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CHAPTER I
INTRODUCTION

Differential-difference equations are essentially like
pure differentisal equations, except that a differential
equation contains one or more derivatives of an unknown
function, and a differential-difference equation can contain
one or more derivatlves of an unknown function, for example
u'(t), u"(t), together with any number of functions of the
form u(t-wy), u(t-ws), ***, u(t-w,), and possibly some of
thelr derivatives. The numbefs Wi, @o are given and are
called retardations or spans. Some examples of differential-
difference equations are
(1-1), u"(t) - u'(t-1) + 2u(s) = o,

(1-2), u'(t) + u(t-1) - u(t-\2) = 0,
(1-3), u'(t) + 2u(t) - 2u(t-1) = b,

This paper 1s concerned with equations in which u is
regarded as a function of a3 single independent variable which
will be called t. Therefore, sll derivatives are ordinavy

atlives. The customary meanings of

jo)
]
)
fe
<

rather than partial

[o))

ifferential order and difference order of an edquation are
observed. That is, differential order of an equation is the
order of the highest derivative avpearing, and difference

order 1s one loss than She dishinet nunb

)

v of arguments @,

Tt



Wy, **°. For example, equation (L-1) is of order 2 in
derivatives and of order 1 in differences, but equation (1-2)
is of order 1 in derivatives and of order 2 in differences.
The general form of a differential-difference equation
of differential order n and difference order m is
F[%, u(t), u(t—ul), e u(t—wm), u'(t), u'(t—wl}, e,
T k4 u(n)(t )> u(n)(t—wl)’ T 3 u(n)(t_wm)]: OJ
where F 1s a given function of L-+{(m+l)(n+l) variables and
the numbers w15 @5, A w, are also given. This paper,
however, is concerned with equations of order 1 in both
derivatives and differences. Equation (1-3) is such an
equation. Also, F and u are here requlred to be real
functions of real variables, and the numbers e Y I
w must be real. The coefficients are assumed to be
constants. Complex solutions may result, but real solutions.
are of primary interest here.
With the foregoing restrictions, the generel form for
a differential-difference equation I3 reduced to
(1-4), aju'(t) +aju'{t-©) + vou(t) + byu(t-«) = £(t).
The theory of the equations of snis form exhibits most of
the features of the more general theory, while avoiding a
lot of the detail involved.
It is well known that differential equations have
great valve in appijcation to phyvsical situations. A

complete study of the rate of change of a physical gystem,
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though, involves not only the present state of the system
but also its past history. '

In particular, equation (1-4) represents several types
of applications. If a, = a; = 0 or bo = bl = 0, the
equation is a pure difference eguation. If ag = bo = Q or
a; = by = 0, 1t 1s an ordinary dilferentlial equation. These
are not discussed here, because they have been treated
extensively elsewhere. There are, however, three distinct
types of differential-difference equaticns represented by
equation (1-4). An equation of that form is of retarded
type if &, # 0 and ay = 0. (Such equations are also called
delay differentlial equetions and hystero-differential
equations.) It is of neutral type if ay # 0 and ay # C.

Tt is of advanced type if ay, = 0 and aj # O.

In applications, usually t represents time. Thus an

equation of retarded type can be used to represent the

behavior of a system where the rate of change of the quantity
y 3

L

involved depends on past and present values of the quantity.

An equation of neutral tyove can represent a system in which
the present rate of change of the quantity depends on the
past rate of change as well as the past and present values
of the quantity. An equation ol advanced type can represent
a system in which the rate of change of the quantity depends
elther on the pest veluo ond “he gast rate of change or on

FAR] . [ [ [ TR DR e - e . - ey A L
the precent and future valuss of “ha guantlty.
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The discussion here 1is limited to equations of
retarded type since they are in some ways simpler to work
with than equations of neutral or advsnced type, and yet
the theory of equations of retarded type 1s generally
representative of all three.

As 1s the case with ordinary differential equations,
the main objective in studylng differential-difference
equations is to solve them: that is, to find a particular
function (or functions) u(t) which satisfies the equation.

There 1s actually a clearly defined process which can
be used to find soluticns over finite intervals. Called
the continuation process, it is & meons of determining a
unique solution u(t) by firstespecifying that u(t) have a
particular value over an initial interval, O <t<w. The
value of the soluftion is {then determined for the next
interval, @ <t< 2w. The process can be continued to obtain
u(t) for any desired finite intervsl. If, after three or
four such steps, a pattern iz cvident, then a formula is
written for u(t), nw <t< (n+l)e.

A method of solution which corresponds to a method
used for ordinary differential equatlions is that of obtaining
a soclution which is the sum of simple exponential solutions.
When some simpnle expénehtial solulions are determined, then
linear combinations of these a-e also solutions. Operator

symbolism 18 sometimes userul in ¢hlaining exponential



solutions. The operators are manipulated and then applied
to the differential-difference equatlon, thereby cbviating
burdensome manipulation of the equation itself.

For some uses, it is expedieni to have an estimate of
the magnitude of solutions. By using certain theorems, an
estimate can be obtalned of the size of a solution, of the
difference between the values of two solutions of the same
equation, or of the difference between the values of the
solutions of two different equations. Previously, the key
theorem for obtaining these estlmates was proved using
Laplace transforms. Here it is proved using Integration by
parts.

2l

Also, there is a method of solving differential-
difference equatlons which consists of obtaining a solution
in the form of a definite integral. Theorems are proved to
show how this can be done and to demonstrate the form which
such solutions take.

To obtain exponential solutions u(t) = eSt, the
characteristic roots s must be found. A particular group
studlied to find the

characteristic roots which lead to golutions eSt. It is

of equations u'(t) - u{t-w) =0

o
0

determined that there exist an infinite number of such

solutlions, and therefore there is 2 serles expansion for

u(t) = b, (£)e® P,



CHAPTER IT
CONTTNUATICON PROCESS

One of the fundamental methods for the evaluation of
differential-difference equations 1s the conftinuation pro-
cess in which the solution 1s extended forward by increasing
t interval by interval. The process provides a method of
proving that a solutlon exlists and for calculating the
solution over any desired finite interval.

Suppose u'(t) = 1 +w(ec-1), t>1,
with the initial condition u(t) = 1, 0=t =1,

Then, for 1st=2, u'(t) = 1 +u{t-1) = 2.

By integrating u'(t) with respect to t-1,
u(t) = 2(t-1) + c.

Since u(l) =1, ¢ = 1.

