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CHAPTER I
SOME FUNDAMENTAL PROPERTIES OF METRIC SPACES

A metric space is a pair of two things: A set X, whose
clements are called points, and a distance, i.e¢., a single-
valued, nonnegative real function d(x,y), defined for arbitrary
x and y in X and satisfying the following conditions;

(a) dx,y)=20

(b) d(x,y)=0 iff x=y

(c) dx,y)=d(y,x)

(d) dx,y)+d(y,z)2d(x,z).

The following are some examples of metric spaces.
Example (1). Let d(x,y)= (1) ig ig} for any arbitrary set.
Example (2). Consider the set D™ of ordered n-tuples of

real numbers, x=(x_,x

1
_ 2
d(x,y)—{é (y -x ) ‘g
=1 k k

Example (3). Let é be the set of all continuous real

5 e ,Xn), with distance function,
1
2

L4

functions on the interval ([a,b], and define a distance
function d(f,g)=sun [f(x)-g(x)‘ where f, gé‘g and a% x4<b.

If n is chosen from the set {1,2,3}, Example (2) becomes
one of the more familiar forms of Euclidean space *where
the notion of distance is the usual one, and the four
defining properties of the distance function are readily

verified in these cases., However, if n is restricted to

1



being a positive integer, the concept of distance becomes
less intuitive,

Example (1) illustrates that a metric does not have to
conform to the ordinary concept of distances. However, if
the arbitrary set is chosen to be two adjacent integers, or
the three vertex points of an equilateral triangle, or the
four vertices of an equilateral pyramid, the distance function
does secm more familiar,

Each of these examples can readily be shown to satisfy
the four metric properties. lowever, it is worthwhile to
include a proof of the third property for Example (2). This
property is sometimes called the triangle inequality because
of its similarity to the familiar geometric proposition which
states that the sum of the lengths of two sides of a given
triangle is greater than or equal to the length of the third
side.

Proof. The validity of the Schwarz inequality will be

assumed for this proof.

'b) k=1 1’121 k

Choose three elements x=(x1,x2,x3,' . ',xn), y=(y1,y2,

L) . . . . . n .
y3, ,yn), z= (Zl’ 2235 ’Zn) from the space D'. It will
be convenient to make the following substitutions. Let

dk—yk xk bk=zk—yk and by addition we obta1n zk X1 =9y bk

In the equation

n 2n2 > nz
2 (a +b )“=2 a +22§:a b,+> b
=1 k k' f£=1 k k=1kkf§1k



we can substitute

n I )2
25 a, b, =21[2_a b )
k=1 K’k [Csl k'k }

and by the Schwarz inequality

()
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Thus
f(a +h )2 % - 224 (Zn; | )1?[:1)12{
k=1 =1 k=1 k/ =1
. xgi > (ZI (b ”2
k=1 L =7 K
Ao g dz(x,z)f‘- [:(;l(x,y)+d(y,zﬁ:Z
or d(x,z)L£d(x,y)+d(y,z).
rob 1,1. Let X be a metric space with metric d.
Show that d. defined by d (x,y) is also a metric
1 +d(x,y)
on X. ’
Lroof.

(a) Let x,y be two points in the space X. Then dl(x,y)

= d{x,v) = 0 =0 iff x=y.
1+d(x ,y) 1+0

(b) d (X,Y) = d{x,v) 20,
1+d(x,y)

(c) d (x,y)— dx.v) = _d(v.x) =d1(y,x).
T+d(x,y) 1+d(y,x)

(d) Let d(x,y)=a, d(y,z)=b, and d(x,z)=c. Obviously

a+b 2c. Also 2ab+ac+bct2abc 2actbc+abe., Addition of these



two inequalities gives a+tb+Zab+ac+bc+2abc 2 ctactbe+rabe, or

(a+b+2ab) (1+c) 2c(l+a+b+ab). This inequality may be written

ath+2ab 3y ¢ or _a_ +Db > ¢ . Thus _dlx,y) + dlv.z)
(1+a)(1+b) =1+c 1+a 1+b Tl+c 1+d(x,y) 1+d(y,z)

s>_d(x,z) and hence d_(x,y)+d (y,z)2=d (x,z). Since d
=T+d(x,z) 1 1 1

1
satisfies all four metric space properties and since it is
obviously a non-negative function, d1 is a metric on X,

Remark: Any arbitrary set X with this metric dl forms
a bounded metric space. '

roblem 1,2. Let X be a non-empty set and let d be a

real function of ordered pairs of elements of X which satisfies
the following three conditions: d(x,y)=0, and x=y implies
d(x,y)=0; d(x,y)=d(y,x); and d(x,y)+d(y,z) 2d(x,z). A
function d with these properties is called a nseudo-metric.
The following is an example of a pseudo-metric. Let X be the

set of real numbers and let d= fix-yifor either of X,y non—integef}.
0 for both X,y integers

This is not a metric since d(x,y)=0 does not imply x=y.

Let d be a pseudo-metric on X, Define ~/on X by
X~y &2d(x,y)=0. It will now be shown that this is an
equivalence relation whose corresponding class of equivalence
sets can be made into a metric space in a natural way.

(a) reflexive property; x~x&d(x,x)=0

(b) symmetric property; if x~y<=>d(x,y)=0, then
yrx$éd(y,x)=0 since d(y,x)=d(x,y)

(c) transitive property; suppose y~X and Xx~z.



Then d(y,x)=0 and d(x,z)=0, and d(y,z)<d(x,y)+d(x,z)=0.
Also d(y,z) =>0. Thus d(y,z)=0 and y~z.

For the second part of the problem it must be shown
that a metric can be properly defined on the following class
of equivalence sets.

Let {x} be the set of all elements of X which are equiva-
lent to x, {&} be the set of all elements of X equivalent to
y, etc., Let T={{x}lx€){§.

(a) Choose two elements {z} and {y} from T and define
d' to be as follows; d'({x},{y}kd(x,y) for :‘;G{X}and yé‘{_y}.
Obviously this is a single valued non-negative function for
if x E{x} and yl,y2€iy}, then d(x,y1)+d(y1,y2)}_d(x,yz) or
d(x,yl)éd(x,yz). Similarly d(x,y2)+d(y1,y2)t_>_d(x,yl) or
d(x,yz)}_d(x,y ); thus d(x,y1)=d(x,y2) 20,

Supnose d'({x},{y})=0. Then d(x,y)=0 and x~»y. Thus
{x}={y}. Now suppose §§}={?§. Then xasy and d(x,y)=0; thus
d'({x},{y})=0.

) d' (&, fh=ace,y)=dty,x)=a" ({53, ¥3)

() a (i}, e (fyd, EPh=ax,y+aly,2)2 dix,2)
01§, -

Thus d' is a metric on T.

Throughout this paper, the symbol X will refer to an
arbitrary metric space and d will be a metric defined on X.
The symbol R will refer to the metric space composed of the

set of real numbers with the usual metric, i.e., d(x-,y)=‘x-—yl.



Before beginning a discussion of the basic properties
of metric spaces it is necessary to define the following
fundamental concepts,

Definition 1,1. A closed sphere denoted by S[#O,IJ is
the set of all points x € X which satisfy the condition
d(xo,x)ér. |

Definjtion 1.2. An open sphere denoted by S(x_,r) is
the set of all points x € X which satisfy the condition
d(xo,x)<r.

In each case X, Will be called the center and r the
radius of the sphere.

Some examples of open (closed) spheres are

Example (1). In the first example on page one, any open
sphere S(xo,r) will consist of either the single point X,
when r<1 or the entire space when r >1,

Example (2). Consider the second example on page one
and let n=3, In this case, the closed sphere S[ko,rj fits the
usual notion of a sphere and a point y will belong to SE%O,i}
if it is contained within or lies on the surface of the geo~
metric sphere with center X, and radius r,

It will sometimes be convenient to refer to an €-neigh-
borhooq of a point xo which willlmean an open sphere with
center X and radius €>0.

Defipition 1,3. A contact point of a set M in X will
mean any point X such that every €-neighborhood of x contains

at least one point of M. The set of all contact points of



M will be called the closure of M and will be denoted

by [M].

Theorem 1,1. If M and Ml are sets such that ]\ll_C__‘_M, then
(] C[v].

Proof. Suppose xé[Ml. Then each open sphere S(x,r)
contains some point yﬁMl. But MI_C_ M thus y €M. Therefore
x is also a contact point of M, and hence x € [M] Thus ﬁiﬂgﬁ‘&]

Theorem 1,2. The closure of the closure of a set MCX
is equal to the closure of M, i.e., @’Iﬂ=@'l].

Proof. Let x é(ﬁlﬂ . Then an arbitrary sphere S(x,r)
contains a point XIGU\I]. Let r1=r-d(x,x1), and consider the |
snhere S(xl,rl). Obviously S(xl,rl)_C_S(x,r) since if y€ S(xl,rl)
we know by the triangle inequality that d(x,y)< d(x,y1)+d(x1,y)
<d(x,x1)+r1=r-r1+r1=r. Since x; € Eﬂ] it follows that the
sphere S(xl,rl) contains some point x2€ M. Thus an arbitrary
sphere S(x,r) about x contains a point of M and thus xe[fﬂ].

