LINEAR FIRST-ORDER DIFFERENMIAL-DIFEENENCE EQUATIONS OF RETARDED TYPE WITH CONSTANT COEFFICIENTS

APPROVED:

Toubuas Dean of the Graduate School

LTNEAR FIRST-ORDER DIFFERENTTAL-DIPFERENCE EQUATTONS OF REPARDED TYPE WITH CONSTANT COEFFICLENTS

THESIS

Presonted to the Graduate Council of the Nowh Toxas State University in Partial Fulfjliment of the Requirements

For the Degree of MASTER OF AR'IS $B y$ Cymutat R. Pyatiti, B. A. Tancon, Texus

TABLE OF CONTENTS

Chapter
I. INTRODUCTTON I
II. CONTINUATION FROCESS 6
III. EXPONENTIAL SOLUTIONS AND LINEAR

OPERATORS 12
IV. ESTIMATES OF THE MAGNTTUDE OF SOLUPTONS . . 22
V. SOLUTIONS IN THE FORM OF A DEFINTTE INTEGRAL 30
VI. CHARACTERISRIC ROOTS AND SEPTES EXPANSION OF $u^{\prime}(t)+u(t-\omega)=0$. 39

BIBLIOGRAPHY 46

CHAPTER I

INTRODUCTITON

Differential-difference equations are essentially like pure differential equations, except that a differential equation contains one or more derivatives of an unknown function, and a differential-difference equation can contain one or more derivatives of an unknown function, for example $u^{\prime}(t), u^{\prime \prime}(t)$, together with any number of functions of the form $u\left(t-\omega_{1}\right), u\left(t-\omega_{2}\right), \cdots, u\left(t-\omega_{n}\right)$, and possibly some of their derivatives. The numbers ω_{1}, ω_{2} are given and are called retardations or spans. Some examples of dieferentialdifference equations are
$(1-1), u^{\prime \prime}(t)-u^{\prime}(t-1)+2 u(t)=0$,
$(1-2), u^{\prime}(t)+u(t-1)-u(t-\sqrt{2})=0$, $(1-3), u^{\prime}(t)+2 u(t)-2 u(t-1)=e^{t}$.

This paper is concerned witr equations in which u is, regarded as a function of a single independent variable which will be called t. Therefore, all derivatives are ondnary rather than partial derivatives. The customary meanings of differential order and afference order of an equation are observed. That is, differential ordex of an equation is the order of the highest derivativo appeaping, and difference order is one loss than the detanct rumber of arguments ω_{1},
ω_{2}, \cdots. For example, equation (1-1) is of order 2 in derivatives and of order 1 in differences, but equation (1-2) is of order 1 in derivatives and of order 2 in differences.

The general form of a differential-difference equation of differential order n and difference order m is

$$
\begin{gathered}
F\left[t, u(t), u\left(t-\omega_{1}\right), \cdots, u\left(t-\omega_{m}\right), u^{\prime}(t), u^{\prime}\left(t-\omega_{1}\right), \cdots,\right. \\
\left.\cdots, u^{(n)}(t), u^{(n)}\left(t-\omega_{1}\right), \cdots, u^{(n)}\left(t-\omega_{m}\right)\right]=0,
\end{gathered}
$$

where F is a given function of $1+(m+1)(n+1)$ variables and the numbers $\omega_{1}, \omega_{2}, \cdots, \omega_{m}$ are also given. This paper, however, is concerned with equations of order 1 in both derivatives and differences. Equation (1-3) is such an equation. Also, F and u are here required to be real functions of real variables, and the numbers $\omega_{1}, \omega_{2}, \cdots$, ω_{m} must be real. The coefficients are assumed to be constants. Complex solutions may result, but real solutions. are of primary interest here.

With the foregoing restrictions, the general form for a differential-difference equation is reduced to $(1-4), a_{0} u^{\prime}(t)+a_{1} u^{\prime}(t-\omega)+b_{0} u(t)+b_{1} u(t-\omega)=f(t)$. The theory of the equations of this form exhibits most of the features of the more general theory, while avoiding a lot of the detail involved.

It is well known that differential equations have great value in application to physical situations. A complete study of the rate of change of a physical system,
though, involves not only the present state of the system but also its past history.

In particular, equation (1-4) represents several types of applications. If $a_{0}=a_{1}=0$ or $b_{0}=b_{1}=0$, the equation is a pure difference equation. If $a_{0}=v_{0}=0$ or $a_{1}=b_{1}=0$, it is an ordinary diferential equation. These are not discussed here, because they have been treated extensively elsewhere. There are, however, three distinct types of differential-difference equations represented by equation (1-4). An equation of that form is of retarded type if $a_{0} \neq 0$ and $a_{1}=0$. (Such equations are also called delay differential equations and hystero-differential equations.) It is of neutral type if $a_{0} \neq 0$ and $a_{1} \neq 0$. It is of advanced type if $a_{0}=0$ and $a_{1} \neq 0$.

In applications, usually t represents time. Thus an equation of retarded type can be used to represent the behavior of a systom where the rate of change of the quantity involved depends on past and present values of the quantity. An equation of neutral tyot can represent a system in which the present rate of change of the quantity depends on the past rate of change as well as the past and present values of the quantity. An equation oi advanced type can represent a system in which the rate of change of the quantity depends either on the past volio and be past rale of change on on the present and future values os ha quantity.

The discussion here is Ifnited to equations of retarded type since they are in sone ways simpler to work with than equations of neutral or advanced type, and yet the theory of equations of retanded type is generally representative of all three.

As is the case with ordinary differential equations, the main objective in studying differential-difference equations is to solve them: that is, to find a particular function (or functions) i(t) which satisfies the equation.

There is actually a clearly defined process which can be used to find solutions over finjte intervals. Called the continuation procoss, it is a means of determining a unique solution $u(t)$ by first specifying that $u(t)$ have a particular value over an initial interval, $0<t<\omega$. The value of the solution is then determined for the next interval, $\omega<t<2 \omega$. The process can be continued to obtain $u(t)$ for any desired finite interval. If, after three or four such steps, a patterr is evdent, then a formula is written for $u(t), n \omega<t<(n+1) \omega$.

A method of solution which comesponds to a method used for ordinary differential equations is that of obtaining a solution which is the sum of simple exponential solutions. When some simple exporential solutions are determined, then linear combinations of these are also solutions. Operator symbolism is sometimes userul in obtaining exponential
solutions. The operators are manipulated and then applied to the differential-difference equation, thereby obviating burdensome manipulation of the equation itself.

For some uses, it is expedient to have an estimate of the magnitude of solutions. By using certair theorems, an estimate can be obtained of the size of a solution, of the difference between the values of two solutions of the same equation, or of the difference between the values of the solutions of two different equations. Previously, the key theorem for obtaining these estimates was proved using Laplace transfoms. Here it is proved using integration by parts.

Also, there is a method of solving differentialdifference equations which consists of obtaining a solution in the form of a definite integral. Theorems are proved to show how this can be done and to demonstrate the form which such solutions take.

To obtain exponential solutions $u(t)=e^{s t}$, the characteristic roots s must be found. A particular group of equations $u^{\prime}(t)-u(t-\omega)=0$ is studied to find the characteristic roots which lead to solutions $e^{s t}$. It is determined that there exist an infinite number of such solutions, and therefore thero is a series expansion for
$u(t)=\sum_{r=1}^{\infty} p_{R}(t) e^{s_{R} t}$.

CHAPTER II

CONITNUATION PROCESS

One of the fundamental methods f'or the evaluation of differential-difference equations is the continuation process in which the solution is extended forward by increasing t interval by interval. The process provides a method of proving that a solution exists and for calculating the solution over any desired finite interval.

Suppose

$$
u^{\prime}(t)=1+u(t-1), \quad t>1,
$$

with the initial condition $u(t)=1, \quad 0 \leq t \leq I$.
Then, for $1 \leq t \leq 2, u^{\prime}(t)=1+u(t-1)=2$.
By integrating $u^{\prime}(t)$ witr respect to $t-1$,

$$
u(t)=2(t-1)+c .
$$

Since $u(I)=I, c=1$.
Therefore, $\quad u(t)=2(t-1)+1, \quad 1 \leq t \leq 2$.
Similarly, for $2 \leq t \leq 3, u^{\prime}(t)=1+u(t-1)$

$$
=2(t-2)+2 .
$$

$$
u(t)=(t-2)^{2}+2(t-2)+c .
$$

Since $u(2)=3, c=3$.
Therefore,
$u(t)=(t-2)^{2}+2(t-2)+3, \quad 2 \leq t \leq 3$.
For $3 \leq t \leq 4$,

$$
\begin{aligned}
u^{\prime}(t) & =1+u(t-1) \\
& =(t-3)^{2}+2(t-3)+4 . \\
u(t) & =1 / 3(t-3)^{3}+(t-3)^{2}+4(t-3)+c .
\end{aligned}
$$

Since $u(3)=6, c=6$.
Therefore, $\quad u(t)=1 / 3(t-3)^{3}+(t-3)^{2}+4(t-3)+6,3 \leq t \leq 4$.
For $4 \leq t \leq 5, u^{\prime}(t)=1 / 3(t-4)^{3}+(t-4)^{2}+4(t-4)+7$.
Since $u(4)=34 / 3$,
$u(t)=1 / 12(t-4)^{4}+1 / 3(t-4)^{3}+2(t-4)^{2}+7(t-4)+34 / 3$,
$4 \leq t \leq 5$. A pattern for a gereral solution is suggested, but it is not a compact formula, and is not presented here.

Consider also the following example. (Note: For each integration to find $u(t)$ for $n \leq t \leq n+1$, the appropriate constant of integration is found by computing $u(n)$ using $u(t)$ for $n-I \leq t \leq n$.)

Suppose $u^{\prime}(t)=2 u(t-1), t>1$, with the initial condition

$$
u(t)=t, \quad 0 \leq t \leq 1 .
$$

For $l \leq t \leq 2, u^{\prime}(t)=2(t-1)$, and

$$
u(t)=(t-1)^{2}+1 .
$$

For $2 \leq t \leq 3$, $u^{\prime}(t)=2(t-2)^{2}+2$, and

$$
u(t)=2 / 3(t-2)^{3}+2(t-2)+2
$$

For $3 \leq t \leq 4, u^{\prime}(t)=4 / 3(t-3)^{3}+4(t-3)+4$, and

$$
u(t)=1 / 3(t-3)^{4}+2(t-3)^{2}+4(t-3)+14 / 3
$$

For $4 \leq t \leq 5, u^{\prime}(t)=2 / 3(t-4)^{4}+4(t-4)^{?}+3(t-4)+28 / 3$, and thus $u(t)=2 / 15(t-4)^{5}+4 / 3(t-4)^{3}+4(t-4)^{2}+$

$$
28 / 3(t-4)+11
$$

As in the previous example a general solution is suggested, but it is not simple and is not ghown here.

$$
\text { An equation of the tope } u^{\prime}(t)=a_{0} u(t)+b_{I} u(t-\omega)
$$

containing the aditional $u(t)$ term prosents a somewhat
different problem, wa eh in izlutwotas the following example.
Suppose $u^{\prime}(t)=1-u(t)-[1-u(t-\omega)] e^{-\omega}, t \geq \omega$, and $u(t)=1-e^{-t}(1+t), \quad 0 \leq t \leq \omega$.
Or, for $0 \leq t \leq \omega, u(t) e^{t}=e^{t}-t-1$.

$$
\omega \leq t \leq 2 \omega, \quad u(t-\omega)=1-e^{-t+\omega}(1+t-\omega) .
$$

$$
u^{\prime}(t)=1-u(t) \cdots[1-u(t-\omega)] e^{-\omega}
$$

$$
=1-u(t)-e^{-\omega}\left[1 \cdots 1+e^{-t+\omega}(1+t-\omega)\right] .
$$

Thus

$$
u^{\prime}(t)+u(t)=1 \cdot-e^{-t}(1+t-\omega)
$$

Solving the differential equation gives

$$
\begin{aligned}
u(t) e^{t} & =\int e^{t}-(1+1-\omega) d t+c \\
& =e^{t}-1 / 2(t-\omega)^{2}-(t-\omega)+c
\end{aligned}
$$

Since $u(\omega) e^{\omega}=e^{\omega}-\omega-1, \quad c=\cdots \omega-1$.
Therefore $\left.u(t)=1-1 / 2(t-\omega)^{2}\right)^{2}-t-(t-\omega) e^{-t}-(\omega+1) e^{-t}$, $\omega \leq t \leq 2 \omega$.

