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CHAPTER I 

SOME FUNDAMENTAL PROPERTIES OF METRIC SPACES 

A metric space is a pair of two things: A set X, whose 

elements are called points, and a distance, i.e., a single-

valued, nonnegative real function d(x,y), defined for arbitrary 

x and y in X and satisfying the following conditions; 

(a) d(x,y)>0 

(b) d(x,y)=0 iff x=y 

(c) d(x,y)=d(y,x) 

(d) d(x,y)+d(y,z) >d(x,z) . 

The following are some examples of metric spaces. 

Example (1). Let d ( x , y ) = f o r any arbitrary set. 

Example (2). Consider the set D n of ordered n-tuples of 

real numbers, x=(x ,x9, * * * »
x
ri)» with distance function, 

x n 

d ( x' y )"[^i ( yk" xk ) ] * 

Example (3). Let Q be the set of all continuous real 

functions on the interval [a,fcQ , and define a distance 

function d(f ,g)=sup [f (x)-g(x)| where f, g £ £ and a£ x^b. 

If n is chosen from the set {l,2,3^, Example (2) becomes , 

one of the more familiar forms of Euclidean space "where 

the notion of distance is the usual one, and the four 

defining properties of the distance function are readily 

verified in these cases. However, if n is restricted to 



being a positive integer, the concept of distance becomes 

less intuitive. 

Example (1) illustrates that a metric does not have to 

conform to the ordinary concept of distances. However, if 

the arbitrary set is chosen to be two adjacent integers, or 

the three vertex points of an equilateral triangle, or the 

four vertices of an equilateral pyramid, the distance function 

does seem more familiar. 

Each of these examples can readily be shown to satisfy 

the four metric properties. However, it is worthwhile to 

include a proof of the third piroperty for Example (2). This 

property is sometimes called the triangle inequality because 

of its similarity to the familiar geometric proposition which 

states that the sum of the lengths of two sides of a given 

triangle is greater than or equal to the length of the third 

side. 

Proof. The validity of the Schwarz inequality will be 

assumed for this proof. 

2 
k 

iba,b.y 
H k V k & i 

Choose three elements x=(x,,x_,xa,* * *,x ), y=(y,,y„, 
1 lo n 1 2 

y3'" " *'yr^' z=^zl'z2'z3'* * *,zn^ froin tlie s p a c e D * l1: w i ^ 
be convenient to make the following substitutions. Let 

a =y -x, , b =z -y. and by addition we obtain z -x, =a, +b, . 
k k k k k k k k k k 

In the equation 
JL 2 JL 2 JL. JL 2 
Z L (a,+b ) =21 a +22_ akb,+2Z.\ 
k=l k k k=l k k=l k k k=l k 



we can substitute 

ri 
2 JET avb. =2 
fci k k 

and by the Schwarz inequality 

2 (n <r' * v 
lk=l k k=l k 

2{f^1okbk]
ij,2<2 (£-*1 £ £ * 

Thus 

i c a +b ) 2 £ Z ^ 2 ( ( r a
 2 ff+l k=l k k k=lk \Jc=l k k=l y k= 

bk 
1 K 

2 \ 2 /JL .aVlS"®' 
i.e., 2 „ -i 2 

d (x,z)— jd(x,y)+d(y, z]Q/ 

or 
d(x,z)Sd(x,y)+d(y,z). 

Problem 1.1. Let X be a metric space with metric d. 

Show that d defined by d (x.v)= d(x.v) is also a metric 
• 1 l+d(x,y) 

on X. 

Proof. 

(a) Let x,y be two points in the space X. Then d^(x,y) 

= <3(x,y) =__Q_=Q iff x=y. 
1+d(x,y) 1+0 

(b) d-. (x.v)= d(x.v) >0. 
1+d(x,y) 

Cc) d1(x,y)= d(x,y) = d(v.x) =d,(y,x). 
l+d(x,y) l+d(y,x) 

(d) Let d(x,y)=a, d(y,z)=b, and d(x,z)==c. Obviously 

a+b ̂ .c. Also 2ab+ac+bc+2abc ̂ -ac+bc+abc. Addition of these 



two inequalities gives a+b+2ab+ac+bc+2abc hc+ac+bc+abc, or 

(a+b+2ab)(l+c) >c(l+a+b+ab). This inequality may be written 

n+b+2ab > c or _a_ + b >__£_• Thus tKx^xL.* 4(y,^) 
(1+a)(1+b) 1+c 1+a 1+b ~"l+c l+d(x,y) l+d(y,z) 

v d(x.z) and hence d_(x,y)+d (y,z)£d (x,z). Since d 
~l+d(x,z) I ' l l 1 

satisfies all four metric space properties and since it is 

obviously a non-negative function, d^ is a metric on X. 

Remark: Any arbitrary set X with this metric d1 forms 

a bounded metric space. 

Problem 1.2. Let X be a non-empty set and let d be a 

real function of ordered pairs of elements of X which satisfies 

the following three conditions: d(x,y)£0, and x=y implies 

d(x,y)=0; d(x,y)=d(y,x); and d(x,y)+d(y,z)>d(x,z). A 

function d with these properties is called a nseudo-metric. 

The following is an example of a pseudo-metric. Let X be the 

set of real numbers and let d= jfx-yjfor either of x,y non-integer] 
(_0 for both x ,y integers ) 

This is not a metric since d(x,y)=0 does not imply x-y. 

Let d be a pseudo-metric on X. Define ^ on X by 

x^y4^d(x,y)=0. It will npw be shown that this is an 

equivalence relation whose corresponding class of equivalence 

sets can be made into a metric space in a natural way. 
* 

(a) reflexive property; x ^ x ^ d ( x ,x)=0 

(b) symmetric property; if X/—'y£=>d(x ,y)=0, then 

y^x<^d(y,x)=0 since d(y,x)=d(x,y) 

(c) transitive property; suppose y-^x and x~^z. 



Then d(y,x)=0 and d(x,z)=0, and d(y,z)<d(x ,y)+d(x,z)=0. 

Also d(y,z)>0. Thus d(y,z)=0 and y/^z. 

For the second part of the problem it must be shown 

that a metric can be properly defined on the following class 

of equivalence sets. 

Let {x} be the set of all elements of X which are equiva-

lent to x, {yj be the set of all elements of X equivalent to 

y, etc. Let T=^|x^|x€xj. 

(a) Choose two elements {x^ and jy^ from T and define 

d* to be as follows; d' )=d(x,y) for x € and y£^y^. 

Obviously this is a single valued non-negative function for 

if xc{xj and tllGn d^x'yx^+ti^yl,y2^ — d^ X , y2^ 0 r 

d C x ^ ^ d C x ^ ) . Similarly d C x ^ J + d C y ^ ^ ) >d(x,y^) or 

d(x,y2)>d(x,yi); thus d(x,y1)=d(x,y2> >0. 

Suppose d' ({x} , £y])=0. Then d(x,y)=0 and x~y. Thus 

£x] = {y|. Now suppose {xj={y^« Then x>vy and d(x,y)=0; thus 

d1 ({x^ , (y])=0. 

(b) d' ({x^ ,-[y^)=d(x,y)=d(y,x)=d* (£yj , {x] ). 

(c) d'({x},{y}) +<3' ( (yj, |zj)=d(x,y)+d(y,z)> d(x,z) 

=d' ({x£ , (z}>. 

Thus d' is a metric on T. 

Throughout this paper, the symbol X will refer to an 

arbitrary metric space and d will be a metric defined on X. 

The symbol R will refer to the metric space composed of the 

set of real numbers with the usual metric, _i..e., d(x,y)= jx-yj. 



Before beginning a discussion of the basic properties 

of metric spaces it is necessary to define the following 

fundamental concepts. 

Definition 1.1. A closed sphere denoted by s(x0,rj is 

the set of all points xcX which satisfy the condition 

d(xQ,x) £r. 

Definition 1.2. An open sphere denoted by S(xQ,r) is 

the set of all points xcX which satisfy the condition 

d(x ,x)<r. 
o 

In each case xQ will be called the center and r the 

radius of the sphere. 

Some examples of open (closed) spheres are 

Example (1). In the first example on page one, any open 

sphere S(xQ,r) will consist of either the single point xq 

when r^l or the entire space when r >1. 

Example (2). Consider the second example on page one 

and let n=3. In this case, the closed sphere Sjx^.rj fits the 

usual notion of a sphere and a point y will belong to sfx ,rj 

if it is contained within or lies on the surface of the geo-

metric sphere with center xQ and radius r. 

It will sometimes be convenient to refer to an C-neigh-

borhood of a point x^ which will mean an open sphere with 

center x and radius £>0. 
o 

Definition 1.3. A contact point of a set M in X will 

mean any point x such that every C-neighborhood of x contains 

at least one point of M. The set of all contact points of 



M wi l l be ca l led the c losure of M and w i l l be denoted 

by [>lj. 

Theorem 1 .1 . If M and are s e t s sucli t ha t NL^CM, then 

[m} £ . [ „ ] . 

Proof . Suppose x£(M;j]. Then each open sphere S ( x , r ) 

contains some point yCM^. But Mj5=-M thus y CM. Therefore 

x i s a l so a contact point of M, and hence x £ [ m ] . Thus [M-jl C [ n ] , 

Theorem 1 .2 . The c losure of the c losure of a s e t MCX 

i s equal to the c losure of M, i . e . , = 

Proof . Let x £ . Then an a r b i t r a r y sphere S ( x , r ) 

conta ins a point XJCJm], Let r ^ r - d C x ^ ) , and consider the 

sohere S(x . r j ) . Obviously S C x j . r ^ C S t e . r ) s ince if y C S C x ^ r ^ 

we know by the t r i a n g l e i nequa l i t y t h a t d ( x , y ) ^ d(x,y^)+d(x^,y) 

^ d ( x , x ) + r = r - r +r =r . Since x-, € TmI i t fo l lows tha t the 
1 1 1 1 i t j 

snhere S C x p ^ ) contains some point x ^ M , Thus an a r b i t r a r y 

sphere S ( x , r ) about x conta ins a point of M and thus x e \M]. 

