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CHAPTER I 

INTRODUCTION 

In thin metal films where the mean free path is on the 

order of the dimensions of the sample, one must consider the 

effects- of boundary scattering in problems of electron trans-

port. 

Sondheimer (4) has treated the case of conductivity in 

thin samples with a transverse magnetic field. In particular, 

he predicted oscillations in the Hall effect and transverse 

magnetoresistance as a function of magnetic field with the 

magnetic field applied perpendicular to the plane of a thin 

conducting plate. 

In 1963, large-amplitude oscillations periodic in the 

magnetic field were found in the Kail resistivity of cadmium 

single crystals at liquid-helium temperatures by Zebouni, 

Hamburg, and Mackey (5). Oscillations of the same period 

and comparable amplitude were also observed in the transverse 

magnetoresistivity. These phenomena appeared to be the size-

effect oscillations predicted by Sondheimer. 

Mackey, Sybert, and Fielder (1) observed oscillations 

in the Hall resistivity in a monocrystal of highly pure 

cadmium at liquid-helium temperatures with the magnetic field 

parallel to the hexagonal axis, which was perpendicular to 



the large face of the thin sample used. The dependence on 

thickness parallel to the magnetic field was studied in the 

period, phase, and amplitude of the oscillations. It was 

concluded that the lens-shaped pocket of electrons, whiclfi 

occurs in the third Brillouin zone of cadmium, was respon-

sible for the observed oscillations. 

Attempts to observe short-period oscillations observed 

by other researchers (1) failed. During this search, it was 

found that the amplitude of the size-effect oscillations was 

larger if the surface of the crystal had a spark-planed 

finish rather than an electropolished finish. The signal 

could also be. enhanced if the electropolished surface were 

abraded with fine emery cloth. This enhancement in aplitude 

implied that an appreciable number of electrons scatter 

specularly at an electropolished surface, since only dif-

fusely scattered electrons can contribute to the size-effect 

oscillations. It was suggested that a very thin distorted 

layer at the crystal surface may be necessary to observe the 

short-period oscillations. 

Mackey and Sybert (2) have treated the effect of 

partially specular boundary scattering upon the magneto-

oscillatory component of the kinetic coefficients for the 

case of Fermi surfaces which are figures of revolution about 

the normal to the plane of a thin crystal, with magnetic 

field directed along the normal. It was shown that the 

oscillations consisted of the superposition of a fundamental 



and all its harmonics. Explicit expressions were given for 

the amplitude dependence upon the fraction of electrons which 

scattered specularly. In particular, it was shown that only 

the fundamental was present for the case of completely dif-

fuse scattering, in which scattering angle is .independent of 

angle of incidence. 

Mackey and Sybert (3) have also considered the oscil-

latory components of the kinetic coefficients of electron 

transport due to scattering from two crystalline surfaces 

described by distinct scattering parameters for the case of 

Fermi surfaces which are surfaces of revolution about the 

normal to a thin crystal with magnetic field directed along 

the symmetry axis. Explicit expressions were derived for 

the dependence of the amplitudes of the various harmonics 

which arise upon the scattering parameters. The amplitudes 

of the harmonics were predicted to be very small as compared 

to the amplitude of the fundamental size-effect oscillation. 

For this reason, detection had not been possible to that 

time. 

Based on the previously obtained results of Fielder (1) 

it was hoped that a suitable method for increasing the dif-

fuse scattering at one of the surfaces could be found and 

that this technique could be used to detect the higher 

harmonics of the size-effect oscillation by controlling the 

scattering parameters at each surface of a crystal of cadmium. 



In the present investigation, zinc was plated onto a 

cadmium crystal to determine the effect on the scattering 

parameter. Measurements of the size-effect oscillation were 

performed with respect to amplitude and period as a function 

of the angle between the magnetic field and the crystal 

normal. The effect of varying thicknesses of zinc plating 

on one of the crystal surfaces was studied and a search for 

the second harmonic of the size-effect oscillation was 

undertaken. 

