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CHAPTER I 

INTRODUCTION 

Differential-difference equations are essentially like 

pure differential equations, except that a differential 

equation contains one or more derivatives of an unknown 

function., and a differential-difference equation can contain 

one or more derivatives of an unknown function, for example 

u'(t), u"(t), together with any number or functions of the 

form uft-^), u(t-w2), •••, u(t-wn), and possibly some of 

their derivatives. The numbers W p u>2 are given and are 

called retardations or spans. Some examples of differential-

difference equations are 

(1-1), u"(t) - u'(t-l) + 2u(t) = 0, 

(1-2), u1 (t) + u(t-l) - u(t-\r2) = 0, 

(1-3)* u1(t) + 2u(t) - 2u(t-l) = efc. 

This paper is concerned with equations jn which u is 

regarded as a function of a single independent variable which 

will be called t. Therefore, all derivatives are ordinary 

rather than partial derivatives. The customary meanings of 

differential order and difference order of an equation are 

observed. That is, differential order of an equation is the 

order of the highest derivative appearing, and difference 

order is one loss than the distinct number of arguments 



u>2, ***. For example, equation (l-l) Is of order 2 in 

derivatives and of order 1 In differences, tout equation (1-2) 

is of order 1 In derivatives and of order 2 in differences. 

The general form of a differential-difference equation 

of differential order n and difference order m is 

F^t, u(t), u(t-w1)J u(t-wm), u'(t)j u'Ct-u^), 

u(n)(t), u^^t-t^), •••, u<»>(t-^)]- 0, 

where P is a given function of l+(m+l)(n+l) variables and 

the numbers w u>2, •**, com are also given. This paper, 

however, Is concerned with equations of order I in "both 

derivatives and differences. Equation (1-3) is such an 

equation. Also, P and u are here required to be real 

functions of real variables, and the numbers <^, w 

must be real. The coefficients are assumed to be 

constants. Complex solutions may result, but real solutions, 

are of primary Interest here. 

With the foregoing restrictions, the general form for 

a differential-difference equation is reduced to 

(1-4), a0u'(t) +a1u'(t-u) + bQu(t) + b-ju(t-w) =f(t). 

The theory of the equations of this form exhibits most of 

the features of the more general theory, while avoiding a 

lot of the detail involved. 

It Is well known that differential equations have 

great value In application to physical situations. i\ 

complete study of the rate of change of a physical system, 



though, Involves not only the present state of the system, 

hut also its past history. 

In particular, equation (1-4) represents several types 

of applications. If aQ = a^ = 0 or bQ = b^ = 0, the 

equation is a pure difference equation. If aQ = t>0 = 0 or 

al ~ ^1 = ^ "̂S a n ordinary differential equation. These 

are not discussed here, because they have been treated 

extensively elsewhere. There are, however, three distinct 

types of differential-difference equations represented by 

equation (1-4). An equation of that form Is of retarded 

type if aQ ^ 0 and aj - 0. (Such equations are also called 

delay differential equations and hystero-differential 

equations.) It is of neutral type if aQ -/ 0 and a^ / 0. 

It Is of advanced type If aQ = 0 and aj / 0. 

In applications, usually t represents time. Thus an 

equation of retarded type can be used to represent the 

behavior of a system where Sr.he rate of change of the quantity 

Involved depends on past and present values of the quantity. 

.An equati.on of neutral tyoe can represent a system in which 

the present rate of change of the quantity depends on the 

past rate of change as well as the past and present values 

of the quantity. An equation of advanced type can represent 

a system in which the rate of change of the quantity depends 

either on the past value and the pa si; r a t e of change or on 

the present and future values of -.he Quantity. 



The discussion here is limited to equations of 

retarded type since they are in some ways simpler to work 

with than equations of neutral or advanced type., and yet 

the theory of equations of retarded type is generally 

representative of all three. 

As is the case with ordinary differential equations, 

the main objective in studying differential-difference 

equations is to solve them: that is, to find a particular 

function (or functions) u(t) which satisfies the equation. 

There is actually a clearly defined process which can 

be used to find solutions over finite intervals. Called 

the continuation process, it is a means of determining a 

unique solution u(t) by first*specifying that u(t) have a 

particular value over an initial interval, 0 <t<w. The 

value of the solution is then determined, for the next 

interval, w <t< 2u. The process can be continued to obtain 

u(t) for any desired finite interval. If, after three or 

four such steps, a pattern is evident, then a formula is 

written for u(t), nu <t< (n+l)w. 

A method of solution which corresponds to a method 

used for ordinary differential equations is that of obtaining 

a solution which is the sum of simple exponential solutions. 

When some simple exponential solutions are determined, then 

linear combinations of ohese ave also solutions. Operator 

symbolism is sometimes useful In obtaining exponential 



solutions. The operators are manipulated and then applied 

to the differential-difference equation, thereby obviating 

burdensome manipulation of the equation itself. 

For some uses, it is expedient to have an estimate of 

the magnitude of solutions. By using certain theorems, an 

estimate can be obtained of the size of a solution, of the 

difference between the values of two solutions of the same 

equation, or of the difference between the values of the 

solutions of two different equations. Previously, the key 

theorem for obtaining these estimates was proved using 

Laplace transforms. Here it is proved using integration by 

parts. 

Also, there is a method of solving differential-

difference equations which consists of obtaining a solution 

in the form of a definite integral. Theorems are proved to 

show how this can be done and to demonstrate the form which 

such solutions take. 

To obtain exponential solutions u(t) = es^, the 

characteristic roots s must be found. A particular group 

of equations u'(t) - u(t-w) = 0 is studied to find the 

characteristic roots which lead to solutions e . It is 

determined that there exist an infinite number of such 

solutions, and therefore there is a series expansion for 

u(t) = 2^ pR(t)
e 

r =-1 

s„ t 



CHAPTER II 

CONTINUATION PROCESS 

One of the fundamental methods for the evaluation of 

differential-difference equations is the continuation pro-

cess in which the solution Is extended forward "by increasing 

t interval by interval. The process provides a method of 

proving that a solution exists and for calculating the 

solution over any desired finite interval. 

Suppose u'(t) = 1 +u(t-l)j t>l, 

with the initial condition u(t) -- 1, Ost^l. 

Thenj for li ts 2, u'(t) ~~ 1 +u(t-l) = 2. 

By integrating u'(t) with respect to t-1, 

\i(t) = 2(t~l) •+ c. 

Since u(l) = 1, c = 1. 

Thereforej u(t) = 2(t-l) +1, I st S2. 

Similarly, for 2<t<3j* u!(t) = 1 +u(t-l) 

= 2 (t-2 ) ¥?.. 

u(t) - (t-2)2 +2(t-2) + c. 

Since u(2) = 3 , c = 3-

Thereforej u(t) = (t-2)2 + 2(t-2) +3.s 2<t <3. 

For 3 £ t s 4 J u ' (t) — 1 +u (t -1) 

=•• (t-3)2 +2(t-3) +4. 

u(t) - 1/3(t-3)3 +(t-3}2 -f4(t-3) + c. 

6 



Since u(3) = 6, c = 6 . 

Therefore, u(t) = l/3(t-3)~ +(t--3)2 t—3) +6, 3 < t s 4 . 

For 4 < t< 5, u' (t) = 1/3(t-4)3 + (t~4)2 + 4(t-4) + 7 . 

Since u(4) = 34/3, 

u(t) = l/12(t~4)4 + 1/3(t-4)3 + 2(C-4 f + 7(t-4) + 34/3, 

4<ts 5. A pattern for a general solution is suggested, but 

it is not a compact formula, and is not presented here. 