Now suppose x £ | m ] . Obviously s ince any sphere 

S ( x , r ) about x conta ins x i t s e l f . Thus x i s a contact point 

of [m] and x £ . Therefore &0 • 

Theorem 1 .3 . The c losure of a sum i s ^qual to the sum 

of the c lo su re s . 

Proof . Suppose x £ • Then e i t h e r xCCM^^jM^) 

or an a r b i t r a r y sphere S ( x , r ) about x conta ins some point 

y 6(M,UM ) . In the former case x belongs to at l e a s t one 
1 2 
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of M and M and hence to at least one of and F m 1 . Thus 
1 2 1 J 

* * W U K 1 • In the latter case each sphere S(x,r) contains 

some point y e f M j U M ^ . If there is a sphere S(x,r') such 

that S(x,r' )0^2=l^ t h e n e a c l 1 s P h e r e SCx.rjHl^^; and hence 

x e O g and thus belongs to 

Now sunpose x We can assume without loss of 

generality that x . Thus each sphere S(x,r) is such that 

S(x,r)C\l\-^$. It follows then that S C x ^ O ^ O * ^ ) ^ - n u s 

Therefore 

It is necessary to define the concepts of limit point and 

isolated point before proceeding to the next theorem. 

Definition 1.4. The point x is called a limit point of a 

set M if an arbitrary 6-neighborhood of x contains an infinite 

set of points of M. 

Obviously the first example on page one will have no 

limit points, while in the third example, each point would be 

a limit point. 

Definition 1.5. A ioint x belonging to a set M C X is 

said to be an isolated point of this set if x has a neighbor-

hood S(x,r) which does not contain any points of *M different 

from x. For example, in the set of positive integers with the 

usual metric, each element is an isolated point. 

Theorem 1.4. Every contact point of the set M C x is 

either a limit point or an isolated point of the set M. 



Proof. Suppose x is a contact point of M and suppose 
* 

there is some neighborhood S(x,r) which contains a finite set 

of points of M different from x. Let ^jy-j^y^* • * 

the points of M such that y^£S(x,r) and y.^x. Consider the 

set T^jr^j r^=d(x,y . Since this is a finite set of positive 

real numbers, there exists a positive real number k such that 

0<k<r^. Thus the sphere S(x,k) is such that S(x,k)flY=0. 

But S(x,k)HM^ by the definition of a contact point. Thus 

x £M and x is isolated. 

If there exists no neighborhood S(x,r) such that S(x,r)f)M 

is finite,then by definition x is a limit point of M. There-

fore x is either an isolated point of M or a limit point of M. 

The concept of a sequence is a very useful tool in this 

study of metric spaces. Of special importance are the notions 

of convergent sequence, subsequence, Cauchy sequence, and 

limit of a sequence which will be defined in the following manner, 

Definition 1.6. A mapping of the set N of positive 

integers onto a set B will be called a sequence if for each 

n 6. N there is an image b€.B. The image of n will be called bn. 

PefM-Uop 1«7. Let x1,x2,x3,- • • be a sequence of 

points in the metric space X. We say that this sequence 

converges to the point x if every neighborhood S(x,r) contains, 
*A 

all points x starting with some one of them, i.e., if for 
n ' 

every £ > 0 we can find a positive integer N such that S(x, €,)> 

contains all points x^ with n>N . 
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Definition 1.8. The statement that is a sub-

sequence of a sequence ^a ^ means that if and 

then there exist a., a c(a 1» where a =b., a =b. and if t> k 
K K i t j 

then j > i. 

Definition 1.9. The statement that ^a^j is a Cauchy 

sequence means that for each £ > 0 there is a positive integer 

M such that d(a.,a.)<£ if i > M and j > M . 
i 3 

Theorem 1.5a. A necessary and sufficient condition that 

the point x be a contact point of the set M is that there exist 

a sequence of points JaJ of the set M which converges to x. 

Proof. Necessity. 

If x is a contact point of M then every open sphere 

S(x,l/n) where n€jl,2,3,* * •] must contain some point x n 

of M. These points obviously form a sequence which converges 

to x. In the case of an isolated point, the sequence would 
/ 
/ 

clearly be composed of the single point x itself. 

Sufficiency. 

If the sequence of points M converges to x, then 

every neighborhood S(x,r) of x must contain a point y of the 

sequence. Thus since it follows that x is a contact 

point of M. 

Theorem 1.5b. A necessary and sufficient condition that 

the point x be a limit point of M is that there exist a 

sequence distinct points of M which converges to x. 
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Proof. Necessity. 

If x is a limit point of M then every sphere S(x,r) 

about x contains an infinite set of points of M. Choose 

k^=l and from the sphere S(x,k^/1) we can choose some y^ such 

that y-, € M, y ¥•x. Let k =d(x,y ) and from the sphere S(x,k /2) 
i l - 2 1 *• 

we can choose a y^ such that a n^ y2^x* ^ e t ^ • 

Clearly in this manner we can form a sequence of spheres 

S (x,k /n) and a sequence fy ) of distinct elements of M 
n n I f ; 

where k^=d(x>y(n«i))» such that £ k^/nj will converge to 0 

and thus jy^ will converge to x. 

Sufficiency. 

By the definition of convergence of a sequence of dis-

tinct points ja^ to a point x, it is clear that every 

£ -neighborhood of x will contain an infinite set of points 

of the sequence ^a
n^« Since it follows that x is 

a limit point of M. 

Theorem 1.6. The limit of a sequence, if it exists, 

is unique. 

Proof. Suppose the sequence ^an^ converges to a, and 

convergeis to b. If' then d(a,b)=£ >0. Now let 

£'- C/2. The sphere S(a,£') contains all but a finite set 

of elements of £an^» Obviously the sphere S(b, c 1 ) contains 

at most a finite set of the elements of ^a
n^* Thus the 

assumption aŝ b must be false. Therefore a=b and the limit 

of a sequence is unique. 
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Theorem 1.7. If lim a =a and (b ( is a subsequence of 
n U ) 

\a f, then lim b =a. 

^ n r > r r > 

Proof. Suppose Sa >a and \b { -»b where jb vis a sub-

sequence of ja Further suppose b^a. Then d(b,a)= £ >0. 

Consider the spheres S(a, £/2) and S(b, £/2). Obviously their 

intersection is empty; yet each sphere must contain all but a 

finite set of its respective sequence. Now since -|b^ is a 

subset of (a 1, and since all but a finite subset of (a 1 is 
l n j In) 

contained in S(a, £/2), it follows that the sphere S(b, €./2) 
must contain only a finite set of points of ^b^j. Thus the 

assumption that bî a is not valid. Thus lim b =lim a =a. 
n n 

Definition 1.10. The derived set A* of a set A will mean 

the set of all points x such that x is a limit point of A. 

The concepts of open and closed spheres were introduced 

earlier. It will now be convenient to introduce the closely 

related concepts of open and closed sets. 

Definition 1.11. A set M in a metric space is closed if 

Examples. Every closed sphere is closed. An open sphere 

S(x,r) is closed if there are no elements y £ M such that 

dCxjy^r. 

Definition 1.12. A point x is said to be an interior 

point of a set M if there exists an ^-neighborhood of x which 

is contained entirely in the set M. . 

Definition 1.13. A set all of whose points are interior 

points is said to be an open set. 
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Theorem 1.8. The intersection of an arbitrary number and 

the union of an arbitrary finite number of closed sets are 

closed. 

Proof. Let where each is a closed set and 

suppose x is a limit point of F. An arbitrary neighborhood 

S(x,r) of x will contain an infinite set of points of F. This 

implies that S(x,r) contains an infinite set of points from 

each Rf, and thus x is a limit point of each fv*. Since each 

F^ is closed, this means that xGF^ for each ̂  € P\^t and 

hence x£F. Thus F is closed. 
II * 

Let F=rlF. where F is closed, and suppose x to be a 
M 1 i 

limit point of F. Thus an arbitrary neighborhood S(x,r) is 

such that S(x,r)P\F=J, and J is infinite. This implies the 

existence of some F.CF such that S(x,r)P\F is also infinite 
l l 

for otherwise would imply that S(x,r) would contain at most 

some finite number of elements, say k, fftftn each F.CLF. Thus 
i 

J would contain at most nk elements of F which is contrary to 

the fact that J is infinite. Therefore x is a limit of at 

least one F and hence xCF CF. Thus F is closed, 
i i 

In Theorem 1.8 it was necessary to restrict the union to 

a finite class of closed set since it is possible to suggest 

infinite unions which are not closed. In Theorem 1.9 it is 

necessary to restrict the arbitrary intersection to a finite 

class of open sets for a similar reason. 

Theorem 1.9. The union of an arbitrary number and the 

intersection of a finite number of open sets are open. 



14 

Proof. Let G=Ug,c where Gu. are open sets and suppose 

x £G. If x£G then obviously there exists some GotCG such 

that x€(^. Now G^ is open so there is some neighborhood 

S(x,r) of x such that SCXjrjCG^CG. Thus x is an interior 

point of G, and G is open. 