Therefore, u{t) = 2(t-1) +1, 1sts2,

Similarly, for 2=st=3, u'(t) =1 +u(t-1)

Since u(2) = 3, ¢ = 3,
Therefore, u(t) = (6-2)2 + 2(t-2) 43, 2=t =<

For 3 st=4, u'(t) = 1 +u(t-1)



Since u(3) =6, ¢ = 6,

Therefore, w(t) = 1/3(6-303 +16.2)2 14 (£-3)

For bsts5, u'(t) = 1/3(6-4)3 + (6-14)2 + 4(t-4)

Since u(4) = 34/3,

u(t) = 1/12(6-8)% + 1/3(5-8)3 + 2(6-1)2 + 7(5-4) + 34/3,

4 =ts5, A pattern for a gereral solution 1s suggested, but

it i1s not a compact formula, and is not presented here.
Consider also the following example. (Note: For each

integration ﬁo find u(t) for n<fsn+l, the appropriate

constant of integration is found by computing u(n) using

u(t) for n-1<ts=n.)

For 1st=s2, u'(t) = 2(t-1), and

For 2=t =3, u'(t) = 2(5-2)° +2, and
u(t) = 2/2(4-2)3 +2(t-2) +2.
For 3stshd, ut(t) = 4/3(t-333 +(5-3) +4, and

u(t) = 1/3(t~3)a 2 (6-3)9 +4(6-3) +14/3.
For hst<5, ul(t) = 2/3(6-4)" 44 (6-4)° 48(t-4) +28/3,
and thus u(t) = 2/15(t-4)5 +4/2{t-1)3 24 (e-4)2 +
28/3(t-4) +11.
As iIn the preyious example a gereral solution is suggested,
but it i1s not simple and is rnot shown here.
An equation of the Gype u'(t) = aju(t) + byju(t-w)

containing the additional u{t) term prosents a somewhst



different problan,

example.

Suppose u'(t) = 1 -u(t) - {1
u(t) = 1 ~e"t(l+t),

Or, for 0<t<w,

W<ts 2w,

Thus u'(t) +u(t) = 1

Liustrate? Ywothe following
—u(twwﬂ e t>w, and
O0<t<sw.

-t ~-1.

~t W, .
-G \iﬁt W .

Solving the differential equallon glve:z

u(t)el = [‘ ~(1+5-w) At e
S ~1/2(t~m)2 -(t-w) + .

\ W ~W

Since u(w)e” = e 1

-t

-t-1, C =

Therefore u(t) = 1 -1/2(t-w)"e

For 2w £t £ 3w,

2

Thus ut{t) +u(t 1o-1/2( 00w} et (t-2w)e”

= e’ -1/6(t-zw)” -1/2(t-2w)" - (w+l)(t-2w)
NS R [ 2 D e, e ) .
Since u(QQQeg - ~1/2w7 2w -1, ¢ 4 ~1/20° 2w -1
o v L DA ~y 23 - Y oy e —t
Thoyefore u{t) = 1L -1/0(t-2w e ‘/3an?w;pe -
2,



By the same method, for 3w<t< o,

u(t)e® = &b Li/el(i-zw (0w 3 wil) (5-3w)° -

2 N h!

3.2
(1726 w1 ) {(V-2w) - (1/6w7+2w +3w+l).

In general, for nw<t< (n+l)w,

u(t)et _— -1/ (n+1)! (t—na&n+lml/n! (tmnaﬁmuC](t~na0n'l~
Cg(t«MQOD'E— v =Cpho1(t-nw) -Cp,
where Cp = 1/niw® +1/(n+2) 10" . +Clwn"2 +ngn'"j+ s 0.

In the following problem, the initilal interval 1is
0 <tL 2., The first step in the continuation process for the
interval 2 <t< 3 1s not complex. The next step, (3 <t < 4),
involves shiftling the limits of the integral involved and
dividing the integral into two parts. The process can be
continued further but is not continued here bhecause a
general solution 1s not readily identifiable

/'ll. .
Suppose u'(t) = u(t-1) +j u(t-s) ds, t>2,
1

with u(t) =1, 0<tg 2.

Then for 2 << 3, u'(t) = 1 + fl ds = 2, and
1

2
Tor 3<t< b, ur{t) = 2{t-1) -3+ u(t-g5) ds.
1
u(t-g) = ;1, if 1<t-8<2, or

It follows that ul{t-z) == 1, i s2t-2, or



1¢C
Therefore, u'(t) = 2t -5 +w/m Pt-s-28 ds +J/‘ 1 ds

which reduces to 42 Ut -5,
Hence, u(t) = 1/2t3 -2t -5t -3, 3 <t< 4.
In the following cxample, the contlnuation process

must be performed in half-unit steps.

1
Suppose u'(t) = u'(t-1) +—J[11(t—s) ds, t>1, with

r
D
e
—
@)
(]
e
—~
purs
.
]
i"_
0
n
| N
‘I'K‘ —
il
}._A\'
~
N

R if 1/2<t-s<1, or

{1,
il/2(t~s)+l/2, if 1<t-s< 3/2.

u(t-s) = {1, if s> t-1, or
1/2(t-s+1), if s< -1,
ft»w 1
Hence u'(t) = /. 1/2(i+1) -L/28 ds + 1 ds
B t-1
' e rm
= {i/@{t&l}: wl/ﬂﬁ’] 4 {SJ s

- . 5= s - s=t

- I SRS AT
wiich reducos to  L/dvT -Rsdrn

Trevefore u(t) = L/124- -3/ 0u" (/1AL +79/32, 3/0 << 2,



11
For 2<t<5/2, ut(t) = L/2 + Jru(t«s) ds.

w(t-s) = {1/2(5+1-5)
0 1/12(6-5)3-3/8(t-8)5-7/16(t-5) + 79/32,
ir 3/2<t-s<2.

£
[ [l/l?(t—s)3—3/8(t—s)2—7/16(t—s)+

T
o/ _
2

79/32] is 4 J/' 1/2(t-1-g) ds, 2 <5< 5/2.

Therefore u'(t) = 1/2 +

u'(t) is determined by solving the two above definite

integrals. A subsequent integration and computation of the

constant of integration gilves u(t) for 2 <t< 5/2.



CHAPTER IIT
EXPONENTIAL SOLUTIONS AND LINEAR OPERATORS

Often, use of the continuatlon process does not lead
to a formula which gives the valus of the solution over all
finite intervals, or even 1f such a formula 1s apparent, 1t
may not be useful in isclating certaln properties of the
solution. Other methods of solution are needed. One method,
which 1s also used to solve pure differentlal equations, is
the conztructing of sums of simple exponential solutions.
Operator symbolism is also of some use in solving differential-
difference equations.

For convenlience, the lincar operator L(u) is here
defined by the following equation:

(3-1), I(u) =au'{t) + byu(t) + biult-w).