For $2 \omega \leq t \leq 3 \omega$,

$$
\begin{aligned}
& u(t-\omega)=1-1 / 2(t-2 \omega) e^{-t+\omega}-(t-2 \omega) e^{-t+1}-(\omega+1) e^{-t+\omega} \\
& u^{\prime}(t)=1-u(t)-t^{-\omega} {\left[1-1+1 / 2(t-2 \omega)^{2} e^{-t+\omega}+\right.} \\
&\left.(t-2 \omega) e^{-t+\omega}+(\omega+1) e^{-t+\omega}\right] .
\end{aligned}
$$

Thus $u^{\prime}(t)+u(t)=1-1 / 2(t-2 \omega)^{2} e^{-i}-(t-20) e^{-t}-(\omega+1) e^{-t}$.

$$
\begin{aligned}
u(t) e^{t} & =\int e^{t}-2 / 2(1-\omega)^{2}-(t-2 \omega)-(\omega+1) d t+c \\
& =e^{t}-1 / 6(t-2 \omega)^{3}-1 / 2(t-2 \omega)^{2}-(\omega+1)(t-2 \omega)+c .
\end{aligned}
$$

Since $u(2 \omega) e^{2 \omega}=e^{2 \omega}-1 / 2 \omega^{2}-2 \omega-1, \quad c+-1 / 2 \omega^{2}-2 \omega-1$.
Thorofore $u(t)=1-1 / 6\left(t-2 \omega 3_{0}^{-t}-1 / 2(t-2 \omega)^{2} e^{-t}-\right.$

$$
(\omega+1)(t+2 \omega) e^{-i}-\left(1 / 2 \omega^{2}+2 \omega 1\right), 2 \omega \leq t \leq 3 \omega
$$

By the same method, for $3 \omega \leq t \leq 4 \omega$,

$$
\begin{array}{r}
u(t) e^{t}=e^{t}-1 / 24(t-3 \omega)^{4}-2(2-3 \omega)^{3}+(\omega+1)(t-3 \omega)^{2}- \\
\left(1 / 2 \omega^{2}+\omega+1\right)(t-3 \omega)-\left(1 / 6 \omega^{3}+2 \omega^{2}+3 \omega+1\right) .
\end{array}
$$

In general, for $n \omega \leq t \leq(n+1) \omega$,

$$
\begin{aligned}
& u(t) e^{t}=e^{t}-1 /(n+1):(t-n \omega)^{n+1}-1 / n!(t-n \omega)^{n}-c_{1}(t-n \omega)^{n-1}- \\
& C_{2}(t-n \omega)^{n-2}-\cdots-C_{n-1}(t-n \omega)-C_{n},
\end{aligned}
$$

$$
\text { where } c_{n}=1 / n!\omega^{n}+1 /(n+1)!\omega^{n-1}+c_{1} \omega^{n-2}+c_{2} \omega^{n-3}+\cdots+c_{n-1} \omega \text {. }
$$

In the following problem, the initial interval is $0 \leq t \leq 2$. The first step in the continuation process for the interval $2 \leq t \leq 3$ is not complex. The next step, ($3 \leq t \leq 4$), involves shifting the limits of the integral involved and dividing the integrai into two parts. The process can be continued further but is not continued bere because a general solution is not readily identifiable.

Suppose $u^{\prime}(t)=u(t-1)+\int_{1}^{2} u(t-s) d s, \quad t>2$, with $u(t)=1, \quad 0 \leq t \leq 2$.
Then for $2 \leq t \leq 3, u^{\prime}(t)=1+\int_{1}^{2} 1 d s=2$, and

$$
u(t)=2 t-3
$$

$\operatorname{For} 3 \leq t \leq 4, u^{\prime}(t)=2(t-1)-3+\int_{1}^{2} u(t-s) d s$.

$$
u(t-s)= \begin{cases}1, & \text { if } 1 \leq t-s \leq 2, \text { or } \\ 2(t-s)-3, & \text { if } 2 \leq t-s \leq 3 .\end{cases}
$$

It follows that $u(t-3)= \begin{cases}1, & \text { if } s \geq t-2, \text { or } \\ 2 t-3-2 s, & \text { if } s \leq i-3 .\end{cases}$

Therefore, $u^{\prime}(t)=2 t-5+\int_{1}^{t-2} 2 t-s-2 s d s+\int_{t-2}^{2} I d s$

$$
=2 t-5+\left[(2 t-3) s-s^{2}\right]_{s=1}^{t-2}+[s]_{s=t-2}^{2}
$$

which reduces to $t^{2}-4 t-5$.
Hence, $u(t)=1 / 2 t^{3}-2 t^{2}-5 t-3, \quad 3 \leq t \leq 4$.
In the following example, the continuation process must be performed in half-unit steps.

Suppose $u^{\prime}(t)=u^{\prime}(t-I)+\int_{\frac{1}{2}}^{1} u(t-s) d s, \quad t>1$, with

$$
u(t)=1, \quad 0 \leq t, \leq 1
$$

Then, for $1 \leq t \leq 3 / 2, u^{\prime}(t)=0+\int_{\frac{1}{2}}^{1} u(t-s) d s$.
$1 \leq t \leq 3 / 2$ and $-1 \leq-3 \leq \cdots 1 / 2 ;$ so $0 \leq t-s \leq 1$.

Hence

$$
\left.u^{\prime}(t)=\int_{\frac{1}{2}}^{1} I d s=s\right]_{s=\frac{1}{2}}^{1}=I / 2 .
$$

Therefore $u(t)=1 / 2 t+1 / 2, \quad 1 \leq t \leq 3 / 2$.
For $3 / 2 \leq t \leq 2, u^{\prime}(t)=0+\int_{\frac{1}{2}}^{1} u(i-s) d s$.

$$
\begin{aligned}
& u(t,-s)= \begin{cases}1, & \text { if } 1 / 2 \leq t-s \leq 1, \text { or } \\
1 / 2(t-s)+1 / 2, & \text { if } 1 \leq t-s \leq 3 / 2 .\end{cases} \\
& u(t-s)= \begin{cases}1, & \text { if } s \geq t-1, \text { or } \\
1 / 2(t-s+1), & \text { if } s \leq t-1 .\end{cases}
\end{aligned}
$$

Hence $u^{\prime}(t)=\int_{\frac{1}{2}}^{t-1} 1 / 2(1+j)-1 / 2 s d s+\int_{t-1}^{1} 1 d s$

$$
=\left[1 / 2(t+1) 0-1 / 4 e^{j}\right]_{s=\frac{1}{2}}^{t-1}+[s]_{s=t, 1}^{1} \quad,
$$

winch redness to $1 / 4 t^{6}-3 / 40-7 / 6$.
Therofore $u(t)=1 / 22 \overbrace{}^{3}-3 / 8 t^{?}-7 / 16 t \quad 79 / 32, \quad 3 / 2 \leq t \leq 2$.

For $2 \leq t \leq 5 / 2, u^{\prime}(t)=2 / 2+\int_{\frac{1}{2}}^{1} u(t-3) d s$.

$$
u(t-s)=\left\{\begin{array}{l}
1 / 2(t+1-s), \text { if } 1 \leq t-s \leq 3 / 2, \text { or } \\
1 / 12(t-s)^{3}-3 / 8(t-s)^{2}-7 / 16(t-s)+79 / 32 \\
\text { if } 3 / 2 \leq t-s \leq 2
\end{array}\right.
$$

Therefore $u^{\prime}(t)=1 / 2+\int_{\frac{1}{2}}^{t-\frac{3}{2}}\left[1 / 12(t-s)^{3}-3 / 8(t-s)^{2}-7 / 16(t-s)+\right.$

$$
79 / 32] d s+\int_{t-\frac{1}{2}}^{1} 1 / 2(t-1-s) d s, 2 \leq 5 \leq 5 / 2
$$

$u^{\prime}(t)$ is determined by solving the two above definite integrals. A subsequent integration and computation of the constant of integration gives $u(t)$ for $2 \leq t \leq 5 / 2$.

EXPONENTIAL SOLUTIONS AND ITNEAR OPERATORS

Often, use of the continuation process doss not lead to a formula which gives the value of the solution over all finite intervals, or even if such a formula is apparent, it may not be useful in isolating certain properties of the solution. Other methods of solution are needed. One method, which is also used to solve pure differential equations, is the constructing of sums of simple exponential solutions. Operator symbolism is also of some use in solving differentialdifference equations.

For convenience, the lincar operator $I(u)$ is here defined by the following equation:
(3-1), $L(u)=a_{o} u^{\prime}(t)+b_{o} u(t)+b_{1} u(t-\omega)$.
An equation of the form $I(u)=0$ is by definition honogeneous, and an equation of the form $L(u)=f$ is inhomogeneous. The linearity of $I_{s}(u)$ leads to the observation that if $u_{1}(t)$ and $u_{2}(t)$ are any two solutions of the equation $I(u)-0$, and if c_{1} and c_{2} are any two coustants, $c_{1}^{11_{1}}(t)+c_{2} u_{2}(t)$ is also a solution of $T_{1}(u)=0$ because $L\left(c_{1} u_{1}+c_{2} u_{2}\right)=c_{1} I_{1}\left(u_{1}\right)+$

$$
c_{2} L\left(u_{2}\right)=0
$$

Thus new solutions aro geverated by poming lsear comoinaijons of known solutions.
 $y(t)$ is a solution of $L(u)=0$, then $v+y$ is a solution of $L(u)=f$, because $I(v+y)=I(v)+I(y)=f$. Thus, the solution of the inhomogeneous equation $I(u)=f$, with the initial condition $u=$ for $t_{0} \leq t_{0} \leq t_{0}+\omega$, can be found by adding the sclutions w and v of the simpler problems $L(W)=f, W=0$ for $t_{0} \leq t \leq t_{0}+\omega$, and (3-2), $I(v)=0, v=g$ for $t_{0} \leq t \leq t_{0}+\omega$. Therefore, a study of the homogeneous equation (3-2) is in onder.