Consider also the following example. (Note: For each 

integration to find u(t) for n<t<n+l, the appropriate 

constant of integration is found "by computing u(n) using 

u(t) for n-1s t < n.) 

Suppose u'(t) = 2u(t-l), t>l, with bhe initial condition 

u(t) = t , 0 2 t < 1, 

For 1< ts 2, u1 (t) = 2(t-l), and 

u(t) = (t-l)2 +1. 

For 2 < t s 3, u'(t) = 2(t-2)2 +2, and 

u(t) = 2/3(t-2)3 +2 (t-2) +2. 

For 3 < t s 4 , u'(t) = 4/3(t-3)3 +4(t-3) -f4, and 

u(t) = 1/3(fc-3+2(t-3)2 +4(t-3) +14/3. 

For 4 < t < 5 , u'(t) = 2/3(t-4)i4 +4(t~4)2 4S(t-4) +2S/3, 

and thus u(t) = 2/15(t-4)5 -+4/3(t-4)3 4-4-(t-4)2 + 

23/3(t-4) +11. 

As in the previous example a general solution is suggested, 

but it is not simple and is not shown here. 

An equation of the type u'(t) •= aQu(t) + bju(t-u) 

containing the additional 11 (t.) term presents a somewhat 
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different problem 

example. 

Suppose u'(t) - i 

which Ir: i the following 

-u(t) - -u( t-w)j t>co , and 

u(t) - 1 ~e~ u (i-i-t), 0 < t < w . 

Or, for 0<t<o>, u("t)' 
t -t -1, 

0)<t< 2 co, u(t-w) - 1 ~e~^ * W(l-ffc~w). 

u'(t) •--- 1 -u(t) -• |"l -u(t-w) 

1 -1 -H 

e 

-tn-w 

(O 

( 1+t- (o) =- 1 -u(t) 

Thus u'(t) +u(t) - 1 -e~^(H-t-w). 

Solving the differential equation give.2 

u(t)e^ -= J"e1' ~(]+-t-6<)) dt +-c 

= e^ -l/2(t-(*))'' -(t-w) + c, 

Since u(w)ew - e10 -co-], c - -cj-1. 

Therefore u(t) = 1 -l/2( t--o/r~° ̂  -(t-to)e~^ -(wil)e-^, 

w<t< 2to. 

For 2co < t < 3(o, 

u(t-w) - 1 -l/2(t~2w)2e"i+w -(t-2w)e"t'K'J-(w+l)e"t 

u'(t) = 1 ~u(t) -co 1 - 1 + l/2(t-2w)2e"t+W 

rc" - 2 (o) •tt co -r (w-t-l)e' 
-t+w 

Thus u'(t) +u(t) - 1 -:i./2(t-2w)2e~J° -(t-2w)e_t -(f^Oe"^. 

u(t). -1/2 (\.—3co)c~ -(t-2(o) -((o+l) dt + c 

Since u(2a;)e 

Therefore u(t 

- e 

2(0 

^'t -2wV -•1/2 (t-2w) 
2 

e 2 w -1/ -2co -1 

•1/6 (t-2w> 

J 

C 1 

[co- / Kt-2xo) + c 

.2 2ut ~2(0 -1. 

1/2 ( c-2w)2e_t 

((o-V 1) (t+2u) a - L - (;i./2o»- -l-2w i-1), 2(0 < c < 3o» 



s 

By the same method, for 3w^t<zn<>, 

u(t)et = e* -I/24(t-3av;+ -l/o (t-ju)3 + (w+l) (t-3w)2 -

(1 /'d(/-r2o}fl) (t~3w) - (l/6w3-f2a>2+3w+l). 

In general, for nw<t< (n+l)oj, 

u(t)et = et -l/(n+l)! (t-nw)n+1-l/n! (t-nw)n-C3 (t-nw)
n_1-

C2(t-riw)
n-2- ••• -Cn_1(t~nw) -Cn, 

where Cn = l/n!w
n +l/('n+l) Iw11"1 ^Cjw1"2 +C2w

n~3+ ••• +Cn_xw. 

In the following problem, the initial interval Is 

0 <t< 2. The first step in the continuation process for the 

Interval 2 <t< 3 is not complex. The next step, (3 <t< ^), 

involves shifting the limits of the integral involved and 

dividing the integral into two parts. The process can be 

continued further but is not continued here because a 

general solution is not readily identifiable. 

f ' • 

Suppose u'(t) = u(t-l) f j u(t-s) ds, t>2, 

with u(t) = 1, 0 < t < 2. 

Then for 2 <t< 3> u'(1:) ;:v I + J" 1 ds = 2, and 
i 

u(t) -= 2t-3-
2 

P'or 3 ^ t < 4 , u'(t) -- 2(t-1) -3 + Ju(t-s) ds. 

1 

u(t-s) - jl> if 1 <t-s <2, or 

\ 2(t-r)-3, if 2 <t-s <3. 

It follows that u(t-s) - (1, if s>t-2, or 
2t,-3-?s, if s < l-O. 



. t-2 
10 

/ L *• ^ Z 

2t~s~2s ds + / 1 ds 
1 t~2 

= 2t -5 + £(2fc-3)s -S2J ^ + [s 
S: t-2 

which reduces to t2 -4t -5. 

Hencej u(t) - l/2t3 -2t2 -54o -3, 3<t< 4. 

In the following example, the continuation process 

must be performed in half-unit steps. 

Suppose u'(t) = u' (t-1) + u(t-s) ds, t > 1, 
2 

U(t) = 1, 0 <t < 1. 

Then, for l<t< 3/2, u'(t) = 0 + J u(t-s) ds. 
2 

1 <t< 3/2 and -1 < -s < -1/2; so 0 < t-s < 1. 

with 

Hence u ' ( t ) I 1 d s : s 

7 

Therefore u(t) = 1/21 +1/2, l<t<3/2. 

For 3/2<t<2, u'(t) = 0 -\- f u(t-s) ds. 
2 

u (t - s) 

1/2 

u (t - s 

1, if 1/2 < t-s < 1, or 

1/2 (t-s )-1-1/2, if 1< t-s <3/2. 

1, if s > t-1, or 

l/2(t-s+l), if s < t-1. 

, C1 

Hence u'(t) - Jt 1/2(t+l) -l/2s ds + J 1 ds 
t-i 

1 / 2 (t+i ) s -1/iJ 

which reduces to l/4t! -'-/'Ic --? 

9 

s=t- i 

Therefore u(t) •--- l/l2t- -3/StT~ -J/lnt 1-79/32 <t< 2. 
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For 2 < t < 5 / 2 , u'(t) - 1/? + jfu(t-3) ds. 
2 

u(t-s) = jl/2(t+l-s), if l<t-s<3/2, or 

il/12(t-s)2-3/8(t-s)2-7/l6(t-s) + 79/32, 

if 3/2 < t-s< 2. 

Therefore u'(t) = 1/2 + f £l/l2(t-s)3-3/8(t-s) -f/lo(t-s)+ 
2 

79/32] ds + J 1/2(t-l-s) ds, 2 < 5 < 5 / 2 . 

t~ 2 

u'(t) is determined "by solving the two above definite 

integrals. A subsequent integration and computation of the 

constant of integration gives u(t) for 2 <t< 5/2. 



CHAPTER III 

EXPONENTIAL SOLUTIONS AND LINEAR OPERATORS 

Often, use of the continuation process does not lead 

to a formula which gives the value of the solution over all 

finite intervals, or even if such a formula Is apparent, it 

may not be useful in isolating certain properties of the 

solution. Other methods of solution are needed. One method, 

which is also used to solve pure differential equations, is 

the constructing of sums of simple exponential solutions. 