Now let G=f^G. where G. is open and suppose x £G. This i=1 1 ^ 
implies that for i6Jl,2, • • • nj x€G., Thus in each G. 

there exists a neighborhood S(x,r.) such that S(x,r.)CG., 
1 l i 

Since i is finite it is possible to speak of the least r,. or 

radius of the spheres S(x,r.). If r t — ^ o r * £ ̂ ,2, • • • n^, 

and if y€S(x,r ) then obviously y€S(x,r.). Thus S(x,r ) 
n t i t 

CnG.=G. Therefore there is a neighborhood of x which is 

contained entirely in G and thus G is open. 

Theorem 1.10. A necessary and sufficient condition that 

the set M be open is that M (the complement of M) with respect 

to the whole space be closed. ' 

Proof. Necessity. 

Suppose M is open. Then if x 6M there is a neighborhood 

of x S(x,r) which belongs entirely to M. That is, S(x,r) 

contains no point y such that yCM. Thus M contains no con-

tact points of M. Therefore if y is a contact point of M, 

then y£M which implies M is closed. If M has no contact 

points then M=0 and is closed. 

Sufficiency. 

Suppose M is closed and suppose x£M. If every neighbor-

hood S(x,r) of x contains a point of M, then x is a contact 
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point of M. Since M is closed, this implies that x£iM which 

contradicts the assumption that x CM. Thus there must be sone 

neighborhood S(x,r) of x which contains no points of M. This 

implies that x is an interior point of M and hence M is open.* 

Prpblem 1.3. Show that a closed superset of A which 

is contained in every closed superset of A. 

Proof. Suppose B is a closed superset of A and x e[A], 

Then x is either a limit point or an isolated point of A. If 

x is an isolated point of A, then x £A and x C B since A C B . 

If x is a limit point of A, then x is a limit point of B and 

x €B since B is closed. Thus [AjCB. 

Problem 1.4. A set M C X is bounded it is non-empty 

and is contained in a closed sphere. 

Proof. Suppose M is a bounded subset of X. By definition 

there is a real number K > 0 such that 0 <c(x,y)£jv for x,yCM. 

But d(0 ) = - o o . Thus M^0, and MCS[X,K] for x € M. Clearly 

if M is non-empty and MCS(x,K], then M is bounded. 

Prpblem 1.5. Show equals the intersection of all 

closed supersets of A. 

Proof. Suppose x €[Aj and B is a closed superset of A. 

By Problem 1.3, x€.B, and hence xC n B where T is the class 
B€T ^ 

of all closed supersets of A. Thus fXJCf IB. 
^ BeT 

Now suppose x€f \B. Then x belongs to each B E T . From 
BfT 

Problem 1.3, TaI^T; thus ObCIa]. Hence A =/^B. 
BCT ( A BCT 

Definition 1.14. A family of open sets in X is 

called a basis in X if every open set in X can be represented 
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as the sum of a (finite or infinite) collection of sets 

belonging to this family. 

Definition 1.15. A system of sets is a covering of a 

space X if UM^fX. A covering consisting Of open (closed) sets 

will be called an open (closed) covering. 

Example (1). In every metric space the family of all 

open spheres forms a basis. 

Example (2). In Euclidean 2-space with the usual metric 

the set of open (closed) spheres S(x,r), where r=l and x is 

a point with integer coordinates, will form an open (closed) 

covering. 

Example (3). In Example (1) on page one the set of all 

unit spheres will form both a basis and a covering. 

Theorem 1.11. A necessary and sufficient condition that 

a system of open sets be a basis in X is that for every 

open set GCX and for every point x€.G, a set G^ can be 

found in this system such that xCG^CG. 

Proof * Necessity. 

If |g^ is a basis then every open set G is the union of 

some subset of That is G= UGk where G^ £ ̂ G^. Therefore 

if xCG then there is some Gfc in G such that x€G^. But 

Gfc€ £g^| and thus there exists some G^ such that xGG^CG. 

Sufficiency. 

Supnose G is any open set in X and for each x€G we can 

find some open set G^ € such that x£G^CG. Then 
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obviously IJ G„. =G since each x&G is in some G„, and each 
x 

is a subset of G. Thus iĜ f is a basis.in X. 

Theorem 1.12 is concerned with the concept of one set 

being dense in another so it is necessary to introduce the 

following definition at this point. 

Definition 1.16. Let A and B be two sets in a metric 

space X. The set A is said to be dense in B if B£=. |Aj . A is 

said to be everywhere dense in X if [A]=X. 

Example (1). Let X be Euclidean three-space with the 

usual metric. Let A= |(x,y,z)|-1<x,y,z< 1̂  and let 

B=|(x,y,z)|x,y,z 6 (1,-1)J. Then AflB-0 but A is dense in B. 

Example (2). In R the set of rationals is everywhere 

dense. 

Example (3). In Example (2) on page one, the set of all 

ordered n-tuples with rational coordinates is everywhere 

dense. 

Theorem 1.12. A necessary and sufficient condition that 

X be a space with countable basis is that there exist in X an 

everywhere dense countable set. 

Proof. Necessity. 

Let X be a metric space with a countable basis, say 

G=^i(Gi is open and i e (1,2,3, * • • , Construct a set 

A by choosing from each non-empty G an arbitrary x^6 G... 

Suppose x is an arbitrary point of X, and let S(x,r) be a 

neighborhood of x. Then by the previous theorem there is a 
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set G £G such that xeG CLS(x,r). By definition of A there 
n n 

is some point ye A such that yfcGnC.S(x,r). Therefore any 

neighborhood of x contains some point y of A. This implies 

that x is a contact point of A. Thus each xtX is a contact 

point of A and hence XC[A] . But X is the whole space henee 

[A] C X . Thus X = [ A ] . 

Sufficiency. 

Suppose A is countable and A is everywhere dense in X. 

Then [A]=X. Let s=|s(a,l/j)[a e A, je (1,2,3, * • *)j . 
Obviously S is countable. Suppose G is an open set in X and 

X6.G. Then there exists some S(x,r)CG. By Theorem 1.4, x 

is either a limit point of G or an isolated point of G. Since 

G C [A] it follows that x is an isolated point or a limit point 

of [A]. By Theorem 1.2 f[A]J = [A] . Thus x is either a point 

in A or else a limit point of A. If x€A then there is some 

positive integer i such that l/i<r. Thus S(x,l/i)CS(x,r)CG 

and S(x,l/i)€ £ . If x is a limit point of A then there is 

some element a<=A such that d(a,x)<_l. Thus x «S(a,_l) CS(x,r) 
2i 2i 

CG, and S(a,_2)tS . Thus by Theorem 1J1, S is a basis in 

X and S is countable. 

In the proof of the next theorem the countability of the 

rational numbers will be assumed. 

Theorem 1.13. Every open set on the real line is the 

union of a countable number of disjoint intervals. Sets of 

the form (-«o, «*»)» («* >«*»), (-oo, 0 ) will be included as 

intervals. 
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Proof. Let G be a non-empty open set in R. Define I to 

be the set of all real open intervals, (a,b), which satisfy the 

following conditions: 

(1) a,beG with resnect to the extended space PJ . 

(2) if (a,b) £ I, then (a,b)/^G=(a,b). First I must be 

shown to be non-empty. Suooose x £G. Let Y= ̂y|y€ G, y>x], 

and Z=|z|zcG, and z<x^. If Y?̂ f then there exists some 

greatest lower bound t such that t < y for each y£Y. Obviously 

t^G since t€G would imply S(t,r)f\G=0 for some r>0, and the 

condition that t is the greatest lower bound of Y implies 

that S(t,r)fW0 for all r> 0, since YCG. If Y=0 then 

(x,oo)CG and t = <*». Similarly it can be shown that there is 

some least upner bound u of Z and that u^G. If Z=0 then 

(-©<=»,x) is obviously a subset of G and u=-oo. Thus(u,t)£I 

and hence 1^0, and for each xcG there is some interval (a,b)cl, 

such that a<x<b. Suppose (a,b)€I and (c,d) £l, and 

x € |(a,b)A(c,d)J-. Then sup|a,c^ <x < inf ̂b,dj. 

If a=c and b=d the intervals are identical. Thus without 

loss of generality it can be assumed that a< c. Now a<c<b; 

hence c£(a,b). By Postulated, (a,b)flG=(a,b)but by 

Postulate 1, G. Thus the assumption that a<c is invalid 

and hence a=c. Similarly, b=d. Thus it has been shown that 

I is non-empty, each x 6G belongs to some interval (a,b)6"I, 

and the elements of I are disjoint. All that remains is to 

show that I is countable. A subset P of the rational numbers 

can be formed by selecting from each (a,b)€"I a rational. 
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Since the elements of I are disjoint, each rational so selected 

will be unique. Thus we can form a 1-1 correspondence from I 

onto P. The set M of all rationals is countable and since 

P C M it follows by Cantor's theorem that P is countable and 

thus I is a countable collection of open intervals 1^ such 

that Ul^G. 

This section is primarily concerned with some of the 

properties of connected 'spaces. The concept will be encount-

ered again in the second chapter where consideration will be 

given to properties of functions defined on connected spaces. 

First it is necessary to define what is meant by mutually 

separated subsets of a metric space. 

Definition 1.17. Let X be a metric space. Two non-empty 

subsets M and N of X are said to be mutually sepatated if 

neither contains a point or limit point of the other; that is 

M H I K M and N f » 0 . 

Definition 1.18. A subset M of a metric space X is 

called connected if M is not the union of two mutually 

separated sets. 

A second definition of connectivity is frequently given 

as follows. 

Definition 1.19. A space X containing no sets which are, 

simultaneously open and closed other than the void set and 

the entire space X is said to be connected. 

These two definitions can easily be shown to be equivalent. 
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In the proof of Theorem 1.14 an open interval of real 

numbers will be assumed to constitute an uncountable set. 