Since solutions for homogeneous equations can be generated as linear combinations of simple solutions, some simple solutions must be found for (3-2). As with pure differential equations, the simple solutions are exponentials. Suppose $\quad L\left(e^{s t}\right)=a_{0} s e^{s t}+b_{0} e^{s t}+b_{1} e^{s(t-\omega)}$ $=\left(a_{0} s+b_{0}+b_{1} e^{-(\nu s}\right) e^{s t}$.
Then, $e^{s t}$ is a solution of $L(u)=0$, for all t, if and only if s is a zero of the function

$$
n(s)=a_{0}{ }^{2}+b_{0}+b_{2} e^{-\omega s} .
$$

The function in(s) above, which is associated with the equation $L(u)=0$, is by definition the characteristic function of I. The equation $h(s)=0$ is by definition the characteristic equation of L. The roots of $h(s)=j$ are by definition the characteristic roobs of $l_{\text {. A }}$. root of $h(s)$ is a root of multinlicsty m ic h(s) mad to ciret m-I rerivativas are rero.

There is a solution, which is possibly complex, of $I(u)=0$ for each characteristic root; and multiple characteristic roots generate a numer of independent solutions, a fact which leacs to the following theorem. Theorem 3-1.

The equation $\quad L(u)=a_{0} u^{\prime}(t)+b_{0} u(t)+b_{\mathcal{L}} u(t-\omega)=0$ is satisfied by $\sum p_{R}(t) e^{s, t}$
where $\left\{s_{R}\right\}$ is any sequence of characteristic roots and $p_{\mathrm{n}}(t)$ is some polynomial with dsyree less than the multiplicjety of S_{R}. The sum may be either firite or infinite with conditions which are suitable to insure convergence.

Proof of theorem 3-1 consists of several observations. First,

$$
h^{\prime}(s)=a_{0}-b \omega e^{-\omega_{3}}
$$

Thus,

$$
h^{(k)}(s)=(-1)^{k_{b}} \omega^{k_{e}} e^{-\omega s}, k=2,3, \cdots .
$$

Then, for any $n \geq 1$,

$$
L\left(t^{n} e^{s t}\right)=a_{0}\left(t^{n} s e^{s t}+a t^{n-l_{c} s t}\right)+b_{0} t^{n} e^{s t}+b_{1}(t-\omega)^{n} e^{s(t-\omega)} .
$$

Consider the last term, $b_{I}(t-\omega)^{n_{e}} s(t-\omega)$, of the equation above. If $(t-\omega)^{n}$ is expanded by the binomiaj theorem, the kth term, $0 \leq k \leq n$, of $b_{1}(t-\omega)^{n} e^{2(t-\omega)}$ is

Thorefore,

$$
\begin{aligned}
& \binom{n}{k}(-1)^{k_{n}} t_{1} t^{n-k} k^{k_{0} t-\omega E} \\
& =\binom{n}{k} n^{(x)}(a) t^{n-k} e^{s i} \text {. } \\
& T\left(t^{n} e^{a t}\right)=e^{a t} \sum_{i=0}^{n}(n) b^{n-n_{n}(x)}(s) \text {. }
\end{aligned}
$$

Thus, $L\left(t^{n} s t\right)=0$ for any integec $n, 0 \leq n \leq m-1$, where s is a characteristic ruoi oi muliplicjty m, since $h(s)$ and its first m-I derivatives are all zero. Given a root s of multiplicity m, there are therefore m functions,

$$
e^{s t}, t e^{s t}, \cdots, t^{m-3} e^{s t}
$$

which are all Iinearly independent solutions of $I(u)=0$, for all real numbexs t. Hence, if $p(t)$ is any polynomial of degree not greater than $m-1, p(t) e^{s t}$ is a solution of the equation $L(u)=0$ since that equation is linear and homogeneous. Thus, Theorem 3-1 is justified.

Suppose $u^{r}(t)=u(t-1) . u=e^{s t}$ is a solution if and only if s ís a zero of $h(s)$. Here, $h(s)=s-e^{-s}$. Hence, for all s such that $\varepsilon=e^{-s}, u=e^{s t}$ is a solution of $u^{\prime}(t)=u(t-1)$.

Suppose $u^{\prime}(t)=u(t-1)+\int_{1}^{2} u(t-r) d x$. Then, it follows.
that $u(t)=e^{s t}$ is a solution jus is a solution of $s^{2}=(s+1) e^{-s}-e^{-2 s}$.

$$
\begin{aligned}
u(t-1)+\int_{1}^{2} u(t-r) d r & =e^{s(t-1)}+\int_{1}^{2} e^{s(t-r)} d r^{\prime} \\
& =e^{s(t-1)}+\frac{e^{s(t-2)}}{-s}-\frac{e^{s(t-1)}}{-s} \\
& =\frac{s e^{s t}\left(s 0^{-s}-e^{-2 s}+e^{-s}\right)}{s^{2}} \\
& =s e^{s t}\left[(s) e^{-s}-e^{-2 s}\right] \\
& =s e^{s t}=u(t)
\end{aligned}
$$

The problem of finding the characterjstic roots s_{k} is discussed at greater length in Chapter VI, where a specific equation, $u^{\prime}(t)=-u(t-w)$ is examined.

Linear operators are sometimes helpful in solving differential-difference equations. The operators D, Δ, and E are here defined by the relations

$$
\operatorname{Du}(t)=u^{\prime}(t), \Delta u(t)=u(t+1)-u(t), E u(t)=u(t+1)
$$

For any real numbers k and ω define the following:

$$
\begin{aligned}
(k E)^{\omega} u(t) & =k^{\omega} u(t+\omega) \\
(k D) u(t) & =k u^{1}(t) \\
(k \Delta) u(t) & =k[u(t+1)-u(t)]
\end{aligned}
$$

If D and E are any two operators, defjne sums and products as is usual:

$$
\begin{aligned}
(D+E) u & =D u+E u, \\
(D F) u & =D(E u)
\end{aligned}
$$

Two operators are by definition equal if they produce the same results whon applied to any function. Consequentiy, the commutative law holas. For evample,

$$
\begin{aligned}
(D+\Delta) u & =D u+\Delta u \\
& =u^{\prime}(t)+[u(t+1)-u(t)] \\
& =[u(t+1)-u(t)]+u^{\prime}(t) \\
& =\Delta u+D u=(\Delta+D) u .
\end{aligned}
$$

$$
\text { And, } \begin{aligned}
(\Delta \mathrm{E}) \mathrm{u}=\Delta(\mathrm{Eu}) & =\Delta[u(t+1)] \\
& =u(t+2)-u(t+1) \\
& =E[u(t+1)-u(i)] \\
& =E(\Delta u) \\
& =(E \Delta) u .
\end{aligned}
$$

Corresponding proofs show the commutative law of addition for $(D+E) u$ and $(\Delta+E) u$ and the commatative law of multiplication for (DE)u and (DA)u.

The associative laws also hold. For example,

$$
\begin{aligned}
{[(D \Delta) E] u=(D \Delta)(E u) } & =(D \Delta)[u(t+j)] \\
& =D[u(t+2)-u(t+1)] \\
& =D\{\Delta[u(t+1)]\} \\
& =D[\Delta(E(1)] \\
& =D(\Delta E) u \\
& =[D(\Delta I)] u .
\end{aligned}
$$

The distributive law likewise holds. For example,

$$
\begin{aligned}
\Delta(E+D) u & =\Delta\left[u(t+1)+u^{\prime}(t)\right] \\
& =u(t+2)-u(t+1)+u^{\prime}(t+1)-u^{\prime}(t) \\
& =[u(t+2)-u(t+1)]+\left[u^{\prime}(t+1)-u^{\prime}(t)\right] \\
& =\Delta[u(t+1)]+\Delta\left[u^{\prime}(t)\right] \\
& =\Delta(E u)+\Delta(D u) \\
& =(\Delta E) u+(\Delta I) u \\
& =(\Delta E+\Delta D) u .
\end{aligned}
$$

The operator $e^{\text {wid }}$ an here dofreu by the series

$$
e^{\omega D}=1-\omega 1 \cdot \frac{\omega^{2}}{2!}+\cdots
$$

Consequentily, $e^{\omega D_{u}}=1+\omega u:(t)+\frac{\omega^{2} u^{\prime \prime}(t)}{2!}+\cdots$,
which is the fagor's oxporion for $u(t+i t)$, where $u(t)=1$.
However, $\quad u(t+\omega)=I_{u} \omega_{u}(t+(\nu)$
$=E_{u}{ }_{u}$
Therefore, $e^{\omega D}=E^{\omega}$.
Suppose an operator q is defined in such a manner that

$$
q(D)=a_{0} D e^{\omega D}+b_{0} e^{\omega D}+b_{I} .
$$

Then

$$
\begin{aligned}
q(D) u(t) & =\left(a_{0} D e^{\omega D}+b_{0} e^{\omega D}+b_{1}\right) u(t) \\
& =\left(a_{0} D E^{\left.\omega+b_{0} E^{(\omega}+b_{I}\right) u(t)}\right. \\
& =\left[a_{0} D u(t+\omega)+b_{0} u(t+\omega)+b_{I}\right] u(t) \\
& =a_{0} u^{\prime}(t+\omega)+b_{0} u(t+\omega)+b_{I} u(t) .
\end{aligned}
$$

Therefore the equation

$$
a_{0} u^{\prime}(t+\omega)+b_{o} u(t+\omega)+b_{1} u(t)=f(t)
$$

can be written as
$q(D) u(t)=f(t)$, where

$$
\begin{equation*}
q(D)=a_{0} D e^{\omega D}+b_{0} e^{\omega D}+b_{1} . \tag{3-3}
\end{equation*}
$$

Operators an be used to an sdvantage because of the relative tase with which they can be manipulated and then applied to diferential-difference equations. For any constants k and c and any function P wich is sufficiently differentiable,
$(3-4), \quad q(D)\left(k e^{c t}\right)=q(c) k e^{c t}$.

