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PREFACE

The purpose of this paper is to investigate some
of the more basic properties of peripherally continuous
functions, graph maps and connectivity maps. As it turns
out, continuous functions are peripherally continuous,
as well as connectivity maps. This is pointed out in
two later theorems.

* Although continuous functions are peripherally
continuous and are connectivity maps, the converse is
not neceésarily true. Each chapter will contain examples
of this,

An understanding of the concepts presented in a
basic course in topology is essential in following the
proofs presented here. The first chapter presents these
concepts in a more or less organized form. The second
chapter dcals with peripherally continuous functions,
ending with a few theorems stating conditions under which
peripheral continuity will imply continuity.

The third chapter deals with connectivity maps and
graph maps. The definition of a connectivity map depends
on the notion of a graph map, and so the first part of
the chapter is devoted to developing the idea of a graph
map, and ends with theorems stating under what conditions

a connectivity map will be continuocus.
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CHAPTER I
TOPOLOC. 7 L CONCEPTS

The proofs in this paper assume a familiarity with
a basic course in topoiogy. This chapter will set forth
the definitions and théorems, without proofs, which are
referred to in later proofs. Since this chapter deals
with topological spaces, the following definition is made.
DEFINITION 1.1 Let S be a set. A collection of
subsets T of S is called a topology for S if and only if
a) the union of each subcollection of T is a ﬁember
of T, and
b) the intersection of each finite subcollection of
T is a member of T.
The set S, with its topology T, is denoted by (S,T).
DEFINITION 1.2 If (S,T) is a topological space,
p is an element of 8, U is an element of T such that p
is in U, then U is called an open neighborhood of p.
DEFINITION 1.3 A subset V of S is said to be closed
if and only if its complement, denoted by 8§ - V, is open.
DEFINITION 1.4 Let U be a subset of a topological
space S. Then a point p is called a limit point of U
if and only if each open neighborhood of p pontains a

point of U distinct from p. The set of limit points



of U is denoted by U', and this set may or may not share
points with U,

The above definition gives rise to a basic theorem
dealing with a set and its limit points.

THEOREM 1.1 A subset H of S is closed if and only
if it contains all of its limit points.

The next theorem follows almost directly from
Definitions 1.1 and 1.3.

THEOREM 1.2 If (S,T) is a topological space, then

a) the intersection of each subcollection of closed

sets is a closed set, and
b) the union of each finite subcollection of closed
sets is a closed set.

THEOREM 1,3 If (S,T) is a t0po;ogical space, and U
and V are subsets of S with UCV, then U'C V',

DEFINITION 1.5 The closure of a set A, denoted by X,
is the union of A with its set of limit points.

DEFINITION 1.6 The interior of A, denoted by Ao,
is the largest, in the sense of containment, open set
contained in A, and is obtained by taking the union of
all open sets contained in A.

DEFINITION 1.7 A space (S,T) is called Tl if and
only if for each point p in S, the set {p} is a closed set.

The next definition is equivalent to the one above.

DEFINITION 1.7.1 A space (S,T) is called T, if and

1

only if for each pair of distinct points p and q in S,



there is an open set which contains one point but does
not contain the other,

DEFINITION 1.8 A space (S,T) is called Hausdorff
or T2 if and only if for each pair of distinct points p
and q in S, there exist disjoint open neighborhoods U
and V containing p and q respectivily.

The two previous definitions give rise to a very
important theorem, although a simple one,.

THEOREM 1.4 If a space (S,T) is T,, then it is T, -

21
DEFINITION 1.9 A space (S,T) is called regular if
and only if for each point p in S, and each open neighbor-

hood U of p, there exists an open neighborhood V of p and

contained in U such that V is also contained in U,

Sequences

DEFINITION 1.10 Let gags be a sequence of points
in a topological space (S,T). Let p be an element of S.
Then the seqguence {ans converges to p if and only if
for each open neighborhood U of p, there is an integer
m>0 such that if n>m, then a_ is in U,

Notice that the above definition implies that if U
is any arbitrarily chosen open neighborhood of p, then
then there can exist at most a finite number of points
of the sequence outside of U.

The notation {ar:S-gp will mean that the sequence

ianl converges to the point p. Under this definition,



sequences will behave the same as do those defined on

the real number line, i.e, E with the usual topology

1’
defined on El’ in which open sets take the form of unions
of open intervals. This is pointed out by the following
theorem.