Theorem 1.14. Let A be a connected subset of a metric 

space X which contains more than one point. Then A is uncountable, 

Proof. Suppose A is a connected subset of a metric 

space with metric d and suppose A contains more than one 

point. T et xq and y be two points of A such that xQ/y. Then 

d(x ,y)-k>0. Now the set of real values r, such that 0 < r < k 

is uncountable. Suppose that A is countable. Then there 

exists some real number t > 0 such that 0 < t < k and such that 

d(x ,z)ĵ t for any zcA. Now consider the two sets 

C=|y/y£ A.dCx^y) < tj, and D=jy|y£ A,d(x^,y) > t|. Obviously 

neither of the two sets is empty since X q £ C and y £ D . 

Suppose z€ A. Then either d(x o,z)<t or d(x o,z)>t. In 

either case z e D U C . Hence A C ( D f C ) . Now suppose Z6 D U C . 

Then either z c D or zeC, and in either case z * A . Thus 

(DUC)CA, and therefore DUC=A. The sets C and D are 

obviously mutually separated and since A=DUC it follows that 

A is not connected which is an invalid conclusion. Therefore 

the assumption that A is countable must be invalid. Hence A 

is uncountable. 

Theorem 1.15. If each of M and N is a connected subset 

of X, and then Ml/N is connected. 

Proof. Suppose each of M and N is a connected subset of 

X and Mf|N^0. Further suppose that there exist sets T and S 
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such that S^0, T and S are mutually separated and TUS=MUN. 

Thus it can be assumed without loss of generality that there is 

some point x€ Mf\N such that x€T. The set M cannot be 

entirely devoid of points of S for this would imply SCN, and 

therefore N could be written as the union of two mutually 

separated sets SUK where KCT. 

Now let Tj = | x J x £ T , x € m| and Sj=^c|x€S, x£m|. Obviously 

T^US^=M, T^0, S^/0. Since the sets T and S are mutually 

separated it follows that T^and are mutually separated. 

Thus a connected subset M of X has been written as the union of 

two mutually separated sets, which is an invalid result. There-

fore there exist no such T and S, and Ml/N is connected. 

Theorem 1.16. If MCX is connected, then |m] is connected. 

Froof. Suppose M is connected, and suppose L to be the 

set of limit points of M which are not contained in M. Further 

suppose that (mJ=aUB where A^0f, If L=A or L=B then the 

theorem follows. If L^A and then (A-L)s*0 and (B-L)/0. 

But (A-L)U(B-L)=M. Thus (A-L) and (B-L) are not mutually 

separated.and hence A and B are not mutually separated. 

Therefore [m] is connected. 

Theorem 1.17. If M and N are mutually separated and A 

is a connected set such that ACCMUN), then ACM, or ACN. 

Proof. Suppose M and N are mutually separated and A is 

a connected set such that AC(MUN). Further suppose Af)M^# 

and Af]W0, Now Af|M is a subset of M and A O N is a subset of N. 
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Thus (AAM) and (AON) are mutually separated. But 

A=(AA M) U (AAN), and thus A is not connected. This last 

conclusion is invalid and therefore either AAM or AA N=0. 

Since AC(Ml/N), clearly if aAM=0 then ACN, and if AAN=0, ACM. 

Theorem 1.18. If X is a connected metric space and M is 

a connected subset of X and M (complement of M)=AUB where A 

and B are separated, then AUM is connected. 

Proof. Suppose M is a connected subset of a connected 

metric space X and M=AUB where A and B are separated. Further 

suppose that C and D are separated subsets of AUM such that 

CUD=AL>M. Consider the sets CAM and DAM and suppose CAm=0. 

Then M(=.D and C<=A. Thus C and M are mutually separated as 

are C and B. Hence C and (BUD) are mutually separated. But 

CU(BUD) = (CUD)U(B)=(AUM)U (B)=MU(AOB)=MUM=X. Thus X 

can be written as the sum of two mutually separated sets which 

is a contradiction of the assumption that X is connected. 

Therefore cAm^0. Similarly it can be shown that DAMj^0. 

Thus M=(Cfl M) U(DAM) . But (Crt M)CCand (DAM)CD which 

implies that (CAM) and (DAM) are mutually separated. Thus 

M can be written as the sum of two mutually separated sets 

which contradicts the assumption that M is connected. Hence 

C and D are not separated and this implies that AUM is connected. 

The concept of mutually separated sets calls attention to 

the interesting situation of two sets which are disjoint yet 

not mutually separated. In order to inquire into this area 
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it is necessary to define what is to be meant by the boundary 

or frontier of a set. 

Definition 1.20. The statement that a point x belongs to 

the boundary 6f a set M in X means that for each real number 

r>0, the sphere S(x,r) intersects both M and M. Denote the 

set of all such x by Fr(M). 

Theorem 1.19. If X is a metric space and SCX, then 

Fr(s) = [sjn[s]. 

Proof. Suppose xCFr(S). Then each open sphere S(x,r) 

intersects S and S. Hence x e\s] and x e\s]. Thus Fr(S) C [s]f£s]. 

Suppose x € ( [s]A[s] ). Then x €^s] and x C^jsQ. Therefore 

each open sphere S(x,r) intersects S and S. Thus x€Fr(S) and 

hence *0QP\^s]CFr(S). Therefore Fr(S) = a r m 

Theorem 1.20. Fr(A(jB) C(Fr(A)UFr(B)). 

Proof. If A or B=8f then the proof is trivial. Assume 

neither A nor B is empty, and suppose xCFr(AUB). Then for 

r>0, S(x,r)f\(AL/B)^0. Suppose there is some r > 0 such 

that S(x, € >06=0, for €<r. Then S(x,€)f\A^0, and hence 

x€Fr(A). Similarly if there is some r >0 such that S(x, €)f)A=0, 

for £ <r, then S(x, €-)f\B^0, in which case x£Fr(B). Thus if 

xCFr(AUB) then x CFr(A)UFr(B) and Fr<AUB) C{Fr(A)UFr(B)] 

Theorem 1.21. Fr^jAj) CFr (A>. 

Trpof. If £A]=0 then A=0 and Fr( £a] )=Fr(A)=0. Suppose 

x€Fr([XJ). Then for each r>0, the sphere S(x,r) intersects 
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[A] and [A}. Thus there is some point y£S(x,r) such that 

yt [A] and some point zcS(x,r) such that z€ [A], If Z€.{A\ 

then Ua3 and hence z/^A. Thus z£ A, so an arbitrary sphere 

about x intersects A. Now the sphere S(x,r) must be shown to 

intersect A. The point ye CAl is either an element of A or a 

limit point of A by Theorem 1.4. If y e A then the theorem 

follows. If y is a limit point of A, then for every £ > 0, the 

sphere S(y, £ ) intersects A. Now d(x,y)<r since y^S(x,r). 

Choose e' such that 0<rg.'< r-d(x,y). Obviously the sphere 

S(y, fe')CS(x,r) and S(y, <£.') intersects A. Thus S(x,r) 

intersects A. Hence x&Fr(A) since an arbitrary neighborhood 

of x intersects both of A and A. 

Definition 1.21. The set of all interior points of a set 

M is called the interior of M and will be denoted by M°. 

Theorem 1.22. The boundary of the interior of a set A 

is contained in the boundary of A. That is, Fr(A°)CFr(A). 

PrQQf. Suppose A0/*?, andx£Fr(A°). Then obviously for 
o 

r >0, S(x,r)/"| A^0t and S(x,r)f) A^0, Choose some y such that 

y€S(x,r)fiA . Now A°=(A-A°)UA. Thus either y e (A-A°) or 

else y£ A. If y g A , then the theorem follows since S(x,r) has 

been shown to intersect both A and A. If y g (A-A°) then each 

sphere S(y,r') must intersect A since otherwise would imply 

y£A°. Choose an r' such that 0<r'<r-d(x,r). Obviously the 

sphere S(y, r') <C.S(x,r), and since S(y,r') intersects A it 

follows that S(x,r) intersects A. Thus S(x,r)flA/0 and 

S(x,r)f\A^ hence xfcFr(A). Consequently Fr(A°)C.Fr(A). 
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Problem 1.6. If A is a subset of a metric space X, then 

the complement of the closure of A equals the interior of the 
— _o 

complement of A. That is, [A) =A . 

Proof. Suppose xe £A] and suppose every open sphere 

S(x,r) intersects A. Then x is a contact point and belongs 

to CA]. This is a contradiction of the assumption that x€ {A]. 

Thus there is some sphere S(x,r) which is contained in A. 
_o _o 

Thus x e A , and (A] C.A . 
_o 

Now suppose xeA . Then there is a sphere S(x,r) which 
—0 -L 

is contained in the set A . Thus S(x,r)OA=0. Hence 
_o _ o 

and A' C [Aj . Thus [A3 =A . 

The concept of a compact set is quite important to this 

study of metric spaces since it is this property which guaran-

tees the Bolzano-Weierstrass property of Theorem 1.24. The 

definition of compactness chosen here is a form of the conclusion 

of the Heine-Borel theorem."'' 

Definition 1.23. A set S is compact if every open 

covering of S has a finite subcovering. 

Theorem 1.23. A compact set is closed and bounded. 

Lemma. If S(a,r) is an open sphere and x,yfi.S(a,r) then 

d(x,y)<2r. 

Proof- Suppose S(a,r) is an open sphere and x,y£S(a,r). 

Obviously d(a,x)<r and d(a,y) <r and d(x,y) ̂ d(a,x)+d(a,y) c 2r. 

1 George F. Simmons, IptrQdû .tiQP lfl Tppfllpgy a M Modern 

Analysis(New York, 1963), pp. 111-112. 
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Proof of Theorem 1.23. Suppose M is a compact set. 

