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PREFACE 

Tlie purpose of this paper is to investigate some 

or the more basic properties of peripherally continuous 

functions, graph maps and connectivity maps. As it turns 

out, continuous functions are peripherally continuous, 

as well as connectivity maps. This is pointed out in 

two later theorems. 

* Although continuous functions are peripherally 

continuous and are connectivity maps, the converse is 

not necessarily true. Each chapter will contain examples 

of this. 

An understanding of the concepts presented in a 

basic course in topology is essential in following the 

proofs presented here. The first chapter presents these 

concepts in a more or less organized form. The second 

chapter deals with peripherally continuous functions, 

ending with a few theorems stating conditions under which 

peripheral continuity will imply continuity. 

The third chapter deals with connectivity maps and 

graph maps. The definition of a connectivity map depends 

on the notion of a graph map, and so the first part of 

the chapter is devoted to developing the idea of a graph 

map, and ends with theorems stating under what conditions 

a connectivity map will be cbntinuous. 
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CHAPTER I 

TOPOLOG.? L CONCEPTS 

The proofs in this paper assume a familiarity with, 

a basic course in topology. This chapter will set forth 

the definitions and theorems, without proofs, which are 

referred to in later proofs. Since this chapter deals 

with topological spaces, the following definition is made, 

DEFINITION 1.1 Let S be a set. A collection of 

subsets T.of S is called a topology for S if and only if 

a) the union of each subcoliection of T is a member 

of T, and 

b) the intersection of each finite subcoliection of 

T is a member of T. 

The set S, with its topology T, is denoted by (S,T). 

DEFINITION 1.2 If (S,T) is a topological space, 

p is an element of S, U is an element of T such that p 

is in U, then U is called an open neighborhood of p. 

DEFINITION 1.3 A subset V of S is said to be closed 

if and only if its complement, denoted by S - V, is open. 

DEFINITION 1.4 Let U be a subset of a topological 

space S. Then a point p is called a limit point of U 

if and only if each open neighborhood of p contains a 

point of u distinct from p. The set of limit points 



of U is denoted by U', and this set may or may not share 

points with U. 

The above definition gives rise to a basic theorem 

dealing with a set and its limit points. 

THEOREM 1.1 A subset H of S is closed if and only 

if it contains all of its limit points. 

The next theorem follows almost directly from 

Definitions 1.1 and 1.3* 

THEOREM 1.2 Xf (S,T) is a topological space, then 

a) the intersection of each subcollection of closed 

sets is a closed set, and 

b) the union of each finite subcollection of closed 

sets is a closed set. 

THEOREM 1.3 If* (S,T) is a topological space, and U 

and V are subsets of S with XJCTV", then U ' C V . 

DEFINITION 1.5 The closure of a set A, denoted by A, 

is the union of A with its set of limit points. 

DEFINITION 1.6 The interior of A, denoted by A°, 

is the largest, in the sense of containment, open set 

contained in A, and is obtained by taking the union of 

all open sets contained in A. 

DEFINITION 1.7 -A- space (S,T) is called T^ if and 

only if for each point p in S, the set CP} is a closed set. 

The next definition is equivalent to the one above. 

DEFINITION 1.7.1 A space (S,T) is called T^ if and 

only if for each pair of distinct points p and q in S, 



there is an open set which contains one point but does 

not contain the other. 

DEFINITION 1.8 A space (S,T) is called Hausdorff 

or Tg if and only if for each pair of distinct points p 

and q in S, there exist disjoint open neighborhoods U 

and V containing p and q respectively. 

The two previous definitions give rise to a very 

important theorem, although a simple one. 

THEOREM 1.4 If a space (S,T) is T2, then it is Tx. 

DEFINITION 1.9 A space (S,T) is called regular if 

and only if for each point p in S, and each open neighbor-

hood U of p, there exists an open neighborhood V of p and 

contained in U such that V is also contained in U. 

Sequences 

DEFINITION 1.10 Let -f be a sequence of points 

in a topological space (S,T). Let p be an element of S. 

Then the sequence converges to p if and only if 

for each open neighborhood U of p, there is an integer 

m > 0 such that if n>m, then is in U. 

Notice that the above definition implies that if U 

is any arbitrarily chosen open neighborhood of p, then 

then there can exist at most a finite number of points 

of the sequence outside of U. 

The notation will mean that the sequence 

^ an^ converges to the point p. Under this definition, 



sequences will behave the same as do those defined on 

the real number line, i.e. , with the usual topology-

defined on , in which open sets take the form of unions 

of open intervals. This is pointed out by the following 

theorem. 

THEOREM 1.5 If (S,T) is a ^ topological space, 

then 

a) if the sequence ^ a s a limit, then this 

limit is unique, and 

b) every subsequence of has the same limit. 

DEFINITION 1.11 Let (S,T) be a space, and let C 

be a collection of open neighborhoods of the point p in S. 

a) The set C is a local base at p if and only if 

for every open neighborhood U of p there is an 

open neighborhood V in C such that V is a subset 

of U. 

b) The space (S,T) is first countable if and only 

if each point in S has a countable local base. 

The notion of a countable local base at a point is 

a powerful one, but is a little difficult to apply in the 

proofs of this paper. Therefore the following definition 

is made. 

DEFINITION 1.12 A sequence £*A^ of sets is monotone 

descending if and only if A n + 1 C
 A

n for every n in N, the 

positive integers. 



On the basis of the previous definition, the following 

theorem is stated. 

THEOREM 1.6 If is a countable local base at 

the point p, then there is a monotone decreasing sequence 

of open neighborhoods which is a countable local base 

at p. 

This theorem is a very powerful and useful one, 

and in the course of this paper, whenever it is assumed 

that there is a countable local base at a point p, it 

will be understood that it is the monotone descending 

sequence of open neighborhoods which is guaranteed by 

the above theorem. 

THEOREM 1.7 In a first countable space, the point 

p is a limit point of the set A if and only if there is 

a sequence of points in A - £p} which converges to p. 

Theorem 1.7 will be of invaluable use in a later 

theorem which will give conditions for a function F to 

be continuous at a point. 

DEFINITION 1.13 A family C of sets is called a 

cover for a set A if and only if A is a subset of the 

union of the members of C. The set C is called an open 

cover if and only if each member of C is an open set. 

A subfamily D of C is called a subcover for A if and 

only if D covers A. 



Another property of topological spaces, compactness, 

is defined in terms of open coverings, and a definition 

and theorems ar; bated later in this chapter. 

Connectedness 

DEFINITION 1.1^ Two subsets A and B of a space 

(S,T) are said to be separated if and only if A and B 

are nonempty, and AflB = 0 = Af} B. 

DEFINITION 1.15 A set U is said to be open in a 

set V if and only if U is a subset of V, and U is the 

intersection of V and an open set in (S,T). Likewise, 

U is said to be closed in V if and only if U = CflV 

where C is closed in (S,T). 

THEOREM 1.8 Let A and B be nonempty disjoint 

subsets of a space (S,T). Then 

a) A and B are separated if and only if each is 

open in their union. 

b) A and B are separated if and only if each is 

closed in their union. 

DEFINITION 1.16 A subset H of a space (S,T) is said 

to be connected if and only if H is not the union of two 

separated sets. 

In order to prove that a set U is connected, the 

approach in this paper will be to take two arbitrary disjoint 

subsets of U whose union is U, and show that they cannot be 

separated. 



THEOREM 1.9 A subset Y of a space (S,T) is connected 

if and only if Y contains no nonempty proper subset which 

is both open and closed in Y. 

THEOREM 1.10 Let C be a' connected set, and let D be 

a set such that C C D C C . Then D is connected. 

From the above theorem, it is seen that the closure 

of a connected set is connected.. Furthermore, if any 

number of the limit points of a connected set C are added 

to C, then the result is still connected. 

DEFINITION 1.17 A space S is said to be locally 

connected if and only if for each element p in S and each 

open neighborhood U of p there is a connected open neigh-

borhood V of p such that V C U . 

DEFINITION 1.18 A subset C of a set A is a component 

of A if and only if C is a connected set that is not a 

subset of another connected set in A. 

Notice that if C is a component of a set A, then C 

is a maximal connected subset of A. 

