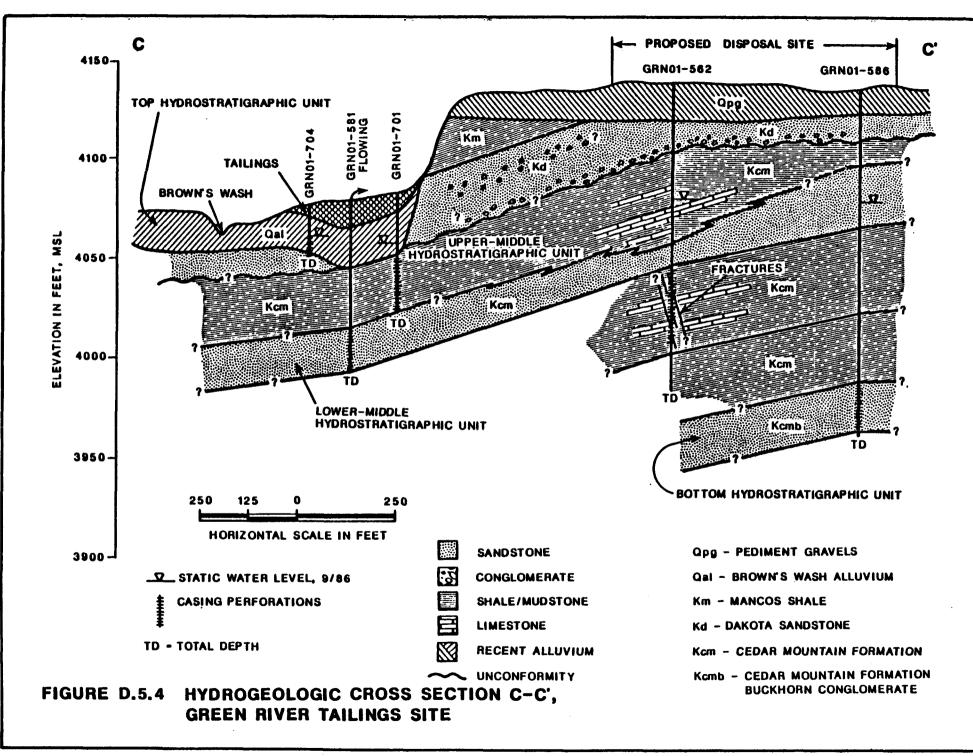
"Groundwater development of fissured or fractured areas of the Mancos Formation has not been successful because most water located in fissures or by complete penetration into other strata has been of poor quality

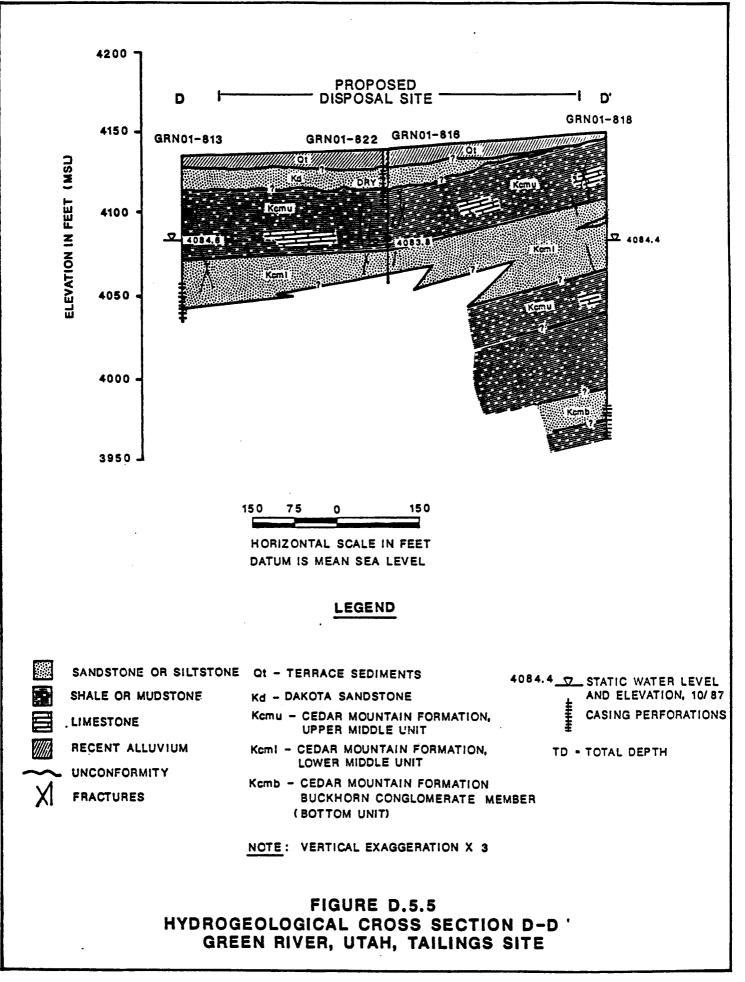
Present development of alluvial groundwater is limited because of natural and man-made degradation of the water, and

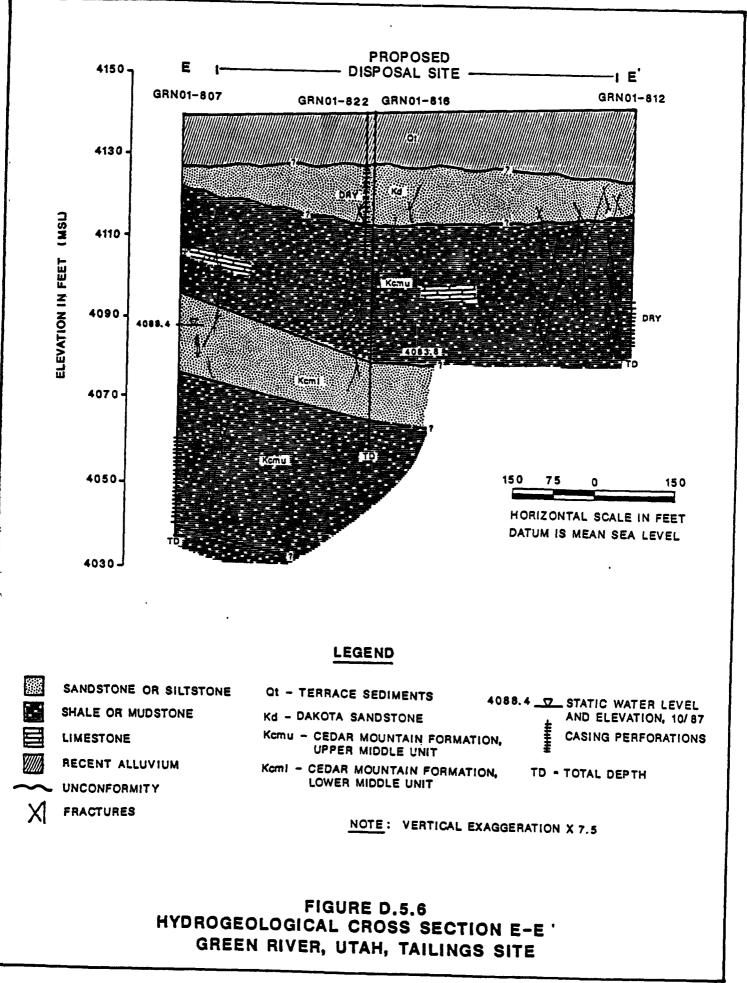

these conditions will persist. The availability of betterquality water from the municipal supply has caused a decline in the use of alluvial groundwater. In spite of the poor water quality in the Brown's Wash alluvium and in the underlying shales and limestones of the Cedar Mountain Formation. water suitable for crop irrigation and livestock watering was located in a sandstone unit of the lower Cedar Mountain Formation beneath the tailings site (bottom hydrostratigraphic unit). The value of this potentially usable source of groundwater is very difficult to determine: however, an estimate of the value can be made by comparing the value of alternate sources of water for irrigation and stock watering. The city of Green River charges water users outside the city limits \$23 for the first 6000 gallons per month, and \$2 for each additional 1000 gallons per month (City of Green River, 1984).

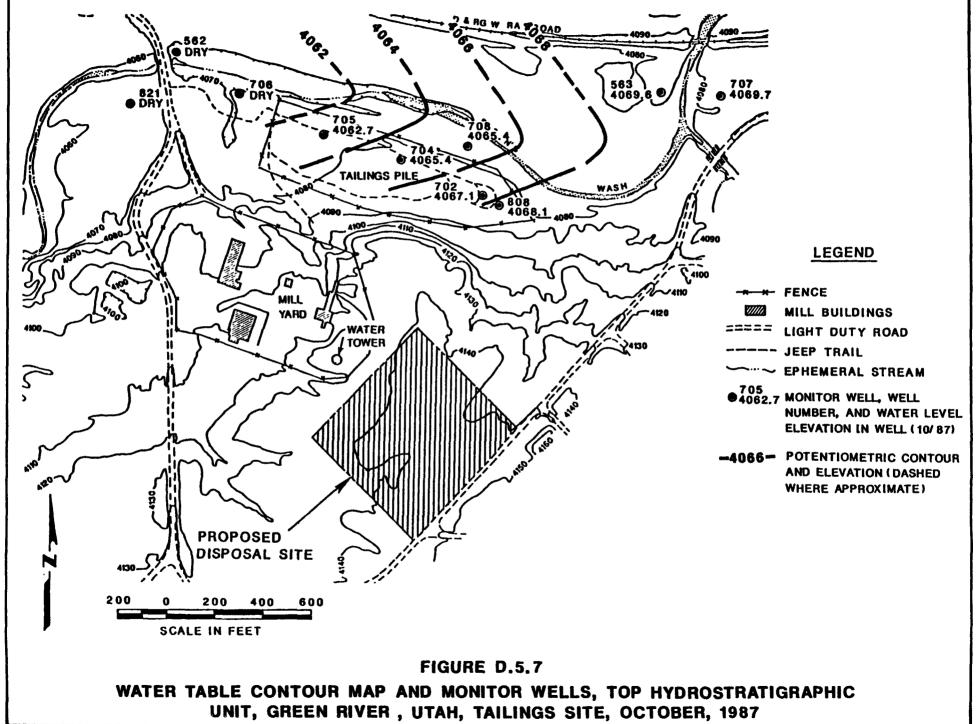

The cost of municipally supplied water for users outside the city's limits is twice that for users within the city's limits. While groundwater obtained from the Buckhorn Conglomerate member of the Cedar Mountain Formation cannot replace current domestic supplies unless better-quality water can be found in this unit elsewhere, the value of municipally supplied water provides an upper limit for the value of the water available in these units. The ultimate value of the water in the Buckhorn Conglomerate will also be dependent upon the lateral extent of this unit, its recharge capacity, and the long-term availability of water from this unit.

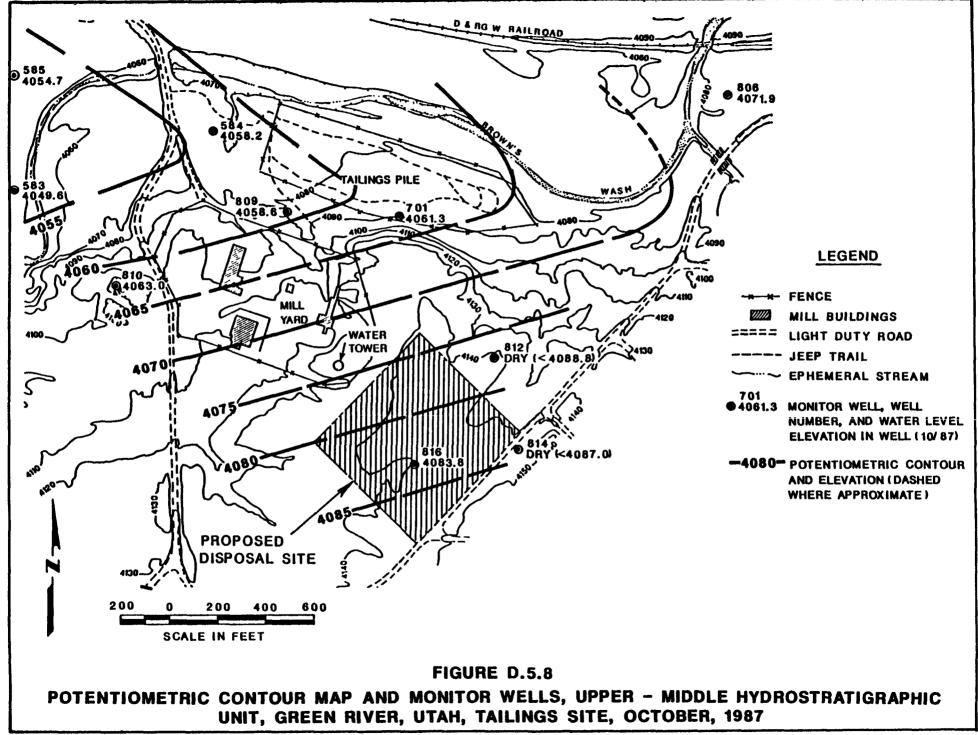

In summary, the future usage of groundwater will be limited by the generally small supply and relatively poor quality of groundwater in the area, and the availability of a good quality municipal water supply.

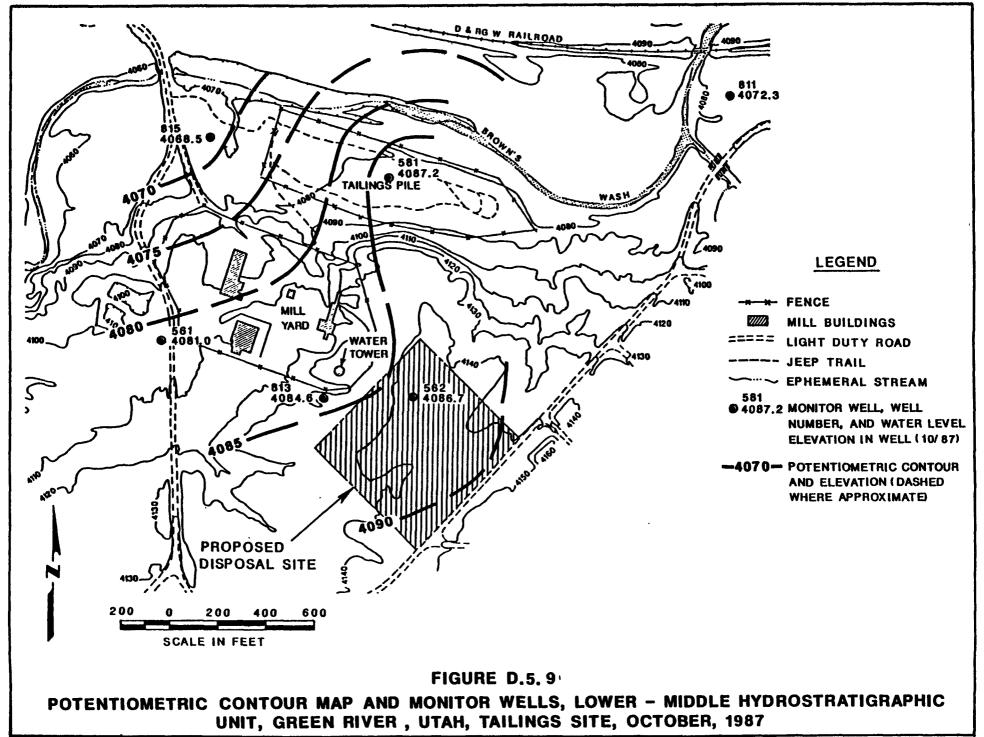

<u>Alternative supplies</u>

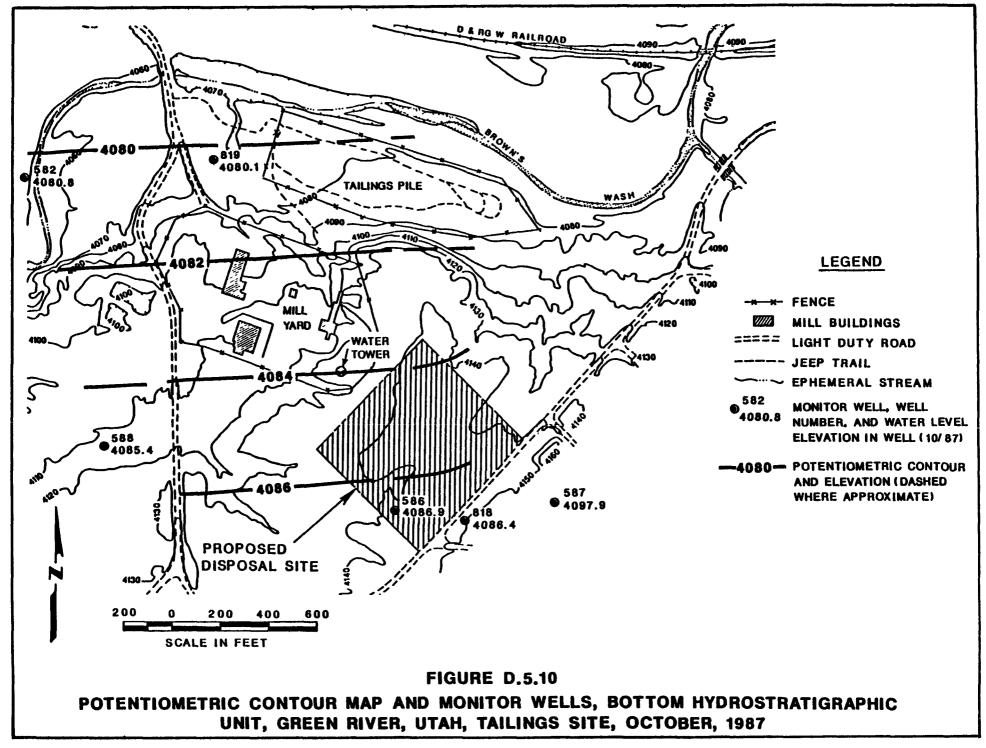

The tailings have not affected any groundwater currently being used. Alternate water supplies include Green River water as currently supplied by the city of Green River, and commercial water supply (e.g., delivery by tanker).

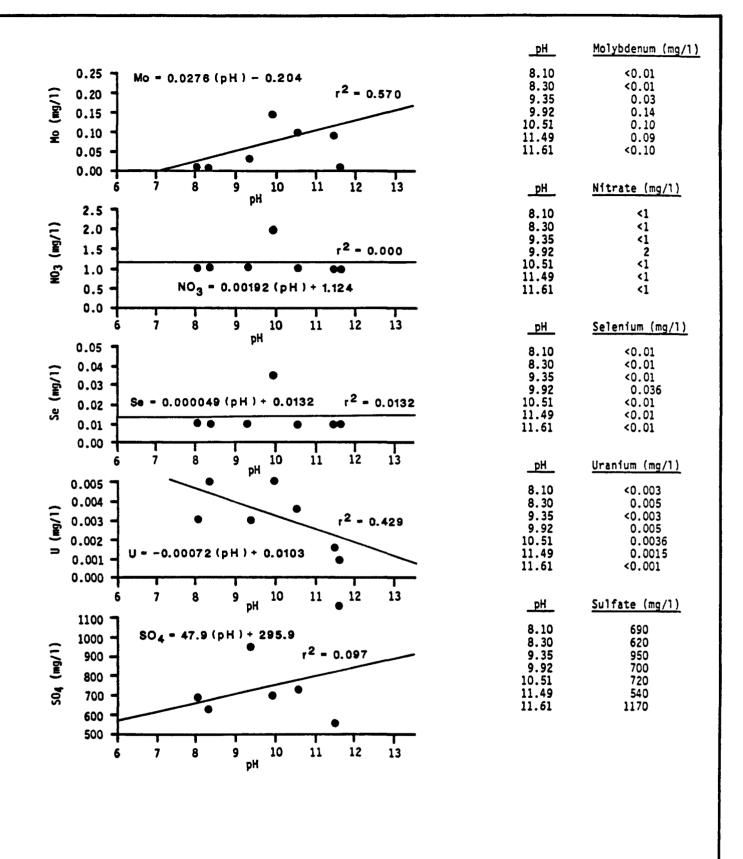


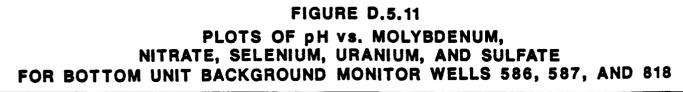


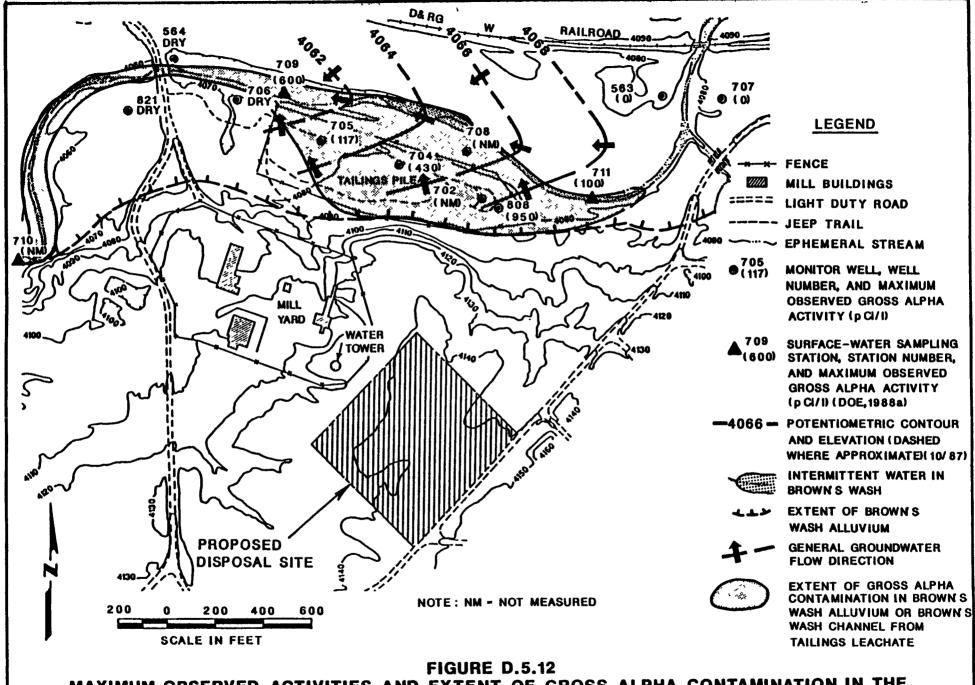


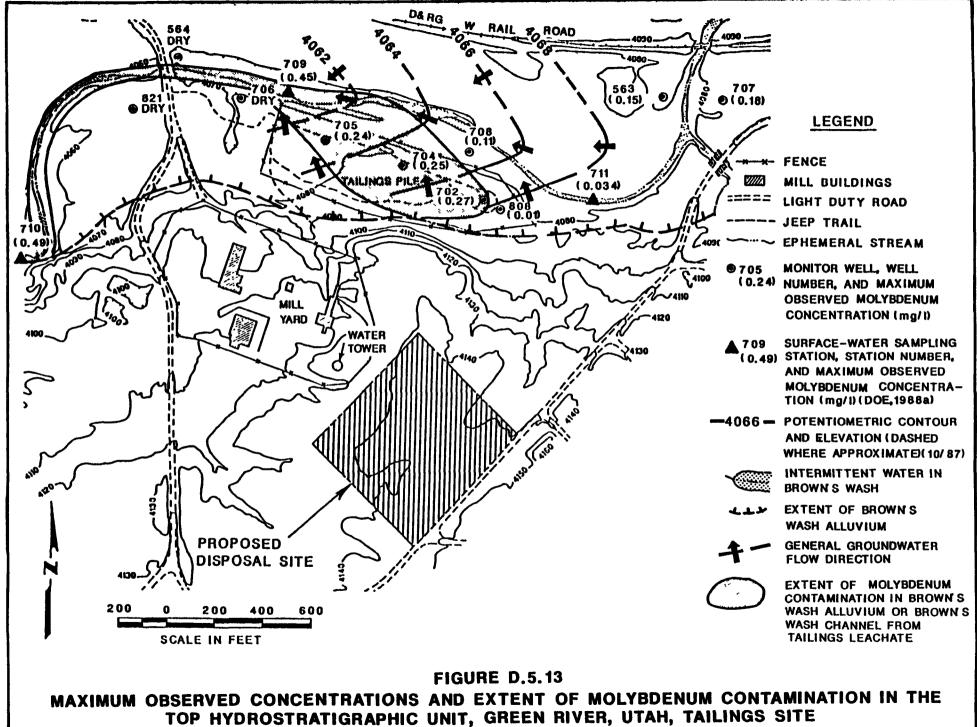


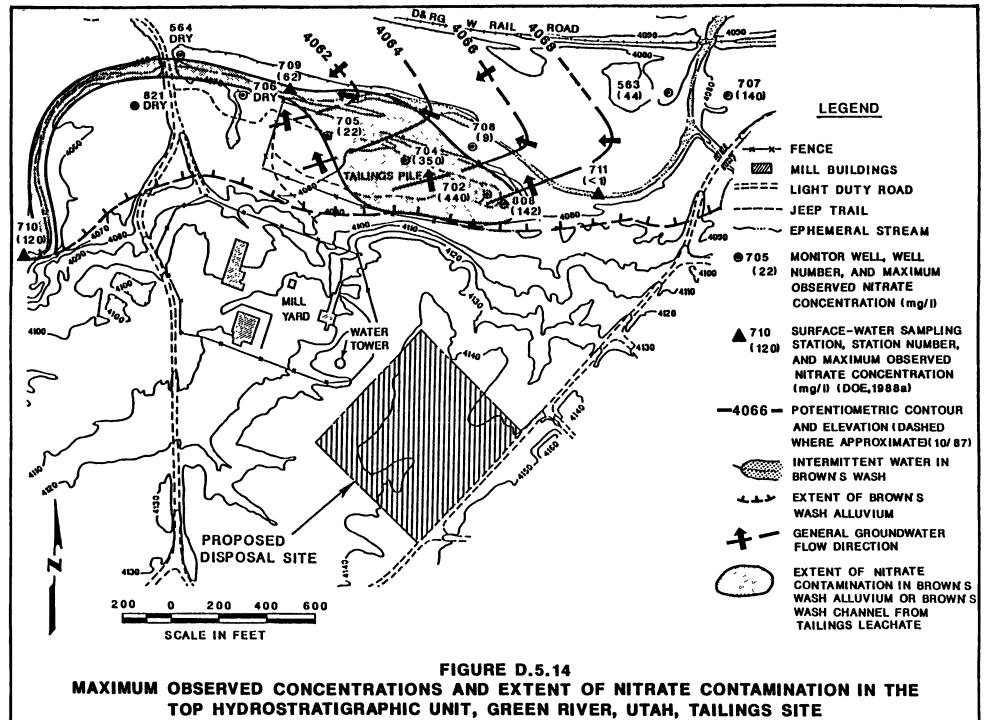


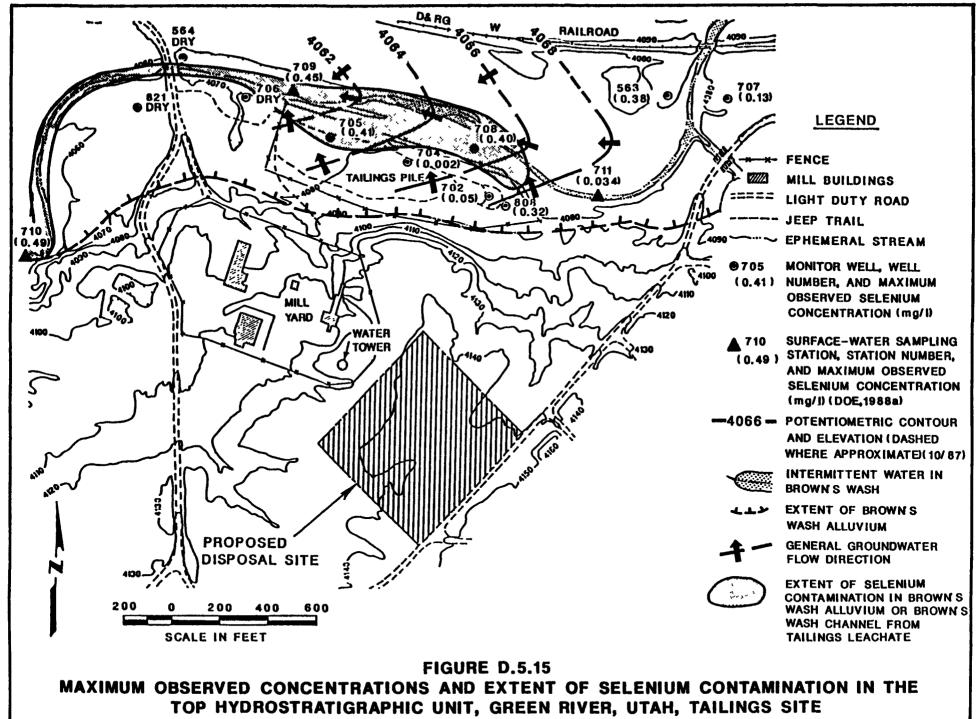


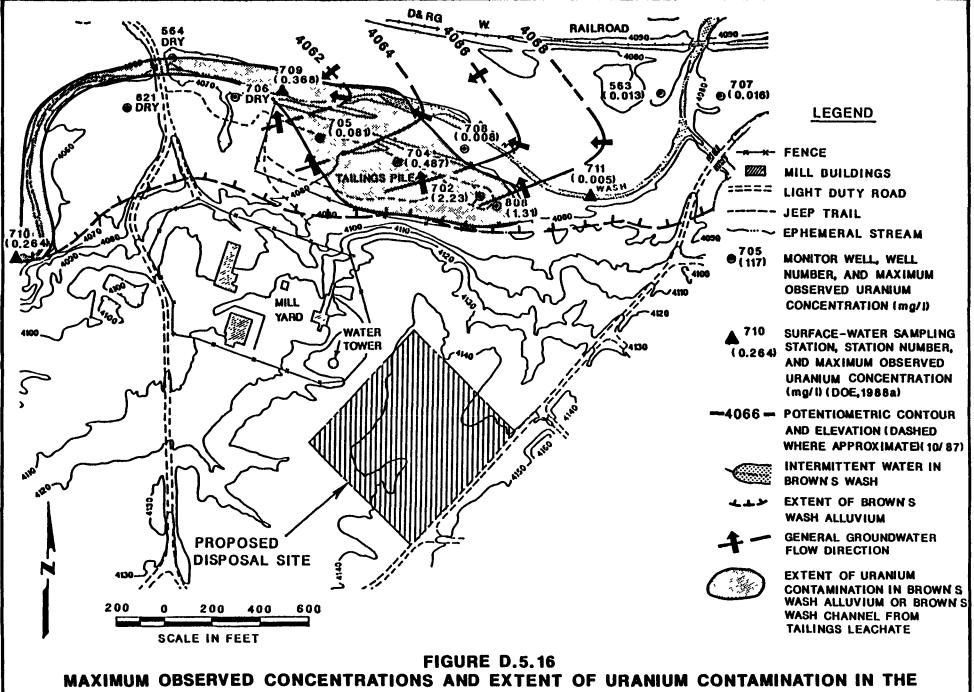




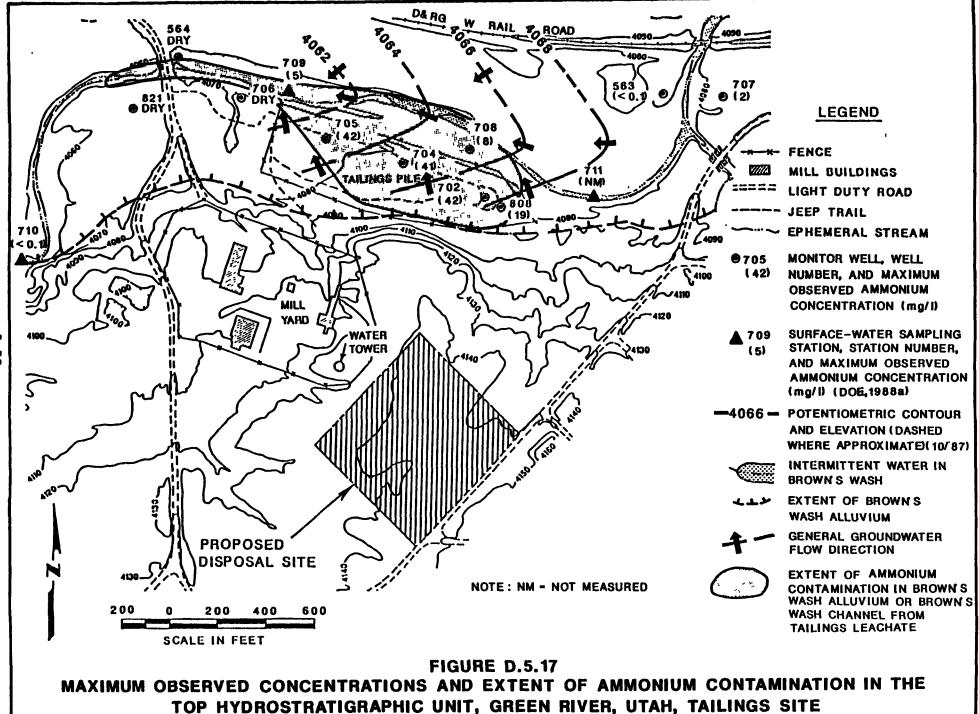


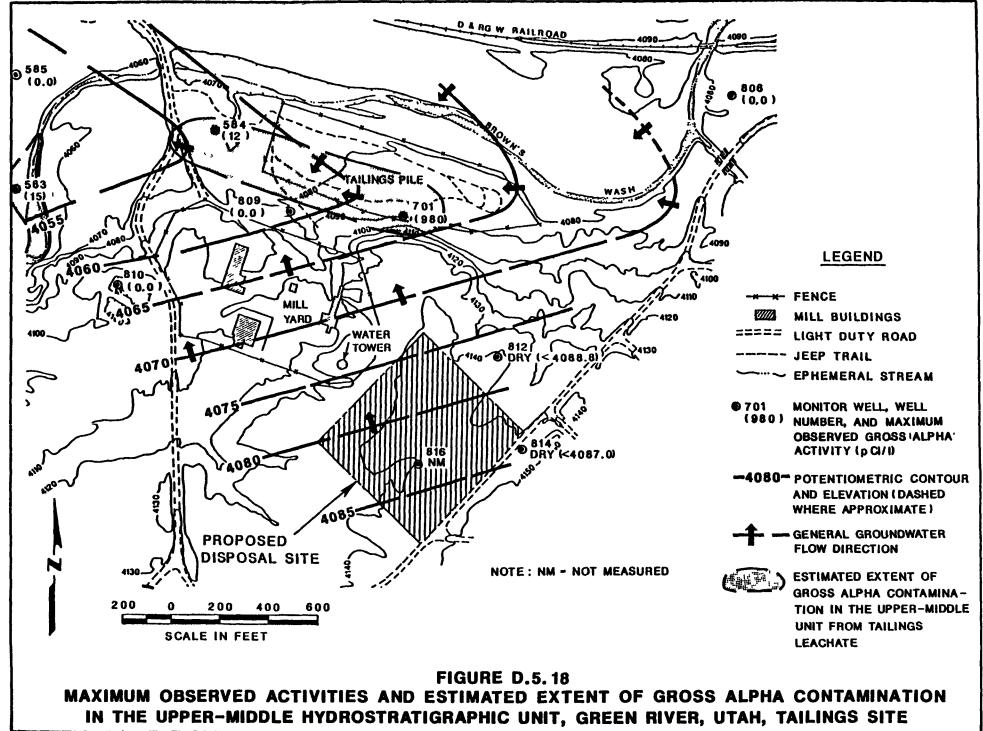


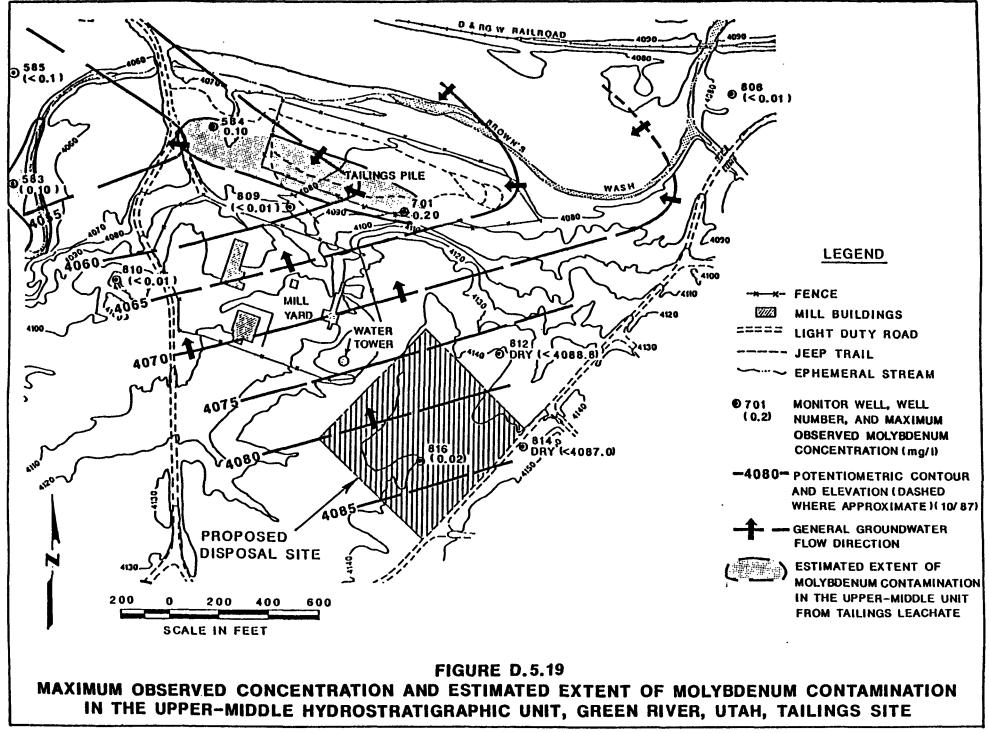


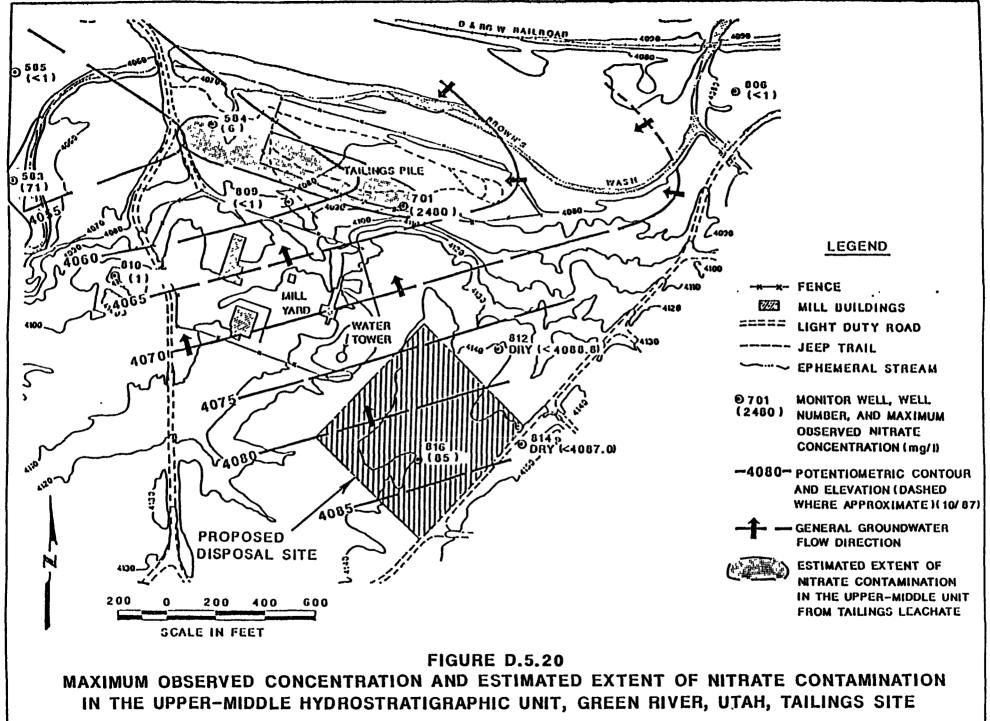


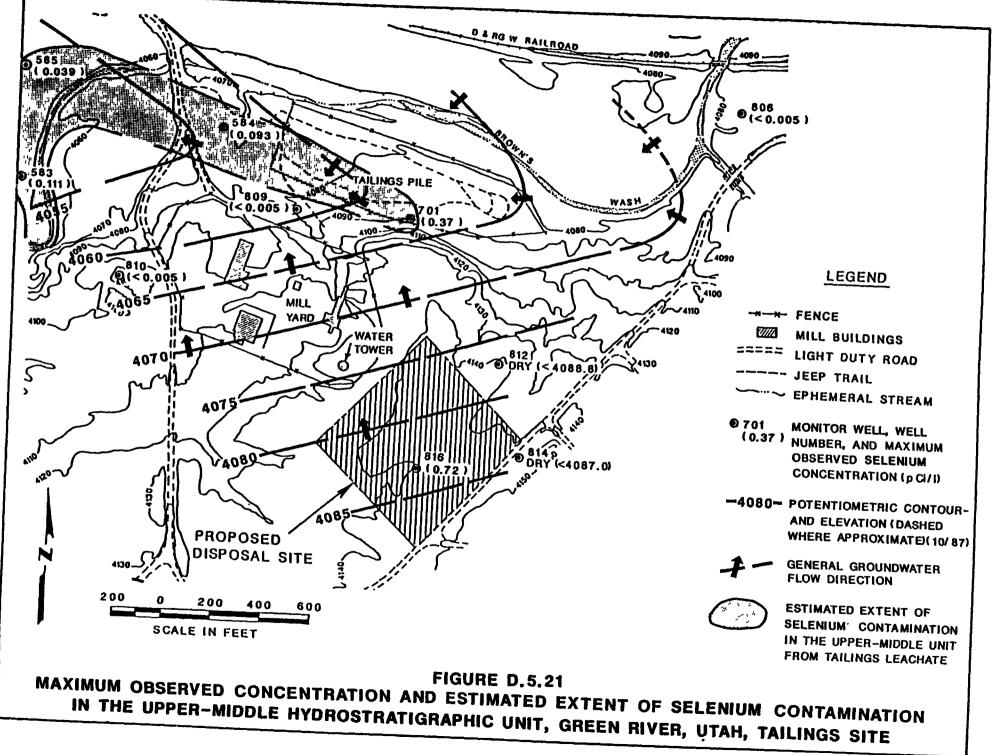
MAXIMUM OBSERVED ACTIVITIES AND EXTENT OF GROSS ALPHA CONTAMINATION IN THE TOP HYDROSTRATIGRAPHIC UNIT, GREEN RIVER, UTAH, TAILINGS SITE

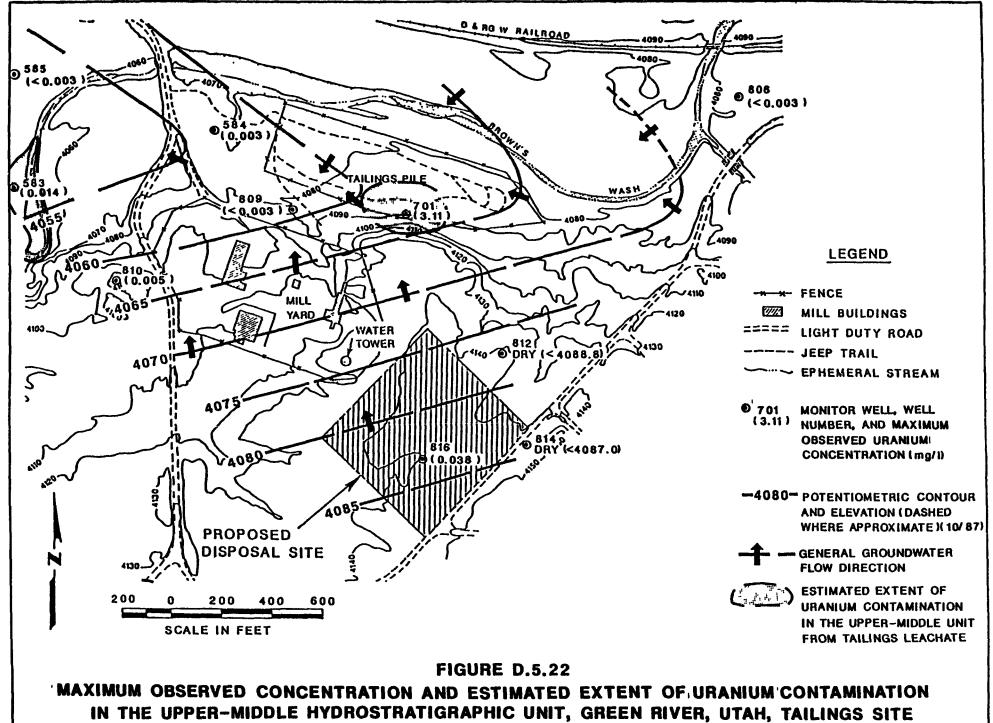


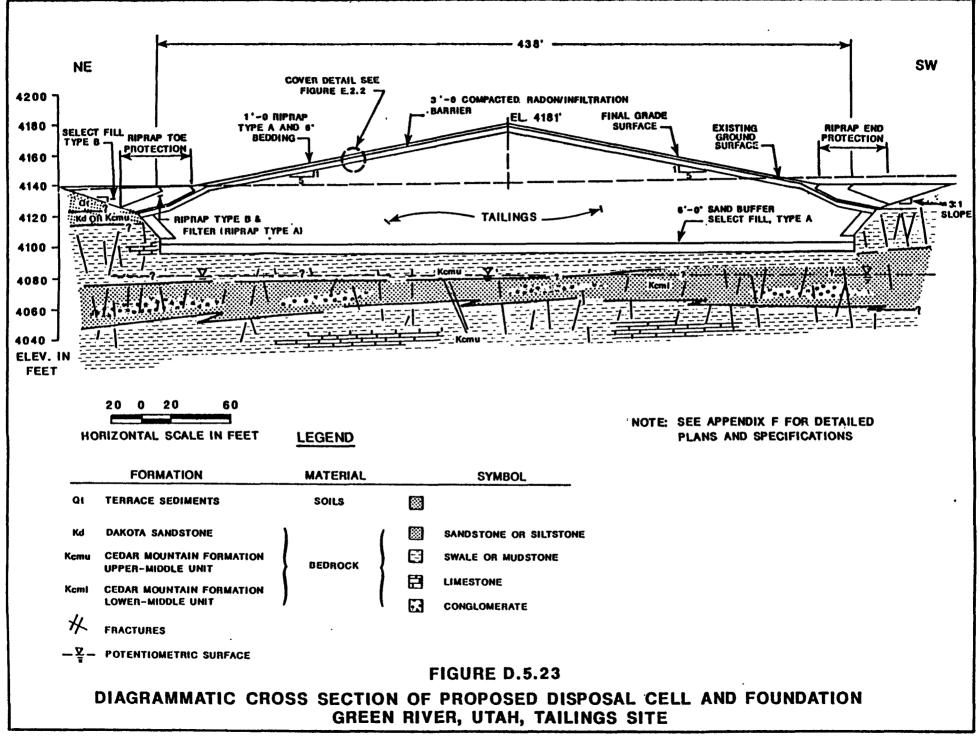


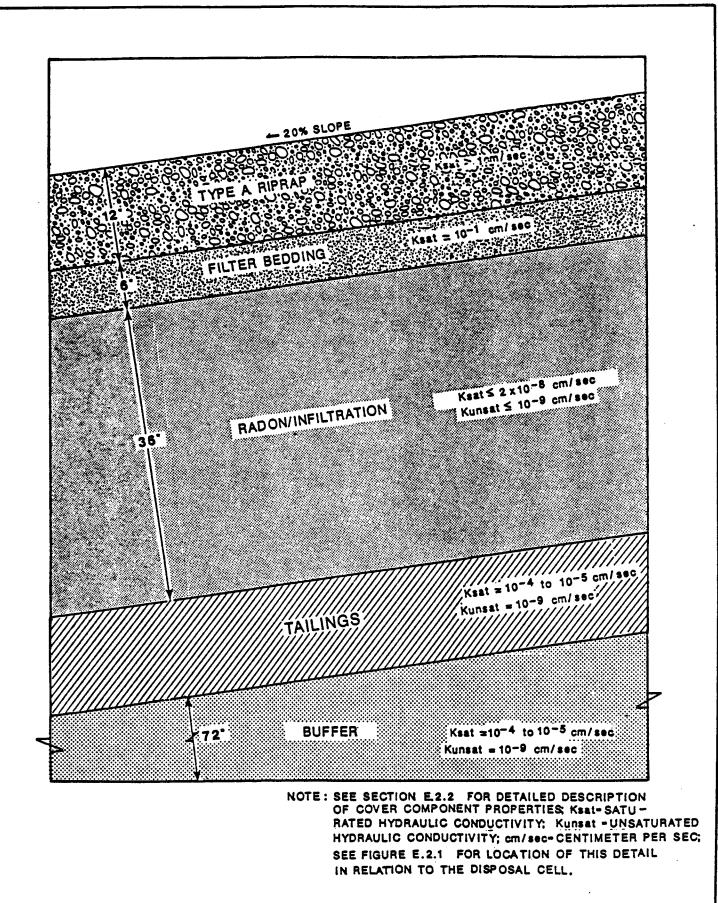





TOP HYDROSTRATIGRAPHIC UNIT, GREEN RIVER, UTAH, TAILINGS SITE







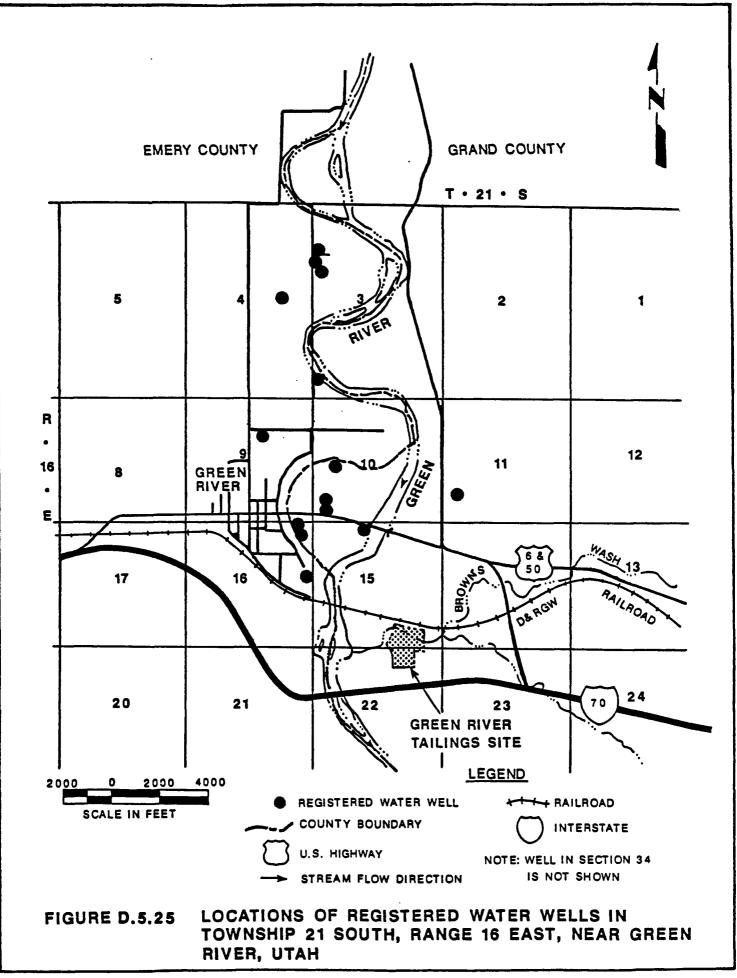


FIGURE D.5.24 DISPOSAL CELL COVER SYSTEM GREEN RIVER, UTAH, TAILINGS SITE

	Proposed EPA groundwater maximum concentration		nal Drinking Standards ^c	State of Utah Drinking Water
Constituent	limits ^b	Primary	Secondary	Standards
Inorganic <u>Chemical</u>				
Arsenic Barium Boron	0.05 1.0	0.05 1.0		0.05 1.0 0.75
Cadmium Chloride	0.010	0.010	250	0.010 250
Chromium Copper	0.05	0.05	1.0	0.05 1.0
Iron Lead Manganese	0.05	0.05	0.3 0.05	0.3 0.05 0.05
Mercury Molybdenum	0.002 0.1	0.002	0.00	0.002
Nitrate Selenium	44 0.01	44 0.01		44 0.01
Silver Sulfate Zinc	0.05	0.05	250 5.0	0.05 250 5.0
TDS pH (standard uni	ts)		500 6.5-8.5	500 6.5-8.5
<u>Radionuclides</u>				
Ra-226 and 228 U-234 and 238	5.0 pCi/l 30 pCi/l (0	.044 mg/l)		5.0 pCi/1
Gross alpha	15 pC1/1			15 pCi/1

Table D.5.1 Water quality standards and maximum concentration limits applicable to the Green River UMTRA Project site^a

^aConcentrations are given in mg/l except as noted.