The equation of the Fermi surface in the third Brillouin 

zone is calculated from a perturbation equation developed by 

Ziman. From this equation the Gaussian radius of curvature 

is calculated for points on the Fermi surface between plus 

ninety and minus ninety degrees as measured from the normal 

to the crystal. Measurements are made of the period of the 

size-effect oscillations between plus twelve and one-half 

degrees and minus sixteen degrees and the experimental values 

of the Gaussian radius of curvature are calculated and are 

compared with the theoretical values. 
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CHAPTER II 

EXPERIMENTAL PROCEDURE 

The orientation of the hexagonal axis of a crystal in 

an ingot of 69-grade cadmium obtained from Cominco Products, 

Inc., Spokane, Washington was determined by means of Laue 

photographs taken with the aid of a Norelco X-ray generator 

equipped with a Polaroid XR-7 cassette. 

The crystal was separated from the ingot and attached 

to a special goniometer, which was fitted to the X-ray 

generator. A series of Laue diffraction photographs was 

taken at twenty kilovolts and twenty milliamperes. (Higher 

voltages resulted in fogging of the film and the indicated 

current gave suitably bright photographs in five minutes.) 

The crystal was oriented by means of the Laue photographs so. 

that the X-ray beam was parallel to the hexagonal axis. Once 

the goniometer was adjusted so that the X-ray beam" was 

directed down the hexagonal axis of the crystal, the goni-

ometer was locked down in that position and removed from the 

X-ray generator. 

The goniometer was mounted onto a Servomet Spark Machine 

manufactured by Metals Research Ltd., Cambridge, England and 

the crystal was planed by means of a spark-planing wheel to 

establish a reference surface. The crystal was then removed 



and cemented onto the goniometer with the reference surface 

against the goniometer surface. The goniometer was set on 

(0,0) and another Laue photograph was taken to check the 

orientation of the crystal. In this manner, the X-ray beam 

and the hexagonal axis of the crystal were made parallel 

within one degree. With this particular geometry, the large 

face of the crystal was perpendicular to the hexagonal axis 

of the crystal. 

The other surface was spark planed using a coarse set-

ting until a suitably large flat area was present on both 

sides of the crystal. Once the surface area was large enough, 

the sides of the crystal were trimmed into the form of a 

rectangular parallelepiped using 16-gauge flat brass strips 

and a medium cut. From this large parallelepiped, several 

smaller parallelepipeds were cut. One of the several 

parallelepipeds was selected to be processed into the 

finished crystal. To obtain a finished crystal, it was 

necessary to spark plane the crystal to a thickness of 

approximately 0.75 millimeter by means of the brass planing 

wheel. 

The Servomet has seven cutting settings which range from 

one to seven. The higher the number, the finer the cutting 

action and the closer the wheel must work to the surface of 

the crystal. When the setting of six is used, the wheel is 

so close to the surface of the crystal that it will strike 

the crystal if the crystal surface and the surface of the 
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wheel are not exactly parallel. For this reason, the finest 

of the seven settings cannot normally be employed and the 

setting of six must be used with a special technique. 

In order to minimize the sub-surface damage due to spark 

planing, each side of the crystal was planed while going to 

systematically finer cutting settings. Once the cutting 

setting of five was completed on each side of the crystal, 

the specialized technique had to be employed. 

To insure that the wheel was parallel to the surface of 

the crystal, the wheel was first finished with a surface 

grinder. The wheel was then allowed to plane into an alumi-

num jig on the five setting until the jig's surface and the 

surface of the wheel were judged to be parallel. The crystal 

was then cemented with model airplane cement to the surface 

of the jig, and the wheel was allowed to plane into each of 

the two surfaces in turn while on the six setting. When 

the crystal was judged to be of the proper thickness by 

means of a dial indicator on the machine, it was removed from 

the jig to be cleaned. The crystal was washed with trichlor-

ethylene to remove the cutting oil. A dark film on the 

crystal, which was formed by-the spark-planing process, was 

removed by soaking in a solution of warm chromic acid. 

Once the crystal was prepared, a series of Laue X-ray 

diffraction photographs were taken and the large surfaces 

were found to be parallel to each other to with one degree. 

The dimensions of the crystal were precisely measured with 



the aid of a Unitron depthscope equipped with x-y translation 

drums calibrated directly in microns and a z translation 

calibrated to five microns. The final crystal was 19.514 

millimeters long, 10.833 millimeters wide, and 0.746 milli-

meters thick. 