Now supnose x € ﬁl] Obviously x GW\{I]I since any sphere

S(x,r) about x contains x itself. Thus x is a contact point
of Q\I] and x € @1]] . Therefore @%I]]=E\i]

Theorem 1.3. The closure of a sum is équal to the sum

of the closures. E‘}JMJ:EQUBI;
. A
Proof. Suppose x€ DHUM} . Then either x€ (MlUMZ)

or an arbitrary sphere S(x,r) about x contains some point

y e(MlUM2)° In the former case x belongs to at least one



of M and M and hence to at least one of (I\ﬂ and [M.J Thus
X CEMJUE\Q In the latter case each sphere S(x,r) contains
some point y’€(NiLJM ). If there is a sphere S(x,r') such
that S(x, r'ﬂ”\M =@ then each sphere S(x, r)(\M #@#; and hence

X E,[M] and thus belongs to @I]U@I;.

Now sunpose X €Y‘.\I]U[M] We can assume without loss of
generality that X CE\I] Thus each sphere S(x,r) is such that
S(x,r?(WMlﬁﬁ. It follows then that S{(x, r)(\kM\h)Mz)#ﬁ Thus
xétMIUM,; . Therefore E\llUM?:l [MﬂUDIz

It is necessary to define the concepts of limit point and
isolated point before proceeding to the next theorem.

Definition 1.4. The point x is called a limit point of a
set M if an arbitrary € -neighborhood of x contains an infinite
set of points of M.

Obviously the first example on page one will have no
limit points, while in the third example, each point would be
a limit point. 4

Definition 1.5. A .~oint x belonging to a set MCX is
said to be an isolated point of- this set if x has a neighbor-
hood S(x,r) which does not contain any points of ‘M different
from x. For example, in the set of positive integers with the

usual metric, each element is an isolated point.

Theorem 1.4. Every contact point of the set MCX is

either a limit point or an isolated point of the set M.



Proof. Suppose X is a confact point of M and suppose
there is some neighborhood S(x,r) which contains a finite set
of points of M different from x, Let Y= {yl’yz’ . . .,yn?s bhe
the points of M such that y;€ S(x,r) and yi?-‘x. Consider the
set T={ri/ ri=d(x,yi)}. Since this is a finite set of positive
real numbers, there exists a positive real number k such that
0<k< r.. Thus the sphere S(x,k) is such that S(x,k)nY=ﬁ.

But S(x,k)nm#ﬁ by the definition of a contact point. Thus
X €M and x is isolated.

If there exists no neighborhood S(x,r) such that S(x,r)nM
is finite,then by definition x is a limit point of M. There-
fore x is either an isolated point of M or a limit point of M.

The concept of a sequence is a very useful tool in this
study of metric spaces. Of Spécial importance are the notions
of convergent sequence, subsequence, Cauchy sequence, and
limit of a sequence which will be defined in the following manner.

Definjtion 1.,6. A mapping of the set N of positive
integers onto a set B will be called a sequence if for each
n € N there is an image b&DB. The image of n will be called bn.

ion 1,7. Let x * be a sequence of

17%20%30"
points in the metric space X. We say that this sequence

converges to the point x if every neighborhood S(x,r) contains
all points X starting with some one of them, i.e., if for !
every € >0 we can find a positive integer N such that S(x, €)

contains all points X with n>N ,
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Definition 1.8. The statement that {PQ& is a sub-
sequence of a sequence {? X means that if bi and bjéiPng,
m

then there exist a,, a_g3a ], where a =b_, a =b_ and if t>Kk
kK> "t71m i ot ]

k
then j>1i.
Definition 1,9. The statement that {? ] is a Cauchy
n

sequence means that for each € >0 there is a positive integer

M such that d(ai,aj)<€ if i>M and jOM.

Theorem 1.5a. A necessary and sufficient condition that
the point x be a contact point of the set M is that there exist
a sequence of points {?n} of the set M which converges to X.

Proof. Necessity.

If x is a contact point of M then every open sphere

n
of M. These points obviously form a sequence which converges

S(x,1/n) where n€ [1,2,3,' . } must contain some point X

to x. In the case of an isolated point, the sequence would
clearly be composea of the single point x itself.
Sufficiency.
If the sequence of points\{?ns of M converges to x, then
every neighborhood S(x,r) of x must contain a point y of the
sequence, Thus since ian}C___M it follows that x is a contact

point of M.

Theorem 1,5h. A necessary and sufficient condition that
the point x be a limit point of M is that there exist a

sequence {%n} of distinct points of M which converges to X.
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Proof. Necessity.

If x is a limit point of M then every sphere S(x,r)
about x contains an infinite set of points of M. Choose
k1=1 and from the sphere S(x,kl/l) we can choose some Y1 such
that y; €M, y1¥x.’ Let k2=d(x,y1) and from the sphere S(x,k2/2)

we can choose a y, such that y2éZM and y2#x. Let k =d(x,y2).

Clearly in this manner we can form a sequence of spieres
Sn(x,kn/n) and a sequence {?n& of distinct elements of M
where kn=d(x,y(n_1)), such thati:kn/n} will converge to O
and thus Y will converge to x.

Sufficiency.

By the definition of convergence of a sequence of dis-
tinct points an to a point x, it is clear that every
€ -neighborhood of x will contain an infinite set of points

of the sequence i?ﬁk. Since i%g§<;M’ it follows that x is
a limit point of M,

Theorem 1,6. The limit of a sequence, if it exists,
is unique,
" Proof. Suppose the sequence i?ns converges to a,. and
{?é} converges to b, If a#b then d(a,b)=€ >0, Now let
€'= €/2, The sphere S(a, €') contains.all but a finite set
of elements of {éng. Obviously the sphere S(b, €') contains (
at most a finite set of the elements of a_te Thus the

assumption a#b must be false. Therefore a=b and the limit

of a sequence is unique.
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Theorem 1,7. If lim an=a and {5 g is a subsequence of
n
{? }, then lim b =a.
n n
Proof. Suppose {ang—»a and ib g-ab where {b %is a sub-
n n

sequence of {? k. Further suppose b#a. Then d(b,a)= € >0.
Consider the sgheres S(a, €/2) and S(b, €/2). Obviously their
intersection is empty; yet each sphere must contain all but a
finite set of its respective seduence. Now since‘{Png is a
subset of {?n}’ and since all but a finite subset of {?n is
contained in S(a, €/2), it follows that the sphere S(b, €/2)
must contain only a finite set of points of {bn}. Thus the
assumption that b#a is not valid. Thus lim bn=1im a_=a.

Definition 1,10, The derived set A' of a set A will mean
the set of all points x such that x is a limit point of A,

The concepts of open and closed spheres were introduced

earlier. It will now be convenient to introduce the closely
related concepts of open and closed sets. |

Definition 1,11. A set M in a metric space is closed if
M=[M].

Examples. Every closed sphere is closed. An open sphere
S(x,r) is closed if there are no elements y €M such that
d(x,y)=r,

Defipition 1,12, A point x is said to be an interior
point of a set M if there exists an €-neighborhood of x which
is contained entirely in the set M.

Definition 1,13, A set all of whose points are interior

points is said to be an open set.
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Theorem 1.8. The intersection of an arbitrary number and
the union of an arbitrary finite number of closed sets are
closed.

roof. Let F=f\E& where each E, is a closed set and
suppose X is a limit point of F. An arbitrary neighborhood
S(x,r) of x will contain an infinite set of points of F. This
implies that S(x,r) contains an infinite set of points from
each B¢, and thus x is a limit pdint of each Fx. Since each
F. is closed, this means that x€F, for each E €[\ and
hence x€F. Thus F is closed.

Let F=k:{Fi where Fi is closed, and suppose X to be a
limit pointlgf F. Thus an arbitrary neighborhood S(x,r) is
such that S(x,r)r\F=J, and J is infinite. This implies the
existence of some Fic:F such that S(x,r)r\Fi is also infinite
for otherwise would imply that S(x,r) would contain at most
" some finite number of elements, say k, from each FiC:F. Thus
J would contain at most nk elements of F which is contrary to
the fact that J is infinite. Therefore x is a limit of at
least one Fi and hence xCFiCF. Thus F is closed.

In Theorem 1.8 it was necessary to restrict the union to
a finite class of closed set since it is possible to suggest
infinite unions which are not closed. In Theorem 1.9 it is
necessary to restrict the arbitrary intersection to a Finite
class of open sets for a similar reason.

Theorem 1,9. The union of an arbitrary number and the

intersection of a finite number of open sets are open,
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Proof. Let G=UG,¢ where G, are open sets and suppose
x€G. If x€G then obviously there exists some G.CG such
that x€G,. Now G, is open so there is some neighborhood
S(x,r) of x such that S(x,r)CG,CG. Thus x is an interior
point of G, and G is open.