Consider the open covering [x £ mJ. Since M is 

compact there exists a finite subcovering Sit where S 

Choose some point aeM and consider the set C=£x|x is the 

center of a sphere in sj . Since is finite, it follows 

that C is finite and that there is some x£C such that d(a,x) 

>d(a,y) for all y^C. Thus(d(a,x)+ljid(a,y) for all y^M, 

and hence M is bounded. 

Now suppose x is a limit point of M and x^M. Consider 

the sequence jbnj of points of M which converges to x and 

consider the covering Ĝ  = ̂ >(a, £ ) Ja e M, € =£d(a,x)3. Since 

M is compact there is a finite subcovering |s ̂  of fal-

Clearly no sphere in S.. contains x, and no sphere in S^ contains 

more than a finite set of points of • Now every point of 

|b^ belongs to some sphere in S.-; thus the sequence [bn| has 

only a finite set of points. This is an invalid conclusion; 

hence our assumption that x/^M must be invalid. Thus M is closed. 

Theorem 1.24. Every compact infinite subset of a metric 

space has at least one limit point. 

Proof. Suppose M is an infinite compact subset of a metre 

space X, and suppose that M has no limit point. Then each 

point of M is an isolated point. Thus if y€M there is an -i 

€ 0 such that S(y,£ ) contains no point of M other thay" y, 

and we can form an open coveringj^jby choosing for each ygM, 

an€ > 0 such that S(y,€.)fl M=£yj. From the definition of 
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compactness, there is a finite subcovering ̂ S.. of jG^j. But 

since each sphere in contains only a single point of M, 

this implies that M is finite which is invalid. Thus M must 

have at least one limit point. 

Definition 1.24. The statement that a metric space X is 

a sequentially complete space means that every infinite 

sequence in X has a convergent subsequence in X. 



CHAPTER II 

PROPERTIES OF FUNCTIONS ON METRIC SPACES 

The aim of this chapter is to establish some of the 

properties of functions defined on metric spaces. No attempt 

is made in this paper to examine a particular type of function 

in detail. Instead, some of the properties of several kinds 

of functions will be observed as the functions are defined on 

the various forms of metric spaces described in Chapter I, i.e., 

connected spaces, compact spaces, complete spaces, etc. 

Basic to this discussion is the notion of a continuous 

function. The words mapping and function will be used 

interchangeably. 

Definition 2.1. Let X and X' be metric spaces with metrics 

d and d*. The mapping f of the space X into the space X' is 

said to be continuous at the point x « X if for each real 
o 

number £ > 0 there exists a real number & > 0 such that if 

y € X and d(x ,y)< S , then d' (f (x ) ,f (y) )< £ . If f is con-
o 0 

tinuous at each point of X, then f is said to be continuous 

on X. 

Example (1). Any function defined on the metric space 

of Example (1), page one in the previous chapter will be 

continuous. 

Example (2). If A is a subset of a metric space X and 

29 
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x is a fixed element of A, then the function f defined by 
o 

f(x)=d(xo»x) is continuous on A. 

The first of these two examples is easily verified. The 

second example will be examined in more detail after some 

groundwork has been laid. 

Theorem 2.1. A necessary and sufficient condition that 

the mapping f of the metric space X into the metric space X' 

be continuous is that for every sequence |x ( which converges 

f ? n 

to x, the sequence lf(x )j converges to f(x). 

Proof. Necessity. 

Suppose f is a continuous mapping of the metric space X 

into the metric space X1 and |x ( is a sequence which converges 
n } 

to x^€ X. Choose 6 >0. The continuity of f at x q guarantees 

the existence of a & > 0 such that if d(x ,y) < £ and y€.X, theft» 
o 

d'(f(x^),f(y))<£ . Now converges to xq so the sphere 

S(x0, & ) contains all but a finite number of points of 

Thus the sphere SCfCx^), £ ) contains all but a finite set of 

points of the sequence Therefore |f(xn)jf converges 

to f(x ). 
o 

Sufficiency. 

Suppose f is a function of X into X' and for every 

sequence £x^J which converges to x Q the sequence £f(xn>^ 

converges to fCx^). Further suppose that f is not continuous 

at some x^6 X. Then there is some t > 0 such that for every 

6 > 0 there is an x t X for which d(x ,x)<£ and df (f (x„) ,f (x)) > * 
0 u 
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Consider the set N=js(xo,l/n) Jn=l,2,3 * * Each of these 

neighborhoods of x must contain some y£X such that d'(f(xA),f(y)) 
o o 

> £ . Choose one such from each of the neighborhoods 

S(xo,l/n). Now the sequence £ynjj converges to x^ but 

d' (f (x q),f (y^)) > 6 for each element of £yn^« Thus 

does not converge to This conclusion is invalid thus 

the assumption that f is not continuous at x q is invalid. 

Therefore f is continuous at each x Q£X and hence f is contin-

uous on X. 

The notion of a bounded set was introduced in the first 

chapter. It was this property along with that of closure 

which were guaranteed by the Heine-Borel covering property of 

compact spaces. Since a function is defined in terms of sets 

it is natural to extend the concept of a bound to functions. 

Definition 2.2. Let f be a function from a metric space 

X into a metric space X'. The function f is said to be 

bounded on a subset A of X if there exists a real number M 

such that d' (f (x),f (y))£M for all x,yeA. 

Theorem 2.2. If A is a compact subset of the space X and 

f is a continuous function on X to X1, then f(A) is bounded. 

Proof. If f(A) is finite it is obviously bounded. 

Assume f(A) to both infinite and unbounded. Thus if a is 

some fixed point of A, and n is a positive integer, there is 

some x ^ 6 A such that d'(f(xr),f(a))> n. Obviously the 

sequence is n°t convergent nor does it contain a * 
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convergent subsequence. Now A is bounded, thus the sequence 

jx ^ is bounded. And the Bolzano-Wierstrass property of 

compact spaces which was established in Chapter I along with 

the uniqueness of limit points of a sequence guarantee that 

the sequence £ xR^ has exactly one limit point. Therefore 

there is some subsequence £x ^ of the sequence |x ^ which 

converges to a point x^. Compactness guarantees closure and 

thus x € A, and f(x )c.f(A). Theorem 2.1 insures that ?f(x„ )f 
o o ^ % J 

converges to f(xQ). However this is not in agreement with 

the conclusion reached earlier from the assumption that f(A) 

is unbounded. Therefore this assumption must be invalid, and 

hence f(A) is bounded. 

Problem 2.1. Let X be a non-empty metric space and f be 

a real function defined on X. Show that f is bounded < ?>• 

there exists a real number k such that |f(x)|sk for every 

x € X O sup |f (x)|< + <x>. 

Proof. Suppose f is bounded in X. Then by definition 

there exists some real number k such that d(f (x),f (y))r£ k 

for all x,y£X. The set X is non-empty so choose zeX. Then 

If 1 is obviously bounded by (f(z)|+k, since otherwise would 

imply k+lf(z)[< |f(x)| , or k< [f(x)| - |f(z)|^ [f(x)-f(z)| =d(f(x)),f(z)) 

which is a contradiction. Hence sup (f(x)| 2 jf(z)J+k<00. 

Now suppose sup|f(x)j< ©o. This implies the existence 

of a real number k such that |f(x)|<k for all xtX. Thus -k 

|f(x)|*k, and f is bounded. 

Now consider the set of all bounded real functions 
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def ined on X and de f ine the norm of a f u n c t i o n f in t h i s s e t 

by =sup |f (x) | . I t i s obvious t h a t | | f l ( i s a nonnegative 

r e a l number such tha t |lfl| =0 4 ^ f = 0 , and t h a t JJ-f 11= i i n i . 

Also f o r such func t ions f and g , | | f+g | | ^ ||f II + l/gll s ince 

llf+gll = s u p | ( f + g ) ( x ) ( = s u p j f ( x ) + g ( x ) j « suo jf (x) |+sup[g(x)[= llfH+Jfelj . 

Theorem 2 .3 . If A i s a compact subset of a metr ic space 

X and f i s a continuous f u n c t i o n on X to R ( the r e a l numbers 

with usual m e t r i c ) , then t he r e i s a point p «A such t h a t 

f ( p ) > f ( x ) f o r a l l xeA. 

Proof . I f A i s f i n i t e , the theorem fo l l ows . Assume t h a t 

A i s compact and i n f i n i t e . The previous theorem guarantees 

t h a t f(A) i s bounded and hence has a l e a s t upper bound M, such 

t ha t given any r e a l number € > 0 the re i s some x e A such t h a t 

d ' ( f ( x ) , M ) < £ . Thus f o r each r ea l number of the form 1/n, 

ne | l , 2 , 3 , * * , t he re i s some x such t h a t d ' (f (x ),M)< 1 /n . u J n n 
From Theorems 1.7 and 1.24 i t i s c l ea r t ha t the sequence 

conta ins some subsequence Jx ( which converges to a poin t 
L

 ( ? 

x ; and x e A s ince A i s c losed . Clear ly j f ( x )( converges to 
o o c n j 

M and thus by Theorem 1 .7 j f ( x )( converges to M, and M=f(x ) . 
1c ^ 

Thus x € A and f ( x ) 2 l f ( x ) f o r a l l x« A. 
o o 

Theorem 2 . 4 . If f i s a continuous f u n c t i o n on X to X' , 

and g i s a continuous f u n c t i o n on Xf t o X11, then gf i s a 

continuous f u n c t i o n on X to X" where g f ( x ) = g ( f ( x ) ) f o r x € X . 

Proof . Suppose the above condi t ions and choose £ > 0. 