An equation of the form L(u) = 0 1s by definition homogeneous,
and an equation of the form L(u) = [ 1s inbomogeneous. The

linearity of L(u) leads to the observation that 1if uq(t) and
us(t) are any two solutions of the equation L{u) - 0, and

1 e g " > cant o . £ U 5y
ir Cq and C, are any two coustants, clu](t; + cgug(t) is

also a solution of T.{u) = O because Lic.u, +c Y = .1,
j ol (u) because Lcquytes,) cqL{uy) +
CEL(U2> = 0,

111 - - aq bt Nt e N e e ~ < P T T4 . R -
I'mue new solutions arae generatsd by Corming Liagcar combina-

tiong of known solutlicone,

12



Similarly, i1f v{t) Is a solutlcu of L(u) = f, and if
y(t) is a solution of L{u) = 0, then v + v is a solution of
L{u) = £, because L(vty) = L(v) + L(y) = F. Thus, the
selution of the inhomogensous equation L{u) = f, with the
initial condition u = g for tO:Stg tytw, can be found by
addlng the sclutions w and v of the simpler problems
L{(w) = f, w=0 for t_ <t< to+a5 and

)
(3-2), IT(v) =0, v =g for t_<t< t tw.  Therefore, a study

o

of the homogeneous equation (3-2) is in order.

Since solutions for homogeneous eqguations can be
generated as linear combinationes of simple colutions, some
gimple solutions must be found For (3—2“ Az with pure

differential equations, the simple solutions are exponentials.,

-, gt ; st g{t-w
Suppose u(e”c) = aoseSt +boe°t toie (t-w)
: -8\ _8
= {agstbytbye WSy 8t

o . . . - . .
Then, e”” is a solution of TL(u) = 0, for all t, if and only

if s is a zero of the functiticn

v 7

his) = a +b +bjc"ws.

of My

The Ffunction h(s) above, which ig associated with the
equation L(u) = 0, is by definitlon the characherictic
function of L. The equation h(s) = 0 is by definition the
characteristic equation of L. The rools of h(s) = 0 are by

definition the characteristiic rooos of 1., A ronl of hig) is

. A e A = T IO > I D T L AN . PR K] - SR P
& roov of multiplicity w 10 ni(s) ond ite flyst m-1 deriva
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There ig a solution, which 1s possibly complex, of

L{u) = O for each characteristic root; and multiple °
characteristic roots generate a numner of independent

-

solutions, a fact which leacds to the following theorem,
Theorem 3-1.
The equation L(u) = agu'(t) + bgu(t) + bu(t-w) = 0

is satisfied by*E:pR(t)ggnb

where {SR} is any sequence of characteristic roots and

o

p, (t) is some polynomial with degree less than the multi-
plicity of s,. The sum may be elther finite or infinite
with conditions which are suiltable to insure convergence,

Proof of Theorem 3-1 consists of several obscrvations.

First, n'(g) = a_ - bjwe"wg,

Thus, h(K)(S) P (-l)kblwke_w;’, kK = 2,3, “**,

Then, for any nz1,
L(t2e®%) = ao(tnse8t+atn"LGSt) &botnest +bl(t—a0nes(t'w>.

)ngs(t~w)

Consider the last ftTerm, bq(t~u; , of the cquation

N N , . . ¥
above. If (t-w) 1is expanded by the binomlal theorem, the

) / n a{t-w .
kth term, O0<k<n, of b] (- ) e\ i
) k n-%¥ k ot-ws
(;))("‘11 bl_t 3 .
ja .
\ <
Ny, (< o N~ 24
= (wﬁ\)ﬂ() (Q)JL, & .
4
r .
] . a0 00 at NI ey e 2 {x
Thorefors, Lt e i) = %t >> <_§E h<)(s}.



Thus, L(t%%Y)

= 0 for any integer n, 0<n< m-1, where s
is a characteristic rooc of mulvipliicity m, since h(s) and
its first m-1 derivatives are all zero., Given a root s of
multiplicity m, there are therefore m functions,

at tpst s tm~ st
2 - .

3 2 3

which are all linearly independent solutions of L(u) = 0,
for all real numbers t. Hence, 1f p(t) is any polynomial

st . .
E ig a solution of

of degree not greater than m-1, p(t)e
the equation L{u) = 0 eince that equation is linear and
homogeneocus. Thus, Thecrem 3-1 is Justified.

Suppose u'(t) = u(t-1). u = e”" is a solution if and
P 2 - - . . - - ' - - S
only if s is a zero of h(s). Here, h(s) =8 - ™7,
Hence, for all s such that ¢ = e 7, u = e is & solution
of u'(t) = u(t-1).

2
Supposge uf(t) = u(t-1) + J[u(t—r)dr. Then, it follows

1

that u(t) = eSY is & solution if s is a solution of
8 = ‘+i)f's-em28.
2 , \ 2
: a{v-21 s{t-r
u(t-1) + }[u(t—r)dr = e\ /4 J[e’<b Jar
L 1
s(t-1) s(t-2 s(t-1)
N ( NS ) - e ( /
-8 -3
P -3 .0 -
= se"(ss —e % Tie S)
2
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The prcblem of finding the characteristic roots s, is
discussed at greater length in Chapter Vi, where a specific

equation, u'(t) = -u(t-w) is examined,

Linear operators are sometimes helpful in solving
differential~difference equationsl The operators D,4, and
E are here defined by the relatlions

Du(t) = u'(%t), du(t) = u(t+l) -u(t), Bu(t) = ult+l).

For any real numbers k and w define the following:

(kB)Yu(t) = kYu{t+w),

)
) = Ei(t+l)~u{t}].

If D and E are any two opezrators, define sums and prcducts

(kDyu(t
(kA)u(t

i
=
ot

—
t
~—
-

as 1s usual:

(D+E)u = Du +Eu,
(DE)u = D(Eu).

T_de

Two operators are by definition egqual 1f they produce the
same results when applied to any function. Consequently,
the commutative law holdeg, TFor example,
(D+-A)u =
= ut(s) + [a(ur) .-u(t)]
[u(t-«i—l}—u(t)] +ur{t)
Au -+ Du = (4+D)u.

1

Du + Au

—

i

f



And, (AE)u = A(Eu)

i

A[U ttl
:;u(

$2)~u(el)
E[u(i&%l}—u(t)]
= E(4u)

N L—"—"—“J

i

= (Ed)u
Corresponding proofs show the commutative law of addition
for (D+E)u and (4+E)u and the commutative law of multipli-
cation for (DE)u and (D4)u,
The associative laws alcso hold. For example,

&DAﬁﬁu:s(DAﬂEuf

il

(DA) {U(L%])
D[ 1t -2 - u(tfiﬂ
D{A [U(H 1 )H

=D Ei ‘-!
l[A( IU

D{AE)u

= [D (AT )J u.