Now let G= ln\G where G is open and suppose x €G, This
implies that fo:l'“]i E{l 2, « o } x€Gi. Thus in each Gi
there exists a neighborhood S(x,ri) such that S(x,ri)CGi.
Since i is finite it is possible to speak of the least r, or
radius of the spheres S(x,r_). If rtér. for i£§,2, o v . n},
and if y €S(x, r, ) then obv1ously y €S(x,r ) Thus S(x,rt)
CﬂG =G, Therefore there is a ne1ghborhood of x which is

contalned entirely in G and thus G is open.

Theorem 1,10. A necessary and sufficient condition that
the set M be open is that M (the complement of M) with respect

B
i

to the whole space be closed.

Proof. Necessity.

Suppose M is open., Then if x €M there is a neighborhood
of x S(x,r) which belongs entirely to M. That is, S(x,r)
contains no point y such that y&€M. Thus M contains no con-
tact noints of M. Therefore if y is a contact point of M,
then y €M which implies M is closed. If M has no contact‘
points then M=# and # is closed.

Sufficiency:

Suppose M is/ closed and suppose x €M. If every neighbor-

hood S(x,r) of x contains a point of ﬁ,l then X is a contact
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point of M. Since M is closed, this implies that xeM which

contradicts the assumption that x € M. Thus there must be sone
neighborhood S(x,r) of x which contains no points of M. This
implies that x is an interior point of M and hence M is open..

Problem 1.3. Show that [A] is a closed superset of A which
is contained in every closed superset of A,

Eroof. Suppose B is a closed superset of A and x € [A].
Then x is either a limit point or an isolated point of A, If
X is an isolated point of A, then x €A and x €B since ACB.

If x is a limit point of A, then x is a limit point of B and
x €B since B is closed. Thus [A]CB.

Problem 1.4. A set MCX is bounded & it is non-empty
and is contained in a closed sphere.

Proof. Suppose M is a bounded subset of X. By definition
there is a real number K >0 such that 0<c(x,y)<K for x,y €M.
But d(#)=-oo. Thus M#¥, and MCS[x,K] for x€M. Clearly
if M is non-empty and MCLS[#,K], then M is bounded.

Problem 1,5. Show [K] equals the intersection of all
closed supersets of A,

Proof. Suppose x € [A] and B is a closed superset of A,
By Problem 1.3, x€B, and hence x€ nB where T is the class
of all closed supersets of A, ThusBE[?xE[ c{ .

Now suppose xemB. Then x belongs %g:Teach BeT. Fromv
‘Problem 1.3, [A]ﬁ’l‘?e{hus (-\BCEX]. Hence A =[ \B.

BeT BET
Defipitijon 1,14. A family {Q‘} of open sets in X is

called & basis in X if every open set in X can be represented

L4
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as the sum of a (finite or infinite) collection of sets
belonging to this family.

Definition 1,15. A system of sets M, is a covering of a
space X if LJMd?X. A covering consisting of open (closed) sets
will be called an open (closed) covering.

Example (1). In every metric space the family of all
open spheres forms a basis,

Example (2). 1In Euclidean 2-space with the usual metric
the set of open (closed) spheres S(x,r), where r=1 and x is
a point with integer coordinates, will form an open (closed)
covering. (

Example (3). In Example (1) on page one the set of all

unit spheres will form both a basis and a covering.

Theorem 1,11. A necessary and sufficient condition that
a system of open sets {G,L be a basis in X is that for every
open set GCX and for every point x €G, a set G, can be
found in this system such that x€G,CG,

roof. Necessity.

If {F‘} is a basis then every open set G is the union of
some subset of iﬁ,(} That is G=UGk where er{(}-c.}' Therefore
if x€G then there is some G, in G such that x€G, . But

k k
Gké {G“_} and thus there exists some Gy such that xeG,(CG., "
Sufficiency.
Supnose G is any open set in X and for each x €G we can

find some open set G, € {G‘} such that x€G_LxC_G. Then
X
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obviously (] G, =G since each xeG is in some G, and each
Gy is a suﬁget of G. Thus {?,g is a basis.in X,

Theorem 1.12 is concerned with the concept of one set
being dense in another so it is necessary to introduce the
following definition at this point. '

Definition 1,16. Let A and B be two sets in a metric
space X. The set A is said to be dense in B if B& {A]. A is
said to be everywhere dense in X if [A]=X.

Example (1). Let X be Euclidean three-space with the
usual metric. Let A={(x,y,z)l-1<x,y,z<1} and let
B={(x,y,z)lx,y,zé (1,-1)}. Then A{1B=# but A is.dense in B.

Example (2). In R the set of rationals is everywhere
dense,

Example (3). In Example (2) on page one, the set of all
ordered n-tuples with rational coordinates is everywhere

dense.

Theorem 1,12. A necessary and sufficient condition that
X be a space with countable basis is that there exist in X an
everywhere dense countable set.

Proof. Necessity.

Let X be a metric space with a countable basis, say
Gz@ilGi is open and ie (1,2,3, * * ° )}. Construct a set
A by choosing from each non-empty GiE,G an arbitrary xie'Gi'
Suppose x is an arbitrary point of X, and let S(x,r) be a

neighborhood of x. Then by the previous theorem there is a
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set GneG such that xeGnC.S(x,r). By definition of A there
is some point ye A such that yeGnCS(x,r). Therefore any
neighborhood of x contains some point y of A. This implies
that x is a contact point of A. Thus each x&X is a contact
point of A and hence XC fA]. But X is the whole space ; hence
[A] €X. Thus X= [A]

Sufficiency.

Suppose A is countable and A is everywhere dense in X,
Then [A]=X. Let S={S(a,1/j)|acA, je 12,3, * + *}}.
Obviously S is countable. Suppose G is an open set in X and
xeG. Then there exists some S(x,r)CG. ByAThe'orem 1.4, x
is either a limit point of G or an isolated point of G, Since
G< [A] it follows that x is an isolated point or a limit point
of [A]. By Theorem 1.2 ﬂhﬂ'=[A]. Thus x is either a point
in A or else a limit point of A, If xé€ A then there is some
positive integer i such that 1/i<r. Thus S(x,1/i)CS(x,r)CG
and S(x,1/i)e § . If x is a limit point of A then there is
some element a€ A such that d(a,x)<_1. Thus xes(a, l)CS(x r)
CG, and S(a,_i_%)cs . Thus by Theor%m 111,S is a ba51s in
X and S is countable.

In the proof of the next theorem the countability of the

rational numbers will be assumed.

Theorem 1,13. Every open set on the real line is the
union of a countable number of disjoint intervals. Sets of
the form (-eg, 00), (o ,e0), (-00,# ) will be included as

intervals.
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Proof. Let G be a non-empty open set in E. Define I to
be the set of all real open intervals, (a,b), which satisfy the
following conditions:

(1) a,beG with respect to the extended space P',

(2) if (a,b) €I, then (a,b)\G=(a,b). First I must be
shown to be non-empty. Supnose x €G. Let ‘Y:{y‘ye-é, y>x},
and Z={z\ze'(_}, and z(x}. If Y## then there exists some
greatest lower bound t such that t£y for each y€Y. Obviously
th since t€G would imply S(t,r)MN\G=F for some r>0, and the
condition that t is the greatest lower bound of Y implies
that S(t,r)NG#J for all rd 0, since YCG. If Y=0 then
(x,oo)CG and t=ee, Similarly it can be shown that there is
some least upper bound u of Z and that uéG. If Z=@ then
(- 00,X) iS obviously a subset of G and u=-ec, Thus(u,t)€1
and hence I##, and for each x€G there is some interval (a,b)el,
such that a<x<b. Suppose (a,b) €I aﬁd (c,d) €l, and
X G{(a,b)r\(c,d)} . Then sup{a,c} <x<inf¥3,d}.

If a=c and b=d the intervals are identical. Thus without
loss of generality it can be assumed that ad c. Now a<{c b;
hence c € (a,b). By Postulate 2, (a,b)ﬂG=(a,b),~ but by
Postulate 1, c¢ G. Thus the assumption that a{c is invalid
and hence a=c. Similarly, b=d. Thus it has been shown that
I is non-empty, each x €G be'longs to some interval (a,b)e€ I,
and the elements of I are disjoint. All that remains is to
show that I is countable. A subset P of the rational numbers

can be formed by selecting from each (a,b)€ 1 a rational.
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Since the elements of I are disjoint, each rational so selected
will be unique. Thus we can form a 1-1 correspondence from I
onto P. The set M of all rationals is countable and since
PCM it follows by Cantor's theorem that P is countable and
thus I is a countable collection of open intervals I, such
that UL, =G. |

This section is primarily concerned with some of the
properties of connected 'spaces. The concept will be encount-
ered again in the second chapter where consideration will be
given to properties of functions defined on connected spaces.
First it is necessary to define what is meant by mutually
separated subsets of a metric space,.

Definition 1,17. Let X be a metric space. Two non-empty
subsets M and N of X are said to be mutually sepatated if
neither contains a point or limit point of the other; that is
MN[N)=¢ and N\pil=0.

Defipition 1,18. A subset M of a metric space X is
called connected if M is pot the union of two mutually
separated sets.

A second definition of connectivity is frequently given
as follows.

Definjtiop 1.19. A space X containing no sets which are,
simultaneously open and closed other than the void set and
the entire space X is said to be connected.