^bProposed EPA groundwater standards and constituents most commonly associated with uranium mill tailings for UMTRA Project sites; 40 CFR 192. Proposed standards also include a list of hazardous organic constituents, plus antimony, beryllium, and thallium, that are not normally associated with uranium mill tailings or are present in very small quantities; these additional constituents do not have associated maximum concentration limits. See Appendix VIII of 40 CFR 261.

CEPA National Drinking Water Standards: Primary, 40 CFR 141; Secondary, 40 CFR 143. .

1	North	East	Borehole		H	Well casing		Screened	Interval		
Location	coordinate	coordinate	Elevation	Deptha	Diameter	Elevation	Deptha	Diameter	depth ^a	length	
10 (ft)	(ft)		(ft)	(ft)	(†n)	(ft)	(ft)	(in)	(ft)	(ft)	flow relationshi
ormation of	completion:	Alluvium (t									
563	60760.1	60003.5	4079.70	16.0	2.0	4081.10	16.0	2.0	10.0	5.0	Upgradient
564	60917.7	58100.1	4064.60	11.0	2.0	4068.10	11.0	2.0	5.0	5.0	Downgradient
702	60355. B	59295.1	4081.80	43.0	8.0	4082.60	26.0	4.0	15.0	8.0	On-site
704	60556.4	58941.0	4080.70	23.0	8.0	4082.10	23.0	4.0	15.0	8.0	On-site
705	60640.1	58665.7	4076.10	20.0	8.0	4078.30	20.0	4.0	14.0	6.0	On-site
706	60779.0	58379.2	4069.80	34.0	8.0	4070.90	10.0	4.0	8.0	6.0	Downgradient
707	60750.9	60224.0	4081.80	37.0	8.0	4083.10	16.0	4.0	9.0	6.0	Upgradient
708	60605.4	59218.6	4073.10	11.0	8.0	4074.70	11.0	4.0	7.0	4.0	Crossgradient
808	60317.9	59333.8	4082.27	25.0	8.0	4084.27	25.0	4.0	13.0	10.0	On-site
821	60689.9	57916.6	4065.32	7.0	2.0	4068.32	7.0	2.0	2.0	5.0	Downgradient
	completion:		r-middle uni		Iountain For			_			
583	60462.5	57425.9	4065.60	56.5	6.0	4067.10	56.5	2.0	34.5	20.0	Downgradient
584	60654.2	58236.8	4072.10	50.0	6.0	4073.60	50.0	2.0	29.5	20.0	Downgradient
585	60925.6	57423.5	4067.60	50.0	6.0	4069.10	50.0	2.0	39.5	10.0	Downgradient
701	60330.9	58929.2	4087.00	57.0	8.0	4087.20	57.0	4.0	30.0	27.0	On-site
806	60839.6	60243.9	4082.00	67.0	8.0	4084.00	67.0	4.0	55.0	10.0	Upgradient
807	59155.2	58668.8	4139.14	100.0	8.0	4141.14	100.0	4.0	78.0	20.0	Upgradient
809	60371.1	58519.2	4080.30	70.0	8.0	4082.50	70. 0	4.0	48.0	20.0	Downgradient
810	60011.6	57868.6	4098.76	80.0	8.0	4100.76	80.0	4.0	58.0	20.0	Downgradient
812	59740.3	59350.1	4142.75	59.0	8.0	4144.75	59.0	4.0	46.0	10.0	Upgradient
814	59377.7	59412.5	4143.03	60.0	8.0	4145.03	60.0	4.0	48.0	10.0	Upgradient
816	59392.3	59003.B	4141.26	60.0	8.0	4143.56	60.0	4.0	48.0	10.0	Upgradient
822	59366.8	59003.0	4140.64	35.0	8.0	4143.14	35.0	4.0	13.0	20.0	Upgradient
823	59408.0	58450.5	4132.86	30.0	8.0	4135.06	30.0	4.0	17.0	10.0	Upgradient
ormation of			nd conglomera			t, Cedar Mou	ntain For	mation)			
561C	59838.7	58028.8	4108.70	143.5	6.0	4111.20	143.5	2.0	111.0	30.0	Crossgradient 🕢
562 ^C	59585. 9	59014.3	4143.60	130.0	6.0	4147.70	129.5	2.0	87.5	40.0	Upgradient
581	60450.2	58932.9	4083.30	85.0	8.0	4084.60	85.0	4.0	64.3	20.0	On-site
811	60818.9	6030 0.0	4082.83	80.0	8.0	4085.33	80.0	4.0	62.5	15.0	Upgradient
813	59622.2	58669.9	4135.10	99.5	8.0	4136.40	99.5	4.0	77.7	20.0	Upgradient
815	60738.7	58225.6	4071.53	100.0	8.0	4073.53	100.0	4.0	88.0	10.0	Downgradient
	completion:		bottom unit,		Conglomerat			ntain Format			
582	60427.0	57424.8	4065.50	168.5	8.0	4067.00	168.5	4.0	148.0	22.0	Downgradient
586	59171.8	58915.7	4142.40	166.5	8.0	4143.40	166.5	4.0	145.5	20.0	Upgradient
587	59177.2	59540.5	4167.90	185.0	8.0	4169.40	185.0	4.0	164.5	20.0	Upgradient
588	59445.0	57782.7	4112.20	145.0	8.0	4113.50	145.0	4.0	124.3	20.0	Upgradient
817	60794.8	60347.9	4083.31	145.0	8.0	4085.31	145.0	4.0	113.2	30.0	Upgradient
818	59145.1	59189.7	4150.58	187.0	8.0	4152.58	187.0	4.0	165.0	20.0	Upgradient
819	60583.3	58230.8	4072.70	166.0	8.0	4074.70	166.0	4.0	144.0	20.0	Downgradient

.

^aDepth below land surface.

•

^bExcludes monitor well 703. The bentonite seal breached in this well shortly after installation (DOE, 1983) and information from this well has been excluded from analyses. ^{CW}ells 561 and 562 are screened in both the upper-middle and lower-middle hydrostratigraphic units.

Monitor well number ^a	Hydrostratigraphic unit ^a	Tested interval (ft) ^b	Test method ^C	Average hydraulic conductivity (ft/day) ^d	Average transmissivity (ft ² /day) ^e	Average linear velocity (ft/day)
702	Тор	15-23.8	PD9.BR9	32.8	289	0.92
704	Тор	15-21.2	BR ^g , FK, CBP	54.6	339	1.51
705	Top	14-18.6	BR9	16.4	75	0.55
706h	Top	8-12.5	BRG	3.3	15	NA NA
707	Top	9-12.6	BR ^g ,FK,CBP	226.3	815	2.19
808	Тор	15.8-23.0	BR BR	11.1	79.9	0.92
583	Upper-Middle	33-53	FK,CBP	2.4	48	0.13
584	Upper-Middle	28-48	FK,CBP	2.4	48	0.12
585	Upper-Middle	28-41	FK CBP	0.5	10	0.03
701	Upper-Niddle	52-57	FK,CBP,BR9	17.0	85	0.71
806	Upper-Middle	55-65	FK,CBP	0.23	4.6	0.01
807	Upper-Niddle	78-98	FK,CBP	0.0068	0.14	ND
561	Lower-Middle	115-145	FK,CBP	0.0055	0.17	ND
581	Lower-Middle	63-83	FK,PR	21.6	432	2.7
811	Lower-Niddle	62.5-77.5	FK,CBP	0.22	3.28	0.02
813	Lower-Middle	77.7-97.7	FK,CBP,PD	4.53	90.8	0.19
815	Lower-Middle	88-98	FK,CBP	0.37	3.7	0.04
582	Bottom	146.5-166.5	FK,CBP,PR	3.6	12	0.072
586	Bottom	144.5-164.5	FK, CBP, PR	0.13	2.6	ND
587	Bottom	163-183	FK,CBP,PR	0.076	1.5	ND
588	Bottom	123-143	FK,CBP,PR	5.8	116	0.13
818	Bottom	165-185	FK,CBP	7.6	151	0.17

Table D.5.3 Summary of aquifer hydraulic characteristics, Green River, Utah, tailings site

^aSee Figure D.5.1 for locations of monitor wells. Slug tests were unsuccessful for well 708 and no data are available. Well 561 is partially screened in the upper-middle unit. Wells 562 and 703 were not tested. Wells 586 and 587 were grout-contaminated at the time of testing, and hydraulic conductivity values are not representative of bottom unit. Well 807 is screened in the upper-middle unit below the lower-middle unit.

^DTested interval is in feet below land surface.

^CPD is pumping drawdown (type-curve) method; PR is pumping recovery (single well) method; BR is Bouwer and Rice slug test method; FK is Ferris and Knowles slug test method; CBP is Cooper, Bredehoeft, and Papadopulos slug test method.

^dArithmetic average of all applied methods of analysis; wells 701, 704, and 707 have been tested twice.

^eAverage hydraulic conductivity multiplied by tested interval length.

^fAverage linear velocity calculated for silty, gravelly sand (top unit, assumed porosity of 0.30); shale and limestone (upper-middle unit, assumed porosity of 0.15); sandstone and sandstone conglomerate (lower middle unit, assumed porosity of 0.20); sandstone/conglomerate (bottom unit, assumed porosity of 0.20) (Walton, 1970). NA = not available; ND = not determined.

^hHydraulic conductivity at well 706 was measured shortly after drilling by DOE (1983), but the well has been dry for each sampling period thereafter.

^gAnalyses by DOE (1983).

Location Sample int	Depth e interval	Test	Mois cont (1		Dry density (PCF)d		nsity Saturation		Total	Hydraulic	
	(fl) ^b	l Test meth. ^c	Init.	Final	Init.	Final	Init.	Final	pressure head (ft)	conductivity (cm/s)	
807	٨	50 (Kcml)	ТХ	1.1	3.5	159.3	159.3	31.8	100	97.0	4.7 x 10 ⁻¹⁰
807	8	80 (Kcmu)	ТХ	2.4	5.0	153.4	153.4	47.7	100	95.6	2.4×10^{-11}
813	٨	40 (Kcmu)	TX	7.6	14.9	137.8	120.7	89.7	100	95.7	1.3 x 10 ⁻⁹
813	B	65 (Kcml)	TX	0.8	4.8	149.2	149.2	17.0	100	4.3	7.0 x 10 ⁻⁹
816	٨	40 (Kcmu)	TX	8.5	12.6	133.9	125.0	92.6	100	96.4	3.5 x 10 ⁻⁹
816	B	65 (Kcml)	ТХ	1.6	7.0	141.8	141.8	22.8	100	4.4	2.4 x 10 ⁻⁸
818	٨	125 (Kcm)	TX	8.0	14.6	139.2	123.4	90.5	100	95.0	5.0 x 10-9

Table D.5.4 Triaxial hydraulic conductivities of selected rock core from monitor wells 907, 813, 816, and 818, Green River, Utah, tailings site

Location/sample ID	Depth, ft	Unit and visual description
807-A	50	<u>Kcm lower-middle unit</u> : Siltstone, light buff to gray, moderately well cemented, minor horizontal fracturing with iron staining.
807-B	80	<u>Kçm upper-middle unit below the lower-middle</u> <u>sand</u> : Shale, medium gray, moderately well cemented, minor cemented horizontal fractures, layering, minor pyrite crystallization.
813-A	40	<u>Kcm_upper-middle_unit</u> : Shale, dark gray, fissle, moderately well cemented, secondary mineraliza- tion in horizontal joints as calcite or gypsum, iron staining.
813-B	65	<u>Kcm lower-middle unit</u> : Sandstone, silty, very fine grained, soft, gray and light brown, minor iron staining.
816-A	40	<u>Kcm upper-middle unit</u> : Shale and mudstone, light gray micro-crystalline to dark gray fissle; secondary mineralization and iron staining on layered surfaces.
816-B	. 65	<u>Kcm lower-middle unit</u> : Sandstone, medium brown to gray speckled, silty, fine to very fine grained, minor mud inclusions.
818-A	125-130	<u>Kcm confining unit for bottom unit</u> : Shale, fissle, moderately hard to soft, dark purple and medium gray.

^aSee Figure D.5.1 for location of monitor wells. ^bKcml = lower-middle unit Cedar Mountain Formation; Kcmu = upper-middle unit of Cedar Mountain Formation; Kcm = Cedar Mountain Formation between lower-middle and bottom unit.

CTX = Triaxial back pressure falling head method.dPCF = pounds per cubic foot (lb/ft³).

Well number		Water elevation ^a						
	Elevation (top of casing)	June 1986	September 1986	March 1987	October 1987			
Top unit								
563	4081.1	4069.2	4070.1	4069.2	4069.6			
564	4068.1	Dry	Dry	Dry	Destroyed			
702	4082.6	4067.3	4068.3	4067.9	4067.1			
704	4082.1	4065.2	4065.4	4065.4	Clogged			
705	4078.3	4062.9	4063.3	4063.6	4062.7			
706	4070.9	Dry	Dry	Dry	Dry			
707	4083.1	4070.2	4070.9	4070.8	4069.7			
708	4074.7	NS	4065.4	4066.7	Clogged			
808	4084.3	NS	NS	NS	4068.1			
821	4068.3	NS	NS	NS	Dry			
	idle unit							
583	4067.1	NS	4052.4	4051.0	4049.6			
584	4073.6	NS	4058.8	4059.5	4058.2			
585	4069.1	NS	4054.7	4055.2	4054.7			
701	4087.9	4062.8	4062.7	4063.1	4061.3			
806	4084.0	NS	NS	NS	4071.9			
807Þ	4141.1	NS	NS	NS	4088.4			
809	4082.5	NS	NS	NS	4058.6			
810	4100.8	NS	NS	NS	4063.0			
812	4144.8	NS	NS	NS	Dry			
814	4145.0	NS	NS	NS	Dry			
816	4143.6	NS	NS	NS	4083.8			
822	4143.1	NS	NS	NS	Dry			
823	4135.1	NS	NS	NS	Dry			
	idle unit							
567 D	4111.2	4085.8	4084.3	4082.6	4081.0			
562b	4147.7	4087.5	4088.3	4088.4	4086.7			
581	4084.6	NS	Flowing(NM)	Flowing(NM)	4087.2			
811	4085.3	NS	NS	NS	4072.3			
813	4136.4	NS	NS	NS	4084.6			
815	4073.5	NS	NS	NS	4068.5			

Table D.5.5 Groundwater elevations, Green River, Utah, tailings site

.

			Water el	evation ^a	
Well number	Elevation (top of casing)	June 1986	September 1986	March 1987	October 1987
Bottom u					
582	4067.0	NS	Flowing(NM)	Flowing(NM)	4080.8
586	4143.4	NS	4085.6	4087.6	4086.9
587	4169.4	NS	4086.3	4094.8	4097.9
588	4113.5	NS	4083.1	4086.2	4085.4
817b	4085.3	NS	NS	NS	4085.7
818	4152.6	NS	NS	NS	4086.4
819	4074.7	NS	NS	NS	4080.1

Table D.5.5 Groundwater elevations, Green River, Utah, tailings site (Concluded)

^aNS = well was either not sampled or was not yet installed; NM = not measured; Destroyed = surface casing was destroyed and well could not be measured; Clogged = well sounder could not be lowered down the casing because of an obstruction in the well. The potentiometric surface in the flowing wells was measured by shutting the well in and measuring the shut in pressure and/or by using a clear plastic riser hose, if possible.

^bMonitor wells 561 and 562 partially screen the upper-middle and lowermiddle units; monitor well 807 screens the upper-middle unit below the lower-middle unit; monitor well 817 probably does not screen the bottom unit (see text for explanation).

Monitor well number	Average hydraulic conductivity (ft/day)	Average transmissivity (ft ² /day)	Average linear velocity (ft/day)	
702	32.8	289	0.92 ^b	
704	54.6	339	1.51	
705	16.4	75	0.55	
706¢	3.3	15	NA	
707	226.3	815	2.19	
808	<u>11.1</u>	80	<u>0.92</u> b	
meand	25.0	139	1.14	

Table D.5.6 Summary of aquifer hydraulic characteristics for the top hydrostratigraphic unit, Green River, Utah, tailings site^a

^aLinear velocity is a function of an assumed porosity of 0.30 for silty, gravelly sand (Walton, 1970); NA = not available (see Footnote c); hydraulic gradient is calculated at each well from October 1987 water levels. ^bAverage of monitor wells 702 and 808.

CHydraulic conductivity at monitor well 706 was measured shortly after drilling by DOE (1983), but the well has been dry for each sampling period thereafter.

dGeometric mean.

Table D.5.7 Groundwater flux within the top hydrostratigraphic unit beneath the present tailings, Green River, Utah, tailings site

Flux component	Monitor wells 702 and 808	Monitor well 704	Monitor well 705
v (ft/day) ^a	0.28	0.45	0.17
v (ft/day) ^a W (ft) ^b	300	275	425
D (ft) ^C	9.7	6.3	4.4
D (ft)¢ Q (ft3/s)d Q (gpm)d	0.0094	0.0090	0.0036
0 (apm)d	4.2	4.1	1.6

^aGroundwater velocity.

bWidth perpendicular to groundwater flow beneath the tailings pile represented by the respective well(s).

^CDepth of flow represented by the depth of water in the respective well(s). ^dGroundwater flux for incremental area represented by the respective well(s).

Monitor well number	Average hydraulic conductivity (ft/day)	Average transmissivity (ft ² /day)	Average linear velocity (ft/day)
583	2.4	48	0.13
584	2.4	48	0.12
585	0.5	10	0.03
701	17.0	85	0.71
806	0.2	5	<u>0.01</u>
mean ^b	1.6	25	0.08

Table D.5.8	Summary of aquifer hydraulic characteristics for the
	upper-middle hydrostratigraphic unit, Green River,
	Utah, tailings site ^a

^aLinear velocity is a function of an assumed porosity of 0.15 for shale and limestone (Walton, 1970); hydraulic gradient is calculated at each well from October 1987 water levels.

DGeometric mean.

Table D.5.9 Groundwater flux within the upper-middle hydrostratigraphic unit beneath the present tailings, Green River, Utah, tailings site

Flux	Monitor well	Monitor well	Average of monitor
component	584	701	wells 584 and 701
v (ft/day) ^a	0.018	0.107	0.063
W (ft) ^b	450	450	450
D (ft)c Q (ft3/s)d Q (gpm)d	34.6	31.1	32.9 0.011
Q (gpm)a			4.9

^aGroundwater velocity.

bWidth perpendicular to groundwater flow beneath the tailings pile. CDepth of flow represented by the depth of water in the respective well(s). dTotal groundwater flux.

Monitor well number	Average hydraulic conductivity (ft/day)	Average transmissivity (ft ² /day)	Average linear velocity (ft/day)
581	21.6	432	2.70
811	0.2	3	0.02
813	4.5	91	0.19
815	0.4	4	0.04
mean ^b	1.7	26	0.14

Table D.5.10	Summary of aquifer hydraulic characteristics for the
	lower-middle hydrostratigraphic unit, Green River,
	Utah, tailings site ^a

^aLinear velocity is a function of an assumed porosity of 0.20 for sandstone and conglomerate (Walton, 1970); hydraulic gradient is calculated at each well from October 1987 water levels.

^bGeometric mean.

.

Table D.5.11 Summary of aquifer hydraulic characteristics for the bottom hydrostratigraphic unit, Green River, Utah, tailings site^a

Monitor well number	Average hydraulic conductivity (ft/day)	Average transmissivity (ft ² /day)	Average linear velocity (ft/day)
582	3.6	72	0.07
588	5.8	116	0.13
<u>818</u>	<u>7.6</u>	<u>151</u>	<u>0.17</u>
mean ^b	5.3	103	0.12

^aLinear velocity is a function of an assumed porosity of 0.20 for sandstone and conglomerate (Walton, 1970); hydraulic gradient is calculated at each well from October 1987 water levels. ^bGeometric mean.

	Top unit	Upper-middle unit	Lower-middle unit	Bottom unit
Top unit		0.12 downward	0.38 upward	0.11 upward
Upper-middle unit			0.87 upward	0.16 upward
Lower-middle unit				0.07 downward

Table D.5.12 Summary of vertical hydraulic gradients beneath the present tailings pile, Green River, Utah, tailings site^a

^aGradient values are in foot per foot. Gradients were calculated using October 1987 water levels at the areal center of the tailings pile; the vertical distance between units was measured from cross section B-B' on Figure D.5.3.

Table D.5.13 Summary of vertical hydraulic gradients beneath the proposed disposal site, Green River, Utah, tailings site^a

	Top unit	Upper-middle unit	Lower-middle unit	Bottom unit
Top unit	(The top u	nit is not present	at the disposal	site) ^b
Upper-middle unit			0.55 upward	0.03 upward
Lower-middle unit				0.02 downward

^aGradient values are in foot per foot. Gradients were calculated using October 1987 water levels at the areal center of the disposal site; the vertical distance between units was measured from cross section C-C' in Figure D.5.4.

^bGroundwater is first encountered at a depth of about 60 feet beneath the proposed disposal site (near the contact of the upper-middle unit with the lower-middle unit).

Sample number	Hydrostratigraphic unit	Description of sample location	
563	Тор	Well point, north side of Brown's Wash, approximately 250 feet upgradient from tailings.	
702	Тор	Well, on-site.	
704	Тор	Well, on-site.	
705	Тор	Well, west edge of tailings, on-site.	
707	Тор	Well, south side of Brown's Wash approxi- mately 900 feet upgradient from tailings.	
708	Тор	Well, between Brown's Wash and tailings, crossgradient.	
808	Тор	Well, 60 feet east of well 702, on-site.	
583	Upper-middle	Well, north side of Brown's Wash, approxi- mately 1000 feet downgradient from tailings.	
584	Upper-middle	Well, south side of Brown's Wash, approxi- mately 200 feet downgradient from tailings.	
585	Upper-middle	Well, north side of Brown's Wash, approxi- mately 1100 feet downgradient from tailings.	
701	Upper-middle	Well, on-site.	
806	Upper-middle	Well, upgradient, approximately 75 feet north of well 707.	
80 9	Upper-middle	Well, downgradient, north of mill yard.	
810	Upper-middle	Well, downgradient, in retention structure west of mill yard.	
816	Upper-middle	Well, upgradient, center of disposal site.	
561	Lower-middle	Well, approximately 100 feet southwest of mill site, west side of road and cross-gradient from tailings.	

Table D.5.14 Description of groundwater samples, Green River, Utah, tailings site

•

Sample number	Hydrostratigraphic unit	Description of sample location
562	Lower-middle	Well, approximately 600 feet south (upgra- dient) from tailings, and 1000 feet east of well 561, located on proposed disposal site.
581	Lower-middle	Flowing well, on-site, between wells 701 and 704.
811	Lower-middle	Well, upgradient, approximately 60 feet east of well 808.
813	Lower-middle	Well, upgradient near disposal site, 100 feet south of water tower.
815	Lower-middle	Well, downgradient, west of tailings.
582	Bottom	Flowing well, north of Brown's Wash, adjacent to well 583 and downgradient from tailings.
586	Bottom	Well, approximately 1100 feet south of and upgradient from tailings, located on SOS disposal site.
587	Bottom	Well, approximately 120 feet southeast of tailings and 650 feet east of well 586, and upgradient from tailings.
588	Bottom	Well, approximately 1200 feet southwest of mill site and 1200 feet west of well site and upgradient from tailings.
818	Bottom	Well, between wells 587 and 586, upgradient from tailings.
819	Bottom	Well, downgradient, west of tailings.

Table D.5.14 Description of groundwater samples, Green River, Utah, tailings site (Concluded)

•

FORMATION OF COMPLETION: URANIUM MILL TALLINGS HYDRAULIC FLOW RELATIONSHIP: UN-SITE

				UN 10 - SAMPLE 10 AND I	DG DATE	
		/14-01 03/12/87	714-01 09/11/86			
PARAMETER	UNII OF MEASURE	PARAMETER VALUE+/-UNCERTAINIY	PARAMETER VALUE+7-UNCERTAINTY	PARAMETER VALUE+/UNCERTAINTY	PARAMETER VALUF+/-UNCERTAINTY	PARANE FER VALUE +/ -UNLERTAINT
ALUMINUM	MG/L	6300.	1840.			nam page 200 Million of Sing Solid Million Solid So
AMMONIUM	H67L	14.	11.			
ANTIMONY	MG71	•	< 0.003			
ARSENTC	MGZL	-	0.03			
BARLUM	MG/1	-	< 0 _1			
BURDN	MG/L	0.5	< 0.1			
CADMIUM	MG7L	-	0.032			
CAECIUM	MG/L	457.	385.			
CHLORIDE	MGZL	143.	2900.			
CHROMIUM	MG/L	2.61	1_14			
COBAL L	M671.		30.9			
COPPER	MG/L	-	45.8			
FEUORIDE	MGZL.	(0.1	0.2			
TRON	MG/L	2200.	267.			
L FAD	MGZL.		0.02			
MAGNESTUM	MG/L	2640.	1090.			
MANGANE SE	MG/L	360.	122.			
HERCURY	MG/L		0.			
MOL YHDENUM	M671.	0.2	0.10			
NICKEL	MG/L	_ ·	25.3			
NJTRAH	MG/L	4500.	2.			
NITRTIE	MG/L	<u> </u>	< 0.1			
PHOSPHATE	MGZL.	-	(0.1			
PUTASSIUM	MG/L	0.19	16.0			
SELENJUM	MGZŁ	0.092	0.208			
SILICA	MG/L	-	60.			
STEVER	MGZL	-	(0.04			
500108	MG/1.	89.2	111.			
STRONTIUM	MOZE	-	0.1			
SULFAIL	MG/L	56200.	16000.			
TIN	MGZL		(0.005			
TOTAL SOLIDS		80800.	26 100.			
URANJUM	MG/L	675.	221.			
VONADLUM	NG/L		1/8.			
ZINC	MG/L		259.			

~

٠

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

			563-04 06/04/86		t(rai) 563-04 09/07/86		- SANH'LE ID AND 69-01 02/2//87	L06	DATE 563-01 10	/02/87	563-01 0	1/10/88
PARAME TH	UNET OF R MEASURE	VA	PARAMETER LUE+/-UNGERTAINIY	VA	PARAMETER UF+7-UNCERTAINLY	VAL	PARAME IF R UF +Z-UNCFRIAINIY	VAI	PARAME		PARAM VALUE +7 UNU	
ALKALINJ ALUMTNUM		3	45/. 0.4		107. 0.3	<	138. 0.1		165. 0.1		462. 0.3	
AMMUNTUM		(0.1	<	0.1	ċ	0.1	•	0.1		(0.1	
ANTLHONY		ì	0.003	ì	0.003	•	-		-		-	
ARSENIC	MG/L	(0.01	<	0_01		-		0.01		0.01	
BALANCE	X		0.16		0.06		-				-	
BARTUM	MG/L		0.2		0.2		-				-	
HICARBUN			_		-		-				-	
BORON	MG/L	<	0.3 0.001	<	0_5 0_001		0.22		0_4		0.48	
CADHLUM	MG/L MG/L	•	488.	``	500.		377.		410.		417.	
CALCIUM CHURIDE			312.		240.		312.		290.		310.	
CHROMTUM			0.05		0.02		0.0()	(0.01		0.03	
DUBALT	MG/L		0.09		0.0/		-	•	_			
CONDUCTA	NCE UMHO/CM		5500.		6250.		6500.		8300.		6530.	
i copper	MG/L		0.05		6.0J		-		-		-	
EL UORD DE			0.6		0./		0.48		0.6		0.48	
GROSS AL			-		-		+		0.0	43.	41.	38.
GROSS BE			-		-		-		15.	48.	1-	27.
I RON LEAD	MG/L MG/L	<	0.18 0.01	(0.20		0.59		0.79		1.23	
MAGNESTU		``	364.	•	0.01 367.		347.		340.		337.	
MANGANES			0.04		0.03		0.07	(0.01		0.06	
MERCURY	MGZL	(0.0002	<	0.0002		-	•	-		-	
MOL YBDEN		-	0.45	-	0.14	<	0.1	<	0.01		0.20	
NTCKEL	MGZL		0.09	<	0.04				-		-	
NITRALE	MGZL		11.		41.		44.3		34.		23.9	
NETRITE	MGZL	<	0.1	<	0_1							
ORG. CAN								<	1.		39.8	
PH 210	PCIZE		-		-				-			
РН РНО5 РНА Т	SU E MGZL	(7.69 0.1	<	7.55 0.1		7.58		7_25		7.5	
P0-240	PCJ/L	•	V•1	``	V.1						_	
PUTASSIL			18.8		22.6		12.6		16./		47.4	
RA-226	FCI/I		-		_		·		0.3	0.2	0.	0.1
RA 228	PCIZL		-		-		-		1.4	1.0	0.4	0.9
SELENIUM	MGZE	(0.005	<	0.005		0.38		0.12		0.320	1
STECON	PIGZE		-		-				-		-	
STELCA	M1371		4 -		7.		-		-		-	
511 VER	HGZL	<	0.01	<	0.01						-	
SADIUM STRONTIL	1967) 19 1967)		1680. 7.2		1830. 0.6		1810.		1600		1900-	
SULFAIL	MG/L		5540.		5760.		5490.		5500.		5/40.	
514 + 10E	1071				a70V.		077Va		()()(// #		W/ TV a	
TEMPERAT		ł.	19.		17.		9.5		17.5		9.9	
14-530	PCIZE		_				-					

•

•

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

		563-01 06/04/86	563-01 07/0//86	10 - SANFLE 3D AND 563-04 02727787	LOG DATE	563 01 01/10/88
PARAMETER	UNLE OF	PARAME IER	PARAME IFR	PARAMETER	PARAMETER	PARAMETER
	MLASURE	VALUE +/-UNCER FAIN FY	VALUL+Z-UNCERTAINTY	VALUE +/-UNLERTATION	VALUE +/-UNCERTAINTY	VALUE +/-UNCERTAINTY
TIN TOTAL SULIDS	MGZL MGZL	<pre></pre>	< 0.005 8800.	9240.	ษ/40.	9080.
UKANIUM	MGZL	0.0121	0.0104	0.0105	0.013	0.0405
VANADIUM	MGZL	0.32	0.22		(0.01	0.07
ZINC	MGZL	0.026	0.131		0.026	0.045

.

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: UP GRADIENI

٠

		/0/-01 0//15/	/82 707-01 09/14		707-04 06/04/86	/02- 04 09/07/86
PARAMETER	UNTI OF MEASURE	PARAMETER VALUE+/-UNLERTA	PARAME LER	PARAMETER INTY VALUE+7-UNLERTAINTY	PARAMETER	PARAMETER
ALKALINITY	MG/L CALD3	180.00	190.00 (0.01	251.00 0.023	360. 0.4	1/6.
AFUHINUM	MGZL	0.13	(0.01	-	< 0.1	2.4
AMMUNIUM	MGZL MGZL	-	-	-	č čioos	(0.003
AKSENIC	MGZL	(0.01	< 0.01	0.006	< 0.01	< 0.01
BALANCE	X				-1.20	0.18
HARLUM	MGZI	(0.10	0.045	(0. 05	0.3	(0.1
BICARBUNATE		220.00	232.00	306.00	-	
BORON	MG/1	-	-	-	0.6	0.4
CADHLUM	MG/I	< 0.01	< 0.01	< 0.005	< 0.001	< 0.001
CALCIUM	MG/I	450.00	470.00	460.00	488.	520.
CHI OR LDE	MG/L	430.00	345.00	561.00	342.	590.
CHROMIUM	MG/L	< 0.01	< 0.01	< 0.005	0.05	0.02
LUBALT	MGZŁ	_	-	-	0.09	0.07
CONDUCTANCE	UMH0/CM	8640.00	9650. 00	9440.00	4900.	6200.
COPPER	MGZŁ	0.057	0.021	< 0.005	0.05	0.04
FLUORIDE	MGZL	4.00	< 1.00	۲.00	0.6	0.7
GROSS ALPHA	PCLZE	200.00	-	230.00		-
GROSS BETA	PCI/L	-				-
LRON	MG/L	(0.05	< 0.05	(0.05	0.18	0.04
I LAD	HG/L.	(0.01	< 0.01	(0.005	< <u>0-01</u>	(0.01
MAGNESTUM	MG/L	360.00	225.00	361.00	368.	388.
MANGANESE	MG/L	-	-	 /	0.04	0.03 (0.0002
MERCIRY	MG/L	(0.002	(0.002	(0.002		
MOI YHDE NUM	HG7L.	< 0.05	< 0.05	< 0 _05	0_18 0_09	0.06 0.08
NICKEL	MGZI Molo					120.
NTTRATE	MG7L MG7L	1.00	14.00	< 5.00	11. (0.1	{ 0.1
NEIRIIE ORG. CAKBUN		-		-		41.
PB-240	PCI/L	-	-	-		0.0 4.3
PH	SU	7.10	7.12	6.93	7.88	7.56
PHOSPHATE	MG/L	-	-		(0.1	(0.1
PD-240	PCI/I	-	_			0.0 0.6
PUTASSIUM	MGZL	48.00	21.00	48.00	19.3	26.1
RA-226	PCI/I	4.00	(2.00	(2.00	0.2 0.2	0.2 0.2
RA 228	PCLZL	8.00	< 2.00	_	1.1 0.9	0.0 0.8
SELENJUM	MGZE	0.13	0.104	0.124	< 0.005	0.069
SILCON	MGZL	8.80	6.70	6.20	-	
511 IFA	MG/1		-	-	4.	8.
SHEVER	MGZE	0.014	< 0.01	< 0.005	< 0.01	< 0.01
SODIUM	H6/1	1880.00	1945-00	1790.00	1680	2000.
STRONTIUM	MGZI			-	1.2	6.3
5HLFAIF	M G/1	5830.00	55 12.00	6240.00	5530.	6070.
SHEEDE	MGZI	-	-		-	
IF MPERATURE		21.00	22.00	16.00	14,	19.
1H-230	PCTAL	< 0.10	< 0.10	< 0.40		0.0 1.6

٠

.

FURMATION OF COMPLETION: AFTUVIUM HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

		707-01 0//15/82	707-01 09/16/152	IN ID - SANPLE ID AND 707-04 41/23/82	10G DATH	707-01 07/07/86
PARAMETER	UNIF OF MEASURE	PARAMETER VALUE +/-UNCERTAINTY	PARAMETER VALUE +/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAME FER VALUE +7 - UNLE RTAIN FY	PARAMETER VALUE +/-UNLERTAINIY
IIN IOTAL SULIDS	HG/L MG/L	90 80.00	нано.00	9560.00	<pre>< 0.005 9420.</pre>	 < 0.005 У480.
URANJUM VANADIUM	MGZL MGZL	0.016 (0.05	0.025 < 0.05	0.03	0.0125 0.29	0.0090 0.16
ZINI.	MG/L	-	-		0.023	0.023

٠

-

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

		70/-01 03/13/87		707-01 10/			0 - SANPLE 707-01 01/			DAIF 70/-04 0//		
PARAMETER	UNLL OF MEASURE	PARAMETER VALUE + /- UNCERTAINTY		PARAMET I UE +7 - UNCEF		VA	PARAMET 1 UE +7 - URLE F		VA	PARAME F		PARAMETER VALUE+/-UNCERTAINTY
ALKALINITY ALUMINUM	MG/L CACO3	261.		159. 0.1			160. 0.4			166.		an a
AMMUNIUM	MG/L MG/L	(0.1	•	0.1		<	0.1		<	0.1		
ARSENIC BALANCE	MG/L %	-	<	0.01			0.01			0.025		
BAR FUM BLCARBONATE	A MGZE MGZE	-					-		•	0.01		
BORAN	MGZL	0.6		0.4			0.51			0.5		
CADILLUM	MG/L MG/L	-		_			- 507.			0.006		
(ALI JUM CHEURIDE	MGZL MGZL	425. 295.		440. J00.			307. 310.			407. 330.		
CHROMIUM	H671.	0.03	<	0.01		<	0.01			0.14		
COBALT CONDUCTANCE	MG/L UMHO/CM	4400.		- 8500.			- 7480.			6500.		
CUPPE R Flikuride	MG/L MG/L	0.5					0.47			0.01 0.5		
GROSS ALPHA	PCIZ	-		0.6 0.0	51.		7.	38.		0.8	77.	
GROSS BETA	PCI/L	-		0.0	44.		47.	28.		37.	44.	
IRON	MG/L	0.05	<	0.03			0.2			0.10		
LEAD MAGNESIUM	MGZE MGZE	- 355.		380.			416.		<	0.01 331.		
MANGANESE	Mu/L	0.02	<	0.01			0.03			0.02		
MERCURY	MG/L	-	•	_					<	0.0002		
MOLYHDENUM Niekel	MGZE MGZE	< 0 <u>1</u>	<	0.01			0.20			0.08		
NITRATE	MGZL	140.		36.			8.7			25.		
NITRITE DRG. CARBON	MG/L MG/L	-		4.			35.5			44.4		
PB-210	PCIZE	-		-			-			-		
РН	SU	7.77		7.4			7.5			7.56		
PHOSPHATE	MG/L			-			-			-		
PD-240 POTASSLUM	PCJ71 MG71	34.2		17.2			16.9			22.2		
RA-226	PCT/A	-		0.2	0.1		0.	0.1		0.0	0.1	
RA-228	PCIZL	-		4.5	1.0		ŏ.	0.7		ŏlŏ	ŏ.7	
SELENTUM	MGZE	0.034		0.12			0.3/4			0.231		
SILLON	MGZŁ.	-		-			-			-		
STELLA STEVER	MG71 MG71,	-		-			-		<	0.01		
SODIUM	Mozi	1920.		1/90.			4680.		`	4830.		
STRONTIUM	MGZL									-		
SULFAIF	MG7F	50.0.		5200.			5820.			5720.		
SULEIDE TEMPERATURE TH 230	MGZL C – DEGREE PCTZL	14.0		17.0			13.7		(0 1 125		

٠

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

		707-01 03/13/87	707-04 40/92/87	0N 10 - SANPLE 10 AND 1 707-04 04740788	106 DATE 70/-01 0//18/88	
PARAME IER	UNLT OF MEASURE	PARAMETER VALUE+/-UNCERTAINTY	PARAME IER VALUE +7-UNCERTAINTY	PARAMETER VALUE +/-UNCERTAINTY	PARAMETER VALUE +/ -UNCERTAINTY	
7 IN	MGZL	_	-	-	-	
TOTAL SOLIDS	MG/L	9130.	Y000.	Y090.	B780.	
URANJUM	MGZL	0.0109	0.016	0.0167	0.0081	
VANADIUM	MG/L		< 0.01	0.07	0.07	
ZINL	MG/L	-	< 0.005	0.00/	< 0.005	

•

.

FURMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: ON-SITE

			702-01 0//14/82		UCALI) 702-01	UN 10 - SAMPLE 702-04 - 067			DATE 702-04 09/0			102-02 09/0	0//86
PARAME IF R	UNIT OF MEASURE	VAL	PARAME (FR LUF+/-UNI.ERTAINTY	VA	PARAMETER EULEZ-UNLERTAINTY	PARAMET VALUE +/ ULEER		VA	PARAMETEI FUE+Z-UNUERTA		VAI	PARAMETE LUE+/-UNLER	
ALKALINLLY	MG/L CACO3		215.00		270,00	237.			245. 0.3			245. 0.3	
ALUMINUM	MGZE	<	0.10		0.01	21.			24.			24.	
AMMUN LUM AN LUMUNY	MGZL MGZL					-		<	0.003		(0.003	
ARSENIC	MGZL	<	0.01	(0.01	(0.01		è	0.01		ċ	0.01	
B/J ANCE	X	•	_	•		-0.12		•	0.08		•	0.08	
BAICIUM	MGZI	<	0.10		0.02			<	0.1		<	0.1	
BICARBUNATE	HGZL		262 . 00		324.00				-			-	
BOHON	MGZL								0.4			0.4	
CONTUN	MGZL	<	0.01	<	0-01			<	0.001		(0.001	
CALUTUM	MG/L		470.00			499.			520.			520.	
CHUORIDE	MGZL		120.00	,	101.00	73.			100.			100.	
CHROMTUM	MGZŁ kulzt	<	0.01	(0.01	-		(0.02 0.05		<	0.02 0.05	
COBALT CONDUCTANCE	MGZŁ UMHOZC M		4900.00		5560.00	3500.		•	3900.		•	3900.	
COPPLR	MGZL		0.027		0.011				0.03			0.03	
FLUORIDE	MG/L		2.00		2.00	0.8			0.9			0.9	
GRUSS ALPHA	PCIZL		700.00						_			-	
GROSS BETA	PCIZE				-				-			-	
TRON	NG/L	<	0.05	<	0.05	0.07		(0.03		<	0.03	
LEAD	MGZL	<	0.01	<	0.01	-		<	0.01		<	0.01	
MAGNESLUM	MGZL		160.00		150.00	172.			175.			175.	
MANUANE SE	MGZI	,	-	,	-	0.3/		,	0.4/		<	0.47	
MH RU HIRY	MGZL	Ś	0.002		0.002			<	0.0002		(0.0002	
MOLYBDENUM Nickel	MGZL MGZL	(0.05	C	0.05	0.27			0.09 0.05			0.10 0.05	
NTIRALE	MGZL		2.00		14.00	3.			440.			440.	
NTIRLTE	MG/L		-		14:00			<	0.1		<	Ö.1	
ORG. CARBON	MGZL		-		-	-		•	70.			70.	
PB 240	PCI/L				-				4.4	1.6		3.5	1.6
PH	SU		7.20		6.95	7.34			6.81			6.81	
PHUSPHATE	MG/L		-					<	0.1		<	0.1	
PO 240	PCI/L		-			-			0.4	0./		0.2	0./
POTASSIUM	MG/L		14.00		14.00	11.7			14_8			14.8	~ ~
80 756	PC371	< (2.00	Ś	2.00	0.	0.1		0.1	0.2		0.1	0.2
RA 220 SLIENTUM	PC17L MGZL	(5.00 0.25	(2.00	0.	0.9		0-0 0-100	1.0		0.8 0.099	1.0
SHION	MG7L		10.60		0.080	C 0.095			0.100			0.099	
STEILA	MGZL								9.			9.	
S11 9/ R	MGZL		0.01	<	0.01	-		<	ó.04		(0.01	
500100	MGZL		830.00	-	904.00	798.			800.			800.	
STEDNTIUM	MGZL		-						5.5			5.5	
SHIATE	MG/1		3260.00		3005.00	3070.			2980.			A 480 .	
SHELLOF	MG/L		-		•	-						-	
11 MPL RATURE	C = 1/1 GREE		26.09		16-00	45			20.			20.	۰ A
111 2 30	PCLZE	<	0.10	<	0 . 40				3.1	1.1		1.8	0-8

~

.