Current, magnetoresistance, and Hall leads were soldered 

onto one of the six-cut crystal faces using Cerroseal-35 

solder and Salmet flux. The lead wires were selected from a 

lot of #34 copper wire as this size wire is very easy to 

solder and holds up well under experimental stresses. 

Due to the heat-conduction properties of cadmium, all 

the leads had to be soldered to the crystal at the same time. 

The ends of the wires were tinned and given a small lump of 

solder. A small amount of Salmet flux was then placed on 

the end of each solder.lump. The wires were all fastened in 

a jig to hold them in their proper orientation and were 

lowered by means of a large x-y-z translation goniometer 

until they were in firm contact with the crystal, which was 

placed on a hot plate. The heat was turned on until the 

solder just melted. When this happened, the heat was turned 

off and the hot plate and crystal were allowed to cool for 

several hours. The wires were then tested to be sure they 

were frimly attached. The exact distance between the probes 

was measured on the Unitron depthscope and the information 

recorded for future use. 
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The lead wires were twisted in pairs to minimize mag-

netic pick-up and were attached at the base of the crystal 

holder to wires that went out of the Dewar system via a pair 

of vacuum-tight lead-in fittings. 

The wires that led out of the Dewar were twisted in 

pairs and were wrapped in an insulating material and then 

placed inside shielding to prevent electrical interference. 

The current wires were brought out of the Dewar through a 

separate lead-in to prevent variations in the current form-

ing a signal in the other wires. 

The junctions where the crystal lead wires were soldered 

to the wires coming out of the Dewar proved to be critical. 

The small loops present there would pick up the "jitter" in 

the field of the magnet and would increase the noise in the 

signal drastically. It was necessary to minimize the mag-

netic pick-up by means of a driven coil placed under the 

crystal with the plane of the coil parallel to the planes of 

the large crystal faces. The signal from the crystal leads 

was fed into a lock-in amplifier and minimized by proper 

orientation of each of the three solder-joint loops. The 

minimizing process always produced minimum noise and was done 

prior to the performing of each experiment. 

The crystal was fastened to a phenolic support table 

located at the bottom of the crystal holder assembly. 

Extreme care was taken to be sure the crystal had not changed 

its orientation during the course of the several experiments. 
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When the crystal finally had to be taken up, care was used 

to return the crystal to its original geometry. 

It was necessary to determine the orientation of the 

crystal when inside the Dewar by some method accessible to 

the outside. For this purpose, two mirrors were cemented to 

the crystal holder. One of the mirrors was cemented to the 

phenolic end of the crystal holder near the crystal itself; 

care was taken to get this mirror as flat as possible on the 

phenolic base so that the normals to the crystal surface and 

the mirror would be parallel. 

The second mirror was attached to the brass plate at 

the top of the holder and was oriented so that its normal 

and the normal to the mirror below defined a plane that was 

parallel to the axis of the crystal holder. 

A larger mirror was cemented to the pole of the magnet 

so that its normal was parallel to the magnetic field. The 

crystal holder was then oriented in the Dewar so that the 

normals to the two mirrors on the holder and the normal to 

the mirror on the magnet were in the same vertical plane. 

Once this was accomplished, a scribe mark was made on the 

brass plate and mounting plate' of the Dewar. This mark 

allowed the crystal holder to be returned to the same orien-

tation each time it was returned to the Dewar. The crystal 

was oriented in this process so that its large face was 

perpendicular to the magnetic field. In this geometry, the 
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hexagonal axis was parallel to the direction of the magnetic 

field. 

In addition to the mirror method of determining the 

orientation of the crystal while inside the Dewar, there was 

available a method independent of placement of mirrors. For 

cadmium, a minimum in the magnetoresistance occurs when the 

magnetic field is parallel to the hexagonal axis. This mini-

mum is very sharp and clearly defined. Once the orientation 

of the crystal had been approximately determined with the 

mirror method, it was checked by means of locating the mini-

mum of the magnetoresistance. Thus, all angles discussed in 

this article are taken with respect to the magnetoresistance 

minimum unless otherwise stated. 