These two definitions can easily be shown to be equivalent.
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In the proof of Theorem 1.14 an open interval of real

numbers will be assumed to constitute an uncountable set.

Theorem 1.14. Let A be a connected subset of a metric
snace X which contains more than one point. AThen A 1s yncountable.
Proof. Suppose A is a connected subset of a metric
space with metric d and suppose A contains more than one
point. 'et x_and y be two points of A such that xoﬂy. Then
d(xo,y)=kf>0. Now the set of real values r, such that 0<r<k
is uncountable. Supnose that A is countable. Then there
exists some real number t) 0 such that 0<t<k and such that
d(x ,z)#t for any z€A., Now consider the two sets
C=§Iye A,d(xo,y)<t], and D={y‘yé A,d(xo,y)>t}. Obviously
neither of the two sets is empty since xoe C and yeD.
Supnose z€ A, Then either d(xo,z)<'t or d(xo,z) >t. In
either case ze DUC. Hence Ac(DUC). Now suppose z¢ DUC,
Then either zeD or zeC, and in either case z€A. Thus
(DUC)C A, and therefore DUC=A. The sets C and D are
obviously mutually separated and since A=DUC it follows that
A is not connected which is an invalid conclusion. Therefore
the assumption that A is countable must be invalid. Hence A

is uncountable.

Theorem 1,15. If each of M and N is a connected subset
of X, and MOAN##, then MUN is connected.

Proof. Supnose each of M and N is a connected subset of
X and M{IN#@. Further suppose that there exist sets T and S
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such that T##, S#0#, T and S are mutually separated and TUS=MUN.
Thus it can be assumed without loss of generality that there.is
some point x& MMN such that x€ T. The set M cannot be
entirely devoid of points of S for this would imply SCN, and
therefore N could be written as the union of two mutually
separated sets SUK where KCT.

Now let Tfé{_,xel‘, xeM} and Sfé]xes, X€E M}. Obviously
TIU SI=M’ Tl#ﬂ, Sl;fﬂ. Since the sets T and S are mutually
separated it follows that Tland Sl are mutually separated.
Thus a connected subset M of X has been written as the union df

two mutually separated sets, which is an invalid result. There-

fore there exist no such T and S, and MUN is connected.

Theorem 1,16. If MCX is connected, then Evl] is connected,
Proof. Suppose M is connected, and suppose L to be the
set of limit points of M which are not contained in M. Further
suppose that [M]=AUB where A##, B##. If L=A or L=B then the

theorem follows., If L#¥A and L#B then (A-L)#@ and (B-L)#4d.
But (A-L)U(B-L)=M. Thus (A-L) and (B-L) are not mutually
separated and hence A and B are not mutually separated.

Therefore [M] is connectéd.

Theorem 1,17. If M and N are muttially separated and A

is a connected set such that AC(MUN), then ACM, or ACN.
Proof. Suppose M and N are mutually separated and A is

a connected set such that AC(MUN). Further suppose Af)M#¢

and A[IN#@. Now AfIM is a subset of M and A(IN is a subset of N.
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Thus (ANM) and (ANN) are mutually separated. But 4
A=(ANM) U(ANN), and thus A is not connected. This last
conclusion is invalid and therefore either A/AM J or A\ N=4.

Since AC (MUN), clearly if Af1M=@ then ACN, and if A/A\N=0, ACM.

Theo 1,18, If X is a connected metric space and M is
a connected subset of X and M (complement of M)=AUB where A
and B are separated, then AUM is connected.

Proof. Supnose M is a connected subset of a connected
metric space X and M=AUB where A and B are separated. Further
suppose that C and D are separated subsets of AUM such that
CUD=AUM. Consider the sets C/\M and D/IM and suppose C/IM=6.
Then M&D and C€A. Thus C and M are mutually separated as
are C and B, Hence C and (BUD) are mutually separated. But
CU(BUD)=(CUD)U (B)=(AUMU (B)=MU (AUB)=MUM=X. Thus X
can be written as the sum of two mutually separated sets which
is a contradiction of the assumption that X is connected.
Therefore C/IM#@#, Similarly it can be shown that D/\M##.

Thus M=(CAM)U(DNM). But (CAM)CCand (DNAM)C D which

implies that (C/IM) and (D/IM) are mutually separated. Thus

M can be written as the sum of two mutually separated sets

which contradicts the assumption that M is connected. Hence
C'and D are not separated and this implies that AUM is conneéted.

The concept of mutwally separated sets calls attention to
the interesting situation of two sets which are disjoint yet

not mutually separated. In order to inquire into this area



24

it is necessary to define what is to be meant by the boundary

or frontier of a set.
Defipition 1,20. The statement that a point x belongs to

the boundary 6f a set M in X 'means that for each real number
r >0, the sphere S(x,r) intersects both M and M. Denote the

set of all such x by Fr(M).

Theorem 1,19. If X is a metric space and SCX, then
Fr(S)={SJﬂt§].

Proof. Suppose x € Fr(S). Then each open sphere S(x,r)
intersects S and S. Hence x E\:S__\ and x €t§] Thus Fr(S)C_[S]f\E].
Supnose X €([S]f\[§]). Then x €t§] and x 6[—5]. Therefore
each open sphere S(x,r) intersects S and S. Thus x €Fr(S) and

hence (S]H{E]CFr(S). Therefore Fr(S)=[S](\E-‘S].

Theorem 1,20. Fr(AlUB) C(Fr(A)UFr(B)).
Proof. If A or B=# then the proof is trivial. Assume

neither A nor B is empty, and suppose x € Fr(AUB). Then for

r>0, S(x,r)(\(AUB)#ﬁ. Supnose there is some r> 0 such

that S(x, € )nB=E‘, for €<r. Then S(x, €)(\A#ﬁ, and hence

x €Fr(A). Similarly if there is some r >0 such that S(x, € ) \A=6,
for € <r, then S(x, €.)nB7‘5, in which case x €Fr(B). Thus if

x €Fr(AUB) then x €Fr(A)UFr(B) and Fr(AUB)C{Fr(A)UFr(B)} .,

Theorem 1.21. Fr({4])CFraa).
Proof. If (A]=# then A=# and Fr([A])=Fr(A)=#. Suppose
x €Fr([A]). Then for each r >0, the sphere S(x,r) intersects

»*
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[A] and [K] Thus there is some point ygS(x,r) such that
ye [A] and some point z €S(x,r) such that ze [A]. If ze¢(A]
then z¢ [A] and hence z£A. Thus z€ A, so an arbitrary sphere
about x intersecté A. Now the sphere S(x,r) must be shown to
intersect A, The point ye [A] is either an element of A or a
limit point of A by Theorem 1.4, If ye A then the theorem
follows. If y is a limit point of A, then for every ¢ » 0, the
sphere S(y, € ) intersects A. Now d(x,y) <r since yeS(x,r).
Choose &' such that 0<e'< r-d(x,y). Obviously the sphere
S(y, &')cS(x,r) and S(y, ') intersects A. Thus S(x,r)
intersects A. Hence xe Fr(A) since an arbitrary neighborhood
of x intersects both of A and A,

Definjtion 1,21. The set of all interior points of a set
0
M is called the interior of M and will be denoted by M .

Theorem 1,22. The boundary of the interior of a set A
is contained in the boundary of A. That is, Fr(A®) CFr(a).
Proof. Suppose A°#4, and xae Fr(A°). Then obviously for
r >0, S(x,r)1A#@, and S(x,r)N A¥#. Choose some y such that
y €Sx,r)NA°. Now A%=(A-A°)UR. Thus either ye (A-A°) or
else ye A. If y €A, then the theorem follows since S(x,r) has
been shown to intersect both A and A. If y¢ (A-A®) then each
sphere S(y,r') must intersect A since otherwise would imply
NE A%, Choose an r! such that'0<r'<r-d(x,r). .Obviously the
sphere S(y,r') ¢S(x,r), and since S(y,r') intersects A it
follows that S(x,r) intersects A. Thus S(x,r)A## and
- S{x,T)NA#@ hence x e Fr(A). Consequently Fr(AO)C.Fr(A).
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Problem 1,6. If A is a subset of a metric space X, then
the complement of the closure of A equals the interior of the
complement of A, That is, [Al =XO.

Proof. Suppose xe [A] and suppose every open sphere
S(x,r) intersects A. Then x is a contact point and belongs
to [A]. This is a contradiction of the assumption that xe& [A].
Thus there is some sphere S(x,r) which is contained in A,

Thus xeXo, and [A] CZO.

Now suppose xeKO. Then there is a sphere S(x,r) which
is contained in the set -A'.O. Thus S(x,r)MNA=@. Hence x€ [K],
and KC [A]. Thus [A) =Ko.

The concept of a compact set is quite important to this
study of metric spaces since it is this property which guaran-
tees the Bolzano-Weierstrass property of Theorem 1.24. The
definition of compactness chosen here is a form of the conclusion

of the Heine-Borel 1theorem.1

Definition 1,23. A set S is compact if every open

covering of S has a finite subcovering.

Theorem 1.23. A compact set is closed and bounded.