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: ON-SITE

		702-04 07/14/82	702-04 09/16/82	N JD - SANPLE JD AND 702-04 06707786	LOG DATE	105-05 03/0/189
PARAMETER	UNII OF MEASURE	PARAME TER VALUE+7-UNCERTAINTY	PARAME IF R VALUE FZ-UNCERTAINTY	PARAME IFR VALUE + Z-UNCERTAINTY	PARAME FER VALUE +/UNCE KTAINTY	PARAMETER VALUE +7 - UNLERTAINTY
TIN TUTAL SOLIOS	MG/L MG/L	4990.00	4870.00	5050.	(0.005 5090.	 0.005 5100.
URANIUM	HGZL.	0.90	0.20	0.7.19	1.19	1.19
VANADIUM ZINC	MG/L MG/L	< 0.05 _	< 0.05	-	0.24 0.023	0.023

ì

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: ON-SITE

		702-	-03 07/0	//116		702-04 09/0			D - 5AMPLE 1 707-05 9970		UG DATE	702 02 03/13/87
PARAME TE R	UNEL OF MEASURE	VALUE	PARAMETE		VA	PARAME TE LUE+/-UNLERT		VA	PARAMETE LUI +7-UNCERT		PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUF+/-UNCERTAINT
ALKALINITY	MG/L LACO3	24	45.			245.			245.		271.	2/1.
AL UM ENUM	MGZL		0.3			0.3			0.3		0.1	0.2
AMMONJUH	MGZL		24.			24.			24.		18.	19.
ANTLIMONY	MGZE	<	0.003		<	0.003		(0.003		-	-
ARSENIL	MG/L	<	0.01		<	0.01		<	0.01		-	-
HALANCE.	X .		0.08			0.08			0.08		-	-
BAKTUM	M6/L	<	0.1		<	0.1		<	0.1		-	
BLCARBONATE	MG/L					-						
BURON	MGZE	,	0.4		,	0.4		,	0.4		0.7	0.7
CADITUM	MG7L	(0.001		<	0.001		<	0.001		471	475.
CALCIUM	MG/E		20.			520.			520. 100.		475. 76.	76.
LHUORIDE	MG/L	1	00.			100.						0.02
CHROMIUM	MGZL	,	0.02		,	0.02		<	0.02 0.05		0.02	0.02
COBALT	MGZL	<	0.05		<	0.05		`			2650.	2650.
CONDUCTANCE	UMH0/CM	370	0.03			3900. 0.03			3900. 0.03		2030.	2030.
LOPPER	MG/L MG/L		0.03			0.9			0.9		0.7	0./
FI HORIDE ORDSS ALPHA	MGZL PCIZL					0.9			U.7 _		· · ·	-
GROSS BETA	PCIZE		_									-
LRON	MG/L	<	0.0J		<	0.03		1	0.03		0.05	0.04
LEAD	MOZE	λ (0.01		ì	0.01		è	0.01		-	-
MADNESEUM	MGZL		75.		`	175.		1	175.		450.	450.
MANGANESE	MGZL	••	0.4/			0.4/			0.47		0.43	0.42
MERCURY	MGZE	<	0.0002		<	0.0002		<	0.0002			-
MOLYBOLNUM	MGZL	•	0.09		•	0.10		•	0.10		< 0.1	< 0.1
NICKEL	MG/1.		0.05			0.05			0.05			-
NTERALE	MGZL	4	40.			440.			440.		442.	142.
NTIRIJE	MG/L	< ⁷	0.1		<	0.1		<	0.1		-	-
ORG. LARHON	MG/L		70.		•	70.		•	70.		-	
PB 210	PCIZE	•	4.0	1.4		4.2	1.9		5.2	1.7		-
PH	50		6.81			6.81			6.81		6.86	6.86
PHOSPHATE	MG/L	<	0.1		<	0.1		<	0.1		****	-
PU 210	PC1/1		0.2	1.2		0.0	0.6		0.3	0./	-	-
POTASSIUM	MGZL		14.8			14.8			14.8		12.4	12.5
RA-226	PC1/L ·		0.1	0.2		0.1	0.2		0.2	0.2	-	-
RA 228	PCIZE		0.0	1.0		0.0	0.8		0.0	0.8	-	
SELENJUM	M671		0.099			0.400			0.100		0.049	0.050
STECON	MGZL.		-			-			-		-	-
5 HE TCA	MGZE		9.			9.			9.		-	~
SHVER	Mioz E.	<	0.01		<	0.01		<	0.01		-	-
SODIUM	MGZE	8	00.			800.			800.		767.	767.
STRONTIOM	MOZE		5.5			5.5			5.5		-	
SULLATE	MGZI	29	80.			2980.			2980.		2950.	2950.
SHEEDF	MGZI.								-		-	-
TEMPERATURE	C - DEGREE		29.0			20.	A A		20.	4 .5	14.0	14.0
(11-230	PC171.		1.6	0.8		1.9	0.9		8-2	1.0	-	-

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: ON-SITE

.

٠

		702-0.3 09/0//86	702-04 09/0//86	DN 1D - SAMPLE 1D AND 702-05 09707786	LUG DATE	702-02 03/13/87
PARAMETER	UNIT OF MEASURE	PARAMETER VALUE+/-UNCERTAINTY	PARAME FER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE +/-UNLERTAINTY
TÎN TOTAL SOLIDS	MG/L MG/L	<pre>< 0.005 5090.</pre>	 0.005 5100. 	(0.005 5070.	4860.	4860.
URANIUM	MG/L	1.22	4-10	1-16	1.96	1.90
VANAD LUM ZINL	HGZL MGZL	0.24 0.023	0.24 0,023	0_24 0_023	-	-

٠

-

.

•

FORMALION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: ON-SITE

		702-03 03/13/87	LUCALI 702-04 03/13/87	0N 1D - SAMPLE JÐ AND 702 05 03713787	LOG DATE	702 01 01/12/88
PARAME IER	UNLT OF MEASURF	PARAMETER VALUE + Z-UNCERTAINTY	PARAMETER VALUE+/UNCERTAINTY	PARAMETER VALUE+7-UNCERTAINTY	PARAME IER VALUE+/-UNCERTAINTY	PARAMETER VALUE +7-UNCERTAINTY
ALKALINITY	MG/L LALU3	271.	271.	271.	265.	217. 0.39
ALUMINUM	MG/L	v.2	0.2	0.7	< 0.1 42.	24.8
AMMONJUM ANI LMUNY	MG/L MG/L	19.	18 <u>-</u>	19.	47.	24.8
ARSENTC	MG/L	-	-	_	< 0.01	< 0.01
BALANCE	2	-	-	_	-	-
BARLUM	MG/I	_	~	-	-	-
BICARBUNATE	MG/L	-	-	-	-	-
BORON	MG/I	0.7	0.7	0./	0.4	0.44
CADMEUM	MG/L	-		-	-	-
CALCIUM	MGZL	4/4.	4/4.	475.	460.	449.
CHIEOR LDF	MG/L	76.	76.	. /6.	140.	46.
CHROMJUM	MG/L.	0.02	6.03	0.03	< 0.01	0.02
COBALT CONDUCTANCE	MGZL.	-	-	-	4800.	4090.
COPPER	UMHOZCM MGZL	2650.	2650_	2650.	4800.	4070.
FLUORIDE	MGZL	0.7	0.7	0.7	0.8	0./6
GRUSS ALPHA	PCIZL	_	_	_	450. 90.	690. 60.
GRUSS BETA	PCI/L	-	-	-	14/. 44.	340. 20.
LRON	MG/L	0.04	0.03	0.04	60.0J	0.24
LFAD	MGZL	-	-	-	-	-
MAGNESTUM	MG/L	150.	151.	150.	140.	126.
MANGANE SE	MGZI	0.41	0_42	0.42	0.27	0.28
MERCURY	MGZE		-		-	-
MOLYBDENUM	MG/1	< 0.1	(0.1	< 0.1	< 0.01	0_10
NICKFL	MGZE. MGZI	142.	142.	142.	50.	97.5
NURITE	MGZL	142.	142.	172.		-
DRG. LAKBON	MG/E	-	-	-	8.	74.4
18-210	PCI/L	_	-	-	_	-
PH	SU	6.86	6.86	6. 86	6.90	6.85
PHOSPHATE	MG/L	-	-		-	-
PO-240	PCT/L	-	-	-	-	
POTASSIUM	MG/F	12.5	12.5	12.5	2.7	40.4
RA- 226	FC171	-	-	-	0.3 0.2	0. 0.1
RA-228	PCIZL	-	-	-	2.8 1.0	0.3 0.7
SELENIUM	MGZI	0.049	0.049	0.019	0.040	0.319
SHCON SHLICA	NGZL MGZŁ	-	_	_	-	-
SILVER	M671	_			_	-
SUDIUM	MGZL	768.	167.	768.	U90.	806.
SERONTLUM	MG/L	-		r 1 r 1 r 1 r 1 r 1 r 1 r 1 r 1 r 1 r 1		
SULLATE	M671	2950.	2950.	2950.	3400.	2900 .
SULFIDE	MGZL		-			
TEMPE KATURE	G - DEGREE	14.0	14.0	14.0	16.0	14-/
FH 530	PCEZL	-		-		

4

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: ON-SITE

-

		702-03 03/13/87	702-04 03/13/87	IN JD - SAMPEE 1D AND E 702-05 03/13/87	06 DATE02-04 40/06/87	/02-04 04/12/88
PARAME TE R	UNIT OF MEASURE	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTATIVITY	PARAMETER VALUE +/-UNCERTAINTY	PARAMEIFR VALUE +/-UNCERTAINTY	PARAMETER Vol UE +/-UNCERTAINTY
TIN TOTAL SOLLOS	MG/L MG/L		1860.	4960.	5280.	4820.
URANTUM	MG/L MG/L	2.0/	2.15	2.23	0.79 (0.01	1.09 0.0/
ZINL	MG/L	-	-	-	0.009	0.006

.

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: UN-SITE

		/04-01 0//11/12				- 5AMPEE 1 04-01 09/0		LUG DATE 704-04 03/43/87	704-01 01/	12/88
UNET D PARAMFTER MHASURE	UNET OF MEASURE	PARAMETER VALUE+/ -UNCERTAINT	PARAMETER Y VALUE+7-UNCERT		VAI	PARAM TE UF+Z-UNCERT		PARAME LER VALUL +/-UNCF KTAINTY	PARAME I VALUE +/- UNCE H	
AI KAI JNITY	MG/L CACO3	400.00	368.			390.		376.	350.	
ALUHENUM	MG/L	< 0.10				0.3		0.2	0.37	
AMMUNJUM	MGZL	-	41.		<	38. 0.003		36.	32.3	
ANTEMUNY	MGZL MGZL	< 0.01	< 0.01		č	0.003		_	(0.01	
ARSENIC BALANCE	2	· · · · · ·	-0.21		•	-0.09			-	
BARIUM	ÑG/L		-		<	0.1		-	_	
BICARBONATE	MGZL	488.00	-		•			-	-	
BURUN	MGZL	_	_			0.4		0.5	0.55	
CADMEUM	MGZL	_	-		<	0.004				
CALCTUM	MGZL.	450.00	483.			534.		433.	419.	
CHI OR EDE	MG/L	300.00	258.			480.		225.	220.	
CHROMIUM	MG71	400 x				0.02		0.02	0.02	
COBALT	MGZL	-	-			0.06		-	-	
CONDUCTANCE COPPLR	UMHU/CM MG/L	8160.00	2850.			6100- 0-04		4050.	6780.	
FLUORIDE	MG/L	2.00	1.1			4.2		1.1	1.09	
GROȘS ALPHA	PC17L	-	200.	110.		-		_	190.	60.
GROSS BETA	PCI/L	-	180.	60.				-	150.	30.
1RON	MG/L	(0.05	0.09			0.03		0.05	0.2	
I FAD	MG/L	-	-		<	0.01		-	-	
MAGNESTUM	MG/L	280.00	231.			247.		220.	205.	
MANGANE SE	M67L	-	0.98			0.48		0.52	0.34	
MFREURY	MGZL	-	 45 4 - 5		<	0.0002			-	
MULYBDENUM	MGZL	< 0.05	0.25			0.14		< 0.1	0.17	
NECKEL	MGZL		-			0.05				
NITRALE	MG/I	4.00	20.		<	350. 0.1		167.	57.	
NTIRITE ORG. CARBON	MGZL MGZL	-	104.		`	70.		_	112.	
PB-210	PCIZL	-	1.	0.9		1.5	1.7		114.	
210	50	7.90	7.16	v.,		/.11		7.45	7.0	
PHOSPHATE	MGZL	-	-		<	0.1		-		
P0-240	PCIZI	-	0.4	0.6	•	0.0	0.6	-	-	
POTASSLUM	MG/1	16.00	48.7			20.0		32.0	1.3.8	
RA-226	PU171	(2.00				0.0	0.2		0.	0.1
RA 228	PCIZL		-			0.0	1.1		0.1	0.7
SELENIUM SELEON	MG/L MG/L	0.012	(0.005			0.092		(u.007	0_223	
SILICA	MGZI		-			10.		.	-	
SITVER	MGZL				<	0.01				
SODIUM	MG/1	4550.00	1290.			2040.		1840.	1690.	
SERONTLUM	MGZL	-				6.6				
SUR FAIE SUR FAIE	MG/L MG/L	4500.00	4200.			5290.		5150 . 	4840 -	
TEMPERATURE TH-230	C - DEGREF PCIZL	24.00	15. 0.	0.2		22. 1.1	0.7	14.5	13_/	

•

FURMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: ON-SITE

, , ,

		704-01 0//11/132	/04-01 06/05/86	N 1D - SAMPLE 10 AND 704-04 09707786	LUG DATE 704-01 03/13/87	704-01 01/12/88
PARAMETER	UNCE OF MEASURE	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+7-UNCERTAINTY	PARÀMETER VALUE+Z-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE +/-UNLE KTAINTY
TIN TUTAL SOLIDS	MG/L MG/L	7420.00	8580.	< 0.005 8490.	8090.	7810.
URANIUM VANAD LUM	MGZL MGZL	0.70	0.487	0.288 0.74	0.254	0.411 0.07
ZINC	MG/L	-		0.025		0.012

FORMATION OF CUMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: ON-SITE

		705-01 07/15/82	/05-04	09/46/82	705-04 06/06/	/86 /)ATE /05-04 07/07/86	705-04	02/24/87
UNIT OF PARAMETER MEASURE		PARAMI IER VALUE+/-UNCERTAINTY	PA -/+VAL UE	RAME FER	PARAMETER VALUE+7-UNCERTAJ		PARAMETER	PA	RAMETER UNCERTAINT
ALKALINITY	MG/L CACUS	250.00	244.	00	294.		298. 0.4	346.	
AL UM ENUN	MG/L	0.21	٢٥.		-			8.	
AMMONIUM	MG/L MG/L	-			27.	<	41. 0.003	0.	0
ARSENIL	MG/L	(0.01	٢ ٥.	01	< 0.01	ċ	0.01	-	
BALANCE	X	-			-0.09	•	-0.04		
BARJUM	MG/L	_	0.	014		<	0.1		
BICARBONATE	MGZL	305.00	298.	00	-		-		
BURUN	M674.	-			-		0.6	0.	35
CADMIUM	MGZL.	-	< 0.	01	-	<	0.001	-	
CALCIUM	MOZL	450.00	490.		456.		483.	413.	
CHIORIDE	MG/L	400.00	324.		321.		140.	369.	
CHROMIUM COBALT	MGZL MGZL	-	(0.		-		0.02 0.08	0	04
CONDUCTANCE	UMHOZCM MGZE	15400.00	8960. V.	00 024	4900.		6200. 0.04	4700.	
FLUORIDE	MG/L	1.00		00	0.8		0.8	0.	63
GRUSS ALPHA	PCLZE	<u></u>	-				-	-	
GRUSS BETA	PCI/L	-	-		-		-		
1 RON	MG/L	< 0.05	< 0.	05	0.07		0.06	0.	05
LEAD	MGZL	-		01	-	<	0.01	-	
MAGNESTUM	MG/L	280.00	.066		268.		316.	345.	
MANGANE SE	HG/L	-			0.02	,	0.03	0.	
MERCURY	MG/L MG/L			002		<	0.0002 0.16		
MOLYBDENUM NTCKEL	MG/L MG/L	(0.05	· · ·	05	0.24		0.10	< <u>0.</u>	1
NJIRAIE	MG/L	1.00		00	5.		22.	8.	9
NIRITE	MG/L	-		~~~	5.	<	0.1	-	-
ORG. CARBON	MG/L	-	-		-	•	-	-	
PB 210	PCI/L	-	-		-			-	
РН	SU	7.20	7.	13	7.46		7.31	7.	34
PHOSPHATE	MG/L	-	-		-	<	0-1		
£0 240	PCJZL	-							
POTASSIUM	MG/L	16.00	18.		19.4		20.4	1/.	
RA 226	PC1/L	(2.00		00			-	-	
88-228 SELENTUM	PCIZE			00 014		<	0.005	0.	A A
SILCON	MG/L MG/L	0.023	6.	70	< 0.005 	``	-	<u> </u>	** 1
S/I 10A	MGZL	-					7.		
	MG/L.	-	(0.		-	(0.01	2450.	
SODEUM	MG71 MG71	1680.00	1840.		2100.		2090.	2450.	
STRONTION SULFAIL	MGZL MGZI	5410.00			5930.		6420.	6590.	
SULLIDE	MGZL	04.00	5021.		0700.			u ///•	
TEMPERATURE	C - DEGREE PCL/I	18.00	19.		45.		18.	14.	

FORMATION OF COMPLEITON: ALLUVIOM HYDRAULIC FLOW RELATIONSHIP: ON-SITE

1 110

		/05-01 07/15/82	705-01 07/16/82	IN 1D - SAMPLE ID AND 705-01 06/06/86	LUG DATE 705-0 1 09/07/86	705-01 02/24/8/
PARAME TER	UNIL OF MEASURE	PARAMFIER VALUE+/-UNCERIAINTY	PARAME IFR VALUE+/-UNCERIAINTY	PARAMETER VALUE +/-UNCERTAINTY	PANAME TER VALUE+/-UNCERTAINTY	PARAME IER VALUE+/-UNLERTAINTY
TIN TOTAL SULIDS	MG/L MG/L	H340.00	н 180.00		<pre>< 0.005</pre>	10400.
URANTUM VANADTUM	MG/L MG/L	0.09	0.418 < 0.05	0.0419	0.0485 0.21	0.05/8
ZINC	MG/L	-		-	0.027	-

٠

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: ON-SITE

•		7	05-01 10/	06/87	705-01 01/	- 10CA11 (12788		0 – Sampi F 705-04 - 0773			DATE 308-04 10			808-02 10	/23/87
PARAMETER	UNEL OF MEASURE	VAL	PARAME T LIE +/-UNLER		PARAME I VALUE'+7-UNCEF		VA	PARAME II UF +7UNCER		VAI	PARAME UE+/-UNCE		VA	PARAME LUE+7 -UNCE	
ALKALJNITY ALUMINUM AMMONJUM	MG/L CACOJ MG/L NG/L	<	302. 0.1 42.		335. 0.37 36.4			26/. 0.19 35.		<	270. 0.1 19.1		<	2/0. 0.1 18./	
ANT (MONY ARSENIC BALANCE	1167L 1167L 2	(0.01		0.02			0.018		۲	0_01		۲	0.01	
BARJUM BICARBONATE	MG71 MG71 MG71		- - 0.4		-		<	0.01			- 0.4			 0_4	
BURUN CADMEUM CALCTUM	MG/L MG/L MG/L		420.		425.			0.0/2 366.			530.			520.	
CHLORIDE CHROMJUM COBALT	MG/L MG/L MG/L	۲	.360. 0.01		370.			.320 . 0.13		۲	101.		<	100. 0.01	
CONDUCTANCE COPPER	UMHOZCM MGZL		9800.		· 9070.			6500. 0.01			4500.			4500.	
FLUORIDE GROSS ALPHA GROSS BETA	MGZL PCIZL PCIZL		0.8 115. 76.	68. 57.	0.66 57. 93.	44. 33.		0.7 0. 26.	73. 40.		0.6 980. 340.	170. 56.		0.7 950. 450.	130. 88.
LRON LFAD MAGNESLUM	MG7L MG7L MG7L	<	0.03 _ J10.		0.22 		۲	0.09 0.01 248.		<	0.03 _ 165.		<	0.03 	
MANGANE SE MERCURY MOLYBOENUM	MG/L MG/L MG/L	۲	0.01		0.03		<	0.02 0.0002 0.09		<	0.51 0.01		<	0.45 - 0.01	
NICKEL NJ TRA H	MGZL MGZL		11.5		3.5			1.9		`	- 137.		•	143.	
NTRTIE DRG. CARBUN PB-240	MG/L MG/L PCL/L		5.		97 .3			/4_6			- 12			13.	·
РН РНОЅРНАТЕ Р(1-240	50 MG/L PCI/L		7.2		7.15			1.26			6.B 			6.B 	
POTASSLUM RA-226	MGZL PCIZL		16.3 0.5	0.3	17.7 0.1	0.1		19.7 0.0	0.1		10.5	0.1 0.9		10.5 0.2 0.2	0.1 1.0
RA-228 5FI EN RUM S11 CON	PCIZE MGZE MGZE	<	1.7 0.005	0.9	0 - 1 0 - 167	0.8		0.5 0.137	0.7		0.4 0.32	U . 7		0_31	1.V
STUTCA STUVER SODTUM	MG71 MG71 MG71		2300.		2540.			- 0.02 1920.						- /00.	
STRONTIUM SULFATE SULFIDE	MG71 MG71 MG71		5600.		6/190		~	5950. 0.1			3000.			3000.	
TEMPERATURE TH: 230	C - DEGREE CUEZE		16.5		15 <u>+</u> 0 -		`	16.0			1/.0			1/_0	

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: UN-SITE

.

		/05-01 10/06/87	705-04 04/12/08	UN 10 - SAMPLE 10 AND 705-04 07724788	LUG DATE	808 02 40723787
PARAME TER	UNLI OF	PARAMETER	PARAME IF R	PARAME FER	PARAMETER	PARAMETER
	MEASURF	VALUE+/-UNCERTAINT	Y VALUE +7-UNCERTAINTY	VALUE+7-UNCERTAINTY	VALUE +/-UNCFRTAINTY	VALUE +/-UNLERTAINTY
TIN TOTAL SOLIDS	MG/L MG/L	10400.	40800.	y230.	4980.	4960.
URANJUM	MG/L	0.081	0.0617	0.0524	4.34	1.64
VANADIUM	MG/L	(0.01	0.07	0.07	< 0.04	(0.01
ZINC	MG/L	(0.005	0.00/	(0.005	0.036	0.042

•

•

-

FURMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: ON SITE

		C0-H08	40/23/87		0 8-04 10			d – Samplif 808-05 - 10		LUG DATE BOB-04 04/		808-02 01/	11/88
PARAMETER	UNIT OF MEASURE		AMELER INCERTAINTY	VAL	PARAM UE+Z-UNCE		VA	PARAME UF+7-UNCE		PARAMET VALUE +/ -UNCER		PARAME I VALUE +7-UNLER	
ALKALINITY ALUMINUM AMMUNJUM ANTIMUNY	MG/L CACO3 MG/L MG/L MG/L	270. (0.1 18.7		<	270. 0.1 18.4		<	270. 0.1 18.4		226. 0.38 19.1		226. 0.39 18_6	
AR5ENJC HALANCE	MG/L X	< 0.0	1	<	0.01		<	0.01		0.01		< 0.01	
BARIUM BICARBUNATE BORON CADMIUM	NG/L NG/L MG/L MG/L	- - 0_4)		- 0.3			 0 - 4		0.47		_ 0_45	
CALCIUM CHLOREDE CHROMIUM CUBALT	MG/L MG/L MG/L MG/L	540. 99. (0.0)1	۲	460. 98. 0.01		۲	490. 107. 0.01		460. 83. 0.01		452. 78. 0.01	
CONDUCTANCE COPPER	UMHO/CM MG/L	4500.			4500.			4500.		4020.		4020.	
FLUORIDE GRUSS ALPHA GROSS BETA LRUN	MG/L PC1/L PC1/L MG/L	0.7 700. 450. (0.0	115. 75.	۲	0.7 1020. 410. 0.03	160. 180.	(0.8 840. 370. 0.03	110. 59.	0.72 950. 480. 0.2	60. 20.	0.73 900. 500. 0.2	60. 20.
LFAD MAGNESLUM MANGANESE MERCURY	MG/L MG/L MG/L MG/L	157. 0.4			156. 0.45			150. 0.44		133. 0.56		130. 0.55	
MOLYBDENUM NICKFL NJIRATE NTIRITE	MG/L MG/L MG/L MG/L	< 0.0 - 129	1	(0.01		<	0.01		0.10 70.		0 <u>.</u> 11 64 <u>.</u>	
ORG. CARBON PB-240 PH	MGZL PC1ZL SU	12 <u>.</u> 6.0	ł		12. 6.ย			8 <u>.</u> 6.8		76 <u>.</u> _ 7.0		7/_2	
PHOSPHATE PO-240 POTASSIUM RA-226	MG/L PCI/L MG/L PC1/L	- 			- 10.5 0.0	0.2			0.1	- 10.5 0.	0.1	- 10.5 0.	0.1
RA-228 SELENIUM SALLON	PUIZE MGZE MGZE	0.0	0.9		7.5 0.30	1.6		010 010 0135	0.9	0.4 0.502	0.8	0.4 0.428	0.8
SALTCA SALVER SODTUM	MG71 H871 MG71	- 690 .			- - 670.			- 660.		- 702.		- 1931-	
STRONTFUM SHEFATE SUEFTDF	MG71 MG71 MG71	3000.		:	3000.			3000.		2550		2560.	
TEMPERATURE TH: 230	C – DEGREF PCLZI	42.0	,		17.0			17.0		14.1		14 - 1	

٠

•

•

FORMATION OF COMPLETION: ALLOYIOM HYDRAULIC FLOW KELATIONSHIP: UN-SITE

		B08-03 40/23/87	608-04 10723/87	IN 10 - SAMPLE 10 AND 808-05 40/23/87	1 0G DATE	808-02 01/11/88
PARAMETER	UNLT OF	PARAME FER	PARAMETER	PARAMETER	PARAMETER	PARAMI TER
	MEASURE	VALUE +/-UNCERTAINTY	VALUE+/-UNCERTAINTY	VALUL +/-UNLERTAINTY	VALUH +/-UNLERTAINTY	VALUE+/-UNCLRIAINTY
TIN TUTAL SULIDS	MG/L MG/L	4970.	4990.	4960.	4610.	4640.
UKANJUM	MGZL	1.23	1.67	1.67	1.67	1.80
VANAD LUM	MGZL	(0.01	< 0.01	(0.01	0.06	0.06
Z INL	MGZL	0.029	0.028	0.035	0.016	0.014

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: UN-SITE

		808-03 01/	11/88	B08-04 01/	- 1 0CA1 1 11788	() N JD — SAMPLE 808-05 -01		LOG DAIE	
PARAME LER	UNIT OF MEASURE	PARAME I VALUE+/-UNCER		PARGHET VALUE+Z-UNCER		PARAHI VALUE+7-UNCEI		PARAMETER VALUF+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINT
ALKAL JNITY	MG/L CACO3	276.		276.		226.			
ALUMINUM	MG/L	0.4		0.4		0.4			
AMMONJUM	MGZL	18.6		18.6		18.6			
ANTIMONY	MGZL	-		-		-			
ARSENIC	MG/L	0.01		(0.01		< 0.01 			
BALANCE	X MC (1			-		-			
BARTUM	MG/L	-				-			
BICARBUNATE	MG/L					0.45			
BORON	MGZŁ	0.43		0.42		V.40			
CADITUM	MGZL	41.0							
CALCIUM	MGZL.	458.		455.		456. 78.			
CHEORTDE CHROMJUM	MG/L	78. 0.04		78. 0.01		0.01			
	MGZL.			V.01		V.V1			
COBAL T CONDUC FANCE	NG/L UMHD/CM	4020.		4020.		4020.			
COPPER	MG/L								
FEUORIDE	MGZL	0.72		0.7		0.7			
GROSS ALPHA	PCI/L	920.	60.	940.	60.	1200.	100.		
GRUSS BETA	PCIZE	490.	20.	490.	20.	530.	20.		
LRON	MG/L	0.2	L.V.	0.19		0.2			
LEAD	MGZL	-		-		-			
MAGNESTUM	MG/L	132.		131.		132.			
MANUANE SE	MG/L	0.54		0.53		0.54			
MERCURY	MG/L	_		-		-			
MUL YEDENUM	MG/L	0.45		0.11		0.10			
NTEKEL	MGZL	-		-		-			
NITRATE	MG/L	68.		63.		67.			
NITRITE	MGZE	-		-		-		•	
ORG. CARBON	M67L	76.6		76.5		75 .5			
PH-240	PCLZL	-		-		-			
PH	50	7.0		7.0		7.0			
PHOSPHATE	MGZL			-		-			
PO-240	PCIZL			-		-			
POTASSIUM	MG/L	10.6		10.2		10.3			
RA226	PUTA	0.	0.1	0.2	0_1	0.	0.1		
RA-228	PCEZL	0.	0.7	0.	0./	0.	0.8		
SFLENEUM	MGZL	0.441		0.760		0.725			
STECON	MOZE	-		-		-			
SILICA	MGZL	-		-		-			
SILVER	MGZE					-			
SODIUM	MGZL	702.		699.		691.			
STRONTFUM	MGZI	-				-			
SULFAIL	MGZE	2570.		2560.		2570.			
SULFIDE	MGZE					-			
TEMPERATURE	E - DI GREE	14.1		14.1		14.1			
TH- 2'30	PCIZE	-		-					

FORMATION OF COMPLETION: ALLUYIUM HYDRAULIC FLOW RELATIONSHIP: UN-SITE

		808-03 01/11/88		N 10 - SAMPLE 10 AND 808-05 01/11/88	LOG DATE
PARAMETER	UNIT OF MEASURE	PARAMETER VALUEF/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINIY	PARAMETER VALUE+/-UNLERTAINTY	
TIN	MG/L.	-	_		
TOTAL SOLEDS	MG/L	4640.	4620.	4640.	
URANIUM	MGZE	1.72	4.80	1.69	
VANAD EUM	MG/L	0.07	0.06	0.06	
ZINC	MG/L	0.014	0.012	0.014	

```
MAPPER DATA FILE NAME: GRN01+UDPGW0102183
```

.

.

•

.

-

FORMATION OF COMPLETION: ALUVIUM HYDRAULIC FLOW RELATIONSHIP: CROSS GRADIENT

			-	708-01 09/15/82		LUCATI /08-01 11/23/82		D - SAMPLE ID AND 708-04 - 99707786	LUG D 7	ATE		708-01 01/	11/88
PA	PARAME TER	UNIT OF MEASURE	Vŕ	PARAMETER NLUE+/-UNCERTAINTY	Ví	PARAME IER NEUE+/-UNCERTAINTY	VA	PARAMFIER I UE+/-UNCERIAINTY	VAL	PARAMETER UF+/-UNCERTAINTY	VA	PARAMET LUE+/-UNGER	
	AI KALINITY	MG/L CACO3		272.00		264.00		283.		263.	-	206.	
	ALUMANUM	MG/L		0.01		0.037		0.2	<	0.1		0.35	
	AMMONJUM	MG/L		-		-	Ş	0.4 0.003		8.2	<	0_1	
	ANTEMONY	MG/L	,				$\tilde{\boldsymbol{\epsilon}}$	0.04		-		0.04	
	ARSENIC	MG/1. X	<	0.01		0.007	(0.01		-		0.01	
	BALANCE BARTUM	A MG/1.		0.021			<	0.1		_		_	
	BICARBUNATE	MG/L		332.00		318.00	``	-		-		-	
	BORON	MG/L		-		-		0.5		0.23		0.36	
	CADMIUN	MG/L	<	0.01		-	(0.001		-		-	
	LALCIIM	MG/L	•	440.00		349.00	•	512.		303.		405.	
	CHLURIDE	MG/L		343.00		572.00		150.		358.		320.	
	CHROMIUM	HG/L	(0.04		_		0.03		0.04		0.01	
,	CUBALT	MG/L	•	_		-		0.09		-		-	
	CONDUCTANCE	UMH0/CM		10400.00		96/0.00		6750.		4650.		6700.	
	COPPER	MG/L		0.033				0.03		-			
>	FEUORIDE	MG/L	(1.00	(1.00		0.7		0.50		0.5	
	GROSS ALPHA	PCI/L				-		-		-		31.	37.
	GROSS BETA	PCI/L								-		17.	27.
	LRON	MG/L	(0.05				0.06		0.05		0.2	
	LEAD	MG/L	(0.01		-	<	0.01					
	MAGNESTOM	MG/L		352.00		319.00		320.		313.		190.	
	MANGANESE	MG/L		-		-		0.03		0.03		0.02	
	MERCURY	MG/L	(0.002		—	<	0.0002		-			
	MOLYBDENUM	MG/L	(0.05	<	0.05		0.11	<	0.1		0.13	
	NICKEL	MG/L		-				0.06		-			
	NTIRAIE	MGZE		2.00	(5.00	,	9.		1.6		1.3	
	NITRIE	MGZL		-		-	<	0.1		-		55.9	
	URG. CARBON	MGZL						7.28		7.61		7.1	
	PH PHOSPHATE	SU MG/L		6.97		6.97	,			-		· · · ·	
	POTASSIUM	MG/L		21.00		18.00	<	0.1 22.1		16.6		12.9	
	RA-226	PC1/1	<	2.00	<	2.00				-		0.1	0.1
	RA-228	PCL/L	ì	2.00	•	-				-		0.0	0.8
	SELENTIM	MGZL	`	0.013		0.014	(0.005		0.40		0.284	•••
	SILCON	MG/L		6.70		-	•	-		-			
	SILICA	MGZL		-		_		7.		-			
	SILVER	MG/L	<	0-01			<	0.01		<u></u>			
	SUDTUM	MGZE	•	2225.00		2100.00	•	4980.		2320.		1760.	
	STRONTLOM	14671		-				0.8					
	SULFAIF	MGZE		5409.00		5684.00		6480.		6280.		4800.	
	TEMPERATURE	C - DEGREE		21.00		13.00		20.		10.0		8.2	
	1H-230	PCI/L	<	0 - 10		-		-				-	
	F1N	MGZL		-		-	<	0.005		-			
	TOTAL SOLIDS			8940.00		9490.00		9340.	1	0400.		7809.	
	URANTUM	MBZE		0.027		0.034		0.0080		0.00/7		0.0475	

FORMATION OF COMPLETION: ALLUVIUM HYDRAULIC FLOW RELATIONSHIP: CROSS GRADIENT

.

		708-01 09/15/82	708-01 11/23/82	N 10 - SAMPLE 10 AND 1 708-04 09/0//86	116 DATE	708 01 01/11/88
PARAMETER	UNIT OF MEASURE	PARAMETER VALUE+/-UNCERTAINIY	PARAMETER VALUE +/~UNCERTAINTY	PARAMETER VALUEEZ UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE +/-UNCERTAINTY
VANADIUM ZINC	MG/L MG/L	(0.05	< 0.05	0.27 0.074	-	0.06 0.016

•

LURMATION OF COMPLETION: SHALE

HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

			806-01 10/			H06-01 01Z			D - SAMPLE (806-01 077)			DATE א0/-01 10/		807-01 01/	07/88
PARAME I FR	UNIT OF MEASURE	VA	PARAMET LUF+/-UNI.ER		 VA	PARAME D L DE +7 - DMLER :		VA	PARAMETI I III +/-UNCER		 VA	PARAME I L UE+7 -UNCER		PARAMET VALUE+/-UNLER	
ALKALINTLY	MG/L LACO3		908.						986.			627.		643.	
ALUMINUM	MG/L	<	0.1		<	9.1		(0.01		(0.4		0.1	
AMMUNIUM	MG/L	•	0.2			0.1		(0.1			0.4		0.1	
ARSENTC	MG/L	<	0.04		(0.01			0.007		<	0.01		0.021	
BARIUM	MGZE		-						0.01			-		-	
HURON	MGZI		0.8			0.119			0.8			0.8		0.84	
CADMIUM	MGZE		-			-			0.026					-	
CALCIUM	MG/L		4.9			5.20			4.73			83.		437.	
CHE OR IDE	MG/L		488.			160.			200.			400.		400.	
CHROMIUM	MGZL.	(0.01			50.0		<	0.04		(0.01		0.02	
CONDUCTANCE	UMHOZCM	•	2750.			2870.			2800.			8000.		8680.	
COPPER	MG/L		_			-		<	0.01			-		-	
FLUURIDE	MG/L		1.8			1.95			3.5			1.9		1.24	
GRUSS ALPHA	PCT/L		0.0	23.		5.	13.		0.	19.		0.0	36.	31.	37.
GROSS BETA	PCI/L		4.5	48.		2.3	9.6		5.	44.		0.0	38.	49.	35.
IRON	MG/L	<	0.03			0.12		(0.01	•••	(0.03		0.14	
LEAD	MGZL	•	-			-		•	0.01		•			_	
MAGNESIUM	HGZL		1.54			1.54			4.37			45.		54.7	
MANGANESE	MGZI.	<	0.01			0.01		(0.01			0.04		0.05	
MERCURY	MGZL	•	-					ċ	0.0092					-	
MOL YBDENUM	MGZL	(0.01			0.02			0.02			0.07		0.11	
NEIRATE	MG/L	è	1.0		<	0.1			0.3			670.		975.	
ORG. LARBON	MG/L	•	4.		•	233.			482.			19.		476.	
PH	SU		7.9			8.0			8.07			7.65		7.4	
PUTASSTUM	MGZL		1.42			1-57			1.6			4.4		5.5	
KA-276	PCTZL		0.1	0.1		0.3	0.2		0.0	0.1		1.5	0.4	0.	0.1
RA-228	PCJ/L		0.3	0.9		0.	0.9		0.1	0.8		1.1	0.8	0.4	0.9
SELLNEUM	MGZL	(0.005			0.048			0.022			0.17		0.25	
STEVER	MGZI	•	-			-		<	0.01			-		-	
SODIUM	MOZE		850.			871.		•	1323.			7260.		2450.	
SULLATE	MG71.		570.			7/0.			6112			4000.		4160.	
SHELIDE	MGZL		-					<	0.1			-			
TEMPI RATURE	C - DEGREE		16.0			14.8			47.0			47.5		44.0	
101AL SOL 105			2200.			2500.			2290.			7550.		9540.	
URANIUM	MGZ	<	0.000		(0.0003		(0.0003			0.005		0.0053	
VANADLUM	M671.	è	0.01		i	0.01		Ċ	0.04		<	0.04		0.02	
ZIN	MGZI	i	0.005		•	0.049		ł	0.005		<	0.005		0.013	

FORMATION OF COMPLETION: SHALF HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

		H07-04 07/2	1/48	10CAT J 1944-04 10/23/87	0月ヨレー SAMPLE 3D お16-04 - 04/07		LOG DAIF	
PARAME LE R	UNIT OF MEASURE	PARAMETE VALUE+7-UNLERT		PARAMETER VALUE +/ UNCLRIAINTY	PARAMETER VALUE +7 -UNCERTA		PARAMETER VALUE+7-UNGERTAINTY	PARAMETER VALUE +/-UNCERTAINTY
ALKALINTTY	MG/L CACO3	616.	~ ~ ~ ~ ~ ~		485.			
ALUMINUM	MG/L	0.07		0.9	0_4			
AMMONTUM	MGZL	(0.1		1_4	(0.1			
ARSENTC	MGZL	0.013		(0.01	0.014			
BARTUM	MGZE	0.01		-	-			
BORON	MGZL	0.84		0.6	0.52			
CADMIUM	M67L	0.125		-				
CALCIUM	MGZŁ	475.		410.	436.			
CHLORIDE	MGZL	130.		465.	340.			
CHROMEUM	MGZL.	0.06		< 0.01	0.05			
CONDUCTANCE	UMH0/CM	40500.		3700.	5240.			
COPPER	MGZL.	(0.01		-	-			
FLUGRIDE	MGZL	1.3		0_8	0.52			
GROSS ALPHA	PCTZL	0.	67.	-		25.		
GROSS BETA	PCI/I	0.	38.		40.	27.		
IRON	MG/L	0.04		0.43	0.4			
LFAD	MGZL	0.07		-				
MAGNESTUM	MG/L	63.3		300.	542.			
MANGANESE	MGZL	0.0/		0.24	0.1			
MFRCURY	MBZL.	< 0.0002		-	_			
MOL YBDE NUM	MGZL	0.0/		0.02	0.05			
NLIRATE	MGZL	1280.		85.	93.			
URG. CARBON	MGZL	450.			01.7			
PH	50	7.45		7.6	1.2			
POTASSIUM	MGZI.	7.2		22.4	24.5			
RA-226	PCTZI	0.0	0.1		0.1	0.1		
RA-228	PCJ/I	0.8	0.7	-	(0.8		
SELENTUM	MGZL	0. 122	V n /	0.72	2.5	v		
STEVER	M67L	(0.01		· · · ·	-			
SODIUM	MGZL	3240.		790.	/07.			
SULFAIF	MGZ	6450.		3400.	3940.			
SULFIDE	11071 11671	(0.1						
TEMPTRATURE	C - DEGREE	47.5		15-0	49.3			
10TAL SOF LOS		1/-0		6220.	/300.			
URANJUM	MGZL	0.0054		(•.038	0.0074			
VANADLUM	MOZI	0.054		· · · · · · · · · · · · · · · · · · ·	0.00/4			
ZINC.	MGZI							
1 1 19()	nuzi	0.00/		Ŭ, 045	0,060			

٠

MOPPER DATA FILL NAME: GRN01x000600402194

FORMATION OF COMPLETION: SHALE HYDRAULIC FLOW RELATIONSHIP: ON-511F

		704-04 0//14/82		(IN 10 - SAMPLE 10 AND 704-02 06/06/86	LDG DATE	704-04 06/06/86
PARAMETER	UNIT OF MEASURE	PARAMETER VALUE +/- UNCERTAINTY	PARAMETER VALUE+7-UNCERTAINTY	PARAMFIER VALUE+7-UNCERIAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERIAINTY
ALKAL INITY	MG/L CACOO		442.	442.	447.	442.
AL UH INUM	MG/L	< 0.40	-	-	-	-
AMMUNTUM	MG/L		34.	30.	30.	30.
ANTIMONY	MG/L MG/L		< 0.01	< 0.01	< 0.01	< 0.01
AKSENIC	MG/L X	< 0.01	 0.01 - 1.40 	<pre></pre>	<pre></pre>	< 0.01 -0.02
BARIUM	MG/L	_			-	0.02
BICARBONAIF	MG/L	403.00				
BORON	MGZL				-	-
CADHIUM	MGZL	-	_	-	_	
CALCTUM	MGZI	390.00	511.	510.	510.	540.
CHEURIDE	MGZL	100.00	107.	110.	110.	110.
CHROMJUM	MG/t		-	-	-	-
COBALT	MG/L	-	-	-	-	-
CONDUCTANCE	UMHOZCM	7410.00	5000.	5000.	5000.	5000.
COPPER	MGZI.		-	-	-	-
FLUORIDE	MGZE	2.00	0.9	0.9	0.9	0.9
GROSS ALPHA	PCTZL		-	-	-	_
OROSS BETA	PCIZI			-	-	-
IRON	MG/L	< 0.05	0.08	0.08	0.08	0.08
LEAD	MGZI		_	-	-	
MAGNESTUM	MG/L	140.00	190.	190.	190.	190.
MANGANE SE	MG/L		2-2	2.3	2.3	2.3
MERCURY	MGZL.	-	11-1	-	-	
MOL YBDENUM	MG/L	< 0.05	0.2	0.1B	0.2	0.2
NICKEL	MGZL	-			-	
NITRATE	MGZI	28.00	4320.	1490.	1190.	1190.
NITRITE	MGZL	-		-	-	-
ORG. CARBON PB-240	MGZL PCIZI	-	-			-
г в-2 то РН	SU	7 00			7.67	7.67
PHOSPHATE	NGZL	7.00	7 - 67	7.67	-	/ . 8/
PD	PCJ/I	-	_			_
POTASSIUM	MGZI	11.00	11.5	13.3	13.3	43.3
RA-726	PC1ZI	< 7.00	0.3 0.2	-	-	
RA 228	PCTZI	-	0.6 0.9		-	_
SELENTUM	MGZI	0.36	0.01	0.01	0.01	0.01
SIL ICA	MGZI_	_		-	-	-
STEVER	MG/I			-	-	_
SODEUM	MGZL	4530.00	1100.	1170.	1170.	1170.
STRONTLUM	MGZE				-	-
SULLATE	14674	36.4000	3040.	3020.	3020.	3020.
SULEIPE	NG /1			-		-
H MELBATHEE	A DEGRET	48.00	17 .	17.	17.	47 .
111 230	PC1 1	-			-	
ITN	HG71	-		-	-	

FORMATION OF COMPLETION: SHALE HYDRAULIC FLOW KLIALIONSHIP: UN-SILE

		701-04 0//14/82	701 01 06/06/06	N ID - SAMPLE ID AND /01-02 06/06/86	UG DATE	701-04 06/04/86
PARAME IFR	UNIT OF	PARAMITER	PARAMITER	PARAMETER	PARAMETER	PARAMETER
	MEASURE	VALUE+/-UNCERTAINTY	VALUE +/-UNCERTAINTY	VALUE+7-UMLERIAINTY	VALUF+/-UNCERTAINTY	VALUE+/-UNCERIAINTY
TOTAL SOLIDS	MG/L	6010.00	7110.	7160.	7 100 .	7120.
URANIUM	MG/L	1.40		2.91	2 .99	2.98
VANAD1UM Z1NC	MG/L MG/L	< 0.05 _		-	-	

•

FURHALLON OF COMPLETION: SHALF HYDRAULIC FLOW RELATIONSHIP: ON-SITE

		704-05 06/06/06	701-01 09/0//86	0N 1D - SAMPLE 1D AND 791-91 03713787	701-01 10/06/8/	704-01 04/12/88
PARAMETER	UNTE OF MEASURF	PARAMETER VALUEE/-UNLERTAINTY	PARAMETER VALUE+Z UNCERTAINTY	PARAMETER VALUE+Z-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE +/-UNCERTAINTY
AL KALJNJTY	MG/L CACO3	442.	345.	40/.	398.	253.
AL UNITINUM	MGZL		0.3	0.2	< 0.4	0-4
AMMONTUM	MGZL	30.	30.	32.	47 .	47 - 7
ANTIMONY	MGZL		(0.903	-		-
ARSENIC	MG/L	< 0.01	(0.01	—	< 0.01	(0.01
BALANCE	z	-0.02	0.09		-	<u>.</u>
BARLUM	M67L		0.1	-	-	-
BLCARBUNATE	MG/1_	-		**	-	-
BORON	MG/L	-	0.6	0.6	0.6	0.69
CADHLUM	MG/L		< 0.001	-	-	-
CALCIUM	MG/L	540.	337.	366.	380.	407.
CHEORYOF	MGZL	140.	100.	H6_	ሃለ.	96.
CHROMJUM	MGZL.	-	0.05	. 0.03	< 0.01	0.02
COBALT	MG/L	-	0.09			-
CUNDUC FANCE	UMH0/CM	5000.	500.	4100.	6200.	5450.
COPPER	MGZL		0.03		-	-
FLUORIDE	MGZL	0.9	1.0	1.0	1.0	0.72
GROSS ALPHA	PCIZL		-		970. 120.	1100. 100.
DROSS BETA	PCI/I	-	-	-	270. 56.	620. 40.
TRON	MG/L	0.08	0.05	0.12	(0.03	0.25
LEAD	MGZL	_	(0.01			
MAGNESTUM	MG/L	190.	439.	160.	180.	476.
MANDANI SE	MGZL	2.0	423	1.60	1.65	4.84
MERCURY	MGZL	-	< 0.0002	-	-	-
MOLYBDENUM	MGZE	0.7	0.43	(0.4	0.01	0.14
NTLKFL	MGZL	0.7	0.06	· · · · ·	-	_
	MGZE	1190.	570.	2480.	1120.	4020.
NIIRAIF		1190.	۵۶۵۰ ۵۰	2400	-	1020-
NITRITE	MGZŁ.			-	A A	110.
DRG. CARBON	MGZL	-	96. 13. 2.	-	41_	110.
PB- 240	PCT/I		• •		4 05	6.88
PH	5U MC //	7.67	7.40	7. 18	6_85	0.00
PHOSPHATE	MGZL	-	< 0_1 4 (0.0	-	_	-
PO-240	PCJZI		1_4 0_8	-	- -	10.4
POTASSIUM	MHZE	13.3	12-2	40_8	9-6	
RA-226	PCIZI		0.8 0.3	-	0.8 0.3	0.1 0.1
RA 228	PC1/1	-	0.9 1.0	-	1.0 0.8	0.8 0.7
SELENJUM	MG/I	0.01	0. 12 1	0.150	037	0-546
STETCA	MGZL	-	it_	-	-	-
STIVIR	MGZI	***	< (_01			-
SODIUM	MGZE	1120	1400.	1900	1.390 -	1190.
STRONTIUM	MG71	-	2.11		-	-
SHEATE	HG71	30 °O.	うないれる	\$ 1 " · · · .	3400-	3000-
50LE ONE	MGZI			-	-	
IT NOT RATINE	C OF GPLE	17 .	17.0	16.	16-0	14-6
111 2/10	PCTZI		1	-	-	-
TIN	4671		< 0.005		-	-

FORMATION OF COMPLETION: SHALE HYDRAULIC FLOW RELATIONSHIP: ON-SITE

•

		704-05 06/06/86		N ID - SAMPLE ID AND 1 704-94 03/13/87	LUG DATE 701-01 10/06/H7	701-01 01/17/HH
PARAMETER	UNIT OF MEASURF	PARAMETER VALUE+Z-UNCERTAINTY	PARAME FER VALUE + Z-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/-UNCFR1AINTY	PARAMETER VALUE+/-UNGERIAINTY
TOTAL SOLIDS URANTUM VANADIUM ZINC	MG/L MG/L MG/L MG/L	7120. 3.05 _	6550. 1.86 0.48 0.047	7070. 1.59 -	6460. 1.71 (0.01 0.038	6130. 2.23 0.07 0.011

.