In order to test the effect of a zinc plating on the 

amplitude of the fundamental size-effect oscillation, it was 

decided to plate progressively thicker coatings of zinc onto 

the crystal while keeping all other parameters constant. 

The following plating solution (1) was prepared: 

Zinc as metal 49.00 grams/liter 

Total cyanide 142.00 grams/liter 

Caustic soda *120. 00 grams/liter 

Sodium sulfide 0.75 grams/liter 

Anode 99.9% pure strip zinc 

This solution was found to be suitable over a wide 

range of temperatures centered around room temperature and 

acted acceptably under widely varying current densities. 
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Experience proved that the performance of the solution did 

not depend upon the orientation or location of the anode. 

A Heathkit power supply was used for the plating. 

Zinc was deposited at the rate of 0.005617 microns per 

second at a current density of 11.85 milliamperes per square 

centimeter at the cathode. It was necessary to use such a 

low current density because higher current densities caused 

gas to be evolved at the cathode, causing pitting of the 

zinc. The thickness of the zinc coatings plated onto the 

crystal varied from one micron to ten microns. 

The crystal was finally given a ten-micron coating of 

zinc on the back side where the leads were fastened and the 

front surface was given an electropolish. The electro-

polish (2) was performed in a solution of 250 milliliters of 

phosphoric acid and 250 milliliters of distilled water. A 

copper cathode was used because copper does not react with 

the polishing solution. A two-volt transistorized power 

supply was used to electropolish the cadmium. 

To obtain current for experimental purposes, the current 

leads were attached to a twelve-volt car battery through a 

decade box, which was used to -regulate the current. The 

current was monitored by means of a digital voltmeter read-

ing across a one-ohm standard resistor that was connected in 

series with a current lead at the decade box. 

To measure the resistance of the crystal, the voltage 

drop between any pair of potential probes was measured when 
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a constant known current was being passed through the crystal. 

The signal coming off the crystal was fed into a Keithley 

model 148 nanovoltmeter to be amplified and then introduced 

into a Honeywell model 2768 six-dial Rubicon microvolt 

potentiometer which had been internally wrapped with type AA 

Co-Netic metal foil to shield the instrument against stray 

magnetic fields. The offbalance voltage of the potentiometer 

was recorded on a Sargent model SRG strip-chart recorder. 

Care was taken to shield the entire equipment from 

electric and magnetic fields, in addition to unfavorable 

thermal gradients. An inter-8 weave cable shielded with 

Co~Netic braid was employed to connect the galvanometer 

terminals to the input terminals of the Keithley nanovoltmeter. 

The current battery and the two batteries used with the 

potentiometer were placed in aluminum boxes. Only one earth 

ground was used in the entire system to avoid any possibility 

of forming a ground loop, The galvanometer terminals of the-

potentiometer were wrapped with several thick layers of 

cotton to minimize instrumental drift due to thermal effects. 

The experiments were performed in a standard two-piece 

low temperature Dewar. When precooling with liquid nitrogen, 

care was taken to be sure the wall of the inner Dewar was 

flushed with air and pumped out, and the inner Dewar itself 

was filled with a helium gas atmosphere at a slight over-

pressure. The Dewar was always precooled for at least two 



15 

hours to minimize the loss of liquid helium during trans-

ferring. 

The experiments were performed at 1.312 degrees Kelvin 

by pumping on the helium with a Kinney high-capacity vacuum 

pump; The vapor pressure of the helium was measured with an 

oil manometer to determine the temperature of the helium 

bath. Care was taken in each experiment to be sure the 

level of the liquid helium remained above the entire crystal 

to prevent thermal effects. 

Each time an experiment was performed the magneto-

resistance was taken at room temperature and at 4.2 degrees 

Kelvin. The measurements were always taken with plus and 

minus currents so that the average value would average out 

any thermal effects still present. 

In each experiment the Hall voltage was recorded as the 

magnetic field was swept from zero to five-thousand gauss. 