Lemma. If S(a,r) is an open sphere and x,y €S(a,r) then
dix,y)<2r.

Proof. Suppose S(a,r) is an open sphere and x,ye€ S(a,r).
Obviously d(a,x) <r and d(a,y) <r and d(x,y) <d(a,x)+d(a,y) <2r.

lGeorge F. Simmons, Introduction to Topology and Modern
Analysis(New York, 1963), pp. 111-112,
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0 weorem 1,23. fltzg;pose Mis a compagt set.

Consider the open covering Q:{}(x,l)lxeb{}. Since M is
compact there exists a finite subcovering Si’ where SiCG .
Choose some point a€ M and consider the set Cx{xlx is the
center of a sphere in Si}. Since isif is finite, it follows
that C is finite and that there is some x € C such that d(a,x)
>d(a,y) for all yeG. Thus[a(a,x)ﬂ]zd(a,y) for all yeM,
and hence M is bounded.

Now suppose x is a limit point of M and xg£M. Consider

the sequence {b ! of points of M which converges to x and

n
consider the covering Gq=§(a, e)|aeM, é=%d(a,x)}. Since

M is compact there is a finite subcovering {s1€ of {G,(f

Clearly no sphere in Si contains x, and no sphere in Si contains

more than a finite set of points of {bni . Now every noint of

ni has

only a finite set of points, This is an invalid conclusion;

§bn§ belongs to some sphere in S,; thus the sequence {b

hence our assumption that x;(M must be invalid. Thus M is closed.

Iheorem 1.24. Every compact infinite subset of a metric
space has at least one limit point.

Proof. Suppose M is an infinite compact subset of a metri
space X, and suppose that M has no limit point. Then each
point of M is an isolated point. Thus if y&€M there is an g
€ 7 0 such that S(y,& ) contains no point of M other tha?’y,
and we can form an open covering{(}‘{Sby choosing for each yeg M,

an€ > 0 such that S(y,€:)/IM=fy{. From the definition of
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compactness, there is a finite subcovering {Siz of{qu; But
since each sphere in {Sig contains only a single point of M,
this implies that M is finite which is invalid. Thus M must
have at least one limit point.

, Definition 1.24. The statement that a metric space X is
a sequentially complete space means that every infinite
sequence jn X has a convergent subsequence in X,

1]



CHAPTER IIX
PROPERTIES OF FUNCTIONS ON METRIC SPACES

The aim of this chapter is to establish some of the
properties of functions defined on metric spaces. No attempt
is made in this paper to examine a particular type of function
in detail. Instead, some of the properties of several kinds
of functions will be observed as the functions are defined on
the various forms of metric spaces described in Chapter I, i.e.,
connected spaces, compact spaces, complete spaces, etc.

Basic to this discussion is the notion of a continuous
function. The words mapping and function will be used
interchangeably. ‘

Definitiop 2.1. Let X and X' be metric spaces with metrics
d and d'. The mapping f of the space X into the space X' is
said to be continuous at the point xoéix if for each real
number € » 0 there exists a real number &> 0 such that if
y € X and d(xo,y)<8 , then d'(f(xo),f(y))<e . If £ is con~-
tinuous at each point of X, then f is said to be continuous
on X,

Example (1). Any function defined on the metric space !
of Example (1), page one in the previous chapter will be
continuous.

Example (2). If A is a subset of a metric space X and

29



30

X, is a fixed element of A, then the function f defined by
f(x)=d(x0,x) is continuous on A.

The first of these two examples is easily verified. The
second example will be examined in more detail after some

groundwork has been laid.

Theorem 2.1. A necessary and sufficient condition that
the mapping f of the metric space X into the metric space X'

be continuous is that for every sequence ix g which converges

n
to x, the sequence [f(xn)S converges to f(x).

Proof. Necessity.

Suppose f is a continuous mapping of the metric space X
into the metric space X' and {xng is a seqﬁence which converges
to xoe X. Choose € 0. The continuity of f at X, guarantees
the existence of a § >0 such that if d(xo,y) <§ and ye X, then
d'(f(xo),f(‘y))<€ .  Now {xn§ converges to X, SO the sphere
S(xo, §) contains all but a finite number of points of {xni.
Thus the sphere S(f(xo), €) contains all but a finite set of
points of the sequence if(xn)g. Therefore zf(xn)f converges
to f(xo).

Sufficiency.

Suppose f is a function of X into X' and for every
sequence {xng which converges té X, the sequence {f(xn)g "
converges to f(xo). Further suppose that f is not continuous
at some xoe X. Then there is some & » 0 such that for every

8§ > 0 there is an xe X for which d(xo,x)<s and d'(f(x,),f(x))>¢ .
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Consider the set N= é(xo,l/n) ‘n=1,2,3 o } Each of these
neighborhoods of X, must contain some y €X such that d'(f(xo),f(y))
> £ . Choose one such Yo from gach of the neighborhoods
S(xo,l/n). Now the sequence {yng converges to x but
d'(f(xo),f(yn))z ¢ for each element of {yng. Thus Zf(yn)g
does not converge to f(xo). This conclusion is invalid thus
the assumption that f is not continuous at X, is invalid.
Therefore f is continuous at each x,&€ X and hence f is contin-
uous on X,

The notion of a bounded set was introduced in the first
chapter. It was this property along with that of closure
which were guaranteed by thé Heine-Borel covering property of'
compact spaces. Since a function is defined in terms of sets
it is natural to extend the concept of a bound to functions,

Definitiop 2.2. Let f be a function from a metric space
X into a meétric space X', The function f is said to be
bounded on a subset A of X if there exists a real number M

such that d'(f(x),f(y))<M for all x,y&A.

Theorem 2,2. If A is a compact subset of the space X and
f is a continuous function on X to X', then f(A) is bounded.

Proof. If f(A) is finite it is obviously bounded.
Assume f(A) to both infinite and unbounded. Thus if a is
some fixed‘point of A, and n is a positive integer, there is
some X & A: such that d'(f(xn),f(a))>n. Obviously the

sequence {f(xn)} is not convergent nor does it contain a A
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convergent subsequence. Now A is bounded, thus the sequence

{x g is bounded. And the Bolzano-Wierstrass property of
corlx:pact spaces which was established in Chapter I along with
the uniqueness of limit points of a sequence guarantee that

the sequence{xnz has exactly one limit point. Therefore
there is some subsequence {xnkg of the sequence ang which
converges to a point xo. Compactness guarantees closure and
thus xoe A, and f(xo) € f(A). Theorem 2.1 insures that {f(xnk)}
converges to f(xo). However this is not in agreement with
the conclusion reached earlier from the assumption that f(A)
is unbounded. Therefore this assumption must be invalid, and
hence f(A) is bounded. .

Problem 2.1. Let X be a non-empty metric space and f be
a real function defined on X. Show that f is bounded <=~
there exists a real number k such that !f(x)lsk for every
xeX®sup\f(x)I< too,

Proof. Suppose f is bounded in X. Then by definition
there exists some real number k such that d(f(x),f(y))<k
for all x,y€X. The set X is non-empty so choose z €X, Then
{£l is obviously bounded by {f(z)l+k, since otherwise would
imply k+|£(2)] < |£G)|, or k< [£G)| - ez = lf(x)-f(z)\ =d (£ (x), £(z))
which is a contradiction. Hence sup tf(x)l = lf(z)\+k< 00 *

Now suppose sup \f(x),< oo . This implies the existence
of a real number -k such that lf(x)ls k for all xeX, Thus -k

= \f&x)|=k, and £ is bounded.

Now consider the set of all bounded real functions
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defined on X and define the norm of a function f in this set
by \fll =sup|f(x)]. It is obvious that [|f]| is a nonnegative
| real number such that [ifl| =04 £=0, and that {I-fl[= |I£l] .
Also for such functions f and g, |{+gll = {£ll + ligll since
et =sun| 2459 6| -sup [ 33 +500] = su 0] s 260 - [

Theorem 2,3. If A is a compact subset of a metric space
X and f is a continuous function on X to R (the real numbers
with usual metric), then there is a point p €A such that
f(p)>£(x) for all xeA.

Proof. If A is finite, the theorem follows. Assume that
A is compact and infinite, The previous theorem guarantees
that f(A) is bounded and hence has a least upper bound M, such
that given any real number € > 0 there is some xe& A such that
d'(f{x),M)< € . Thus for each real number of the form 1/n,
ne {1,2,3, . }, there is some xneA such that d'(f(xn),M)< 1/n.
From Theorems 1.7 and 1.24 it is clear that the sequence {xni
contains some subsequence {xmg which converges to a point
X s and xoeA since A is closed. C(learly {f(ﬁxn)z converges to
M and thus by Theorem 1.7 {f(xnk)z converges to M, and M=f(x0).
Thus xoé A and f(xo).?.f(x) for all xe A,

Theorem 2.4. If f is a continuous function on X to X! .
and g is a continuous function on X' to X", then gf is a
continuous function on X to X" where gf(x)=g(f(x)) for x€X.

Proof. Suppose the above conditions and choose & > 0.