For a proof, it is sufficient to examine the effects of the operators involved.

$$
\begin{aligned}
q(D)\left(k e^{c t}\right) & =\left(a_{0} D e^{\omega D}+b_{0} e^{\omega}+b_{1}\right)\left(k e^{c t}\right) \\
& =a_{0} D k e^{c(t+\omega)}+b_{0} k e^{c(t+\omega)}+b_{1} k e^{c t} \\
& =a_{0} k c e^{c(t+\omega)}+b_{0} k e^{c(t+\omega)}+b_{1} k e^{c t} \\
q(c) k e^{c t} & =\left(a_{0} c e^{\omega c}+b_{0} e^{\omega c}+b_{1}\right) k e^{c t} \\
& =a_{0} c k e(\omega c+c t)+b_{0} k e^{\omega c+c t}+b_{1} k e^{c t} \\
& =a_{0} k c e^{c(t+\omega)}+b_{0} k e^{c(t+\omega)}+b_{1} k e^{c t}
\end{aligned}
$$

Let the expression

$$
\begin{equation*}
q^{-1}(D) f(t)=\left(a_{0} D e^{\omega D}+b_{0} e^{\omega D}+b_{J}\right)^{-I_{f}}(t) \tag{3-5}
\end{equation*}
$$

denote any particular solution of the equation

$$
\begin{aligned}
& \quad \text { au. }(t+\omega)+b^{u}(t+w)+b_{\perp} u(t)=f(t) . \\
&(3-6), \quad \text { Then, } \\
& \text { Proof: } \quad q(D)\left[q^{-1}(D) f(t)\right]=q(D) u(t), \text { by definition, } \\
&=f(t), \quad \text { equation }(3-3) .
\end{aligned}
$$

Similarly,
$(3-7), \quad \quad q^{-1}(D)\left(k e^{c t}\right)=\frac{k e^{c t}}{q(c)}, \operatorname{provided} q(c) \neq 0$.
Proof: $q(D)\left[q^{-I}(D)\left(k e^{c t}\right)\right]=k e^{c t}, \quad$ equation (3-6).

$$
q(D) \frac{k e^{c}}{q(c)}=\frac{q(1))\left(k e^{c b}\right)}{q(c)}
$$

$$
=\frac{q(c)\left(k e^{c t}\right)}{q(c)}, \quad \text { equation }(3-4)
$$

$$
\because k_{s} c t \text {; and Ifsmice, }
$$

(3-8),

$$
q^{-1}(D)\left(e^{c t} \sin I t\right)=\operatorname{Im}\left[q^{-1}(D) e^{(c+i 1) t}\right] .
$$

Proof: $e^{c t} \sin 1 . t=\operatorname{Ime}(c+i 1) t$

$$
\begin{aligned}
q^{-1}(D)\left(e^{c t} \sin I t\right) & =q^{-1}(D)[\operatorname{Ime}(c+i 1) t] \\
& =\operatorname{Im}\left[q^{-1}(D) e(c+i I) t\right]
\end{aligned}
$$

The operators and methods above can be used in finding a particular solution $q^{-1}(D) f(t)$ of each of the following equations.

$$
\text { Suppose } u^{\prime}(t+1) \cdots(t)=1
$$

From equation (3-5),

$$
\begin{aligned}
q^{-1}(D) f(t) & =\left(D e^{D}-1\right)^{-1}(I), \quad f(t)=1, \\
& =-1\left(1-D e^{D}\right)^{-1}(I) \\
& \left.=-1\left(1-D e^{D}+D^{2} e^{2 D}-1\right)^{3} e^{3 D}+\cdots\right)(1) \\
& =-1+0-0+0 . \cdots .
\end{aligned}
$$

Therefore a particular solution is --1, because

$$
\begin{aligned}
& D e^{D}(1)=D(2)=0, \\
& D^{2} e^{a D}(1)=D^{2}(3)=D(0)=0, \text { etc. }
\end{aligned}
$$

suppose $u^{\prime}(t+\pi)-u(t)=\sin t$.
Fron equation (3-8),

$$
\begin{array}{rlrl}
q^{-1}(D) \sin t & =\operatorname{In}\left[a^{-1}(D) e^{i t}\right] & \\
& =\operatorname{Im}\left[e^{i t}\right], & & \text { equation }(3-7), \\
& =\operatorname{Im}\left[\frac{e^{i t}}{i e^{\pi i}-1}\right], & & \text { equation }(3-3) .
\end{array}
$$

Therefore a particular solution $50 \operatorname{Tn}\left[\frac{e^{i t}}{1 e^{m}-1}\right]$.

Suppose $u(t+1)-u(t)=t^{k}$.
From equation (3-5),

$$
\begin{aligned}
q^{-1}(D) f(t) & =\left(D e^{D}-1\right)^{-1} t^{k} \\
& =-1\left(1-D e^{D}\right)^{-1} t^{k} \\
& =-1\left(1-D e^{D}+D^{2} e^{2 I}-D^{3} e^{3 D}+\cdots\right) t^{k} \\
& =-1\left(1-D E+D^{2} E^{2}-D^{3} E^{3}+\cdots\right) t^{k} \\
& =-t^{k}+k(t+1)^{k-1}-k(k-1)(t+2)^{k-2}+\cdots
\end{aligned}
$$

which is therefore a particular solution $q^{-1}(D) f(t)$.

CHAPTER IV

ESTIMATES OF THE MAGNITUDE OF SOLUTIONS

For some applications an estimate of the magnitude of solutions of differential-difference equations is an invaluable tool. It is possible to estimate the size of the difference between two solutions of the same equation and between solutions of two different equations. An estimate can also be made of the size of the solution of a single equation. Theorem 4-l will be used to prove a lemma, which will then be used in estimating the magnitude of solutions. Theorem 4-1.

For any real numbers a and $b, a<b$, let $K_{a b}$ denote the class of real-valued continuous functions defined on $[a, b]$. Let $T=T_{\alpha \beta \gamma}$ be an operator from $\mathrm{K}_{\alpha \gamma}$ to $\mathrm{K}_{\beta \gamma}$, where α, β, γ are fixed numbers, $\alpha \leq \beta \leq \gamma$. Assume that
(a) T is monotone in the sense that if $u \in K_{\alpha \gamma}$,
$v \in K_{\alpha \gamma}$, and $u(t) \leq v(t)$ for $\alpha \leq t \leq \theta$, where $\beta \leq \theta \leq \gamma$, then $(T u)(t) \leq(T v)(t)$ for $\beta \leq t \leq \theta$,
(b) T is contracting at a point in the sense that there is a function $g \in K_{\alpha \gamma}$ such that $(\mathrm{Tg})(\mathrm{t})<\mathrm{g}(\mathrm{t})$ for $\beta \leq \mathrm{t} \leq \gamma$. Let u be a function of class $K_{\alpha \gamma}$ such that $\begin{array}{ll}u(t) \leq(T u)(t), & \beta \leq t \leq \gamma, \\ u(t)<g(t), & \alpha \leq t \leq \beta,\end{array}$ Then $u(t)<g(t)$ for $\alpha \leq t \leq \gamma$.

Proof: This theorem can be proved by contradiction. If the conclusion is false, there is a smallest number t^{*} such that $u(t)<g(t), \alpha \leq t<t^{*}$, but $u\left(t^{*}\right)=g\left(t^{*}\right)$. Here $\beta<t^{*}<\gamma$. Using properties
(a) and (b), we doduce that
$(T u)(t) \leq(T g)(t)<g(t), \beta \leq t \leq t^{*}$. Therefore $u\left(t_{1}\right)<g(t), \beta<t \leq \psi^{*}$, contradicting
$u\left(t^{*}\right)=g\left(t^{*}\right)$.

This theorem is used now to prove the following important lemma.

Lemma 4-1.
If $w(t)$ is positive and monotone nondecreasing, $u(t) \geq 0$, $v(t) \geq 0$, all three functions are continuous, and if

$$
u(t) \leq w(t)+\int_{a}^{t} u\left(t_{I}\right) v\left(t_{1}\right) d t_{\perp}, \quad a \leq t \leq b,
$$

then $u(t) w(t) \exp \left[\int_{a}^{t} v\left(t_{1}\right) d t_{1}\right], a \leq t \leq b$.
Proof: Theorem 4-I can be applied by letting $\alpha=\beta=a$ and $\quad \boldsymbol{\gamma}=\mathrm{b}$. By assuming the hypothesis, the theorem is now of the form:

If $u(t) \leq(T u)(t), \quad a<t<b$,
and $u(t)<g(t), \quad t=\mathrm{a}_{\mathrm{a}}$.
then $u(t)<g(t), \quad a \leq t \leq b$.
Let T be defined by

$$
(T u)(t)=w(t)+\int_{a}^{t} 1\left(_{1}\right) v\left(t_{1}\right) d t_{1} s \quad a \leq t \leq b
$$

and g by

$$
g(t)=(I+\epsilon) w(t) \exp \left[\int_{\mathrm{a}}^{\mathrm{v}}\left(t_{I}\right) d t_{I}\right], \quad a \leq t \leq b, \quad \epsilon>0 .
$$

Then, by Theorem 4-1,
if $u(t) \leq w(t)+\int_{a}^{t} u\left(t_{1}\right) v\left(t_{1}\right) d t_{I}, \quad a \leq t \leq b$,
and $\quad u(a)<g(a)$,
then $u(t)<(I+\boldsymbol{\epsilon}) w(t) \exp \left[\int_{a}^{t} v\left(t_{I}\right) d t_{I}\right]$.
thus $u(t) \leq w(t) \exp \left[\int_{a}^{t} v\left(t_{1}\right) d t_{I}\right], a \leq t \leq b$.
But it; is in this case known to be true that $u(a)<g(a)$:

$$
\begin{aligned}
g(a) & =(1+\epsilon) w(a) \exp \left[\int_{a}^{a} v\left(t_{i}\right) d t_{I}\right], \quad \epsilon>0, \\
& =(1+\epsilon) w(a) e^{0} ; \\
u(a) & \leq w(a)+\int_{a}^{a} u\left(t_{I}\right) v\left(t_{1}\right) d t_{l} \\
& \leq w(a) ;
\end{aligned}
$$

and since $u(a) \leq w(a)$,
then

$$
u(a)<(1+\epsilon) w(a)=g(a), \quad \epsilon>0,
$$

and thus $u(a)<g(a)$.
Therefore, the condition wich etenes "if $u(a)<g(a) "$ is removed, and the result is Iemma $4-1$.

Lemma 4 in is used to prove aome theorems conceming the size of differential-dirference equation eojutions. It is first necessary to define a funtion of class c^{k} on an interval.

Whe set of aty reat punetions navine $?$ contimous revivatives on an opon interven to $1<L_{2}$ is denoted by
$C^{k}\left(t_{1}, t_{2}\right)$. If f is a member of this set, then it is written $f \in C^{k}\left(t_{1}, t_{2}\right)$, or $f \in C^{k}$ on ($\left.t_{1}, t_{2}\right)$. If $f \in C^{k}\left(t_{1}, t_{2}\right)$ for every $t_{2}>t_{1}$, it is written $f \in C^{k}\left(t_{1}, \infty\right)$.

A function f is said to be or class C^{k} on $\left[t_{1}, t_{2}\right)$ if it is of class C^{k} on (t_{1}, t_{2}), if it has a right-hand kth derivative at t_{1}, and if the function $f^{(v)}(t)$ defined over $t_{1} \leq t \leq t_{2}$ by these values is continuous from the right at t_{1}.
Theorem: Let $u_{1}(t)$ and $u_{2}(t)$ be solutions of the following equation.
(4-1) $\quad L(u)=a_{0} u^{\prime}(t)+b_{o} u(t)+b_{I} u(t-\omega)=f(t)$
which are of class C^{2} on $[0, \infty)$. Suppose that f is of class C^{1} on $[0, \infty)$, and let $m=\max _{0 \leq i \leq \omega}\left|u_{1}(t)-u_{2}(t)\right|$.