Operator symbolism is also of some use in solving differential-

difference equations. 

For convenience, the linear operator L(u) is here 

defined by the following equation: 

(3-1), L(u) = a0u'(t) 4- bcu(t) + b-j_u(t-o>). 

An equation of the form L(u) - 0 is by definition homogeneous, 

and an equation of the form L(u) = f is inhomogeneous. The 

linearity of L(u) leads to the observation that if u-^(t) and 

u2(t) are any two solutions of the equation L(u) - 0, and 

if c-]_ and c^ are any two constants, c-(u^(t) + CpU0(t) is 

also a solution of L(u) - 0 because L( C
1
U
1+

C
2
U
2'

 = ca L( ui) + 

CgLfu.p) = 0. 

Thus new solutions are generated by forming 15 near combina-

tions of known solutions. 

3? 
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Similarly, ,j_f v ̂  t) _b a uiO.L„- u j_ c-s, i 02 L(u) = f, and if 

y(t) is a solution 01 L(u) — 0, then v -!• y is a solution of 

L(u) = f, because L(v+y) = L(v) + L(y) - f. Thus, the 

solution of the inhomogeneous equation L(u) =. f, with the 

initial condition u - g for t Q < t < tQ+w, can be found by 

adding the solutions w and v of the simpler problems 

L(w) = f, w = 0 for t Q <t< t +w, and 

(3-2), L(v) - 0, v =-- g for t Q < t < tQ+u. Therefore, a study 

of the homogeneous equation (3-2) is in order. 

Since solutions for homogeneous equations can be 

generated as linear combinations of simple solutions, some 

simple solutions must be found for (3-2), As with pure 

dif1erential equations, the simple solutions are exponentials. 

Suppose L(es1:) =: a cse
s t +b Qe

s t +b 1e
s( t _ w) 

= (a0s+b0+b1e"
ws)eBt. 

Then, e s t is a solution of L(u) - 0, for all t, if and only 

if s is a zero of the function 

h(s) a0s +bQ 'fb-ie"'
60'3. 

The function li(s) above, which is associated with the 

equation L(u) =• 0, is by definition the characteristic 

function of L. The equation h(s) - 0 is by definition the 

characteristic equation of L. The roou of h(s) - 0 are by 

definition the characteristic roots of 1,. A root of h(s) is 

ci roou 01 iiiii 1 u Lp2.Xc Ly m i, l ti(̂s j ci j.t s „rj,Tct, iti•— 3_ n.6 rivstuiv̂ s 

are zero. 
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There is a solution, which is possibly complex, of 

L(u) = 0 for each characteristic root; and multiple 

characteristic roots generate a number of independent 

solutions, a fact which leaes to the following theorem. 

Theorem 3-1. 

The equation L(u) = a0u'(t) -f bQu(t) + b-[u(t-w) ~ 0 

is satisfied by (t)eb*1: 

where |sR} is any sequence of characteristic roots and 

pR(t) is some polynomial with degree less than the multi-

plicity of s,. The sum may be either finite or infinite 

with conditions which are suitable to insure convergence. 

Proof of Theorem 3-1 consists of several observations. 

First, h'(s) -- a Q - bjU?e""
WD. 

Thus, h W ( s ) = (-l)kb ,G>ke~ws, k = 2,3, 

Then, for any n >1, 

L(t ne s t) = a ^ s e ^ t " " 1 ^ ) !b0t
nest +b1(t-u)

nes<t-w). 

Consider the last term, b-j (t-£j)ne&^ , of the equation 

above. If (t-w)n is expanded by the binomial theorem, the 

kth term, 0<k.<n, of b-J {t;-cj)ne° ;LS 

ri \ / T \K + n-k k st-ws 
kJ(-l) o) e 

n 

Therefore, Lft^e*"^) = e o C j t / 1 " r ' h ^ ( s ). 

k-- 0 
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Thus, L(tne°^) = 0 for any integer n, 0<n< m-1, where s 

is a characteristic ruoc of multiplicity m, since h(s) and 

its first m-1 derivatives are all zero. Given a root s of 

multiplicity m, there are therefore m functions, 

estj test, •••, .tm"3est, 

which are all linearly independent solutions of L(u) = 0, 

for all real numbers t. Hence, if p(t) is any polynomial 

of degree not greater than m-1, p(t)eSu is a solution of 

the equation L(u) = 0 since that equation is linear and 

homogeneous. Thus, Theorem 3-1 is justified. 

Suppose uT(t) - u(t-l). u - e° is a solution if and 

only if s is a ?,ero of h(s). Here, h(s) -- s - e~s. 

Hence, for all s such that s -- e~°, u - e ^ is a solution 

of u' (t) =• u(t-l). 

Suppose u((t) = u(t-l) + u(t-r)dr. Then, it follow£ 

that u(t) •- e ^ is a solution if s is a solution of 

/s+l)e~°-e' I 
•2s 

u(t-l) + /u(t-r)dr - e5^1, + dr 

es(t-!) + gs(t-2) _ es(t-l) 

St / ~s 

se (so 
Oc V 
-i~e ) 

c 1 Q „9Q 
( ? j\L ) e -G 

£ "t u 1 ( 1 ) 
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The problem of finding the characteristic roots sR is 

discussed at greater length in ChapterVI, where a specific 

equation, ur(t) = -u(t-w) is examined. 

Linear operators are sometimes helpful in solving 

differential-difference equations. The operators T),A, and 

E are here defined by the relations 

Du(t) = uf(t), 4u(t) = u(t-fl) -u(t), Eu(t) = u(t+l). 

For any real numbers k and u define the following: 

(kE)a'u( t) = kwu(t+6>), 

(kD)u(t) = ku1(t), 

u (t+l)-u(t)J (k -4) u (t) - k 

If D and E are any two operators, define suras and products 

as is usual: 

(Dl-E)u = Du +Eu, 

(DE)u = D(Eu). 

Two opera,tors are by definition equal If they produce the 

same results when applied to any function. Consequently, 

the commutative law holds. For example, 

(D-rzl)u = Du + ziu 

- U ' ( t ) t u ( t+1 ) ~U ( t ) 

u(t+l)-u(t) -r U V - J 

4u Du -- (4-[-D)u 
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And, (4E)u = 4(Eu) = A u(t-i-l) 

- u(t+-2)~u( t+l) 

= E u(t+l.)-u(t) 

= E(4u) 

= (Ed)u. 

Corresponding proofs show the commutative law of addition 

for (D+E)u and (4+E)u and the commutative lav/ of multipli-

cation for (DE)u and (Dd)u, 

The associative laws also hold. For example, 

(D4)E u (t-i- ]. )1 u = (D4)(Eu) - (D4) 

= D u (t-i-2 j -u (t-t-1) 

= d{4[u(wi)]} 

n 4(Ei 

D(4E)u 

D(4E; 

The distributive law likewise ho]ds. For example, 

4(E-i-D)u = 4 [u(t+1) +-u'(t) 

- u(t+2)--u(t-!'l) -f- u' (t.+J )-u' (t) 

u(t+2)-u(t+1) + |u<(t+l)~u!(t) 

A u(tH) +A 

4(Eu) + 4(Du) 

(4E)u f- (4D)u 

(4Ef4D)u. 

u 

The operator 
^-D 

0 --

6JD 
is ner d by tr: o o o r ies 

1 i" k) J.J •] OJ ' i) ~ -{-
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Consequently, e w Du = 1 +wu'(t) -I o>2u" (t) + *•', 
21 

which is the Tavlcr's expar.cion Tor u(t-f-«>), where u(t) = 1. 