Further suppose xoe X. Then f(xo)é X'. Since g is continuous



34

on X' to X" there is a &' >0 such that if f(y)&€X' and
f(y)e S(f(xo), &'), then d" [g(f(xo),g(f(y)]< € . Also since
f is continuous at xo there is some & such that if zeX and
ZE S(xo, &), then f(z)eS(f(xo), &'). Thus if z €X and
zéS(xo, &) then f(z)eS(f(xO), &') which implies that
g(f(z))e S(g(f(xo),é ). Therefore fg is continuous on X to X",
An important and familiar property of a continuous
function defined on an interval of real numbers is that of
assuming all values between any two of its values. A similar
pfOperty holds for continuous functions defined on certain
metric spaces. While the notion of a sphere in a metric
space bears some similarity to that of an interval on the
real line, there are some properties of intervals which are
not posessed by spheres in general, and it is not sufficient
to define a continuous function on an open sphere if it is
desired that the function have the above mentioned property.
It is necessary to restrict the metric space on which the
continuous function is to be defined to be a connected space.
Before proving this theorem it will be convenient to

establish the preliminary result of Theorem 2.5.

Theorem 2.5. Let f be a real valued function defined on
a metric space X and assume f is continuous at a point:arand ‘
that f(a) > 0. Then there is a sphere S with cent;r at a so
that for every x€ S, f(x)>0,

Lemma.. If a and b are real numbers such that a> 0 and
b=0 then |a-b| z a.
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Proof. Since a>0, it follows that lal=a >0 and since
b<0 it follows that lbl=-b20. Now [a-b|=|a+(-b)|, and -b=|bl.
Hence la-bl= {laHlbll Sfal +Ibl 2 | al =a.

o0 0 5. Let f be a real valued function on
X, be continuous at a, and f(a) >0. Choose & =f(a) >0. The
continuity of f at a insures the existence of a §>0 such that
if ye X and ye S(a, 8§ ), then f(y) eS(f(a),€). Now suppose
that xeX, xeS(a, §), and f(x)<0. Then d'(f(a),f(x))
=(f(a)—f(x)\_> f(a)=€ . This is an invalid conclusion and thus
the assumption that f(x)=<0 for some x € S(a, §) must be invalid.

Therefore f(x)> 0 for all x<S(a, §).

Theorem 2.6. Let f be a continuous function on a connected
subset A of a metric space X and be real valued. Assume there
is an elemént aeA such that f(a)<<0 and an element be&A such
that f(b)>0. Then there is an element c €A such that f(c)=0.

Proof. Suppose there is no element c € A such that f(c)=0.
Then there are non-empty sets M and N such that MUN=A and MAN
=@ where M={xe Alf(x) >OI and N={xeA\f(x)< OZ. A is a con-
nected set so we can assume without loss of generality that k
MN[N]#8. If yeMN[N] then yeM and y is a limit point of N,
Thus there is some sequence {yJCN such that {yn( converges
to y. By Theorem 2.1, {f(yn)} converges to f(y). Now f(y)>{i
since y€M and Theorem 2.5 asserts that there is some sphere
S(y, € ) such that for every xeS(y,e), £f(x) >0 so S(y, )
contains no points of {yni. Thus {ynz) does not converge to y.
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Hence our assumption that there is no ¢ ¢ A such that £(c)=0
is invalid and the proof is complete.

Although the details of the proofs will not be submitted
in this paper, it/ is worthwhile to mention that the familiar
property of the continuity of sums and products of continuous
functions holds true for functions defined on metric spaces.
That is, if each of f and g is a continuous function on a
metric space X to the real numbers, then each of fig, f.g, | £\,
of (for real numbers « ), and f/g (where g(x)#0 for all x € X)
is continuous on X,

Definition 2,3. Let X and X' be metric spaces. The
mapping f of the space X into the space X' is said to be
uniformly continuous on X if for each€ > 0 there is a § > 0
such that if x,y€X and d(x,y)<¢ , then d'(f(x),f(yk e .
| Obviously the set of all uniformly continuous functions
defined on a metric space X is a subset of all continuous
functions defined on th¢ space X, Thus it follows that the
remarks made about continuous functions also are valid for

uniformly continuous functions.

Theorem 2,7. Let X be a metric space and X' be a complete
metric space and let A be a dense subspace of X. If f is a
uniformly continuous function of A into X', then f can be
extended uniquely to a uniformly continuous function g of X
into X'; that is,g is uniformly continuous on X to X', g(x)

=f(x) for each xe A, and g is unique.
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Proof. If A=X the theorem follows. Assume A#X and define
g to be the following;

(a) If x€A, then g(x)=f(x)

(b) If x €(X-A) then x must be a limit point of A and
there exists a sequence {'xng of elements of A such that {xng
converges to x. Thus the sequence {g(xn)z={f(xn)i converges
to some y and since X' is complete, y €X'. In this case let
g(x)=y.

Now choose € > 0. Since f is uniformly continuous there
is some § > 0 so that if x,veA and d(x,y)<g , then d'(g(x),g(y))
< €/2, Suppose x,y€X and d(x,y)< € . Consider two sequences
Exnﬂ and {ynz of points of A which converge to x and y. By
the triangle inequality for x,e an§ . yieiyni,

d(x,,y,)<d(xy,y)+dly,y;) = dlxy,x)+d(x,y)*dly,,y).
The property of convergence guarantees that for an € >0,
there is some positive integer k such that if i is an integer
and i>k then d(x,x;)+d(y,y )<€ . Since d(x,y)< € it follows
that &§-d(x,y)> 0 and hence there is some positive integer k
such that d(x,xi')+d(y,yi)< § -d(x,y) for ik, or d(x,xi)
+d(y,yi)+d(x,y)<8 for i >k. Therefore d(xi,yi)-_c_ d(x,xi)
+d(y,yi)+d(x,y)<€f0r i>k. Since xi,yiéA, it follows that
d‘(g(xi),g(yi))< €/2 for i>k. By the triangle inequality
d'(g(x),g(y))f_d'(g(xi),g(yi))+M where hi=§'(g(xi),g(x))
+d'(g(y;),8(y)). Suppose d'(g(x),g(y))> € /2, Then there is
some ¢ >0 such that d'(g(x),g(y))=€/2+c. From this it follows
that € /2+c=d' (g(x;),8(y ))*M < €/2+M for i>k. Thus/2+c <€/2+M.
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or c{M. DBut M goes to zero as {g(xn)} and ﬁ;(yng converges
to x and y, and ¢ is a constant, thus ch. Therefore the
assumption that d'(g(x),g(y)) > €/2 is invalid and hence
d'(g(x),g(y)) £ €2 <€, and g is uniformly continuous on X
to X'. The function g must now be shown to be imique.
Supnose h is a uniformly continuous extension of £ on X
to X' and there is some x €X such that h(x)#g(x). Then by
definition of an extension of a function x¢A. Thus x is a
limit point of A, Now d'(h(x),g(x))=p>0. Thus by virtue
of the triangle inequality the neighborhoods S(g(x),p/4) and
S(h(x),p/4) have an empty intersection. Since g and h are
uniformly continuous, there is some $ >0 so that if ye€X
and y €S(x, §), then d'(g(x),g(y)) <p/4. Also d' (h(x),h(y))
{p/4. Now x is a limit point of A; hence there is some yEA
such that y#x and y €S(x, §) and g(y)=h(y) by definition. But
g(y) € S(g(x),p/4) and h(y) €S(h(x),p/4). This contradicts
the conclusion that S(g(x),p/4)(\S(h(x),p/4)=# which was
obtained through the assumption that g(x)#h(x). Thus the

assumption must be faulty. Hence g is unique.

j[bgo;gm; 2.8, If f is continuous on a metric space X,
then f is uniformly continuous on a conpact set ACX.

E_I_‘_O_Q_fi.‘ Suppose A is a compact subset of X and f is con- "
tinuous on A, Let € >0 and consider {S(f(x), €/8)\x EA}.
Clearly f"l(S(f(x), €/8)) is an open set containing x and

{f"l(S(f(x), 6/8))\x EA} is an open covering of A, Now for
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every f~1(s(f(x), €/8)) where x €A there is some S(x, &,)
Cf'l(S(f(x), €/8)). Then {S(x, .Sx)lxeA} is an open covering
of A and there is a finite subcovering of A, calliit

iS (x 6) 82(x » $5 ), * ¢ S (x o’ 5)} Consider
—mm{d({s na, {s nAj ){d([s nA} {s nA})#d Let

S—%mm{p, 61, 62, vy, gn; Suppose x,y€ A and d(x,y)<§ .
Then x € Si and yé€ SJ,.

Case (1). If i=j then by definition of S, d'(f(x),f(y))<e .
Case (2). If i#j and (S, ﬂA)n(S NA)#0 then choose some
z€(S,NANS;NA). Now d'(f(x) f(z))< € /4 and d' (£(z),f(y)<</4

and by the trlangle inequality, d(f(x),f(y))<€ 2<e .