THEOREM 1.5 If (S,T) is a T, topological space,

1
then
a) if the sequence fags has a limit, then this
limit is unique, and
b) every subsequence of {ané has the same limit.
DEFINITION 1.11 Let (S,T) be a’'space, and let C
be a collection of open neighborhoods of the point p in S.
a) The set C is a local base at p if and only if
for every open neighborhood U of p there is an
open neighborhood V in C such that V is a subset
of U.
b) The space (S,T) is first countable if and only
if each point in $ has a countable local base.
The notion of a countable local base at a point is
a powerful one, but is a little difficult to apply in the
proofs of this paper. Therefore the following definition
is made.
DEFINITION 1.12 A seqguence {Aﬁi of sets is monotone
descending if and only if An+1C: An for every n in N, the

positive integers.



On the basis of the previous definition, the following
theorem is stated.

THEOREM 1.6 If {Ugg is a countable local base at
the point p, then there is a monotone decreasing sequence
of open neighborhoods {Vn} which is a countable local base
at p.

This theorem is a very powerful and useful one,
and in the course of this paper, whenever it is assumed
that there is a countable local base at a point p, iﬁ
will be understood that it is the monotone descending
sequence of open neighborhoods which is guaranteed by
the above theorem.

THEOREM 1.7 In a first countable space, the point
p is a limit point of the set A if and only if there is
a sequence of points in A - {p} which converges to p.

Theorem 1.7 will be of invaluable use in a later
theorem which will give conditions for a function F to
be continuous at a point.

DEFINITION 1.13 A family C of sets is called a
cover for a set A if and only if A is a subset of the
union of the members of C. The set C is called an open
cover if and only if each member of C is an open set.

A subfamily D of C is called a subcover for A if and

only if D covers A.



Another property of topological spaces, compactness,
is defined in terms of open coverings, and a definition

and theorems ar: . tated later in this chapter,

Connectedness

DEFINITION 1.14 Two subsets A and B of a space
($,T) are said to be separated if and only if A aﬁd B
are nonempty, and AIB = g = AN B.

DEFINITION 1.15 A set U is said to be open in a
set V if and only if U is a subset of V, and U is the
intersection of V and an open set in (S,T). Likewise,

U is said to be closed in V if and only if U = CNV
where C is closed in (S,T).

THEOREM 1.8 Let A and B be nonempty disjoint
subsets of a space (S,T). Then

a) A and B are separated if and only if each is

open in their union,

b) A and B are separated if and only if each is

closed in their union.

DEFINITION 1.16 A subset H of a space (S,T) is said
to be connected if and only if H is not the union of two
separated sets,

In order to prove that a set U is connected, the
approach in this paper will be to take two arbitrary disjoint
subsets of U whose union is U, and show that they canﬁot be

separated.



THEOREM 1.9 A subset Y of a space (S,T) is connected
if and only if Y contains no nonempty proper subset which
is both open. and closed in Y.
THEOREM 1,10 ILet C be a' connected set, and let D be
a set such that CCDCC. Then D is connected.
From the above theorem, it is seen that the closure
of a connected set is connected.. PFurthermore, if any
number of the limit points of a connected set C are added
to C, then the result is still connected,.
DEFINITION 1.17 A space S is said to be locally
connected if and only if for each element p in S and each
open neighborhood U of p there is a connected open neigh-
borhood V of p such that VC U,
DEFINITION 1.18 A subset C of a set A is a component
of A if and only if C is a connected set that is not a
subset of another connected set in A.
Notice that if C is a component of a set A, then C
is a maximal connected subset of A,
THEOREM 1.11 Let (S,T) be a topological space.
a) FPEach connected subset of S is contained in a
unique component of S.

b) Each component of S is closed.

¢) If A and B are different components of S, then
A and B are separated.

If the set of all components of a space is denoted

by C, then it is immediately seen that C is a partition



of the space. If any two components of the space are
chosen, these components will be disjoint. Also, since
a single point is obviously connected, then it must be

contained in some unique component of the space.

Boundary Points

DEFINITION 1,19 If p is a boundary point of a set U,
then every open neighborhooed of p contains a point of U
and a point of the complement of U, both distinct from p.