THEOREM 1.11 Let (S,T) be a topological space. 

a) Each connected subset of S is contained in a 

unique component of S. 

b) Each component of S is closed. 

c) If A and B are different components of S, then 

A and B are separated. 

If the set of all components of a space is denoted 

by C,- then it is immediately seen that C is a partition 
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of* the space. If any two components of the space are 

chosen, these components will be disjoint. Also, since 

a single point is obviously connected, then it must be 

contained in some unique component or the space. 

Boundary Points 

DEFINITION 1.19 If p is a boundary point of a set U, 

then every open neighborhood of p contains a point of U 

and a point of the complement of U, both distinct from p. 

It is clear from the definition that if p is a limit 

point of a set U such that p is not in U, then p is also 

a boundary point of U. Also notice that if p is a boundary 

point of a set U, then it is also a boundary point of the 

complement of U. Therefore, from Theorem 1.1, it is seen 

that an open set cannot contain any of its boundary points, 

and that a closed set must contain all of its boundary 

points. 

DEFINITION 1.20 If U is a subset of a space S, then 

the set of boundary points of U will be denoted by B ( u ) . 

THEOREM 1.12 If S is a connected space, and U is a 

subset of S, then B ( u ) ^ 0. 

The proof of the above theorem follows from the 

remarks preceding Definition 1.20 above, and from 

Theorem 1.9- If U were a subset of S such that B ( u ) = 0, 

then there certainly cannot be any limit points of U 

which do not lie in U, and thus U must be closed. But 



the same thing can be said for the complement of U, and 

thus the complement of U must also be closed. Thus U and 

its complement are both open and closed, which is a contra-

diction to Theorem 1.9? since S is connected. This is a 

very important observation, since many of the later theorems 

will be dealing with the boundary points of a set, and it 

would be useful to know that this set of boundary points is 

nonempty. Therefore it will always be assumed that the 

underlying space is connected, so that whenever the set 

B ( u ) is considered, where U is a nonempty proper subset of 

the space, then B ( u ) / 0, 

Metric Spaces 

DEFINITION 1.21 Let S be a set. A mapping d:SxS—>R, 

where R is the set of reals, is a metric on S if and only 

if for all x, y, and z in S, 

a) d(x,y)> 0, 

b) d(x,y) = 0 if and only if x = y, 

c) d(x,y) = d(y,x), 

d) d(-x,y) < d(x,z). + d(z,y). (triangle inequality) 

DEFINITION 1.22 Let p be an element of S and let 

r be a positive real number. Then the set denoted by 

S » - / X i. in S, d(x,p) < R 3 is called an r-sphere 

about p, p is called the center and r the radius of 5^(p). 

The topology induced by B = ̂ S r(x) / x in S, r in r J 

jL the set of all possible unions of elements of B, is 
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called the metric topology for S, and open sets in S take 

the form of unions of elements of B. Then the space S, 

with the metric topology, is called a metric sp.ca. A metric 

space is fairly well behaved, and has most of the basic 

properties that will be required in later proofs. 

TPIEOREM 1.13 Every metric space is a space. 

THEOREM 1.14 Every metric space is first countable. 

Continuity 

DEFINITION 1.23 Jet (X,T) and (Y,F) be topological 

spaces, and let F be a mapping from X into Y. 

a) Let p be an element of X. The mapping F is said 

to be continuous at p if and only if for each open 

neighborhood U of F(p) there is an open neighborhood 

V of p such that F(v)CU. 

b) The mapping F is said to be continuous on X if and 

only if it is continuous at each point in X. 

The following theorems are made use of throughout this 

paper, for they give necessary and sufficient conditions 

that a mapping F be continuous on a space. 

THEOREM 1.15 Let F be a mapping of a space X into a 

space Y. Then the following statements are equivalent. 

a) The function F is continuous. 

b) For each open subset G of Y, F "*"(G) is open in X. 

•—I 

c) For each closed subset A of Y, F (A) is closed 

in X. 
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d) For each subset A of X, F(A)C F(A). 

e) For each subset B of Y, F _ 1(B)C F~1(B). 

THEOREM l»l6 Let F be a mapping of a first countable 

space X into a space Y and let p be an element of X. Tlien 

F is continuous at p if and only if the sequence ^F(xn)^ 

converges to F(p) for each sequence that converges 

to p. 

Since a metric space is first countable, then both 

of the preceding theorems apply to metric spaces. 

There are many properties of spaces and subsets of 

spaces which are preserved under continuous mappings in 

their continuous images. One is given by the next theorem, 

and others will be presented as needed throughout this 

paper. 

THEOREM 1.17 Let X and Y be topological spaces, and 

let F be a continuous mapping from X into Y. Let C be a 

connected subset of X. Then F ( c ) is connected in Y. 

Compactness 

DEFINITION l.Zh Let X be a topological space, and 

let A be a subset of X. 

a) The set A is said to be compact if and only if 

every open cover for A has a finite subcover for A. 

b) The set A is said to be .countably compact if and 

only if every infinite subset of A has a limit 

point in A. 
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. DEFINITION 1.25 A space S is said to be locally 

compact if and only if for each, x in" S and each, open 

neighborhood U of x there is an open subneighborhood ¥ 

of U and containing x such that ¥ is compact. 

THEOREM 1.18 If A is a compact subset of a space 

S, then A is countably compact. 

THEOREM 1.19 A closed subset of a compact set is 

compact. 

THEOREM 1.20 A closed subset of a countably compact 

set is countably compact. 

There are other definitions which will be presented 

as they are needed. These deal mainly with peripherally 

continuous functions, connectivity maps, and graph maps, 

and thus do not really belong in this chapter, since, as 

already pointed out, the preceding material is merely 

intended to provide basic material which is necessary to 

understand the proofs in later chapters. 



CHAPTER II 

PERIPHERAL CONTINUITY 

For purposes of simplification, it will be assumed 

that, unless otherwise stated, the topological spaces 

dealt with in the remainder of this paper will be at 

least Hausdorff, regular and connected, as defined in 

Chapter I. 

DEFINITION 2.1 Let X and Y be topological spaces. 

Let p be an element of X. Then a mapping F from X into 

Y is said to be peripherally continuous at p if and only 

if for each pair of open neighborhoods U and V of p and 

F(p) respectively, there exists an open subneighborhood ¥ 

of U and containing p such that F ( B ( W ) ) C V . The mapping 

F is said to be peripherally continuous on X if and only 

if it is so at each point of X. 

A natural question arises at this point, whether or 

not continuous functions are peripherally continuous. 

Thus the following theorem is stated. 

THEOREM 2.1 If F is a continuous mapping of a space 

X into a space Y,' then F is peripherally continuous. 

PROOF: Let x be an element of X, and let U and V 

be open neighborhoods of x and F(x) respectively. Since 

F is continuous, there is an open neighborhood ¥ of x 

13 
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such that F ( W ) C V . Let VflU = D. Then D is a subset of 

W, and therefore F ( D ) C P ( ¥ ) C V . Since D is also an open 

neighborhood of x, then there is a subneighborhood II of D 

and containing x, such that HCD, since all spaces have 

been assumed regular. Then the boundary of H, B(H), is 

contained in H and thus in D, and therefore is contained 

in W, so that F ( B ( H ) ) C F ( W ) C V . Then F ( B ( H ) ) C V , and F 

is peripherally continuous at x, and thus on X. 

Although a continuous function is always peripherally 

continuous, the converse is not necessarily true. The 

following is an example of a one to one peripherally 

continuous mapping of the unit interval onto itself, which 

is not continuous. 

EXAMPLE 2.1 Let F be a mapping of the open inter-

val (0,l) onto itself, defined as follows. Let x be an 

element of the interval. If x is rational, then define 

F(x) = x. If x is irrational, define F(x) = 1 - X. It 

is clear from Figure 2.1 that F is continuous only at the 

point and is discontinuous everywhere else. Let p be 

an element of the interval, p ^ Let V be an open 

neighborhood about p, such that V is properly contained 

in the interval, in the range. If p is rational, then 

the irrational points of any open neighborhood about 

F ~̂ (p) will not be thrown entirely into V. Similarly, 

if p is irrational, the set of rational points of any 
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open neighborhood about F ~ L ( P ) ^ I 1 1 n o t b e t h r o w n entirely 

into V. However, given any open neighborhood U of F 1(p), 

there can always be found an open subneighborhood V of U, 

containing F_1(p), and which has rational endpoints if p 

is rational, and irrational endpoints if p is irrational. 