However, u(t+w) = lwu(t4w) 

E wu 

Therefore, e6® = E W. 

Suppose an operator q is defined in such a manner that 

q(D) = a 0De^
D + t>0e

wl) + b 1. 

Then q(D)u(t) = (a 0De
W D+b 0e

w D+b })u(t) 

= (a0DE
w+b0E

c^ b ±)u (t) 

= a0Du(tfw) b0u(t+o>) + b]_ u(t) 

= aGu'(t+w) 4- b0u(t+w) + b2
u(t). 

Therefore the equation 

a Qu
r(t+w) -I- bQu(t4-w) + b-ju(t) = f(t) 

can be written as 

(3-3)A q(D)u(t) ^ f(t), where 

q(D) - a QDe
W D + b Q e

w D + b_x. 

Operators can be used to an advantage because of the 

relative ease with which they can be mani.pula.ted and then 

applied to differential-difference equations. For any 

constants k and c and any function f which is sufficiently 

di fferent iable, 

(3-4), q(D)(kect) = q(c)kect. 
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For a proof, It is sufficient to examine the effects of the 

operators involved. 

q(D)(kect) = (a0De
WD + b 0e°

D H- 'b1)(ke
ct) 

a^Dke^vu' / + tuke 
O" o 

c(t+cj) , , , ct 

a o k
oe c( t + < J) + b„ke c< t + w) + 

o 

.ct /_ _ W C . , OJC , , X , ct q(c)ke = (a0ce
wu + b 0e

w u + b ^ t lie 

a cke(wc+ct) + bQke 
wc+ct 

4- b 

= aQkce 

Let the expression 

•1-

c(t+w) , , n c(t-t-w) . , 
•° v ' bGke

 v ' + b-jke 

ct 

ct 

Ci/D 
(3-5), q-x(D)f(t) - (a0De

u'iJ b Q e
W D -H b1)-

±f(t) 

denote any particular solution of the equation 

•1, 

(3-6), 

au' (t+a>) + bcu(t,+ w) d bj_u(t.) ^ -f(t). Then, 

"l,.-v 1 
f(t), can be proved, q(D) 

fq"1 
q (D)f(t) 

Proof: q(D)|q"i(D)f(t)j = q(D)u(t), by definition, 

- f(t), equation (3-3). 

Similarly, 

(3-7), q"1(D)(kect) - provided q(c) ^ 0 ct\ ... ke 
c fc 

Proof: q(D) q~1(D) (keCTj) 

, ,kec __ a (D) (ke01') 
^ ) q[c) 

ke ct equation (3-6) 

q ( c 

Ke C u ) 
q (c.) equa,tion (3-^)j 

and U K ; wis 
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(3-8), q'1(D)(ect sin It) = Im q"1(D)e(c+il)t 

Proof: ec^ sin It = Ime J 

q ^"(D)(ec^ sin It) = q "**(D) line 

- Im Jq"1(D)p(c+ll)t 

The operators and methods above can be used in finding 

a particular solution q_^(D)f(t) of each of the following 

equations» 

Suppose u1(t+1) -u(t) = 1. 

From equation (3-5)j 

q"1(D)f(t) = (DeD -l)-1(l), f(t) = 1, 

- -l(l-DeD)"1(l) 

= -l(l~I)eD + D 2e 2 D - l)3ejD + •**)(1) 

= -1 + 0 - 0 + 0 -

Therefore a, particular solution is -1, because 

DeD(l) = D(2) = 0, 

D2e2D(l) = D2(3) = D(0) - 0, etc. 

Suppose uf(t+rr) -u(t) sin t. 

From equation (3-8), 

q~^(D) sin t -- Im 

- Im 

•= Im 

q "( 

„it 

It: 

"D)e:lt] 

equation (3-7)j 

equation (3-3) 

Therefore a particular solution is Tin it 

• Tn 



21 

Suppose u(t+l) - u(t) = t**. 

From equation (3-5)> 

q~-L(D)f(t) = (DeD~l) ~^tk 

= -l(l-DeD)"1tk 

= -l(l-DeD + D 2e 2 D - D 3 e 3 D + 

= -1(1-DE + D 2E 2 - D 3E 3 + 

= ~tk -+ k^t+l)1^"1 - k(k-l) (t4-2)k~2 + 

which is therefore a particular solution q-1(D)f(t). 



CHAPTER IV 

ESTIMATES OP THE MAGNITUDE OF SOLUTIONS 

For some applications an estimate of the magnitude of 

solutions of differential-difference equations is an invaluable 

tool. It is possible to estimate the size of the difference 

between two solutions of the same equation and between 

solutions of two different equations. An estimate can also 

be made of the size of the solution of a single equation. 

Theorem 4-1 will be used to prove a lemma, which will then 

be used in estimating the magnitude of solutions. 

Theorem 4-1. 

For any real numbers a and b, a<b, let 
denote the class of real-valued continuous 
functions defined on Ca,bD. Let T = T ag y 

be an operator from K ay to Kay s where a, 
ft , y are fixed numbers, a<p<y . Assume 
that 

(a) T is monotone in the sense that if uCK f ty, 
v C K a y , and u(t)<v(t) for &<t<0 , where 
fi < 6<Y , then (Tu) (t) < (Tv) (t) for , 

(b) T is contracting at a point in the sense that 
there is a function g C K s u c h that 
(Tg)(t)<g(t) for fi<x,<y. Let u be a function 
of class Kcty such that 

u(t) < (Tu) (t), p< t< y, 
u(t) < g(t), 

Then u(t)< g(t) for a < t< 7 . 

Proof: This theorem can be proved by contradiction. 
If the conclusion is false, there is a smallest 
number t* such that u(t) < g(t), ot<t < t*, but 
u(t*) = g(t*). Here >£<t*< y. Using properties 

22 
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(a) and (To), we deduce that. 
(Tu)(t) < (Tg)(t) < g(t), P<t< t*. 

Therefore u(t)<g(t), contradicting 
u(t*) = g(t*). 

This theorem is used now to prove the following important 

lemma. 

Lemma 4—1. 

If w(t) is positive and monotone nondecreasing, u(t)>0, 

v(t)> 0, all three functions are continuous, and if 

*t 
u 
(t)<w(t) + Ju(t1)v(t;]) dtj_, 

a < t < bj 

then u(t) w(t)exp /v(t!) dt- a < t < b 

Proof: Theorem 4-1 can "be applied "by letting a = /? = a 

and y= b. By assuming the hypothesis, the theorem is now 

of the form: 

If u(t) < (Tu)(t), a < t< b, 

and u(t)<g(t), t = a. 

then u (t) < g (t), a < t < b. 

Let T he defined by 

(Tu)(t) - w(t) + yu(tl)v(t])dt], a < t < b, 
cl 

and g by 

g (t) ~ (1+ e) w (t,) exp f v ( t | ) d t . a < t < b, € > 0. 

It, • 
Richard Bellman and Kopus Ui T, Cooke j Differential 

A ~- <"= Difference Equations (Nov; vork., 1163 ̂ , pp. 51-62. 



24 

Then, Toy Theorem 4-1, 

if 

and 

u(t) < w(t) + f u( t-i )v( t1 jdt,, a < t < b , 
•'a - ± 

u(a)< g(a), 

J' V( t-̂ )dt. 

J V(ti)dt; 

then u(t)< (l+€)w(t)exp 

•-t 
thus u(t)<w(t)exp a <o< t>. 