It is clear from the definition that if p is a limit
point of a set U such that p is not in U, then p is also
a boundary point of U, Also notice that if p is a boundary
point of a set U, then it is also a boundary point of the
complement of U. Therefore, from Theorem 1.1, it is seen
that an open set cannot contain any of its boundary points,
and that a closed set must contain all of its boundary
points.

DEFINITION 1.20 If U is a subset of a space S, then
the set of boundary points of U will be denoted by B(U).

THEOREM 1,12 If S is a comnected space, and U is a
subset of S, then B(U) # d.

The proof of the above theorem follows from the
remarks preceding Definition'l.20 above, and from
Theorem 1.9. If U were a subset of S such that B(U) = £,
then there certainly cannot be any limit points of U

which do not lie in U, and thus U must be closed. But



the same thing can bé said for thie complement of U, and

tlius the complement of U must also be closed. Thus U and
its complement are both open and closed, which is a contra-
diction to Theorcem 1.9, since S is connccted. This is a
very important observation, since many of the later theorems
will be dealing witli the beoundary points of a set, and it
would be useful to know that this set of boundary points is
nonempty. Therefore it will always be assumed that the
underlying space is connected, so that whenever the set

B(U) is considered, where U is a nonempty proper subset of

the space, then B(U) % ¢.

Metric Spaces

DEFINITION 1.21 Let S be a set, A mapping d:SxS~R,
where R is the set of reals, is a metric on S if and only
if for all x, vy, and z in S,

a) d{x,y)2 0, ‘ ’

b) d(x,y) = 0 if and omnly if x = ¥,

c) d(x,y) = d(y,x),

d) d{x,y) £ d(x,z) + d(=z,y). (triangle inequality)

EFINITION 1.22 Let p be an element of S and let
r be a positive real number. Then the set denoted by’
Sr(p) = Zx / x is in S, d(x,p) (1?} is called an r-sphere
about p, p is called the center and r the radius of Sr(p).

The topology induced by B =:Zér(%) / x in 8, r in R}

i.e. the set of all possible unions of elements of B, is
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called the metric topology for S, and open sets in S take
the form of unions of elements of B. Then the space S,
with the metric topology, is called a metric sp .ce. A metric
space is fairly well behaved, and has most of the basic
properties that will be required in later proofs.

THEOREM 1.13 Every metric space is a T2 space.,

THEOREM 1.14 Every metric space is first countable.

Continuity

DEFINITION 1.23 Tet (X,T) and (Y,F) be topological
spaces, apd let F be a mapping from X into Y.

a) Let p be an element of X. 5he mapping F is said
te be continuous at p if and only if for each open
neighborhood U of F(p) there is an open neighborhood
V of p such that F(V)C U.

b) The mapping F is said to‘be continuous on X if and
only if it is continuous at each point in‘X.

The following theorems are made use of throughout this
paper, for they give necessary and sufficient conditions
that a mapping F be continuous on a space.

THEOREM 1.15 Let F be a mapping of a space X into a
space Y. Then the following stafements are equivalent.

a) The function F is continuous.

b) For each open subset G of Y, Fnl(G) is open in X.

c) TFor each closed subset A of Y, Fnl(A) is closed

in X.
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d) For each subset A of X, F(A)CF(A).

e) For each subset B of Y, Fnl(B)C:F—l(ﬁ).

THEOREM 1.16 Let F be a mapping of a first countable
space X into a space Y and let p be an element of X. Then
I' is continuous at p if and only if the sequence {F(xnl}
converges to F(p) for each seqguence {xns that converges
to p.

Since a metric space is first countable, then both
of the preceding theorems apply to metric spaces,

There are many properties of spaces and subsets of
spaces which are preserved under continuous mappings in
their continuous images. One is given by the next theorem,
and others will be presented as needed throughout this
paper,

THEOREM 1,17 Let X and Y be topological spaces, and
let F be a continuous mapping from X into Y. Let C be a

connected subset of X. Then F(C) is connected in Y.

Compactness
DEFINITION 1.24% Let X be a toprological space, and
let A be a subset of X,
a) The set A is said to be compact if and only if
every open cover for A has a finite subcover for A,
b} The set A is said to be countably compact if and
only if every infinite subset of A has a limit

point in A,
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DEFINITION 1.25 A space S is said to be locally
compact if and only if for each x im S and each open
neighborhood U of x there is an open subneighborhood V
of U and containing x such that YV is compact.