0 

Fig. 2.1—A peripherally continuous mapping which 
is not continuous. 

The endpoints of these open neighborhoods are mapped 

into V, and since these endpoints are the boundary points 

of the open neighborhoods, it follows from the definition 

.that the mapping F is peripherally continuous. 

The next example is also an example of a one to one 

peripherally continuous mapping which is not continuous. 

In this case, however, the mapping is not onto, and the 

image of a bounded space is unbounded. It is defined in 

much the same way as was the function in the previous 

example. 
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EXAMPLE 2.2 Let F be a mapping of the open inter-

val (0, TT/2) into the positive reals, defined as follows. 

Let x be an element of the interval. If x is rational, 

define F(x) = tan(x). If x is irrational, then define 

F(x) = cot(x). The function is continuous at the point 45° 

and discontinuous elsewhere. The function is, however, 

peripherally continuous. The mapping is not onto, for 

there are infinitely many points in the range which are 

neither the image of a rational under the tangent function, 

nor the image of an irrational under the cotangent function. 

The point tan( ff/2 - 1/5) is an example. 

The next theorem deals with the concept of a se-

quence of sets converging to a point. The definition 

given below reads very much like Definition 1.10 in 

Chapter X. 

DEFINITION 2.2 If is a sequence of sets, then 

K \ converges to the point p if and only if for each 

neighborhood U of p there is an integer m > 0 such that 

if t> m, then A^CU. 

THEOREM 2.2 A necessary and sufficient condition 

that a function F which maps a space X into a space Y 

be peripherally continuous is that for each p in X there 

exists a countable local base P such that the 

sequence converges to F(p). 

PROOF: Suppose that F is peripherally continuous. 

Let and be countable local bases for p and F(p) 
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respectively. Consider U 1 in • There is an open 

neighborhood of p such that aiid C^C . 

Let ¥ x = Note that ¥ x contains p. 

There is an open neighborhood C 2 of p such that 

C g C W , and CgC ^ . Note that and C 2 C U 2 . 

Let W 2 = U 3 0 C 2 . 

By continuing in this manner, a sequence of 

open neighborhoods of p is constructed which is a coun-

table local base for p. This countable local base has 

the additional property that if n < m, then not only is 

it true that Cm<Z C n, but also that C m C C n. This inclusion 

is proper, or else would be both open and closed in X, 

and X would not be connected, by Theorem 1.9. This is 

a contradiction to the original assumption that all spaces 

considered in this chapter are connected. 

Consider C 1 in • There is an open neighborhood 

K of p, K 1 C C 1 , such that f C b C k ^ J C V . ^ There is an 

element C of fc ? such that C C K, . Then there is an 
m (_ m l 

open neighborhood Kg P such that K ^ C C m + ^ and such 

that F(B(K 2))CV 2. Note that K 2 together with all of 

its boundary points is properly contained in , since 

K 2 C 0 n , + l * m P l i e s that B ( K 2 ) C . C n + 1 C C ] ] C K 1 . 

By continuing in this manner, anotlier countable 

local base of p is constructed, which, from the 

method of construction, has the property required in 
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the hypothesis, that the sequence of sets ^*F(b(K^))^ 

converge to F(p). 

Suppose there is a countable local base for each 

p in X such that converges to F(p). Let p be 

an element of X. Let U and V be open neighborhoods of p 

and F(p) respectively. Then there is an m> 0 such that 

if t > m, then F ( B ( K , ) ) C V . Also, there is a K . such that 
J 

K.CU. Let z = max fj, m+lj . Then m < z , and K C K . , so 
J ^ J 

that K CI U, and F(B(K ) ) C Y . Thus F is peripherally 
21 25 

continuous at p, and thus on X. 

The next theorem follows almost immediately from 

the previous theorem. 

THEOREM 2.3 If F : X - * Y , and F is peripherally con-

tinuous, then, if p is in X, there is a sequence $ x^jj of 

distinct points converging to p such that the sequence 

^ F ( x n ) ^ converges to F(p). 

PROOF: In the proof of Theorem 2.2 there was 

constructed a sequence of sets about arx arbitrary 

point p which had the property that if C m and were 

in f c r , where m > n , then C C C C C , so that the L nj ' m m n 

boundaries of C and C were disjoint. Since f c r was 
m n <- ii) 

a countable local base for p, then, if one point is 

chosen from the boundary of each , the desired sequence 

is constructed, with the desired properties. 
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Theorem 2.3 states that if a function is peripherally 

continuous, then there must exist at least one convergent 

sequence such that the limit of the images of the members 

of the sequence converge to the image of the limit. 

Peripheral continuity does not, in fact, cannot, guarantee 

this for every convergent sequence, as continuity does, 

or else peripherally continuous functions would always 

be continuous by Theorem 1.16. 

The converse of Theorem 2.3 is not necessarily true, 

obviously, and the next example illustrates this, as well 

as a one to one peripherally continuous function whose 

inverse is not peripherally continuous. 

EXAMPLE 2.3 Let F be a one to one and onto mapping 

of the set A = £o, 71/2) U (77/2, 77") onto the interval (-l,+l) 

defined as follows. If x is an element of [0,T/2), define 

F(x) = sin(x). If x is an element of the interval (77/2,77), 

define F(x) = cos(x). The function is continuous on each 

of the intervals, and therefore on A, and thus is also 

peripherally continuous on A. The inverse of F is not 

peripherally continuous at the point 0 in the range. 

For example, let U be the interval (-1/3, +l/3) about 0 

in the domain. Then the endpoints, the boundary 

points, of any open interval containing F(0) will be 

mapped partly into, and partly outside of U by the 

function F-"1". 
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As for the convergent sequence whose image converges 

to the image of its limit, consider the sequence f i J . 

which converges to 0 in the range. The sequence tT~x&} 
_1 , . _i 

converges to P (0), and yet F is not peripherally-

continuous at 0, as already noted. 

+1 

0 

-1 

Fig. 2.2—A peripherally continuous mapping whose 
inverse is not peripherally continuous. 

Although the next theorem does not deal specifically 

with peripherally continuous functions, it is useful in 

the proofs of several later theorems. 

THEOREM 2.k If C is a connected subset of a connec-

ted space X, and H is a subset of X such that Hf)C ^ 0, 

and nflc is a proper subset of G, then B(H)H C -f 0. 

PROOF: Suppose, by way of contradiction, that 

B(H)DC = 0. Let H 0 C = J, and C - J = K. Then jflK = 0 
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and J U K = C. Note that K is a subset of the complement 

of II. Now J contains no limit points of K, or else these 

limit points would be boundary points of H lying in C. 

Likewise, K contains no limit points of J by the same 

reasoning. Then J and K are separated, and C is not 

connected. This is a contradiction. Thus B(H ) 0 C -/ 0. 

The next several theorems deal with various proper-

ties of peripherally continuous functions. 

THEOREM 2.5 If F is a peripherally continuous 

mapping from a space X into a space Y, and N is a closed 

subset of Y, then every component of F "*~(N) is closed. 

PROOF: Denote F~"*"(N) by A, and let H be a component 

of A. Suppose, by way of contradiction, that H is not 

closed. Then there must exist a limit point q of H such 

that q is not in H. Now q is not in A, or else PI U £qj 

is a subset of A and contains H, and since by Theorem 1.10 

the set HU£qj is connected, then H would not be a max-

imal connected subse t of A, i_. e_. , a component of A. 

Let F(q) = z. Since q is not in A, then z is not in 

N, so that, since N is closed, there must exist an open 

neighborhood V of z such that V f! N = 0. 

If H is degenerate, then II is a closed component of 

A, and the proof would be concluded. Then suppose H is 

not degenerate. Let p be an element of H. Then q p p, 

so that there is an open neighborhood D of q such that 

p is not in D. Thus DPlH is properly contained in H, and 
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is not empty, since q is a limit point of H. Then there 

must exist an open neighborhood U or q such that UCD, 

and such that F(b(u))CV. Then, since V fl N = 0, it must 

be true that B(u)flA = 0, and thus B(u) Oil = 0. This is 

a contradiction to Theorem 2.4. Therefore H must be 

closed. 