But it is in this case known to be true that u(a)<g(a): 

r a 

g(a) = (1+ €)w(a)exp I v(t-i )dt.. 
L a x -1-

- (.14- €) w (a) e 0 j 

T a 

u(a)<w(a) + J u(t1)v(t1)dt1 

, «>0, 

< w (a); 

and since u(a)<w(a), 

then u(a) < (l+€)w(a) = g(a), €>0, 

and thus u(a)<g(a). 

Therefore, the condition which states "if u(a)< g(a)" is 

removed, and the result is Lemma 4-1. 

Lemma d-1 is used to prove some theorems concerning 

the size of differential-difference equation solutions. it 

is first necessary to define a function of class on an 

interval. 

m e set of real functions ha/lpg 1c continuous 

derivatLves on an open int t]_<t< 'Co is de;voted "by 



25 

If f is a member of this set, then it is written 

f € Ck(t]_, t 2) > or f C C ^ on (t-^t2). If f C C^( t-j_, t 2) for 

every t 2 > t]_, it is written f CC^(tp
 00 ). 

k r 

A function f is said to be of class C on if 

it is of class on (t-p'tp), if it has a right-hand kth 
(K) . . 

derivative at t^* and if the function f (t) defined over 

t]_<t< t0 by these values is continuous from the right at 
tl* 

Theorem: Let u-^(t) and u2(t) be solutions of the following 

equation. 

(4-1) L(u) = aQu
r(t) -l- bQu(t) + b^u^t-w^f (t) 

0, oo ). Suppose that f is of cla.ss 
p 

which are of class C on 

on 0, »), and let m - max 
0 < t <w 

Then there is a positive constant c, depending only on the 

coefficients an, b 0, and bi, such that 
u o J. 

ju^(t)-u2(t)| < m e
c S t>0. 

Proof: Integrating L(u^) and L(up) from w to t and taking 

the difference gives 

ao^i(t)-u2(t) j = ao|u1(w)-u2(<j)| 

+ bo f u2(tl)-ui(ti)dtl + 131 f u2(t1-w)-u1(t1-w)dt1. 
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T h e n , 
|ui(t)-u2(t)| < 

aoP_ + r ^ o 
a o f |u2(tl_)"ul(tl) | 

+ 

<m + 

L e t c 

T h e n | u 

M + N 

lbo[ + M r< 

'0 

dt-L 

dt 
1 

N 
/ |u2(

tx)-lii('fc1)| "Jti-

a o 

d t 1J 1 ( t ) - u 2 ( t ) | < m + c J | u ? ( t 1 ) - u 1 ( t 1 ) | 

a n d b y L e m m a ^ ~ 1 , 

Jû  ( t ) - u 2 (t )j < m e c i : . 

T h e o r e m : L e t u - ^ ( t ) a n d u 2 ( t ) , o f c l a s s C 2 o n j o , =o) b e 

s o l u t i o n s o f L ( u ) = f 2 a n d L ( u ) = f ? J r e s p e c t i v e l y , w h e n 
f^_ a n d f a r e o f c l a s s C 1 o n j o , « ) . 

L e t m = m a x ju- , ( t ) - u P ( t n . 
0 <t<or 

T h e n 
k(t)-u

2(t). < 
[' 

m+ I -

J a 

J1 
a o 

e c t, t>0. 

P r o o f : I n t e g r a t i n g L ( u ) = f_-j_ a n d L ( u ) ----- f ' 2 f r o m u t o t a n d 

t a k i n g t h e d i f f e r e n c e g i v e s 
a o u

1 ( ^ ) ~ a o u 2 ( t ) = a o u i ( ^ ) - a 0 u 2 ( a > ) t- f | f 1 ( t 1 ) - f 2 ( x 1 | d t 

~ b o f | u l ( t l ) - u 2 ( t l ) | d t l " b l f | u l ( t _ w ) 
UlS Ju\ 

1 

dtl. 
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Then, 

|ul(t)"u
2(

t)| < |u1(w)-u2(w)| + |a0|
 - i y "|ri(ti)"f2(ti)|dti 

+ M 
a 'o 

dtl + .a 

< m + 

+ 

Let c 
bo| + N 

|aO I 

lbol + |bl' r t 

dtl* 

£t O 

Then "by Lemma 4-1, 

Ul(t)-U2(t)| < m +\\,\~
1 J |r1(t1)-f2(t1)|di J1 e

ot, t>0. 

1 

The following theorem is not proved here, "but it car 

be proved in the same manner as in the two immediately 

preceding theorems. It is stated here, however., and used 

in a subsequent theorem. 

Theorem 4-2, 

Let u(t) be a solution of L(u) •= f(t), which is of class C 

o n l0' x )• Suppose that f is of class C° on |o, * ) and that 

jf(t)j <c^eC2''., t > 0, where ĉ  and Cg are positive constants 

Le t m - max u(t) . 
0 < t < 0j 

Then there are posioive constants and Cĵ  which depend 

only on the coefficients bQ, and b-j such that 

u(t)| < 0 , ( 0 ^ ) 0 ^ ^ t>0. 
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Theorem: Let u1(t) and u2(t), of class C
2 on [o, »), be 

solutions of L3(u) = f 1 and L2(u) - f2, respectively, where 

f 1 and f 2 are of class C
1 on ^0, «>), and where 

Ll(u) = aQu
f(t) + bQu(t) + b1u(t-w), 

L?(u) = aQu'(t) +(b0+€0)
u(t) + (1o1+€1)u(t-oi) 

Let fl(t)| < t > 0, i = 1,2. c~2_> 0, c 2>0. 

Let m = max lu-, (t)-u?(t)| , t>0. 
0<t<w 

Let e = max (Ic0|,I € !), mp - max u (t) 
• °l 1 x' - o < t<^ ^ 

Then, there are positive constants c, c^, and q which 

depend only on c^, Cg, and aQ, "b-̂, such that 

|ui(t)-u2(t)| < m+ i a o 
-1 
/ lf1(

t
1)"

f2(tl)| d t 
HO 

1 

+ cc^c-j+m^e0'4^ ec^, t > 0 

Proof: Integrating 1,-j (u) = f from u to t gives 

a
0
ui(t) - a0u1(w) + ff1(t1)dt1 -b0 f 

•̂CO %/U) 

-t>l f 
x. 

a0u2(t) = a0u2(w) + / f2(t1)dt1 -0 o+e o) / u2(t1)dt1 

ft 
--(•b2+ei) / Up(t1-o>)dt1. 
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Then, 

Ui(t)-u2(t)| <|u1(u)-u2(ai)| + Ja0j -
1 r | f1(t1)-f2(t1)[ dt^ 

4 | a o | l |u l( t l)~u2^ t l) |d f c l 

Pi I f t~? 
+ i5o[L 

€o\ A 
+ KiX l u 2 ( t i ) l d t i 

|e i rt-u 
+ 1 a j lu2<fcl)|dtl 

rt 
s m + l a j ^ j f | f ( t 1 ) - f 2 ( t 1 ) |d t 1 

bol + lbl( P I I + * " jao| " u2^l) | d t l 
. Kl + ici| r | , 
+ - — p q — j f Q 

Pol + Pll 
Let c =—.—— By Theorem 4-2, |u2(t)|< c3 (c^m^e0*1 

Thus, |ux(t)-ua(t)| <m + [aG (-1 f |f x )-l'2 (t-̂  )| dtx 

+cfo lui'ti^"us'ti'ldti + "iifr/'c3(ci+m2)®c't • 

L e t c5 = 

Then [^(tO-UgCt)! < m + [aQ | 1 | f J (t )-f£ (t) | d 

+ ec5(c1+rn2)e
c^t e c t . 