.

.

•

.

Table D.5.15 Chemical analyses of groundwater, Green River, Utah, tailings site (Continued)

FORMATION OF COMPLETION: SHALE HYDRAULIC FLOW RELATIONSHIP: ON-SITE

.

		701-01 05/11/88	1 DCATJ	NN 1D - SAMPLE 1D AND	LUG DATF	
PARAME TER	UNTE OF MEASURE	PARAMETER VALUE+Z-UNCERTAINTY	PARAMETER VALUE+Z-UNCERTATUTY	PARAME FER VALUE +/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINT
ALKALINITY	MGZI. CACOG	407.				
ALUMINUM	MG/L	0.23				
AMMONIUM	MG/L.	54.				
ANTEMONY	MG/L					
ARSENIC	MG/L	0.045				_
BALANCE	X	-				
BARJUM	MGZL	0.01				
BICORDONATE	MGZL	-				
BORON	MGZL	0.71				
CADHEUM	HG/L	0.003				
CALCIUM	MGZL.	520.				
CHLORIDE	MGZL	91.				
CHROMIUM	MGZL.	0.15				
COBALT	MG/L	0.03				
CONDUCTANCE	UMHO/CM	5410-				
COPPER	MG/L	0.02				
FLUORIDE	MG/L	0.77				
GROSS ALPHA	PC1/L	-				
GROSS BETA	PCI/L					
TRON	MG/L	0.16				
1.FAD	MG/L	0.02				
MAGNESTUM	MG/L	197.				
MANGANE SF	MG/L	2.48				
MERCURY	MGZL.	5.00.12				
MOLYBDENUM	MGZL.	0.09				
NTCKET	MG/L	0.01				
NJTRATE	MG7L.	4730.				
NITRUE	MG/L	-				
DRG. CARBON	MG/L	4000				
Pil-240	PCEZL					
PH	5U	6.68				
PHOSPHATE	MG/1	0.3				
PD-740	PCT/L					
PUTASSTUM	MGZE	20.5				
RA-226	PC171	-				
RA 278	PCLZI					
SELENJUM	MGZL	0.549				
STETCA	MG/I	18.0				
STEVER	MGZI					
SOD1FM	MGZI.	1 150 -				
STRONTTOM	MGZI MGZI	7.82				
SHELDE		*870.				
TEMPTRATURE	- MGZI - C DEGREC	< 0.1 16.5				
TH 200	PCIZI	10				
1 EN		-				
1.1.14	MGZL.					

Table D.5.15 Chemical analyses of groundwater, Green River, Utah, tailings site (Continued)

FORMATION OF CUMPLETION: SHALE HYDRAULIC FLOW RLLATIONSHIP: ON-SITE

		/01-01 05/11/88	 LUCATION	10 -	SAMPI F	ID AND	LOG DATI	
PARAMETER	UNET OF MEASURE	PARAME IF R VALUE +/-UMLFRIATNTY						
FUTAL SOLIOS URANJUM VANADIUM ZJNC	MG/L MG/L MG/L MG/L	6680. 2.У9 0.08 0.018						

MAPPER DATA FILE NAME: GRN01+UDPGWQ102190

FORMATION OF COMPLETION: SHALE

HYDRAULIC FLOW RELATIONSHIP: DOWN GRADIENT

			583-04 09/47				0 <mark>- Sampl</mark> F 593-04 407		LOG DATE 583-04 017			583-01 07/	21/88
PARAMETER	UNT FOF MEASURE	VA	PARAME FER I UE +7 -UNCER TA		PARAME FER VALUE +7 -UNCLETADITY	<u>رانا</u>	PARAME I LUF +Z-UNCER		PARAMET VALUE +/-UNCER		VA	PARAMET LUE+/-UNCER	
AI KALINTTY	MG/L CACU3		193.		670.		40(40. 0.4		1270. 0.2			1563.	
ALUHENUM	MG/L		0.3		< 0-1 0-4	•							
AMMUNIUM	MG/L MD/L	,	1.1		0_4		0.5		0.3			0.4	
ANTIMONY	HG/L	< ,	0.003			<	 		(0.01			0.015	
ARSENIC BALANCE	MG/L	<	0.01 0.11			(0.01		(0.01			0.015	
BARIUM	2 MG/L		0.7				_					0.01	•
BORON	MGZŁ		0.4		1-0		1.2		1.23			1-2	
	MGZL	<	0.001		-							0.048	
CADMIUM		(303.		· 777.		230.		210.			186.	
CHERRY	MG/L		740.		925.		8:0.		900.			1120.	
CHEORIOF CHROMIUM	MG/L MG/L		0.02		0.07	<	0.01		0.03			0.07	
COBALI	MG/L	<	0.05		0.07	``	-		v.v.J			-	
CONDUCTANCE	UMHOZCM	•	4500.		7000.		7000.		4270.			6750.	
COPPER	MGZL		0.03		/000		/ 000.		41700		(0.01	
FLUORIDE	MG/L		1.2		0.4		0.2		0.36		`	0.4	
GROSS ALPHA			-		014		0.8	61.	4.	27.		0.	54.
GROSS BETA	PCI/L		_				0.0	38.	0.	19.		45.	27.
IRON	MGZL	(0.03		0.03		0.16	50.	0.56			0.22	
I F AD	MGZL	>	0.04				V. 10		V.30 			0.02	
MAGNESTUM	MGZL	`	427.		196.		112.		87.7			76.2	
MANGANLSE	MGZL		0.07		0.09		0.02		0.07			0.06	
MERCURY	MGZL	(0.0002		-		-		-		(0.0002	
MOLYBDENHM	MOZE	•	0.10		< 0.1	(0.01		0.09		•	0.05	
NICKEI	MGZL		0.05			``	V•V1		-			~~~	
NUTRATE	MG/1_		14.		71.		40.		48.3			4.4	
NTIRLIE	MG/L	(0.1		-							-	
ORG. CARBON	MGZL.	•	420.		-		2.		279.			404.	
PH-240	PCIZE		0.0	1.4			<i>4.</i> •						
PH	50		н. 10	1.4	6-19		6.60		6.7			7.10	
PHOSPHATE	MGZL	<	0.10				-					~	
PO-240	PCT/L	`	0.0	0.6			-		-			-	
POTASSTUM	MGZI		40.3	V+0	10.7		6.6		6.68			6.8	
RA-226	PCTZ		0.7	0.3	10.7		1.1	0.3	0.7	0.2		1.0	0.3
RA-220	PCTZ		0.1	1.2	-		2.6	4.2	7.	1.		1.4	0.7
SELENTIM	MGZŁ		0.111	1.7	0.007		0.019	1.1	0.104	1.		0.062	
STIJCA	MGZI		3.				-					···	
SH_VER	MGZL	<	0.01		-		-				<	0.01	
SODIUM	MG71	•	12/0.		1520.		1690.		4870.		•	4840.	
STRONTION	MGZ1		6.5						107 V i				
SULFATE	MGZI		2630.		2580.		2:40.		2290.			1440.	
SEREEDE	MG24		£ 18 15 m				2 FEF8		<i></i>		<	0.1	
TEMPERATURE	C - DEGREE		17.5		14-		16.0		13.0		•	45.0	
	PC174		0.7	0.6	1.1.		10.0		1 s * # Nr **				
61 239													
(11-230 1 IN	MGZI	(0.002	·/ • O			-		-			•-	

Table D.5.15 Chemical analyses of groundwater, Green River, Utah, tailings site (Continued)

FORMATION OF COMPLETION: SHALF HYDRAULIC FLOW RELATIONSHIP: DOWN GRADIENT

				N ID - SAMPLE ID AND I		
		583-04 09/12/86	583-04 03/13/87	583-04 40/02/87	583-04 04/11/88	583-01 07/21/88
PARAMETER	UNTI OF MEASURE	PARAMETER VALUE+/-UNILERTAINTY	PARAMETER VALUETZ-UNCERTAINTY	PARAMELER VALUE+Z-UNCERTAINTY	PARAMETER VALUE+Z-UNCERIAINTY	PARAMETER VALUE+/-UNCERTATINTY
PARAMETER						
URANIUM	MG/L	0.0042	0.0109	0.014	0.0105	0.0036
VANADEUM	MG/L	0.23	-	< 0.01	0.03	0.03
ZINC	MG/t	0.054	-	0.005	0.013	0.007

FORMATION OF COMPLETION: SHALE

HYDRAULLC FLOW RELATIONSHIP: DOWN GRADIENT

			584-01 09/11/			581-01 03/13/8/			1 01 10/		, 	584-01 01/	· · · · · · · · · · · · · · · · · · ·		584-01 05/11/0	
PARAMETER	UNCT OF MEASURF	VA	PARAMI TER LUI +7-UNCERTAT	414	VA	PARAME (ER LUT+Z-UNCERTAINI	Y V	ĄI U	PARAME E +Z-UNCER		VAL	PARAMET .UE+/-UNCER		Vi	PARAMETER ALUF+/-UNCERTATN	
AI KALINITY	MGZL CACOS		2114.	~ ~ ~ ~		247.			252.			263.			264.	
ALUMENUM	MGZL		0.7			0.2	<		0.1			0.17			0.06	
MMONJUM	MG/L		1.0			0.9			0.7			0.5			0.7	
NEEMONY	MG/L	<	0.003			-						-			-	
RSENIL	MGZL	<	0.01				(0.01			0.01			0.008	
ALANCE	X		-0.38			-						-			-	
ARIUM	MG/L		0.2			- -									0.01	
DRON	HG/L		0.3			0.3			0.6			0.67			0.65	
ADMJUM	MG/L	<	0.001			-						-			0.003	
ALCIUM	MG/L		57.5			39.7			47.			39.4		46.7 130. 0.02		
HIORIDE	MG/L		530.			95.4			420.			110.				
HROMIUM	MG/L		0.07			0.02	<		9-01			0.02			0.02	
OBAL I	MGZL	<	0.05			-		:	-			-			0.01	
ONDUCTANCE	UMHOZCH		4800.			4/50.		4	620.			5100.			5100.	
OPPER	MGZI	<	0.02			_			-					<	0.01	
LUOR (DE	MG/L		1.9			1.9			1.9			1.76			1.73	
RUSS ALPHA	PC1/L		-			-			0.0	40.		15.	17.		-	
ROSS BETA	PCTZF		-			-			0.0	29.		6.	13.		-	
RON	MGZL.	<	0.03			0.11			0.08			0.72			0.06	
F AD	MGZE		0.03			-									0.03	
AGNESIUM	MG/L		15.2			12.8			14.7			12.4			17.4	
ANGANE SE	MG/1_		0.02			0.05			0.02			0.03			0.03	
FRCURY	MGZE	<	0.0002			-						-		<	0.0002	
INTABDE NOM	MGZI.		0.10		<	0.1	<		0.01		<	0.01			0.01	
ITCKFI	MGZL		0.04			-			-			-			0.02	
TRAF	MGZL		5.			0.4			5.8		<	0.1			1.0	
I IRJ IF	MGZL	<	0.1			-						-			-	
NG. CARDON	MGZL		62.			-			4.			30.			-	
8-240	PCIZL			1.3		-			-			-			-	
#1	5U		9.08			8.44			/.95			8.0			7.96	
HOSPHATE	MG/L	<	0.1			-			-						0.3	
0 210	PCIZE			0.5		-			-			-			-	
OTASSTUM	MGZE		4.78			2.60			2.7			2.91			3.27	
A 726	br i M			0.2		_			0.8	0.3		0.1	0.1		-	
A-728	PUTZI			1.0	•	-			2.8	1.2		0.2	0.7			
EEENIIM	MG / L.		0.093		Ċ	0.002	<		0.005			0.249			0.112	
11.104	MG (1		5.			-			-			-			9-2	
11 VER	MGZE	<	0.01			-									-	
OPTUM	MF6 (1		1080.			4640.		1	490.			4580.			1630.	
TRONTION	MGZI		.11												3.50	
10 FAT	H 15 (1		3460.			3450.		- 3	100.			2560.			3160.	
311 F 1 PT	11671								-			-		<	0.1	
EMPERATURE	C PEGPER		170			45.0			14.8			14.0			45.9	
11,200	PU 1 /1			0.4					-						-	
JN.	MGA	(6-662					-	-			-			-	
01AE - SOF 105	1967 E		4020.			5130.		5	040.			4930.			4930.	

FORMATION OF COMPLETION: SHALE HYDRAULIC FLOW RELATIONSHIP: DOWN GRADEENT

-

		581-04 09/11/86	584-01 03/1J/87	N JD - SAMPLE JD AND L 584-01 10/06/87	_08_DATE 584-01_01/12/88	584-01 05/11/88
PARAMETER	UNIT OF MEASURE	PARAMETER VALUE+Z-UNCERTAINTY	PARAMETER VALUE+Z-UMCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY
URANIUM VAMADEUM ZINC	MG/L MG/L MG/L	<pre>{ 0.0003 0.27 0.013</pre>	< 0.0003 -	0.003 (0.01 0.024	0.0009 0.02 0.007	0.0007 0.01 (0.005

•

FORMATION OF COMPLEIION: SHALE HYDRAULIC FLOW RELATIONSHIP: DOWN GRADIENT

PARAMETER PARAMETER <t< th=""><th></th><th></th><th></th><th>584-04 0774</th><th></th><th></th><th>585 04 097</th><th></th><th></th><th>) ~ 5AMPLE 1D AU 585-04 03/43/82</th><th></th><th>DATE 585-04 40/</th><th></th><th></th><th>5-01 01/</th><th>40788</th></t<>				584-04 0774			585 04 097) ~ 5AMPLE 1D AU 585-04 03/43/82		DATE 585-04 40/			5-01 01/	40788
ALUMINNIM MA/L 0.62 0.3 0.3 0.4 (0.4 ANHIMAINM M6/L (0.003) ANLIMANY M6/L (0.003) ANLIMANY M6/L (0.004) BALMANY M6/L 0.044 BALMANY M6/L 0.044 HORINN M6/L 0.044 HORINN M6/L 0.044 CAUNINN M6/L 0.044 CONDUCTANCE M6/L 0.02 0.037	PARAME FER		VA			VA			VNI		TY V			VAL.UE		
AMBRINITION MEQ.1 0.2 4.0 2.0 4.3 0.7 ANLIMENT MEQ.1 0.040 (0.003) -<						60++ -B										
ANTINUNY MF/L - (0.003 -														5		
ARS-INTC HGAL 0.040 (0.04 - (0.04 (0.04 RAR LUM MGAL 0.40 0.41 -						,						1.3				
NALANCE 2 - </td <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>Ś</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td>				-		Ś								,		
HARTINF HGA 0.4 - <th< td=""><td></td><td></td><td></td><td></td><td></td><td>(</td><td></td><td></td><td></td><td>-</td><td>(</td><td>0.01</td><td></td><td>•</td><td></td><td></td></th<>						(-	(0.01		•		
NUME NG/L 0.44 1.5 0.8 1.1 1.4 1.4 CADMILM MG/L 0.004 (0.001 - - - - CALCIUM MG/L 40.0 36.8 78.6 75.8 40. 36.8 CHU DIDB MG/L 0.02 0.07 0.03 (0.04) 0.07 CHRAIT MG/L 0.02 0.03 - - - - CDMAUTORNE MHAD/CH 4650. 4900. 6500. 7000. 5960. CDMAUTORNE MHAD/CH 4650. 4900. 6500. -			,							-		-			_	
CÂUMÎNIM HG/L 0.004 (0.004 -			(~ <u>-</u>					4 4	
CALCIUM Mi/L 44.3 79.6 25.8 40. 36.8 CHU DIDB HG/L 0.02 0.02 0.03 (0.01 0.07 CHU DIDB HG/L - (0.02 0.02 0.03 (0.04) 0.07 CHU AINCE UMH0/CM 4650. 4900. - <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.1</td> <td></td> <td></td> <td>1. 1</td> <td></td>						,						1.1			1. 1	
CHI DETDE HS/L 430- H27. 750. 740. CHH MILM HS/L 0.02 0.07 0.03 (0.04) 0.07 CDMDUCTANCE HHHD/CM 4650. 4900. 6500. 7000. 5960. CDMDUCTANCE HHHD/CM 4650. 4900. 6500. 7000. 5960. CDMDUCTANCE HHG/L 0.01 0.03 - 0.2 0.32 RUSS ALPHA PCL7L 1.7 0.6 0.03 0.32 0.32 RUSS BELA PCL7L 17. 17. - - 9.0 46. 16. RUN MG/L 0.01 -						(40			.J.Z. 0	
CHEMENTUM MS/L 0.02 0.07 0.03 (0.01 0.07 CIBRAT HK/L - (0.05) -														-		
CLIBALT MG/L - (0.05) -											1					
CDMDDC FANCE UHHID/CH 4650. 4900. 6500. 700. 5960. CUPPLR MG/L (0.04 0.03 -											``	0.01			0.07	
COPPLE MG/L (0.01 0.03 - - - - - - - - - - - 0.32 0.33						(7000		Ed	240	
FLUDRIDE MG/L 1.7 0.6 0.5 0.2 0.32 GRUSS ALPHA PCI/L 0.0 30. - - 0.0 56. 7. GRUSS ALPHA PCI/L 17. 17. - - 9.0 46. 16. IRUM MG/L 0.41 0.05 (0.03) (0.03) 0.35 IRUM MG/L 0.44 0.04 - - - - MADHAFSTUM MG/L 0.04 (0.01) - - - - MADHAFSTUM MG/L 0.0002 -										0200.		/000.		37	/ov.	
GRIDSS AFPHA PCI/L 0. 30. - - - - 0.0 56. 7. GRDSS BEIA PCI/L 17. 17. - - 9.0 46. 46. IRUN MG/L 0.41 0.055 (0.03) (0.03) (0.03) 10.355 IFAD MG/L 0.04 (0.041 -			<									~ 7				
BRDSS BETA PT/L 47. 47. - - - 9.0 46. 46. IRUN MG/L 0.41 0.05 (0.03) (0.03) 0.35 LFAD MG/L 0.01 (0.04) - - - - - MADUARESTUM MG/L 0.04 (0.03) 0.01 0.03 - <					~~								F /			20
IRUN HG/L 0.11 0.12 0.03 0.035 1FR0 MG/L 0.04 0.05 0.033 0.35 1FR0 MG/L 0.04 0.033 0.35 1FR0 MG/L 44.4 7.52 B.B H.45 MADHESTIM MG/L 0.04 0.01 0.04 0.031 MADHESTIM MG/L 0.04 0.01 0.04 0.01 0.03 MADHESTIM MG/L 0.04 0.01 0.04 0.01 0.03 MICRIDENIM MG/L 0.04 0.04 0.01 0.02 0.03 MICRIDENIM MG/L 0.04 0.04 - - - - MICRIDENIM MG/L 0.04 - - - - - - MICRIDENIM MG/L - 0.04 - <td></td> <td>38.</td>																38.
IFAD MG/L 0.04 (0.04 -					1/.								40.		-	28.
India India India India India India India India <thindia< th=""> <thindia< th=""> <thindia< th=""> <thindia< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>(</td><td></td><td><</td><td></td><td></td><td></td><td></td><td></td></thindia<></thindia<></thindia<></thindia<>									(<					
MANDANTSE MB/L 0.02 0.04 (0.01 0.04 0.03 MERUURY MG/L 0.04 0.092 - - - - MERUURY MG/L 0.04 0.092 - <						(
MFRLURY M6/L (0.0002 (0.0002 -																
Initiality Initiality <td>MANDANESE</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><</td> <td>0.01</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	MANDANESE								<	0.01						
NICRI MG/L - 0.04 - <th< td=""><td>MERLURY</td><td>MG71</td><td>(</td><td></td><td></td><td><</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	MERLURY	MG71	(<										
N1 IRATE HG/L 44. (4. 0.4 (4.0 (0.4 N1 IRATE HG/L - (0.4 - - - - - - - - 0.6 0.4 - <	MOLYHDENUM	MG/L		0_01					(0.1	(0.01				
NTRITE MG/L - (0.4 - <td< td=""><td>NICKEL</td><td>MGZL</td><td></td><td>-</td><td></td><td></td><td>0.04</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></td<>	NICKEL	MGZL		-			0.04					-				
DRS. CARBON MG/L 67.2 140. - 5. 36.2 PB-240 PCI/L - 0.6 4.3 - <td>NITRATE</td> <td>MG/L</td> <td></td> <td>44.</td> <td></td> <td>(</td> <td></td> <td></td> <td></td> <td>0.4</td> <td>(</td> <td>1.0</td> <td></td> <td><</td> <td></td> <td></td>	NITRATE	MG/L		44.		(0.4	(1.0		<		
PB-240 PCI/L 0.6 4.3 PH SU H.09 /.30 B.57 /.40 6.9 PHOSPHATE MG/L (0.4 PO-210 PCL/L 0.0 0.5 P0105510M MG/L 3.5 5.74 B.64 3.6 3.59 RA-226 PCL/L 0.7 0.8 0.6 4.0 4.8 4.5 0.9 SK1PNUM MG/L 0.7 0.8 0.6 4.0 0.3 0.2 0.3	NITRITE	MGZL		-		<				-						
Image: Definition of the second se	ORG. CARBON	MGZE.		67.2			140.			-		5.			36.2	
PHOSPHATE MG/L - (0.4 -	PB-240	PCJ/L		•			0.6	1.3		-		-				
P0-210 PC1/L - 0.0 0.5 - - - - P016551UM MG/L 3.5 5.74 B.64 3.6 3.59 RA-226 PC1/L 0.3 0.2 0.3 0.2 0.3 RA-226 PC1/L 0.7 0.8 0.6 1.0 - 0.3 0.2 0.3 RA-228 PC1/L 0.7 0.8 0.6 4.0 - 1.8 4.5 0.9 SF11 NTUM MG/L 0.099 0.039 (0.002 (0.005 0.455 SH1 ICA MG/L - 11. - - - - - SH1 VI R MG/L - 11. -	PH	SU		H_09			7.30			8.57		7.10			6.9	
P01A5510M M6/L 3.5 5.74 B.64 3.6 3.59 RA-226 PCI/L 0.3 0.7 0.6 0.3 - 0.3 0.2 0.3 RA-226 PCI/L 0.7 0.8 0.6 1.0 - 1.8 1.5 0.9 RA-228 PCJ/I 0.7 0.8 0.6 1.0 - 1.8 1.5 0.9 SETENTUM M6/L 0.089 0.039 (0.002 (0.005 0.455 SH ICA M6/L - - - - - SH ICA M6/L - - 11. - - - SH ICA M6/L - - 14. - - - - - SULTA M6/L - - 14.6 - - - - - - - - - - - - - - - - <t< td=""><td>PHOSPHATE</td><td>MG7L</td><td></td><td>-</td><td></td><td><</td><td>0.1</td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td>-</td><td></td></t<>	PHOSPHATE	MG7L		-		<	0.1			-		-			-	
RA-226 PCI/L 0.3 0.2 0.3 RA-228 PCI/L 0.7 0.8 0.6 0.3 - 0.3 0.2 0.3 RA-228 PCI/L 0.7 0.8 0.6 1.0 - 1.8 1.5 0.9 SH1 NUM MG/L 0.0099 0.0399 (0.0002 (0.0055) 0.455 SH ICA MG/L - 11 - - - - SH IVR MG/L - 14.8 -	PD-210	PCLZL		-			0.0	0.5		-		-				
RA-72B PCJ/I 0.7 0.8 0.6 1.0 - 1.8 1.5 0.9 SFLENTUM MG/I 0.089 0.039 (0.002 (0.005 0.455 SH ICA MG/I - 11 - - - - SH ICA MG/I (0.01 (0.01 - - - - SULVR MG/I (4460. 2240. 4940. 4900. 4920. - SULTON MG/I - 3.4 - - - - SULTON MG/I 1440. 2020. 2470. 2490. 2400. SULTON MG/I (0.11) - - - -	POTASSTUM	MGZŁ		3.5			5.74			8.61		3.6			3.59	
SELENTUM MG/L 0.009 0.039 (0.002 (0.005 0.455 STERNAL -	RA-226	PCIZL		0.3	9.2		0.6	0.3		-		0.3				0.1
STR (CA MG/L - 11. - - STL VLR MG/L (0.04) (0.04) - - SUD 10M MG/L 1460. 2240. 1940. 1920. SUD 10M MG/L - 3.4 - - SUD 10F MD/L 0.4 2320. 2470. 2490.	RA-228	PCJZI		0.7	0.8		0.6	1_0		-		4.8	1.5			0.9
G11 01 R MG/1 C 0.04 C 0.04 - - - S0D10M MG/1 4460. 2240. 4940. 4900. 1920. G1R0H170M MG/1 - 3.4 - - - S0D10M MG/1 3440. 2370. 2470. 2490. S0D110M MG/1 3440. 2370. 2470. 2490.	SELENTUM	MGZE		0.089			0.039		(0.002	(0.005			0.455	
STRACK HO/L Constraint HO/L	SHICA	MGZE		••••			11.									
GTRUHTTUM MG/L - 3.4 SUBFATI MG/L 3440 2370 2470 SUBFATI MG/L 0.4 - -	STEVER	MGZE	(0.01		<	0.01			-		-				
SULFAIL MG/L 3440. 2020. 2470. 2490. 2400. SULFIDE MG/L C 0.4 - - - -	SODIUM	MGZE		1460.			2240.			1940.		1900.		19	/20.	
SULFIDE H0/1 (0.4	STROMETUM	MG/L		-			1.4			-		-				
	SULFAT	MG/1		3440.			2370.			2470.		2490.		24	:00 -	
11 MPT RATURE C - DEGRED 45.0 47.5 45.0 46.0 44.3	SULETOF	椚671	<	0.1						•		-			-	
	TEMPERATHEF	C - DEGREE		45.0			47.5			45.0		16.0			14.3	
TH 230 PC121 0.4 0.5	TH 230	PC1/1					0.4	0.5				-			-	
				-		<	0.002							_		
TOTAL SOLING MG/T 4940. 5660. 5650. 5650. 5520. 5520.	1016E S0E1183	19671		4940.			5660.			5450.		5520.		50	50.	

FORMATION OF COMPLETION: SHALE HYDRAULIC LLOW RELATIONSHIP: DOWN GRADIENT

		584-01 0//16/88	585-01 09/12/86	N ID - SAMPLE ID AND (585-04 03/43/87	LUG DATE	585-04 01/40/HH
PARAMETER	UNIT OF MEASURF	PARAMETER VALUE+/-UNLERTAINTY	PARAMETER VALUE+/-UREFRTAINTY	PARAMETER VALUF+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/-UNLERTAINTY
URANJUM VANADIUM 7JNC	MGZL MGZL MGZL MGZL	(0.0003 (0.01 (0.005	 0.000(4 0.25 0.019 	< 0.0003 	<pre>{ 0.003 { 0.01 { 0.005</pre>	<pre></pre>

•

FORMATION OF COMPLETION: SHALE HYDRAULIC FLOW RELATIONSHIP: DOWN GRADIENT

			585-01 07/			585-07 07/			D - SAMPLE 585-03 0//			DATE			585-05 07/	48788
PARAMETER	UNTE OF MEASURF		PARAMET LUF+/-UNCER	FR		PARAMET LUE+Z-UNCER	 F R	, , ,.	PARAMET	FR		PARAME II	ER		PARAMET	ER
AI KALINITY	MG/L LACD3)	873.			873.			873.			873.		 •	873.	
ALUMENUM	MG/L		0.02		<	0_01			0.01		(0.01		<	0.01	
AMMONIUM	MG/L		1.2			1.2			1.2			1.2			1.2	
ANTIMUNY	MG/L		-			-			-							
ARSENIC	MG/L		0.008			0.011			0.011			0.011			0.007	
BALANCE	2		-						-						-	
BARIUM	MG/L		0.01			0.01			0.01			0.01			0.01	
BORON	MG/L		1.1			1_1			1.7			1.2			1.1	
CADMJUM	MG7L		0.003			0.004			0.005			0.004			0.005	
CALCIUM	MG/L		41.9			44.3			41.3			42.5			41.9	
CHLORIDE	MG/L		830.			820.			830.			830.		,	840.	
CHROMIUM	MG/L		0.02		<	0.01		<	0.01		(0.01		<	0.01	
CUBALT	MGZL		-			-			~			-			-	
CUNDUCTANCE	UMH0/CM		5000.			5000.			5000.			5000.			5000.	
COPPER	MG/L	<	0.01		<	0.01		<	0.01		<	0.01		<	0.01	
FLUORTDE	MG/L		0.4			0.4			0.4			0.4			0.4	
GROSS ALPHA	PETZL		0.	49.		0.	45.		0.	4FI.		8.	38.		0.	47.
GROSS BETA	PCI/L		27.	26.		4.	25.		14.	26.		11.	25.		12.	26.
IRON	MGZL		0.05			0.05			0.78			0.05			0.05	
I FAD	MG/L		0.01			0.01			0.07			0.05		<	0.01	
MAGNESIUM	MG/L		9.67			9.44			9.59			9.78			9.57	
MANGANE SE	MG/L		0.02			0.07			0.02			0.02			0.02	
MERCURY	MG/L	(0.0002		<	0,0002		<	0.0007		<	0.0002		<	0.0002	
MUL YBDE NUM	MG/L	(0.01			0.02			0.01		<	0.01			0.01	
NICKEL	MGZL		-												-	
NITRATE	MG/L		4.1			5.6			5.7			5.6			5.4	
NJTRI IE	MGZL					-			-			-			-	
ORG. CARBON	HG/L		732.			229.			240.			223.			228.	
PH-240	PCJZL		-													
PH	SU		7.22			1.22			1.72			1.22			1.22	
PHOSPHAIL	MGZL											-			-	
P0-240	PCIZL		-									-				
POTASSIUM	MG/L		4.2			4.3			4.3			4.1			4.1	
RA-276	PCT/L		0.4	0.7		0.3	0.2		0.3	0.7		0.4	0.2		0.3	0.2
RA-228	PCJ/L		0.1	0./		0.6	0.7		0.2	0.9		0.4	0.2		0.3	0.9
SELENTIM	MG/L		0.074			0.056			9.059			0.054			0.054	
SILICA	MGZI		-			~						-			-	
STLVER	MGZL.	(0.01		(0.01		(0.01		(0.04		<	0.01	
SUDIUM	MGZI	•	4980.		•	1940.		-	4950.			4930.			1920.	
STRONTTOM	MGZL		-						-			-			-	
SULFAIF	MGZL		2320.			2:110			2459.			2350.			2370.	
SULLEDE	MGZE		0.2			0.1			0.2			0.1			0.2	
TEMPERATURE	C - DE GRIF		16.5			16.5			46.5			16.5			16.5	
TH- 230	PCTZI														-	
1 111	MG 21								-						-	
			56.30			540			5640.			5580.			5620.	
TOTAL SOFTOS			5430. 			5640.			5640.			5580.			5620.	

.

FORMATION OF COMPLEIION: SHALE HYDRAULIC FLOW RELATIONSHIP: DOWN GRADIENT

.

		585	-01 07/14/118		5 -02	100A130 0//48/88			1.E 10 AND 1 07748788		IF	585	-05 0//18/88
PARAME FER	UNIT OF MEASURF	VALUE	PARAME TER HZ-UNCERTAINTY	VAL UF		AMF. FER NCFRTAINTY	VAL UI		METER	VAL UF	PARAMETER F+/-UNCERTAINTY	VALUF	PARAMETER +/-UNCERTAINTY
URANIUM	MG/L MG/L	< <	0.0003	<pre></pre>	0.0	003	< { {	0.00		<	0.0003	< <	0.0003
ZINC	MG/L	ć	0.005	(0.0	05		0.04	18	(0.005	<	0.005

.

.

٠

FORMATION OF COMPLETION: SHALE HYDRAULIC FLOW RELATIONSHIP: DOWN GRADIENT

			1809-01 10/	(23/BZ		809-01 01/0				10 AND 1 (26/87		E -01 01/			810-01 0//	46/88
PARAME FER	UNET OF MEASURE	VA	PARAME I LUF+Z-UNCER		VA	PARAME D M UF+Z -UNCER		VA	ракані. т 1 UF +7 -UNLE н	• •	VAL UF	PARAME I +/-UNCEF		VA	PARAME I LUF+/~UNCER	
ALKALINITY	MOZL CALO3		530.			485.			369.			23.			406.	
ALUMINUM	MGZL	<	0.4		(<	0.1		<	0.1			0.09	
AMMONIUM	MG/L		0_6			0.7			0.3			0.1		<	0.1	
ANTIMUNY	14671. 14671.	(0.01			0.014		<	0.01			0.01			0.012	
ARSENIC BALANCE	X	•	V.V1			0.014		`	V.V1 -						V.V12	
BARIUM	A MG/L		_						-			-			0.04	
BURON	MG/L		0.5			0.64			0.6			0.59			0.74	
CADMIUM	MGZL		V			V • U ·			-			_			0.003	
CALCIUM	MG/L		33.			27.7			7.7			17.1			27.9	
CHLORIDE	MGZL		92.			100.			550.		4	50.			150.	
CHROMIUM	MGZL	<	0.01	•	•	0.07		(0.01			0.07		<	0.01	
COBALT	MGZL	•	-			-		•	_			-		•	~	
CUNDUC FANCE	UMHOZCM		5500.			5240.		-	5200.		44	10.			5000.	
COPPER	MGZL		-						-						0.02	
FLUORIDE	MG/L		1.9			1.93			5.4			3.77			2.7	
GRUSS ALPHA	PCI/L		0.0	33.		0.8	1.4		0.0	28.		10.	48.		0.	25.
GROSS BETA	PCI/L		0.0	31.		0.	1.7		0.0	23.		17.	48.		0.	45.
IRON	MGZL	<	0.03			0.43		(0.03			0.32	••••		0.04	
I F.AD	MG/L	•	-			-		•	-			_			0.04	
MAGNESTUM	MG/L		16.			11.9			1.70			6.44			13.7	
MANGANESE	MG/L		0.01			0.09		<	0.04			0.24			0.08	
MFRCURY	MGZL		-			-						-		<	0.0002	
MULYBDENUM	MG71.	<	0.01			0.04		<	0.01			0.04			0.03	
NICKEI	MGZE		-									-			-	
NLTRATE	MGZL.	<	1.0		<	0.1			1.0		<	0.1			11.	
NITRITE	MGZL.					+			-			-				
ORG. CARBON	MG/L		з.			118.			з.			99.6			101.	
PR-240	PCJ/L		-			-			-						-	
PH	SU		8.2			0.1			8.3			8.05			8.72	
PHOSPHATE	MGZL					-			-			-			-	
PO-240	PCLZL		-												~	
POTASSIUM	MG/L		4.1			3.44			1.25			2.5			3 .8	
RA-226	PC1/L		0.6	0.2		0.2	0.2		0.1	0.7		0.7	0.7		0.4	0.2
RA-278	PC1/I		0.5	4.3		0.9	0.9		1.0	1_4		1.3	0.9		0.5	0.7
SELENEUM	MG/1_	<	0.005			0.124		<	0.005			0.083			0.071	
SILICA	MGZI		-			-									~~~~	
SHVER	MG/1								-					<	0.01	
SODIUM	NG/1		1670.			1800.			810.		12	80.			1420.	
STRONTTOM	MGZE					1. K. K. K.						-			-	
SHEATE	MG71		3140.			3270.			620.		21	40.		<	2790. 0.1	
SULFIDE	MGZL.		-						-					(
TEMPERATURE	C - PEGREE		15.0			14.1			16.0			44.3			21.0	
1H- 230	PC170		-						-			-				
TIN DATAL COLLOG	MG71 MG71					-			-		44	70.			4790.	
FOTAL SOLIDS	UDA I		5.340.			5400.			2740.		.19	/\/•			· 77 VV 6	

FORMATION OF COMPLETION: SHALF HYDRAULIC FLOW RELATIONSHIP: DOWN GRADIENT

		H09-04 40/2:1/87	809-01 01/0//88	N 10 - SAMPLE 10 AND 1 840-04 10/26/87	LOG DATE	840-04 07/16/88
PARAME TER	UNEE OF	PARAMETER	PARAMETER	PARAMETER	PARAMETER	PARAMETER
	MEASURE	VALUE+/-UNCERTAINTY	VALUE+Z-UNCERTAINTY	VALUE +/-UNCERTAINTY	VALUE+/-UNCERIAINTY	VALUF+/-UNCERTAINTY
URANIUM	MG71.	<pre></pre>	0.0014	0.005	0.004	0.0012
VANADIUM	MG71.		0.01	(0.04	(0.01	(0.01
ZINC	MG71.		0.09	(0.005	0.127	0.013

.

٠

MAPPER DATA FUE NAME: GRN04*UDPGWU402109

FURMATION OF COMPLETION: CONGLOMERATE HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

	UNTE OF										562-05 06/05/86
	MEASURF	VAL UF	PARAMETER +/-UNCERTAINTY	VAL	PARAMETER .UE FZ-UNCERTAINTY	 ۷۸	PARAMETER I UL +/-UNCERTAINEY	VAL	PARAMETER LUE+/-UNCERTAINTY	 VAI	PARAMETER LUE+/-UNCERTAINTY
	MGZE CACOO	6	00.	• ••••	600.	.	600.		600.		600.
	MG/L		0.7		0.2		0.2	_	0.2		0.2
	MG/L		0.1	(0.1	Ś	0.1	Ś	0.1	Ś	0-1
	HG/L	< .	0.003	(0.001	< (0.003	<	0.003	Ś	0.003
	MG/L	<	0.01	C	0.04 0.25	¢	0.01	(0.01 0.26	(0.01 0.23
	2		0.72		0.2		0.25 0.2		0.2		0.2
	MG/L		0_1 0_9		0.4		0.4		0.5		0.4
	MG/1.	,	0.001	,	0.001	(0.001	<	0.001	,	0.001
	MG/L MG/L	<u>ر</u>	69.	<	368.	•	148.	``	368.	•	368.
	MG/L		26.		177.		127.		127.		427.
	MG/L	1	0.04		0.04		0.04		0.04		0.04
	MG/L		0.13		0.1		0.1		0.1		0.1
	UMHOZCM	60	00.		4000.		6000		6000.		6000.
	MGZL		0.05		0.04		0.04		0.04		0.04
	MGZL		1.		0.9		0.9		0.9		0.9
	PC1/L		-				-		_		_
	PCI/L		-		-		-		-		-
	MG/I		0.06		0.08		0.08		0.08		0-08
	MGZL	<	0.01	(0.01	<	0.01	<	0.01	<	0-01
	MG/L	-	50.		141.		141.		141.		141.
	MG/L	-	0.34		0.39		0.39		0.39		0.39
MERCURY	MGZL.	<	0.0002	<	0.0002	<	0.0002	<	0.0002	<	0.0002
MOLYBDENHM	MGZL		0.18		0.11		0.11		0.11		0.11
NJCKFL	MG/L		0.09		0.09		0.09		0.09		0.09
NETRATE	MG/L		45.		66.		66.		65.		68.
NITRIIE	MGZL	(0.1	(0.1	<	0.1	<	0.1	<	0.1
ORG. CARBON	MG/L		-		-		-		-		-
PH	50		7.3		7.7		7.3		7.3	_	7.3
PHOSPHATE	MG/L	<	0.1	<	0.1	<	0.1	<	0_1	<	0.1
POTASSTUM	MOZE		8.41		0.04		0.83		8.83		8*83
	POFZE						-		-		-
	PC17I		-				-		-	,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	MGZL	(0.005	<	0.005	<	0.005	(0.005	(0.005
	HGZI MCZI	,	4.	,	4.	(4.	(4.0.01	(4. 0.01
	MGZE	<	0.01	<	0.01 4830.	(0.01	۲		`	1830.
	MGZL MGZI	1/	40. 40.B		11.2		11.2		1830 . 11.2		11.2
	MG/1	A 71	30.		4 440.		4460.		4460.		4460.
	MG/L	4.1			* 1/1···		~ 107.		** 0V.		
	C - PLOPEL		18.		10.		10.		48.		48.
	M671	(0.005	(0.005	Ś	0.005	<	0.005	<	0.005
101AL 501 105			20.	``	7690.	•	7989.	•	7920.	-	7930.
	MGZI		0.0201		0.0211		0.0254		0.0334		0.035
	MI-71		0.1		0.12		0.11		e. 1		0.12
	HGZL		0.015		0.016		0.047		0.016		0.016

.