Notice the similarity between the above theorem and 

Theorem 1.15-c in Chapter I. A necessary and sufficient 

condition that a function F be continuous is that the 

inverse image of every closed set be closed. The above 

theorem states that a necessary condition that a function 

F be peripherally continuous is that the components of the 

inverse image of every closed set be closed. 

Notice also the similarity between the following 

theorem and Theorem 1.15-d, which gave necessary and 

sufficient conditions that a function F be continuous. 

THEOREM 2.6 If F is a peripherally continuous map-

ping of a space X into a space Y, and N is a connected 

subset of X, then F(n)C f'(n') . 

PROOF: The proof follows almost immediately fx̂ om 

the previous theorem. Denote F-'*' (F( N) ) by A. Then N 

is a subset of A, and since N is connected, it must be at 

least a subset of some component, say H, of A. Then, since 

H is closed by the previous theorem, the closure of 
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the set N is a subset of II and thus of A, and f(N) is a 

subset of F(A) = F(N). 

THEOREM 2.7 Suppose F is a one to one peripherally 

continuous mapping of a space X onto a space Y. Suppose 

that M is a nondegenerate connected subset of X, such that 

X - M has only a finite number of components. Let x be 

in the boundary of M such that x is a limit point of X - M. 

Then F(x) is a boundary point of F(M). 

PROOF: Let F(x) = y. It will be shown that for each 

open neighborhood V of y there is an open neighborhood of 

x whose boundary maps into V, such that there is a point 

of the boundary in M and a point in X — M. This will give 

a point of F(M) and a point of F(X - M) in V, since F is 

one to one, and this will.imply that y is a boundary 

point of F(M). 

It needs to be shown at this point that there is an 

open neighborhood H of x that does not contain any com-

ponent of X - M. Let K be a set of points consisting of 

one point from each component of X - M. Then IC must be 

finite, and for each point t in K there must exist an 

open neighborhood of x such that t is not in . If 

one such open neighborhood is constructed for each point 

in K, then the set of all such open neighborhoods must 

be finite. Denote their intersection by H. Then H is 

an open neighborhood of x which is disjoint from the set 

K. Thus if C is any component of X - M, then H cannot 
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contain C. Since x is a limit point of X - M, then II 

must contain at least one point of X - M distinct from x. 

Therefore H must intersect at least one component of X - M 

and this intersection must be properly contained in the 

component. 

Since M is nondegenerate, there is a point z of M 

such that z ^ x. There is an open neighborhood A of x 

such that z is not in A. Then D = Afl H is an open neigh-

borhood of x that does not contain z. There is an open 

neighborhood,¥ of x such that ¥ is contained in D, and 

such that F ( B ( W ) ) C I V . Then ¥ does not contain z, ¥ is 

a subset of H, and ¥ clearly has the same properties 

attributed to H in the preceding paragraph. 

Suppose, by way of contradiction, that B(¥ )fl(X - M) 

is empty, or that B(¥)flM is empty. 

Case 1: Suppose that B(w) fl (X - M) = 0. Then there is 

a component C of X - M such that ¥flc ^ 0, and such 

that ¥ fl C is properly contained in C. But, since 

B(¥)fl(X - M) = 0, then B(¥)flC = 0, and this is 

a contradiction to Theorem 2.4. 

Case 2: Suppose that B(¥)flM = 0. Then ¥ fl M ^ 0, 

since x is in the boundary of M, and since z is 

not in ¥, then ¥flM is contained properly in M. 

This is a contradiction to Theorem 2.k, 

Thus there must be a point of the boundary of ¥ 

in M and a point of the boundary in X - M. Since the 
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image of this boundary is contained in V, this is suffi-

cient to show, as stated at the beginning of the proof, 

that x is a boundary point of F(M). 

THEOREM 2.8 If F is a peripherally continuous 

mapping from a space X onto a space Y, M is a subset of 

Y, y is an element of the interior M° of M, x is an 

—*1 — X 
element of F~ (y), then x is a limit point of F~ (M). 

PROOF: Let U be an open neighborhood of x. Then 

there is an open subneighborhood V of U, containing x, 

such that VCZU. Then M° is open about F(x) = y, so that 

there must exist an open neighborhood J of x and which is 

contained in V such that F(B(J))CM°. 

Let p be an element of B(J). Then p ^ x, F(p) is 

in M°, p is an element of F ^(M°) and thus is an element 

of F~^"(M). In addition, since J is a subset of V, then 

p must be an element of V, and thus of U. Therefore 

every open neighborhood of x contains a point of F 

different from x, and thus x must be a limit point of 

F _ 1(M). 

THEOREM 2.9 If X and Y are metric spaces, is 

a sequence of functions which approaches a function F 

uniformly, F and F^ for each n maps X into Y, and each 

F is peripherally continuous, then F is peripherally 

continuous. 

PROOF: Let p be an element of X. Let U and ¥ be 

open neighborhoods of p and F(p) respectively. Then 
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there is an e> 0 such that Se(F(p))CV. Then e/6> 0, and 

there is an n > 0 such that if m > n, then d(Fm(p), F(p))<e/6, 

Now F is peripherally continuous, so that there is an 

open subneighborhood of U, containing p, such that 

Fm(B(U^) )C Sey-g(Fm(p) ) . Hence, if z is a boundary point 

of , then d(Fm(z), Fm(p))< e/6. Then, using the triangle 

inequality for a metric space, the two previous distance 

inequalities give d(Fm(z), F(p))<e/3. But the sequence 

is converging uniformly, so that d(Fm(z), F(z))<e/6. 

This, together with the inequality immediately before, 

again using the triangle inequality, gives rise to the 

inequality d(F(z), F(p))<e/3 + e/6 = e/2<e. Therefore 

F(z) is contained in the open neighborhood Se(F(p)) which 

is a subset of V, and thus the image of the boundary of 

is contained in V. Thus F is peripherally continuous. 

In the above theorem, it is necessary that the 

convergence of the sequence of functions be uniform. If 

the sequence does not converge uniformly, it is not 

necessarily true that F is peripherally continuous. This 

is pointed, out in the following example. 

EXAMPLE 2.4 Consider the sequence ^ F ^ of functions 

defined by ^m(x) = tan
m(x) over the interval [o, v/uj. 

Each, function F throws the closed interval onto the 
m 

closed interval [0,1]. Each F^ is continuous, and thus 

is peripherally continuous by Theorem 1.1. Notice, 

however, that the sequence does converge, but not 
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uniformly, to the function F which throws the closed 

interval Eo, tfA] ont o the subset [0,1] of the Y axis, 

and which is defined by F(x) = 0 if x is in the interval 

['0,ir/h), and F(x) = 1 if x = 1f/l\, This function is clearly 

not peripherally continuous at the point 1 in the range. 

Consider an open interval V about 1 which does not include 

0, in the range. The boundary points of any open interval 

containing Tf/h will be thrown into 0, and thus cannot be 

thrown into Y. Thus F is not peripherally continuous. 

•y = tan^x 

•y = + 2 

tan x 

y = tan x 

Fig. 2.3—A sequence of peripherally continuous 
functions which converges, but not uniformly. 

The remainder of the theorems in this chapter give 

conditions under which a peripherally continuous function 

will be continuous. 

THEOREM 2.10 If F is a peripherally continuous 

mapping of a space X onto a space Y, and if for each 
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closed subset M of Y, F lias only a finite number 

of components, then F is continuous. 

PROOF: If M is any closed subset of Y, then each 

component of F "̂ (M) is closed, by Theorem 2.5. Since 

there is only a finite number of components of M, then 

their union is closed. But their union is F~"^(M), and 

thus F ~*"(M) is closed. Then F is continuous on X, by 

Theorem 1.15-c. 

THEOREM 2.11 If F is a peripherally continuous 

mapping of a space X into a space Y, and each x in X 

has the property that for any open neighborhood U of 

F(x), there is an open subneighborhood V of U, containing 

F(x), such that X - F "̂ (v) has only a finite number of 

components, then F is continuous. 