Fur ther suppose x & X. Then f ( x ) £ X ' . Since g i s continuous 
o o 



34 

on X' to X" there is a 6f >0 such that if f(y)£-X' and 

f(y)6 S(f(xo), 6'), then d« [g(f (XQ) ,g(f (y)]< e . Also since 

f is continuous at x there is some S such that if zeX and 
o 

zeS(x . &), then f (z) € S(f (x ), &'). Thus if z eX and 
o o 

zeS(xQ,€>) then f (z) € S(f (xo>, £>') which implies that 

g(f(z))6 S(g(f(Xq),£ ). Therefore fg is continuous on X to Xn, 

An important and familiar property of a continuous 

function defined on an interval of real numbers is that of 

assuming all values between any two of its values. A similar 

property holds for continuous functions defined on certain 

metric spaces. While the notion of a sphere in a metric 

space bears some similarity to that of an interval on the 

real line, there are some properties of intervals which are 

not posessed by spheres in general, and it is not sufficient 

to define a continuous function on an open sphere if it is 

desired that the function have the above mentioned property. 

It is necessary to restrict the metric space on which the 

continuous function is to be defined to be a connected space. 

Before proving this theorem it will be convenient to 

establish the preliminary result of Theorem 2.5. 

Theorem 2.5. Let f be a real valued function defined on 

a metric space X and assume f is continuous at a pointraraiid 
* 

that f(a)>0. Then there is a sphere S with center at a so 

that for every x€ S, f(x)>0. 

Lemma.. If a and b are real numbers such that a>0 and 

b^O then la-b|*a. 
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Proof. Since a>0, it follows that lal=:a >0 and since 

b^O it follows that Ibl =-b~ 0. Now ( a-b[ - |a+(-b)| , and -b=lb\ . 

Hence I a-bl = [lal+lbil = (al+lbl 1 |a(=a. 

Proof of Theorem 2.5. Let f be a real valued function on 

X, be continuous at a, and f (a) >0. Choose <= =f (a) > 0. The 

continuity of f at a insures the existence of a S>0 such that 

if yeX and yeS(a,&), then f (y) eS(f (a), € ). Now suppose 

that xeX, x^S(a,g), andf(x)^0. Then d* (f (a) ,f (x)) 

= (f (a)-f (x)|> f(a)=£ . This is an invalid conclusion and thus 

the assumption that f(x>2£*0 for some x£S(a,&) must be invalid. 

Therefore f(x)>0 for all x£S(a,6). 

Theorem 2.6. Let f be a continuous function on a connected 

subset A of a metric space X and be real valued. Assume there 

is an element a^A such that f(a)<0 and an element b«A such 

that f(b)>0. Then there is an element c£A such that f(c)=0. 

Proof. Suppose there is no element ceA such that f(c)=0. 

Then there are non-empty sets M and N such that MUN=A and Mf|N 

=0 where M=|x£ A \ f (x) >o] and N=|x6 Ajf (x)< o|. A is a con-

nected set so we can assume without loss of generality that 1 

If y£Mn[N] then y and y is a limit point of N. 

Thus there is some sequence [y such that (yn( converges 

to y. By Theorem 2.1, )\ converges to f(y). Now f(y)>0 

since y€M and Theorem 2.5 asserts that there is some sphere 

S(y, £ ) such that for every x £S(y, e ), f (x) >0 so S(y, £ ) 

contains no points of Thus does not converge to y. 
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Hence our assumption that there is no ceA such that f(c)=0 

is invalid and the proof is complete. 

Although the details of the oroofs will not be submitted 
/ 

in this paper, it is worthwhile to mention that the familiar 

property of the continuity of sums and products of continuous 

functions holds true for functions defined on metric spaces. 

That is, if each of f and g is a continuous function on a 

metric space X to the real numbers, then each of f±g, f«g,lf\, 

«(f (for real numbers <v ), and f/g (where g(x)^0 for all xfeX) 

is continuous on X. 

Definition 2.3. Let X and X1 be metric spaces. The 

mapping f of the space X into the space X' is said to be 

uniformly continuous on X if for each € > 0 there is a & > 0 

such that if x,ycX and d(x,y)<£ , then d' (f (x),f (yj< e . 

Obviously the set of all uniformly continuous functions 

defined on a metric space X is a subset of all continuous 

functions defined on th$ space X. Thus it follows that the 

remarks made about continuous functions also are valid for 

uniformly continuous functions. 

Theorem 2.7. Let X be a metric space and X' be a complete 

metric space and let A be a dense subspace of X. If f is a 

uniformly continuous function of A into X1, then f can be ' 

extended uniquely to a uniformly continuous function g of X 

into X'; that is,g is uniformly continuous on X to X1, g(x) 

=f(x) for each xeA, and g is unique. 
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Proof. If A=X the theorem follows. Assume A^X and define 

g to be the following; 

(a) If x C A , then g(x)=f(x) 

(b) If x €(X-A) then x must be a limit point of A and 

there exists a sequence ĵ x | of elements of A such that 

converges to x. Thus the sequence = converges 

to some y and since X' is complete, y£X', In this case let 

g(x)=y. 

Now choose € > 0. Since f is uniformly continuous there 

is some £ > 0 so that if x,yeA and d(x,y)<& , then d'(g(x) ,g(y)) 

< € / 2 . Suppose x,y€X and d(x,y)< 6 . Consider two sequences 

jx ^ and £y \ of points of A which converge to x and y. **y 

the triangle inequality for Xjt [x^ , yi6{.yn{' 

d(xi,y.)^d(xi,y)+d(y,yi)fd(xi,x)+d(x,y)+d(yi>y). 

The property of convergence guarantees that for an 6 > 0 , 

there is some positive integer k such that if i is an integer 

and i >k then d(x,xi)+d(y,yi>< e . 5ince d(x,y)< g it follow 

that S-d(jfc,y)>0 and hence there is some positive integer k 

such that d(x,xp+d(y,y i>< 6 -d(x,y) for i>k, or dCx.x^) 

+d(y,yi)+d(x,y)< ̂  for i>k. Therefore d(x.,y )*s d(x,x.) 

+d(y,y.)+d(x,y)<£ for i>k. Since x.,y.£A, it follows that 
i i i 

d'(g(x ),g(y,))<^/2 for i>k. By the triangle inequality 
i 1 

d1 (g(x),g(y))^i d' (g(x.) ,g(y ))+M where M=d! (g(x.) ,g(x)) 
i i 1 

+d'(g(y^),g(y)). Suppose d'(g(x),g(y>)> £ /2. Then there is 

some c > 0 such that d' (g(x) ,g(y))= 6 /2+c. From this it follows 

that ^/2+c^£d' (g(X|) ,g(y^,))+M < e/2+M for i>k. T h u s ^ + c <^/2+M. 
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or c<M. But M goes to zero as |g(xn)j
 ant* jg(yn)j converges 

to x and y, and c is a constant, thus c^M. Therefore the 

assumption that d' (g(x) ,g(y)) > ^/2 is invalid and hence 

d'(g(x),g(y)> £ €/2 < £, and g is uniformly continuous on X 

to X'. The function g must now be shown to be unique. 

Supnose h is a uniformly continuous extension of f on X 

to Xf and there is some x £X such that h(x)^g(x). Then by 

definition of an extension of a function x^A. Thus x is a 

limit point of A. Now d'(h(x),g(x))=p>0. Thus by virtue 

of the triangle inequality the neighborhoods S(g(x),p/4) and 

S(h(x),n/4) have an empty intersection. Since g and h are 

uniformly continuous, there is some so that if y€.X 

andy€S(x,£), then d' (g(x),g(y)) <p/4. Also d'(h(x),h(y)) 

<p/4. Now x is a limit point of A; hence there is some y€ A 

such that y^x and y€S(x, £) and g(y)=h(y) by definition. But 

g(y) €S(g(x),p/4) and h(y) CS(hCx),p/4). This contradicts 

the conclusion that S(g(x) ,p/4)AS(h(x) ,p/4)=0 which was 

obtained through the assumption that g(x)#i(x). Thus the 

assumption must be faulty. Hence g is unique. 

Theorem 2.8. If f is continuous on a metric space X, 

then f is uniformly continuous on a conpact set ACX. 
% 

Proof. Suppose A is a compact subset of X and f is con-

tinuous on A. Let € >0 and consider £s(f(x), €/8)lx €Aj. 

Clearly f^CSCfCx), €/8)) is an open set containing x and 

-jf-l(S(f(x), £/8))Ix£a} is an open covering of A. Now for 
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every f^CSCfCx), 6/8)) where xek there is some S(x, $ x) 

Cf"1(S(f(x), ̂ /8)). Then [s(x, ^)|x€ a] is an open covering 

of A and there is a finite subcovering of A, call?it 

SQ /v t \ £ ) • • *,S (x , X )? . Consider 
i l l ' 1 ' 2 2' 2 ' ' n n n ) } 

n=min [d ( fS./l Aj , {S. A Aj ) | d ( [S .A Aj , {S. f ) A)) ̂qf. Let 

S=£min[p, S r 62* " * ' * 6n]*
 SuPPose x>y* A and d(x,y)<£ . 

Then S. and y€ . 

Case (1). If i=j then by definition of S^d' (f (x) ,f (y))<T£ • 

Case (2). If i * j and (S.fl A) A (Sj AA)^0 then choose some 
z£(S A A ) A ( S - A A). Now d'(f(x),f(z))< e /4 and d'(f (z) ,f (y)K€/4 

i J ^ 
and by the triangle inequality, d(f (x) ,f (y))< /2<£ , 

Case (3). If i*j and (S^A) fUSjAA)=0 then for r>0 

there exist afiCS^A) and b fc (S^A A) such that d(a,b)<r for 

otherwise would imply d(lS^AA] , £SjAA] )> r and hence d(x,y)>£. 