•

FORMATION OF COMPLETION: CONGLOMERATE HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

			542-01 09/07/86	562-04 02/27/87		D - SAMPLE 562-04 107			NIF		562-04 05/42/88
PARAME TER	UNIT OF MEASURE	VA	PARAMETER LUC+/~UNGERTAINTY	PARAMETER VALUE +7 -UN/FRTAINT	Y VA	PARAMET 1 UL +Z -UNCER		UAL I	PARAME TI IL +7-UNCER		PARAMETER VALUE+/-UNLERTAINE
ALKAL INTTY	MG/L LACOJ		701.	745.		588.		6	635.		660.
ALUMENUM	MG/L		0.2	< 0.1	<	0.1			0.2		0.21
AMMONIUM	MG/L		0.3	< 0.1	<	0.1		<	0.1		0.2
ANTIMONY	MGZL	(0.003	-		-			-		-
ARSENIC	MGZL.	<	0.01	-	<	0.01		<	0.001		0.010
BALANCE	X		-0.16			-			-		
BARIUM	MG/L		0.2	 45							0.01
BORDN	MG/L		0.9	0.59		0.7			0.74		0.82
CADHIUM	MG7L	<	0.001	-		-					0.005
CALCIUM	MG/L		321.	298.		300.			270.		328.
CHLORIDE	HG/L		60.	1 18.		129.			120.		150.
CHROMIUM	MG/L	<	0.01	0.02	<	0.01			0.01		0.09
LOBAL I	MG/L		0.06			-					0.02
CUNDUCTANCE	UMHO/CM		5200.	4575.		7900.		e.	570 0 .		6240.
COPPER	MGZL.		0.03								0.01
FLUORIDE	MG/L		1.0	0.73		0.9	-		0.81		0.85
ROSS ALPHA	PCI/L		-			82.	74.		100.	40.	-
ROSS BETA	PCL/L			-		0.0	40.		39.	29.	
RON	MG/1.		0.37	0.08	(0.03			0.19		0.11
F AD	MOZL	<	0.01			-			-		0.02
1AGNESTUM	MGZL		144.	150		167.			123.		124.
IANGANESE	HGZL.		0.43	0.09		0.49			0.49		0.47
IFRCURY	MG/L	<	0.0007	· · ·							0.0014
101, YIBDE NUM	MGZL		0_1H	< 0_1		0.02			0.12		0.07
ATCKEI	MG/L		0.05	-		-			-		0.05
ALIRATE	MG71,		130.	133.		173.			62.		430.
VITRI IF	MG/L	<	0.1	-		-			-		
DRG. CARBON	HGZL.		-	-		25.			237.		-
PH	50		7.03	6.93		6.9			6.9		8-H8
PHOSPHATE	料671.	<	0.1						-		6.J
POTASSIUM	MG/1.		8.48	5.40		7.2			6.25		7_39
19-558	PCLZL		-	-		1.3	0.3		0.2	0.2	-
14-228	PCIA			-		1.8	1.0		0.9	0.8	-
SELENTUM	1967 E.	(0.005	0.32		0.020			0.164		0.160
SIL)CA	MG/1		4.	***		-			-		9./
FTT VER	MGZL	<	0.01			-			-		
PODIAN	M671.		1900.	1910.		1750.			1470.		4870.
STRONTIUM	HG7L		0.8			-			-		11.83
SULFATE	MGZL		4480.	45.40.		4400.		:	3550.		4330.
SHEETDE"	MG71.		-	-							< 0.1
FEMPERATURE	C - DEGREE		40.5	16.5		16.5			15.9		16.5
I I N	M1474.	<	0,000			-			-		-
OTAL SOLIDS	MG71		7360.	7640.		/ 140.		7	7070.		7 190.
IRANTIM	19674		0.0.04	0.0462		0.146		-	0.0797		0.0402
JANAD LUM	N G 71		0_(11)		(0.01			0.04		0.05
7 LNC	10.71		0.020		•	0.072			0.007		0.006

FURMATION OF COMPLETION: CONGLOMERATE HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

			811-01 10/			811 01 01/1			D - SAMPLE) 844-04 07/2			DATE 843-04 40/			0//38
PARAMETER	UNTE DE MEASURE	VA	PARAME I LUE+7-UNCEP		VA	PARAME IF N UF +7 - UPICE RT		 ۷۸	PARAMETE LUE +Z-UNCER		VA	PARAMET I UL+Z-UNCER		PARAMET VALUE +/-UNCER	
ALKALINTIY ALUMINUM	MG/L CACU3 MG/L MG/L	<	4049. 0.4 0.3		- (9(37 - 0 - 1 0 - 1		((993. 0.04 0.1		<	670. 0.1 0.2		651. 0.2 (0.1	
AMMONJUM	MG/L		U .J		`	V. 1		`	-			V• <i>L</i>		· · · ·	•
ARSENJC	MGZL	(0.01		<	0.01			0.005			0.01		0.023	
BALANCE	Z	•	_		•	_			-			-		-	
BARIUM	MG/I		_						0.40					-	
BORUN	MG/L		0.7			0.81			0.8			0.8		0.7	
CADMTHM	MGZI		-						0.025			-		-	
CALCIUM	MG/L		4.1			4.17			4.60			210.		212.	
CHLORD DI	MG/1		459.			450.			470.			116.		4 10 .	
CHROMEUM	1467L	<	0.04			0.07		<	0.01		<	0.01		0.01	
CUBAL F CONDUCTANCE	MG7L UMH07CM		2700.			2460.			2775.			/000.		6540.	
COPPER	MG/L		-			-		(0.01			-		-	
FEUORIDE	MG/L		2.3			P. 19			2.5			1.0		0.96	
GROSS ALPHA	PCJ/L		27.	37.		4.3	9.7		36.	17.		44.	67.	150.	50.
GROSS DETA	PCTZE		39.	25.		3.5	6.7		21.	8.		34.	48.	57.	32.
1RON LLAD	MG/L MG/L	(0.03			0.3		(0.07 0.01		<	0.03		0 - 19	
MAGNESIUM	MGZL.		4.33			1.74			4.30			122 -		111.	
MANGANESE	HG/L		0.01			0.02			0.07			0.17		0.15	
MERCURY	MGZL		-			-		(0.0002						
MDLYBDENUM	MG/L	<	0.01			0.02			0.02			0.07		0.22	
NTCKEI	MGZI.								-					-	
NETRATE	MG/L	<	4_0		<	0.1			2.7			67.		12.	
NITRIF	MGZL					-						15.		227.	
ORG. CARBON PH	MBZE	<	1.			224.			⁷ 17.			6.90		6.9	
PHOSPHATE	99 19071		8.0			8.1			0_05			a.70 _		0.7	
POTASSTUM	NGZL		1.35			1.45			4.3			6.3		6.68	
RA-726	PCTZL		0.1	0.1		0.1	0.1		0.1	0.2		2.6	0.5	0.1	0.2
KA -228	PCIZI		2.1	1.1		0.	0.0		0.0	0.7		1.3	0.8	1.4	0.9
SELENIUM	MGZI	(0.005	•••		0.033			0.077			0.007		0.178	
STEICA	MGZ		-												
SHLVER	MG71					-		(0.01			-			
SODTIM	MGZE		740.			756.			A09.			4660.		4820.	
STRONTTOM	19371													-	
SULFATE	MG71		450.			532.			637.			3900.		4140.	
514 1 119	20371		-					<	0.1						
TEMPERATURI ETN	C – ÞEGREF NGZE		15.5			14.3			42.5			17.0		15_7	
TOTAL SOLUPS			2050.			2120.			2190.			6820.		6770.	
URANIUH	1913/1	< (0.003		<	0.0093			0.0003			0.070		0.0707	
VANADIUM	NGZI	<	0.04		<	0.01		<	0.01		<	0.01		0.03	
ZINI,	M971.		0.006			0.009		<	0.005			0.019		0.021	

FORMATION OF COMPLETION: CONGLUMERATE HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

		1113-01 05/10/88	LOCATI		LOG DAIF	
PARAMETER	UNTI OF MEASURF	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE / - UNEEPTAINTY	PARAMETER VALUE +/-UNCERTAINTY	PARAMETER VALUE+/-UNLERTAINTY	PARAMETER VALUE +/-UNCERIATHY
ALKALINITY	M671 CACH's	671.				
ALUHINUM	MG/L	0.19				
AMMONTUM	MGZI	< 0.1				
ANTEMONY	MGZL.	-				
ARSENIC	MGZI	0.016				
BAI ANCE	X	-				
BARJUM	MG/I.	0_01				
HURUN	HGZL -	0.83				
CADMIUM	MGZL	0.005				
CALCENM	MG/L	253.				
CHLORIDE	MG/1	430.				
CHROMEUM	MGZL	0.08				
COBAL T	MGZE	0.02				
CONDUCTANCE	UMH0/CM	4520.				
COPPER	MG/L	0.01				
FIUORIDE	M6/L	0.95				
GROSS ALPHA	PCJ/L	_				
GROSS BEIA	PCI/L	-				
JRON	MGZI	9.08				
		0.02				
	MG/L					
MAGNESTUM	MGZI	114.				
MANGANESE	MG/L	0.47				
MERLURY	MGZE	< 0.0007				
MOL YBDE NUM	MGZL.	0.13				
NJCKFL	MGZŁ	0.05				
NLIRATE	MG/1	56.				
NITRIF	MGZL	-				
ORG. CARBON	MGZE	-				
PH	SU	6.88				
PHOSPHATE	MGZI.	0.3				
POTASSJUM	MGZI	7.24				
RA-226	PCT/I	-				
RA-228	PC1/I					
SELENTUM	MGZL	0.134				
STLICA	MGZI	9.2				
STI VER	MGZI					
50010M	MGZI	1910.				
STRONTTOM	MGZI	9.55				
SHI I A H	MGZE	4200				
STATE LOF	MGZI	(0.1				
TEMPERATURE	C - DEGREE MGZL	12_5				
TOTAL SOLIDS		6920.				
URANIUM	MGZI	0.0390				
VANADLUM	MGZI	0.04				
ZINC	MGZE	0.07				
4 3 3777	11074	V • 17VO				

FORMATION OF COMPLETION: CONGLOMERATE HYDRAULIC FLOW RELATIONSHIP: ON-STIF

		 C	584-01 09/11	/86		1 DCATU 03743787) – <mark>Sampi</mark> f 191–01 107			A1F			581-01 05/11/88
PARAMETER	UNIT OF MEASURF	VAI	PARAMETER UF+/-UNCERTA			IMETER INCERTAINTY	VAI	PARAME 1 UL +7-UNCE F		VAL	PARAMI T UE+/-UNLI R		VA	PARAMETER LUF +/-UNLERTAINF
ALKAL JNT FY	MG/L CACOD		1021.		1017.			973.			961.			974.
ALUMTNUM	MGZL		0.3		0.7		<	0.1			0.09			0.04
AMMONIUM	MG/L		2.4		0.0	1		0.6			0.5			0.8
ANTIMONY	MB/L	< .	0.003		-*		,							-
ARSENIC	MG/L	<	0.01 -0.21				<	0_01			0.03			0.019
BALANCE	% MG/L		0.1					_			_		1	0.01
AARIUM BORON	MG/L		0.9		0.7	,		0.8			0.83		``	0.86
CADHIUM	MG/L	<	0.001					-						0.005
CALCIUM	MG/L	•	29.5		20.9	•		18.1			20.0			22.4
CHLORIDE	MGZL		100.		95.1			229.			130.			480.
CHROMLON	MG/L		0.04		0.0		<	0.04			0.02			0.04
COHAL T	MG/L	<	0.05			•		_			-		(0.01
CONDUCTANCE	UMHOZCM	•	5000.		4400.			5500.			4900.		•	4970.
COPPER	MG/L	<	0.02		-			-					(0.01
FINALDE	MG/L	•	1.3		1.2	2		4.2			4.43			1.12
DROSS ALPHA	PCI/L		-					0.0	32.		7.	21.		-
RUSS BETA	PC1/L		<i>.</i>		-			9.9	J4.		12.	46.		-
RON	MG/I		0.05		0.0	4	<	0.03			0.12		(0.01
.F AD	MGZL	<	0.01					-			-			0.09
1AGNES1.UM	MGZL		10.3		9.5	, 1		9.3			9.71			8.83
1ANGANE SE	MG/L		0.02		0.0	13	<	0.01			0.01			0.01
IFRLURY	MG/L	<	0.0002					-			-			0.0027
101_YBDF NUM	MG/L		0.09		(0.1	1	<	0.01		(0.01			0.02
ATCKET	M67L	<	0.04		-		_						Ç	0.01
NIRATE	MGZL.		1.2		0.4	,	<	1.0		<	0.1		<	0.1
VI IRITE	MGZL	<	0.1		• .			-			-			-
DRG. CARHON	MG/L		120.		-			5.			248.			
PB-240	PCIZL		0.5	1.3		_		-						
PH	SU		7.91		7.7			7.7			7.8			7.75
PHOSPHAIF	MGZL	<	0-1	0 F	-						-			0_6
20-240	PCI/L		0.0	0.5										2.1.4
POTASSIUM	MGZE		3.86		1.8			7.76	0.7		2.25 0.3	0.1		2.51
10-776	PCT/L		1.2	0.5	-			0.7						_
RA-228	PCT/I		0.2 0.124	1.4	() ₂ 0		(2.7 0.005	0.9		0.3 0.157	0.8		0.095
SELENIUM SELECA	MG/L MG/I		0.174 B.		().(Ωr	``	0.000			v. 13/			8.8
STEVER	MGZL	<	0.01					-						
50010M	MG/1	`	4689.		1540-			1420-			4640.			1680.
STRONTTUM	MGZI		2.5											2.60
SUFFATE	MGZI		2520		2380.			2000.			2570-			2460.
SULE TIDE	MGZI													45.1
LEMPL RATUPE	C - 0.600		47.		16.5			16.0			45.0			15.7
111 239	PCLZ		11.4	1.7							-			
TTN	MG/F	(0,005					-			-			-
TOTAL SOLUES.	MGZL.		4770.		57900.			4520.			4630.			4430.

Table D.5.15 Chemical analyses of groundwater, Green River, Utah, tailings site (Continued)

FORMATION OF COMPLETION: CONGLOMERATE HYDRAULIC FLOW RELATIONSHIP: ON-SITE

					LOCALT(10 - GI M	AMPLE TO AND	LOG DATE			
		581-01	09711786	581-0	4 03/13/87	584-0	4 40705787	584-	01 01/12/88	584-0	4 05/14/88
PARAMETER	UNIT OF MEASURE	• • • • •	AMETER NCERTAINTY	• •	ARAMETER UNGERTAINLY	•	ARAMETER - UNILER FAIN FY		PARAMETER Z-UNCERTAINTY		ARAMETER -UNCERTAINLY
URAN) UM	MGZL	(0.0	000	(0	.0000	< 0	.003		0.0010	(0	.0003
VANADEUM	MG/L	0.2	2		-	< 0	.01	<	0.01	(0	.01
ZINL	MG7L	0.0	10			C	.007		0.006	0	-017

MAPPER DATA FILE NAME: GRN04+U0PGW0402487

-

•

FORMATION OF COMPLETION: CONGLOMFRATE HYDRAULIC FLOW RELATIONSHIP: CROSS GRADIENT

			564-04 06/04/86		LUCALT 561-01 09/07/86		D - SAMPLE ID AND 564-04 02/27/87		DATE 561-01 10/			561-01 01/	40/88
PARAMETER	UNTI OF MEASURF				PARAMETER I UE +/- UNCEPTAINTY				PARAMET LIF+/-UNLER	 ER	en	PARAMETI LUE+/-UNLFR	FR
AI KALJNITY	MG/L CACO3		745.		707.		790.		606.			606.	
ALUMINUM	MG/1.		13.1		5.3		0.8	<	0.1			0./	
AMMON) UM	MG/L		1.7		0.8		0.6		0.2			0.7	
ANTEMONY	MG/L	(0.003	Ś	0.003		-						
ARSENIC	MG/L	<	0.01	(0_01 1_05		-		0.02			0.01	
BALANCE	7. Mar (1		-1.92		0.3		-		-			-	
BARJUM BORON	MG/L MG/L		0_4 0.4		0.9		0.76		0.7			0.71	
CADHIUM	MG/L	<	0.001	<	0.001		v. /0		V./			V./ I	
CALCIUM	MGZL	`	101.	``	19.6		4.94		4.1			4.40	
CHLORIDE	MGZL		190.		430.		198.		226.			210.	
CHROMIUM	MG/L		0.04		0.04	(0.01	(0.01			0.02	
COBALI	MGZL		0.09	(0.05	•	-	•	-			-	
CUNDUCTANCE	UMHOZCM		2200.	•	2200.		1925.		2340.			2330.	
LUPPER	MG/L		0.04	<	0.02		-		-			_	
FLUORIDE	MG/L		2.9	•	3.2		2.92		2.1			2.87	
GROSS ALPHA	PC1/L		-						0.0	13.		0.	11.
GRUSS BETA	PGIZE		_				_		2.9	12.		0.	11.
IRON	MGZL		9.54		2.43		0.16	(0.03			0.32	
I LAD	MI3/1_	<	0.01	<	0.01		_		-			-	
MAGNESTUM	MGZI.		12.2		3.04		4.32		0.90			1.03	
MANGANESE	MGZL		0.87		0.12		0.02	<	0.01		(0.01	
MEREURY	MG71.	<	0.0002	<	e-0007		-		-			-	
MOL YHDENUM	MGZL		0.11		0.15	<	0.1	<	0.01		<	0.01	
NICKFL	MGZL		0.08	<	0.04		-		-			-	
NETRATE	MG/L		0.1	<	1.	<	0.1	<	1.0		(0.1	
NITRITE	MGZL	<	0.1	<	0.1		-		-			-	
ORG. CARHON	MG/L				-		-		5.			136.	
PH	SU		8.16		8.20		8.44		8.45			8.5	
PHOSPHATE	MG/L		0.1	<	01		-		-			-	
P01A9510M	MGZI		5.93		2.40		1.60		0.92			1.41	
RA-226	PCEZI.		-						0.1	0.1		0.1	0.1
RA-728	PCIZL	_	-				-		2.2	0.9		0.3	0.8
SELENEUM	MG/1_	<	0.005	<	0.005		0.11	(0.005			0.051	
STELLA	MGZI		4.		4.		-		-				
SULVER	1167L	<	0.04	(0.01		_		-			-	
SODIUM	MGZI		554.		810.		723.		680.			666.	
STRONTIUM	HG/L MG/L		0.5		0.7				-			-	
SULFAIT TEMPERATURE	MGZE E - DECOFE		200.		4114.		670.		650.			648. 45.5	
	C - DEBREE		19.	,	19-5		17.9		1/_0			10.0	
TUTAL SOLIDS	MG71 MG71	<	0.005	<	0.005 1939.		2 120.		1170.			1900.	
URANTUM	MGZ1		0_0008	,				,	0.003		,	0.0003	
	MGZE		0.1	<	0.0003 0.49		0.0028	č	0.01		è	0.01	
ZINC	1671		0.047		0.10		_	`	0.005		•	0.013	
* 1147	11071		V-907		V. (7/0		-		V • VV()			V = V 1.V	

FORMATEON OF COMPLETEON: CONGLOMERATE HYDRAULIC FLOW RELATIONSHIP: DOWN GRADIENT

												DA1E				***
			815-01 10/	26/87		B15-01 01/	05/84	alo 140 -140 -140	815-01 0//	16/88		845-02 0//	16/88		845-03 077	16/98
PARAMI TER	UNIT OF MEASURE	VA	PARAME E L UE +/-UNCER		VA	PARAMET UE+Z-UNCER		VA	PARAMETI UL+Z-UNCEP		VA	PARAMETE I UE+/-UNEERT		VA	PARAMET UE+7-UNCER	
ALKAL TNITY	MG/L CACO3		427.			544.			432.			432.			432.	
ALUNTNUM	MG/L	<	0.4		(0.4		<	0.01		<	0.01		<	0.04	
AMMONTUM	MG/L		0.3			0.3		(0.1		(0.1		(0.1	
ARSENIC	MB/L	<	0.04			0.002			0.005			0.003			0.004	
BARTUM	MG/L		-						0.05			0.05			0.05	
BORON	MG/L		0.6			0.57			0.69			0.67			0.67	
CADHJUM	MGZE		-						0.002			0.003			0.003	
CALCIUM	HG/L		7.6			9.48			7.94			1.72			1.72	
CHLORIDE	MGZL		930.			950.			930.			1020.			1070.	
CHROMIUM	MG/L	<	0.01			0.03		(0.01		<	0.01		<	0.01	
LONDULTANLE	UMHOZCH	•	3850.			3/60.			3650.			3650.			3650.	
COPPER	MG/L		_					(0.01		(0.01		(0.01	
FLUORIDE	MGZL		3.2			3.21			3.3			3.3			3.3	
BROSS ALPHA	PCIZL		0.0	37.		4.	16.		0.	29.		9.	16.		0.	21.
GROSS BETA	PCI/L		0.0	28.		16.	47.		2.	49.		14.	9.		7.	11.
TRON	MG/L	<	9.03	• • • •		0.14		(0.04		(0.01	•••	(0.01	
LEAD	MGZL	•	-			_		•	0.02		ċ	0.01		•	0.01	
MAGNESTUM	MG/L		2.74			2.64			2.55		•	72.9			2.48	
MANGANI SE	MG/L	<	0.04		(0.01		(0.01		(0.01		(0.01	
MERCURY	MG/L	•	-		•	-		i	0.0002		Ċ	0.0002		Ċ	0.0002	
MOL YBDI NUM	MG/L		0.01			0.05			0.03			0.03			0.03	
NLTRAIE	MG/L		1.0		<	0.1			12.			11.			11.	
DRG. CARDON	HGZL		10.		•	443.			113.			440.			143.	
PH	50		8.45			8.20			8.27			8.27			8.27	
POTASSJUM	MGZI		1.43			1.55			1.5			1.5			1.7	
HA-726	PCTZL		0.3	0.2		0.1	0.7		0.1	0.2		0.1	0.2		0.1	0./
RA-228	PCI/I		0.0	1.2		0.	0.8		0.1	0.8		0.2	0.8		0.0	0./
SELENTUM	MG/L	<	0.005	•••		0.027	010		0.024			0.039			0.034	
STIVER	MGZL	•	-			~		(0.01		(0.01		(0.01	
SUDIUM	MGZL		960.			1070.		``	1050.		•	1050.		•	1040.	
501 + 41F	MGZL		480.			5/2.			529.			553.			548.	
SULFIDE	MGZL					.3// m		(0.4		(0.1		(0.1	
TEMPERATURE	C - DEGREE		45.5			14.4		•	16.0		•	16.0		•	16.0	
TOTAL SHELDS			2860.			2930.			2800.			2830.			2850.	
URANIUM	MG/1	1	0.003		1	0.003		(0.0003		(0.0003		(0.0003	
VANAD LUM	MG/1	2	0.01		ì	0.01		ì	0.01		ì	0.01		i	0.01	
ZINC	Mozi	`	0.012		`	6.009		ì	0.005		ì	0.005		i	0.005	
2 LIG	11074		V. (17			1." (i(i))		``	0.000		`	v • vva		`	V . VVO	

•

FORMATTON OF COMPLETION: CONGLOMERATE HYDRAULIC LLOW RELATIONSHIP: DUUN GRADIENT

			815-04 0//	16/HR		815-05 07/		ON TO - SAMPLE ID AND	LOG PATE	
PARAMETER	UNET OF MEASUPE	VA	PARAME II UF+/-UNCEPT		 VN	PARAMET FUE+Z UNCER		PARAMETER VALUE +/-UMERTAINTY	PARAME TER VAL UE +/-UNLERTAINTY	PARAME TER VALUE +/-UN(LERTA) NT
ALKALJNITY	MG/L CACD3		437.	· ••• ••• ••• ••• •••		417.				ر چې هند وې چې هي که خو اند خو بې چې پې مې
ALUMTNUM	MG/L	<	0.01		(0.01				
AMMUNTUM	MG/L	Č	0.1		(0.1				
ARSENIC	MG/L		0.004			0.003				
DARIUM	MG/L		0.05			0.05				
HORDN	MG/L		0.67			0.67				
CADMTUM	MGZI.		0.002			6.003				
COLUTUM	MG/L		7.70			7.71				
CHI URIDE	MGZL		960.			960				
CHROMTUM	MG/L	<	0.04		<	0.04				
CONDUCTANCE	UMHOZCM		3650.			3450.				
COPPER	MG/L	<	0.01		<	0.01				
FI UORIDE	MGZI		3.3			3.3				
GROSS ALPHA	PCT/L		0.	49.		0.	24.			
GROSS BETA	PCT/L		0.	10.		0.	12 -			
TRON	MG/1_	(0.01		<	0.01				
LEAD	MI371_	¢	0.01		Ċ	0.01				
MAGNESTUM	MG/L		2.46			2.46				
MONGONE SE	MGZL	(0.01		۲	0.04				
MERCURY	MG/L	ć	0.0002		ċ	0.0002				
MOLYBDE NUM	MG/L	-	0.03		-	0.03				
NITRATE	MGZI_		41.			12.				
ORG. CARDON	MG/L		444.			440.				
PH	SU		8.27			11.27				
POTASSIUM	NG/L		4.7			4.7				
110-776	PCI/L		0.1	0.7		0.1	0.1			
80-278	PCJ/L		0.3	0.7		0.7	0.7			
SELENLUM	MIJ/L		0.031			0.029				
STLVER	MGZĽ	<	0.01		(0.01				
SODIUM	MG/L	•	40.30.		•	40%0.				
511 + 615	MGZL		54R.			554.				
STRETDE	MIL	<	0.1		<	0.1				
TEMPLRAIMRE	C - DEGREE		46.0			16.0				
TOTAL SOLLOS			2820.			7840.				
HRANTHM	HG/I	(0.0003		(0.0003				
VANAD FUH	MAZE	•	0.01		•	0.02				
71NI.	MGZE	<	0.005			6.665				

MOPPER DATA FILE MAME: GRN9 1400-6000492188

FORMATION OF COMPLETION: SANDSTONE HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

		584	-01 04/11/86	ŗ.	5136-01 03Z	13787	! i	86-04 407	05/87	5	536-01 01/0)7788	!	587-01 09/11/86
PARAMETER	UNIT OF MEASURE	VALUF	PARAMETER +/-UNCERIAINTY	VAI	PARAMETE UF EZ-UNICERT		UNI	PARAMET UF+Z-UNCER		VAL	PARAME II .UE+/-UNCFR		VAI	PARAMETER _UE+/-UNCERIAINT'
ALKALINJIY	MG/L CACU3	7	20.	•	424.			569.			586.			842.
ALUHINUM	MG/L		0.5		0.1		<	0.1		<	0.1			0-8
AMMONJUM	MGZL		1.0		2.4			0.2			0.1			1.0
ANTEMONY	NGZL	<	0.003		-			-			-		(0.003
ARSENIC	MGZL.	(0.01		-			0.01			0.03		<	0.04
BALANCE	z		-2.79		~~						-			-2.08
BAKJUM	MG7L,	<	0.1		-								(0.1
BORÐN	MGZL		0.6		0.7			0.6			0.65			0.4
CADMITIM	MGZL.	(0.001		-						-		<	0.004
CALCIUM	MG/L		н.20		4.42			12.3			12.5			3.18
CHLORIDE	MG7Ł	4	140.		442 .			183.			480.			190.
CHROMIUM	MG/L		0.03		0.06		<	0.01			0.07			0.04
LOHALT	MG/L	<	0.05		-						-		(0.05
CONDUCTANCE	UMHOZCM	24	500.		2300.			2400.			2290.			3500.
LOPPER	MGZL	(0,02					-			-			0.03
FLUORIDE	MGZL		2.7		3.0			2.6			0.84			3.0
GROSS ALPHA	PC1/L		_		1.	11.		0.0	20.		2.5	8.7		
GROSS BETA	PCI/L		-		4.5	5.7		0.0	14.		9.	10.		
1RON	MGZL		0.07	<	0.04		<	0.03			0.34			0_04
LEAD	MG/L		0.01	•	-			-			-			0.01
MAGNESTUM	MG/L		3.48		2.20			4.5			3.45			0.011
MANGANESE	MG/L		0.03		0.02		<	0.01		<	0.01			0.03
MERCURY	MGZL	<	0.0007				•	_			-		<	0.0002
MOLYBOF NUM	MG/L	•	0.14	(0.1		<	0.01			0.02			0.09
NICKH	MG/1_	<	0.04	•	-		•	-			-		<	0.04
NEIRATE	MG/L	•	2.		0.4		<	1.0		(0.1		Č	1.
NITRIIF	MGZL	<	0.1		-		•	-			_		<	0.1
URG. CARBON	MO/L	`	-					٨.			447.		•	_
PH	50		9.97		40.54			8.1			8.05			11.44
PHOSPHATE	MG/1.	<	0.1		FV = 0 F						-		(0.1
POTASSTUM	MG/L	`	8.20		7.46			1.34			1.34			47.1
RA-726	PCTZL		-		0.1	0.2		0.1	0.1		0.	0.1		_
RN-228	PC1/L		_		V • I	V • 4.		1.2	0.0		0.3	0.8		_
ST LENEUM	MI371.		0.036	<	0.002		<	0.005	~ • • •		0.021	•••=		0.106
511 1 LA	MG/I			`	V • ' / V Z		•				_			13.
STEVER	MGZI.	<	10. 0.01		-						-		<	0.04
SOD LUM	MGZL	-			643.			640.			682.		•	730.
		ſ	5 80.		040.						-			0.1
STRONTTIM	MGZL		0.2					690.			702.			546.
SULFAIL SULFIDE	MGZE MGZE	ſ	547 . 		720			-			-			17.
TE MPERATURE	C - DEGREE		16.		16.5	n 1		12.0			16.0			•
18-230	PCTZL		-		0.0	0.4					-		<	0.005
TIN	H F571	<	0.005		-			-			4079.		1	4999.
TOTAL SOLIDS		49	770.		4920.			11.10.			0.0012		(0.0000
URANIUM	MGZL.		0.0049		0.00.16		Ś	0.003		,	0.012		`	0.72
VANADIUM	1967 L.		0.19				<	0.01		(V.V1			37 * K A.

FORMATION OF COMPLETION: SANDSTONE HYDRAUBIC FLOW RELATIONSHIP: UP GRADIENT

•

		586-01 09/11/86		마 J.D. — SAMPLE J.D. AND 1 5-06-04 - 40705787	LOG DATE	587-01 09/11/86
PARAME TER	UNIT OF MEASURE	PARAMETER VALUE+/-UNI.ERTAINTY	PARAMETER VALUE +/ UNLERTAINTY	PARAMLTER VALUE //- INCERTAINTY	PARAME LER VALUE +/-UNCERLAINTY	PARAMETER VALUF+/-UNCERIAINTY
ZINC	MG/L	0.015		0.007	0.017	< 0.005

•

•

.

FURMATION OF COMPLETION: SANDSTONE HYDRAULIC FLOW RELATIONSHIP: UP GRADIERI

		en	587-04 0374			592-01 40			D - SAMPLE 587-04 - 047			DATE 5лн-04 оу/41/86		588-01 03/	1.1/87
PARAMETER	UNIL OF MLASURE	VA	PARAMETE L UF + Z - UNCE R I		VA	PARAME I UF +7 UNCE		VA	PARAMETI I UL +/-UNICE R		VA	PARAMETER I UE +/-UNCER IAINTY	VA	PARAME I LUE +7-UNCER	
ALKALINITY	MG/L CACO3		546.			419.			593.			565.		614.	
VÎ NU ENDU	MG/L		1.1		(.				0.1			0.3		0.3	
AMMONIUM	MG/L		1.0			0.2			0.1		,	0.9		0.6	
ANT EMONY	MG/L		-			-			-		Ś	0.003		-	
ARSENIC	MG/L		-			0.01			0.006		(0.01 -2.87			
BALANCE	Z A		-						-		۲	0.1		-	
BARTUM	MGZL MGZL		0.9			0.8			0.78		`	0.6		0.6	
BORON	MG/L MG/L		0.7			v.o			-		(0.001		v.u	
	HG/L		7.28			3.1			6.78		``	9.96		5.49	
CALCIUM						90.			/6.			240.		349.	
CHLORIDE	867L 867L		79.1 0.03		<	7.1. 0.91			0.03			0.06		0.02	
LOBAL T	MG/L		0.03		`	V. 71			V•V3		(0.05		-	
CONDUCTANCE	UMHUZCM		3000.			2700.			2820.		•	2350.		2500.	
LOPPER	MG/L											0.03			
FLUORIDE	MGZL		5.5			5.1			5.3			3.2		3.4	
GROSS ALPHA	PCI/L		1.	13.		0.9	5.9		21.	12.				1.	13.
GROSS BLTA	PCL/L		13.	13.		0.0	16.		0.	10.		_		0.0	9.4
IRON	MGZL	<	0.03	• 7 •	<	0.01			0.19	1		0.14		0.04	
I EAD	MGZL	`	-		•	-			-		(0.01		-	
MAGNESTUM	MGZL		0.03			0.78			4.73			1.78		1.30	
MANGANESE	MGZL	<	0.01		<	0.01		(0.01			0.02		0.0.	
MERCURY	MGZL	•	_		•						<	0.0007		-	
MOLYBOENUM	MG/L	<	0.1			0.03			0.07			0.09	(0.1	
NICKEI	MG/L		-			+					(0.04		-	
NTIRATE	MG/L		0.8		<	1.0		(0.1			Э.	<	0.1	
NITRTIF	MGZL		-								<	0.1		-	
ORG. CARBON	MGZL		-			7.			130.			-		-	
PH	SU		11.61			9.35			9.0			8. ለካ		8.30	
PHOSPHATE	州671。		-			-			****		(0.1		-	
POTASSIUM	MGZI		4.09			4.7/			1.29			1.54		1.21	
RA-226	PCTZL		0.0	0. 2		0.1	0.1		0.1	0.1		-		0.2	0.7
KA-228	PCIZI		-			2.9	1.0		°.	0.8		-		-	
SELENLOM	MGZL	<	0.007		<	0.005			0.043			0.076	•	0.002	
511 JCA '	MGZL		-									8.			
SLI VER	MGZL					-					(0.01		-	
500.00	M671		803.			740.			864.			672 .		731.	
STRONTION	MG71.		-									0.4		-	
501+411	MGZE		1170.			950.			119,1.			645.		635.	
SULFADI	HGZL		-						-					-	
TEMPE PATHRE	C - DEGREE		15-0			46.0			16.1			19.		11.0	0.5
111- 239) 1 M			1.0	0.4							,	-		0.3	V.D
	MG/L		2400			1 10.0					<	0.005		2 170.	
TOTAL SUPERS TRANTOM			2480.			2200.			1130. 0.00002		,	0.0001			
VARADIUN	MGZI		0.0016		,	(+_66)()		,	0.0027		<	0.22		0.0010	
AURONALAN	HGZE		-		<	0.01		<	0.01			V • 4 4		_	

Table D.5.15 Chemical analyses of groundwater, Green River, Utah, tailings site (Continued)

FORMATION OF COMPLETION: SANDSTONE HYDRAULIC FLOW RELATIONSHIP: UP GRADIFIT

.

.

.

		587-04 03/43/87	587-01 10705787	N 10 SANPLE 10 AND 1 507-04 - 04/40/80	_OG_DATE	588-01 03/13/87
PARAMETER	UNIT OF PARAMETER MEASURE VALUE+Z-UNCERTAINTY		PARAME LER VALUE + ZDNCE RTAINTY	PARAMETER VALUE +/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY
7.1NC	MG/L		0.005	(0.005	0.010	ومن منه الله الله الله الله الله الله الله ال

.

•

.

٠

.

.

.

FORMATTON OF COMPLETION: SANOSTONE HYDRAUH IC FLOW RELATIONSHIP: UP GRADIENT

		 	588-01 10	/02/87		588-04 01/			0 – SAMPLE 538–04 – 077			DATE H1Z-01 10/			817-02 10	/ 27/87
PARAMETER	UNIT OF MFASURE	VAI	PARAME . UF +/-UNLE		٧٨	PARAMETE LINE+/ UNICERT		VA	PARAMET I UL +/-UNI.} R		VA	PARAMET LUF+/UNI.ER		VA	PARAME LUE +7 UNCE	
AI KAI INTTY	MG/L CACUS		555.			54%.			534.		,	655.		<	655.	
ALUMENUM	MG/L	<	0.1		(0-1			0.02		<	0.1		•	0.1	
AMMONIUM	MG/L		0.7		(0 - 1		(0.1			0.2			0.2	
ANTIMUNY	MG/L		-			-			-			~ ~ ~ ~			~ ~ ~ ~	
ARSENIC	MGZL		0.01			0_01			0.042		•	0.01		(0.01	
hat ance	X		-			-						-			_	
BARJUH	MG/L		~ 7						0.02 0.6			0.6			0.6	
BURON	MG/L		0.7			0.69						~			0.0	
CADMIUM	HGZL		<u> </u>						0_0%0 6_90			2.7			2.7	
CALCIUM	MG/L		4.2			1.43									310.	
CHLORIDE	MG/L	,	220.			240.			640. 0.02		,	320. 0.01		,	0.01	
CHROMALDM	MG/L	<	0.01			0.02			-		•	0.01		•	V.V1	
COBAL 1	MG/L								3100.			1950.			1950.	
CUNDUC LANCE	UMHO/CM		2390.			2460.						1700.			17 34 .	
COPPER	HGZL		~ /			2.67		<	0.01			5.6			5.4	
FI UUR IDE	MG/L		2.6				40			20			22.			20
GROSS ALPHA	PCI/L		0.0	? ?.		0.	12.		0.	20.		30.			0.0	20.
GROSS BEIA	PCI/L		0.0	20.		0.	У.		5.	43.	,	25.	47.	(0.0	15.
IRON	MGZL	<	0.03			0_1		<	0.01		<	0.03		(0_03	
I FAD	HG/L								0.04						0.73	
MAGNESTUM	MGZL		0.90		,	0.89		,	1.48			0.71			0.02	
MANGANE SE	MGZL	<	0.01		<	0.01		Ś	0.01			0.02			-	
MERCURY	M671	,	-			0.02		· · ·	0.0007			0.03			0.04	
MOLYBDENUM	MGZL	<	0.01			0.02		`	0.01			0.03			V.V4	
NICKEL	MGZL	,			,			ć	0.1		,	1.0		1	1.0	
NITRATE	HG/L No.4	<	1.0		<	0.1		•			•	1.0		``		
NITRI (F ORG. CARBUN	MGZL		4.			31.8			177.		,	1.		1	1.	
	MG/L								8.34		•	8.2		``	8.2	
РН РНОЅРНАТЕ	5U		8.15			8.25			0.34			0.2				
	MG/L											1.11			1.11	
POTASSTUM	HG/L DOT/L		0.92	~ 7		0.97	0.7		1.4 0.2	0.2		0.1	0.1		0.1	0.1
RA-226	PCIZ		0.4	0.2		0.3				0.8			0.9		3.0	1.3
RA 220	PC1/L		1.1	1.1		0.4	0.8		0.4	0.8	,	0.5	0.7	(0.005	1.4
SELENLOM	MG/1.		0.007			0.027			0.024		<	0.005		•	v.005 	
511 J.CA	MGZL		-			-		<	0.01						-	
SELVER	MG/L							``							550.	
SODIUM	MGZI		690.			687.			901.			550.				
STRONTEUM	MG/L		-									474			133.	
SULTAIL	MG/L		660.			674-			574. 5.6			134.			-	
	MOAL					4.4 5						47.0			17.0	
TEMPERATURE TH ≥ 30	C DEGREE PCIZL		16.0			14.2			16_5			1/ 10			-	
111	M671		-						~			-				
TOTAL SOLEDS			1880.			49.10			2330.			1500.			1490.	
URANTUM	MGZI	(0.003		<	6600.1		<	0.0003		<	0.003		<	0.000	
VAPADIEM	押らえた	<	0)1		<	9-01			0.01		<	0.01		(0.01	

FORMATION OF COMPLETION: SANDSTONE HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

		IOCAIJI	IN ID - SAMPLE ID AND I) LOG DATF					
	588-01 10/02/87	588-94 - 94740780	588-04 07724788	817-01 10/22/87	847-02 40/22/87				
UNET OF	PARAMETER	PARAME TER	PARAMETER	PARAMETER	PARAMELER				
PARAMETER MEASURE	VALUE+Z-UNLEPIATHTY	VALUE+Z-UPCERTAINTY	valuf+/-unicertainty	VALUE+Z-UNCERTAINTY	VALUE / - UNCERTAINTY				
		ant an int the second second of the second second second second second		*****************	and an an an an and the set of the				
ZINC MGZL	(0.005	0.092	< 0.005	< 0.005	(0 <u>.00</u> 5				

•

.

FORMATION OF COMPLETION: SANDSTONE HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

	UNIT OF MFASURE		117-03 10/	22/87		847-04 40/				10 AND 1 22/8/		DATE 11/-01 01/1			817-02 01/	10/88
PARAMETER		VAI	PARAME II LUF +/-UNLER		VA	PARAMI I INF 17 INSCEP		UN	PARAMET LUE 17-UNCER		VAI	PARAMETE _UF +/-UNGERT		 VAI	PARAMETE LUE+Z-UNCERT	
ALKALTHITY	MG/I CACO3		655.			655.			655.		-	688.			680.	
ALUMINUM	MG71.		0_1		<	0.1		<	0.1		<	0.1			0.2	
AMMONIUM	MG/L		0.2			0.2			0.2		(0.1		<	0.1	
ANTEMONY	MG/1.		-		-							-		•	-	
ARSENIC	MG/L	<	0.01		(0.01		<	0.01		•	0.01		< C	0.01	
BALANCE	Z No 4		-			-						-			_	
BARJUM	MG71					0.7			0.7			0.73			0.77	
BORDN	HG/L		0.6			0.7			V./			V•/ J			··//	
CADM3UM CALCLUM	MG/L MG/L		2.1			2.4			2.7			2.57			2.58	
CHEORIDE	MG/L		320.			320.			320.			340.			320.	
CHROMLUM	MG/L	<	0.91		<	0.01		(0.01			0.03			0.03	
COBALT	MG/L	`	-		•	~		•	-			v:v3			-	
CUNDUC FANCE	UMHO/CM		1950.			1950.			1950.			1960.			1960.	
COPPER	MG/L		-			-			-						-	
LUORLDE	MG/L		4.3			3.3			3.0			4.94			5.1	
GROSS ALPHA	PCI/L		0.0	20.		0.0	45.		0.0	47.		0.	6.6		5.	12.
GROSS BETA	PCI/L		0.0	15.		0.0	10.		22.	45.		0 .	4.9		7.7	8.
IRON	MG/L	<	0.03	.	1	0.03	14.	(0.03	1.74		0.15	787		0.15	
LEAD	MG/1.	•	-		•	V # V C		•				-			-	
MAGNESTUM	MG/L		0.73			0.73			0./3			0.61			0.61	
MANGANESE	MG/L		0.02			0.01			0.01		<	0.01		<	0.01	
MERCURY	MGZL		_						-		•	-				
HOL YBDE NUM	MG/L		0.04			0.04			0.04			0.06			0.07	
NICKEI	MGZE		-			-						-			-	
NITRAIE	MG/1,	<	1.0		<	4.0		<	1.0		<	0.1		<	0.1	
NITRITE	MG71		-						-			-			-	
ORG. CARBON	MAZE	<	1.		<	1.			2.			154.			454.	
PH	50		8.2			8.2			8.2			8.4			8.4	
PHOSPHATE	MG/L					-						-				
POTASSIUM	MGZI		1.09			1.0/			1.08			0.8/			0.84	
RA-776	PCIZL		0.1	0.1		0.0	0.1		0.0	0.1		0.1	0.2		0.1	0.2
RA -220	PCTZL		0.1	1.4		0.5	1.1		0.4	1.8		0.	0.8		0.	0.1
SELENTUM	MGZE	<	0.005		<	0.005		<	0.005			0.007			0.007	
5JI ICA	MG/1		-						-			-			-	
S ULVER	HGZE								-			-			-	
SODIUM	MG71		590.			570.			580 .			557.			554.	
STRONTIOM	HGZI		-						-			-			-	
SULLAR	N1571		140.			138.			132.			137.			437.	
SULFIDE	MGZE								-			-			. –	
11 MPERATURE	C - DEGREE		12.0			47.0			12.0			45.5			45.5	
111-230 TAN	POLZI.		-												-	
TIN COLLEG	Mu/1		-			4 4 3 4									-	
FOTAL SOLIDS			1490.			1170.			1400.			1500.			1500.	
UPANTHE DAMANTHE	HG71	,	0.000		Ś	0.003		Ś	0.003		Ś	0.0000		Ş	0.003	
VANADTUM	19671	(0.01		(+)_01		(0.01		<	0.01		<	0.01	

FORMATION OF COMPLETION: SANDSTONE HYDRAULIC FLOW RELATIONSHIP: OP GRADIENT

-

				18 TP - SAMPLE TO AND I	06 DA1F	
		847-03 40722787	81/ 04 - 10/22/87	817-05 10/22/87	B4/-01 01/10/8H	817-02 01/10/88
	UNIT OF	PARAMETER	PARAME FER	PARAME LER	PARAMETER	PARAMETER
PARAMETER	MEASURE	VALUE + Z - UNICE R TAINTY	VALUE 17- U.O. LIRTAINTY	VALUE+Z-UNCERTAINTY	VALUE +Z~UNCERTAINTY	VALUE + Z-UNCERTAINTY
ZINC	MGZE	(0.005	< 0_005	< 0.005	0.009	0.011

•

FORMATION OF COMPLETION: SANDSIONE HYDRAULIC FLOW RELATIONSHIP: UP GRADIERT

			817-03 01/1	10/88		847-01 01/1			D - SAMPLE I B17-05 017			DATE			814-01 10/	20/87
PARAMETER	UNTE OF MEASURE	VAL	PARAMETE . UE+Z-UNGEP I		VA	PARAME FF EUF+7_URCERT		VA	PARAMETE UII +/-UNCERT		VA	PARAME TE		VA	PARAMET UE+/-UNCER	
ALKAL INTTY	MG/L CACO3		688.			6HR.		~	688.			662.			541.	
AL UMENUM	HG/L	<	0.1		(0.1		<	0.1		_	0.01		(0.1	
ÁMMUNIUM	MG/L	<	0_1		(0.1		<	0.1		(0.1			0.2	
ANTEMONY	HGZE		-			•						-			-	
ARSENIC	MGZI.	<	0.01		(0.01		<	0.01			0.002			0_01	
BALANCE	z		-									-			-	
BARIUM	MG/L		-									0.13				
BURON	MG/L		0.77			0.79			0.8			0.8			0.7	
CADMIUM	HG71		-						-			0.002			<i>. .</i>	
CALCIUM	MG/1.		2.54			2.54			2.51			2.47			6.4	
LHLORIDE	MG71.		370.			320.			330.			360.		,	450.	
CHROMIUM	MG/1_		0.03			0.03			0.03		<	0.01		(0.01	
COBALT	MG/L					-			-							
CONDUCTANCE	UMHO/CM		1960.			1960.			1960.		_	2000.			2900.	
COPPER	MGZL		-			-					(0-01				
FLUORIDE	MG/L		5 . 0H			5.16			5.22			6.1			2.6	-
GROSS ALPHA	PCT/L		6.	11.		4-6	9.3		з.	10.		0.	16.		0.0	2.
GROSS BETA	PC1/L		6.	8.6		11.	9.		5.3	9.1		9.	11.		0.2	2.
IRUN	MG/I		0.45			0.15			0.45		<	0.01		(0.03	
l EAD	MG/1.					-			-			0.01				
MAGNESTUM	MG/L		0.60			0.62			0.61		_	0.53			4.37	
MANGANE SE	MG/L	<	0.01		(0.01		<	0.01		(0.01			0.03	
MFRCURY	MGZL.		-			-			-		<	0.0002		-		
MULYBIXENUM	HG/L		0.06			0.07			0.07			0.05		•	0.01	
NJCKFL	HG71								-			-			-	
NETRATE	HGZ1.	<	0.1		(0.1		<	0.1		•	0.1		<	1.0	
NITRIIF	MGZL		-						-			-			-	
ORG. CARHON	MG71		155.			163.			160.			165.			6.	
PH	50		11.4			8.4			8.4			8.39			8.3	
PHOSPHATE	MGZL		-						-			-			-	
POTASSJUM	MGZE		0.85			0.85			0.86			2.6			1.41	_
RA-276	PCT/1.		0.	0.1		0.	0.1		0.1	0.1		0.1	0.2		0.3	0.
RA-27(1	PCI/I		0.1	0.9		0.	0.8		0.	0.7		0.0	0.7		0.6	1.
SELENTOM	MG/1		0.008			0.003			0.007			0.008			0.007	
SJI 1CA	M671		•••						-			-			-	
SILVER	MGZI		-						-		<	0.01			-	
SODIUM	MG/1		564.			560.			558.			589.			840.	
STRONTION	团员大杆								-			-			-	
SULFAIL	MGZE		439.			437.			139.			435.			620.	
SULL LDF	MGZT		-			-			-		(0.1			-	
TEMPERATURE THE 200	C = DEGREF PC1/1		15.5			1", _ ",			15.5			42.0			18.0	
138	MG /4								-			***				
HITAL SOFTOS	MGZL		1490.			1490.			1490.			1440.			2470.	
UPANTUM	MG71	<	0.0003		<	0.000'1		<	0.0003		<	0.0003			0.005	
VANADIUM	HGZI	(0.01		Ċ	9.04		Ċ	0.01		(0.04		<	0.01	

FURMATION OF COMPLETION: SANDSTONE HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

			I OCAT J (IN JD - SAMPLE 1D AND (LUG DATE				
		111-03 01/10/18	817-04 01/10/88	847-05 04740788	847-04 07/48/88	818-01 10/20/87			
	UNIT OF	PARAMETER	PARAMETER	PARAMETER	PARAMETER	PARAMETER			
PARAMETER	MEASURF	VALUE+/-UNCERTAINTY	VALUE+Z-UMCERTAINTY	VALUF+Z-UNCERTAINTY	VALUE+/-UNCERTAINTY	VALUE+/-UNCERTAINTY			
					ann bei ain an an Ail an				
ZINC	MGZI	< 0.005	< 0.005	0.006	(0.005	0.005			

•

•

-

.