For each thickness of zinc plating on the crystal, the 

fundamental size-effect oscillations were recorded at zero 

degrees and minus four degrees as read on the inner-polar 

scale of the magnet. At each position a five-minute sweep 

and a twenty-five-minute sweep were taken. The five-minute 

sweep was taken using the one-microvolt-full-scale setting 

on the nanovoltmeter and the twenty-five-minute sweep was 

taken using the one-tenth-microvolt-full-scale setting on 

the nanovoltmeter. In addition, with a thickness of six 

microns zinc plating on the front surfaces of the crystal, 
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the fundamental size-effect oscillations were recorded from 

minus ten to plus ten degrees using five-minute sweeps and 

the one-microvolt~full-scale setting on the nanovoltmeter. 

Later, with nine microns of zinc plated onto the back of the 

crystal and the front surface of the crystal electropolished, 

this polar study was extended to plus and minus twenty 

degrees. 
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CHAPTER III 

THEORY 

The size-effect oscillations in cadmium due to the lens-

shaped pocket of electrons in the third Brillouin zone have 

been studied by Grenier, et al. (2), Zebouni, et aL (6), and 

Mackey, et al. (5,.6) with the magnetic field parallel to 

the hexagonal axis of the crystal. 

Using the magnetoacoustic effect, Daniel and MacKinnon 

(1) have studied the geometry of the lens and mapped it. 

They have shown that the lens is a surface of revolution 

about the hexagonal axis and have given values for the * 

dimensions of the lens and the lattice spacings. Assuming 

that cadmium had two conduction electrons per atom and using 

their values for the lattice spacings, they calculated the 

Fermi sphere that would just accommodate these electrons as 

free electrons to have a radius of 1.410 inverse angstroms. 

The Fermi sphere of cadmium is shown with respect to the 

Brillouin zone boundaries in Figure 1 (see Appendix for all 

figures). The construction suggested by Harrison (1) leads 

to the Fermi surface as shown in Figure 2. The lens closely 

approximates the free-electron surface but is rounded at the 

edges such that the surface contacts the zone boundary at a 

90° angle. 

18 
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Gurevich (3) has shown that the period of the size-

effect oscillations is proportional to the Gaussian radius 

of curvature at any elliptic point where the normal to the 

Fermi surface is parallel to the magnetic field. Figure 3 

shows the geometry of this situation. Theta is the angle 

between the normal to the large face of the crystal and the 

direction of the field. Due to the special geometry used in 

the present experiments, theta is the angle between the 

hexagonal axis and the direction of the field. 

Gurevich obtained an equation relating the Gaussian 

radius of curvature of the Fermi surface to the period of 

the oscillations and the angle between the magnetic field 

and the crystal normal. He found that 

(1) g (0) = |jLL§i_ea 

^ he cos 0 

where 

h is Planck's constant 

P0 is the period of the size-effect oscillations 

expressed in Gauss. 

e is the electronic charge expressed in esu units, 

c is the speed of light expressed in cgs units, 

a is the crystal thickness in centimeters. 

0 is the angle between the crystal normal and the 

direction of the magnetic field. 

g(6) is the Gaussian radius of curvature in Jc-space at 

the elliptic point where the Fermi surface normal is 

parallel to the magnetic field. 
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To understand this equation more fully, consider what 

is meant by "Gaussian curvature of a surface at an elliptic 

point." Consider a general surface S as in Figure 4, where 

P is an elliptic point of S (i_-e_- / lies entirely on one 

side of the tangent plane in the neighborhood of P). 

The vector n is a unit vector normal to the surface and 

Q is a plane that contains the normal vector. The intersec-

tion of Q with S forms a space curve, AB. The curvature of 

' 

-*• (f}+-
AB at P is K = where t is a unit vector tangent to curve 

AB and dS is an element, of length measured along AB in the 

direction of t. K*n is the normal curvature of S at the 

point P. The radius of normal curvature is = 1/(K«n). 

When the plane making the normal section turns around 

the normal line of S at P, the normal section varies and the 

normal curvature varies, attaining some maximum and some 

minimum value. The extreme values are called the principal -

normal curvatures at the point P of the surface S. 