The distributive law likewise holds. TFor example,

Il

il

i

A(E4D)u = A [u(t-%—l) +ut (t)}
U (2 ) -u () b out (t1 ) -ur(t)
. [u(t+9)_u(t+l>] + [ﬁ'(t+1)~u‘(t)}
A [U.(t Fl )]‘ -4 ['U:' (t J

= A(Bu) + A(Du)

i

= (AB)u + {4Dju

= (AE+4D)u.
ni - (")T . - 3 o " f .
e operator &Y e nere oo fined by tne series
)
N T A G



Consequently, e“Pu = 1 +wut (t) WU (L) + e,
2r

]

which 1s the Ta;lcr's

However, u(t+w)

W
Therefore, ewD = B,

Suppose an operator ¢ is defined in such a manner that

q(D) = aODQUD + boewD + D7,
" JI Wl . .
Then a(D)u(t) = (agDePib_e“Piog u(t)
= (8 DB E% D Ju(t)

= raODu(t%gﬁ - bou(t+w) +~bl}u(t)
= agu! (ttw) + bou(t+w) + byu(t).
Therefore the equation
aou' (t+w) + bou(t+w) + byu(t) = F(4)

can be written as

(3-3), a(Du(t) = £(t), where
q(D) = aODewD - boewD + by.

Operators can be used to an wdvantage because of the

relative ease with which they can be manipulated and then

applied to differential-difference ecquations. TFor any

~

constants k and ¢ and any function F which is sufficlently

differentiable,

(3-4), q(D)(LeCt) = Q(C)keCL.
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For a proof, it is sufficient to examine the effects of the

operators involved.

a(D) (ke®") = (a D" + 1 e 4 bp) (k")
= aODkec<t+a” + bokec(t+u0 + blkeCt
= o keal(BF0) Ly o (BF0) g yelt,
q(c)keCt = (aocewc -+ boewc + bl)keCt
= aocke(wc+ct) + bokewc+0t + blkeCt
(1) " !
= aokceb(t+ab "t bokec(tfao + blkeCt.
Let the expression
- -1, \ P WD wh -]
(3-5), a (D) r(t) = {agDe”” 4 v+ by Tie(t)

denote any particular solution of the equation

au' (t+w) + boulvt o) + byu(t) = £(t). Then,

. )
(3-6), q(D)lq (D)f(t)] = (t), can be proved.
Proof: q(D)[q”l(D)f(t{} = g(D)u{t), by definition,
= f(t), equation (3-3).
Similarly,
- CT
(3-7), a7H(D) (xe®%) ~ RO previdea a(e) £ o
Proof: q(D)[g”l(D)(keCL{] - keCh, equation [3-4)
ke a(D) (keCl
aPygey = Hgter
q(c) (ketY)
= Aﬁuléx%jw”u equation (3-4),



(3'8>: q—l(D)(ECt sin 1t) = Im ~q“l(}])e<C+il>t}.
c+il)t

Proof: e¢t gin 1% = Ime<
g 1(D)(eCt sin 1t) - q—l(D>[Ime(c+il)t}
_ Im[é-l(ﬂ)e(c+11yﬂ

The operators and methods above can be used in [inding

a particular solution q'l(D)f(t} of each of the following

equations,
Suppose uf(t+1) ~u(t) = L.
From equation (3-5),
gt D)e(e) = (mel 1) t(1), £(t) = 1,
= -1(1-pe?)"1(1)
= -1(1-De? + DPePP L I 4y ()
= -1+ 30 -0+ 0O -

Therefore a particular solutlcon is -1, because

pe”(1) = D(2) = 0,

no

DQGED(1> = D°(3) = D(0) == 0, etec.
Suppose uf(t+r) ~u(t) = sin t,

From equation (3-8),

q"l(D) sin t = Imtg‘i<D)mit]
r .
= Inm 3}34}, equation (3-7),
q(i)l
= T QEEMMMW, equation (3-3).
ia’]-ll

Therefore a particular solution is Tm{ o1l }.



Suppose u(t+l) - u(t) = t

From equation (3-5),

aHD)1(t)

which is therefors

I

=~

Lk

(DeP-1)"1tk

~1(1-pely- 1tk

2

~1(1-DE + D°E® - DE3 &

5y k(tr«l)k .

a particular solution q_1

(
~1(1-De” + DRl L p3e3D
(

- k(k-1) (b4



CHAPTER IV
ESTIMATES OF THE MAGNITUDE OF SOLUTIONS

For some applications an estimate of the magnitude of
solutions of differential-difference equations is an invaluable
'tool. It is possible to estimate the size of the difference
between two solutions of the same equation and between
solutiens of two different equations. An estimate can also
be made of the size of the solution of a single equation.
Theorem 4-1 will be used to prove a lemma, which will then
be used 1in estimating the magnitude of solutions.

Thebrem 41,

For any real numbers a and b, a<b, let Kgy
denote the class of real-valued continuous
functions defined on [a,bl. Let T = Tygy

be an operator from Kay to K y s where' o,

B , 7 are fixed numbers, agﬁa‘gy . Assume
that

(a) T is monotone in the sense that if U€Kyy,
vEKyy, and u(t) <v(t) for a<t<6 , where
B <6<y, then (Tu)(t) < (Tv)(t) forB<t<é ,

(b) T is contracting at a point in the sense that
there 1s a function g&Kgy such that
(Tg)(t) < g(t) for B<t<¥y. TLet u be a function
of class Kgy such that

u(t) < (Tu)(t), Bt 7,

u(t)< g(t), as<t<pg,

Then u(t)< g(t) for a<t<¥.

Proof: This theorem can be proved by contradiction.
If the conclusion is false, there is a smallest
number t¥* such that u(t)<g(t), o<t <t*, but

u(t*) = g(t*). Here B<t*< y. Using properties

22



(a) and (b), we deducse that

(Tu)(t) < (Tg)(t) <g(t), Bt t*,
Therefore u(t)<g(t), B<t< ¥, contradicting
u(t*) = g(t¥)t

This theorem is used now to prove the followlng important
lemma .

Lemma 4-1,

If w(t) is positive and monotone nondecreasing, u(t)> 0,

v(t) 20, all three functions are continuous, and if

t
then u(t) w(t)exp L}hv(tl) dtj}, a<t<b,

a

Proof: Theorem 4-1 can be applied by Jletting oa=8= a
and Y= Db. By assuming the hypothesis, the theorem ig now
of the form:
I u(t) <(Tu)(t), a<t< b,
and u(t)<g(t), t = a,
then u(t) <g(t), a <t<b,
Let T be defined by

(ru)(6) = w(e) + fulsiv(sy)dey, astsd,
and g by |

t
g(t) = (L+ew(t)exp [ V(ﬁl)dtw]’ A<t<b, €>0.
ST

1

"Rictiard Bellmar and Xeornpalh 700 Ccoke, Differential-
™4 £ o A Tiritiad % vy o TP eng T le T ) T
Differvence Equations (New York, 19063Y, vo. 87-A2.