FORMATION OF COMPLETION: SANDSTONE HYDRAULIC FLOW RELATIONSHIP: OP GRADIENT

מ א ו – ח

			B 1H- 07 10/	20/87		848-0.3 497			D – SAMPLE 8 18 - 04 - 107			DATE			318-01 01/	05/88
PARAME LER	UNET OF MEASURF	VA	PARAMET LUF+Z-UNCER			PARAMET LUE+Z UNCER		VA	PARAMET LUF+/-UNCER		VAL	PARAMET . UF+Z-UNCFR		VAL	PARAMET UF+/-UNCER	
AFRALINITY	MG/L LACO3	<	541. 0.1		<	541. 0.1		<	541. 0.1		(541. 0.1		(546. 0.1	* - u - e -
AMMONTOM	MGZL		0.2			0.2			0.7			0.2			0.3	
ANITMONY	MG/L					~ ~ ^ /			~ ~ ~ ~ ~			-			- -	
AKSENIC	MGZL		0.01			0.01			0.01			0.01			0_01	
BALANCE	% MG/L								-			-			-	
BAKIUM BURON	MGZL.		0.7			0.7			0.7			0.6			0.61	
CADMIUM	MGZL		-			~			-			-			-	
CALCIUM	MGZL		6.5			6.4			6.4			6.4			8.59	
CHLORIDE	MGZI		450.			400.			400.			440.			600.	
CHROMTOM	MGZL	<	0.01		<	0.01		<	0.01		<	0.01			0.03	
CUBAL1	MGZL	•	-						-			-			-	
CONDUCTANCE	OMHOZCH		5200.			2900.			2500.			2900.			3460.	
COPPER	MG/L		-			-						-			-	
FLUOR IDE	MGZL		2.1			2.4			2.7			2.7			2.9	
GROSS ALPHA	PCIZI		0.0	28.		0.0	27.		32.	29.		0.0	23.		2.	14.
GROSS BETA	PCT/L		5.6	77 .		8_1	23.		2.0	48.		0.0	21.		23.	16.
IRON	MG/I	<	0.03		•	0.03		<	0.03		<	0.03			0.15	
LFAD	MGZI.		-			-						-				
MAGNESTUM	MGZL.		1-40			1,40			1.43			1-41			4.65	
MANGANESE	MIG/L		0.04			0.94			0.04			0.04			0.02	
MERCURY	M671					-						-				
HOL YBDENUM	MG/L	(0.01		<	0.01		<	0.01		<	0.01			0.04	
NICKII	MGZL		-			<i>.</i>					,			,	~ _	
NEIRATE	MGZL.	<	1.0		(1.0		(1.0		<	1.0		<	0.1	
NTIRTIF	MGZI				,										-	
ORG. CARBON	MOZE		10.		<	1.		(1.			1.			146.	
PH	50		8.3			813			8.3			8.3			0.35	
PHOSPHATE	MGZL		~ ~									1.42			2.1	
P01A55JUM RA-226	MG71 PC171.		1.40 0.3	0.4		1.40 0.3	0.1		1.40 0.2	0.1		0.4	0.1		0.1	0.1
RA 278	PUTZI			1.4		1.0	1.3		4.5	2.1		4.5	4.7		0_B	0.8
SELENLIM	MG7L	(0.1 0.005	1.4	(0.005	1.0	(0.005	7.1	1	0.005	1.7		0.018	
STELLA	M671	×	0.008		•			``	v.vv.,		``				-	
STEVER	MGZI								-						-	
SUDIUM	MG/1		780.			790.			800.			730.			906.	
STRONTTOM	1967L		~						-			-			_	
SULLATE	NG/I		590.			620.			580.			590.			599.	
SHELDE	111.71														-	
TEMPLEATURE 11. 230	C DE GRET PPTZ		48.0			18.0			18.0			18.0			16.2	
TIN	Mb / L								-			-			-	
10160 - 560 10-5			2460.			2119.			2479.			2170.			2420.	
UPANJUM	性 21		0.003			0.003		-	0.004			0.005		,	0.0011	
MOT OVAN	19171	(0.01		<	0.91		<	0.01		•	0.01		<	0.01	

Table D.5.15 Chemical analyses of groundwater, Green River, Utah, tailings site (Continued)

FORMATION OF COMPLETION: SANDSTONE HYDRAULLE FLOW RELATIONSHIP: UP GRADIENT

		818-07 10/20/87	848-03 49720787								
PARAME IFR	UNTI OF MEAGURE	PARAMETER VALUE+Z-UNCERTATIVTY	PARAMI IER VALUE 17 UM ERIATNTY	PARAMETER VALUE +/-UNCERTAINTY	PARAMETER VALUE+7-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY					
7 J NC	MGZL	(0.005	(0.005	< 0.005	< 0.005	(0.005					

•

•

.

FORMATION OF COMPLETION: SANDSTONE HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

		11411-02	01/05/88		1-01 01/			D - SAMPLE (8.18-04 0.17	1D AND (05788		ATE 18-05 01/0			18-01 07/4	4/88
PARAMETER	UNIT OF MEASURE	PARAMETER VALUE +/- UNCERTAINTY			PARAMETI E+Z-UNCER	FR		PARAME II I UL +Z-UNCER	ER		PARAMETI DE+/-UNCER	ER		PARAMETE LUE+/-UNCERT	R
ALKALINITY ALWENUM	MG/L LALO3	546. (0.1	*****		546.			546. 9.1		<	546. 0.1		<	513. 0.01	
AMMONTUM	MG/L	0.1		·	0.1		-	0.1			0.2		<	0.1	
ANTIMONY	MG/L	-						-			-			-	
ARSENIC	MG/L	0.0	1		0.01			0.01			0.007			0.151	
BALANCE	X NG A	-			-			-			-			0.03	
BARIUM BURON	MGZL MGZL	0.6	•		0.19			0.61			0.61			0.69	
CADMIUM	MG/1	-	•					-			-		(0.001	
CALCIUM	MG/L	8.5	6		8.47			8.72			H.54		•	12.5	
CHI ORIDE	MGZL.	600.			610.			610.			640.			880.	
CHROMUUM	MG/L	0.0	3		0.03			0.03			0.03		<	0.01	
COBAL 1	MG7L	-			-			-			-			-	
CONDUCTANCE	UMHOZCM	3160.		3	160.			3160.		:	3160.			3800.	
COPPER	MG/L	-			-			-					<	0.01	
FI UORIDE	MG/L	7.9			2.92	10		2.93			2.94			2.9	<i>A</i> .7
GROSS ALPHA	PCI/L	9.	47.		2.	43.		8. 45	16. 18.		19.	16. 16.		0. 0.	27. 10.
GROSS BETA TRON	PC1/L M6/L	7. 0.1	48.		0. 0.15	48.		45. 0.45	10.		8. 0.15	10.		0.01	10.
I F AD	MG/L	-	.•		-			<u>v.</u> 10			-			0.17	
MAGNESTUM	MGZL	1.6	1		1.61			1.65			1.62			2.31	
MANGANE SE	MG/L	0.0	2		0.02			0.02			0.02			0.02	
MERCURY	MG/L	+			-			-			-		(0.0002	
MOLYDDLNUM	M676.	0.0	H		0.09			0.08			0.09			0.01	
NICKFI	HGZL			_				-						<u> </u>	
NETRATE	MG/L	(0.1		<	0.1		<	0.1		<	0.1			6.3	
NITRITE URG. CARBON	MG/L MG/L	446.			114.			135.			147.			120.	
PH	SU	8.3	۹.		8.35			155. 8.35			0.35			8.45	
PHOSPHATE	MG/L		•								-			-	
POTASSTUM	MGZL	1.4	2		4.35			1.56			2.01			2.4	
RA-776	PCTZE	0.2			0.2	0.2		0.4	0.2		0.5	0.3		0.2	0.2
RA-228	PCIZL	0.6	1.0		0.	0.9		0.5	0.9		0.4	0.8		0.5	0.8
STEENLIM	MGZI.	0.0	18		0.016			0.017			0.016		<	0.004	
SH 10A	MGZE				-			-			-			-	
STEVER	MG/L							-			-		<	0.01	
SODIUM CLOOLETIM	MG/L.	904.			900.			904.			902.			1040.	
STRONTTUM SUB-FAIL	MGZL MGZI	589.			594.									535.	
SALE TOP	MGZI.	507.			574.			604.			600.			11.	
TI MPERATURI	C - DI GREF	16.2			16.2			16.2			16.2			18.0	
HI 230	PCTZL	-			-										
T I N	MG/1	-									-				
TOTAL SOLLOS		2420.		2	420.			2340.			2440.			2800.	
URANIUM	H671	6.0			0.0013			0.0012			0.0043		-	0.0003	
10HUD 10M	Mij71	< 0.0	1	<	0.01		<	0.01		<	0.01		(0.01	

٠

FORMATION OF COMPLETION: SAMDSTONE HYDRAULIC FLOW RELATIONSHIP: UP GRADIENT

		B4B-02 01/05/8B	H1B-93 01/05/80	IN JP - SAMPLE JD AND I 1111-04 01/05/08	1/0 DATE	H1H-01 07/16/8H
PARAMETER	UNIT OF MEASURE	PARAMETER VALUE+Z-UNCERIAINTY	PARAMETER VALUE (2.004) ERTAINTY	PARAMETER VALUE / Z-UNCERTAINTY	PARAMETER VALUE+Z-UPCERTAINTY	PARAME IFR VALUF+/-UNCFRTAINTY
71NC	MG/L	0.009	0.00/	< 0.005	0.005	(0.005

•

MAPPER DATA FUE NAME: SRN0 1+1009500 102 193

FORMATION OF COMPLETION: SANDSTONE HYDRALL FLOW RELATIONSHIP: DOWN GRADIERE

		:	HZ-01 04/1/			582-01 03/13/87		82-04 40/	97/87 		82-01 01/			582-01 0774	19788
PARAMETER	UNIT OF MEASURE	VAI	PARAME 1EA 187+7-UNI EP10		VAI	POPAMETER IN 47 OPEERIAINTY	VAI	PARAMET(PARAMET(PAU-U+CER)		VAI.	PARAMETI UE+/-UNI.FR		VAL	PARAMETE .UF+Z-UNCERT	
ALKALINITY	MG/L CACUS		530.			560.	• • • • •	524.			524.			579.	
AL UPLENUN	MG/L		0.3			O	<	0.1		•	0.1		(0.01	
ANNUN JUM	MG/L		0.7			0.3		0.3		<	0.4		(0.1	
ANT THUNY	MGZL	<	0.003					-			-			-	
ARSENIC	MG/L	<	0.04				(0.01		•	0.04			0.022	
BALANCE	z		-0.118					-			-			-	
BARTUM	MG/L		0.7			-		-			-		•	0.01	
BORON	MGZL		0.8			0.5		0.7			0.7			0./	
LADHTUM	MGZL.	<	0.001			-		-			-			0.004	
CALCTIN	MG/L		7.42			1.03		4.4			4.54			5.96	
LHLUR I DE	MGZL		640.			307.		300.			300.			540.	
CHROMIUM	MGZL		0.01		<	0.01	(0.01			0.02		(0.01	
COBAL T	MG71_	<	0.05			-		-			-			-	
CUNDUCTANCE	HMHO/CM		2500.			2550.		2500.			2400.			2900.	
COPPER	MGZE	<	0.07					-			-		<	0.01	
FITHMIDE	MGZL		4.4			4.3		4.2			3.65			4.3	
GROSS ALPHA	PCTZL		-					0.0	48.		7.	43.		0.	23.
GROSS BETA	PCTZL		-			-		1.9	45.		0.	11.		5.	14.
IRON	MGZL	<	0.03			0.05	<	0.03			0.12		•	0.01	
FAD	MG/L	(0.01			-					-			0.10	
MAGNESIUM	MGZL		4.20			0.99		0.94			0.88		-	4.13	
MONDONE SE	MIGZL.		0.02			0.01	(0.01		<	0.01		•	0.01	
MERCINY	MG/L	<	0.0002			_		-					(0.0002	
HULYBOENH	MG/L		0.10		(0.1	(0.01			0.02		(0.01	
NTCREE	MG/L	(0.04			-		-						-	
NITRATE:	MG/L	-	5.6			0.4	<	1.0		<	0.1			2.1	
NITRIJE	MG/1.	(0.4			-		-			-			-	
ORG. CARBON	HG/L		67.			-	(4.			425.			74.3	
PB-240	PCTZE		0.0	1.7							-			-	
PH	50		8.14			8.34		н.0			0.4			8.24	
PHOSPHATE	MGZI.	<	0.1			-		-			-			-	
10-240	PCTZE		0.0	0.5		-		-			-				
POTASSTUM	MGZE		2.01			0.90		0.92			1.02			4.4	•
RA226	PCTZE		0.1	0.1		-		0.4	0.7		0.3	0.1		0.5	0.1
RA-778	PC17L		0.0	1.1		-		4.2	1.0		0.	0.9		0.0	0./
SELENER	MIGZL.		0.076		<	0.002	<	0.005			0.077			0.007	
57L1LA	MGZI.		5.					-			-				
STLVER	MGZL.	(0.01								-		<	0.01	
SODIUM	MGZE		936.			7 17 .		700.			69N.			834.	
STRONTFUM	HG/1_		0.6								-			-	
5HI FAIF	MGZL		617.			6 19 -		600.			624.			5/7.	
SULF 1DE	MGZ1.										-			9.9	
TEMPEPATURE	C – DEGREF		10.			16.5		16.0			14.3			46.5	
111 5.30	PCFZI.		e.1	0.5		•					-			-	
1 T N	M6-71	<	0.005											2340	
THIM, SHID	i MGZI_		7009.			71.10.		19:30 .			1930.			2240.	

٠

FORMATION OF COMPLETEON: SANDSTOME HYDRAULIE FLOW RELATIONSHIP: DOWN GRADIENT

		582-04 09742786	582-04 03243282	502-04 40702707	592-04 04740788	582~04 07/48/88				
PARAMETER	UNIT OF MEASURE	PARAMI, TER VAL UE+7-UNCH P LATHTY	PARAM 1FR VALUE+Z-MICERTAINTY	PARAMETER VALME+Z-UNCERTAINTY	PARAMETER VALUE+/-UNLERTAINTY	PARAMETER VALIFF+/-UNCER1A1NTY				
URANIUM VANADLUM 7 INC	MG/L MG/L MG/L	(0.0003 0.19 0.008	0.0076	(0.003 (9.01 (0.005	(0.0003 (0.01 0.01	<pre>(0.0003 (0.01 (0.005)</pre>				

•

Table D.5.15 Chemical analyses of groundwater, Green River, Utah, tailings site (Continued)

٠

.

FORMATION OF COMPLETION: SANDSTONE HYDRAULDC FLOW RELATIONSHIP: DOWN GRADIENT

		849-04 40/26/87 849-04 04/05/88									
PARAMETER	UNIT OF MEASURE	VAL	PARAMET LIF+7-LINCER		VAI	PARAMI T UF+7-UNU:FR		PARAMETER VALUE +7-UNCERTAINTY	PARAMETER VALUE+/-UNCERTAINTY	PARAMETER VALUE+Z-UNGERTAINTY	
ALKALINITY	MU/L CACU3		500.			547.					
AT LIMTNUM	MG/L	<	0.1		<	0.1					
AMMONTUM ANTIMONY	MGZL.		0.4			0.3					
NRSENIC	MG/L MG/L	<	0.01			0.002					
IALANCE	2	•	~			-					
ARTUM	MG/L		-			-					
INRON	MGZL		0.5			0.62					
ADMITIM	MG/L		-			-					
CALCIUM	HG/L		24.			4.63					
CHILORD DF	MG7L		446.			630.					
CHROMEIM	MG/L	<	0.01			0.02					
COBALT COMMERCANCE	MG/L		3300.			3450.					
CONDUCTANCE COPPER	UMHO/CM MG/L		.3.300			.1100.					
FLUURTDE	MG/L		2.9			5.58					
GROSS ALPHA	PC1/I.		0.0	48.		0.	9.				
ROSS BLTA	PCT/L		0.0	49		ö.	44.				
RON	MG/L	<	0.03			0.11					
FAD	MG/L	-	-			-					
IAGNESTUM	MG7L		11.6			4_34					
IONGANESE	MGZL	(0.01			0.01					
HERCURY	MGZE										
HULYBDENUM	MG/L		0.01			0.04					
NICKFI.	MG/L					-					
NITRATE	MG/L MG/L		6.5		(0.1					
NITRITE DRG. CARBON	MG/L MG/L		12.			108.					
PB-240	PCI/L		17			-				•	
и-210 °Н	50		8.0			8.2					
PHOSPHATE	MGZL		-								
0-240	PU1/1.		-								
OTASSTUM	MGZI.		2.6			4.3					
10-776	PCTZI,		0.3	0.2		0.2	0.2				
14-278	PCTZI.		0.0	1.1		0.6	0.9				
SE LENTIM	MGZL	<	0.005			0.019					
STELLEA	MGZI.										
5 11_VF R 5012 1 11M	967L 867L		4 160.			9 00.					
STRONT TUM	MGZŁ.		* 107*			2379 m					
518 I ATE	MGZI.		7420.			578.					
STALF TOPT	MG/1_										
H MPL PATURE	C - DEGREE		46.0			44.3					
1112.30	PCTZI.										
TIN	MI371.										
TOTAL SOLTOS	M671_		3920.			2480.					

FORMATION OF COMPLETION: SANDSTONE HYDRAULIC FLOW RFLATIONSHIP: DOWN GRADIENT

		849-04 40/26/87	949 04 01/05/08
PARAMETER	UNIT OF	PARAMETER	PARAMETER
	MEASURE	VALUE+/-UNCERTAINTY	VALUE +/-UNLERTAINTY
URANIUM	MG/L	0.004	<pre>{ 0.0003 { 0.01 0.02</pre>
VANADIUM	MG/L	(0.04	
ZINC	MG/L	(0.005	

.

MAPPER DATA FILE NAME: GRN01*UDPGW0102192

.

	Number of analyses ^b	Arithme <u>t</u> ic mean (X)	Standard deviation x2 (2s)	Statistical concentr <u>a</u> tion range (X <u>+</u> 2s)	Observed concentration range	Proposed EPA groundwater MCL
Chromium (mg/l)	11	0.04	0.07	<0.01-0.11	0.03-0.14	0.05
Molybdenum (mg/l)	11	0.11	0.13	<0.01-0.24	<0.01-0.20	0.10
Nitrate (NO3) (mg/	1) 11	45	84	<1-129	9-140	44
Selenium (mg/l)	11	0.147	0.272	<0.005-0.419	<0.005-0.380	0.010
Radium-226 and 228 (pci/1)	6	0.9	1.4	0.0-2.3	0.0-1.7	5.0
Jranium-234 and 238 (mg/1)	11	0.0118	0.0051	0.0067-0.0169	0.0081-0.0167	0.0440
Gross alpha (pCi/l) 5	9.6	31.8	0.0-41.4	0.0-41.0	15

Table D.5.16	Background groundwater	quality summa	ry for 1	the top	hydrostratigraphic	unit, Green River,
	Utah, tailings site					

^aAll constituents listed are included in the proposed EPA groundwater standards (40 CFR 142) and have EPA National and State of Utah Primary Drinking Water Standards, with the exception of molybdenum, which does not have a maximum concentration limit in Utah. Arsenic, barium, cadmium, lead, mercury, and silver are also included in the proposed EPA groundwater standards, and the EPA National and State of Utah Primary Drinking Water Standards. However, because these constituents were found to be below detection limits for the first two rounds of water sampling in June, 1986, and September, 1986, they were excluded from subsequent sampling rounds and are not considered to be present as contamination at the Green River site.

^DThe background wells included in the analyses are GRNO1-563 and 707. The analyses may include the results from one or more of the following rounds of sampling: 6/86; 9/86; 3/87; 10/87; 1/88; 5/88; and 7/88; depending on if the well(s) were in existence at the time of sampling.

		•				
	Number of analyses ^b	Arithme <u>t</u> ic .mean ^c (X)	Standard deviation x2 ^c (2s)	Statistical concentr <u>a</u> tion range ^c (X <u>+</u> 2s)	Observed concentration range	Proposed EPA groundwater MCL ^d
Chromium (mg/l)	5	0.02	0.03	<0.01-0.05	<0.01-0.05	0.05
Molybdenum (mg/l)	5	0.02	0.03	<0.01-0.05	<0.01-0.05	0.1
Nitrate (NO ₃) (mg/	'1) 5	36	86	<1-122	<1-93	44
Selenium (mg/l)	5	0.66	1.92	<0.005-2.58	<0.005-2.50	0.01
Radium-226 and 228 (pCi/l)	- 4	ND	ND	ND	0.1-0.8	5.0
Uranium-234 and 238 (mg/1)	5	0.0109	0.0274	<0.003-0.0383	<0.003-0.0380	0.044
Gross alpha (pCi/l) 4	ND	ND	ND	0.0-21.0	15

Table D.5.17 Background groundwater quality summary for the upper-middle hydrostratigraphic unit, Green River, Utah, tailings site

^aAll constituents listed are included in the proposed EPA groundwater standards (40 CFR 192) and have EPA National and State of Utah Primary Drinking Water Standards, with the exception of molybdenum, which does not have a maximum concentration limit in Utah. Arsenic, barium, cadmium, lead, mercury, and silver are also included in the proposed EPA groundwater standards, and the EPA National and State of Utah Primary Drinking Water Standards. However, because these constituents were found to be below detection limits for the first two rounds of water sampling in June, 1986, and September, 1986, they were excluded from subsequent sampling rounds and are not considered to be present as contamination at the Green River site.

^bThe background wells included in the analyses are GRNO]-816 and 806. The analyses may include the results from one or more of the following rounds of sampling: 6/86; 9/86; 3/87; 10/87; 1/88; 5/88; and 7/88; depending on if the well(s) were in existence at the time of sampling. If less than five analyses were available, a statistical analysis was not performed.

CND = not determined because number of analyses is less than five.

^dMCLs are the same for EPA National and State of Utah Primary Drinking Water Standards.

	Number of analyses ^b	Arithme <u>t</u> ic mean (X)	Standard deviation x2 (2s)	Statistical concentr <u>a</u> tion range (X <u>+</u> 2s)	Observed concentration range	Proposed EPA groundwater MCL ^C
Chromium (mg/l)	12	0.03	0.06	<0.01-0.09	<0.01-0.09	0.05
Molybdenum (mg/l)	12	0.10	0.14	<0.01-0.24	<0.01-0.22	0.1
Nitrate (NO ₃) (mg/	'1) 12	68	116	<1-184	1-173	44
Selenium (mg/l)	12	0.088	0.196	<0.005-0.284	<0.005-0.320	0.01
Radium-226 and 228 (pCi/l)	7	1.7	2.6	0.0-4.3	0.1-3.9	5.0
Uranium-234 and 238 (mg/1)	12	0.046	0.080	<0.003-0.126	<0.003-0.146	0.044
Gross alpha (pCi/l) 7	70	110	0-180	4-150	15

Table D.5.18	Background groundwater quality summary for the lower-middle hydrostratigraphic unit,
	Green River, Utah, tailings site

^aAll constituents listed are included in the proposed EPA groundwater standards (CFR 40 192) and have EPA National and State of Utah Primary Drinking Water Standards, with the exception of molybdenum, which does not have a maximum concentration limit in Utah. Arsenic, barium, cadmium, lead, mercury, and silver are also included in the proposed EPA groundwater standards, and the EPA National and State of Utah Primary Drinking Water Standards. However, because these constituents were found to be below detection limits for the first two rounds of water sampling in June, 1986, and September, 1986, they were excluded from subsequent sampling rounds and are not considered to be present as contamination at the Green River site.

^bThe background wells included in the analyses are GRNO1-562, 811, and 813. The analyses may include the results from one or more of the following rounds of sampling: 6/86; 9/86; 3/87; 10/87; 1/88; 5/88; and 7/88; depending on if the well(s) were in existence at the time of sampling.

^CMCLs are the same for EPA National and State of Utah Primary Drinking Water Standards.

• -

	Number of analyses ^b	Arithmetic mean (X)	Standard deviation x2 (2s)	Statistical concentr <u>a</u> tion range (X <u>+</u> 2s)	Observed concentration range	Proposed EPA groundwater MCL ^C
Chromium (mg/l)	19	0.03	0.04	<0.01-0.07	<0.01-0.07	0.05
Molybdenum (mg/l)	19	0.05	0.08	<0.01-0.13	<0.01-0.14	0.1
Nitrate (NO ₃) (mg/	1) 19	1	2	<1-3	<1-6	44
Selenium (mg/l)	19	0.022	0.060	<0.005-0.082	<0.005-0.106	0.01
Radium-226 and 228 (pCi/1)	16	0.7	1.5	0.0-2.2	0.0-3.0	5.0
Uranium-234 and 238 (mg/l)	19	0.0019	0.0032	<0.003-0.0051	<0.003-0.0049	0.044
Gross alpha (pCi/l)) 16	3.7	16.8	0.0-20.5	0.0-30.0	15

Table D.5.19 Background groundwater quality summary for the bottom hydrostratigraphic unit, Green River, Utah, tailings site

^aAll constituents listed are included in the proposed EPA groundwater standards (UMTRA, 52 FR36000) and have EPA National and State of Utah Primary Drinking Water Standards, with the exception of molybdenum, which does not have a maximum concentration limit in Utah. Arsenic, barium, cadmium, lead, mercury, and silver are also included in the proposed EPA groundwater standards, and the EPA National and State of Utah Primary Drinking Water Standards. However, because these constituents were found to be below detection limits for the first two rounds of water sampling in June, 1986, and September, 1986, they were excluded from subsequent sampling rounds and are not considered to be present as contamination at the Green River site.

^bThe background wells included in the analyses are GRNO1-586, 587, 588, 817, and 818. The analyses may include the results from one or more of the following rounds of sampling: 6/86; 9/86; 3/87; 10/87; 1/88; 5/88; and 7/88; depending on if the well(s) were in existence at the time of sampling.

^CMCLs are the same for EPA National and State of Utah Primary Drinking Water Standards.

Constituent	Number of analyses ^a	Observed maximum	Observed minimum	Proposed EP standard
Chromium (mg/l)	12	0.040	0.005	0.050
Molybdenum (mg/l)	17	0.270	0.005	0.100
Nitrate (NO ₃) (mg/l)	17	440	1	44
Selenium (mg/l)	17	0.410	0.001	0.010
Radium-226 and 228 (pCi/1)	11	3.8	0.0	5.0
Uranium-234 and 238 (mg/l)	17	2.23	0.0419	0.0440
Gross alpha (pCi/l)	5	950	20	15

Table D.5.20 Summary of maximum and minimum observed concentrations in the top hydrostratigraphic unit from tailings seepage, Green River, Utah, tailings site

^aIncludes analyses from on-site monitor wells 702, 704, 705, and 808.

Table D.5.21 Summary of maximum and minimum observed concentrations in the upper-middle hydrostratigraphic unit from tailings seepage, Green River, Utah, tailings site

Constituent	Number of analyses ^a	Observed maximum	Observed minimum	Proposed EPA standard	
Chromium (mg/l)	5	0.050	0.005	0.050	
Molybdenum (mg/l)	8	0.200	0.010	0.100	
Nitrate (NO ₃) (mg/l)	8	2480	2	44	
Selenium (mg/l)	8	0.370	0.0025	0.010	
Radium-226 and 228 (pCi/l)	7	2.0	0.9	5.0	
Uranium-234 and 238 (mg/1)	8	3.110	0.437	0.044	
Gross alpha (pCi/l)	1	980	980	15	

^aIncludes analyses from on site monitor well 701.

Test pit or borehole number	Sample interval (feet)	USCS class ^b	Tailings type	In situ moisture content (percent)	Dry density (pcf) ^C	Saturated hydraulic conductivity (cm/s)	Type of test
542	0.5-1.5	SP-SM	Sand			5.8 × 10 ⁻⁴	Cq
572	3.5-4.5	SP-SC	Sand	1.6			
	6.5-7.5	SP-SC	Sand	4.0			
	9.5-10.5	SP-SM	Sand	5.6			
	12.8-13.5	SP-SM	Sand	15.5			
574	2.5-3.5	SP-SM	Sand	1.2	103.6		
	7.0-7.5	SP-SM	Sand	4.7	86.7		
575	2.5-3.0	SP-SM	Sand	1.3	97.6		
	7.0-8.0	SM	Sand	4.7			
	13.0-14.0	SP-SM	Sand	5.0			
578	2.5-3.0	SP-SM	Sand	2.2	90.1		
•••	5.5-6.5	SP-SM	Sand	3.4			
	7.0-8.0	SM	Sand	6.1			
	10.0-11.0	SC	Sand	5.3			
T-01		SP-SM	Sand			2.7×10^{-5}	тe
T-02		SP-SM	Sand			2.8 x 10 ⁻⁴	Ť
T-03		SP-SM	Sand			1.3×10^{-4}	T T

Table D.5.22 Permeability test results and physical properties from tailings samples, Green River, Utah, tailings site^a

^aBorehole locations are shown on Figure D.5.1. Blanks indicate the properties were not determined.

^bUnified Soil Classification System; SP is poorly graded sands, gravelly sands; SM is silty sands, sand-silt mixtures; SC is clayey sands, sand-clay mixtures. ^cpcf = pounds per cubic foot.

dC = constant-head test; the sample was remolded to average 92 percent of standard Proctor density.

eT = triaxial permeability tests; sample was remolded to 95 percent of standard Proctor density.

Parameter	9/11/86	3/12/87
Aluminum	6300	1840
Ammonium	14	11
Antimony	-	0.003
Arsenic	-	0.03
Barium	-	0.1
Boron	0.5	0.1
Cadmium	-	0.032
Calcium	457	385
Chloride	113	2900
Chromium	2.61	1.14
Cobalt	-	30.9
Copper	-	45.8
Fluoride	0.1	0.2
Iron	2200	267
Lead	-	0.02
Magnesium	2640	1090
Manganese	360	122
Mercury	-	0.
Molybdenum	0.2	0.10
Nickel		25.3
Nitrate	4500	2
Nitrite	-	0.1
Phosphate	-	0.1
Potassium	0.19	16.0
Selenium	0.092	0.208
Silica	-	60
Silver	-	0.01
Sodium	89.2	111
Strontium		0.1
Sulfate	56200	16000
Tin		0.005
Total dissolved		
solids	80800	26100
Uranium	675	221
Vanadium	-	178
Zinc	_	259

Table D.5.23 Chemical analyses for lysimeter GRN01-714^a

.

^aAll values in mg/l. See Figure D.5.1 for the location of lysimeter 714.

Species and parameter	Monitor well 562	Monitor well 581	Monitor well 584	Monitor well 701	Monitor well 813
Magnesium	124	883	134	197	114
Calcium	328	221	467	520	253
Sodium	1870	1680	1680	1115	1910
Potassium	7.39	2.51	3.27	20.50	7.24
Sulfate	4330	2460	3160	2870	4200
Chlorine	150	180	130	94	130
Alkalinity (as calcium					
carbonate)	660	979	266	407	671
Silica	9.70	8.8	9.2	18.0	9.2
Sulphur	<0.10	45.4	<0.1	<0.1	<0.1
Iron ²⁺	<0.03	<0.03	<0.03	<0.03	<0.03
Iron ³⁺	0.045	<0.01	0.045	0.045	0.040
Nitrate	103	0.2	0.2	1570	22.7
Ammonium	<0.1	0.8	0.6	45.2	<0.1
Nitrite	0.66	<0.03	<0.03	0.07	1.48
Molybdenum	0.07	0.02	0.01	0.09	0.13
Selenium	0.16	0.09	0.11	0.55	0.13
Arsenic	0.01	0.02	0.01	0.02	0.02
Total dissolved					
solids	7190	4630	4930	6680	6920
<pre>Temperature(°C)</pre>	16.5	15.7	15.9	16.5	17.5
pH	6.88	7.25	7.96	6.68	6.88
Eh (field, V)	+0.274	-0.133	-0.080	+0.272	+0.274

Table D.5.24 Analyses of Cedar Mountain Formation groundwater, Green River, Utah^a

^aAll concentrations are in mg/l unless noted otherwise. ^oC = degrees Celsius; V = volts.

Monitor	рH	Field Eh	Uraninite	Calculated	Uraninite	Log
well		(volts)	S.I.a	Eh (volts)	S.I. ^a	PCO ₂
581	7.25	-0.133	2.19	-0.107	0	-2.0
584	7.96	-0.080	0.02	-0.106	0	-2.0
		Speciatio	on of dissolve	d uranium (mg/	1)	
581 584	Total U 0.001 0.001	U(OH)5- 0.0007 0.001	U02C030 6.14 x 10-7 2.04 x 10-6			0 ₂ (C0 ₃)3 ⁴ .0001 .0005

•

.

Table D.5.25	Field measured and theoretical redox potentials (Eh)
	controlling uraninite precipitation within the Cedar
	Mountain Formation, Green River, Utah

-

		Total		Saturation index								
Field pH	Field Eh (volts)	uranium (mg/1)	Dominant form	Uraninite	Coffinite	Calcite	Gypsum	Pyrite	Amorphous Fe(OH) ₃	COS		
7.96	-0.080	<0.001	U02(C03)3 ⁴⁻ U(OH)5 ⁻	+0.02	-0.89	-0.02	-0.85	+0.01	-0.68	-2.0		
7.25	-0.133	<0.001	U(OH)5	+1.83	+1.34	-0.42	-4.63	+0.01	-3.82	-2.0		
6.68	+0.272	2.690	U02(C03)2 ²⁻	-5.75	-6.08	+0.03	+0.28	-94.60	+2.71	-2.0		
6.88	+0.274	0.076	U02(C03)3 ⁴⁻	-8.85	-9.43	+0.06	+0.35	-98.20	+3/65	-2.0		
6.88	+0.274	0.079	U02(C03)3 ⁴⁻	-8.76	-9.26	+0.06	+0.13	-98.50	+3/62	-2.0		
	рН 7.96 7.25 6.68 6.88	pH Eh (volts) 7.96 -0.080 7.25 -0.133 6.68 +0.272 6.88 +0.274	Field pH Field Eh (volts) uranium (mg/l) 7.96 -0.080 <0.001	Field pHField th (volts)uranium (mg/l)Dominant form7.96 -0.080 <0.001 $U0_2(C0_3)_3^{4-}$ $U(OH)_5^{-}$ 7.25 -0.133 <0.001 $U(OH)_5^{-}$ 6.68 $+0.272$ 2.690 $U0_2(C0_3)_2^{2-}$ 6.88 $+0.274$ 0.076 $U0_2(C0_3)_3^{4-}$	Field pHField th (volts)uranium (mg/l)Dominant formUraninite7.96 -0.080 <0.001 $U0_2(C0_3)_3^{4-}$ $U(0H)_5^{-}$ $+0.02$ $U(0H)_5^{-}$ 7.25 -0.133 <0.001 $U(0H)_5^{-}$ $+1.83$ 6.68 $+0.272$ 2.690 $U0_2(C0_3)_2^{2-}$ $-5.75-5.756.88+0.2740.076U0_2(C0_3)_3^{4-}-8.85$	Field pHField th (volts)uranium (mg/l)Dominant formUraniniteCoffinite7.96 -0.080 <0.001 $U0_2(C0_3)_3^{4-}$ $U(0H)_5^ +0.02$ -0.89 $U(0H)_5^-$ 7.25 -0.133 <0.001 $U(0H)_5^ +1.83$ $+1.34$ 6.68 $+0.272$ 2.690 $U0_2(C0_3)_2^{2-}$ -5.75 -6.08 6.88 $+0.274$ 0.076 $U0_2(C0_3)_3^{4-}$ -8.85 -9.43	Field pHField (volts)uranium (mg/l)Dominant formUraniniteCoffiniteCalcite7.96 -0.080 <0.001 $U0_2(C0_3)_3^{4-}$ 	Field pHField (volts)uranium (mg/l)Dominant formUraniniteCoffiniteCalciteGypsum7.96 -0.080 <0.001 $UO_2(CO_3)_3^{4-}$ $U(0H)_5^{-}$ $+0.02$ -0.89 -0.02 -0.85 7.25 -0.133 <0.001 $U(0H)_5^{}$ $+1.83$ $+1.34$ -0.42 -4.63 6.68 $+0.272$ 2.690 $UO_2(CO_3)_2^{2-}$ -5.75 -6.08 $+0.03$ $+0.28$ 6.88 $+0.274$ 0.076 $UO_2(CO_3)_3^{4-}$ -8.85 -9.43 $+0.06$ $+0.35$	Field pHField th (volts)uranium (mg/l)Dominant formUraniniteCoffiniteCalciteGypsumPyrite7.96 -0.080 <0.001 $U0_2(C0_3)_3^{4-}$ $U(0H)_5^{-}$ $+0.02$ -0.89 -0.02 -0.85 $+0.01$ 7.25 -0.133 <0.001 $U(0H)_5^{-}$ $+1.83$ $+1.34$ -0.42 -4.63 $+0.01$ 6.68 $+0.272$ 2.690 $U0_2(C0_3)_2^{2-}$ -5.75 -6.08 $+0.03$ $+0.28$ -94.60 6.88 $+0.274$ 0.076 $U0_2(C0_3)_3^{4-}$ -8.85 -9.43 $+0.06$ $+0.35$ -98.20	Field pHField (volts)uranium (mg/l)Dominant formUraniniteCoffiniteCalciteGypsumPyriteAmorphous Fe(OH)37.96 -0.080 <0.001 $U0_2(C0_3)_3^{4-}$ $U(OH)_5^{-}$ $+0.02$ -0.89 -0.02 -0.85 $+0.01$ -0.68 7.25 -0.133 <0.001 $U(OH)_5^{-}$ $+1.83$ $+1.34$ -0.42 -4.63 $+0.01$ -3.82 6.68 $+0.272$ 2.690 $U0_2(C0_3)_2^{2-}$ -5.75 -6.08 $+0.03$ $+0.28$ -94.60 $+2.71$ 6.88 $+0.274$ 0.076 $U0_2(C0_3)_3^{4-}$ -8.85 -9.43 $+0.06$ $+0.35$ -98.20 $+3/65$		

Table D.5.26 Field pH, field Eh, total uranium, and saturation indices for Cedar Mountain Formation, Green River, Utaha

^aCalculated by PHREEQE Model (Parkhurst et al., 1980). Saturation indices $\approx \log (IAP/K_T)$.

.

			825-01 04/10/89 (a)		LOCATIUN 10 - SA 826-01 04/10/89 (a)	MPLE	1D AND LOG DATE 827-01 04/10/89 (a)		828-01 04/10/89 (a)
PARAMETER	UNIT OF MEASURE		PARAMETER VALUE +/- UNCERTAINTY		PARAMETER VALUE +/- UNCERTAINTY		PARAMETER VALUE +/- UNCERTAINTY		PARAMETER VALUE +/- UNCERTAINTY
ALUMINUM	MG/L		-		0.04	<	0.05		0.05
AMMONIUM	MG/L		0.25		0.22		0.09	•	0.17
ANTIMONY	MG/L		0.009		0.004		0.002		0.010
ARSENIC	MG/L		0.033		0.043		0.040		0.032
BARIUM	MG/L		0.06		0.07		0.08		0.06
BERYLLIUM	MG/L	(0.005	<	0.005	(0.005	1	0.005
CADHIUM	MG/L	•	0.0030	i	0.0001	ì	0.0001		0.0001
CALCIUM	MG/L		71.	•	57.	•	59.	•	60.
CHLORIDE	MG/L		8.		7.		7.		6-
CHROMIUM	MG/L		0.01	(0.01	(0.01	,	0.01
COBALT	MG/L	i	0.02	i	0.02	ì	0.02		
COPPER	MG/L	•	0.04	•	0.02	•	0.04	•	0.02
FLUORIDE	MG/L		0.4		0.3		0.3		0.06
IRON	MG/L		0.02		0.03	,	0.02		0.4
LEAD	MG/L		0.003	,	0.001			ļ	0.02
MAGNESIUM	MG/L			•		(0.001	(0.001
		,	9.		8.		8.		8.
MANGANESE	MG/L	Ś	0.01	<u> </u>	0.01	<u> </u>	0.01	(0.01
MERCURY	MG/L	(0.0001	C	0.0001	<	0.0001	(0.0001
MOLYBDENUM	MG/L		0.007		0.004		0.003		0.002
NICKEL	MG/L	<	0.02	<	0.02	<	0.02	<	0.02
NITRATE	MG/L		1.8		0.2		0.3		2.0
POTASSIUM	MG/L		8.		7.		8.		7.
SELENIUM	MG/L		0.011		0.010		0.009		0.011
SILICA	MG/L		13.3		11.4		11.7		11.1
SODIUM	MG/L		29.		24.		23.		22.
STRONTIUM	MG/L		0.71		0.60		0.62		0.63
SULFATE	MG/L		187.		152.		156.		169.
THALLIUM	MG/L	<	0.001	<	0.001	<	0.001	(0.001
TIN	MG/L	<	0.001	<	0.001	ć	0.001	•	0.001
TOTAL SOLIDS	MG/L		388.		302.	-	295.		315.
URANIUM	MG/L		0.182		0.177		0.168		0.172
VANADIUM	MG/L		0.24		0.25		0.24		0.22
ZINC	MG/L		0.02		0.02		0.01		
			v . V 4		v • V <i>L</i> .	`	V.V1		0.02

Table D.5.27 Chemical analysis of batch leach and column extraction solutions from tailings, buffer material, and windblown soil samples, Green River, Utah

. ~

Table D.5.27 Chemical analysis of batch leach and column extraction solutions from tailings, buffer material, and windblown soil samples. Green River, Utah

.

•

			829-01 04/28/89 (b)		LOCATION ID - SA 830-01 04/28/89 (C)	MPLE	ID AND LOG DATE		832-01 04/28/89 (c
PARAMETER	UNIT OF MEASURE		PARAMETER VALUE +/- UNCERTAINTY		PARAMETER VALUE +/- UNCERTAINTY		PARAMETER VALUE +/- UNCERTAINTY		PARAMETER VALUE +/- UNCERTAINTY
ALUMINUM	MG/L		0.05	(0.05	(0.05	<	0.05
AMMONIUM	MG/L		0.42		0.14		0.12		0.35
ANTIMONY	MG/L		0.004		0.001		0.002		0.007
ARSENIC	HG/L		0.011		0.004		0.003		0.003
BARIUM	MG/L		0.02		0.02		0.02		0.02
BERYLLIUM	MG/L	<	0.005	<	0.005	<	0.005	<	0.005
CADMIUM	MG/L	(0.0001		0.0001	<	0.0001	<	0.0001
CALCIUM	MG/L		661.		550.		560.		511.
CHLORIDE	MG/L		4.		19.		16.		25.
CHROMIUM	MG/L	<	0.01	(0.01	(0.01	<	0.01
COBALT	MG/L	Č	0.02	<	0.02	<	0.02	<	0.02
COPPER	MG/L		0.01		0.01		0.26		0.03
FLUORIDE	MG/L		0.5		1.5		1.6		1.6
1RON	MG/L	(0.02	<	0.02	<	0.02	<	0.02
LEAD	MG/L	<	0.001	<	0.001	<	0.001	<	0.001
MAGNESIUM	MG/L		33.		138.		128.		150.
MANGANESE	MG/L		0.08	(0.01	<	0.01	(0.01
MERCURY	MG/L	<	0.0001	<	0.0001	<	0.0001	<	0.0001
MOLYBDENUM	MG/L		0.082		0.063		0.063		0.058
NICKEL	MG/L	<	0.02	<	0.02	<	0.02	<	0.02
NITRATE	MG/L		12.8		12.5		12.3		12.4
POTASSIUM	MG/L		5.	<	1.	<	1.		1.
SELENIUM	MG/L		0.170		0.091		0.091		0.074
SILICA	MG/L		6.4		22.8		21.7		23.0
SODIUM	MG/L		18.		150.		126.		209.
STRONTIUM	MG/L		1.00		3.70		4.00		5.00
SULFATE	MG/L		1720.		2231.		2165.		2437.
THALLIUN	MG/L	<	0.001	<	0.001	<	0.001	<	0.001
TIN	MG/L		0.017		0.022		0.018		0.027
TOTAL SOLIDS			2412.		3126.		3052.		3520.
URANIUM	MG/L		2.800		0.168		0.398		0.077
VANADIUM	HG/L		0.07		0.02		0.02		0.04
ZINC	MG/L		0.03		0.03		0.04		0.02

.

					LOCATION ID - SE	AMPLE			
			833-01 05/08/89 (d)	834-01 05/08/89 (d))	835-01 05/08/89	d)	836-01 05/08/89 (b)
UNIT OF PARAMETER MEASURE	,	PARAMETER VALUE +/- UNCERTAINTY	•	PARAMETER VALUE +/- UNCERTAINTY		PARAMETER VALUE +/- UNCERTAIN	Г Ү	PARAMETER VALUE +/- UNCERTAINTY	
ALUMINUM	MG/L	(0.05	(0.05		0.05	· (0.05
AMMONIUM	MG/L		0.57		0.22		0.62		0.30
ANTIMONY	MG/L		0.008		0.002		0.009		0.008
ARSENIC	MG/L		0.012		0.02		0.005		0.002
BARIUM	MG/L		0.02		0.02		0.02		0.04
BERYLLIUM	MG/L	<	0.005	(0.005	(0.005	(0.005
CADMIUM	MG/L		0.0031		0.0033	•	0.0028	i	0.0001
CALCIUM	MG/L		607.		656.		655.	•	135.
CHLORIDE	MG/L		5.		5.		5.		6.
CHROMIUM	MG/L	<	0.01	(0.01	(0.01	(0.01
COBALT	MG/L	Č	0.02	i	0.02	i	0.02	i	0.02
COPPER	MG/L		0.03	•	0.02	•	0.03	•	0.03
FLUORIDE	MG/L		9.6		0.6		0.7		1.0
IRON	MG/L		0.02	(0.02		0.02	(0.02
LEAD	MG/L	č	0.001	i	0.001	i	0.001	ì	0.001
MAGNESIUM	HG/L	•	32.	•	32.	•	26.	•	22.
MANGANESE	MG/L		0.02		0.01		0.01	(0.01
MERCURY	MG/L	<		<	0.0004		0.0001	ì	0.0001
MOLYBDENUM	MG/L	•	0.083	•	0.088	•	0.091	•	0.006
NICKEL	MG/L	<	0.02	(0.02	(0.02	<	
NITRATE	MG/L	•	14.7	•	16.2	•	16.5	•	0.4
POTASSIUM	MG/L		4.		4.		4.		1.
SELENTUM	MG/L		0.167		0.183		0.187		0.005
SILICA	MG/L		7.0		6.9		5.5		8.9
SODIUM	MG/L		20.		22.		21.		31.
STRONTIUM	MG/L		0.99		1.00		1.09		1.97
SULFATE	MG/L		1655.		17 12.		17 12.		521.
THALLIUM	MG/L	6	0.001	(0.001	1	0.001	(0.001
TIN	MG/L	•	0.017	•	0.015	•	0.018	•	0.007
TOTAL SOLID			2325.		2305.		2350.		750.
URANTUM	MG/L		0.296		0.306		0.316		0.010
VANADIUM	MG/L		0.07		0.07		0.07		0.01
7 INC	MG/L		0.04		0.02		0.02		
			V • V7		V.VZ		V.V2		0.01

> ...>

Table D.5.27 Chemical analysis of batch leach and column extraction solutions from tailings, buffer material, and windblown soil samples, Green River, Utah

			837-01 05/08/89 (b)		LOCATION ID - SAMP 838-01 05/08/89 (b)	LE 1D AND LOG DATE	
PARAMETER	UNIT OF MEASURE		PARAMETER VALUE +/- UNCERTAINTY		PARAMETER VALUE +/- UNCERTAINTY	PARAMETER VALUE +/- UNCERTAINTY	PARAMETER VALUE +/- UNCERTAINTY
ALUMINUM	MG/L		0.26	<	0.05		
MUIKOMMA	MG/L		0.39		0.21		
ANTIMONY	MG/L		0.001		0.007		
ARSENIC	MG/L		0.002		0.003		
BARIUM	MG/L		0.06		0.04		
BERYLLIUM	MG/L	(0.005	(0.005		
CADMIUM	MG/L		0.0004	ć	0.0001		
CALCIUM	MG/L		139.		127.		
CHLORIDE	MG/L		9.		6.		
CHRONIUM	MG/L	(0.01	(0.01		
COBALT	MG/L	Č	0.02	ì	0.02		
COPPER	MG/L	•	0.04	•	0.02		
FLUORIDE	MG/L		1.1		1.1		
IRON	MG/L		0.18	(0.02		
LEAD	MG/L	<	0.001	ì	0.001		
MAGNESIUM	MG/L	•	25.	``	22.		
MANGANESE	MG/L	<	0.01	1	0.01		
MERCURY	HG/L	ì	0.0001		0.0001		
MOLYBDENUM	MG/L	•	0.003	`	0.005		
NICKEL	MG/L	(0.02	,	0.02		
NITRATE	MG/L	``	0.4	•			
POTASSIUM	MG/L		1.	,	0.3		
SELENIUM	MG/L		0.004	(1. 0.006		
SILICA	MG/L		9.4				
SODIUM	MG/L		38.		9.5		
STRONTIUM	MG/L		2.10		31.		
SULFATE	MG/L				1.91		
THALLIUM	MG/L	,	512.	,	480.		
TIN	MG/L	<	0.001	(0.001		
TOTAL SOLIDS			705.		0.007		
UPANIUM					675.		
	MG/L		0.060		0.010		
VANADIUM	MG/L		0.01		0.01		
ZINC	MG/L		0.02	<	0.01		

Table D.5.27 Chemical analysis of batch leach and column extraction solutions from tailings, buffer material, and windblown soil samples, Green River, Utah

MAPPER DATA FILE NAME: GRN01*UDPSU0100236

^a825-828: batch leach solution, windblown soils
 ^b829, 836-838: batch leach solution, tailings
 ^c830-832: column extract solution, buffer material; feed solution from 829
 ^d833-838: batch leach solution, buffer material

D-180

.