Case (3). If i#j and (S-nA)ﬂ(S-f\A)—ﬂ then for r>»0
there exist a € (S;MNA) and be (SJf\ A) such that d(a,b)< r for \
otherwise would imply d({S NAl, {SJ/\A} )> r and hence d(x,y)>§.
For each of the real numbers 1/n, ne {1 2,3, - '}, choose
a € (SiﬂA) and b_e (SJ./\A) such that d(a_,b )< 1/n. Clearly
the sequences {ani and {bn} contain subsequences which converge
to the same limit Xy But xoe A hence there is some sphere St
such that x e S . Obviously S intersects (Sif\A) and (ij\ A).
Choose zeS /\(S NA) and z'é& S f\(S NA). Now d'(f(x),f(z))<£/4
and d' (f(z), f(z ))<~‘/4 and d' (f(z ) f(y))< €/4. Thus
applying the triangle inequality twice gives d(f(x),f(y))< ¢ .
Therefore £ is uniformly continuous on A, |

In Example (2), page 29, it was suggested that a real
function f is continuous if defined on a metric space such that

£(x)=d(x,a) where a is a fixed point of X. A proof of this
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assertion is now offered in Proﬁlem 2.3. It is shown in
Problem 2.3 that a function f so defined is not only continuous
but also uniformly continuous.

Problem 2,3. Let M be a subset of a metric space X and
a€M. Then the function f defined by f(x)=d(x,a) (a is fixed),
is a uniformly continuous function on M to the real numbers.

Proof. Suppose the above conditions and choose € >0,

Let =€, Now suppose x,y €M and d(x,y)< & . By the triangle
inequality d(a,x)4 d(a,y)+d(x,y) or d(a,x)-d(a,y)£d(x,y)<S =€,
Thus f(x)-f(y)< € . Also d(a,y)-d(a,x)€d(x,y)<S =€ . Hence
f(y)-f(x)<€ . Thus |f(x)-f(y)]=d'(£(x),f(y))< €, and f is
uniformly continuous on M to R.

The set of all such functions on M, that is, the set
A= a\aEM, fa(x)=d(a,x)} has several interesting properties.

An attempt is made in Problems 2.4 and 2.5 to examine some
of the more interesting ones.

Problem 2.4. Suppose X is a compact metric space with
metric.d, a€X, and f is defiped on X to R such that f (x)=d(a,x)
(a is fixed). Then f is continuous by Problem 2.3. Tﬁus the set
A=§alaex}1 is a subset of ¢={all continuous real functions
on X}. Define a distance function A on c such that if f,gfﬁ,
then P(f,g)=§2§ \f(x)-g(x), . Obviously p is a non-negative,
single valued, real function and P(f,g)=0@f=g. It is also
clear that p(f,g)=§2§[f(x)—g(x)\=§2§’( k()-£00] = plg,£).  The

triangle inequality is easily verified as follows.
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F(t,g)+ /’(g,h)=)5{:§ lf(x)?g(x)l +;2§lg(x)—h(x)‘ 2 ;zg‘f(x)-g(x)

+g(x)-h(x)=§2§lf(x)-h(x)l= P(£,h). Thus  is a metric on (.

Theorem 2,92. If a sequence {ang..a €X, then {fan(——vfae C 3
i.e., for each xeéM, lim f_ (x)=f (x).
hoese an a

Proof. Supnose ae€X, Slals-—-»a. Choose €> 0 and let § =€.
Now the sphere S(a, § ) contains all but a finite set of points
of {ani. Suppose aie S(a, §). Then d(a,ai)<s=é. Now
suppose x & X. By the triangle inequality d(x,a)+d(a,ai)?_ d(x,ai)
and also d(x,ai)+d(a,ai)z d(x,a). Define &' to be d(a,ai).
Then these inequalities can be written as e'zd(x,ai)-d(x,a)
=f (x)-f (x) and e'>d(x,a)-d(x,a )=f (x)-f (x). Thus

ai a 1 a aj

fa(x)-fa.(x) l*-_:_ €'< §=€. Since x was arbitrarily chosen

) 1 sup‘ -
it follows that _.x fa(x)-fai(x)l—d(fa,fai)< ¢ . Hence

{fang..fa.
Problem 2.5. Let M be a metric space and define a
mapning # of M into A by ﬂ(a)=fa. Then # is 1-1 onto continuous,
since if {a E-&a then {f }—»f .
n a a
Problem 2.5.1. Suppose a,x,beM. Then d(a,b)+d(a,x) > d(b,x)
and also d(a,b)+d(b,x) >d(a,x). These two inequalities may be
written as d(a,b);d(a,x)-d(b,x) and d(a,b)>d(b,x)-d(a,x).
Therefore d(a,b)> ld(a,x)-d(b,x)l for all values of x. Thus it
ys SU - _sup - - ‘-
follows that d(a,b)2 S9p[d(a,x)-a(b,x)|=52R|E GO-F (0| =dCf ,7p).
But if x=a then d(f ,fb)=\d(a,a)-d(b,a) =d(a,b). Thus the
a
supremum is attained for x=a or x=b and thus d(a,b)=d(fa,fb).
Before proceeding to Problem 2.5.2 it is necessary to

introduce the following definition.. -
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Definition 2.4. A metric space X is said to be complete
if every Cauchy sequence in X has a limit in X,

Problem 2.5.2. If U is a subset of a complete metric
space M and A(U)={fa,a€U}, then U is closed if and only if
A(U) is closed. Suppose U is closed, g is a reai function on
M, and g is a limit point of A(U). Then some sequence {fa‘s-—&g.
Clearly {fan} is a Cauchy sequence since for € >0 there is.
some integer N such that f_ € S(g, €/2) for i>N and if f, .
f, ES(g, €/2) then d(f .,fl )< €. Now for a,b €U d(a, b)
-d(f , T ), thus for a,,aleiJ 3 d(a ,a ) <€ . Therefore {an}.
is a Cauchy sequence and has a limit x€U since U is closed.
Clearly fx €A(U) and the sequence {fan?; converges to fx' The
uniqueness of the limit of a sequence guarantees that fx*—'g.
Hence A(U) is closed.

Now suppose A(U) is closed and further suppose a sequence
{ani CU converges to some a. Then the sequence {fa,;""'fa and
since A(U) is closed, fa must belong to A(U). Thus by defi-
nition of A(U), a€U, and U is closed.

Problem 2,5.3. A subset U of a metric space M is open if
and only if A(U) is onen. Suppose A(U) is open and faeA(U).
Now # is continuous on U to A(U) and thus for an arbitrary
sphere S(f iy €) there is a S so that if y€U and y €S(a,§ ) |
then ﬂ(y)es(f €). Obviously aeU. Let N“Ec €S(a, S)\ ¢U}
If N contains no sequence { § which converges to the point a
then a §' can be found such that S(a, §') €S(a, $) and

-}

S(a, §')CU. Clearly N contains no such sequence since this
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would imply the convergence of the sequence ztﬁ(xn)Zto 6(a)=fa. 9
But S(fa,é YCA(U). Thus U is open,

Now suppose U is open and a€U. Then S(a,r)c U for some
r >0. Consider the sphere S(fa,r), and suppose fbe S(fa,r)
and b€S(a,r). Then d(a,b)>r; thus from Problem 2.5.1 a(t_,f

€ S(fa,r). Thus

B
>r which contradicts the assumption that f
S(fa,r)C.A(U) and A(U) is open.

Problem 2.5,4. Suppose U is compact. Then every open
covering of U has a finite subcovering. Suppose {G.‘g is an

b

open covering of A(U). Clearly we can form a class iH.(i of
sets H such that for each Ge {G«f there is an He {H..K and
aeH if and ohly if ﬂ(a)=fae G. Problem 2.5.3 guarantees that
each H is open and by definition {H.} is a covering. Thus {1yl
is an open covering of U, Now U is compact; hence there must
be some finite subcovering {HI{ of U. Obviously iﬁi( is a
covering for A(U) and {Gi§ is finite; thus A(U) is compact.
Since no property of U was used in this proof that is not
also a property of A(U) it follows immediately that A(U)
compact implies U compact.

Lroblem 2,5.5. Let U be a subset of a metric space M,
Then U is dense in M if and only if A(U) is dense in A.
Suppose A(U) is dense in A, and aeM. Further suppose there
exists some r >0 such tha‘t S(a,r)NU=@, Now ‘fae A and hence
either f GA(U) or f is a limit point of A(U). Clearly
f #A(U) since S(a, r)nU #; thus f is a limit point of A(U).

Thus for r »0 there is some f such that fbe:b(fa,r) and

b
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f €A(U). Then b€V and d(a,b)=d(f_,f ) <r which is a contra-
diction. Thus U is dense in M,

Now supnose U is dense in M and f €A. Then a€M and
a €U or an arbitrary sphere S(a,r) intersects U. In the
former case the theorem follows. In the latter case there is
some sequence {an}-—ba; hence {fzé—’fa and i’a is a limit poimt
of A(U). Thus A(U) is dense in A.

An interesting class of functions is that of lower-semi-
continuous functions. This class contains the continuous
functions, step functions, and others.

Definition 2,5. A function f on a metric space M into
the real numbeérs R is called lower-semicontinuous at c€M if
for each € >0 there is a § > 0 such that whenever d(x,c)< §,

then f(c) {f(x)+€. If f is lower-semicontinuous at each point

of a set SCM, then f is lower-semicontinuous on S,

Theorem 2,10. A function f on a metric space M into E
~is lower-semicontinuous if and only if for each real number
k, the set B ={x ene(x) £k} is closed.