It can be shown (4) that there is just one direction 

for which the normal curvature is a maximum and just one 

direction for which it is a minimum. These directions of 

principal curvature can be shown to be orthogonal. The 

associated radii of normal curvature are a minimum and a 

maximum* 

It can be shown that (4) for the case of a surface of 

revolution about the z axis, whose profile is z = f(u) as in 
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Figure 5, the principal normal radii of curvature at a point 

of the surface of revolution are given by the formulas:' 

(2) f " / ! 1 + 1 _ . f'/ u ( 1 + 2 

The radius Rx is equal in length to the radius of curvature 

of a meridian, while the radius R2 is equal in length to the 

segment of the normal line between the surface and the axis 

of revolution. 

For the experiment under consideration here, the func-

tion f(u) is the equation of the Fermi surface in the third 

Brillouin zone and the variable u is to be defined later in 

terms of the k-vector in the third Brillouin zone. 

The Gaussian curvature g(0) at a point P of a surface 

S is the square root of the product of the principal normal 

radii of curvature of S at P. Thus, one finds that 

(3) g (9) = /"r7r7. 

The Fermi surface of cadmium is shown with respect to 

the Brillouin zone boundaries in Figures 6 and 7. Figure 8 

shows the Fermi surface in the third Brillouin zone of 

cadmium. 

Ziman (7) has developed an equation for the Fermi 

surface in the neighborhood of a Brillouin zone: 

(4) £(G + K) 1 <5 + e 1 + + i ffe , - £ 
2 G~~ G+ ° • 2m T 2 jj'"G+ "~G-

+ 1 6 G*k' 



where 

is the energy associated with the zone 

boundary, approaching the boundary in the 

direction of increasing k. 

is the energy associated with the zone boundary, 

approaching the boundary in the direction of 

decreasing k. 

G is the reciprocal lattice vector from the 

center of the first Brillouin zone to the 

boundary in question. 

£(G + k) is the electron energy with respect to the 

• center of the first Brillouin zone. 

Notice that 

(5) 

since 

+ ^G+ ~ ^G+ ~ l A ^ 

A = G+ G~* 

Using the above, equation (4) becomes 

. 2 
(6) £(G + k) = £ 

G+ 
A £ tzk: 

2m 

(A£) 2 + 16 
't2 + -»• 
25 <G"k> 

1 2)Y2 

It is desired to obtain the equation of the Fermi 

surface of cadmium in the third Brillouin zone using the 

Ziman equation. To do this, the energy to the center of the 

energy band discontinuity at the boundary between the second 

and third zone, the energy gap, and the energy of the Fermi 
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surface relative to the boundary of the third Brillouin zone 

are required. Thus, 

(7) £(G + ic) = £(G) + ^A£ + £(ic). 

The energy of the Fermi surface relative to the third 

zone boundary is 

fk21 (8 ) e m = ef = 2m lit I
 2 

where k z = 0 and k lies on the edge of the lens. 

Using the value of JJc | = 0.725 for the edge of the lens 

(1) this becomes 

(9) £f = (3. 806) (0. 725)
 2 = 2.000 e.v. , 

where, e.806 is a conversion factor used to make the value of 

appear as electron volts -when k is given in inverse 

angstroms. 

Now the energy of the gap between the second and third 

zones can be calculated using 

(10) £ f = a £ + (!sjk2 

+ 5-{(A£)2 + 16 
ft 2 -
J2__ 1 2m 

(G • k) r 
Solving the above equation for A , one findsthat 

(11) 

where 

(12) 

A £ 
b - a: 

2a 

a = 2 £ f " (lr|ki 
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(13) b = 16 
rfj 2 -v • 
K (G"k) 

Using the values of kx = k2 = 0, and k3 = 0..250 as 

quoted by Daniel and MacKinnon for the apex of the lens, one 

finds that 

(14) a = 3.5242 e.v. 

(-15) b = 18. 6936 (e.v.) 2 

With the values of a and b known, A£ becomes 0.8901 electron 

volts. 

° ̂  1 2 
Using the value |G| = 1.136 A = ——, where c is the 

lattice spacing in the direction of the hexagonal axis, one 

finds that 
•+ fi2 

(16) £(G) = ^ G2 = (3.806) (1. 136) 2 = 4.916 e.v. 

Thus we obtain the Fermi energy measured relative to 

the center of the first zone to be £(G + k) = 7.3566 electron 

volts. 