°1 



CHAPTER V 

SOLUTIONS IN THE FORM OP A DEFINITE INTEGRAL 

Another technique used to solve differential-difference 

equations Is discussed in this chapter. This method involves 

obtaining a solution in the form of a definite integral by 

the use of a function k(t) which has certain peculiar 

qualities and which satisfies the equation 

aDk'(t) + bQk(t) + bIk(t-w) = 0. 

The solution of the differential-difference equation 

L(u) = aQu' (t) + b u(t) f b1u(t-w) - f(t), t>w, a_ ^ 0, 
o 

which satisfies the initial condition u(t) = g(t), 0 < t < u , 

if g is C •Ojwj, f is C^'Oj oo ), and 

f(t) J < C le
C 2 t, t > 0, c 1> 0, c ?>0, 

can be represented by a definite integral. 

Let k(t) be the unique function with the following 

properties: 

(1) k(t) = 0, t <0; 

(2) k(0) "(a/ 1; 

(3) k(t) is of class C° on fo, oe)-

(4) k(t) satisfies the equation aQk'(t) + b k(t) + 

b1k(t-w) = 0, t > 0. 

•30 
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Theorem: Suppose u(t) is a continuous solution of 

(5-1)* a0u'(t) + bcu(t) + bj_u(t~o>) - f(t), t>o>, aQ 4 0, 

with the initial condition u(t) -= g(t), 0 < t < w . 

If g is C° on [o, oo ) and f is 0° on [o, *>), then for t > u, 

/

(JJ 

g(t1) kft-t-.-w) dt, 
u t 

+ • / r ( t 1 ) k(t.-t1)dt1. 

Proof. Let t>u>. Integrating equation (5-1) from u to t 

gives 

-t 

/

t ^ 

f(t1)k(t-t1)dt1 - a o f u'(t1)k(t-t;?)dt1 
w t 

+ ^o J u(^i)^( t-ti)dt^ + bj /*'a(t_-i_-Ct>jk(t-t2_)dt 
u ~ A, " Integrating by parts,, 

f f (t-^kft-t^dt^ = 
U> 

*t 

it 
aQu(t1)k(t-t-jJ 

CO 

+ aD 

/ U 

u(t-^)kr + *bQJ u(t-

+ b1^u(t1-cj)k(t-t1)dt1 = aou(t)k(0) -a0u(w)k(t-w) 

/ t /*t-W 
u(t1)k(t-t1)dt1 - b 2 J u(t1)k(t-t1-w)dt1 

ft 
+ 1°°J u(tl)k(t~ti)dti '+ J u(t1~w)k(t.~t1)dt1. 
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Here the expression ~bQ f u(t-, )k(t-ti Mt-
0̂0 •L' 

~ bl f u(t1)k(t-t1-w)dt1 
U) 

is substituted for a Q j u(t1)k
t(t-t1)dt1, except the limits 

U) 

on the integral with the coefficient b x are u to t-w because 

with limits from t-o> to u the value of the integral is zero. 

Hence, 

-f(t^)k(t-t^)dtx = u(t) ~a0u(w)k(t-o») 'W • X- • " V ^ l 

b 
/ t-W £ 

u(t1)k(t-t1-cJ)dti + bj / u ( s )k(t-s- W)ds 

/ / 

= u(t) -aQg(w)k(t-w) + b x J g(t1)k(t-t1-w)dt1. 
Therefore, ^ 

f r \ / /** ̂  

(5-2), u(t) = a0g(w)k(t-w) -b1 j g(t;| )k:(t-t1-wjdt^ 

+ f r(t1)k(t-t1)dt1, t>w . 

Incidentally, the right-hand member of (5-2) is zero, 

not g(t), when 0 <t<6;. 

This is true because 

(1) (t-co) <0, and thus k(t-w) - 0, 

(2) (t-t^-w) < 0, 0 and thus k(t-t1~a>) = 0, 

(3) (t-t 1)<0, w < t x < t , and thus k(t-tx) - 0. 

Note: Since a Qk
r(t) + bQk(t) -h b-jk(t~o>) = 0, t-o><0 

whv_n t < (j) , and onus k(t-o>) =r o, t < o > . Consequently, 

ao k' (^ ) + t0k(t) = 0, t < co . 



Let t>2w. Then,by differentiating equation (5-2) 

u'(t) 1_ 
dt 

Hence, 

aQg(w)k(t-w) f g(t1)k(t-t1-o>)dt1 

+ f(ti)k(t-t1)dt1 

/

CO 

g(t]_}k' (t-t1-w)dt1 + f(t)k(0) 

a0g(w)k'(t-u) -I)! J^"g(t1)k'(t-t1-w)at1 +(a0T
1f(t) 

+ y t > 2u. 

V 1 ' ^ ) t- bo«(t) +-b1u(t-,Jj aora0g(«)k-(t.<j) 

-b 
/

w 

g(tx)k' (t-t^wjdt-L + (aJLf:(t) 

a g(w)k( b-cJ) 
+ y* f ̂ l)k' f t~t

1)
dt1 

~^1 / S(ti)k(t~t1-w)dt1 +- j f(f,1)k(t-t-1 )d 
0 *"10 

+ b1ja0g(<j)k(t-2IJ) -tl /•'"S(t1)k(t-t1-2W)dt 

+ J -P(t2_)k(t-t1-o.
,)cit;] 

i 

1 
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/ a> 
£:(ti)k' (t-ti-w)dti + f(t) . 

•/ 
+ a Q I f(t1)k(t-t1)dt-1_ + b0a0g(u)k(t-u) 

- bo bl 
/ CO /*t 

g ( t ^ ) k ( + t>0 / f(t2_)k(t-tj)dt 

ôj •'w 
2 

1 

+ ' b 1 a 0 g ( c o ) k ( t - 2 w ) - b ^ I g ( t ] _ ) k ( t - t 1 - 2 w ) d t 1 

+ t>i / f ( t - L ) k ( t - t ] _ - c j ) d t 1 

= f(t) + aDg(w) 

I 
a0k

f(t-a>) f b0k(t-6jj) + b-j_k(t-2w) 

co 

- b i I s ( t
1 ) akf(t-t^-w) 4- "b0k(t-t^-w) 

•t 

+ b1k(t-t -2w) 

+ 'b^k(t-tQ-w) 

dt,-, + J f (t-, ) 1-
CO 

aok'(t-tl) + b
0
k( t _ tl) 

dt-1 

= f(t), t > 2u>. 

Therefore a0u
!(t) + bQu(t) + b-ju(t-tj) = f(t) is satisfied 

for t > 2OJ. 

The following discussion proves that aQu'(t) + b u(t) 

+ b]_u(t-w) = f(t) is also satisfied for w< t < 210. 

Theorem: Suppose u(t) is a solution of (5-1) forw< t< 2o. 
rt-co 

Then u(t) = aQg(w)k(t-^) -b^ I g(t ( )k(t-t2~w)dt-j_ 

•f I f (t-j_)k( t-t-j_)dt-j, co <t < 2co. 
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Proof: Assume w<t< 2co. 

Integrating (5-1) from wtc t gives 

J" f (t-j_)k( t-t-^dt ̂  = aG f u'(t-jJk^-t^Jdt-^ 

^ "fc J 

+ b GJ' u(t1)k(t-t1)dt2 + ^ i j
 u('t"^)k(t-t1)dt1. 