PROOF: Let x be an element of X. Let U be an open 

neighborhood of F(x). Then there is an open neighborhood 

¥ of F(x), contained in U, such that X - F~1(¥) has only 

a finite number of components. Now X - F _ 1(¥) is clearly 

the same as F"1(Y - \t) . Since ¥ is open, then Y - ¥ is 

closed, and X - F "*"(¥) is the inverse image of a closed 

set. Then by the same reasoning as that in the proof 

of the previous theorem, X - JF~
1(¥) is closed. Therefore 

F 1(¥) must be open. Now F _ 1(¥) contains x, and 

F(F "*"(¥)) = ¥ is a subset of the arbitrarily chosen 

neighborhood U of x. Then F is continuous on the space X 

by Definition 1.23. 
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THEOREM 2.12 Suppose that F is a peripherally 

continuous mapping of a space X into a space Y. Suppose 

that if N is a closed subset of Y and x is an element of 

X - F~1(N), then there is a neighborhood R of x such that 

R intersects at most a finite number of components of 

F"~̂ "(N). Then F is continuous. 

PROOF: Let x be an element of X, and let V be an 

open neighborhood of F(x). Denote the complement of V 

by N, which is closed in Y. Then F(x) is not in.N, and 

thus x is not in F-1(N), and x must therefore be in 

the complement of F-;I"(N). Then there is an open neigh-

borhood R of x such that R intersects at most a finite 

number of components of F "*"(N). Now from Theorem 2.5> 

each of these components is closed, since N is closed, 

and since there is only a finite number of them, their 

union, denoted by T, is closed and is a subset of F "*"(N). 

Now x is not in F~^(N), and thus is not in this union, 

and thus is not in the intersection of R and T. Since 

x is in R, then Rfl (X - T) 0, and since (X - T) is 

open, then R fl (X - T) = ¥ is open. Since the union of 

the components of F **"(N) is exactly F "*"(N), then the only 

part of R which lies in F ~*~(N) must lie in T. Therefore 

¥ lies in the complement of F "*"(N), and thus F(¥) lies 

in the image of the complement of F "̂(N) , which is V. 

Therefore F is continuous at x and thus on X. 



CHAPTER III 

GRAPH MAPS AND CONNECTIVITY MAPS 

The definition of a connectivity map depends on the 

notion of a graph map. The definition of a graph map is 

therefore given first, and then the definition of a 

connectivity map. Properties of the graph map are devel-

oped first, and the remainder of the chapter* will be 

devoted to connectivity maps. The definition of a con-

nectivity map will be given again at that time. 

It has already been mentioned that all spaces will 

be assumed at least Hausdorff, regular and connccted. 

These and other special conditions for the spaces dealt 

with will be mentioned from time to time in the course of 

the chapter. 

Graph Maps 

DEFINITION 3.1 Let F be a mapping from a space S 

into a space T. Define g(x) = (x, F(x)) for each x in S. 

Then g is a mapping from S into SxT, and g is called the 

graph map of F. Then g(s) is called the graph of F, and 

g(s) is a subset of SxT. 

DEFINITION 3.2 Let F be a mapping from a space S 

into a space T. Then F is a connectivity map if and only 

if for every connected subset C of S, g ( c ) is connected, 

where g is the associated graph map of F. 

30 
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Since the statement of the theorems in this chapter 

will involve both the function F and the function g, then, 

for purposes of simplification, it will be assumed that 

whenever the functions F and g are mentioned, they will be 

exactly as defined in Definitions 3.1 and 3.2. 

Therefore in the following theorems and definitions, 

F will be a mapping of a space S into a space T, and g 

will be its associated graph map. If F is required to 

be an onto mapping, it will be so stated. 

In order to develop properties of the graph map, 

a discussion of the topology imposed on the space SxT 

is needed. 

DEFINITION 3-3 If S* and T* are the topologies for 

the spaces S and T respectively, then B* is a topology 

for SxT, where B* is the set of all possible unions of 

subcollections of the set B = £uxV / U in 5*, V in T * J . 

In other words, an open set in the cross product 

space SxT will be the cross product of an open set in 

S and an open set in T, or is the union of such cross 

products. If SxT is E^ , then it has been established 

many times, in other publications and texts, that B* can 

be thought of as unions of open circles in the plane. 

A very important point needs to be made at this time. 

If ¥ is any open neighborhood about a point p = (x,y) in 

SxT, then V, it has be ;n assumed, is the union of a 

collection of cross products of sets open in S and T. 
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Then there must exist open neighborhoods U and V of x 

and y respectively, where U is open in S and V is open 

in T, such that UxV is open in SxT and is a subset of ¥. 

It will be assumed that the open set UxV possesses the 

same degree of arbitrariness that was required of ¥. 

Therefore, whenever an arbitrary open neighborhood of 

a point p = (x,y) is required, it' will be assumed that 

it takes the form of UxV. 

Many times the set g(s) as defined in Definition 3.1 

is thought of as a topological space in its own right. 

The topology for g(s) is made up of sets formed by the 

intersection of an open set in SxT with g(s). That is, 

if G is open in g(s), then G is the intersection of an 

open subset of SxT with g(S). This is what one would 

expect from Definition 1.15 in Chapter I. Therefore, it 

follows from the above paragraph that when an arbitrary 

open set ¥ is required in g(s), it can be represented 

as ¥ = (UxV) f|g(s), where U and V are open in S and T 

respectively. 

Notice that the function g is one to one, since 

each x in S is matched with its image under F. Since 

F is a function, then two points of S could not be mapped 

to the same point in SxT. 

THEOREM 3.1 The function F is continuous if and 

only if g is continuous. 
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PROOF: Suppose that F is continuous. Let p = (a,b) 

be an element of g(S). Then b = F(a), a is in S, and 

g(a) = (a, F(a)) = p. Denote the relative topology for 

g(s) by R. Let ¥ be an open neighborhood about p. Then 

there are neighborhoods ¥ and M of a and F(a) respectively 

such that V = (WXM)D g(s). Now there is an open neigh-

borhood of p such that F ( V ^ ) C M , since F is continuous. 

Let A = W f| V. Then A is an open neighborhood of a, and 

F(A )CM. Then ACW and F ( A ) C M implies that AXF(A)CWXM. 

Then JaxF(a) Dg(S )J C [VxM fl g(sjj = V. Thus, since 

g(A)C/AxF(A)n g(sj, then g(A)C V, and g is continuous. 

Suppose that g is continuous. Let t be in S. Then 

F(t) is in T. Let V be an open neighborhood of F(t). Let 

U be any open neighborhood of t. Then (t, F(t)) is in 

UxV, and is in UxVflg(s) = A. Then, since g is continuous, 

there is an open neighborhood U.̂  of t such that g(U^) is 

a subset of A. Then g(U^ )C|UxV fl g(s)J. Let x be any point 

in • Then (x, F(x)) is in UxV, which implies that F(x) 

is in V, so that F ( U ^ ) C V . Thus F is continuous. 

The function g possesses a very important property 

that is used many times in succeeding proofs. 

THEOREM 3*2 The function g is an open and closed 

mapping. 

PROOF: It will be shown first that g is an open 

mapping. Let U be an open subset of S. Now the space T 

is open in itself, so that UxTHg(s) is open in g(S), and 
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clearly consists of all ordered pairs of the form (x, F(x)) 

for each x in U, Since this is the definition of g(u), 

then g( U) = UxTflg(s), so that the image under g of an 

open subset of S is open, and thus g is an open mapping. 

It will now be shown that g is a closed mapping. 

Let V be a closed subset of S. Then S - V is open, and 

g(S - V) is open. But, since g is one to one, then 

g(S - V) - g(s) - g(v), and since this is the open comple-

ment of g(v), then g(v) must be closed. Therefore g is 

a closed mapping. 

The fact that g is one to one, and is an open and 

closed mapping, regardless of whether g or F is continuous, 

leads to a very interesting theorem. 

THEOREM 3-3 If g is a graph map, then g is always 

continuous. 

PROOF: It has already been noted that g is one to 

one, so that g is a function. From Theorem 1.15-b, 

a function f is continuous if and only if for each open 

,-1. s ubset U of the image space, the set f~ (u) is open. 

- 1 - 1 

Since the inverse of g is simply g, then g must be 

continuous by virtue of the fact that its inverse maps 

open sets to open sets. 

It turns out that if F is continuous, that is, what 

some call well behaved, then the associated graph map 

g is well behaved indeed. 
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THEOREM 3.^ If* F is continuous, then g is a homeo-

inorphism. 