With the above calculated constants, the equation of 

the Fermi surface is found from equation (6) to be 

(17) 4, 8901 = 7. 6120 (kx
 2 + k2

2 + k3
2) 

+ {0.7922 + (299.1000)k3
2}^2. 

This may be written as 

(18) 4.8901 = 7.6120(u2 + k3
2) 

+ {0.7922 + (299.1000)k3
 2}y2. 

Equation (18) was solved for u. Once this was done, k3 

was divided into 100 increments between its minimum value of 

zero and its maximum value of 0.250 inverse angstroms. Then 
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equation (18) was solved for u for each of the 100 values of 

k3. With the values of u and k3 known, the Gaussian radius 

of curvature was calculated at each coordinate point, 

(u., k,.)• The values so obtained were compared with experi-
X 31 

mentally observed values. 
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CHAPTER IV 

ANALYSIS AND CONCLUSIONS 

Effect of the Zinc Plating 

The addition of successive thicknesses of zinc on the 

upper six-cut face of the crystal appeared to increase 

drastically the amplitude of the oscillation which was re-

corded on the strip chart. The fact that the amplitude was 

apparently increased was interpreted to mean that the 

scattering at the plated surface was significantly more 

diffuse than the scattering at the six-cut surface. There-

fore the set of experiments was performed again using a 

larger range of zinc thicknesses. The effect appeared to 

saturate for a zinc layer as large as nine microns. 

The voltage data from the strip chart records were pro-

cessed on an IBM 1620 to obtain curves of Hall resistivity, 

p21 versus H. A third order polynomial was fitted to each 

curve by the method of least squares, and the difference be-

tween the exponential p2i and the fitted curve gave the oscil-

% 

latory component P 2 1 versus H, as indicated in Figure 9. 

These oscillatory curves for each zinc thickness were plotted 

and examined. At this point it was discovered that the ampli-
r\j 

tude of p2l was in fact independent of the zinc treatment. 

Examination of the various cubics representative of the gross 

27 
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effect showed that the amplitude of the gross p was 
r\, 

diminished so that the amplitude of the superimposed p2 only 

appeared to be enhanced. Thus the nature of the electron 

scattering appears to be independent of the presence of a 

zinc over-layer, implying that the scattering was already 

essentially diffuse at the six-cut surfaces. 

The period of the oscillations in each sample was 

determined by plotting the field positions of maxima and 

minima against successive integers and half-integers. A 

least-squares straight line was fitted through these data 

as shown in Figure 10 and the slope of the lines gave the 

periods directly. No variation in period was found for the 

samples with zinc coatings, which was to be expected in that 

the maximum variation in sample thickness was only 1.2 per 

cent, which is smaller than the accuracy of the period 

measurements. 

The crystal was then electropolished on one surface, 

leaving a nine-micron zinc layer on the opposite face such 

that the sample thickness was reduced to 0.0662 centimeters 
j 

exclusive of the zinc coating thickness. The oscillation 
r\j 

p was obtained as described previously The period was in-

creased precisely by the inverse ratio of the two sample 

thicknesses. 

If the scattering at the electropolished surface were 

more, specular than at the coated surface it might be possible 

to observe harmonic content in the p21- There was no 
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evidence of harmonic content found under the above conditions. 

Thus, the total effect of the zinc plating was only to modify 

the gross p and no evidence for modification of the sur-

face scattering parameter was found. 

Angular Dependence of the Amplitude 
<\j 

The oscillation p was studied with regard to period 

and amplitude as the angle between the normal to the 

sample surface [0001] and the magnetic field was varied. 

Figure 11 shows the amplitude as a function of 0. The 

actual peak-to-peak voltage which appeared on the strip 

chart was only about fifty nanovolts for the largest ampli-

tude which was observed at approximately eight degrees. The 

oscillations became obscured by noise when 0 was increased 

to twenty degrees. Figure 12 illustrates the decrease- in 

amplitude as the angle between the crystal normal and the 

magnetic field increases. Theoretically one may expect the 

following approximate relationship for the amplitude |p21| 

as a function of 0: 
(19) |p21|ssK(0) a(0) cos 0, 

where 

(20) p x j = [a (0) H
2] 2 

and 

(21) |o I - £ M - c o s . 9 

1 2 H" 

Equation (20) expresses the fact that the magneto-

resistivity of cadmium, p , is quadratic in H with the 
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coefficient a dependent on 6. The approximate variation of 

a(0) in relative units with 0 may be inferred from Figure 13. 