,

.

•

1

REFERENCES

- Berner, R. A., 1963. "Electrode Studies of Hydrogen Sulfide in Marine Sediments," <u>Geochim. Cosmochim. Acta.</u>, Vol. 27, pp. 563-575.
- Bouwer, H., 1978. <u>Groundwater Hydrology</u>, McGraw-Hill Book Company, New York, New York.
- Bouwer, H., and R. C. Rice, 1967. "A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells," in <u>Water Resources Research</u>, Vol. 12.
- Bruno et al. (J. Bruno, I. Casas, B. Lagerman, and M. Munoz), 1987. "The Determination of the Solubility of Amorphous UO₂(s) and the Mononuclear Hydrolysis Constants of Uranium (IV) at 25 °C." In <u>Scientific Basis for</u> <u>Nuclear Waste Management X</u>, Materials Research Society Symposia Proceedings, Vol. 84, eds. J. K. Bates and W. B. Seefeldt, pp. 153-160, Materials Research Society, Pittsburgh, Pennsylvania.
- Buss, W. R., 1951. "Bibliography of Utah Geology to December 31, 1950," in Bulletin 40, Utah Geological and Mineral Survey, Salt Lake City, Utah.
- Buss, W. R., and N. S. Goeltz, 1974. "Bibliography of Utah Geology, 1950 to 1970," in <u>Bulletin 103</u>, Utah Geological and Mineral Survey, Salt Lake City, Utah.
- Casper, C., 1985. Personal communication with John B. Price, Sergent, Hauskins & Beckwith, Technical Assistance Contractor to U.S. Department of Energy, UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico, dated November 7, 1985.
- Chatham et al. (J. R. Chatham, R. B. Wanty, and D. Langmuir), 1981. "Groundwater Prospecting for Sandstone-Type Uranium Deposits: The Merits of Mineral - Solution Equilibria Versus Single Element Tracer Methods," Report No. GJBX - 129 (81) U.S. Department of Energy: Grand Junction Office, Colorado.
- Childers, B. S., and B. Y. Smith, 1970. "Abstracts of Theses Concerning the Geology of Utah to 1966," in <u>Bulletin 86</u>, Utah Geology and Mineral Survey, Salt Lake City, Utah.
- City of Green River, 1984. "Notice of Motion to Raise Water Rates," Green River, Utah.
- Cooper et al. (H. H. Cooper, Jr., J. D. Bredehoeft, and I. S. Papadopulos), 1967. "Response of a Finite-Diameter Well to an Instantaneous Charge of Water," in <u>Water Resources Research</u>, Vol. 3.
- Cowart, J. B. and J. K. Osmond, 1980. "Uranium Isotopes in Groundwater as a Prospecting Technique," Report No. GJBX - 119 (80); U.S. Department of Energy: Grand Junction Office, Colorado.

- Day, Mark, 1988. Personal correspondence between Mark Day, Utah Department of Health, Salt Lake City, Utah, and public affairs officer, White Sands Missile Range, Alamogordo, New Mexico, November 1988.
- Deutsch, W. J. and R. J. Serne, 1984. "Uranium Mobility in the Natural Environment, Evidence from Sedimentary Roll-Front Deposits: Geochemical Behavior of Disposed Radioactive Waste," American Chemical Society Symposium Series 246, pp. 287-302.
- DOE (U.S. Department of Energy), 1988a. <u>Environmental Assessment of Remedial</u> <u>Action at the Green River Uranium Mill Tailings Site. Green River. Utah</u>, DOE UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.
- DOE (U.S. Department of Energy), 1988b. "Redox State of the Cedar Mountain Formation Aquifer, Green River UMTRA Site, Utah," UMTRA-DOE/AL-400641, DOE UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.
- DOE (U.S. Department of Energy), 1987a. <u>Geochemical Modeling and Dilution</u> <u>Estimates for the Proposed Disposal Area, Green River. Utah, Tailings</u> <u>Site</u>, summary report, prepared by DOE UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.
- DOE (U.S. Department of Energy), 1987b. <u>Albuquerque Operations Manual</u>, DOE UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.
- DOE (U.S. Department of Energy), 1985. <u>Albuquerque Operations Manual</u>, prepared by DOE UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.
- DOE (U.S. Department of Energy), 1983. Unpublished report, <u>Environmental</u> <u>Assessment</u> prepared by Ford, Bacon, and Davis Utah, Salt Lake City, Utah, and Sandia National Laboratories, Albuquerque, New Mexico, for the DOE UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.
- DWR (Division of Water Resources), 1976. "Hydrologic Inventory of the San Rafael River Basin," Utah Department of Natural Resources, Salt Lake City, Utah.
- DWR (Division of Water Resources), 1975. "Hydrologic Inventory of the Price River Basin," Utah State Department of Natural Resources, Salt Lake City, Utah.
- FBDU (Ford, Bacon & Davis Utah Inc.), 1981. Engineering Assessment of Inactive Uranium Mill Tailings, Green River Site, Green River, Utah, DOE/UMT-0114, FBDU 360-14, UC-70, prepared by FBDU, Salt Lake City, Utah, for the U.S. Department of Energy, UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.

- Ferris, J. G., and D. B. Knowles, 1963. "The Slug-Injection Test of Estimating the Coefficient of Transmissibility of an Aquifer," in <u>Methods of Determining Permeability. Transmissibility and Drawdown</u>, U.S. Geological Survey Water Supply Paper 1536-I.
- Freeze, R. A., and T. A. Cherry, 1979. <u>Ground Water</u>, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
- GECR (Geochemistry and Environmental Chemistry Research, Inc.), 1983. <u>Data</u> for the Geochemical Investigation of UMTRA Designated Site at Green River, <u>Utah</u>, UMTRA-DOE/AL-0244, prepared by GECR, Rapid City, South Dakota, for the U.S. Department of Energy, UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.
- Howard, C. S., and S. K. Love, 1945. <u>Quality of Surface Waters of the United</u> <u>States. 1943. with a Summary of Analyses of Streams in Colorado River</u>, <u>Pecos River, and Rio Grande Basins, 1925 to 1943</u>, U.S. Geological Survey Water Supply Paper 970.
- Hsi, D. and D. Langmuir, 1985. "Adsorption of uranyl ion onto ferric oxyhydroxide: application of the surface complexation site - binding model," <u>Geochim. Cosmochim. Acta</u>., V.49, No. 9, pp. 1931-1941.
- La Pray, B. A. and L. S. Hamblin, 1980. <u>Bibliography of U.S. Geological Sur-</u> vey Water-Resource Reports for Utah, Information Bulletin No. 27, Utah Department of Natural Resources, Salt Lake City, Utah.
- La Rue, E. C., 1916. <u>Colorado River and Its Utilization</u>, U.S. Geological Survey Water Supply Paper 395.
- Lindberg, R. D., and D. D. Runnells, 1984. "Groundwater Redox Reactions: An Analysis of Equilibrium State Applied to Eh Measurements and Geochemical Modeling," Science, V. 225, pp. 925-927.
- Lohman, S. W., 1972. <u>Groundwater Hydraulics</u>, U.S. Geological Survey Professional Paper 708.
- McClave, J. T. and F. H. Dietrich, II, 1979. <u>Statistics</u>, Dellen Publishing Company, San Francisco, California.
- Mohogheghi, A. and M. B. Goldhaber, 1982. "Kinetics of Uranyl Ion Reduction by Aqueous Sulfide," abstract 95/Annual Meeting of Geological Society of America, New Orleans, Louisiana, October 17-21, 1982.
- ONWI (Office of Nuclear Waste Isolation), 1985. <u>Bibliography of Studies for</u> <u>the Salt Repository Project Office of the Civilian Radioactive Waste</u> <u>Management Program, April 1978-September 1984</u>, prepared by Battelle Project Management Division, Office of Nuclear Waste Isolation, Battelle Memorial Institute, Columbus, Ohio, for the U.S. Department of Energy, Washington, D.C.

- Parkhurst et al. (D. L. Parkhurst, D. C. Thorstenson, and L. N. Plummer), 1980. "PHREEQE-A Computer Program for Geochemical Calculations," USGS Water Resources Investigations 80-96, Washington, D.C., 210 p.
- Reeside, J. B., Jr., 1930. <u>Descriptive Geology of the Green River Valley</u> <u>Between Green River, Wyoming, and Green River. Utah</u>, USGS Water Supply Paper 618.
- Reeside, J. B., Jr., 1923. <u>Notes on the Geology of the Green River Valley</u> <u>Between Green River, Wyoming, and Green River, Utah</u>, USGS Professional Paper 132-C.
- Runnells, D. D. and R. D. Lindberg, 1981. "Hydrogeochemical Exploration for Uranium Ore Deposits, Use of the Computer Model WATEQFC," Journal of Geochemical Expl. V. 15, pp. 37-50.
- Rush et al. (F. E. Rush, M. S. Whitfield, and I. M. Hart), 1982. <u>Regional</u> <u>Hydrology of the Green River-Moab Area. Northwestern Paradox Basin. Utah</u>, U.S. Geological Survey Open File Report 82-107, Denver, Colorado.
- Ryan, J. L. and D. Rai, 1983. "The Solubility of Uranium (IV) Hydrous Oxide in Sodium Hydroxide Solutions under Reducing Conditions," <u>Polyhedron</u>, 2:947-952.
- State of Utah, 1985. Letter report on water rights, Department of National Resources, Water Rights, Price, Utah, available from UMTRA Project Document Control Center, PDCC File No. 10.19.2.5, U.S. Department of Energy, Albuquerque Operations Office, Albuquerque, New Mexico.
- Todd, D. K., 1980. <u>Groundwater Hydrology</u>, John Wiley and Sons, Inc., New York, New York.
- Tripathy, V. J., 1984. "Uranium (VI) Transport Modeling: Geochemical Data and Submodels," Ph.D. Dissertation, Stanford University, Stanford, California.
- USGS (U.S. Geological Survey), 1972. <u>Publications of the U.S. Geological</u> <u>Survey</u>, 1962-1970.
- USGS (U.S. Geological Survey), 1971 1985 (serial publication). <u>Publications</u> of the U.S. Geological Survey.
- USGS (U.S. Geological Survey), 1964. <u>Publications of the U.S. Geological</u> <u>Survey</u> 1879-1961.
- Waring, G. R., and M. M. Knechtel, 1936. "Groundwater in Part of Southeastern and Southwestern Colorado," U.S. Geological unpublished report.
- Weir et al. (J. E. Weir, Jr., E. B. Maxfield, and E. A. Zimmerman), 1983. <u>Regional Hydrology of the Dolores River Basin. Eastern Paradox Basin</u>, <u>Colorado and Utah</u>, Water Resources Investigations Report 83-4217.
- Walton, W. C., 1970. <u>Groundwater Resource Evaluation</u>, McGraw-Hill Book Company, New York, New York.

APPENDIX E

WATER RESOURCES PROTECTION STRATEGY

,

•

.

-

TABLE OF CONTENTS

.

Section	Page
 E.1.1 Design considerations E.1.2 Groundwater protection stan E.1.3 Performance assessment E.1.4 Closure performance assessment E.1.5 Groundwater performance mon E.1.6 Corrective action plan 	Y SUMMARY E-1 dards for disposal E-2 dards for disposal E-4 ent E-4 itoring program E-4 ting contamination E-6
E.2.1.1 Climate E.2.1.2 Drainage of surface E.2.2 Disposal cell design E.2.2.1 Cell components .	E-9 E-12 e runoff and tailings waterE-13
E.3 DISPOSAL AND CONTROL OF RADIOACTIVE NONRADIOACTIVE CONTAMINANTS E.3.1 Groundwater protection stan E.3.1.1 Hazardous constitue E.3.1.2 Proposed concentra E.3.1.3 Point of compliance E.3.2 Performance assessment	E MATERIALS AND Jards for disposal. E-21 ents. E-21 tion limits E-24 e. E-28 E. E. E. E.
E.3.2.2 Impacts summary . E.3.3 Closure performance assessme E.3.4 Groundwater performance mon E.3.4.1 Disposal cell mois E.3.4.2 Saturated zone mon E.3.5 Corrective action plan . E.3.6 Cleanup and control of exis E.3.6.1 Decoupling	itoring program E-36 ture monitoring E-36 itoring E-36
REFERENCES FOR APPENDIX E	

LIST OF FIGURES

<u>Figure</u>		
E.2.1	Diagrammatic cross section of proposed disposal cell and foundation, Green River, Utah, tailings site	
E.2.2	Disposal cell cover system, Green River, Utah	
	tailings site	
E.3.1	Plan view of point of compliance and related disposal cell and compliance monitoring features, Green River, Utah, UMTRA Project disposal site	
E.3.2	Cross section of point of compliance, Green River, Utah, UMTRA Project disposal site	
E.3.3	Locations of wells and surface water sites to be sampled during remedial actions at the Green River, Utah,	
	UMTRA Project site	

LIST OF TABLES

<u>Table</u>	[able		
E.1.1	Proposed concentration limits at the Green River, UMTRA Project disposal site	E-3	
E.3.1	Summary of hazardous constituents within uranium mill tailings at Green River, Utah	E-22	
E.3.2	Descriptive statistical parameters for background water quality at the Green River UMTRA Project disposal site,	E-25	
E.3.3	Green River, Utah	E-23	
	Green River UMTRA Project site	E-33	

,

E.1 WATER RESOURCES PROTECTION STRATEGY SUMMARY

The U.S. Department of Energy (DOE) must demonstrate compliance with the U.S. Environmental Protection Agency (EPA) standards for groundwater protection at inactive uranium mill tailings sites. These standards are contained in proposed revisions to Subparts A through C of 40 CFR 192 under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), as amended. Remedial action taken by the DOE must comply with the proposed standards until EPA promulgates them in final form (UMTRCA. Section 108). This section summarizes the water resources protection strategy for the Uranium Mill Tailings Remedial Action (UMTRA) Project site in Green River, Utah, and the elements of the strategy that demonstrate compliance with the proposed groundwater protection standards. Details of the water resources protection strategy are presented in Sections E.2 and E.3. Characterization of groundwater and hydrogeology at the Green River site is presented in detail in Section D.5 of Appendix D, and is summarized in Section 3.5 of the text of this remedial action plan.

The DOE will comply with the disposal standard (40 CFR 192.02(a)(3)) by constructing a disposal cell that will prevent any tailings leachate from mixing with groundwater within the required 1000-year design life of the cell. Specifically, either designated maximum concentration limits (MCLs) or background concentrations (whichever is greater) will not be exceeded in the uppermost aquifer (the upper- and lower-middle hydrostratigraphic units of the Cedar Mountain Formation) at the point of compliance (POC). The POC is the downgradient edges of the engineered disposal unit.

The following sections summarize the major elements of the groundwater protection strategy.

E.1.1 DESIGN CONSIDERATIONS

The tailings will be placed in a mostly below-grade cell. The base of the excavation will be at an elevation of about 4098 feet, which is nearly 40 feet below existing grade. Groundwater is 10 to 12 feet below the base of the excavation. The bottom six feet of the cell will be filled with a compacted, select clean fill soil to retard the movement of contaminants to groundwater from the overlying contaminated materials. Above the buffer will be a layer of compacted windblown tailings (which will be mixed with clean soils) and a layer of compacted tailings.

A cover system will be constructed over the tailings. From bottom to top, the cover system will consist of three feet of compacted radon barrier, six inches of clean, compacted filter bedding, and one foot of rock for erosion protection. Collectively, the cover layers will limit infiltration of precipitation to 2 x 10^{-8} cubic centimeters per square centimeters per second (cm³/cm²s) or less, will protect from catastrophic erosion by the Probable Maximum Flood (PMF), and will control the release of radon from the cell. Degradation of the infiltration/radon barrier from freezing (via reduced density) will not occur because it is expected that the barrier will never be saturated. However, approximately 15 inches of the infiltration/radon barrier will lie beneath the calculated frost depth of 39 inches.

The disposal cell components (buffer, windblown materials, and tailings) will be placed at a moisture content that will result in an unsatuated hydraulic conductivity of 8 x 10^{-9} centimeters per second (cm²/s), which is less than the calculated saturated hydraulic conductivity (2 x 10^{-8} cm²/s) of the infiltration/radon barrier. By minimizing the amount of water used for compaction and dust control during construction, drainage of excess water from the cell will not be a concern (see Section E.2.1.2).

In terms of groundwater protection, the proposed disposal cell and protection strategy at the Green River site make maximum use of the following favorable natural conditions:

- An arid climate (average annual precipitation is six inches per year; estimated ratio of yearly precipitation to actual evapotranspiration is one).
- o Consistent, uniform fracturing of the foundation bedrock to prevent any perching of water in the cell and to promote drainage of runoff from the toe of the cell.
- Abundant, desirable secondary minerals on the fracture faces to attenuate any tailings seepage (although tailings seepage into the bedrock is not expected).
- o Strong, upward vertical hydraulic gradients in the saturated bedrock downgradient of the disposal site to minimize the downward migration of contamination (although contamination of the groundwater by tailings seepage is not expected).
- o A flow direction of groundwater beneath the disposal site toward the existing contamination from the old tailings pile.

In addition, the mostly below-grade disposal will maximize surface runoff and minimize infiltration into the disposal cell.

E.1.2 GROUNDWATER PROTECTION STANDARDS FOR DISPOSAL

There are three basic requirements for complying with the groundwater protection standard (40 CFR 192.02): (1) identification of the hazardous constituents within the disposal cell; (2) proposal of a concentration limit for each hazardous constituent; and (3) specification of the point of compliance.

Ten hazardous constituents (from Appendix IX of 40 CFR 264) within the tailings at the Green River site were identified from analyses of tailings pore water. These are cadmium, chromium, molybdenum, nickel, nitrate, selenium, uranium, vanadium, radium-226 and -228, and gross alpha activity. The proposed concentration limits for the ten hazardous constituents are listed in Table E.1.1, along with the U.S. Nuclear

Constituent	DOE proposed limits	Interim concentration limits	
Arsenic		0.05 (MCL)	
Cadmium	0.01 (MCL)	0.01 (MCL)	
Chromium	0.09 (Background)	0.05 (MCL)	
Lead	_	0.05 (MCL)	
Methylene chloride	-	0.005 (Background)	
Molybdenum	0.24 (Background)	0.1 (MCL)	
Nickel	0.09 (Background)	0.06 (Background)	
Nitrate	180 (Background)	60 (Background)	
Selenium	2.50 (Background)	0.66 (Background)	
Uranium-234/238	0.146 (Background)	0.044 (MCL)	
Vanadium pentoxide	0.38 (Background)	0.09 (Background)	
Radium-226/228	5.0 pC1/1 (MCL)	5.0 pCi/1 (MCL)	
Gross alpha (excluding uranium			
and radon)	195 pCi/l (Background)	24.5 pCi/l (Background)	

^aUnits are in milligrams per liter unless noted otherwise; pCi/l = picocuries per liter.

Regulatory Commission's (NRC) proposed interim concentration limits for hazardous constituents at the disposal site. Also, three additional hazardous constituents were included in the DOE's and NRC's list of constituents for the disposal unit. These constituents are arsenic, lead, and methylene chloride.

The concentration limits proposed by the DOE reflect the natural variability of the contaminant concentrations in background water quality samples from beneath the new disposal site. They are equal to one of the following: (1) the MCL for that constituent (established by the EPA); or (2) the maximum observed or statistical maximum background concentration for that constituent. The NRC's proposed interim concentration limits (see Table E.1.1) are statistical mean values rather than maximum values. The proposed interim concentration limits do not account for natural variability of the constituents as they presently occur in groundwater.

Natural variability in groundwater must be accounted for when sampling and analyzing for construction and performance monitoring, and in an assessment of what threshold concentration constitutes an excursion and subsequent corrective action. Therefore, the DOE will collect and analyze representative samples of groundwater from all monitor wells on a quarterly basis during construction of the disposal unit and collect and analyze representative samples of groundwater from the monitor wells and new wells at the point of compliance and background locations on a quarterly basis for two years after completion of the disposal unit. An excursion will therefore not be considered until the two years of quarterly monitoring have been completed. The details of the monitoring program will be presented in the surveillance and maintenance (S&M) plan or another appropriate document upon NRC concurrence with the S&M plan or other document.

The point of compliance at the Green River site will be the entire northwest and northeast edges of the engineered cell. Approximately 60 feet of rock riprap and select fill material will lie between the compacted tailings and the point of compliance.

E.1.3 PERFORMANCE ASSESSMENT

The proposed disposal cell design is intended to prevent the introduction of contaminants into groundwater by providing for leachate travel times from the base of the contaminated soil to groundwater in excess of the design life (1000 years) of the cell.

The NRC UNSAT2 computer model (NRC, 1983) was used to estimate the redistribution of moisture within the disposal cell with time. Examination of the moisture distribution with time allows conclusions to be drawn regarding the steady state moisture conditions within the disposal cell, the travel time of contaminants through the disposal cell, and the flux at the bottom of the disposal cell. Based on the modeling, the travel time for contaminants exiting the bottom of the disposal cell is over 1100 years. (A more detailed discussion of the disposal cell performance is presented in Section E.3.2.) Because leachate percolating from the disposal cell is not expected to reach groundwater within the design life of the cell, no degradation of groundwater quality as a result of the remedial action is anticipated.

E.1.4 CLOSURE PERFORMANCE ASSESSMENT

The DOE must demonstrate compliance with the closure performance standard (40 CFR 192.02(a)(4)) by showing that the need for further maintenance of the disposal site and cell has been minimized and that the disposal unit minimizes or eliminates releases of hazardous constituents to groundwater.

Natural, durable materials will be used to construct the cell so that long-term performance is ensured. Safety factors and conservative design assumptions have been considered in the design so that the cell should operate for longer than the required 1000-year design life.

The previous section (E.1.3) discussed how the disposal cell will prevent the release of hazardous constituents from affecting ground-water at the Green River site.

E.1.5 GROUNDWATER PERFORMANCE MONITORING PROGRAM

The DOE is required to describe an integrated monitoring program to be conducted before, during, and after completion of the remedial action to demonstrate that the initial performance of the cell complies with the groundwater protection standard and the closure performance standards.

The DOE will present a detailed groundwater monitoring program in the S&M plan for the Green River site. The main features of the monitoring program will include moisture monitoring in the tailings, windblown material and buffer layers, and saturated zone monitoring at the point of compliance. There is nothing that would physically preclude this program from being implemented.

An array of four neutron access holes for neutron logging will be used to monitor moisture within the tailings at different depths. The time-integrated moisture versus depth data will be used to estimate the unsaturated hydraulic conductivity of the tailings and the operative flux of moisture through the cell. The neutron access holes will also penetrate the windblown material and buffer layers. The schedule for neutron logging will be included in the Green River Surveillance and Maintenance Plan.

The compliance monitoring wells will be sampled quarterly during the first year following completion of the remedial action, semiannually for years two through six, and annually thereafter until the end of the performance monitoring period. Monitoring during the remedial action will take place semi-annually using wells placed during site characterization. The constituents to be analyzed from monitor well samples shall include all of the hazardous constituents presented in Section E.1.2, major anions and cations, and the standard suite of field parameters (alkalinity, pH, temperature, and specific conductance).

E.1.6 CORRECTIVE ACTION PLAN

The DOE is required to evaluate alternative corrective actions that could be implemented if the disposal monitoring program indicates that the disposal cell is not performing adequately (40 CFR 192.02(c)). The DOE should consider reasonable failure scenarios of the disposal cell and demonstrate that corrective actions could be implemented no later than 18 months after finding an exceedance of the groundwater protection standards.

The DOE has demonstrated that the disposal cell at Green River has been designed (and will be constructed) to perform for the mandated design life of 1000 years (see Section E.2.2.2). The design has incorporated standard safety factors and should therefore perform for at least 1000 years with minimal maintenance. There is therefore no "reasonable" failure scenario that would be related to catastrophic structural failure.

A potential "failure" of the cover system, in terms of groundwater protection, would be if the infiltration/radon barrier was not limiting infiltration to the design flux rate of $2 \times 10^{-8} \text{ cm}^3/\text{cm}^2\text{s}$. The best-case corrective action for this condition at Green River would be first to assess the potential impacts to groundwater at the flux rate, and then to assess the risks to human health and the environment should there be a potential impact. A preliminary risk assessment conducted for the Green River site (DOE, 1989a) indicated minimal pathways for human exposure to the potentially affected aquifers because of already poor quality groundwater within the aquifers. It is unlikely that any corrective action would be required at the Green River site such as reconstructing the cover system or active restoration of the affected aquifer(s) because of the minimal risk to human health or the environment. To finalize the preliminary risk assessment to include a specific failure scenario would take only a few months; this plus any other necessary corrective action (applying for alternate concentration limits (ACLs) for any hazardous constituents predicted to exceed the proposed concentrations limits) could be done within the 18-month action time frame. The worst-case corrective action scenario would require removal and replacement of the cover and possible groundwater cleanup.

An exceedance of the proposed concentration limit for any hazardous constituent at the point of compliance (as determined from saturated zone monitoring during the early stages of performance monitoring) would likely be a result of drainage of construction water. This would be verified by examining the moisture monitoring system in the tailings to be sure that excess moisture is not passing through the cell barrier. Since every effort will be made during construction of the cell to limit the amount of water added for compaction (per specific construction specifications) and dust suppression, an excursion at the point of compliance is considered highly unlikely, particularly when travel time of any contaminants through the bottom six feet of buffer (and foundation bedrock) is considered. Any excursion at the point of compliance detected by saturated zone monitoring would result in resampling and analysis at least once to verify the excursion. Details of these procedures will be presented in the S&M plan for Green River.

E.1.7 CLEANUP AND CONTROL OF EXISTING CONTAMINATION

The DOE and NRC consider that evaluation of groundwater cleanup of existing contamination (Subpart B of 40 CFR 192) at the Green River processing site should be deferred until after the EPA promulgates final groundwater protection standards, provided the DOE demonstrates that disposal may proceed independently of cleanup (Subpart B of the standards can be "decoupled" from Subpart A).

By defining existing and background water quality at both the processing and disposal sites, the DOE has demonstrated that the present water quality is distinguishable and any adverse impacts from the remedial action can be identified. In addition, construction of the disposal cell in no way precludes any future aquifer restoration activities from taking place, should active restoration be deemed necessary. Finally, because the period of construction is relatively short at Green River and the extent of existing contamination is almost entirely within the site boundaries (land owned by the State of Utah), there is very little or no risk that human health or the environment could be impacted by leaving the contamination in place during the interim period between remedial action and evaluation of groundwater cleanup. There are several methods of restoring the affected aquifers at the Green River processing site if it ever becomes necessary to do so. Because the source of contamination will be removed when the tailings are placed and stabilized at the disposal site, and background quality of groundwater in the affected aquifers is poor, the most appropriate method of restoring the aquifers is probably to allow the contamination to flush naturally and disperse downgradient from the site. Natural flushing may be used as the sole method for restoration, or it may be used in conjunction with any of a number of active restoration methods.

E-8

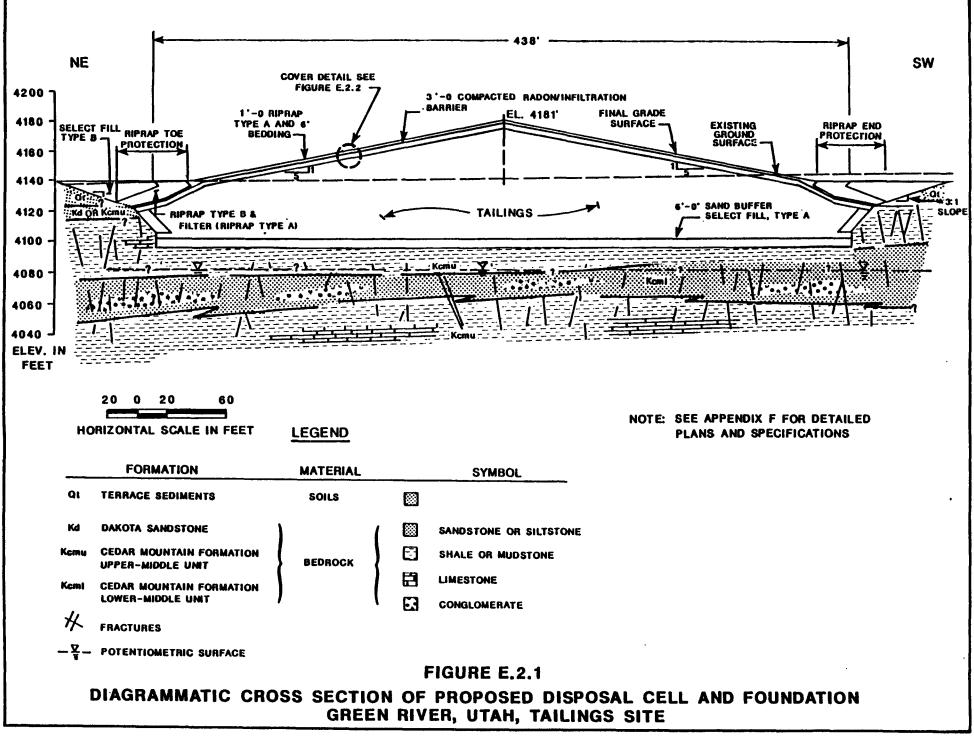
.

.

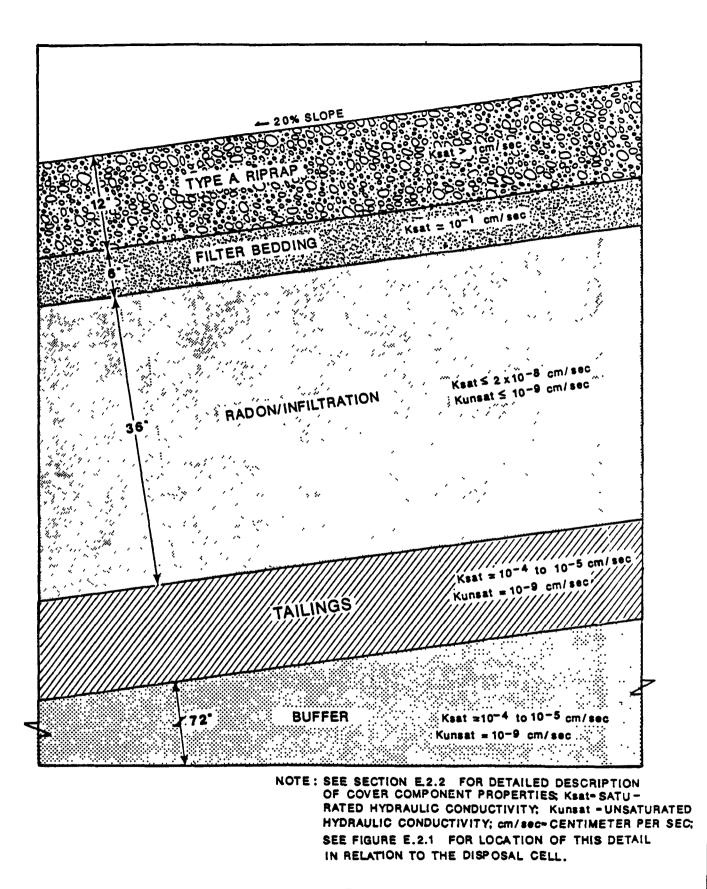
-

.

E.2 DISPOSAL CELL FEATURES TO PROTECT WATER RESOURCES


This section discusses natural site features and design considerations important in the performance of a disposal cell for protecting water resources at Green River. Details of the proposed disposal cell cover are presented in Section E.2.2. Design details and specifications are presented in Appendix F.

E.2.1 DESIGN CONSIDERATIONS


The disposal site is in a topographically high area 600 to 1200 feet south of the present tailings pile (see Figure D.5.1 of Appendix D). The present tailings surface is in the floodplain of Brown's Wash (elevation 4080 feet) and the proposed disposal site is 4140 feet in elevation at the existing grade. The tailings will be placed in a mostly below-grade disposal cell; the base of the excavation will be at an elevation of about 4098 feet. The disposal cell foundation (unsaturated bedrock) consists of moderately to highly fractured shale, mudstone, and limestone of the upper Cedar Mountain Formation to a depth of about 15 feet below the base of the excavation. Below this depth, the Cedar Mountain Formation is saturated and it consists of an additional 10 to 40 feet of moderately to highly fractured silty sandstone and sandstone conglomerate. A diagrammatic cross section of the proposed disposal cell and foundation is shown on Figure E.2.1. Figure E.2.2 shows the components of the cover system.

In terms of groundwater protection, the cell design makes maximum use of favorable natural conditions at the site. Some of the design and disposal site features and considerations include the following:

- o Mostly below-grade disposal of the tailings to limit the exposed area of the pile, and thereby minimize percolation of precipitation through the tailings.
- o Consistent, uniform, vertical fracturing of the foundation bedrock to prevent ponding ("bathtubbing") in the tailings, and promote drainage of runoff water from the toe of the cell.
- o Abundant, desirable, secondary minerals on the foundation fracture surfaces to attenuate tailings seepage in the unlikely event that seepage leaves the cell.
- o Strong, upward, vertical hydraulic gradients in the saturated bedrock downgradient of the disposal site to inhibit downward migration of contamination.
- o Flow direction in the shallow groundwater beneath the disposal site that is toward the present tailings pile and existing contamination.
- o Inclusion of a buffer layer to absorb contamination exiting the contaminated material and to separate contaminants further from groundwater.

E-10

FIGURE E.2.2 DISPOSAL CELL COVER SYSTEM GREEN RIVER, UTAH, TAILINGS SITE

- o Limiting the placement moisture content of the contaminated materials in order to prevent drainage of construction water.
- Placement of a tight clay cap and surface drainage layers that promote runoff and limit infiltration.

The following sections describe in more detail the site-specific natural features and design considerations important in the optimum performance of the proposed cell design to protect groundwater.

E.2.1.1 Climate

Climate is an important design consideration because of its effects on the quantity of water available to percolate through the tailings and potentially move contaminants to groundwater. The Green River site is semiarid and is therefore well-suited for tailings disposal.

Climate at the Green River site is discussed in detail in the environmental assessment (DOE, 1988c). The average annual precipitation at Green River was six inches for the period 1951 through 1980. Other climatological data as excerpted from the environmental assessment are: the average annual pan evaporation (60 inches per year); the average annual temperature (52°F); and the average snowfall (10 inches per year).

C. W. Thornthwaite Associates (1964) and the DOE (1983) have calculated the net infiltration of annual precipitation to groundwater (deep percolation) for Green River, Utah. Both studies independently calculated the ratio of yearly precipitation to yearly actual evapotranspiration to be unity; that is, no water percolates to the groundwater from precipitation. In reality, there is some very small discrete quantity of water that reaches the groundwater system when climate conditions allow deep percolation (i.e., sustained rainfalls or melting snow cover; Walton, 1970). This natural recharge occurs in topographically low areas where soils remain saturated for long periods (Freeze and Cherry, 1979).

Rush et al. (1982) estimated that one percent or less of the average annual precipitation in the Green River, Utah, area recharges the upper groundwater system. Rush et al. (1982) note that the recharge estimate is conservatively high because all of the soils within the study area were assumed to be coarse-textured and, therefore, to have a high potential for deep percolation. In addition, this nominal recharge was estimated to occur in low-lying areas within the basin, principally in drainages. One percent of the average annual precipitation at Green River is equal to 1.4×10^{-9} inch per second (4.8 $\times 10^{-9}$ centimeters per second, or cm/s).

The consumptive use of precipitation by vegetation is nominal in the Green River area because of the lack of rain-

fall and consequent lack of vegetation. For this reason, the rock cover proposed for the Green River disposal cell is appropriate. It is reasonable to believe that the disposal cell will limit infiltration through the tailings to a rate that is equal to or less than the conservative estimate of basin recharge by Rush et al. (1982). Additional discussion regarding cover infiltration and performance is presented in Section E.3.2.

E.2.1.2 Drainage of surface runoff and tailings water

Drainage of surface runoff

Precipitation that falls directly on the disposal cell will either evaporate, infiltrate into the tailings, or run off the cell through the rock riprap or filter bedding. The disposal cell and foundation must act to prevent leachate generation by the runoff water that could potentially accumulate at the contact of the disposal cell cover with the foundation embankment.

A conservative estimate of the quantity of runoff from the disposal cell cover system is 15.2 centimeters per year (cm/yr) (equal to the average annual precipitation) multiplied by the total area of the cell (4.4 acres; 1.8 x 10^8 cm²). Theoretically, this runoff could create a ring of ponding (below-grade) around the toe of the pile (see Figure E.2.1). Should ponding occur, the minimum infiltration (drainage) rate will be proportional to the vertical hydraulic conductivity of the bedrock, under a gradient of unity. For drainage considerations, a value of 0.2 foot/day $(7.1 \times 10^{-5} \text{ cm/s})$ was chosen to be a conservative value of the bulk (fractured) vertical hydraulic conductivity of the fractured foundation bedrock beneath the disposal site. This value is equal to the lowest calculated bulk horizontal hydraulic conductivity of the upper-middle hydrostratigraphic unit (see Table D.5.8 of Appendix D). Therefore, the minimum drainage rate would equal 7.1 x 10^{-5} cm/s. Making allowances for the geometry of the cell and the porosity of the bedding layer (assumed to be 0.25), the maximum potential ponding depth around the periphery of the cell would equal 74 cm (29 inches), or about 23 inches (maximum) ponding into the Type A riprap. The width of this ponding ring around the perimeter of the cell is very small (approximately one percent of the area of the tailings) and thus the ponding would have no affect on infiltration or leachate generation.

This estimate of maximum potential ponding is very conservative because it assumes (1) the buffer layer beneath the tailings is non-existent, when in reality the buffer layer will help drain any runoff from the toe of the cell and prevent preferential flow paths from developing; (2) a minimum calculated bedrock hydraulic conductivity; (3) no evaporation; and (4) no infiltration. A more likely condition is that a significant portion of the precipitation that falls on the cell will evaporate back to the atmosphere or infiltrate into the foundation rock and/or surrounding soil.

Drainage of tailings construction water

Tailings materials and windblown and other contaminated materials will be placed in the disposal cell in as dry of a moisture condition as practicable in order to minimize the potential impact of drainage of construction water. The discussion of analyses presented in Section E.3.2 shows that the actual placement moisture content of these materials will compare to the residual moisture contents determined from laboratory capillary retention data. Therefore, the drainage of tailings construction water has been considered in the overall groundwater compliance strategy.

E.2.2 DISPOSAL CELL DESIGN

The Green River disposal cell cover will consist of a series of layers on top of the compacted contaminated materials. Prior to placement of contaminated material, a layer of uncontaminated silty to clayey sand will be placed to cover the fractured bedrock surface of the excavation. The various layers, including the windblown and other contaminated materials and the unsaturated bedrock below the disposal cell, will act as a system that prevents contamination of the uppermost aquifer. The system is designed to limit the movement of moisture through the disposal embankment to less than the saturated hydraulic conductivity of the infiltration/radon barrier operating under a unit gradient.

In addition, the cover components prevent erosion of the disposal cell by stormwater runoff, limit the radon emanation into the atmosphere, and prevent ponding of water on the disposal cell surface by promoting rapid runoff of precipitation.

Figure E.2.1 shows a cross section of the tailings disposal cell. Details of the cover are shown in Figure E.2.2. The reasons for incorporating the individual components of the disposal cell and the design specification for each are discussed in this section. The performance of each component and the system are described in Section E.2.2.2.

E.2.2.1 <u>Cell components</u>

<u>Cell geometry</u>

The disposal cell surface area has been minimized by providing the deepest burial depth (below-grade) without compromising the depth from contaminated material to groundwater. Also, the steepest sideslope geometry that optimizes rock sizes for erosion control has been used. The topslope area has been minimized to the extent allowed by conventional construction equipment. All of this results in an optimized pile geometry that will minimize the amount of time that precipitation remains on the cell.

Erosion barrier (riprap)

The rock riprap will protect the disposal cell from erosion up to Probable Maximum Precipitation (PMP) surface water flows. No other design feature except possibly vegetated earthen covers can perform this task. At Green River the amount of rainfall is insufficient to support a vegetated cover (see Section E.2.1.1). The riprap will also serve the following functions:

- o To prevent deep drying of the underlying infiltration/ radon barrier and thus potential cracking.
- o To limit the amount of vegetation that can establish itself on the pile.
- o To provide frost protection to the underlying layers.

The quality of rock specified will meet NUREG/CR-4620 (Nelson et al., 1986) for durability and the layer will be sufficiently thick (12 inches) to provide adequate erosion protection (DOE, 1988b). Specifications for rock quality placement criteria and placement details are contained in Section 2278 of the Final Design, Appendix F.

Bedding layer

The bedding layer will consist of six inches of clean sand and gravel. It will perform in three ways: (1) by acting as a separator between the infiltration/radon barrier and the rock riprap during construction; (2) by allowing rapid runoff of surface water from rainfall over the radon barrier; and (3) by providing frost protection for the underlying layers. The material will have a design hydraulic conductivity of greater than one cm/s and be specified to meet NUREG/CR-4620 (Nelson, et al., 1986) durability criteria. Specifications for grading and placement are contained in Section 2278 of the Final Design in Appendix F.

Infiltration/radon barrier

The infiltration/radon barrier will consist of three feet of bentonite-amended, compacted clay soil obtained from the Elgin borrow source. The soils will be modified with six percent sodium bentonite and placed so that a minimum laboratory saturated hydraulic conductivity of 2 X 10^{-8} cm/s will be obtained. The upper portion of the infiltration/radon barrier along with the riprap and bedding material will act as frost protection to the lower portion. At least one foot of the infiltration/radon barrier will be maintained below the design frost depth. Specifications and details of the radon barrier processing, placement, and compaction are presented in Section 2200 of the Final Design, Appendix F.

<u>Tailings</u>

Tailings placed in the disposal cell will be compacted at a moisture content that is near the specific retention moisture content of the material. Compaction and environmental (dust control) water will be controlled so that the final in-place moisture content of the tailings is as near or below this value as practicable. The Final Design, Appendix F, provides specifications in Section 2200 for placement, compaction, and moisture control of contaminated materials.

Windblown and other contaminated material

The windblown and other contaminated material will be placed and compacted at a moisture content as near to the specific retention moisture content as practicable. These materials contain minor radioactive contamination but, as indicated by the laboratory batch and column leach tests, they do not provide significant contamination to the percolating water.

Buffer layer

Particle gradation of the buffer layer will be finer (as measured by the percent passsing the No. 200 sieve) than the tailings. The upper eight to ten feet of disposal cell excavation is considered a suitable source for this buffer layer. The moisture content at placement for this layer is 11 to 17 percent, which is also the predicted long-term steady state moisture content. Placement and compaction specifications are contained in Section 2200 of the Final Design, Appendix F.

E.2.2.2 Disposal cell longevity

The EPA standards (40 CFR 192) require that the disposal cell be designed for 1000 years where reasonably achievable, and in any case for at least 200 years. Natural, stable materials will be used in construction so that the long-term performance is ensured. Design techniques will be used that are suitable for periods much longer than the 1000 years required. Rock erosion protection has been sized and suitable, durable material selected that will perform adequately over the design life of the disposal cell. Bedding material has been selected using the same durability criteria as that of the rock. The material is sized to drain water rapidly, and oversizing is employed to provide a margin of safety from plugging by wind-blown silts. Also, the bedding is bounded on top by larger diameter riprap; should some plugging occur, it will enhance runoff in the rock riprap layer.

The radon barrier clays will be protected from erosion by the rock erosion protection and the bedding layer. Uniformity of hydraulic conductivity will be ensured by the addition of a small percentage of sodium montmorillonite (bentonite). All material placement and compaction has been specified to ensure that the disposal cell will be constructed as designed.

The final Remedial Action Plan (RAP), construction documents, and associated calculations are all prepared as documentation of the disposal cell performance. The effect of freezing and thawing was not documented in these supporting calculations. The following discussion demonstrates that the disposal cell cover will provide adequate protection from freezing and thawing cycles. A separate calculation has been performed to support this discussion and is retained at the DOE UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.

In order to determine the effect of frost penetration upon the cover design, it is necessary to determine the depth of frost penetration for the site and cover materials. Data necessary to determine depth of freezing include the minimum and maximum temperatures at the site, the geometry of the cover (specifically the thickness of each component), the dry density of each component, and the moisture content(s) at which the cover is performing.

Weather data

Historical weather data are available for Green River, Utah, from the National Oceanographic and Atmospheric Administration (NOAA). The Green River weather station is 1.5 miles west-northwest of the disposal site and at 4070 feet above mean sea level. The original grade at the site is 4154 feet above mean sea level. Based on the topography of the area, it is reasonable to assume that the site and the weather reporting station are in similar climatic areas and are not influenced by microclimatic (topographic) effects. Thirty-eight years of temperature data are available, of which 20 years provide sufficient annual data to be usable for analysis.

<u>Cover geometry and material properties</u>

The cover geometry analyzed was presented in Section E.2.2.1. The 12-inch-thick erosion protection layer has a dry density of 140 pounds per cubic foot. and being free-draining, will have a low moisture content estimated at five percent. The sand and gravel bedding material is also free-draining. The estimated dry density is 130 pounds per cubic foot and the moisture content is five percent. Since these are estimates based on typical values for soil and rock, sensitivity analyses are performed to observe the effect of cover geometry and material properties on frost depth. The infiltration/radon barrier will be placed at a dry density of not less than 110 pounds per cubic foot and will operate unsaturated near the optimum moisture content of 15 percent. Since some variation in the long-term moisture content of this material is anticipated, sensitivity analyses are performed varying the moisture content of the radon barrier material. Since the cover will be designed to maintain at least one foot of radon barrier below the calculated frost depth, no other soil properties are required for the analysis.

Analytical techniques

Published literature on frost depth provides various regional frost depth maps of the United States. One such map shows a frost depth of 32 inches for the Green River vicinity (U.S. Navy, 1982). Discussions with the Green River city engineer indicate that foundations and pipes are typically buried 36 inches below ground. For detailed analyses of the disposal cell cover design, a computer program developed by the U.S. Army Corps of Engineers Cold Regions Research and Engineering Laboratory was used. The program listing, along with the methodology employed in performing the analyses, is presented in "The Effect of Freezing and Thawing on UMTRA Covers" (DOE, 1988b). Results of the analyses are on file at the UMTRA Project office in Albuquerque, New Mexico.

Statistical curve-fitting techniques were used to extrapolate the historic recorded temperatures to obtain a 200-year return interval for the required weather data. The least squares linear regression was used because it provides a good "fit" for the data. This resulted in a predicted nonexceedance freezing index value of 1080 degree days, a 47.5°F mean annual temperature, and a 137-day duration of freeze.

Additional conservatism was added to the analyses by assuming that the coldest and longest freezing period occurs simultaneously with a dry period. Thus, insulating factors such as snow and ice accumulations in riprap were ignored.