For each of, the real numbers 1/n, n*[l,2,3,* • "j, choose 

ane (S.AA) and (S^/lA) such that d(an,bn)< 1/n. Clearly 

the sequences |a^ and {bnj contain subsequences which converge 

to the same limit xQ. But xQfe A hence there is some sphere St 

such that xQ<£ S . Obviously St intersects (S.fiA) and (SjAA). 

Choose z<Stfi(S flA) and !'« S ^ I S rt*). Now d-(f (x) ,f Cz) M 

and d1(f(z),f(z'))«= 6 /4 and d'(f(z'),f(y))«c ̂ /4. Thus 

applying the triangle inequality twice gives d(f(x),f(y))<€ . 

Therefore f is uniformly continuous on A. 

In Example (2), page 29, it was suggested that a real 

function f is continuous if defined on a metric space such that 

f(x)=d(x,a) where a is a fixed point of X. A proof of this 
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assertion is now offered in Problem 2.3. It is shown in 
* 

Problem 2.3 that a function f so defined is not only continuous 

but also uniformly continuous. 

Problem 2.3. Let M be a subset of a metric space X and 

a€M. Then the function f defined by f(x)=d(x,a) (a is fixed), 

is a uniformly continuous function on M to the real numbers. 

Proof. Suppose the above conditions and choose € > 0 . 

Let S= € . Now suppose x,y €M and d(x,y)<£ . By the triangle 

inequality d(a,x)^ d(a,y)+d(x,y) or d(a,x)~d(a,y) £d(x,y)<-«?r =£. 

Thus f(x)-f(y)^ 6 . Also d(a,y)-d(a,x)£.d(x,y)< $ =£". Hence 

f(y)-f(xK£ . Thus |f (x)-f (y)| =d« (f (x) ,f (y))< € , and f is 

uniformly continuous on M to R. 

The set of all such functions on M, that is, the set 

A =jfal a € M > y x>= d<a. x>j has several interesting properties. 

An attempt is made in Problems 2.4 and 2.5 to examine some 

of the more interesting ones. 

Problem 2.4. Suppose X is a compact metric space with 

metric d, a£X, and f is defined on X to R such that f (x)=d(a,x) 
a 

(a is fixed). Then f is continuous by Problem 2.3. Thus the set 

A=^ala€x|i is a subset of <jf=|all continuous real functions 

on x|. Define a distance function on (£ such that if f, 

then ^(f ,g)=^^Jf(x)-g(x)j . Obviously /> is a non-negative, , 

single valued, real function and Pit,g)=0^^f=g. It is also 

clear that /*(f ,g)=^|f (x)-g(x)J jg(x)-f(x)| = />(g,f). The 

triangle inequality is easily verified as follows. 
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/"(f,g) + /°(g.h>=^ |f(x)-g(x)| +SS|g(x)-hU)l i ^|f(x)-g(x) 

+g(x)-h(x)j=®^(f(x)-li(x)|=/*(f,h). Thus f is a metric on £ . 

Theorem 2.9. If a sequence |an^_»a£X, then ̂ 0 ( | —
f
a
e C * 

i.e., for each x£M, lim f (x)=f (x). 
n-»c-f an a 

Proof. Suppose a £.X, ̂ a^J—*a. Choose €.^ 0 and let S ~ ̂  • 

Now "the sphere S(a, { ) contains all but a finite set of points 

of £a ^. Suppose a 6 S(a, 6). Then d(a,a.)<6 = 6. Now 

suppose x&X. By the triangle inequality d(x,a)+d(a,a.)> dCx,ai> 

and also d(x,a.)+d(a,a^)^d(x,a). Define to be d(a,a^). 

Then these inequalities can be written as <£' >. d(x, a^)-d(x,a) 
=f (x)-f (x) and 6'> d(x,a)-d(x,a.)=f (x)-f (x). Thus 
« ai a 1 a 1 . , 
if (x)-fa (x) |-< e

1 < 6 = £ • Since x was arbitrarily chosen 

it f o l l o w s that ® " 5 | f a ( x ) - f a . ( x ) | = d ( f a , f a . ) < « . Hence 

( f , i - » f • 
t ani a 

Problem 2.5. Let M be a metric space and define a 

mapning 0 of M into A by 0(a)=fa> Then 0 is 1-1 onto continuous, 
since if then jf^—frf^. 

Problem 2.5.1. Suppose a,x,b€M. Then d(a,b)+d(a,x) 2id(b,x) 

and also d(a,b)+d(b,x) > d(a,x). These two inequalities may be 

written as d(a,b).> d(a,x)-d(b,x) and d(a,b) >.d(b,x)-d(a,x). 

Therefore d(a,b)>. |d(a,x)-d(b,x) | for all values of x. Thus it 

follows that d(a,b)>. ® ^ J d ( a , x ) - d ( b , x ) J * 

But if x=a then d(f ,f^)= |d(a,a)-d(b,a)|=d(a,b). Thus the 

supremum is attained for x=a or x=b and thus d(a,b)=d(fa,f^). 

Before proceeding to Broblem 2.5.2 it is necessary to 

introduce the following definition#. 
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Definition 2.4. A metric space X is said to be complete 

if every Cauchy sequence in X has a limit in X. 

Problem 2.5.2. If U is a subset of a complete metric 

space M and A(U) = jfQja€uj, then U is closed if and only if 

A(U) is closed. Suppose U is closed, g is a real function on 

M, and g is a limit point of A(U). Then some sequence 

Clearly {f ] is a Cauchy sequence since for £>0 there is 
v an» 

some integer N such that f € S(g, €/2) for i>N and if fa , ai i 
fa € S(g, £/2) then d(f ,f )< €. Nov/ for a,b €U d(a,b) 
j ai aj 

=d(f , f, ); thus for a.,a.£fa^, d(a.,a.)<€. Therefore f a „V 
a b l J C nj i J v 

is a Cauchy sequence and has a limit x€U since U is closed. 

Clearly f £A(U) and the sequence \f \ converges to f . The 
X \ x 

uniqueness of the limit of a sequence guarantees that f =g. 

Hence A(U) is closed. 

Now suppose A(U) is closed and further suppose a sequence 

^a
n| converges to some a. Then the sequence ^ a J —*f^ and 

since A(U) is closed, f must belong to A(U). Thus by defi-
a 

nit ion of 'A(U), a€U, and U is closed. 

Problem 2.5.3. A subset U of a metric space M is open if 

and only if A(U) is open. Suppose A(U) is open and f^CACU). 

Now 0 is continuous on U to A(U) and thus for an arbitrary 

sphere S(f ,£) there is a $ so that if y£U and y€.S(a,£") 

then ff(y) €.S(f^, €). Obviously a€.U. Let N= €S(a, £)|x ̂ u|. 

If N contains no sequence jx which converges to the point a 

then a can be found such that S(a, £')CS(a, S) and 

S(a, g')Cu. Clearly N contains no such sequence since this 
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would imply the convergence of the sequence |0f(x )Jto 0(a)=fg. i 

But S(f ,£)CA(U). Thus U is open. 

Now suppose U is open and aeU. Then S(a,r)CU for some 

r >0. Consider the sphere S(f ,r), and suppose f 6S(f ,r) 
a b a 

and b/^S(a,r). Then d(a,b)^r; thus from Problem 2.5.1 d(f ,f.) 
a D 

>r which contradicts the assumption that f, € S(f ,r). Thus 
u a 

S(f ,r)CA(U) and A(U) is open. 

Problem 2.5.4. Suppose U is compact. Then every open 

covering of U has a finite subcovering. Suppose is an 

open covering of A(U). Clearly we can form a class of 

sets H such that for each G€ ^Gh^ there is an Hfc and 

a&H if and only if 0(a)=f € G. Problem 2.5.3 guarantees that 
a 

each H is open and by definition is a covering. Thus [h^] 

is an open covering of U. Now U is compact; hence there must 

be some finite subcovering of U. Obviously ̂ G. j* is a 

covering for A(U) and J g ^ is finite; thus A(U) is compact. 

Since no property of U was used in this proof that is not 

also a property of A(U) it follows immediately that A(U) 

compact implies U compact. 

Problem 2.5.5. Let U be a subset of a metric space M. 

Then U is dense in M if and only if A(U) is dense in A. 

Suppose A(U) is dense in A, and a^M. Further suppose there 

exists some r>0 such that S(a,r)/tU-0. Now f € A and hence 
• a 

either f € A(U) or f is a limit point of A(U). Clearly 
8 a 

f /A(U) since S(a,r)RIU=0; thus f is a limit point of ACU). 
a a 

Thus for r>0 there is some f. such that fhfcS(f , r) and 
U ^ 3 
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f CA(U). Then b C U and d(a,b)=d(f ,f, )<r which is a contra-i 
b a b 
diction. Thus U is dense in M. 

Now supnose U is dense in M and f„€A. Then a€M and 
a 

a €.U or an arbitrary sphere S(a,r) intersects U. In the 

former case the theorem follows. In the latter case there is 

some sequence Sa |-*a; hence af >f and f is a limit point 
t C an a a 

of A(U). Thus A(U) is dense in A. 

An interesting class of functions is that of lower-semi-

continuous functions. This class contains the continuous 

functions, step functions, and others. 

Definition 2.5. A function f on a metric space M into 

the real numbers R is called lower-semi continuous at c€M if 

for each € >0 there is a £ > 0 such that whenever d(x,c)<$", 

then f(c)<f(x)+C. If f is lower-semi continuous at each point 

of a set S CM, then f is lower-semicontinuous on S. 