Then there is a positive constant c, depending only on the coefficients a_{0}, b_{0}, and b_{1}, such that

$$
\left|u_{1}(t)-u_{2}(t)\right| \leq m e^{c t}, \quad t \geq 0 .
$$

Proof: Integrating $I^{(}\left(u_{1}\right)$ and $I\left(u_{2}\right)$ from ω to t and taking the difference gives

$$
\begin{aligned}
& \left.\left.a_{0}{u_{1}}_{1}(t)-u_{2}(t)\right]=a_{0}{ }_{0} u_{1}(\omega)-u_{2}(\omega)\right] \\
& +b_{0} \int_{\omega}^{t} u_{2}\left(t_{1}\right)-u_{1}\left(t_{1}\right) d t_{1}+b_{1} \int_{\omega}^{t} u_{2}\left(t_{1}-\omega\right) \cdots u_{1}\left(t_{1}-\omega\right) d t_{1} .
\end{aligned}
$$

Then,

$$
\begin{aligned}
\left|u_{1}(t)-u_{2}(t)\right| \leq \frac{\left|a_{0}\right| m_{1}}{\left|a_{0}\right|} & +\frac{\left|u_{0}\right|}{\left|a_{0}\right|} \int_{0}^{t_{0}}\left|u_{2}\left(t_{1}\right)-u_{1}\left(t_{1}\right)\right| d t_{1} \\
& +\frac{\left|b_{1}\right|}{\left|a_{0}\right|} \int_{0}^{t-\omega_{0}}\left|u_{2}\left(t_{1}\right)-u_{1}\left(t_{1}\right)\right| d t_{1} \\
\leq m & +\frac{\left|b_{0}\right|+\left|b_{1}\right|}{\left|a_{0}\right|} \int_{0}^{t_{1}}\left|u_{2}\left(t_{I}\right)-u_{I}\left(t_{1}\right)\right| d t_{I}
\end{aligned}
$$

Let $c=\frac{\left|b_{0}\right|+\left|p_{1}\right|}{\left|a_{0}\right|}$.
$\operatorname{Then}\left|u_{I}(t)-u_{2}(t)\right| \leq m+c \int_{0}^{t}\left|u_{2}\left(t_{1}\right)-u_{I}\left(t_{1}\right)\right| d t_{I}$,
and by Lemma $4-1$,

$$
\left|u_{1}(t)-u_{2}(t)\right| \leq m e^{c t}
$$

Theorem: Let $u_{1}(t)$ and $u_{2}(t)$, of class c^{2} on $[0, \infty)$ be solutions of $I(u)=f_{1}$ and $I(u)=f_{2}$, respectively, when f_{1} and f_{2} are of class C^{1} on $[0, x)$.
Let $m=\max _{0 \leq t \leq \omega}\left|u_{1}(t)-u_{2}(t)\right|$.
Then

$$
\left|u_{1}(t)-u_{2}(t)\right| \leq\left[m+\int_{0}^{t_{1}} \frac{e_{1}\left(t_{1}\right)-r_{2}\left(t_{1}\right) \mid d t_{1}}{\left|a_{0}\right|}\right] e^{c t}, \quad t \geq 0
$$

Proof: Integrating $I(u)=f_{I}$ and $I(u)=f_{2}$ from ω to t and taking the difference gives

$$
\begin{aligned}
& a_{0} u_{1}(t)-a_{0} u_{2}(t)=a_{0} u_{1}(\omega)-a_{0} u_{2}(\omega)+\int_{\omega}^{t} \mid f_{1}\left(t_{1}\right)-f_{2}\left(\tau_{1}\right) d t_{1} \\
& -b_{0} \int_{\omega}^{t}\left|u_{1}\left(t_{1}\right)-u_{2}\left(t_{1}\right)\right| d t_{1}-b_{1} \int_{\omega}^{t}\left|u_{1}(t-\omega)-u_{2}(t-\omega)\right| d t_{1} .
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \qquad \begin{array}{l}
\left|u_{1}(t)-u_{2}(t)\right| \leq\left|u_{1}(\omega)-u_{2}(\omega)\right|+\left|a_{0}\right|-1 \int_{0}^{t}\left|f_{1}\left(t_{1}\right)-f_{2}\left(t_{1}\right)\right| d t_{I} \\
+\frac{\left|b_{0}\right|}{\left|a_{0}\right|} \int_{0}^{t_{1}}\left|u_{1}\left(t_{1}\right)-u_{2}\left(t_{1}\right)\right| d t_{1}+\frac{\left|b_{1}\right|}{\left|a_{0}\right|} \int_{0}^{t_{1}}\left|u_{1}\left(t_{1}\right)-u_{2}\left(t_{1}\right)\right| d t_{I} \\
\leq m+\left|a_{0}\right|-1 \\
\quad \int_{0}^{t}\left|f_{1}\left(t_{1}\right)-f_{2}\left(t_{1}\right)\right| d t_{1}
\end{array} \\
& \quad+\frac{\left|b_{0}\right|+\left|b_{1}\right|}{\left|a_{0}\right|} \int_{0}^{t_{1}}\left|u_{1}\left(t_{1}\right)-u_{2}\left(t_{1}\right)\right| d t_{1} .
\end{aligned}
$$

Then by Lemma 4-1,

$$
\left|u_{1}(t)-u_{2}(t)\right| \leq\left[m+\left|a_{0}\right|-1 \int_{0}^{t}\left|p_{1}\left(t_{1}\right)-e_{2}\left(t_{1}\right)\right| d t_{1}\right] e^{c t}, t>0
$$

The following theorem is not proved here, but it car be proved in the same manner 9,3 in the two immediately preceding theorems. It is stated here, however, and used in a subsequent theorem.

Theorem 4-2.
Let $u(t)$ be a solution of $I(u)=f(t)$, which is of class C^{I} on $[0, \infty)$. Suppose that i is or class 0^{0} on $[0, \infty$) and that $|f(t)| \leq c_{1} e^{c_{2} t}, t \geq 0$, where c_{1} and c_{2} are positive constants. Let $m=\max _{0 \leq t \leq c \mid}|x(t)|$.

Then there are positive constants c_{3} and c_{4} which depend only on the coefficients c_{2}, a_{0}, b_{0}, and b_{2} such that

$$
|u(t)| \leq c_{3}\left(c_{2}+m\right) e^{c_{4} t}, \quad t \geq 0
$$

Theorem: Jet $u_{1}(t)$ and $u_{2}(t)$, of class c^{2} on $[0, \infty)$, be solutions of $I_{1}(u)=f_{1}$ and $I_{2}(u)=f_{2}$, respectively, where f_{1} and f_{2} are of class C^{1} on $[0, \infty$), and where

$$
\begin{aligned}
& L_{1}(u)=a_{0} u^{\prime}(t)+b_{0} u(t)+b_{1} u(t-\omega) \\
& L_{2}(u)=a_{0} u{ }^{\prime}(t)+\left(b_{0}+\epsilon_{0}\right) u(t)+\left(b_{1}+\epsilon_{1}\right) u(t-\omega)
\end{aligned}
$$

Let $\left|f_{1}(t)\right| \leq c_{1} e^{c_{2} t}, t \geq 0, i=1,2, c_{1}>0, c_{2}>0$.
Let $m=\max _{0 \leq t \leq \omega}\left|u_{1}(t)-u_{2}(t)\right|, t \geq 0$.

$$
\text { Let } \epsilon=\max \left(\left|\epsilon_{0}\right|,\left|\epsilon_{1}\right|\right), m_{2}=\max _{0 \leq t \leq \omega}\left|u_{2}(t)\right|
$$

Then, there are positive constants c, c_{4}, and c_{5} which depend only on c_{1}, c_{2}, and a_{0}, b_{1}, b_{0}, such that

$$
\begin{aligned}
\left|u_{1}(t)-u_{2}(t)\right| \leq & {\left[m_{1}+\left|a_{0}\right|-1 \int_{0}^{t} f_{1}\left(t_{1}\right)-f_{2}\left(t_{1}\right) \mid d t_{1}\right.} \\
& \left.+\epsilon c_{5}\left(c_{1}+m_{2}\right) e^{c_{4} t}\right] e^{c t}, \quad t \geq 0
\end{aligned}
$$

Proof: Integrating $I_{1}(u)=\rho$ from ω to fives

$$
\begin{array}{r}
a_{0} u_{1}(t)=a_{0} u_{1}(\omega)+\int_{\omega}^{t} f_{1}\left(t_{1}\right) d t_{1}-b_{0} \int_{\omega}^{t} u_{1}\left(t_{1}\right) d t_{1} \\
-b_{1} \int_{\omega}^{t} u_{1}\left(t_{1}-\omega\right) d t_{1} . \\
a_{0} u_{2}(t)=a_{0} u_{2}(\omega)+\int_{\omega}^{t_{2}\left(t_{1}\right) d t_{1}-\left(b_{0}+\epsilon_{0}\right)} \int_{\omega}^{i_{1}} u_{2}\left(t_{1}\right) d t_{I} \\
-\left(b_{1}+\epsilon_{1}\right) \int_{\omega}^{t} u_{2}\left(t_{1}-\omega\right) d t_{1} .
\end{array}
$$

Then,

Let $c=\frac{\left|b_{0}\right|+\left|b_{I}\right|}{\left|a_{0}\right|}$. By Theorem 4-2, $\left|v_{2}(t)\right| \leq c_{3}\left(c_{1}+m_{2}\right) e^{c_{4} t}$.
Thus, $\left|u_{1}(t)-u_{2}(t)\right| \leq m+\left|a_{0}\right|-1 \int_{0}^{t}\left|f_{1}\left(t_{1}\right)-f_{2}\left(t_{1}\right)\right| d t_{1}$

$$
+c \int_{0}^{t}\left|u_{1}\left(t_{1}\right)-u_{2}\left(t_{1}\right)\right| d t_{1}+\frac{2 \epsilon}{\left|a_{0}\right|} \int_{0}^{t} c_{3}\left(c_{1}+m_{2}\right) e^{c_{4} t}
$$

Let $c_{5}=\frac{2 c_{3}}{a_{0}}$.
Then $\left|u_{1}(t)-u_{2}(t)\right| \leq m+\left|a_{0}\right|-1 \int_{0}^{t}\left|f_{1}(t)-f_{2}(t)\right| d t_{1}$

$$
+\epsilon c_{5}\left(c_{1}+m_{2}\right) e^{c_{4} t} e^{c t}
$$

CHAPTER V

SOLUTIONS IN THE FORM OF A DEFINITE INTEGRAL

Another technique used to solve differential-difference equations is discussed in this chapter. This method involves obtaining a solution in the form of a definite integral by the use of a function $k(t)$ which has certain peculiar qualities and which satisfies the equation

$$
a_{0} k^{\prime}\left(t_{1}\right)+b_{0} k(t)+b_{1} k(t-\omega)=0 .
$$

The solution of the differential-difference equation $I(u)=a_{o} u^{\prime}(t)+b_{0} u(t)+b_{\perp} u(t-\omega)=f(t), t>\omega, a_{0} \neq 0$, which satisfies the initial condition $u(t)=g(t), 0 \leq t \leq \omega$, if g is $C^{0}[0, \omega]$, f is $\left.C^{0-} 0, \infty\right)$, and

$$
|f(t)| \leq c_{1} e^{c_{2} t}, \quad t \geq 0, c_{1}>0, c_{2}>0,
$$

can be represented by a definite integral.
Let $k(t)$ be the unique function with the following properties:

$$
\text { (I) } k(t)=0, t<0 \text {; }
$$

(2) $k(0)=\left(a_{0}\right)^{-1}$;
(3) $k(t)$ is of class C^{0} on $[0, \infty)$;
(4) $k(t)$ satisfies the equation $a_{0}{ }^{k^{1}}(t)+b_{o} k(t)+$ $b_{1} k(t-\omega)=0, \quad t>0$.