<u>Results</u>

٠

Based upon the information and data presented in the previous sections, a frost depth of 38.7 inches was calculated for the Green River site. Variations of material properties for the rock riprap, bedding, and infiltration/radon barrier layers resulted in less than seven percent variance in the depth of freezing. Variations in climatic conditions as input parameters also resulted in less than seven percent variance in the depth of freezing.

The value selected for the depth of freezing is deeper than that used by local building officials and is considered a reasonable and conservative value for use at the Green River site. Although weather data are extrapolated for only 200 years, the calculated frost depth will have a longer return interval than 200 years since the insulating effect of snow was conservatively ignored.

E-20

.

•

E.3 DISPOSAL AND CONTROL OF RADIOACTIVE MATERIALS AND NONRADIOACTIVE CONTAMINANTS

E.3.1 GROUNDWATER PROTECTION STANDARD FOR DISPOSAL

For the Green River disposal site, three basic factors for complying with the groundwater protection standards are required (40 CFR 192.02). These are (1) determination of hazardous constituents within the disposal cell, (2) proposal of a concentration limit for each hazardous constituent, and (3) specification of the point of compliance. The following sections discuss these requirements.

E.3.1.1 <u>Hazardous constituents</u>

Appendix IX of 40 CFR 264 is a list of hazardous compounds and elements used in screening suspected contamination at land-based hazardous waste treatment. storage. and disposal facilities under the EPA's Resource Conservation and Recovery Act (RCRA) Program. The list in Appendix IX is also used to screen for contamination due to uranium mill tailings and ore processing. However, most of the hazardous compounds in Appendix IX are not normally associated with uranium mill tailings because they were intended primarily for screening RCRA hazardous waste sites. The proposed EPA groundwater standards for uranium mill tailings disposal at inactive sites (40 CFR 192) incorporate Appendix VIII of 40 CFR 264 by reference: Appendix VIII has been superseded by Appendix IX. In addition to the Appendix IX suite, molybdenum, nitrate, radium 226 and 228, uranium 234 and 238, and gross alpha activity are potentially hazardous constituents within uranium mill tailings, and should be considered during characterization (40 CFR 192.02(3)(i,ii)).

The hazardous constituents within the Green River tailings are related to both the uranium ore and the chemicals used in the milling process. Section D.5.2.8 of Appendix D, Site Characterization, discusses the milling process at Green River and the physical and chemical characteristics of the tailings. The following discussion of hazardous constituents within the Green River tailings is subdivided into inorganic and organic components. Table E.3.1 is a summary of the hazardous constituents identified within the Green River tailings.

Inorganic constituents

The inorganic constituents within the tailings at Green River are mostly metal and metalloid elements associated with the uranium ore. Those elements that should be considered include antimony, arsenic, barium, beryllium, cadmium, chromium, lead, mercury, selenium, silver, thallium, tin, and vanadium (40 CFR 264, Appendix IX). Of these elements, only

Constituent	Concentration pore water ^b	Concentration subpile ^c	Detection limit ^d	EPA MCLe	Standardf
Cadmium	0.032	<0.001	0.001	0.010	Title I
Chromium	1.88	0.03	0.01	0.05	Title I
Molybdenum	0.15	0.27	0.01	0.1	Title I
Nickel	25.3	0.05	0.04	none	Title I
Nitrate	2251	440	1	44	Title I
Selenium	0.15	0.76	0.005	0.01	Title I
Uranium	448.0	2.23	0.003	0.044	Title I
Vanadium	178.0	0.24	0.01	none	Title I
Radium-226					
and -228	NM	7.5 pC1/1	2.0 pC1/1	5.0 pCi/1	Title I
Gross alpha	NM	1200.0 pCi/1	0.2 pC1/1	15.0 pC1/1	Title I

Table E.3.1 Summary of hazardous constituents within uranium mill tailings at Green River, Utaha

^aAll concentrations are in mg/l unless noted otherwise.

^bData from lysimeter 714 (see Figure D.5.1 and Table D.5.22 of Appendix D). Values are arithmetic mean where two analyses are reported in Table D.5.22. "NM" means not measured.

^CMaximum reported value from Table D.5.14 of Appendix D for on-site alluvial monitor wells 702 and 808.

dLaboratory method detection limit.

e"None" means there is no MCL for that constituent.

f"Title I" refers to EPA proposed standards for remedial action at inactive (Title I) uranium processing sites (40 CFR 192). The MCLs established by 40 CFR 143 are the same as those in the State of Utah Drinking Water Standards for community water systems. arsenic (0.05 milligrams per liter, or mg/l), barium (1.0 mg/l), cadmium (0.01 mg/l), chromium (0.05 mg/l), lead (0.05 mg/l), mercury (0.002 mg/l), and selenium (0.01 mg/l) have associated MCLs (see Table D.5.1). Other inorganic elements and associated MCLs include: (from 40 CFR 192.02(3)(i,ii)) molybdenum (0.10 mg/l); nitrate as NO_3 (44 mg/l); radium-226 and -228 activity (5.0 picocuries per liter, or pCi/l); uranium-234 and -238 (30 pCi/l activity or 0.044 mg/l); and gross alpha activity (15 pCi/l). Based on acidic (low pH) pore water samples of the Green River tailings (see Table D.5.22 of Appendix D), values of the following inorganic hazardous constituents are higher than the proposed MCLs (see Table E.3.1):

- o Cadmium.
- o Chromium.
- o Molybdenum.
- o Nitrate.
- o Selenium.
- o Uranium.

Concentrations for the following inorganic hazardous constituents without MCLs are higher than laboratory method detection limits (see Table E.3.1):

- o Nickel.
- o Vanadium.

Originally, beryllium and thallium were not analyzed for in groundwater, tailings, windblown soils, or buffer materials at the Green River site. Both of these elements exist in trace quantities in nature. However, recently the DOE has evaluated whether beryllium and thallium are hazardous constituents in the contaminated materials (see Table D.5.27 of Appendix D). Representative samples of tailings, windblown soils, and buffer materials were collected and analyzed for these constituents. Laboratory analyses indicate that neither beryllium nor thallium is present in the contaminated materials. Consequently, these two constituents will not be included in the list of hazardous constituents at the disposal site.

Ammonium contamination was identified in the top hydrostratigraphic unit beneath the present tailings pile (see Section D.5.2.7 of Appendix D). Ammonium was used in the milling process (see Section D.5.2.8 of Appendix D) and may be present in the groundwater beneath the tailings by the chemical reduction of nitrate within the tailings to ammonium. Ammonium is present in much lower concentrations within the tailings pore fluid (see Table D.5.22 of Appendix D) than in concentrations presently in groundwater beneath the tailings (see Figure D.5.19 of Appendix D). Ammonium is not considered a hazardous constituent per Appendix IX of 40 CFR 264 or 40 CFR 143 and it has no associated MCL.

Organic constituents

Any organic compounds within the tailings would be present from processing activities. As discussed in Section D.5.2.8 of Appendix D, the sand tailings at Green River were leached with acid, and excess acid was neutralized with ammonia.

As discussed in detail in Section D.5.2.7 of Appendix D, a priority organic pollutant scan and analyses specifically for volatile and semi-volatile organic compounds were conducted on a sample from a lysimeter and several monitor wells at the tailings site. The analytical results showed no compounds to be present in confirmable concentrations (TAC, 1988). However, methylene chloride will be included in the hazardous constituents list because it is the breakdown product of several organic compounds, and has the potential to exist at the disposal site. Therefore, the DOE has added methylene chloride to the hazardous constituents list. The priority pollutant scan results and the other organic analyses are on file in the DOE UMTRA Project Office in Albuquerque, New Mexico.

E.3.1.2 Proposed concentration limits

The DOE intends to comply with the proposed EPA groundwater standards by meeting MCLs or background concentrations for those constituents identified in Section E.3.1.1 and summarized in Table E.3.1. Specifically, the proposed concentrations are as shown in Table E.1.1. Section E.3.2 will demonstrate that the disposal cell will perform adequately to prevent any long-term adverse impacts to groundwater beneath, or peripheral to, the disposal site.

Arsenic and lead have not been identified as hazardous constituents of concern at the Green River site, but they can be derived from the uranium milling process and have been evident at other UMTRA Project sites in excess of their respective MCLs. Consequently, the DOE will include these elements on the hazardous constituents list.

The proposed concentrations listed in Table E.1.1 were selected with consideration of the distribution of constituents in the upper-middle and lower-middle hydrostratigraphic units, both of which subcrop beneath the proposed disposal site (see Sections D.5.2.3 and D.5.2.5 of Appendix D). The quality of water in these two units beneath the disposal area is similar (see Section D.5.2.6 of Appendix D). Table E.3.2 is a summary of the descriptive statistical parameters for the background water quality at the disposal site. Monitor wells used to define the background water quality beneath the disposal site include 816 in the upper-middle unit and 562 and 813 in the lower-middle unit (see Figure D.5.1 of Appendix D for

Constituent	Number of samples, n	Arithme <u>t</u> ic mean, X	\overline{X} + 2s ^b	Observed maximum	Skewness
Cadmium	4	0.003	0.007	0.005	0
Chromium	11	0.03	0.09	0.09	1.057
Molybdenum	11	0.11	0.24	0.22	0.290
Nickel	4	0.06	0.09	0.09	1.155
Nitrate	11	90	180	173	0.161
Selenium	11	0.383	1.779	2.50	2.478
Uranium	11	0.0538	0.1252	0.1460	1.303
Vanadium	10	0.08	0.30	0.38	2.326
Radium-226 and -228	5	2.1 pCi1	4.5 pCi/1	3.9 pCi/l	0.438
Gross alpha	5	89 pCi/l	195 pC1/1	150 pC1/1	0.041

Table E.3.2 Descriptive statistical parameters for background water quality at the Green River UMTRA Project disposal site, Green River, Utah^a

^aAll concentrations are in mg/l unless noted otherwise. See Table E.l.1 for proposed concentration limits. Samples include water quality analyses from monitor wells 562, 813, and 816 from sample rounds 6/86; 9/86; 2/87; 10/87; 1/88; 5/88; and 7/88. See Figure D.5.1 of Appendix D for location of wells. ^bMean value plus two standard deviations from the mean.

> locations of the monitor wells). The following are detailed explanations of how the proposed concentration limits were determined.

Arsenic

The DOE does not propose a concentration limit for arsenic. Instead, the NRC's proposed interim concentration limit of 0.05 mg/l (MCL) will be utilized. This interim limit may be revised based on new monitoring data to be collected during and following construction of the disposal unit.

<u>Cadmium</u>

The DOE proposes an MCL of 0.01 mg/l for cadmium. Cadmium has been measured three times in monitor well 562, and once in well 813. The concentrations ranged from <0.001 to 0.005 mg/l.

Chromium

The DOE proposes a concentration of 0.09 mg/l for chromium. Chromium has been measured twice in the upper-middle unit and nine times in the lower-middle unit. The observed concentration range was <0.01 to 0.09 mg/l.The mean was 0.03 mg/l. The value of the mean plus two standard deviations from the mean was 0.09 mg/l.

<u>Lead</u>

The DOE does not propose a concentration limit for lead. Instead, the NRC's proposed interim concentration limit of 0.05 mg/l (MCL) will be utilized. This interim limit may be revised based on new monitoring data to be collected during and following construction of the disposal unit.

Methylene chloride

The DOE does not propose a concentration limit for methylene chloride. Instead, the NRC's proposed interim concentration limit of 0.005 mg/l (background) will be utilized. This interim limit may be revised based on new monitoring data to be collected during and following construction of the disposal unit.

Molybdenum

The DOE proposes a concentration of 0.24 mg/l for molybdenum, which is the mean concentration of 11 analyses plus two standard deviations from the mean. Molybdenum has been measured twice in the upper-middle unit and nine times in the lower-middle unit. The observed concentration range for these was 0.02 to 0.22 mg/l.

<u>Nickel</u>

Nickel has neither a proposed MCL (per 40 CFR 192), an EPA secondary drinking water limit, nor a state of Utah drinking water maximum concentration limit. Nickel has been measured three times in monitor well 562 and once in well 813. The arithmetic mean of the four values was 0.06 mg/l. The observed values ranged from 0.05 to 0.09 mg/l. The DOE proposes a concentration of 0.09 mg/l for nickel, which is the mean value plus two standard deviations from the mean; it is also the maximum observed value from the four analyses.

<u>Nitrate</u>

Nitrate has been measured twice in the upper-middle unit and nine times in the lower-middle unit. The observed concentration range for these analyses was 12 to 173 mg/l. The arithmetic mean of the eleven analyses was 90 mg/l. The DOE proposes a concentration of 180 mg/l for nitrate, which is the mean value plus two standard deviations from the mean.

<u>Selenium</u>

Selenium has been measured twice in the upper-middle unit and nine times in the lower-middle unit. Selenium concentrations have been highly variable in both of the units; the observed concentration range for the available analyses was <0.005 to 2.5 mg/l. The arithmetic mean of the eleven analyses was 0.383 mg/l. The DOE proposes a concentration of 2.5 mg/l for selenium, which is the maximum observed value from the 11 analyses.

<u>Uranium</u>

Uranium has been measured twice in the upper-middle unit and nine times in the lower-middle unit. The observed concentration range for the available analyses was 0.0074 to 0.146mg/l. The arithmetic mean of the eleven analyses was 0.0538mg/l. The mean value plus two standard deviations from the mean was equal to 0.125 mg/l. The DOE proposes a concentration for uranium of 0.1460 mg/l, which is the maximum observed concentration for uranium in the 11 background analyses.

<u>Vanadium</u>

Vanadium has been measured twice in the upper-middle unit and eight times in the lower-middle unit. The range of the available analyses was <0.01 to 0.38 mg/l. The arithmetic mean of the analyses was 0.08 mg/l. The mean value plus two standard deviations from the mean was equal to 0.30 mg/l. The DOE proposes a concentration for vanadium of 0.38 mg/l, which is the maximum observed concentration of the 10 background analyses.

Radium-226 and -228

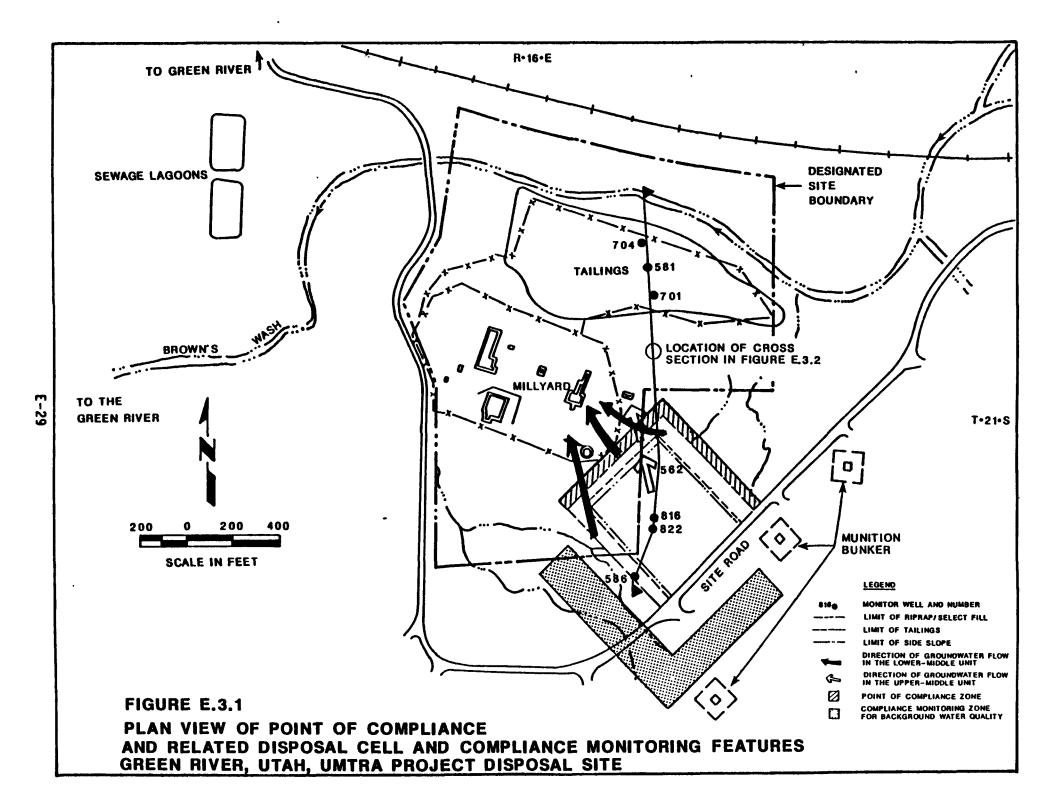
The DOE proposes an MCL of 5.0 pCi/l for radium -226 and -228. Radium activity has been measured once in the uppermiddle unit and four times in the lower-middle unit. The observed activity range for radium was 0.8 to 3.9 pCi/l for the five analyses.

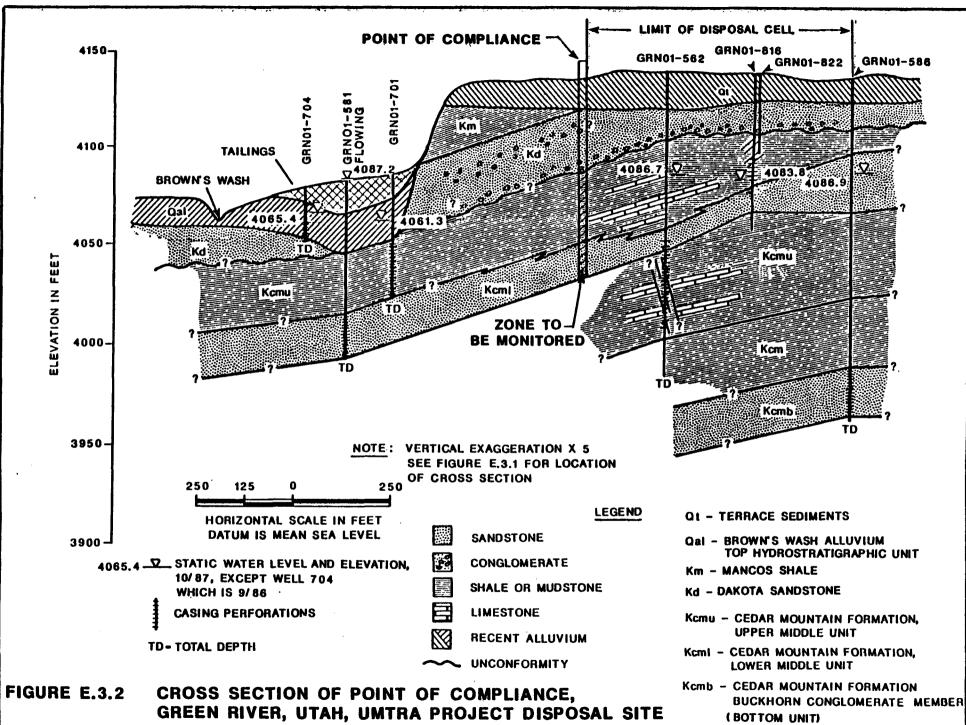
<u>Gross alpha</u>

Gross alpha activity has been measured once in the uppermiddle unit and four times in the lower-middle unit. Gross alpha activity ranged from 21.0 to 150.0 pCi/l for the five analyses. The arithmetic mean value of the analyses was 89.0 pCi/l. The DOE proposes an activity of 195 pCi/l for gross alpha, which is the mean value plus two standard deviations from the mean.

<u>Natural variation</u>

The DDE-proposed concentration limits and NRC-proposed interim concentration limits discussed in this section will be reviewed and updated following the two-year interim monitoring period following completion of the remedial action as necessary to reflect the additional background data. The measured concentrations have a natural variability associated with them and must be adequately assessed for planning purposes. Construction and performance monitoring will be discussed in more detail in Section E.3.4. A corrective action plan for the disposal site will be discussed briefly in Section E.3.5. Final details of performance monitoring and corrective action plans will be presented in a separate document (surveillance and maintenance plan) for the Green River site.


E.3.1.3 Point of compliance


The point of compliance at the Green River disposal site will be the entire northwest and northeast edges of the engineered cell as shown in Figures E.3.1 (plan view) and E.3.2 (cross section). Details of the number of monitor wells at this location and the frequency of sampling will be discussed briefly in Section E.3.4 and in detail in the forthcoming surveillance and maintenance plan for the Green River disposal site.

E.3.2 PERFORMANCE ASSESSMENT

The proposed disposal cell design as described in Section E.2 will prevent the introduction of contaminants into the groundwater by providing for leachate travel times from the base of tailings to the bottom of the disposal cell of between 450 to in excess of 1100 years. Due to the lack of understanding of the behavior of seepage in the vadose zone below rock-covered areas, as well as limitations of currently available groundwater (infiltration) models, a conservative approach to evaluating the pile performance was taken.

Travel time was estimated from the base of the tailings through the windblown and other contaminated material, and through the buffer layer. Credit for travel through the windblown and other contaminated material was taken because laboratory batch and column leaching tests on these materials indicate that they contain no significant leachable contamination (see the set of calculations accompanying this RAP). Travel time through the foundation bedrock cannot be accurately estimated due to fracturing. Because any leachate percolating through the tailings is not expected to reach groundwater within the design life of this cell, no degradation of groundwater quality as a result of remedial action is anticipated.

E-30

This section describes the analyses performed to evaluate seepage through the disposal cell and summarizes the impacts on disposal cell performance. The calculations performed for these analyses are retained in the DOE UMTRA Project Office, in Albuquerque, New Mexico.

E.3.2.1 <u>Conceptual model assessment</u>

In order to estimate the travel time of contaminated water to the groundwater and to evaluate the sensitivity of these analyses and associated assumptions, several approaches were used to predict the cell performance. Analyses of the redistribution of moisture through the cell were performed using UNSAT2 computer code (NRC, 1983). In addition, simplifying assumptions were made by assuming that the steady state travel time will be controlled by the least permeable layer (in this case the cover) and that the materials will operate at a flux equivalent to this saturated hydraulic conductivity under a unit gradient.

System geometry and boundary conditions

Figures E.2.1 and E.2.2 are diagrammatic cross sections depicting the cell cover, tailings, windblown, and other contaminated material, buffer layer, and foundation soils and bedrock. Detailed information about each of those components is provided in Section E.2.2 and D.4 of Appendix D.

It is assumed that moisture redistribution occurs in a vertical direction or one dimensional flow, due to the relative homogeneity of the materials and the large lateral extent of the cell in relation to its thickness. The cover layering consists of three feet of compacted infiltration/radon barrier, over 25 feet of compacted tailings, which in turn overlies 25 feet of compacted windblown and other contaminated material. Under this material is a six-foot-thick compacted buffer layer overlying 14 feet of bedrock between the base of the cell and the uppermost aquifer. Other aspects of the cover system and cell geometry are discussed in detail in Appendix B.

Other boundary conditions used for the UNSAT2 modeling include the presence of continuously available free water to the top of the infiltration/radon barrier. This is conservative, since historical meteorological data indicate that water from precipitation is only available four percent of the the time. This includes time for water to run off the cell following a rainfall event. Therefore, the upper boundary assumption is conservative. A lower boundary suction equivalent to 14 feet of suction was applied to the bottom of the cell, representing maximum capillary forces as influenced by the saturated condition in the uppermost aquifer. Since the bedrock is fractured between the cell base and the water table it is doubtful that full capillary forces will be developed. Varying this lower boundary between zero and minus 21 feet pressure head resulted in no significant change in the cell performance. The use of full capillary force due to the proximity of the uppermost aquifer is a conservative assumption.

For the simplified analysis it was assumed that water is continuously available to the top of the infiltration/radon barrier, that the infiltration/radon barrier operates in a fully saturated condition, and that the flux below the radon barrier is equivalent to the saturated hydraulic conductivity of the infiltration/radon barrier operating at a unit gradient.

<u>Material properties</u>

The results of capillary retention tests, saturated hydraulic conducitivity tests, and mechanical properties tests for the compacted infiltration/radon barrier, compacted tailings, compacted windblown and other contaminated material, and buffer are presented in Appendix D and Appendix G. Material properties were selected that are considered representative of the materials used to construct the disposal cell. Variations of material properties were assessed in selecting values used in the analyses. These material assessment calculations are retained in the DOE UMTRA Project Office, Albuquerque, New Mexico.

The measured retention data for each soil were used to estimate coefficients for van Genuchten's retention function using the RETC program (van Genuchten, 1984). The fitted retention function was then used to predict the unsaturated hydraulic conductivity as a function of moisture content. Results of the application of the RETC program to the retention data discussed above are on file at the DOE UMTRA Project Office, in Albuquerque, New Mexico. The parameters used to describe each soil are presented in Table E.3.3.

Part of this travel-time-related compliance strategy involves use of the windblown and other contaminated materials as part of the storage capacity of the percolating contaminated water. Therefore, this material should not be capable of producing contaminants when leached. In order to verify that this is indeed the condition of the windblown and other contaminated material, a series of batch and column leach tests were performed on samples considered representative of this material (see Appendix H). The results and interpretation of these tests are on file at the DOE UMTRA Project Office, Albuquerque, New Mexico. These tests confirm that the windblown and other contaminated material are not capable of producing significant amounts of contaminated leachate.

Parameter	Soil description					
	Infiltration/ radon barrier	Tailings	Windblown and other contaminated material	Buffer		
Compaction density, pcf (% of optimum)	100	90	95	96		
Saturated water content (%)	32.0	45.0	33.0	33.0		
Residual water content (Vol. %)	26.9	3.0	2.5	2.5		
α (fitted parameter) (l/cm)	0.0060	0.0050	0.0034	0.0034		
N (fitted parameter)	2.313	2.326	2.250	2.250		
Saturated hydraulic conductivity (cms)	2 x 10 ⁸	6 x 10 ⁴	1 × 10 ⁴	1 × 10 ⁴		

.

Table E.3.3 Hydrologic properties and parameters of the van Genuchten retention function used to describe the disposal cell soils, Green River UMTRA Project site

,

Analytical procedures

Immediately after construction, capillarv gradients created by contrasts in pore size and differences in initial moisture content between the foundation, buffer, and tailings would produce flux between these soils, and redistribution of moisture within each soil type. At some time after cell closure, moisture contents within the tailings, buffer layer, and foundation soils will be in equilibrium with the average flux through the infiltration/radon barrier. A combination of capillary and gravitational forces would produce a constant flux throughout the disposal cell profile. By placing the tailings at or near the steady state moisture content of the material. the drainage of contaminated water added due to construction will be minimized. However, it is not practical to specify the exact moisture content of the material as the residual moisture content is a low value (three percent) for the tailings and some water may be required for control of fugitive dust or other health concerns during construction.

One method of analyzing the cell performance that accounts for such transient seepage is the use of the UNSAT2 computer code (NRC, 1983). Boundary conditions and material properties used for the analysis are discussed in the previous two subsections. Analyses were peformed setting the initial suctions of the tailings at values equivalent to volumetric moisture content of five percent (residual moisture content) and 7.1 percent (that obtained during construction). For the buffer and windblown and other contaminated material, the initial suction was set at an equivalent volumetric moisture content equal to 10.6 percent (that obtained during construction). The radon barrier initial suction was set equal to a moisture content equivalent to that of optimum plus three percent. The results of these analyses indicate that the flux from the bottom of the cell reaches steady state at 8 \times 10⁻⁹ cm³/cm²s after 100 years for the tailings placed at a higher higher moisture content. Equilibrium was not reached for the lower moisture content material. However, there is little difference in flux rate between the two placement moisture contents for flux rates greater than 8 X 10^{-9} cm³/cm²s.

A closer examination of the modeling indicates that the higher flux rate exiting the bottom of the cell, which occurs during the first 30 to 40 years, is a result of drainage of excess moisture from the buffer. The tailings do not show a change in moisture content from placement conditions until long after the equilibrium flux from the bottom of the cell has been established. Therefore, the rate of contaminant movement prior to equilibrium can be considered equal to the unsaturated hydraulic conductivity of the lowermost tailings material operating at a head equal to the suction imposed in the material. For the Green River tailings placed at 7.1 percent volumetric moisture content this corresponds to 5 X 10^{-9} cm/s at a gradient of near unity. Thus, the placement of tailings materials at or slightly above the long-term moisture content will result in no significant movement of contaminants from the tailings above those predicted for steady state conditions.

Based on the steady state flux rate predicted by UNSAT2 (8 X 10^{-9} cm³/cm²s) and the flux rate equivalent to the saturated hydraulic conductivity of the radon barrier acting under a unit gradient (2 X 10^{-8} cm³/cm²s), the travel time through the windblown material and buffer is calculated to be 1130 and 450 years, respectively. The details and analyses described above are retained in the DOE UMTRA Project Office, Albuguergue, New Mexico.

Discussion

The steady state groundwater travel time through the buffer is estimated to exceed 1000 years and in any case more than 450 years. Because this estimate assumes that the bedrock foundation drains freely, it is considered to be a conservative lower bound. As discussed above, lack of data on the unsaturated hydraulic properties of the bedrock precludes a better estimate of lower boundary pressure, or an accurate estimate of travel time through the four meters of bedrock separating the buffer from the water table. However, assuming an effective porosity of five percent, transport of any hazardous constituents from the base of the buffer to the water table under a flux of 2 X 10^{-8} cm/s will require an additional 120 years.

Because the placement moisture contents for each soil will be equal to or less than those used in the analyses, transient redistribution of water within the cell will not create downward flow of contaminants which exceed the steady state rate. Steady state velocities will therefore provide a conservative estimate of travel time. Furthermore, the conservative upper boundary assumptions made for the analyses cause the predicted travel times to be greatly overestimated. If no downward flow is assumed during periods when water is not present atop the pile, the travel time can be extended by a factor of 25.

E.3.2.2 Impacts summary

No degradation of groundwater quality will occur as a result of the proposed remedial action for at least 450 years and probably in excess of 1000 years at the Green River UMTRA Project site.

E.3.3 CLOSURE PERFORMANCE ASSESSMENT

The DOE must demonstrate compliance with the closure performance standard (40 CFR 192.02(a)(4)) by showing that the need for further maintenance of the disposal site and cell has been minimized and that the disposal unit minimizes or eliminates releases of hazardous constituents to the groundwater.

The durability and longevity of the cell has been demonstrated and discussed in Section E.2.2.2. Section E.3.2 demonstrates and discusses the adequacy of the disposal cell design to protect groundwater resources at the Green River site.

E.3.4 GROUNDWATER PERFORMANCE MONITORING PROGRAM

The DOE will present a detailed groundwater monitoring program in the S&M plan for the Green River site. This section briefly describes the program and demonstrates that implementing such a program is feasible at the Green River site. The main features of a performance monitoring program include tailings moisture monitoring and saturated zone monitoring. These features are described as follows.

E.3.4.1 <u>Disposal cell moisture monitoring</u>

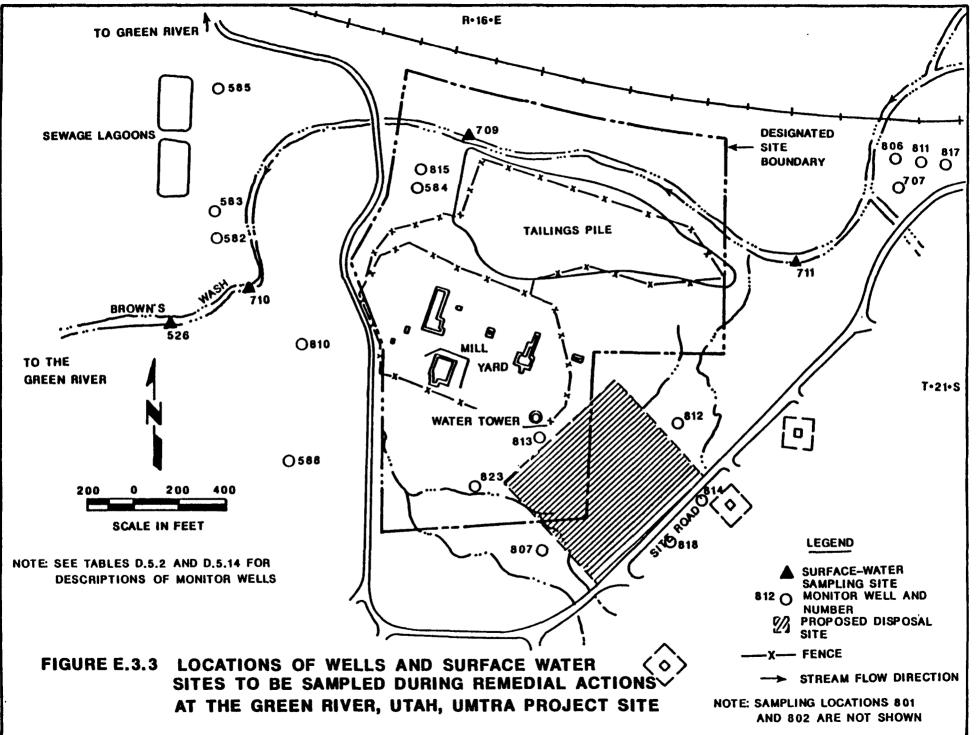
A disposal cell moisture monitoring program will be implemented to demonstrate that the net flux of moisture through the tailings, windblown materials, and buffer is near 2×10^{-8} cm/s, as described in detail in Section E.3.2. Details of such a system will be presented in the S&M plan.

A higher cell moisture flux at the Green River site would pose a low relative risk to humans or the environment. Four neutron access holes for neutron moisture logging will be used to monitor moisture within the tailings. windblown materials. and buffer layer at different depths. The time-integrated moisture versus depth data will be used to estimate the unsaturated hydraulic conductivity of the materials. This type of monitoring equipment has been used successfully at the Shiprock UMTRA Project site (DOE, 1989a; Section E.3.2) to saturation) of the relate moisture content (percent infiltration/radon barrier unsaturated hvdraulic to conductivity of the radon barrier.

E.3.4.2 <u>Saturated zone monitoring</u>

The upper- and lower-middle hydrostratigraphic units of the Cedar Mountain Formation will be monitored using standard monitor wells at the designated point of compliance (see Section E.3.1.3). There is nothing at the Green River site that would physically preclude wells from being installed at the designated point of compliance. The pattern of monitor wells (or well pairs) will be presented in the S&M plan. Because of the fractured nature of the Cedar Mountain Formation, wells or well pairs shall be spaced closer together than if the aquifer was homogeneous and isotropic. Well or well pair spacing likely will be on the order of 80 to 100 feet apart at the point of compliance. This relatively greater density of wells is consistent with the procedures outlined in the "Guidance for UMTRA Project Surveillance and Maintenance" (DOE, 1986).

Performance monitoring frequency is also outlined in the guidance document (DOE, 1986). Compliance wells shall be sampled quarterly the first year following completion of remedial action activities, semi-annually for years two through six, and annually thereafter until the end of the performance monitoring period.


Monitoring during remedial action activities shall take place semi-annually. Samples shall be taken from the wells shown in Figure E.3.3. The wells shown in Figure E.3.3 will be retained for post-closure monitoring, but they will not be sampled as frequently as the proposed performance monitoring wells at the point of compliance. Figure E.3.3 also shows surface water sites to be sampled.

The constituents to be analyzed shall include all of the hazardous constituents listed in Table E.3.1 and E.1.1. In addition to these, major anions and cations will be analyzed together with the standard suite of field parameters. A detailed list of constituents will be presented in the S&M plan.

As discussed in Section E.3.1.2, a natural variability is associated with the proposed concentration limits for the hazardous constituents at the Green River site. This natural variability must be considered when defining excursions, and should be updated as more background water quality data become available. This approach is consistent with the S&M guidance document (DOE, 1986). Details on the variability of concentrations for each hazardous constituent will be presented in the S&M plan. Also, more background water quality data will be available at that time, and will be considered in the analysis of variability.

E.3.5 CORRECTIVE ACTION PLAN

The DOE is required by 40 CFR 192.02(c) to provide an evaluation of alternative corrective actions that could be implemented if the disposal monitoring program indicates that the disposal unit is not performing adequately. The DOE should consider reasonable failure scenarios of the disposal unit and demonstrate that corrective actions could be implemented no later than 18 months after finding an exceedence of the groundwater protection standard.

As discussed previously in Section E.2.2, the Green River disposal cell has been designed and will be constructed to perform for the mandated design life of 1000 years. The design of the cell has incorporated standard safety factors, and should therefore perform for a period of greater than 1000 years with minimal maintenance. With this in mind, there is no "reasonable" failure scenario for the Green River cell that would be related to structural instability or failure. It is conceivable, however very unlikely, that the net flux of moisture through the cell could exceed the anticipated steady state flux of 2 x 10^{-8} cm/s (see Section E.3.2). The disposal cell moisture monitoring program planned at Green River (see Section E.3.4.1) is designed to provide early warning of this condition. If it is determined that the moisture profile within the tailings is wetter than anticipated (within some reasonable bounds to be specified in the S&M plan), an assessment of the projected flux rate through the cell at that higher moisture content will be made to determine the potential effects on groundwater. if any.

If it is determined that there are potential adverse effects to groundwater quality, a risk assessment will be performed to determine the potential threat to human health and the environment, if any. A preliminary risk assessment has already been done for the Green River site (DOE, 1989b). The risk assessment could be finalized to include any specific constituents or pathways into the analysis in two to three months. Based on the findings of the preliminary risk assessment, the ambient water quality upgradient and peripheral to the disposal site is not usable. Therefore it is likely that any exceedences of the proposed concentration limits (see Section E.3.1.2) will not constitute an additional threat to human health and the environment. In addition, the disposal site lies immediately upgradient of the present tailings pile and existing contamination. Institutional control of existing contamination from uranium milling processes at Green River, or active restoration of the contaminated aquifers, would necessarily include any potential contamination releases from the disposal cell. The need for aquifer restoration at the Green River site will be addressed in a separate process to comply with Subpart B of the final EPA groundwater standards. Section E.3.6 addresses this subject in greater detail.

Finally, geochemical conditions in the potentially affected aquifers at the Green River site immediately downgradient of the disposal cell are favorable for attenuating redox-sensitive contaminants. This condition is presently reducing uranium and nitrate concentrations in the upper-middle unit beneath the existing tailings pile. Geochemical conditions are discussed in detail in Section D.5.2.9 of Appendix D.

In summary, a corrective action plan for the Green River disposal site contains the following main elements:

- (1) Monitor moisture flux through disposal cell.
- (2) If moisture content exceeds the acceptable value (to be specified in the S&M plan), assess the potential impacts of the higher cell moisture flux.

(3) Request ACLs for any constituents predicted to exceed the proposed concentration limits (based on a risk assessment) or provide for corrective actions such as cover redesign and construction (e.g., with a CLAYMAX infiltration barrier) if a positive health risk is assessed.

Any exceedence of the proposed concentration limits at the point of compliance, as determined from saturated zone monitoring during the early stages of performance monitoring, would likely be a result of the drainage of water applied to the tailings during construction. Since every effort is being made to minimize this condition (see Section E.2.1.2), an excursion at the point of compliance is considered unlikely, especially when the travel time through the buffer material and foundation bedrock are considered (see Section E.3.2). If there is an excursion at the point of compliance, the corrective action plan would be the same as that for the unsaturated zone monitoring system.

The corrective action plan for the Green River disposal site will also be presented in the S&M plan.

E.3.6 CLEANUP AND CONTROL OF EXISTING CONTAMINATION

Subpart B of 40 CFR 192 requires that the DOE perform a groundwater cleanup evaluation of existing contamination at the Green River processing site. The DOE and NRC consider that evaluation of groundwater cleanup should be deferred until after the EPA promulgates final groundwater protection standards, provided that disposal may proceed independently of cleanup. This section addresses two issues: (1) demonstration that the DOE may proceed with disposal independently of cleanup ("decoupling"); and (2) potential restoration methods that could be employed at the Green River site should restoration be deemed necessary.

E.3.6.1 <u>Decoupling</u>

Section D.5.2.7 of Appendix D addresses the extent of existing groundwater contamination from uranium milling activities at the Green River processing site. Sections E.3.1.3 and E.3.4 address the programs to monitor groundwater quality peripheral to the disposal cell during and after remedial actions. Given that the water quality has been established at both the old tailings site and at the disposal site, the DOE has demonstrated that existing contamination and any future contamination resulting from disposal activities can be distinguished and appropriate corrective actions can be taken to control any contamination resulting from disposal activities (see Section E.3.5).

Finally, because the period of construction activities is relatively short at the Green River site, and the extent of existing contamination is mostly within the site boundaries, there is little chance that human health or the environment could be affected by leaving the contamination as is during the interim period between remedial action activities and the evaluation of groundwater cleanup.

E.3.6.2 Potential restoration methods

:

Active restoration methods fall into two general categories: (1) above-ground removal methods, wherein the contaminated water is removed from the aquifer, treated, and either disposed of, used, or reinjected into the aquifer; and (2) in situ methods, such as the addition of chemical lixiviants to mobilize the contamination in the subsurface aquifer system. An aquifer restoration program at the Green River site may involve one or more of the restoration methods discussed below.

Extraction

Contaminated groundwater can be extracted with wells or trenches. The use of trenches is limited to relatively shallow contamination (generally less than 50 feet deep) and is most useful in materials with low permeability. For most cases where the contamination is in permeable materials and in cases of low permeability but deep contamination, wells are the preferred extraction method.

Treatment

The need for treatment prior to discharge or reinjection into an aquifer depends upon the concentrations of contaminants in the extracted groundwater and the regulations regarding discharge of effluent to surface and groundwater. Various methods for treating the contaminated water are available. Most of the treatment methods are chemical. These include chemical precipitation, coagulation, ion exchange, flocculation, neutralization, sorption, and reverse osmosis. Contamination can be separated physically from water using evaporation ponds. Biological treatment can be used to transform nitrate to nitrogen gas and oxygen gas. The preferred treatment methods depend on the specific mix of contaminants, the concentration of the contaminants, the general water quality, the volumetric flow of the treatment stream, and the available area for treatment facilities.

<u>In situ treatment</u>

In addition to above-ground treatment, two in situ treatment methods may be applied. These are lixiviant injection and permeable treatment beds or walls. Both methods can be used to cause reducing geochemical conditions, which would cause the trace metal contaminants to precipitate or absorb out of solution into the solid phase. Although chemical reduction could reduce solute concentrations to less than the appropriate concentration limits, dissolution or desorption could occur as the geochemical environment reequilibrates. Therefore, chemical reduction does not provide long-term assurances that adequate water quality could be maintained. The preferred in situ treatment would result in mobilizing contaminants by causing oxidizing conditions so that contaminants can be removed expeditiously from the subsurface. Permeable treatment beds or walls cannot be used effectively for this purpose.

A lixiviant is a solution of complexing species (either ions or molecules) that enhance the solubility of species (metals) to be removed from the aquifer during restoration. Injection of oxidizing lixiviants containing hydrogen peroxide or oxygen to oxidize the system and sodium bicarbonate to increase the pH may be useful for removing contaminants that may leach from the solid phase. Although this technology is unproven, it may be the only practicable method to remove trace metal contamination, primarily in the solid phase, that leaches to the groundwater at concentrations above the acceptable concentration limits.

Lixiviants would be introduced by injection or infiltration upgradient of the contamination. The lixiviant would move through the contaminated zone, interact with the liquid and solid phases, become impregnated with contaminants, and be extracted at the leading edge of the contaminant plume.

<u>Discharge</u>

Following the extraction, or extraction and treatment, of contaminated water, the water would be discharged. Options for discharge include:

- o Discharge to surface water.
- o Infiltration.
- o Injection in shallow wells.
- o Injection in deep wells.

Natural flushing

Natural flushing is a passive restoration method whereby dissolved or precipitated contaminants in groundwater are dispersed or removed over time by the natural flow of groundwater. Under Subpart B of the proposed EPA standards, passive restoration may be permitted if it can be demonstrated that natural flushing can occur within a period of 100 years or less and that the groundwater is not now and is not projected to be used for a community water supply (or other substantial use) within this period. Natural flushing may be employed as the sole method for aquifer restoration, or it may be used in conjunction with any of the active restoration methods described above. Natural flushing may be the most logical way to approach groundwater restoration at the Green River site.

.

.

E-44

•

•

•

REFERENCES

- C. W. Thornthwaite Associates (Laboratory of Climatology), 1964. "Average Climatic Water Balance Data of the Continents," Part VII, United States, in <u>Publications in Climatology</u>, Vol. XVII, No. 3, Technical Report No. 7, National Science Foundation, Contract C266, Centerton, New Jersey.
- DOE (U. S. Department of Energy), 1989a. "Moisture Contents and Unsaturated Conditions in UMTRA Project Radon Barriers," DOE UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.
- DOE (U. S. Department of Energy), 1989b. Preliminary draft, <u>Alternate Concen-</u> <u>tration Limits, Supplemental Standards, and Institutional Controls for the</u> <u>Department of Energy's UMTRA Project</u>, report in progress by the DOE UMTRA Project Office, Albuguergue Operations Office, Albuguergue, New Mexico.
- DOE (U. S. Department of Energy), 1988a <u>Technical Approach Document</u>, UMTRA-DOE/AL-050425.0002, DOE UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.
- DOE (U. S. Department of Energy), 1988b. "Effect of Freezing and Thawing on UMTRA Covers," UMTRA-DOE/AL-400642.0000, DOE UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.
- DOE (U. S. Department of Energy), 1988c. "Environmental Assessment of Remedial Action at the Green River Uranium Mill Tailings Site, Green River, Utah," DOE/AL-0343, DOE UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.
- DOE (U. S. Department of Energy), 1986. <u>Guidance for UMTRA Project Surveil-</u> <u>lance and Maintenance</u>, DOE UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.
- DOE (U. S. Department of Energy), 1983. Unpublished report, <u>Environmental</u> <u>Assessment</u> prepared by Ford, Bacon and Davis Utah, Salt Lake City, Utah, and Sandia National Laboratories, Albuquerque, New Mexico, for the DOE UMTRA Project Office, Albuquerque Operations Office, Albuquerque, New Mexico.
- Freeze, R. A., and T. A. Cherry, 1979. <u>Ground Water</u>, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
- Hurlbut, C. S., and C. Klein, 1977. <u>Manual of Mineralogy</u>, 19th Edition, John Wiley and Sons, New York, New York.
- NRC (U. S. Nuclear Regulatory Commission), 1983. "Documentation and User's Guide: UNSAT2--Variably Saturated Flows Model, Final Report," NUREG/ CR-3990 WWL/TM-1791-1, U.S. Nuclear Regulatory Commission, Washington, D.C.
- Nelson et al. (J. D. Nelson, S. R. Abt, R. L. Volpe, D. vanZyl, N. E. Hinkle, and W. P. Staub), 1986. "Methodologies for Evaluating Long-Term Stabilization Design of Uranium Mill Tailings Impoundments," NUREG/CR-4620, U.S. Nuclear Regulatory Commission, Washington, D.C.

- Rush et al. (F. E. Rush, M. S. Whitfield, and I. M. Hart), 1982. <u>Regional</u> <u>Hydrology of the Green River-Moab Area, Northwestern Paradox Basin, Utah</u>, U.S. Geological Survey Open File Report 82-107, Denver, Colorado.
- USGS (U.S. Geological Survey), 1970. <u>The Natural Atlas of the United States</u> of <u>America</u>, Department of the Interior, Washington, D.C.
- U.S. Navy (Department of the Navy, Naval Facilities Engineering Command), 1982. "Design Manual 7.1," NAVFAC DM-7.1, Alexandria, Virginia.
- van Genuchten, R., 1978. "Calculating the Unsaturated Hydraulic Conductivity With a New Closed-Form Analytical Model," Department of Civil Engineering, Princeton University. Report No. 78-WR-08.
- Walton, W. C., 1970. <u>Groundwater Resource Evaluation</u>, McGraw-Hill Book Company, New York, New York.

•