Theorem 2.10. A function f on a metric space M into R 

is lower-semicontinuous if and only if for each real number 

k, the set E^~ { x € 

k 3 is closed. 

Proof. Suppose f is a lower-semicontinuous function on 

a metric space M to the real numbers R. Choose some real 

number k and supoose xq is a limit point of El^=|x£Mjf (x)^ k^. 

Now if x^CEj,, the theorem follows. Therefore assume xQ 

and hence f(xQ) >k, or f(xo>-k= €>0. But f' is lower-semi-

continuous and hence there exists a £ such that if d(xQ,y) 

><£$ then f(xQ)<f(y)+€. Since x q is a limit point of 



45 

then S(x ,6) contains some point y of E other than x . Now 
0 K. 0 

f(y)<£k and f(xQ)=k+ £ or k=f(x0)-g. Hence f (y)^k=f (xq)-€ 

or f (y)+ 6 ; but since f is lower-semi continuous, then 

f(x )<f(y) + £. Thus we have an invalid conclusion and hence 
o 

our assumption that x ^ E ^ is invalid. Therefore we can 

conclude that x € E and hence E. is closed. 
o k k 

Now suppose f is a function on the metric space M into ' 

the real numbers R, and for each real number k» the set 

Ek=jx£M|f(x)Sk} is closed. Choose € > 0 and suppose xQfe M. 

By a previous theorem we know that x is either an isolated 
o 

point or a limit point of M. If xQ is an isolated point of 

M, there exists a sphere SCX^, 6) such that S(xq, S)AM=£x^J. 

Therefore we can say if y£M and d(xQ,y)<g , f(xo><f(y) + £ . 

Suppose x^ is a limit point of M and suppose that for some 

£>0, every sphere about x , S(x , £) where 6 > 0, contains 
o o 

some y€M such that f(xo).>f(y) + € . Consider the set of 

spheres T=js(xo,1/n)|n=l,2,3,* * Each of these spheres 

S(xo,l/n) contains some element y^ such that f(x^)J>f(yn)
+£• 

Consider a sequence £y ^ of such elements and choose k'=f(xq)-6 

Now obviously f(xQ)> k
1 implies x ^ E ^ ^ jx£M|f(x);s k'̂  . But 

Jy , and each y eE since for y , f(x ),£f(y„)+£. 
t n) o n k1 n o n 

Therefore x is a limit point of E . But this is contra-
o k' 

dictory to 6ur supposition that E t is closed. Thus there 
k 

must exist some 6>®such that if y^N and d(x »y)<S , then 
o 

f(xo)<f(y) + € . 



46 

Corollary 2.10.1. A function f on a metric space M into 

P. is lower-semi continuous iff for each k6R, the set 

= {x£H|f(x)>kj is open. 

By a previous theorem we know that G^ open implies 

closed and G closed implies G_ open, where G denotes the 
k k 

complement of G. Now Ĝ  = jx £ Mjf Cx)s kj . By the previous 

theorem, if f is lower-semicontinuous, then G^ is closed and 

hence G^ is open. Also G^ open implies is closed, which 

by the previous theorem implies f is lower-semicontinuous. 

Theorem 2.11. If f is lower-semicontinuous on a metric 

space M into R and if f is bounded below on a compact non-

empty set SC.M, then there is an element c 6 S so that 

f(x)>f(c) for all x^S. 

Proof. If f is finite the theorem follows. Assume the 

above conditions. Then there is some real number k such that 

f(x)>k for all x£S. Now choose k'=k>£ where €. =d(k,f (S)). 

Clearly any neighborhood of k' will intersect f(S), and f(x)>k' 

for all x € S. Thus from each of the neighborhoods S(k',l/n) 

where n€ ll,2s3,* * choose some element y such that 
-1 n 

y € f CS) and f (y )6 S. Obviously <y J converges to k'. The 
n n L n> 
compact set S has the Bolzano-Weierstrass property and hence 

has some limit point x € S. Suppose f(x )^k'. Then 
0 0 

since f (Xq)> k' there exists some £ > 0 such that f(xo)-£.=k
f. 

Now f is lower-semicontinuous at x : thus for ^-/2 there is 
o 

some 6 > 0 such that if y€ S and d(xo,y)<- $ , then f (xQ)<f (y)+
tf/2, 
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Since all but a finite number of the points of the sequence 

|f~*(yn)J are contained in the sphere S(x0,£), it follows 

that all but a finite number of points of ̂ ^y n)| are such that 

f(xQ)<f(y.)+^/2 or f(yj)>f(xo)-
 6'/2. Now suppose z£S(k', 6/2) 

Then z<k' + */2=f(x )-6 + */2=f(x )- */2. Therefore the 
o o 

sphere S(k', ̂ /2) contains only a finite number of points of 

the sequence and hence does not converge to k'. 

Thus the assumption that f(xo)^
! is invalid and hence f(xQ) 

=k'£f(x) for all x£ S. 

Problem 2.6.1. Suppose each of f and g is a lower semi-

continuous function on a subset S of a metric space X. Show 

that f+g is also lower-semicontinuous on S. 

Proof. Choose € > 0 and let £ , = ^/2. Since f and g 

are lower-semicontinuous at a point x 6 S, there are real 
o 

numbers r and r' such that if y€ S and y€S(x0,r) then 

f (xQ)<f (y)+c '; and if y^Sfx^r
1) then g(x(i)<g(y)+ ̂  ^ 

Choose the smaller of r and r'. Now addition of these two 

inequalities gives f(x0)+g(x0)<f(y)+g(y)+2 e' or (f+g)(x0) 

< (f+g)(y)+6 . Thus f+g is lower-semicontinuous on S. 

Problem 2.6.2. If f is lower-semicontinuous on S, then 

o{f is lower-semicontinuous for «* Z 0. 

" Proof. Suppose xQ€ S. Clearly any constant function is , 

lower-semicontinuous since for y€S, f(xo)=f(y) and thus f(x0) 

<f(y) + £ for 6 > 0. Thus if =0, <̂ f is lower-semicontinuous. 

Suppose > 0, an<3 6 > 0. Let ^ . Then for £ • there 

is some positive real number r such that for y€S(xQ,r), 
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f (xQ) <f (y)+ £'. Multiplication by Ogives •<f(y)-fcd£ '» 

or tCf(x ) < .Cf (y) + €. Thus ®tf is lower-semicontinuous for 
o 

•C>0. 

Problem 2.6.3. If each of f and g is a lower-semicontinuous 

function on S, then f*g is lower-semicontinuous on S. 

Proof. Suppose each of f and g are lower-semicontinuous 

functions on S such that f >0 and g>0. Further suppose xcS., 

and €>0. If either of f(x) and g(x) are 0 then clearly 

f (x) *g(x)=0 <f (y)«g(y)+€ for all y€S. If each of f(x) and 

g(x) is non-zero, then choose £' =£min Vl, €,f(x),g(x), 

"> 2 
£"/(f(x)+g(x))j. Clearly £' >0, 1 > £' and hence £' >(£') . 

Also ( £')*(f(x)+g(x))< ( €/(f (x)+g(x))) • (f (x)+g(x))= C and 

( £')2<( € ') • (f(x)+g(x)) or ( £')-(f(x)+g(x))-( C')2>0. 

Since f and g are lower-semicontinuous at x, clearly there is 

some $ such that for y 6S and y€S(x,§), f(x)<f(y)+ €' and 

g(x) <g(y)+ £'. Thus f (x)- £' 4f (y) and g(x)- £' <g(y). 

Multiplication gives f(x)*g(x)- £' • (f (x)+g(x))^(ef )2 < g(y) *f (0. 

This may be written as f (x) *g(x)< g(y) »f (y) + £' •(f(x)+g(x)) 

-( €' )2 <f (y)*g(y) + C . Thus f 'g(x) <f *g(y)+ G and f.g is 

lower-semicontinuous at x. 

From the class of step functions it is easy to offer 

examples showing that f-g, JLf (for »C>0), f*g (for f<0 or, 

g<0), and f/g are not lower-semicontinuous. 

The class of upper-semicontinuous functions was not 

considered in this paper since the properties which were 

established for the lower-semicontinuous functions can 
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be extended in a natural way to the upper-semicontinuous 

function. 

The last topic to be considered in this paper is that of 

convex functions. 

Definition 2.6. A function f on a metric space X to R is 

called convex if for each x,ytf M and each zf M such that 

d(x,z)+d(z,y)=d(x,y), then f(z)g d(z,y).f (x)+.dfo,?)»f (y). 

d(x,y) d(x,y) 

Problem 2.7.1. If each of f and g is a convex function 

in a set S, then f+g is convex. 

Proof. Suppose f and g are convex on S to R, x,y tS, and 

z€S such that d(x,z)+d(z,y)=d(x,y). Then f(z) 
d(z.v). f (x) + d(x„z)«f(v) and also g(z)< d(z.v).g(x) 
d (x, y) d(x,y) — d(x,y) 

+ d(x.z).g(v). Addition of these two inequalities gives 
d(x,y) 

(f+g)(z)«c d(z,y) • (f+g) (x) + dfo,?)>(f+g)(y). Thus f+g is 
d(x,y) d(x,y) 

convex on S. 

rro|?lgin 2,7.2. Show «<f is convex for H > 0. 

PfQof* The inequality f(z)-* .f (x)+ d(x.z) f(v) 

d(x,y) d(x,y) 

follows from the convexity of f. Since * £ 0 the multipli-

cation by «< does not change the sense of the inequality. 
Thus *<f(z) ̂  cKz.v) f(x)+ d(x.z) f(y). Therefore ©< f 

d(x,y) d(x,y) 
is convex. 
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