Proof. Suppose f is a lower-semicontinuous function on
a metric space M to the real numbers R. Choose some real
number k and supnose x  is a limit point of Ek={x€M|f(x)f k}.
Now if xegEk, the theorem follows. Therefore assume X0¢Ek “
and hencewf(xo) >k, or f(xo)—k= €>0. But f is lower-semi-
continuous and hence there exists a § such that if d(xo,y)

£§ then f(x )< f(y)+ €. Since X, is a limit point of E
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then S(xo, §) contains some point y of Ek other than xo. Now
f(y) <k and f(x0)=k+e or k=f(x,)- €. Hence f(y)-;_k-——f(xo)-é
or f(xo)éf(y)*'é; but since f is lower-semicontinuous, then
f(:'co)<f(y)+6 . Thus we have an invalid conclusion and hence
our assumption that xO,(Ek is invalid. Therefore we can
conclude that X € Ek and hence Ek is closed.

Now suppose f is a function on the metric space M into
the real numbers R, and for each real number k, the set
Ek={x-é le(x)s k} is closed. Choose &€ » 0 and suppose X, € M.
By a previous theorem we know that x0 is either an isolated
point or a limit point of M., If X, is an isolated point of
M, there exists a sphere S(xo, &) such that Si(xo, 5)f\M={x0;.
Therefore we can say if y&M .and d(xo,y)<8 , f(x0)<f(y)+e .
- Supnose X, is a limit point of M and suppose that for some
& > 0, every sphere about xo, S(xo, §) where § > 0, contains
some y€ M such that f(xo).?.f(y)+é . Consider the set of
spheres T=&3(x0,1/n)ln=1,2,3,‘ y 3 Each of these spheres
S(xo,l/n) contains some element Yq such that f(xo)_?_f(yn)+£ .
Consider a 'sequence {yng of such elements and choose k'=f(xo)-e .
Now obviously f(x )>k' implies xof{Ek,'—“-é(éle(x)s k'} . But
iyng«»xo, and each yné, Ek' since for yn, f(xo') z_f(yn)+é.
Therefore X, is a limit point of Ek" But this is contra- '

, is closed. Thus there

dictory to o6ur supposition that EL
must exist some §>?such that if yeM and d(x ,y)<g , then

o
f(xo)<f(y)+e .
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Corollary 2,10,1. A function f on a metric space M into
P is lower-semicontinuous iff for each k&R, the set Gk
={xéM,f(x)>k} is open.

By a previous theorem we know that G, open implies _G

k

closed and G closed implies G open, where G denotes the

complement of G. Now Ek xéMllf(x)< k} By the previous
theorem, if f is lower-semicontinuous, then Gk is closed and
hence Gk is open. Also Gk open implies Gk is closed, which
by the previous theorem implies f is lower-semicontinuous.

or 11, If f is lower-semicontinuous on a metric
space M into R and if f is bounded below on a compact non-
enpty set SCM, then there is an element c€ S so that
f(x) > f(c) for all xeS.

Proof. If f is finite the theprem follows. Assume the
above conditions., Then there is some real number k such that
f(x)2k for all x€S. Now choose k'=k+ € where € =d(k,f(S)).
Clearly any neighborhood of k' will intersect f(S), a‘nd f()%)?, k!
for all x€S. Thus from each of the neighborhoods S(k',1/n)
where ne {1‘,2,3,' . '}, choose some element y such that
yné £(S) and f—l(yn)e S. Obviously {yng converges to k'. The
compact set S has the Bolzano-Weierstrass property and hence
)Lf (y )E has some limit point x e S. Suppose f(x )#k' Then
since f(x )2 k' there exists some € » 0 such that f(x )-€.=k'.
Now f is lower-semcontmuous at xo, thus for €/2 there is

some & > 0 such that if ye€ S and d(xo.y)c § , then f(x )<f(y)+€/2.
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Since all but a finite number of the points of the sequence
{f"l(yn)} are contained in the sphere S(xo, &), it follows

that all but a finite number of points of {f(.yn)} are such that
f(x0)<f(yi)+e/2 or £(y;)> f(x )- €/2. Now suppose z€&S(k', €/2),
Then z<k'+ f/2=f(xo)—6+ E/2=:E’(x0)-- €/2. Therefore the
sphere S(k', €/2) contains only a finite number of points of
the sequence {f(yn)} and hence {f(yn)f does not converge to k'.
Thus the assumption that f(xo)%k' is invalid and hence f(x,)
=k'< f(x) for all xe€8S.

Problen 2,6.1. Sﬁppose each of f and g is a lower semi-
continuous function on a subset S of a metric space X. Show
that f+g is also lower-semicontinuous on S

Proof. Choose € > 0 and let ¢'= €/2, Since f and g
are lower-semicontinuous at a point X € S, there are real
numbers r and r' such that if ye€ S ang y € S(xo,r) then
f(x0)<f(y)+ €'; and if ye&S(x,,r') then g(xo)<g(y)+e'.
Choose the smaller of r and r'. Now addition of these two
inequalities gives f(x )+g(x,) <f(y)+g(y)+2 &' or (f+g)(x,)
< (f+g)(y)+e . Thus f+g is lower-semicontinuous on S.

Pro 6,2. If f is lower-semicontinuous on S, then
X f is lower-semicontinuous for <« 2 0, |

Proof. Suppose X,€ 5. Clearly any constant function is ,
lower-semicontinuous since for ye€S, f(x0)=f(,y) and thus f(x,)
<f(y)+€ for € »'0. Thus if &4 =0, of is lower-semicontinuous.
Suppose & >0, and € > 0. Let g'= €4 . Then for ¢' there

is some positive real number r such that for yeS(xo,r),
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f(x,) <f(y)+ €. Multiplication by A gives off(x )< L (y)H ',
or .(f(xo) & £f(y)+ €, Thus &«f is lower-semicontinuous for
«{ 20.

Problem 2.6.3. If each of f and g is a lower-semicontinuous
function on S, then f+g is lower-semicontinuous on S.

Proof. Suppose each of f and g are lower-semicontinuous
functions on S such that £ 20 and g>0. Further suppose x€ S
and €>0, If either of f(x) and g(x) are 0 then clearly
f(x)g(x)=0 <f(y).g(y)+€ for all y€S. If each of f(x) and
g(x) is non-zero, then choose e'-%m1n{} €,f(x),gx),

€/(f(x)+g(x))} Clearly € >0, 1 > ¢ and hence ¢' >( €.)
Also ( €")(f(x)+g(x)) K (€/(f(x)+g(x))) - (f(x)+g(x))= € and

( c')z(( €') (f(x)+g(x)) or ( €')-(f(x)+g(x))-( €')2‘>0.

Since f and g are lower-semicontinuous at x, clearly there is
some § such that for y €S and y €S(x,§), f(x)<f(y)+ €' and
g(x) <g(y)+ €'. ' Thus f(x)- ¢' <f(y) and g(x)- ¢' ¢g(y).
Multiplication gives f(x)-g(x)- c"(f(x)+g(x))4(€')2<g(y)-f(s).
This may be written as £(x)'g(x)& g(y) - f(y)+ €'« (f(x)+g(x))
~(€)?<f(y)-g(y)+€. Thus f-g(x) <f-g(y)+ € and f.g is
lower-semicontinuous at x.

From the class of step functions it is easy to offer
examples showing that f-g, «f (for «£ >0), f-g (for £€0 or,
g €0), and f/g are not lower-semicontinuous.

The class of upper-semicontinuous functions was not
considered in this paper since the properties which were

established for the lower-semicontinuous functions can
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be extended in a natural way to the upner-semicontinuous
function, )

The last topic to be considered in this paper is that of
convex functions, . .

Definitio 6. A function f on a metric space X to R is
called convex if for each x,y€ M and each z€ M such that

d(x,z)+d(z,y)=d(x,y), then f(z)<d(z,y).f(x)+ of (y).
dix,y Ux,y

Problem 2,7.1. If each of f and g is a convex function
. in a set S, then f+g is convex.

Proof. Suppose f and g are convex on S to R, x,y €S, and
z €S such that d(x,z)+d(z,y)=d(x,y). Then f(z)

< g_(_,ﬁ f(x)+ gl_{_‘_),-f(y) and also g(z)< d g(x)
X,¥) {

a(x,y)

+ d(x,z)-g(y). Addition of these two inequalities gives

(f+g)(z) « d(z,v) - (f+g) (x)+ g_lézg.z)-(f-*g)( ). Thus f+g is
= d(x,y) dx,y) Y &

convex on S.

Problem 2.7.2. Show «f is convex for « 2>
Proof. The inequality f(z) = g( .x) f(x)+ Q%A...Zl -£(y)

follows from the convexity of f. Sincee« 2 0 the multipli- |
cation by « does not change the sense of the inequality.
Thus «f(z) sg z o f(x)+ d « f(y), Therefore o f

. X,y ‘ d(x,y)
1S convex.
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