Then, by Theorem 4-1,

IA

. :
it u(e)su(t) + fulby)v(t, )b, ast<n,
A 140y
and u(a) < gla),
t
then  u(t) < (1+€)w(t)exp Jrv(tl)dt1 .
- .
thus  u(t) <w(t)exp v(t,)de

But it is in this case known to be true that u(a) < g(a):

2,

g(a) = (1+e€)w(a)exp w[;v(tl)dtl ,  €>0,

(
and since u(a)<w(a),
then uia)

)

and thuz u(a)<g(a).

Thercfore, the condition which ctates "if u(a)<g(a)" is

w0
.«

D
=
3
=
o

el

{
l___l

removed, and the result is
Lemma <+-1 13 used to prove gcme theorems concerning
the size of differential-dicference equation solutions. 1t

K O SRV Yy ey - N 4 3 gt al > 1 K
is first necessary to define a function of class OF on ar
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Ck(tl,tz). If £ is a memwber of this set, then it is written
FECK(t,t0), or FECE on (ty,tp). If £€CN(ty,t5) for
every to»>ty, 1t 1s written fEZCk(tlf'w).

A function f is said to be of class CX on [tl,tg) if
it is of class ok on (tl,tg), 1f 1t has a right-hand kth
derivative at t1, and if the function f(@(t) defined over
tl.gts tg by these wvalueeg 1s continuous from the right at
t.

Theorem: Let uq(t) and u,(t) be solutions of the following
egquation,

(4-1) L(u) = aju'(t) + boult) + byu(t-w)=r(t)

which are of class 02 on [O,co). Suppose that £ 1s of class

¢t on [Q;CO), and let m = max lul(t)—ug(t)l.
0 £isw

Then there is a positive constant ¢, depending only on the
ceoefficients 8o, b and by, such that

oy (6)-up(t)] <me®, 20,

O)
Proof: TIntegrating T(uy) and L{us) from  to t and taking

the difference gives

ao?l(t)”ug(t>7 = 4 Tu1<w>““2<w)j

t t
+ bob/~ up (Bp)-uy (ty)dty + by J[ Us (ty~w)-uy (t1-w)dty.
w w
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Then,

3, . Im I8 t
B (6)-uz(t)] < %Og ' LZ{ f!uz(t.l)-ul(tl)ldtl

:ZilJ/mIlP t] -4 ldt

Sﬁ.+‘lbolla ol /~|u2 (t3)-uy tl)‘dtl.

. _ Po! + Pll
Let ¢ = - iaQI

t
lul(t)—ug(t)lgm + c.é.hkmtl)~ul(tl)ldt1,

and by Lemma 4-1,

‘ul(')—ug(b\l <meCt,

/

Theorem: Let uy(t) and us(t), of class ¢ on {b, ©) be
zolutions of L(u) = fy and L(u) = f,, respectively, when
f1 and 7, are of class ¢t on {Q, x ).
Let m :Oégzsajul(t)—ug(t)l.
rhen "o, (b )-r o (b )! at
ul(t)—ug(t)lg m-+ LI 32 ~£w~wwl-eCt, t > 0.
i

Proof: Integrating L(u) = £ and I(u) = f, from w to t and
taking the difference gives
aguy (t)-a us(t) = ajus(w) -aju,(w) + J/F (B )-Eo( jdtl

t

b J/‘lul(tl)—ug(tlﬁdt _ul,/ Iul (t-w) -u,(t- w,dti
W



Then,

/| 1 (b1)-ug () |y O,f ECIENCY
<m+laOI"] f!f £, (tl)ldt
bolt b
+.J,.%3JM}L:ATlul(tl)—ug(tl)ldtl.

Teol o

aol

Then by Lemma 4-1,

Iul(t)-u2 ls [m 4lao| = j[ik 'd } Ct, t > 0.

The following theorem is not proved here, but it car

et ¢ =

be proved in the same manner as in the two immediately
preceding theorems. It is stated here, however, and used
in a subsequent theorem.

Theorem 4-2,

Let u(t) be a solution of L{u) = £{t), which is or class Ch

r A i
on LO,rr). Suppose that £ 1g of class 0 on 0, =) and that

c,t . , e
lf(t)l <cqe 27, £t 20, where cq and ¢, are positive constants.

Let m = max ‘u(t)l.
O<tsw

Then there are positive constante c. and ¢, which depend

3 I

only on the coefficients ce, 90, bo’ and bl

!u(t)l 563( r)ep4t,

such that

»O.

i
1
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Theorem: Let ul(t) and u,(t), of class ¢® on [O,cn), be
solutions of Lp(u) = £, and Lo(u) = £, respectively, where
fy and f, are of class ¢! on {C,fw), and where

= agu'(t) + bu(t) + byu(t-w),

) = 2o
Lo(u) = agu'(t) +{(bgteg)u(t) + (byteq)u(t-w).
Let lfl(t)l < cqe?®, 20, 1= 1,2, e3> 0, cp> 0,

Let m = max  |uq(8)-uy(t)] . t20.
0 <t<w

(a

I € = h"!, ~ ,‘/_:r l '.
Let ma.x (Ico [€¢|> My Oﬁ?isu)ug( )

Then, there are positive constants c, c¢), and 05 which

depend only on cq, c?, and ag, bl’ bo’ such that

t
M(t)-ug(t)] < [m laol“l-[ lfl(tl)—fg(tl)l dtq

Proof: Integrating Ll(u) = £ from wto t gives

t t
aguy(t) = ajuj(w) + ~[:fl(tl)dtl —bo.l: uy (g )dty

t
- (.~ dt
blqu g (g w)dty .
w

~t t
agus(t) = agus(w) + J/'fg(tl)dtl ~(bo+eo).)( us (e )dty
w

t
- (bl'*‘el) / ua(tl"UJ)dtl.

)



Then, &
fug (8)-up (6)] = Jus (0)-ug ()] + |a, {'10 1 (69)-£5 (81 )f a8,
'b
ol /. uy (69 )-15 (1) [aty
APl oy
"ol ). u1.<t1>"u2<t1)|dt1
|€o' v
ol ug (1) at,
€ -t
1
+ -jém: uy ()] aty
¢

sm o+ Jag | 1][ Jo (t1)-5(t1)] as,
bol + {b
L ,|ao{ 1‘1: lul ) -up (b, )]dtl
]aoll(ﬂ [ ,ug t )'dtl

B}/’ Theorem )4-—2, 'U? t)'s Cq(cl—‘rmg)eCAt.