THEOREM 1.18 If A is a compact subset of a space
S, then A is countably compact.

THEOREM 1.19 A closed subset of a compact set is
compact.

THEOREM 1.20 A closed subset of a countably compact
set is countably compact.

There are other definitions which will be presented
as they are needed. These deal Mainly with peripherally
continuous functions, comnectivity maps, and graph maps,
and thus do not really belong in this chapter, since, as
already pointed out, the preceding material is merely
intended to provide basic material which is necessary to

understand the proofs in later chapters.



CHAPTER II

PERTPHERAL CONTINUITY

For purposes of simplification, it will be assumed
that, unless otherwise stated, the topological spaces
dealt with in the remainder of this paper will be at
least Hausdorff, regular and connected, as defined in
Chapter I.

DEFINITION 2.1 Let X and Y be topological spaces.
Let p be an element of X. Then a mapping F from X into
Y is said to be peripherally continuous at p if and only
if for each pair of open neighborhoods U and V of p and
F(p) respectively, there exists an open subneighborhood W
of U and containing p such that F(B(W))CZV. The mapping
F is said to be peripherally continuous on X if and only
if it is so at each point of X.

A matural question arises at this point, whether or
not continuous functions are peripherally continuous.
Thus the following theorem is stated.

THEOREM 2.1 If F is a continuous mapping of a space
X into a space Y, then F is peripherally continuous.

PROOF: Let x be an element of X, and let U and V
be open neighborhoods of x and F(x) respectively. Since

F is continuous, there is an open neighborhood W of x

13
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such that'F(W)CIV. Let WNU = D. Ther D is a subset of
W, and therefore F(D)CF(W)C V. Since D is also an open
neighborhood of x, then there is a subneighborhood H §f b
and containing x, such that EC:D, since all spaces have
been assumed regular. Then the boundary of H, B(H), is
contained in H and thus in D, and therefore is contained
in W, so that F(B(H))CF(W)CV. Then F(B(H))CV, and F
is peripherally continuous at x, and thus on X.

Although a continuous function is always peripherally
continuous, the converse is not necessarily true. The
following is an example of a one to one peripherally
continuous mapping of the unit interval onto itself, which
is not continuous.,

EXAMPLE 2.1 Let F be a mapping of the open inter-
val (0,1) onto itself, defined as follows. Let x be an
element of the interval, If x is rational, then define
F(x) = x. If x is irrational, define F(x) = 1 - x, It
is c¢lear from Figure 2.1 that F is continuous only at the

point 4, and is discontinuous everywhere else. Let p be

[ XY

an element of the interval, p # #. Let V be an open
neighborhood about p, such that V is properly contained
in the interval, in the range. If p is rational,‘then
the irrational points of any open neighborhood about
F-l(p) will not be thrown entirely into V. Similarly,

if p is irrational, the set of rational points of any
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open neighborhood about le(p) will not be thrown entirely
into V. However, given any open neighborhood U of Fnl(p),
there can always be found an open subneighborhood W of U,
containing F*l(p), and which has rational endpoints if p

is rational, and irrational endpoints if p is irrational.

tad
»
.

Fig. 2.1--A peripherally continuous mapping which
is not continuous,

The endpoints of these open neighborhoods are mapped
into V, and since these endpoints are the boundary points
of the open neighborhoods, it follows from the definition
.that the mapping F is peripherally continuous,

The next example is also an example of a one tTo one
peripherally continuous mapping which is not continuous.
In this case, however, the mapping is not onto, and the
image of a bounded space is unbounded., It is defined in

much the same way as was the function in the previous

example.
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EXAMPLE 2.2 Let F be a mapping of the open inter-
val (0, T/2) into the positive reals, defined as follows.
Let x be an element of the interval, If x is rational,
define F(x) = tan(x). If x is irrational, then define
r(x) = cot{x). The function is continuous at the point 450
and discontinuous elsewhere., The function is, however,
peripherally continuous. The mapping is not onto, for
there are infinitely many points in the range which are
neither the image of a rational uﬁder the tangent function,
nor the image of an irrational under the cotangent'function.
The point tan{ 7/2 - 1/5) is an example.