Equation (21) represents the results of Gurevich's theory 

which indicates the amplitude of the oscillation in o as a 

function of II and 0. The factor K (0) depends on the dif-

ferential geometry of the Fermi surface at the elliptic 

point where the normal is parallel to H. The factor K(0) 

may be shown to be a decreasing function of 0, symmetric 

about the hexagonal direction. Equation (19) follows as the 

result of a tensor inversion, (5 = d-1, with pia >> p • 

Note K (0) cos 0 is a decreasing function of 0 while a(0) is, 

in the neighborhood of 6 equal to zero, an increasing func-

tion of 0. | p21 | results from the competition between these 

two factors. 

Note that all factors should be symmetric about [0001]. 

However, close examination of Figure 13 shows that a(0) is 

somewhat skewed and not symmetric about 0 equal to zero. 

This fact implies that the crystal may have been slightly 

cocked so that the symmetry axes of the crystal were not 

precisely parallel and perpendicular to the plane defined by 

the magnetic field as 0 is varied. 

From equation (19), one has 

IP2J 

. K ( 0 ) • ale) COS 9 • 

Figure 14 is a plot, in relative units of the right hand mem-

ber of equation (4) against 0. Note that the experimentally 
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determined K(e) is approximately symmetric about 0 equal to 

four degrees which is the' position of the [0001] direction 

as determined by the mirror method. Clearly one needs to 

have a goniometer-type crystal holder so that the hexagonal 

axis may be located accurately by a study of the symmetry of 

PX1 vs 0. Under these conditions one may be able to determine 

K(0) with sufficient accuracy to compare with theory. 

Angular Dependence of Period 

The Gaussian radius of curvature, g(0), at the elliptic 

point where the Fermi surface normal (i_.e., the Fermi 

velocity) is parallel to the magnetic field determines the 
% 

period of the oscillation P21. Figure 15 shows g(0), as 

computed from the Zirnan equation, plotted against u for 

values in the range u = 0 to u = 0.725 corresponding to 

points on the lens ranging from the apex in the [0001] 

direction to the edge of the lens. The quantity g(0) is 
o- i 

seen to vary from a maximum of 1.36 A at u equal to 0 to 
o—l o-x 

a minimum of 0.152 A at u equal to 0.725 A 

For a sample cut as in these experiments with [0001] 

normal to the crystal's large faces, the period should vary 

from a maximum for 0 equal to zero, to zero at 0 equal to 
IT 
2". The quantity g (0) may be determined experimentally from 
(23) = e 3 P° ( 6 ) 

h c cos 6 " 

These computed values may be compared to those exhibited in 
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Figure 15. It is more convenient to present the theoretical 

curve as shown in Figure 16; here g(6) is plotted against 0 

directly. 

Figure 17 shows the same curve as that of Figure 16 for 

-12 1/2° < 0 •< 16° along with the values of g(e) as computed 

from equation (23) and the measured periods. Data from two 

separate runs appear on the graph and are appropriately-

labeled to distinguish one run from another. 

Restriction to this narrow range of 0 was necessary 

since the accuracy of the period measurements decreases 

rapidly as J 0| increases and the amplitude of p decreases. 

It is clear that the experimental resolution is not high 

enough to verify the theoretical variation in g(0). One 

should note, however, that the level of the voltages actually 

measured is in the 100 nanovolt realm, with the oscillation 

only a small fraction of this voltage. Agreement to the 

degree exhibited in Figure 17 is quite good from a percentage 

point of view. 

Repetition of these experiments with more accurate 

experimental resolution should be rewarding. It is sug-

gested that the use of an accurately calibrated Hall probe 

for close monitoring of the magnetic field would be particu-

larly desirable. The use of an automatic, rapid data-taking 

device such as the magnetic tape unit now being devised 

should allow one to process feasibly fifty times as many 

data points per strip-chart record, and through computer 
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techniques one should be able to obtain the resolution that 

this study has demonstrated to be necessary in order to 

determine g(0) accurately. 
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