Theorem: Suppose $u(t)$ is a continuous solution of (5-1), $a_{0} u^{\prime}(t)+b_{0} u(t)+b_{1} u^{\prime}(t-\omega)=f(t), t>\omega, a_{0} \neq 0$, with the initial condition $u(t)=g(t), 0 \leq t \leq \omega$. If g is C^{0} on $[0, \infty)$ and f is c^{0} on $[0, \infty)$, then for $t>\omega$, $u(t)=a_{0} g(\omega) k(t-\omega)-b_{I} \int_{0}^{\omega} g\left(t_{I}\right) k\left(t-t_{I}-\omega\right) d t_{1}$

$$
+\int_{\omega}^{t} f\left(t_{I}\right) k\left(t-t_{I}\right) d t_{I} .
$$

Proof: Let $t>\omega$. Integrating equation (5-1) from ω to t gives

$$
\begin{aligned}
& \int_{\omega}^{t} f\left(t_{I}\right) k\left(t-t_{1}\right) d t_{I}=a_{0} \int_{\omega}^{t} u{ }^{\prime}\left(t_{1}\right) k\left(t-t_{1}\right) d t_{I} \\
& \quad+b_{0} \int_{\omega}^{t} u\left(t_{1}\right) k\left(t-t_{1}\right) d t_{I}+b_{1} \int_{\omega}^{t_{1}} a^{\prime}\left(t_{1}-\omega\right) k\left(t-t_{1}\right) d t_{I}
\end{aligned}
$$

Integrating by parts,

$$
\begin{aligned}
& \int_{\omega}^{t} f\left(t_{I}\right) k\left(t-t_{1}\right) d t_{I}=\left[a_{0} u\left(t_{I}\right) k\left(t-t_{1}\right)\right]_{\omega}^{t} \\
& +a_{0} \int_{\omega}^{t} u\left(t_{1}\right) k^{\prime}\left(t-t_{1}\right) d t_{1}+b_{0} \int_{\omega}^{t} u^{\prime}\left(t_{1}\right) k\left(t-t_{1}\right) d t_{1} \\
& +b_{1} \int_{\omega}^{t} u\left(t_{1}-\omega\right) k\left(t-t_{1}\right) d t_{1}=a_{0} u(t) k(0)-a_{0} u(\omega) k(t-\omega) \\
& -b_{0} \int_{\omega}^{t} u\left(t_{1}\right) k\left(t-t_{1}\right) d t_{1}-b_{1} \int_{\omega}^{t-\omega} u\left(t_{1}\right) k\left(t-t_{1}-\omega\right) d t_{1} \\
& +b_{0} \int_{\omega}^{t} u\left(t_{1}\right) k\left(t-t_{1}\right) d t_{1}+b_{1} \int_{\omega}^{t} u\left(t_{1}-\omega\right) k\left(t-t_{1}\right) d t_{1} .
\end{aligned}
$$

Here the expression $-b_{0} \int_{\omega}^{t} u\left(t_{j}\right) k\left(t-t_{1}\right) d t_{I}$

$$
-b_{I} \int_{\omega}^{t} u\left(t_{I}\right) k\left(t-t_{I}-\omega\right) d t_{I}
$$

is substituted for $a_{0} \int_{\omega}^{t} u\left(t_{1}\right) k^{\prime}\left(t-t_{I}\right) d t_{I}$, except the limits on the integral with the coefficjent b_{\perp} are ω to t- ω because on the integral with the coefficjent b_{\perp} are ω to $t-\omega$ because
With limits from $t-\omega$ to ω the value of the integral is zero. Hence,

$$
\begin{aligned}
& \int_{\omega}^{t} f\left(t_{I}\right) k\left(t-t_{I}\right) d t_{I}=u(t)-a_{0} u(\omega) k(t-\omega) \\
& \quad-\quad b_{I} \int_{\omega}^{t-\omega} u\left(t_{I}\right) k\left(t-t_{I}-\omega\right) d t_{I}+b_{I} \int_{\omega}^{t} u(s) k(t-s-\omega) d s \\
& \quad=u(t)-a_{0} g(\omega) k(t-\omega)+b_{I} \int_{0}^{\omega} g\left(t_{I}\right) k\left(t-t_{I}-\omega\right) d t_{I} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
(5-2), \quad u(t)=a_{0} g(\omega) k(t-\omega)-b_{1} & \int_{0}^{\omega} g\left(t_{1}\right) k\left(t-t_{1}-\omega\right) d t_{I} \\
& +\int_{\omega}^{t} f\left(t_{1}\right) k\left(t-t_{1}\right) d t_{I}, \quad t>\omega .
\end{aligned}
$$

Incidentally, the right-hand member of (5-2) is zero, not $g(t)$, when $0<t<\omega$.

This is true because
(1) $(t-\omega)<0$, and thus $k(t-\omega)=0$,
(2) $\left(t-t_{I}-\omega\right)<0,0 \leq t_{I} \leq \omega$, and thus $k\left(t-t_{1}-\omega\right)=0$,
(3) $\left(t-t_{I}\right)<0, \omega \leq t_{I} \leq t$, and thes $k\left(t-t_{1}\right)=0$.

Note: Since $a_{0} k^{\prime}(t)+b_{0} k(t)+b_{1} k(t-\omega)=0$, $t-\omega<0$ when $t<\omega$, and thus $k(t-\omega)=0, t<0$. Consequentiy, $a_{0} k^{\prime}(t)+b_{0} k^{(t)}=0, t<\omega$.

Let $t>2 \omega$. Then, by differentiating equation (5-2),

$$
u^{\prime}(t)=\frac{d}{d t}\left[a_{0} g(\omega) k(t-\omega)-b_{I} \int_{0}^{\omega} g\left(t_{I}\right) k\left(t-t_{I}-\omega\right) d t_{I}\right.
$$

$$
\left.+\int_{\omega}^{t} f\left(t_{I}\right) k\left(t-t_{I}\right) d t_{I}\right]
$$

$$
=a_{0} g(\omega) k^{\prime}(t-\omega)-b_{I} \int_{0}^{\omega} g\left(t_{I}\right) k^{\prime}\left(t-t_{I}-\omega\right) d t_{I}+f(t) k(0)
$$

$$
+\int_{\omega}^{t} f\left(t_{I}\right) k:\left(t-t_{I}\right) d t_{I}
$$

$$
=a_{0} g(\omega) k^{\prime}(t-\omega)-b_{1} \int_{0}^{\omega} g\left(t_{I}\right) k^{\prime}\left(t-t_{I}-\omega\right) d t_{I}+(a)^{-l_{f}}(t)
$$

Hence,

$$
+\int_{\omega}^{t} f\left(t_{1}\right) k^{\prime}\left(t-t_{1}\right) d t_{1}, t>2 \omega .
$$

$$
\begin{aligned}
& a_{0} u^{\prime}(t)+b_{0} u(t)+b_{I} u(t-\omega)=a_{0}\left[a_{0} g(\omega) k \cdot(t-\omega)\right. \\
& \left.\quad-b_{I} \int_{0}^{\omega} g\left(t_{I}\right) k^{\prime}\left(t-t_{I}-\omega\right) d t_{I}+a_{0}\right)^{-1}(t) \\
& \left.\quad+\int_{\omega}^{t} f\left(t_{1}\right) k^{\prime}\left(t-t_{I}\right) d t_{I}\right]+b_{0}\left[a_{0} g(\omega) k(t-\omega)\right. \\
& \quad-b_{I} \int_{0}^{\omega} g\left(t_{I}\right) k\left(t-t_{1}-\omega\right) d_{I}+\int_{\omega}^{t}\left[\left(t_{1}\right) k\left(t-t_{I}\right) a_{1}\right] \\
& \quad+b_{I}\left[a_{0} g(\omega) k(t-2 \omega)-b_{I} \int_{0}^{\omega} g_{g}\left(t_{I}\right) k\left(t-t_{I}-2 \omega\right) d t_{I}\right. \\
& \left.\quad+\int_{\omega}^{t} f\left(t_{I}\right) k\left(t-t_{I}-\omega\right) t_{I}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =a_{0}^{2} g(\omega) k^{\prime}(t-\omega)-a_{0} b_{1} \int_{0}^{\omega} \xi^{\prime}\left(t_{I}\right) k^{\prime}\left(t-t_{1}-\omega\right) d t_{1}+f(t) \\
& +a_{0} \int_{\omega}^{t} f\left(t_{I}\right) k\left(t-t_{I}\right) d t_{1}+b_{0} a_{0} g(\omega) k(t-\omega) \\
& -b_{0} b_{1} \int_{0}^{\omega} g\left(t_{1}\right) k\left(t-t_{1}-\omega\right) d t_{1}+b_{0} \int_{\omega}^{t} f\left(t_{1}\right) k\left(t-t_{1}\right) d t_{1} \\
& +b_{1} a_{0} g(\omega) k(t-2 \omega)-b_{1}^{2} \int_{0}^{\omega} g\left(t_{1}\right) k\left(t-t_{1}-2 \omega\right) d t_{1} \\
& +b_{I} \int_{\omega}^{t} f\left(t_{I}\right) k\left(t-t_{I}-\omega\right) d t_{I} \\
& =f(t)+a_{0} g(\omega)\left[a_{0} k^{\prime}(t-\omega)+b_{0} k(t-\omega)+b_{I} k(t-2 \omega)\right] \\
& -b_{I} \int_{0}^{\omega} g\left(t_{I}\right)\left[a_{0} k^{1}\left(t-t_{1}-\omega\right)+b_{0} k\left(t-t_{1}-\omega\right)\right. \\
& \left.+b_{1} k\left(t-t_{1}-2 \omega\right)\right] d t_{1}+\int_{\omega}^{t} f\left(t_{1}\right)\left[\partial_{0} k^{\prime}\left(t-t_{1}\right)+b_{0} k\left(t-t_{1}\right)\right. \\
& \left.+b_{1} k\left(t-t_{1}-\omega\right)\right] d t_{I} \\
& =f(t), t>2 \omega \text {. }
\end{aligned}
$$

Therefore $a_{o} u^{\prime}(t)+b_{o} u(t)+b_{\mathcal{L}} u(t-\omega)=f(t)$ is satisfied for $t>2 \omega$.

The following discussion proves that $a_{o}{ }^{\prime \prime}(t)+b_{o} u(t)$ $+b_{\perp} u(t-\omega)=f(t)$ is also satisfied for $\omega<t<2 \omega$.