PROOF: For g to be a homeomorphism, g and g""*" 

must both be continuous, and g must be one to one and 

onto. 

Since F is continuous, then g is continuous. It 

was shown in the preceding theorem that g is continuous. 

It has already been shown that g is one to one, and g 

is certainly onto the space g ( s ) . 

Therefore g is a horaeomorphism. 

The following theorem gives sufficient conditions 

that F and g be continuous. 

THEOREM 3-5 If g(s) is compact, S is T^ and first 

countable, then F and g are continuous. 

PROOF: Let p be an element of S. Let ^Pn^ £>
e a 

sequence of points converging to p. Suppose, by way of 

contradiction, that ^g(pn)J does not converge to g(p), 

i.e., that g is not continuous, by Theorem 1.16. 

.Since g is one to one, the set ^£>(pn)3 i
s a n infinite 

subset of g ( s ) . Let U be an open neighborhood of g(p) 

such that there is an infinite number of elements of 

outside of U. This neighborhood must exist since 

£to(pn)} does not converge to g(p). Denote the complement 

of U by V. Then there is an infinite number of points 

of the set within V. Now g ( s ) is countably compact from 

Theorem 1.18, and since V is the complement of U, it is 
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closed, and this is also countably compact, by Theorem 1.20. 

Then the infinite subset Z of £g(Pn)J which lies in V must 

have a limit point q in V, and by Theorem 1.7J there must 

exist a sequence of points of Z which converges to q. 

Since q lies in the complement of U, and p is in U, then 

q ^ p. Notice that the sequence K ] is a subsequence of 

^g(Pn)} • Then, since g is one to one, the sequence £<2nJ 

is the image of an infinite subsequence ipk] o f • 

Or, to put it in another way, the sequence ^ P ^ -̂s 

continuous image under g of the convergent sequence { % } • 

Then, from Theorem 1.16, ^P^| must converge to g~"*"(q) = t 

in S. Again, since g is one to one, p ^ t since g(p) ^ q. 

This is a contradiction to Theorem 1.5. Therefore g is 

continuous, and thus so is F. 

The following theorem is similar to Theorem 3«1« 

THEOREM 3-6 The function F is peripherally con-

tinuous if and only if g is peripherally continuous. 

PROOF: Suppose that F is peripherally continuous. 

Let x be an element of S. Let M and ¥ be open neighbor-

hoods of x and g(x) respectively. Then ¥ = UxVHg(S), 

where U is an open neighborhood of x and V is an open 

neighborhood of F(x). Denote UfiM by Z. Then Z is open 

about x, and ZxVC¥. Now there is an open subneighborhood 

of Z and containing x such that U^CZ. There is an 

open neighborhood U 2 of x such that and such that 

F(B(U 2))CV. Since B(U 2)C U ^ C U ^ C Z, then B(U2)XV is a 
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subset of ZxV which, is a subset of ¥. Thus, if y is a 

boundary point of , then g(y) = (y, F(y)) is an element 

of B(U )xV and thus of ¥, so that g(B(lT0))CI ¥. Since U ? 

A, ^ 

is a subset of M, then g is peripherally continuous. 

Suppose that g is peripherally continuous. Let x 

be an element of S. Let U and V be open neighborhoods of 

x and F(x) respectively. Then UxV is open in SxT, and 

g(x) = (x, F(x)) is an element of UxY. Then there is an 

open neighborhood of x, contained in U, such that 

g(B(U^))CUxV. Let y be a boundary point of . Then 

g(y) = (y, F(y)) is in UxV, which shows that F(y) is in 

V for each y in 2(1^), so that F(B(UI))CV. Thus F is 

peripherally continuous. 

THEOREM 3.7 If K is a connected subset of g ( s ) , 

then g ^(K) is connected in S. 
-1 

PROOF: Since g is continuous, then the image of 

a connected set under g is connected by Theorem 1.17* 

THEOREM 3*8 If g is continuous, S is locally 

connected, then g ( s ) is locally connected. 

PROOF: Let p be an element of g ( s ) . Then p is of 

the form (a, F(a)) for some a in S. Let ¥ be an open 

neighborhood of p. Then g(a) = p is an element of ¥. 

Now g continuous implies that there is an open neighborhood 

M of a such that g(M) is a subset of ¥. Also, S locally 

connected implies that there is an open connected subset 

C of M, containing a. Then g ( c ) is a subset of ¥, and 
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since g is an open continuous mapping, then g(c) is an 

open connected subset of ¥ which, contains p. Thus g ( s ) 

is locally connected, 

THEOREM 3.9 If g is continuous, S is locally compact, 

then g ( s ) is locally compact. 

PROOF: Let p be an element of g ( s ) , and let ¥ be an 

open neighborhood of p. Then p = (a, P(a)) for some a in 

S, and ¥ = UxVfl g(S) for some open neighborhoods U and V 

of a and F(a) respectively. Since S is locally compact, 

there is an open subneighborkood of U, containing a, 

such that.U^ is compact. Notice that U ^ x v f l g ( s ) is an 

open subset of ¥ containing p. Denote U^xVflg(s) by . 

Now suppose that Q. is an open covering of . 

Then from Q can be constructed the set Q* which consists 

of the inverse images of the open elements of Q. It 

is clear that Q* is a covering for , and since g is 

continuous, each of the elements of Q* is open, so that 

Q* is in fact an open covering for . Then there is a 

finite subcovering of U,, and the open images of each of 

the elements of this subcovering is a finite subset of 

Q which covers . Thus is compact, and g ( s ) is 

locally compact. 

It might be thought that in Theorem 3.8, a suffi-

cient condition that g ( s ) be locally connected when S is 

locally connected is th^t g map connected sets to 
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connected sets. This is shown to be false in a later 

example. Connectivity maps will now be taken up, begin-

ning with the restatement of the definition of a 

connectivity map. 

Connectivity Maps. 

DEFINITION 3.4 Let F be a mapping from a space S 

into a space T. Then F is a connectivity map if and only 

if for every connected subset C of S, g ( c ) is connected, 

where g is the associated graph map of F. 

THEOREM 3.3.0 If F is continuous, then F is a 

connectivity map. 

PROOF: The proof follows immediately from Theorem 3•1 

which states that if F is continuous, then g is continuous. 

If g is continuous, then the image of connected sets under 

the mapping g are connected, by Theorem 1 . 1 7 . Thus F is 

a connectivity map. 

The next theorem is used several times in the expla-

nation of examples. 

THEOREM 3 * 1 1 If M i s a connected subset of S , and 

g(M) is not connected, that is, g(M) = H U K where H and K 

are separated, then any limit points of g~"^(H) that are 

contained in g "*"(K) are points of discontinuity of the 

function F. 

PROOF: Let g~1(H) = A, and g"1(K) = B. Then A U B = M, 

and A and B are disjoint, since g ^ is one to one• Since 
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M is connected, A and B cannot be separated, and thus at 

least one must contain a limit point of the other. Suppose, 

without loss of generality, that B contains a limit point x 

of A. Then g(x) is in g(B) = K, and since H and K are 

separated, there must exist an open neighborhood U of g(x) 

such that U and H are disjoint. Let V be an arbitrary 

open neighborhood of x. Then, since x is a limit point 

of A, then V must contain a point of A, and thus the image 

g ( v ) must contain a point of g(A) = II, and cannot be con-

tained in U. Then the image of no open neighborhood of x 

can be mapped by g entirely into U, and thus x must be a 

point of discontinuity of g, by Definition 1.23» and 

therefore is a point of discontinuity of F by Theorem 3*1 • 

Theorem 3«10 states that if F is continuous, then it 

is a conixectivity map. The converse is not necessarily 

true. 

EXAMPLE 3.1 For a noncontinuous example of a 

connectivity map, consider the function F(x) = sin(^) over 

the real numbers. The function is bounded, but oscillates 

near 0. If F(0) is defined to be 0, then the function is 

continuous everywhere but at 0. Consider any open neigh-

borhood U of 0 in the range, properly contained in the 

interval C - i . +3- Then any open neighborhood about 0 

in the domain is thrown onto the interval [-1, +3̂  , since 

the function oscillates an infinite number of times be-

tween -1 and +1 inclusive in any interval about 0. Thus 
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no open neighborhood about 0 could be thrown into U, since 

U is a proper subset of £-1, +3~| . 