[oo] * |0
20|

&
Thus, lul(t)—uz(t)l < m o [aO!_lpl; ey (61)- 15 ()] dty

& t
0 o 0

Lot 2¢,
1S 05 = .-g..ai.
£
-1
Then lul( ~ug (6)] = mo+ [aoi B s |f1(t)-f2(t)|dtl
‘. +
+ 605{ci_+m2)cc4{’ eC®



CHAPTER V
SOLUTIONS IN THE FORM OF A DEFINITE INTEGRAL

Another technigue used to solve differential-difference
equations is discussed in this chapter. This method involves
obtaining a solution in the form of a definite integral by
the use of a function k(t) which has certain peculiar
qualities and which satisfies the equation

an'(t) + bok(t) + bik(t-w) = 0.

The solution of the differential-difference equation
L{u) = aju'(t) + bou(t) + byu(t-w) = £(t), t>w, a, # 0,
which satisfiles the initial condition u(t) = g(t), 0 St<w,
if g 1s ¢° /0,0, £ 12 c®0,2), ana

If(t)

can be represented by a definite integral.

c,t

Scle t 20, cq> 0, c2>~0,
Let k(t) be the unigue function with the following
properties:
(1)

k(t) = 0, t<O;
(2) x

k

k

s

- (a,o)' 1 5

)
e}
(t) is of class CY¥ on 10, = );
)

p.

(3)
(#)

>

.

satisfies the equation a k'(t) + b_k(t) +

O
bik(t-w) = 0, t>0.

20
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Theorem: Suppose u(t) is a continuous solution of
(5-1), agu'(t) + bou(t) + byult-w) - r(t), t>w, aj # 0,
with the initial condition u(t) = g(t), 0<t<w,

e is 0O on [b’co) and £ is ¢% on {O: © ), then for t>w,
- W
u(t) = ege(w) k(t-w) -b, /g(tl) K(t=ty~0) dbg

0 t
£ /f(tl) k{t-tq)dt,.

W
Froof: ILet t>w. Integrating equation (5-1) from wto t

gilves

t
j[ f(tl)k(t—tl)dtl = atn/fﬁﬂ(il)k(t t at

t 1
+ bg fu(tl)k(t-tl)dtl + blfau:l--w)k(t—tl)dtl.

w W

Integrating by parts,

T Tt
/f(tl)k(tmtl)dtl = [aou(tl)k(\t-tl)y

w Jw

t t
+ aofu.(tl)k'(t~tl)dtl + bof 1ty Ye( -ty )dty

W W

t
+ le/. (tluaﬂk(f-tl)dti = asult)k(0) ~aou(W)k(t-w)

tw
f ty)dty - by [u(tl)}:(t—tl—w)dtl
w ’Jb)
t rt
W

-

58]

_J_bo



Here the expression «bQJ/‘u(tz)k(tmtl)dtl
/ :
t
—blv/au(tl)k(t-tl—uodtl *
w
' t
is substituted Ffor aey/ﬁu(tl)k'(t—tl)dtl, except the linits

w
on the integral with the coefficient bl are W to t-w because
with limits from t-w to w the value of the integral is zero.
Henpe,

J/~f k(t t )dtl = u(t) -aqu(w)k(t-w)

t

- by JC u(tl)k(t—tl-aﬁdtl + bl.jru(s)k(t—s—uﬁds

w

= u(t) -a g(wk(t-w) + Ojfé”f Je(t-t-w)dt, .

Therefore,

W
(5-2), u(t) = a_g(w)k(t-w) —blfg(i (-t - wdty
&ty

+ff(‘t kK(t-t,)dt., t>w.
/ ' l) ( _|_) 1°

Incidentally, the right-hand member of (5-2) 1is zero,
not g(t), when 0 <t <w,
This 1s true because
(1) (t-w) <0, end thus K(t-w) = 0,
(2) (t- tl-aﬁ<iu O <ty<w, and thus kK(t-t1-w) = 0,
(3) (o-t ty) < wsty<t, and thus k(t—tl) = 0

Note: Since aok’(t) tDGE(E) + byk(t-w) = 0, t-w<0

when t<w, and thus K(t-w) = ¢, f<e, Cousequantly,
ack™(t) + b k{t) = 0, t<w



(0
(UL

Let t>2w. Then,by differentisating equation (5-2),

y
u'(t) = %E[aog( w)k(t-w) —b]/g(tl)k;(t—tl-w)dtl
0
t
" J/.f(tl)k(t—tl)dtl]
= a_g(w)k' (t-w) blv/qg(tq,k (t-t3-w)aty + £(t)k(0)
>+Jf £ty )k (6=t )by
W
= agg(w)k' (t-w) —bl.jpg(tl)k’(t—tl~u0dtl + g e(t
A :
ff )k (b=t )dty, t> 2w,
Hence,

agl' (t) # Dou(t) + byu(i-o) - ao[aog(w)k'(t-QO

-bl./~g ty )k (- ti-wjdty +(aoflf(t
.[f Vet (bt mt]+ﬂ%F%gwﬁUﬁ@
m%[Jﬂﬁmmerl+[(fkﬁwﬂ ]
0
+ bl[ao (@)k{t-20) -b; f’“\ b )ity —2w)dt,

ff\t Jk(t-t uwu,ﬁJ
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w
= aozg(w)k’(t—w) -aoblf g(tl)K’(t—tl—w)dtl + £(t)
L 0
+ aO[ Pty )k(t-tq)dty + boagg(w)k(t—w)
©ow "
- boby [ e(ty)k(t-ti-wdty + bO./.f(tl)k(tntl)dtl
0 w w
-+ bl&og(w>K(t—2w) wblclg(tl)k<t-tl~2w>dt1
t
+ le{ £t )k(t-t1-w)dty
w
= f(t) + aog(w)[aok’(t-w) b bok(t-w) + blk(t-Ew)]

w
- blf g(ty) aok‘(t—tl—w) + bok(t-t;-w)
0 -

£
+ blk(t—tl-ew)Jdtl rf £1q)
d

gk (t-tq) + b k(t-t)

w

Therefore agu'(t) + bou(t) + byult-w) = £(t) ie satisfied
for t> 2.