Theorem: Suppose $u(t)$ is a solution of (5-1) for $\omega<t<2 \omega$. Then $u(t)=a_{0} g(\omega) k(t-\omega) \cdots b_{1} \int_{0}^{t \cdots \omega} g\left(t_{\ell}\right) k\left(t-t_{1}-\omega\right) d t_{1}$

$$
\int_{\omega}^{J_{0}} f\left(t_{I}\right) k\left(t-t_{1}\right) d t_{1}, \omega<t<2 \omega .
$$

Proof: Assume $\omega<t<2 \omega$.
Integrating (5-1) from ω tc t gives

$$
\begin{aligned}
& \int_{\omega}^{t} f\left(t_{I}\right) k\left(t-t_{I}\right) d t_{I}=a_{0} \int_{\omega}^{t} u^{\prime}\left(t_{I}\right) k\left(t-t_{I}\right) d t_{I} \\
& \quad+b_{0} \int_{\omega}^{t} u\left(t_{I}\right) k\left(t-t_{I}\right) d t_{I}+b_{I} \int_{\omega}^{t} u(t-\omega) k\left(t-t_{I}\right) d t_{I}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Integrating by parts, } \\
& \qquad \begin{array}{l}
\int_{\omega}^{t} f\left(t_{I}\right) k\left(t-t_{I}\right) d t_{I}=\left[a_{0} u\left(t_{I}\right) k\left(t-t_{I}\right)\right]_{\omega}^{t}+a_{0} \int_{\omega}^{t} u\left(t_{I}\right) k k^{\prime}\left(t-t_{I}\right) d t_{I} \\
\quad+b_{0} \int_{\omega}^{t} u\left(t_{I}\right) k\left(t-t_{I}\right) d t_{I}+b_{I} \int_{\omega}^{t} u\left(t_{I}-\omega\right) k\left(t-t_{1}\right) d t_{I} \\
= \\
\quad-a_{0} u(t) k(0)-b_{0} u(\omega) k(t-\omega) \\
\quad+b_{0} \int_{\omega}^{t} u\left(t_{I}\right) k\left(t-t_{I}\right) d t_{I}-b_{I} \int_{\omega}^{t} u\left(t-t_{I}\right) d t_{I}+b_{I} \int_{\omega}^{t} u\left(t_{I}-\omega\right) k\left(t-t_{I}-\omega\right) d t_{I}
\end{array}
\end{aligned}
$$

The term $-b_{I} \int_{\omega}^{t} u\left(t_{I}\right) k\left(t-t_{I}-\omega\right) d t_{I}=0$, because $\left(t-t_{I}-\omega\right)<0$.

$$
\begin{aligned}
& \text { Ihus } \int_{\omega}^{t} f\left(t_{1}\right) k\left(t-t_{I}\right) d t_{1}=u(t)-a_{0} u(\omega) k(t-\omega) \\
& \quad+b_{1} \int_{0}^{t-\omega} u(s) k(t-s \cdots \omega) d s=u(t)-s_{0} g(\omega) k(t-\omega) \\
& \quad+b_{I} \int_{0}^{t-\omega} g\left(t_{1}\right) k\left(t-t_{1}-\omega^{\prime} d t_{1} .\right.
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& (5-3), u(t)=a_{0} g(\omega) k(t-\omega)-b_{1} \int_{0}^{t \omega}\left(t_{1}\right) k\left(t-t_{1}-\omega\right) d t_{1} \\
& \quad+\int_{\omega}^{t} f\left(t_{1}\right) k\left(t-t_{1}\right) d t_{1} \cdot \omega<t<2 \omega
\end{aligned}
$$

Let $\omega<t<2 \omega$. Then, by differentiating equation (5-3),

$$
\begin{aligned}
& u^{\prime}(t)=a_{0} g(\omega) k^{\prime}(t-\omega)-b_{I} g(t-\omega) k(t-t+\omega-\omega) \\
& \quad-b_{I} \int_{0}^{t-\omega} g\left(t_{I}\right) k^{\prime}\left(t-t_{I}-\omega\right) d t_{I}+f(t) k(t-t) \\
& \quad+\int_{\omega}^{t} f\left(t_{I}\right) k^{\prime}\left(t-t_{I}\right) d t_{I}=a_{0} g(\omega) k^{\prime}(t-\omega) a_{0}^{-1} b_{I} g(t-\omega) \\
& \quad-b_{I} \int_{0}^{\omega} g\left(t_{I}\right) k^{\prime}\left(t-t_{I}-\omega\right) d t_{I}+a_{0}^{-1} f(t) \\
& \quad+\int_{\omega}^{t} f\left(t_{I}\right) k^{\prime}\left(t-t_{I}\right) d t_{I}, \quad \omega<t<2 \omega .
\end{aligned}
$$

The term $-b_{I} \int_{0}^{\omega} g\left(t_{I}\right) k^{\prime}\left(t-t_{1}-\omega\right) d t_{I}$ replaces the term

$$
-b_{I} \int_{0}^{t-\omega} g\left(t_{1}\right) k^{\prime}\left(t-t_{I}-\omega\right) d t_{I}
$$

This occurs because the value of the integral from t- ω to t is zero, caused by $t-t_{1}-\omega<0$, which results in $k^{\prime}\left(t-t_{\perp}-\omega\right)=0$. Hence, for $\omega<t<2 \omega$,

$$
\begin{aligned}
& a_{0} u^{\prime}(t)+b_{0} u(t)+b_{I} u(t-\omega)= \\
& a_{0}\left[a_{0} g(\omega) k^{\prime}(t-\omega)-a_{0}^{-1} b_{I} g(t-\omega)-b_{I} \int_{0}^{\omega} g\left(t_{I}\right) k^{\prime}\left(t-t_{I}-\omega\right) d t_{I}\right. \\
& \left.\quad+a_{0}^{-1} f(t)+\int_{\omega}^{t} f\left(t_{I}\right) k^{\prime}\left(t_{1}-t_{1}\right) d t_{I}\right] \\
& \quad+b_{0}\left[a_{0} g(\omega) k(t-\omega)-b_{I} \int_{0}^{t-\omega} g\left(t_{1}\right) k\left(t-t_{I}-\omega\right) d t_{I}\right. \\
& \\
& \left.\quad+\int_{\omega}^{t} f\left(t_{I}\right) k\left(t-t_{I}\right) a_{1}+b_{I} g(t-\omega)\right]
\end{aligned}
$$

$$
\begin{aligned}
=f(t)+ & a_{0} g(\omega)\left[a_{0} k^{\prime}(t-\omega)+b_{0} k(t-\omega)\right]-v_{I} g(t-\omega) \\
& +b_{I} g(t-\omega)-a_{0} b_{I} \int_{0}^{\omega} g\left(t_{I}\right) k^{\prime}\left(t-t_{I}-\omega\right) d t_{I} \\
& +\int_{\omega}^{t} f\left(t_{I}\right) a_{0} k^{\prime}\left(t-t_{I}\right)+b_{0} k\left(t_{-}-t_{I}\right) d t_{I} \\
& -b_{0} b_{I} \int_{0}^{t-\omega} g\left(t_{I}\right) k\left(t_{-} t_{I}-\omega\right) d t_{I} \\
=f(t)+ & a_{0} g(\omega)\left[a_{0} k^{\prime}(t-\omega)+b_{0} k(t-\omega)\right] \\
-a_{0} b_{I} & \int_{0}^{\omega} g\left(t_{I}\right) k^{\prime}\left(t-t_{I}-\omega\right) d t_{I}-b_{0} b_{I} \int_{0}^{t-\omega} g\left(t_{I}\right) k\left(t-t_{I}-\omega\right) d t_{I} \\
& +\int_{\omega}^{t} f\left(t_{I}\right)\left[a_{0} k^{\prime}\left(t-t_{I}\right)+b_{0} k\left(t-t_{I}\right)\right] d t_{1} .
\end{aligned}
$$

But $a_{o g}(\omega)\left[a_{0} k^{\prime}(t-\omega)+b_{0} k(t-\omega)\right]=0$, because $0<(t-\omega)<\omega$, resulting in $b_{1} k(t-2 \omega)=0$.

$$
\begin{aligned}
& \text { Also, } \int_{\omega}^{t} f\left(t_{1}\right)\left[a_{0} k^{\prime}\left(t-t_{1}\right)+b_{0} k\left(t-t_{1}\right)\right] d t_{1}=0, \text { because } \\
& \left(t-t_{1}\right)<\omega \text {, resulting in } b_{1} k\left(t-t_{1}-\omega\right)=0 .
\end{aligned}
$$

The two terms $-a_{0} b_{1} \int_{0}^{\omega} g\left(t_{工}\right) k \cdot(t-t-\omega) d t_{1}$ and $-\mathrm{b}_{\mathrm{O}} \mathrm{b}_{1} \int_{0}^{t-\omega} g\left(t_{1}\right) k\left(t-t_{1}-\omega\right) d t_{I}$ can be combined because $\int_{0}^{t-\omega} g\left(t_{1}\right) k\left(t-t_{1}-\omega\right) d t_{I}=\int_{0}^{\omega} g\left(t_{1}\right) k\left(t-t_{1}-\omega\right) d t_{I}$
$-\int_{t-\omega}^{\omega} g\left(t_{1}\right) k\left(t-t_{I}-\omega\right) d t_{1}$.
But $\int_{t-\omega}^{\omega} g\left(t_{I}\right) k\left(t-t_{1}-\omega\right) d t_{1}=0$, because $\left(t_{-}-t_{1}-\omega\right)<0$.

Thus,

$$
a_{o} u^{\prime}(t)+b_{o} u(t)+b_{1} u(t-w)=f^{\prime}(t)
$$

$$
\begin{aligned}
& \quad-b_{1} \int_{0}^{\omega} g\left(t_{1}\right)\left[a_{0} k \cdot\left(t-t_{1}-\omega\right)\right. \\
& \left.+b_{0} k\left(t-t_{1}-\omega\right) d t_{1}\right] \\
& =f(t)
\end{aligned}
$$

since the integral involved is zero because $\left(t-t_{1}-\omega\right)<\omega$, resulting in $b_{I} k\left(t-t_{I}-2 \omega\right)=0$.
Therefore $a_{o} u^{\prime}(t)+b_{o} u(t)+b_{1} u(t-\omega)=f(t)$ is satisfied for $\omega<t<2 \omega$.

CHAPIER VI

CHARACTERISTIC ROOTS AND SERIES EXPANSION

$$
O F u^{\prime}(t)+v^{\prime}(t-\omega)=0
$$

In Chapter III it was proved that the equation $I(u)=a_{o} u^{\prime}(t)+b_{o} u(t)+b_{1} u(t-\omega)=0$ is satisfied by $\sum p_{R}(t) e^{S_{R}(t)}$, where $\left\{s_{R}\right\}$ is any sequence of characteristic roots of $I, p_{R}(t)$ is a polynomial of degree less than the multiplicity of s_{r}, and the sum is either inite or is infinite with suitable conditions to ensure convergence. That is, $L(u)=0$ is satisfied by a sur of simple exponential solutions of the form $e^{s}{ }_{R}$ with coeficients $p_{k}(t)$. Reiterating, since $L\left(e^{s t}\right)=\left(a_{0} s+b_{0} b_{1} e^{-\omega s}\right) e^{s t}$, $h(s)=a_{0} s+b_{0}+b_{I} e^{-\omega S}$ is called the characteristic function of $I ; h(s)=0$ is called the characteristic equation of $I ;$ and a solution of $h(s)=0$ is called a characteristic root of L. Thus a characteristic root e results in a solution $e^{s t}$.

The problem discussed hare is how to determine these characteristic roots. To facilitate the discussion, an analysis will be made of a paricular group of differentialdifference equations misch have the form $u^{\prime}(t)+u(t-\omega)=0$ or $u^{\prime}(t)=-u(t-w)$, where w is a reat rumber >0.

For $u(t)=e^{s t}$, the equation is $s e^{s t}+e^{s(t-\omega)}=0$. Therefore the characteristic function is $h(s)=s+e^{-\omega S}$, and the characteristic equation $s+e^{-\omega s}=0$ must be solved for s. To simplify the problem somewhat, a substitution is made. Let $z=-s$. Thus the equation $e^{\omega Z}=z$ must be solved for z.