Integrating "by parts, 

r t P 
I f (t1)k(t-t1)dt1 - a0u(t1)k(t-t1) + aQ / u(t1)k' (t-t̂ dtji 
w rt rt h 

+ pQ I u(t1)k(t-t]i_)dt-1_ + b-j I u(t]_-w)k(t-t1)dt1 
J{jj J 03 

- a u(t)k(0) - aQu(uj)k(t-cS) 

rt f i 

I u(t1)k(t-t1)dt1 - Td-l J u(, ̂  )k(t~12-cSjdt-j 
,/w-

bQ 

+ I 11 ("̂ l )k(t-t]_)dt-j + b^ j u(t1-w)k(t-t1)dt1. 

'w t ./to 

The term -bj / u(t1)k(t-t1-w)dt3_ = 0, because <0, 

rt •'« 
Thus I f(tj_)k(t-t2_)dt^ = u(t) - a0u(6>)k( t~6>) 

w /-t-w 

+ hj j u( s )k( t-s — cj)ds u(t) - a0g(o»)k( t-J) 

0 -1- w 

+ bi / g(t1)k(t-t1-w)dt3 . 

J0 

Therefore, 
Ar u 

(5-3)j.u(t) = a0g(o»)k(t-w) -b-j / s(t,)k(t-tj-^dtj 

-t 
+ ̂  f (t-) )k(t-t-, )dt-1 . w<t< 
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Let oj<t< 2(j, Then, by differentiating equation (5-3) 

u'(t) - acg(w)k'(t-w) - blg(t-w)k(t--t+w~w) 

/

t-w 

g(ti)k'(t-t1-w)dt1 + f (t)k(t-t) 

+Jfr(ti)k.(t-ti)dti = a0g(w)k' (t-w) a~
1b1g(t-w) 

(JQ 

^1 / s(̂ i)'':C'(̂ ,-"t'i~it')dtn -1- a ^ f (t) 
rt 

J f (tj )k< (t-t1)dt1 , u<t< 2to. 
*Ai) 

+ 

The term -b 
CO 

g( t^)kf (t-t-i -oj)dt-i replaces the term 
0 

/
t-to 

g(t1)k' (t-t-, - w)dt]_. 
u 

This occurs because the value of the integral from t-w to t 

is zero, caused by t-t 1-w<0 J which results in k^t-t-^w) - 0, 
Hence, for co < t< 2w, 

aQu'(t) + bQu(t) + b1u(t-w) = 

a 'o aQg(w)k< (t-w) ~aQ
1b1g(t-w) -b-, f g(tx)k' (t~tx-w)dtx 

+ a -1 o f(t) + f f(tx) | t-t1)dt1 

+bo["a
0g(

w)k(t-w) - b x f g(t1)k(t-t1-w)dt1 

t 
+ / f(ti)k(t-t1)dt1 -f. b1g(t-w) 

10 
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= f (t) + aQg(w ) jaQk' (t- w) -f bck (t- u)J - t^g(t- w) 

/

CO 

^ g(t1)k'(t-tx-w)dt1 

+ j * a0k'(t-t^) + b0k(t-t]_) dt-j 

- b0
bl f g(t1)k(t-t1~u,)dt1 
Jo 

- f( t) + a 0s(
 w) ̂ aok'(t_ w) bo

k(t~0J) 
r

w -t-w 
- a0"b2 I g(t-2_)k

r (t-t-]_-t0)dt1 - ^q^i / g(t]_)k( t-t]_-w)dt 

°ft
 Jo 

+ 1 -f(t'i) a0k< (t-tx) f bQk(_ t -1 ̂  )1 d t . 
*/co L J 

But a0g(u.) |a0k'(t~w) + b0k(t~w) 

resulting in b2k(t-2w) = o. 

0, because 0<(t-w)<w J 

•S 
CO 

Also, / f (t-, ) a0k'(t-ti)
 + "bQk(t-ci) dti = 0, because 

(t-t1)<wJ resulting in b-j_k( t-t]--u>) = 0. 

The two terms -a0"b] / gft-, )k'(t-t-w)dt-, and r t-w Jq 
-b0bi I g(t-^)k(t-t-j-u^dtj can be combined because 

^0 

/ t-CO ^ CO 
g(t1)k(t-t1»w)dt1 - / g(t1)k(t-t2-co)dt1 

^0 
/•CO 

- I g(t1)k(t-t1-w)dt1. 

/ CO 
g(t1)k(t-t1-u)dt1 = 0., because (t-t1-w)<0. 
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Thus, 

aou' (t) + bQu(t) + b1u(t-w) - f(t) 

~bl f §(^i) f"a0k.' (t-t-L-w) 
0 L 

+ bck(t-t1-w) dt-J 

= f(t), 

since the integral involved is zero because (t-t 

resulting in b1k(t-tx-2w) = o. 

Therefore a0u.(t) + b0u(t) + b lu(t-u) = f(t) ia satiEfied 

for w < t < 2w. 



CHAPTER VI 

CHARACTERISTIC ROOTS AND SERIES EXPANSION 

OP u' (t) + u (t~ w) = o 

In Chapter III It was proved that the equation 

— aQu'(t) + bQu(t) + "b^u(t-w) - 0 is satisfied by 

R ( t) e ^ >̂ where {s R | is any sequence of characteristic 

roots of L, pR(t) is a polynomial, of degree less than the 

multiplicity of sR, and the sum Is either finite or is 

infinite with suitable conditions to ensure convergence. 

That Isj L(u) -- 0 is satisfied by a sum of simple exponentla 1 

solutions of the form e8*13 with coefficients p (t). 

Reiterating, since L(est) = (a0s+b0+b1e"
wS)est, 

h(s) = a0
s+bo+1;)le W B 1 3 called the characteristic function 

of L; h(s) = 0 is called the characteristic equation of L; 

and a solution of h(s) = 0 is called a characteristic root 

of L. Thus a characteristic root s results In a solution 

e s t. 

The problem discussed here Is how to determine these 

characteristic roots. To facilitate the discussion, an 

analysis will be made of a particular group of differential-

difference equations which have the form u'(t) +u(t-w) = 0 

or u' (t) ~ -U^C-W), where U> IS a real number >o. 
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For u(t) = e s ^ the equation is ses^ + e s^~ c o) = 0. 

Therefore the characteristic function is h(s) = s + e-u>s, 

and the characteristic equation s + e-UJS = 0 must "be solved 

for s. To simplify the problem somewhat, a substitution is 

made. Let z = -s. Thus the equation e w Z = z must be solved 

for z. 

Separating z into real and imaginary parts and changing 

to polar coordinates results in: ~s = z = x+iy 

= r(cos e + i sin 0)., x = r cos 0 , y = r sin G ; exp wz 

= ewx(cos uy + i sin uy). Then the form of e u z = z is 

changed to ewX(cos coy + i sin uy) = r(cos G + i sin G ). 

Thus z is a zero of e w Z - z if e w X = r and wy = 0. But 

r^ = 7? + yr~ = e^wx. Therefore z is a solution of e"2 = z 

if y = ±^j^wx-x^ and y = ̂  . 

First consider the case of w= l, To obtain exponential 

solutions of u'(t) + u(t-l) - 0, it is necessary to solve 

the characteristic equation ez - z. And. z is a solution of 

e z = z if y = ±ye^x-x^ and y - 9 . 

For Tr<0<2iTJ z must be in the third or fourth 

Cartesian quadrant (because of the relationship between 

Cartesian and polar coordinates). But y = 0. Therefore, for 

z to be in the third or fourth quadrant,, y must be negative. 