Fig. 3.1--A noncontinuous connectivity map 

The function is, however, a connectivity map. Consi-

der any connected subset C of not containing 0. Since 

F is continuous everywhere but at 0, then g is discontin-

uous only at 0, is therefore continuous on C and thus 

g(c) is connected. Now consider any connected subset U 

of the domain containing 0. The connected set U must 

take the form of an interval, and therefore the image 

g(u) consists of an unbroken line in the second and third 

quadrantsan isolated point (0,0), and an unbroken line 

in the first and fourth quadrants. It is evident from 

Theorem 3.11 that any division of the image g(u) into 

two disjoint separated sets must result in the point (0,0) 

being the one and only "division" point, which would 
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clearly be a limit point of the set in which it is not 

contained. Thus the image of a connected set under the 

mapping'g is connected, and therefore F is a connectivity 

map. Notice that F is not one to one, a condition which 

a later theorem points out is sufficient for a connec-

tivity map from a metric space into to be continuous. 

The idea for the next example is found in a paper 

by 0. H. Hamilton, entitled '.'Fixed Points for Certain 

Noncontinuous Transformations." The paper is found in the 

Proceedings of the American Mathematical Society, volume 

eight, number four, pages 754-755 • 

EXAMPLE 3.2 As an example in E^ of & connectivity 

map which is not continuous, consider the following mapping 

of a closed 2-cell I of radius 1 and center at the origin 

into itself. 

Let (r,-©) denote a point of I, where 0 < r < l . 

Let q = e 2. Let C be a topological ray defined by the 

polar equation f('Q') = e^/(l + e^) if -g i •©• < oo, and (•©•,•§-) 

if 0 <•©•<-!-. As •©• increases without bound, the ratio 

e^/(l + e^) approaches 1. The ray C is depicted in Figure 

3.2. The ray has every point of the boundary G of I as a 

limit point. Clearly, any circle with radius less than 1 

will. intersect C in one and only one point. Then define 

a mapping F from I into itself as follows. If x = (r,-©-) 

is in X, 0 < r i l , define F(x) to be the point of C which 
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lies a distance (l - r) from the origin, i.e., the point 

of intersection of C with a circle of radius (1 - r). It 

has alz^eady "been noted that this point is unique. If 

x = (0,0), the origin, henceforth denoted simply by 0, 

let P(x) be a particular point 0' of the boundary of I. 

Fig* 3.2—A noncontiguous connectivity map 

Notice that all points of X which are the same dis-

tance from the origin are thrown by F to the same point of 

C. It turns out that F is continuous 011 I everywhere but 

at the origin, and therefore the image under g of any 

connccted subset of I which does not contain the origin 

\tfill be connected. Consider, then, a connected subset ¥ 

of I which contains the origin. Suppose, by way of contra-

diction, that g(w) is not connected. Then g(w) = H U K 

where II and K are separated. Let A = g (ll), and let 

B = g 1(K). Then Al)B = ¥, and A and B are disjoint. 

But, since ¥ is connected, then one of A and B must con-

tain a limit point of the othe:.-, and, in light of Theorem 3.11 
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Suppose, without loss of generality, that 0 is an element 

oT B and thus a limit point of A. Then g(0) is an element 

of K, and since Ii and K arc separated, there must exist 

open sets U and V of 0 and 01 respectively, such that 

UxV = D is open in g(l) = C, D contains g(0), a point of 

K, but no point of H. Notice that V can be chosen so 

that F ^"(v) is a subset of U, which a consideration of . 

the. construction of F will show. Then V cannot contain 

any points of F(A). But, since 0' is a limit point of C, 

as it lies in the boundary of I, then V must contain a 

point (l - t, •&) of C - F(A). Then the set P = F~1(l - t, •©•) 

is a circle with radius t, and since (l - t, •©•) does not 

lie in F(A) , then PflA = 0. Then A is divided into two 

sets A^ and A^, whore A^ is outside of the circle P and 

A^ is inside the.circle P. Clearly, the sets B U a ^ and A^ 

are separated, nonempty, and ¥ is the union of BU A^ and A^, 

which is a contradiction. Thus g(¥) must be connected, 

and F is a connectivity map. 

Theorem 3.8 states that if g is continuous, and S 

is locally connected, then g(s) is locally connected. 

Theorem 3.9 states that if g is continuous, S is locally 

compact, then g(s) is locally compact. It is not suffi-

cient that F be a connectivity map. 

EXAMPLE 3»3 In Example 3«1 a noncontinuous connec-

tivity map was defined. The gi~aph map g was not continuous, 
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the space S was locally coimccted and locally compact, 

but g ( s ) was not locally connected, and not locally 

compact. 

To show that g ( s ) is locally connected, in Example 

3.1, let U be an open circle with center at 0 and radius 

less than 1. If any open subcircle V with center at 0 

is considered, it is seen that Y contains infinitely 

many disjoint segments of g ( s ) , so that Vf"lg(s) cannot 

be connected. 

To show that g ( s ) is not locally compact, it will 

be shown that g ( s ) is not locally compact at 0. Consider 

the open circles U and V as defined in the preceding 

paragraph. Let A = Vflg ( s ) , It will be shown that 

A = V n g ( s ) is not compact, by showing that A is not 

countably compact, and using Theorem 1.18. The closure 

of "V clearly includes a point q in the interval (0,1) 

on '"ho Y axis such that q £ 0. Since 0 is the only point 

that is in g ( s ) , then q is not in A. As 

seen in the preceding paragraph, V contains an infinite 

number of disjoint segments of g ( s ) . Therefore A must 

consist of this infinite number of segments, togethe.r 

with their common points with the boundary of V. Con-

struct a sequence of points, one from each segment, which 

converges to q. Each of these points is in A, but the 

point q is not. Then this sequence is an infinite subset 
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of A which lias no limit j^oint in A. Therefore A is not 

countably compact, and therefore is not compact. Then 

g(s) is not locally compact at 0, and lience is not locally 

compact. 

EXAMPLE 3.h An example of a one to one connectivity 

map whose inverse is not a connectivity map is the function 

defined in Example 2.3 in the second chapter, and depicted 

in Figure 2.2. The function F is continuous, and thus is 

a connectivity map, but the inverse mapping is not a connec-

tivity map. No nondegenerate connected set containing 0, 

that is, no interval containing 0 has a connected image 

under g""*". The image of an interval containing 0 under 

g is split into two disjoint line segments, and thus 

cannot be connected. 

THEOREM 3.12 If F is a connectivity map, then F 

maps connected sets to connected sets. 

PROOF: Let C be a connected subset of S. Now, 

since F is a connectivity map, then g(c) = (CxF(c))f\ g(s) 

is connected. Suppose, by way of contradiction, that 

F(c) is not connected. Then there exist disjoint sets 
i 

A and B such that IflB = 0 = a A b , and a U b = F(c). 

Froxn Theorem 1.8, A and B are open in F(c), so that there 

are open sets U and V such that A = uflF(c) and such that 

B = VHF(C). Since S and U are open, then (SxU)FLG(c) = ¥ 

is open in g(c). Likewise, Z = (SxV)Pl g(c) is open in g(c). 

Now, since A and B are disjoint, then U and V are disjoint, 
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and hcnce Z and ¥ are disjoint. Then Z and ¥ are both 

disjoint and open in g(c), and z U v = g(c). Thus g(c) 

is not connected, by Theorem 1.8, and this is a contra-

diction. Therefore F(c) must be connected. 

THEOREM 3-13 If F is a com activity map from a T^ 

space S onto a space T, p is an element of S, U and V are 

open neighborhoods of p and F(p) respectively, then every 

nondegenerate connected subset of S containing p contains 

a point q in U, unequal to p, such that F(q) is in V. 

PROOF: Let C be a nondegenerate connected subset 

of S containing p. Since F is a connectivity map, then 

g(c) is connected. Let ¥ = (tfacV)fl g(s), which is open 

and contains g(p). Suppose, by way of contradiction, 

that C does not contain a point q in U and unequal fco p 

such that F(q) is in V, _!•_£•> that g (c)n ¥ = {e(p)j • 

Notice that since C is nondegenerate , then C must 

have at least a countably infinite number of points. If 

C consisted of only a finite number of points, then, 

since each point is a closed set in itself, any nonempty 

proper subset of C would be closed, as well as its comple-

ment with respect to C. Then C could not be connected, 

by Theorem 1.8. Since g is one to one, then g(c) must 

also have at least a countably infinite number of points. 