The following discussion proves that agu'(t) + bu(t)
+ byu(t-« = £(t) is also satisfied forw<t< 2w.
Theorem: Suppose u(t) is a solution of (5-1) forw<t< 20,

twu)
Then u(t) = agg(w)k(t-w) “‘bl[ a(t )k(t-ty-w)dtq

0 pt .
4 [f‘(tll)k(vtl)d’u],w<t< 2w.
Jo “
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Proof: Assume w<t< 2w,

Integrating (5-1) from wtc t gilves

& .
v
ff(tl)k(t—tl)dtl = ao/ u' (6 )k(t-tq)dty
w

w

t c
W

w

Inte%fating by parts,

t t
/f(tl)k(t-tl)dtl - [a()u(tl)k(t—tl)] + aO/u(tl)k‘(t—tl)dtl

[¥9]

t t w
G [y

= a u{t;k{0) - aju(w)k(t-w)

€ t
- bo}r u(typ)k(t-ty)dty = by | u(Hy)k(t-ty-w)dty
(.Ob "Ut
+ Do ‘/+‘ 1 k(t—tl dty Jl~w Fvu—tl)Qt]
YW
The term kblll. Jk(t-t1-w)dty = 3, because (t-ty-w) <O,
w
Thusu/. (t1)k(t-ty)dty = u(t) - aquwk(t~w)
w

t-w
+ bl~/‘ u(s)k(t-s~wids = u{t) - 2 g(w)k(t-w)
0

t-w
0

Therefore,
el

(5-3), ult) = aog(w)k(tuuﬁ Wbl.}f g(tgk(t-tl—aﬁdtl
0

€
J/nf(n JE(t-t)dt, . Wi Do,

w



Let W<t<2w. Then, by differentiating equation (5-3),
ut(t) = agg(w)k’ (t-w) - b1g(t-Wk(t-tiw-w)
L-w
- bl/ g(t1)k' (t-ty-w)dty + £(t)k(t-t)
0
b L

—I—/ £ty )k (t=ty)dty = 2o8(w)k! (t-w) ag"big(t-w)

w o ]
- bl./o g(tl)k'(t—tl—w)dtl + ag F(t)

+/-tf(t1)k'(t—tl)dtl, w<t< 2,
w

w
The term -blA‘ g(tl)k'(t—tl—w)dtl replaces the term

t-w
- bl/ g(t )k (t-t-wdty.
0

This occurs because the value of the integral from t-w to t

is zero, caused by t~tl—w<O; which results in k’(t-—tl-w) = 0,

Hence, for w<t< 2w,

a u'(t) + bou(t) + biu(t-w) =
1 w
ao[aog(w)k'(t—w) -85 b1 (t- w) -—b_-;_‘_f g(tl)k’(tmtl-—w)dtl
0

t
+ aalf(t) lf f“(‘t.]_)'K"(T’:-tl:)dtl]
W

- w
+bo{aog<w)k(t-w) - 1‘)_,~/‘ g(:tl)k(t--tl-w>dtl
0

£ .
w



= f(t) + aog(w) [a,okf(;*;-w} -+ »}3O}§(t~Lo}} - blg(t—w)

»
+ byg(t-w) - aobl./o 5(ty k' (t-tq-w)dt
t
+ [ 2(8)) gt (t-ty) + bok(b-t1) dty

w

resulting in bik(t-2w) = 0.
t

Also,/ f(tl)[aok!(tmtl) + 'bok.(t—t;l)J t, = 0, because

w
(t=t1) <@, resulting in byk(t-5y-w) = 0,

.

The two terms —aobl/ g(tl)k.‘(t~t-_w)dtl and

t-—w
0
_boblf g(ty)k(t-t1-w)dty can be cowbined because
0

t-w w
f g(tl)k(t—tl-w)dtl :fg(t]_’.‘)k(t-tl-«u\)dtl
0 0

1

(98]}

~]



(W3]
(@8]

Thus;

agu'(t) + bou(t) + byu(t-w)

£(t)

W
-0y [ s(ty) [aok’ (t-tp-w)

0
+ Dk (bt -w) dtl]
= f(t),
since the integral involved is zero hecause (t-t-w) <w,
resulting in bik(t-t-20) = 0,
Therefore aqu'(t) + bou(t) + biu(t-w) = £(t) 1s satisfied

for w<t<2w,



CHAPTER VI

CHARACTERISTIC ROOTS AND SERIES EXPANSTON
OF u'(t) + vi{t-w) =0

In Chapter III it was proved that the equation
L(u) = agu'(t) + bou(t) + bju(t~w) = 0 is satisfied by
:E:pR(t)eSR(t), where {SR} is any sequence of characteristic
roots of L, p,(t) is a polynomial of degree less than the
multiplicity of s,, and the sum is either Ffinite or 1ls
infinite with sultable conditionsg to ensure convergence.
That is, L{u) = 0 is satisfieqg by a sum of simple exponential
solutions of the form eS:¥ with coefficients p (t).

-WS s

Reiterating, since L(e = (aOs+bo+ble eSt,

h(s) = aos+bo+ble—ws i1s called the characteristic function
of L; h(g) = 0 is called +the charscteristic equation of I
and a solution of h(s) = 0 is called a characteristic root

of L. Thus a characterigtic root « results in a sgolution

e
re

The problem discussed hare ig how to determine these
characteristic roots. To facilitate the discussion, an

analysis will be made of a parsicular group of differential-

difference equations which have “he form u'(t) + u(t-w) = 0
or u'(t) = -u(t-w), where w 15 & real rumberso.

[
~!
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st st | o 8(t-w)

For u(t) = e””, the equation is se”" + = 0.

w3

Therefore the characteristic function is h(s) = s + ™,

ws

and the characteristic equation s + e~ = 0 must be solved

for s. To simplify the problem somewhat, a substitution is
made. Let z = -s. Thus the equation e*? = z must be solved
for z.

Separating z into real and imaginary parts and changiﬁg
to polar coordinates results in: -8 = z = x-Hy

=r({coso+1s8in6), x =r cosb, y =1 8in6 ; exp wz

D s w :
= e¥¥(cos wy + 1 sin wy). Then the form of &% = z 1is

changed to e*%(cos wy + 1 sin wy) = r(cos 6+ 1 sin 6).

z X

z if e** = r and wy = 0, But

. w
Thus z 1s a zero of e

2 - x2 4 y2 = &% Therefore z 1s a solution of e®? = gz

if yv = iyegwx—x and vy :‘%'

First consider the case of w= 1. To obtain exponential

nNE O

solutions of u'(t) + u(t-1) = 0, it is necessary to solve

the characteristic equation e = z. And z 1is a solution of

—————

e # =3z if y o= egx-xg and y = 9.

For m<6<2w, z must be in the third or fourth
Cartesian quadrant (because of the rclationship between
Cartesian and polar coordirates). Bubt y = 0. Therefore, for
Zz to be in the third or fourth quadrant, v must be negative.