However y cannot be negative because it is equal to G_, which 

is a positive number between »- and 2ir. It 5 s thus evident 

that there is no solution z for " between ir and 2-rr. The 
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same argument can also be used to show that there Is no 

solution z for 3tt < y < 5 -w<j<6^3 * * * _, 

(2n-l)iT < y< 2mri Also, if 0<y<ir, then 

0 < V e - - 2 < Howeverj if x < 0, ̂ e 2 x-x 2 < 1 and thus 

y = e < l < y2. Therefore z must he in the first quadrant, 

a contradiction of x s 0. It is evident that there is no 

solution z for y between V2 and u. The same argument can 

be used to show that there is no solution z for 5 V2<y<?n-, 

9 r / 2 < y < 5 ^ •••, (4n - 3 ) V 2 < y < (2n-l)Tr, •••. 

For y > 0, since y = e and y = + ̂ e 2 x-x 2 are single 

valued functions, there exists one solution z for each 

interval y n = (2n-2)Tr to (4n-3) 7?, n = 1,2, •••. Likewise 

for y < 0, there is a solution z = x + -iy corresponding to 

each solution for y > 0. That is, each solution z has a 

complex conjugate which is also a solution. It is necessary-

here to recall "chat the desired solutions are the charac-

teristic roots s = -z. Let the solution z be called 

Z1 = xl + iyi; 0 cyi c V 2 and Xj > G, z7> = x2+iyp, 

2lT < y 2< 5 /2 and x 2 > 0, etc,, and the complex conjugate 

solutions be called z-̂  = x x -iy^ 0 < y 1 < y 2 and X]_ > 0, etc. 

Then the desired solutions s are Sj_ = -x^ + iy^, 0<yj< V 2 

and x^s 0, Sg = -Xg + iy2, 2-rr<yg<5 y2 and x 2 > 0, etc., 

and the complex conjugate solutions are s£ ~ -x^-Iy-p 

^ < ^ 1 < //2 a n d x ± > etc. Tha graph of x;hese solutions for 

y > 0 shows s-l = (xx,y ), v.>here x.. < 0 and G<y n< V2, and 
-L x " 1 - 3 

s2 = (•xl->x2 )3 w h ere x 2 < x-j and 2r, < y 2 < 5
 T/2 . 
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The coordinates of the solutions are such that x n > xn+-]_ and 

^n < ^n+1' ^ o r ^ o r ^ a rS e values of x, the equation 

y = ye^ x-x^ is very much like the graph of the familiar 

equation y = ex. 

There is a corresponding set of complex conjugate 

solutions in the third quadrant. It is evident that for 

w = 1, any solusion s n
 = x

n + i^n* >cn< ® anc^ ^he value of 

y n is known to "be within a certain range, and 

| x n | < M * Ixn+l|<|yn+l| • 

For values of u ̂  1, the solutions form a pattern 

which for large values of x is much like the graph of e u X. 

Thus, for values of u>l, the curve rises more steeply than 

the curve for w = 1. That is, the ratio of y to x is larger 

than for w = 1. Conversely, for values of 0 < w < i J the 

ratio of y to x is smaller than for to - 1. However, for all 

w > 0, as |s| —co along the curve, the curve becomes nearly 

parallel to the imaginary axis. 

In the case of w = 1, all solutions are such that 

x n < 0, that is, the real part of each complex solution is 

negative. If « = V 2 , the first .solution, s^ (and its 

complex conjugate s-j_), has positive real part Xj ~ 0, 

and all other solutions have negative real parts. For each 

w > V2, there exists some integer - 1, 2, such that 

the solutions in the first i intervals of 2(i-1)Vw < y^< 

(4i-3)Tf/2w have positive real party, M l subsequent 
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solutions have negative real parts, .As w is increased, 

the integer i increases, but in all cases i will be a finite 

number. 

The value of w also effects the range of y. For all w, 

2(n-l)-r7Ai<yn < (4n~3)ir/2 0) 

For many purposes, it is expedient to have an expansion 

of u(t) in the form of an infinite series, S p R (tje
3"^, 

where the sum is over all characteristic roots sR, and where 

p,(t) is a polynomial in t if sR 3s a multiple root. It is 

difficult to prove such an expansion theorem rigorously. 

One reason is that for different values of u, the distri-

bution of the solutions s„ is different. Therefore, the 

theorem is proved here for k'(t) + lc(t-io) - 0, where k is 

as defined in Chapter V. 

Theorem: Suppose k'(t) = -k(t-m). Let a. = 

j = 0, 1, 2, Let s denote the rectangle formed by 
d 

segments of y = -a • , x = 0, y - a.., x =- -a .. Let k.(t) be 
J J J J 

ts 
6 i f 

the sum of the residues of — — i n the band y <a .. Then 
s+e_a,s 1 J 

k(t) = lim k • (t). 
j-co J 

e t s 

Proof: The first rectangle SQ contains two poles of 
s ^ T w s 

Each additional rectangle encompasses two subsequent poles 

(a characteristic root and its coMplex conjugate). Then 



kj(t) = J 
hk 

e t s 

(6-1), (t) = I ds, by the Residue Theorem. The 
/ĝ s-fe 

integral (6-1) around s. is the sura of four integrals, one 

for each side of the rectangle s-. Thus, let 
J 

kj(t) = I x + ±2 + Ig + li|' corresponds to the integral 

over the vertical line segment which forms the right side of 

the rectangle. I g corresponds to the integral over the 

horizontal line segment which forms the top side of the 

rectangle. Likewise and correspond, respectively, 

to the integrals over the lines which are the left and 

bottom sides of the rectangle. Since the Laplace Transform 

/ CO 

e~tok(t) at = — — — , therefore 
s+e"uS 

k(t) = lira I^, by the Laplace Inversion Theorem. It must 

therefore be proved that lira (I + lq -i- 1^) = 0. Since 
j—co J 

Thus, I? = 1 — - — d y 

Ja < 

I If, = I 2 j it suffices to show that lim Ig = 0 and lim I, = 0. 
j— ® • J—CO 

>t (-a^+iy) 

fa^ -a j+iy-te"^3 J"Kly^ 

There exists a J such that if j>J, then e" a "-1 2 4a .. For 

such j, | e""
a,(~a j+1y)j >2 |-a ,-f-iy| , so that 

J 

|—aj + iy + e aj"fiy)| >i/2euaJ'. This implies that 

llj < j — — dy = 4a n-e~ (^
 f"t0)a j which implies 

31 J-aj l/2euaJ J 

lira Iq = 0, since t Is positive). 
j—CO 
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A l s o , l o = f — — e t > " ' T 1 ! ' , r dx. Since i ? " " 1 ' J = 1 , 

' Jo X-laJ+s-"^
+:iaP 

|I£|J° d x < l _ f°e t x . l -

' 1 I i , / , - ojxi a / a ' t a • X a , jz+l^a j+e J J ./-a j J J 

- ta . - . e J . 1 

T h e r e f o r e j l im Ip - 0. 
J - c o 

Each of the r e s i d u e s i s of the form C n e s n ^ j (to ^ 1 / e ) , 

and t h e r e f o r e k ( t ) = ^ ^ J"cResk 0 + Cse
SR'bl. In Chapter V, 

R = 1 L 

i t was proved t h a t u ( t ) = a 0 g(w)k( t -w) 

/

a) / " t 

g ( t i ) k ( t - t 2 - f ) ) ^ t ] . / f ( t ] _ ) k ( t - t j j d t j . 
v ' - 'a) 

T h e r e f o r e , by s u b s t i t u t i n g the exponen t i a l sum f o r k ( t ) i n 

the i n t e g r a l r e p r e s e n t a t i o n of u ( t ) and i n t e g r a t i n g term 

by term, the r e s u l t i s a s e r i e s s o l u t i o n f o r u ( t ) . 
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