Let A = g(c) - g(p), and let B = £g(p)J . Then 

A flB = 0, and A U £ = 3 (C) • Also, A and B are nonempty 

proper subsets of g(C). Since ¥ is an open neighborhood 



48 

of g(p) which is dis j oint from A, then 3 contains no 

limit points of A, and thus A f| B ~ 0* But, since the 

degenerate set B is closed, being the image under the 

closed mapping g of a closed set £pj , then All B = AflB = 0 • 

Therefore A and B are separated, and hence g(c) is not 

connected, which is a contradic ti on• 

Then there must exist another point q in U such that 

Q P> q is contained in C, g(q) is in g ( c ) and hence that 

F(q) is in V# 

The above theorem merely states that there must exist 

at least one point q other than p in both C and U such 

that P(q) is in V# It turns out that there nmst exist 

at least a countably infinite number of such points. This 

is easily seen when it is pointed out that the set B as 

defined above would still be closed if it were composed of 

only a finite number of points, and the proof would be 

almost exactly the same. 

The only difference between the following theorem 

and Theorem 2.5 is the substitution of "connectivity map" 

f or "peripherally continuous function, Tt Notice again the 

similarity to Theorem 1•15-c, which gives necessary and 

sufficient conditions that a function be continuous• 

THEOREM 3•1^ If F is a connectivity map from a T^ 

space S into a space T, and G is a closed subset of T, 

then each component of F~1(c) is closed* 
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PROOF: Denote F "^(c) by D, and let ¥ be a component 

of D. Suppose, by way of contradiction, that ¥ is not 

closed. Then there is a limit point q of ¥ that is not 

in ¥. Note that q is therefore not in D, or else the 

set ¥U{qj would be connected by Theorem 1.10, and ¥ 

would not be a component of D. 

Consider the set E = (¥xC)fl g ( s ) , which is closed 

in g ( s ) since ¥ and C are closed. It will now be shown 

that g(¥) = E. Since F(¥)CC, then from the definition 

°f £'» s O O = (¥xC)flg(S). Now the only difference be-

tween ¥ and the closure ¥ of ¥ is the set of limit points 

of ¥ which are not in ¥. But it was shown above that any 

limit points which ai"e not in ¥ cannot be in D, and thus 

the image under F of these limit points cannot be in C, 

so that (¥xC)flg(s) = (¥xC)f|g(s). Therefore g(¥) = E, 

which was shown above to be closed. 

It has already been shown that ¥ U |(i] is connected, 

and since F is a connectivity map, g(¥ U £q] ) - g.00U(g(q)] 

is connected. Thus g(¥ U £q] ) is a connected set which is 

the union of two disjoint, closed, and thus separated sets, 

which is a contradiction. Hence ¥ must contain all of its 

1imit points, and therefore is closed. 

DEFINITION 3.5 A space S is said to be serni-locally 

connected at a point p if and only if for every open 

neighborhood U of p there is an open neighborhood V of p 

such that V is a subset of U, and such that X - V has 
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only a finite number of components. A spacc S is said 

to be sorai-locally comioctod if it is so at each of its 

points. 

The next two theorems give sufficient conditions 

that a connectivity map be continuous, 

THEOREM 3.15. If the function F is a connectivity 

map, S is and g(S) is semi-1ocally con. ected, then 

F is continuous. 

PROOF: Let p be an element of S. Let U bo an open 

neighborhood of g(p). Then, since g(s) is semi-locally 

connected, there is a subnoighborhood V of 1), containing 

g(p), such that the complement ¥ = g(S) - V of V has 

only a finite number of components. Since ¥ is open in 

g(s), then ¥ is closed. Then from Theorem 3«3» g is 

continuous, so that the inverse image of each of these 

— X 

components is also connected, and is a subset of g (¥)<> 

Xt will now be shown that those inverse images are 

components of g (¥). 

Let C be a component of ¥. Then g "^(c) is a 

connected subset of Q = g "*"(¥). Suppose that A = g~^(c) 

were not a component of Q. Then there is a connected 

set B which is a component of Q and which contains A 

proper]y. Then g(A) = C is a proper subset of g(B), 

since g is one to one, and since F is a connectivity 

map, then g(B) is corrected and is a subset of ¥. 

This contradicts the origina." assumption that C was a 
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component of ¥. Thus A must be a component of Q. Thus 

Q has only a finite number of components, since each is 

the inverse image under g of a component of ¥. 

Consider the component C of ¥. Since ¥ is closed, 

then the closure of C must be contained in ¥, and since 

the closure of a connected set is connected, and C is a 

component of ¥, then clearly C must be closed. Therefore 

the inverse image of C, g'^Cc) = A, must be closed. If 

A were not closed, then the set A U , where q is a 

limit point of A which is not contained in A, would be 

connected. Then by the same reasoning as in the proof 

of Theorem J.Ik, the set g(A U £qj) would be connected. 

Then, since g(A U (qj ) = g(A) U £g(q)] = C(Jj[g(q)J , and if 

q is not in A then g(q) is not in C, then there would 

exist a connected set which was the union of two disjoint 

closed sets, which is a contradiction. Thus each compo-

nent of Q must be closed, and since there is only a finite 

number of them, their union, which is Q, is closed. 

Then the complement Z of Q must be open, and the 

image under g must then be open. But, since g is one to 

one, then g(z) = g(S - Q) = g(s) - g(q) = g(s) - W = V 

which is a subset containing g(p) of the original arbi-

trarily chosen open neighborhood U of g(p). Then g 

is continuous, and so is F. 
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THEOREM 3,l6 If P is a one to one real valued 

connectivity map from a locally connected me trie space 

X onto E^, then F is continuous. 

PROOF: The fact that the image space is E^ shows 

that connected sets take the forni of intervals. Let p 

be an element of X. Let ^ be a countable local base 

for p. Since X is locally connected, there is an open 

and connected subneighborhood of which contains p. 

There is a U in -fu 1 such that U CI V. , and there is 
m L nj m 1' 

an open and connected subneighborhood of Uffl which 

contains p. Then V^C . Continue in this manner, 

getting a countable local base of open connected 

sets about p. 

Let ¥ be an open neighborhood about F(p). Then 

there is an open neighborhood contained in ¥ and 

containing F(p) such that = (F(p) - e, F(p) + e) whore 

e is a positive real number. Denote the inverse image of 

r 
'1 

the right endpoint of ¥_ by x, i.e., let x = F "(F(p) + e). 

Likewise, lefc y = F "*"(F(p) - e). Since F is one to one, 

then x -/ p / y, so that there is a Vjn in such that 

V contains p but not x. Likewise, there is a V, in fv J 
m * ' t i n ) 

such that V. contains p but not y. Let V denote the 
t P 

smaller of V and V,, in the sense of containment. Then m t 

neither x nor y is in V . Also, since V is connected, 
P P 

then F(V ) is connected in E,, and takes the form of an p 1 
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interval, and clearly is a subset of . Then F(V ) is 
J. p 

a subset of ¥, and thus F is continuous at p and thus on X. 

Notice that the previous theorem implies that any one 

to one connect i vity map from a locally connected first 

countable space into the reals is continuous. Notice also 

that the function g was never used in the proof• The proof 

merely made use of the fact that if P is a connectivity map, 

then F as well as g maps connected sets to connected sets. 

This paper is by no means a thorough investigation 

of peripherally continuous functions, graph maps or 

connectivity maps• For example, many more similarities 

could be demonstrated between the properties of periph-

erally continuous functions, graph maps or connectivity 

maps and continuous functions. 

There are certainly o thcr conditions which could 

be required of the spaces so that peripherally continuous 

functions and connectivit y maps would be continuous, 

conditions likely to be simpler than those presented 

here. A very interesting investigation might be to try 

to set'up Theorem 1.15 in Chapter X for peripherally 

continuous functions, and for connectivity maps• 

A subject no t touched upon in this paper is when 

peripherally continuous functions might also be connec-

tivity maps, and vice vorsa, without necessarily being 

continuous* This coui; be a very interesting subject. 