However y cannot be negative because it i1gs equal to 6, which

e

§

is a positive number belipeen v and 2. It js thus evident

that there 1s no solution z for ¥ petween m and 2w. The
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same argument can also be used to show that there is no
solution z for 3n<y<lr, Sa<y<hm, -*-,

[

(2n-1)r <y<2nm, *°*., Also, if O<y<w, then

O<$/egx—x2 <w. However, if x=0, #;QX_XQ =1 and thus

y =0s1< W2, Therefore z must be in the first quadrant,
a contradiction of x=0. It is evident that there 1s no
solution z for y between V2 and m. The same argument can

be used to show that there i1s no solukion z for 5 /2 <y <3m,
9Ve<y<5m, "', (4n-3)"2<y< (en-1)m, ---,

For y >0, since y =6 énd N =v+%kgx—x2 are single
valued functions, there exists one solution z for each
interval y, = (2n-2)7 to (4n-3) V2, n = 1,2, ***. TLikewise
for y< 0, there is a solution z = x -+ -1y corresponding to
each solution for y>0. That is, each solution z has a
complex conjugate which is also a solution. Tt 1s necessary.
here to recall that the desired solutions are the charac-
teristic roots s = -z. ILet the solution z be called
z] = Xq + 1y1, O0<yy <7/2 and %120, Z5 = FpHlys,
2v<:y2< 57/2 and Xo> C, ete., and the complex conjugate

solutions be called zq = xp -1y, O<y;<”/2 and %1 >0, etec.

Then the desired solutions s are 81 = -x1 + 1yj, O<yl<772
and xlz 0, s, = “Xo t 1yy, 2m<y,<5 /2 and x5 >0, etec.,
and the complex conjugate sclutions are 53 = =X1-1yq,

™ K I d 1 Lo &
0 <y]< /2 and xX1> 0, ete. The graph of vhesc solutions for

Y - }
Js here X< O and O<\yl< /2, and
L

o
§._._J

Sp = (Xl,Xg), where xp<xy and 2n <y, <572,
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The coordinates of the solubtions ze such that Xn > Xp4l and

V< Yp41s for y> 0. For large values of x, the equation

y = e2X~x2 i1s very much 1like the graph of the familiar

equation y = ex.

There 1s a corresponding sct cf complex conjugate
solutions in the third quadrant. It is evident that for
w= 1, any solusion s, = x, + iyp, %< 0 and the value of

yn 18 known to be within a certain range, and
lxnrﬂynl:lxn+lkﬂyn+l|-

For values ofw # 1, the scolutions form a pattern
which for large values of x is much like the graph of e%¥.
Thus, for values of w>1, the curve rices more steeply than
the curve for w = 1. That is, the ratlo of y to x is larger
than for «w= 1, Conversely, for valueg of 0<w<1, the
ratio of y to x is smaller than Tor w = 1. However, for all
w>0, as IsL»a>along the curve, the curve becomes nearly
parallel to the imaginary axis.

In the case of w =1, all solulions are such that

Xn <0, that 1s, the real part of e

)

ch complex solution is
negative. If w = T/2, the first solution, Sq (and its
complex conjugate sl), has positiva real part X1 = 0,

and all other solutlons have negaltive real parts. For each

[l

™ s . .
w >"/2, there exists some integer % = 1, 2, ***, such that

the solutlons in the first 1 inbervals of 2(i-1) Vw <y, <

(41-3) "/2w have positive real puaris. ALl subsequent



solutions have negative resal parte. A4s o is increased,
the integer 1 increases, but in 211 cases 1 will be a finite
number .

Thé value of  also effects the range of y. For all w,
2(n-1)n/w<y, < (4n-3)n/20.

For many purposes, 1t 1s expedient to have an expansion
of u(t) in the form of an infinite series,}i:pk(t)eskt,
where the sum is over all charascteristic roots sy, and where
p,(t) 1s a polynomial in t 1f s, is a multiple root. It is
difficult to prove such an exparsion lLheorem rigorouély.

One reason 1s that for differert values of w, the distri-
bution of the solutlons 3, is diifferent. Therefore, the
theorem is proved here for k'(t) + k(t-w) = 0, where k is

as defined in Chapter V.

(L
(R

2r

1

Theorem: Suppose k'(t) = -k({t-o). Let ay = ST+

|

N

J=0,1, 2, """, Let Sj denote the rectangle formed by

segments of y = ~aj, X = 0, v = 8y, X = -2y Let kj(t) be
ets
e sum of the residues of ———— In tha ban a.. Then
the s f th sid { = the band |y| < 3 Tt
s+e”
k(t) = 1im kj(t).
J—w
ets
Proof: The first rectangle 59 contailns two poles of — 55"
s+e”
Fach additional rectangle encompasse2s Lwo subsequent poles

(a characteristic root and its couplex conjugate). Then



L

ts
(6-1), k.(t) = g ds, by the Residue Theorem. The
J +e—wS

sjs ,
integral (6-1) around Sj is the sum of four integrals, one
for each side of the rectangle 53 Thus, let
kj(t) =1I; +Ip + I3+ Iy. I corresponds to the integral
over the vertical line segment which forms the right side of
the rectangle. 12 corresponds to the integral over the
horizontal line segment which forms the top side of the
rectangle. Likewise I3 and 14 correspond, respectively,
to the integrals over the lines which are the left and

bottom sides of the rectangle. Since the Laplace Transform
C ot
for k(t) is J/.e"’ok(t) dt = —% ., therefore
0

k(t) = lim Iy, by the Laplace Invarsion Theorem. It must
J‘-—-‘Q)

- therefore be proved that lim (I

J—®

o * It Iy) = 0. Since

Iy = I, 1t suffices to show thal iim 75 = 0 and lim Iy = 0.
. " . w

J-—P'OQ J-—-)-

- s
J t(-asHy)
Thus, IQ =1 e mq(_;f1$¥7 dy"
- a —aj+~iy+e WATEGTS

. . . wa]j
There exists a J such that if j>J, then € 82 g ., For

such j, ge”“(’aj+iY)lzgi-aj+iy!, so Lhat




S .

U Lt {x+iay) i
e T\ / . Ss -nlda = .
Also, I, = ,_Jf, dx. Since e “*°J =1,
& 0 x+ia cte” w\ X+ a 3)
e J s h*

0 0
tx ’ —tas
IIQ‘ Sf e dx < _-_1__ f otx o l-e . J < tl .
~ad lx+l(aj+e'~ux aj sy s aj 8j

Therefore, lim Ig = 0.

g
Each of the residues is of the [form Cnesnt, (w £ 1/e),
@
- - T ! 5 SRL =~ eq » -
and therelore k{t) = Cpe + C,e . In Chapter V,
R:l .

it was proved that u(t) = ag(w)k(t-w)

w €
-bljé g(t1)k(t-ty-0)dty J{ £t )k (t-tq)dty .

Therefors, by substituting the exponential sum for k(t) in
the integral representation of u(t) and integrating term

by term, the result is a series solution for u(t).
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