Separating z into real and imaginary parts and changing to polar coordinates results in: $-s=z=x+i y$
$=r(\cos \theta+i \sin \theta), x=r \cos \theta, y=r \sin \theta ; \exp \omega z$
$=e^{\omega X}(\cos \omega y+i \sin \omega y)$. Then the form of $e^{\omega Z}=z$ is changed to $e^{\omega x}(\cos \omega y+i \sin \omega y)=r(\cos \theta+i \sin \theta)$. Thus z is a zero of $e^{\omega Z}=z$ if $e^{\omega X}=r$ and $\omega y=\theta$. But $r^{2}=x^{2}+y^{2}=e^{2 \omega x}$. Therefore z is a solution of $e^{\omega z}=z$ if $y= \pm \sqrt{e^{2 \omega x}-x^{2}}$ and $y=\frac{\theta}{\omega}$.

First consider the case of $\omega=1$. To obtain exponential solutions of $u^{\prime}(t)+u(t-1)=0$, it is necessary to solve the characteristic equation $e^{z}=z$. And z is a solution of $e^{z}=z$ if $y= \pm \sqrt{e^{2 x}-x^{2}}$ and $y=9$.

For $\pi<\theta<2 \pi$, z must be in the third or fourth
Cartesian quadrant (because of the rolationship between
Cartesian and polar coordinates). But y $=0$. Therefore, for z to be in the third or fourth quadrant, y must be negative. However y cannot be negative because it is equal to θ, which is a positive number bebween and 2π. It is thus evident that there is no solution z for \because between π and 2π. The
same argument can also be used to show that there is no solution z for $3 \pi<y<4 \pi, 5 \pi<y<6 \pi, \cdots$,
(2n-1) $\pi<y<2 n \pi, \cdots$. Also, if $0<y<\pi$, then $0<\sqrt{e^{2 x}-x^{2}}<\pi$. However, if $x \leq 0, \sqrt{e^{2 x}-x^{2}} \leq 1$ and thus $y=\theta \leq 1<\pi / 2$. Therefore z must be in the first quadrant, a contradiction of $x \leq 0$. It is evident that there is no solution z for y between $\pi / 2$ and π. Ihe same argument can be used to show that there is no solution z for $5 \pi / 2<y<3 \pi$, $9 \pi / 2<y<5 \pi, \cdots, \quad(4 n-3) \pi / 2<y<(2 n-1) \pi, \cdots$.

For $y>0$, since $y=\theta$ and $y=+\sqrt{e^{2 x}-x^{2}}$ are single valued functions, there exists one solution z for each interval $y_{n}=(2 n-2) \pi$ to $(4 n-3) \pi / 2, n=1,2, \cdots$. Likewise for $y<0$, there is a solution $z=x+-i y$ corresponding to each solution for $y>0$. That is, each solution z has a complex conjugate which is also a solution. It is necessary. here to recall that the desired solutions are the characteristic roots $s=-z$. Let the solution z be called
$\overline{z_{1}}=x_{1}+i y_{1}, \quad 0<y_{1}<\pi / 2$ and $x_{1} \geq 0, \bar{z}_{2}=x_{2}+i y_{2}$, $2 \pi<\mathrm{y}_{2}<5 \pi / 2$ and $\mathrm{x}_{2}>0$, ete., and the complex conjugate solutions be called $z_{1}=x_{1}-i y_{1}, 0<y_{1}<\pi / 2$ and $x_{1}>0$, etc. Then the desired solutions s are $s_{1}=-x_{1}+i y_{1}, 0<y_{1}<\pi / 2$ and $x_{1} \geq 0, s_{2}=-x_{2}+i y_{2}, 2 \pi<y_{2}<5 \pi / 2$ and $x_{2}>0$, etc., and the complex conjugate sclutions axe $\overline{s_{1}}=-x_{1}-i y_{1}$, $0<y_{1}<\pi / 2$ and $x_{1}>0$, etc. The graph of thesc solutions for $y>0$ shows $s_{I}=\left(x_{1}, y_{1}\right)$, where $x_{1}<0$ and $0<y_{1}<\pi / 2$, and $s_{2}=\left(x_{1}, x_{2}\right)$, where $x_{2}<x_{1}$ and $2 \pi<y_{2}<5 \pi / 2$.

The coordinates of the solutions ane such that $x_{n}>x_{n+1}$ and $y_{n}<y_{n+1}$, for $y>0$. For large values of x, the equation $y=\sqrt{e^{2 x}-x^{2}}$ is very much like the graph of the familiar equation $y=e^{x}$.

There is a corresponding set of complex conjugate solutions in the third quadrant. It is evident that for $\omega=1$, any solusion $s_{n}=x_{n}+i y_{n}, x_{n}<0$ and the value of In is known to be within a certain range, and $\left|x_{n}\right|<\left|y_{n}\right|,\left|x_{n+1}\right|<\left|y_{n+1}\right|$.

For values of $\omega \neq 1$, the solutions form a pattern which for large values of x is mach like the graph of $e^{\omega X}$. Thus, for values of $\omega>1$, the curve rises more steeply than the curve for $\omega=1$. That is, the ratio of y to x is larger than for $\omega=1$. Conversely, for values of $0<\omega<1$, the ratio of y to x is smaller than $\operatorname{cor} \omega=1$. However, for all $\omega>0$, as $|s| \rightarrow \infty$ along the curve, the curve becomes nearly parallel to the imaginary axis.

In the case of $\omega=1$, all solutions ane such that $\mathrm{X}_{\mathrm{n}}<0$, that is, the real part of each complex solution is negative. If $\omega=\pi / 2$, the first solution, s_{1} (and its complex conjugate s_{1}), has positive real part $x_{1}=0$, and all other solutions have negative real parts. For each $\omega>\pi / 2$, there exists some integer $A=1,2, \cdots$, such that the solutions in the first i intervals of $2(i-I) \pi / \omega<y_{i}<$ $(4 i-3) \pi / 2 \omega$ have positive real partis. All subsequent
solutions have negative real parte. fis ω is increased, the integer i increases, but iri all cases i will be a finite number.

The value of w also effects the range of y. For all w, $2(n-1) \pi / \omega<y_{n}<(4 n-3) \pi / 2 \omega$.

For many purposes, it is expedient to have an expansion of $u(t)$ in the form of an infinite series, $\sum_{p_{R}}(t) e^{S_{R} t}$, where the sum is over all characteristic roots s_{k}, and where $p_{R}(t)$ is a polynomial in t if S_{R} is a multiple root. It is difficult to prove such an expansior theorem rigorously. One reason is that for different values of ω, the distribution of the solutions s_{R} is different. Therefore, the theorem is proved here for $k^{\prime}(t)+k(t-\omega)=0$, where k is as defined in Chapter V.

Theorem: Suppose $k^{\prime}(t)=-k(t-u)$. Let $a_{j}=\frac{3 \pi}{2 \omega}+\frac{2 \pi j}{\omega}$,
$j=0,1,2, \cdots$. Let s_{j} denote the rectangle formed by segments of $y=-a_{j}, x=0, y=a_{j}, x=-a_{j}$. Let $k_{j}(t)$ be the sum of the residues of $\frac{e^{t s}}{s+e^{-\omega s}}$ in the band $|y|<a_{j}$. Then $k(t)=\lim _{j \rightarrow \infty} k_{j}(t)$.
Proof: The first rectangle s_{o} contains two poles of $\frac{e^{t s}}{s+e^{-\omega s}}$.
Each additional rectangle excompasses two subsequent poles (a characteristic root and its complex conjugate). Then
$(6-1), k_{j}(t)=\int_{S_{j}} \frac{e^{t s}}{s+e^{-\omega s}} d s$, by the Residue Theorem. The integral (6-1) around s_{j} is the sum of four integrals, one for each side of the rectangle s_{j}. Thus, let $k_{j}(t)=I_{1}+I_{2}+I_{3}+I_{4}$. I_{1} coiresponds to the integral over the vertical line segment which forms the right side of the rectangle. I_{2} corresponds to the integral over the horizontal line segment which forms the top side of the rectangle. Likewise I_{3} and I_{4} correspond, respectively, to the integrals over the lines which are the left and bottom sides of the rectangle. Since the Laplace Transform for $k(t)$ is $\int_{0}^{\infty} e^{-t s} k(t) d t=\frac{1}{s+e^{-\omega s}}$, therefore $k(t)=\lim _{j \rightarrow \infty} I_{I}$, by the Laplace Inversion Theorem. It must therefore be proved that $\lim _{j \rightarrow \infty}\left(I_{2}+I_{3}+I_{4}\right)=0$. Since $I_{4}=\overline{I_{2}}$, it suffices to show that $\lim _{j \rightarrow \infty} I_{2}=0$ and $\lim _{j \rightarrow \infty} I_{3}=0$. Thus, $I_{3}=i \int_{a_{j}}^{-a j} \frac{e^{t\left(-a_{j}+i y\right)}}{-a_{j}+i y+e^{-\omega(-a j+i y)}} d y$.
There exists a J such that if $i>J$, then $e^{w a j} \geq 4 a j$. For such $j,\left|e^{-w(-a j+i y)}\right| \geq 2\left|-a_{j}+i y\right|$, so thet,
$\left|-a_{j}+i y+e^{-w(-a j+i y)}\right| \geq 1 / 2 e^{w a j}$. This implies that
$\left|I_{3}\right| \leq \int_{-a}^{a} j \frac{e^{-t a j}}{1 / 2 e^{w a} j} d y=4 a_{j} e^{-(t+\omega) a} j$, which implies $\lim _{j \rightarrow \infty} I_{3}=0$, since t is positive. $j \rightarrow \infty$

$$
\begin{aligned}
& \text { Also, } I_{2}=\int_{0}^{-a_{j}} \frac{e^{t\left(x+i a_{j}\right)}}{x+i a_{j}+e^{-\omega\left(x+i a_{j}\right)}} d x \text {. Since } e^{-\omega i a_{j}=1,} \\
& \left|I_{2}\right| \leq \int_{-a_{j}}^{0} \frac{e^{t x}}{\mid x+1\left(a_{j}+e^{-\omega x} \mid\right.} d x \leq \frac{1}{a_{j}} \int_{-a_{j}}^{0} e^{t x}=\frac{1-e^{-t a_{j}}}{a_{j}^{t}}<\frac{1}{t a_{j}} .
\end{aligned}
$$

Therefore, $\lim _{j \rightarrow \infty} I_{2}=0$.
Each of the residues is of the form $C_{n} e^{s_{n}},(\omega \neq I / e)$, and therefore $k(t)=\sum_{k=1}^{\infty}\left[C_{R} e^{s_{k} i}+\bar{C}_{R} e^{\bar{s}_{R} t}\right]$. In Chapter V, it was proved that $u(t)=00 g(\omega) k(t-\omega)$

$$
-b_{1} \int_{0}^{\omega} g\left(t_{1}\right) k\left(t-t_{1}-\omega\right) d t_{1}+\int_{\omega}^{t} f\left(t_{1}\right) k\left(t-t_{1}\right) d t_{1} .
$$

Therefore, by substituting the exponential sum for $k(t)$ in the integral representation of $u(t)$ and integrating term by term, the result is a series solution for $u(t)$.

BIBLTOGRAPHY

Book:
Bellman, Richard, and Kenneth I. Cooke, DifferentialDifference Equations, Vol. 6 of Mathematics in Science and Engineewing, eaited by Richard Bellman (6 volumes), New York, Academic Press, 1963.