The next theorem deals with the concept of a se-
quence of sets converging to a point. The definition
given below reads very much like Definition 1.10 in
Chapter I.

DEFINITION 2.2 If {AXS is a sequence of sets, then
{kﬁg converges to the point p if and only if for each
neighborhood U of p there is an integer m > 0 such that
if t>m, then AtC'.U.

THEOREM 2.2 A necessary and sufficient condition
that a function F which maps a space X into a space Y
be peripherally continuous is that for each p in X there
exists a countable local base {KAS of p such that the
sequence iF(B(Ki))} converges to F(p).

PROOF: Suppose that F is peripherally continuous.

Let {Un}s and {Vrs be countable local bases for p and F(p)
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respectively. Consider Ul in {UHE' There is an open
neighborhood Cl of p such that ClC:Ul, and ClCZUl.
Let Wl = Uzr\Cl. Note that Wl contains p.

There is an open neighborhood 02 of p such that
CZCW]_’ and C2CW1. Note that CZCCl’ and CZCUZ'

Let W, = ancz.

By continuing in this manner, a sequence ibnz of
open neighborhoods of p is constructed which is a coun-
table local base for p. This countable local base has
the additional property that if n< m, then not only is
it true that C C C_, but also that C CC . This inclusion

m n m n
is proper, or else Cn would be both open and closed in X,
and X would not be connected, by Theorem 1.9. This is

a contradiction to the original assumption that all spaces

considered in this chapter are connected.

Consider Cl in {CHS. There is an open neighborhood
K, of p, K.C C,, such that F(B(XK,))CV,. There is an
1 1 1 1 1
element C_ of {C i such that C_CX.,. Then there is an

m n) - m 1

open neighborhood K2 of p such that KZC:Cm+l and such
that F(B(Kz))CVZ. Note that K, together with all of
its boundary points is properly contained in Kl’ since
K,CC ., implies that B(K,)cC  ,C€C CK, .

By continuing in this manner, another countable
local base {an of p is constructed, which, from the

.method of construction, has the property required in



the hypothesis, that the sequénce of sets 2%(B(Ki)i}
converge to F(p).

Suppose there is a countable local base ZKégfor each
P in X such that iF(B(Ki)z} converges to F(p). Let p be
an element of X. Let U and V be open neighborhoods of p
and F(p) respectively. Then there is an m» O such that
if t> m, then F(B(K_t))CV. Also, there is a KJ. such that
KJ.C.' U, Let z = max {j, m+l} . ’l‘hén m¢ z, and KZC KJ., so
that K, C U, and F(B(K,))C V. Thus F is peripherally
continuous at p, and thus on X.

The next theorem follows almost immediately from
the previous theorem.

THEOREM 2.3 If F:X—Y, and F is peripherally con-
tinuous, then, if p is in X, there is a sequence {xni of
distinct points converging to p such that the sequence
ZF(xn)} converges to F(p)

PROOF: 1In the proof of Theorem 2.2 there was
constructed a segquence {Cni of sets about an arbitrary
point p which had the propefty that if Cm and Cn were
in iCr& , where m)» n, the_n CmCEmC Cn’ so that the
boundaries of Cm and Cn were disjoiﬁt. Since {an was
a countable local base for p, then, if one point X is
chosen from the boundary of each Cm, the desired sequence

is constructed, with the desired properties.

18
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Theorem 2.3 states that if a function is peripherally
continuous, then there must exist at least one convergent
sequence such that the limit of the images of the members
of the sequence converge to the image of the limit.
Peripheral continuity does not, in fact, cannot, guarantee
this for every convergent sequencé, as continuity does,
or else peripherally continuous functions would always
be continuous by Theorem 1.16.

The converse of Theorem 2.3 is not necessarily true,
obviously, and the next exampie illustrates this, as well
as a one tb one peripherally continuous function whose
inverse is mnot peripherally continuous.

EXAMPLE 2,3 Let F be a one to one and onto mapping
of the set A = [0,T/2)U(T/2, T) onto the interval (-1,+1)
defined as follows., If x is an element of Eb,372), define
F(x) = sin(x). If x is an element of the interval (7/2,7),
define F(x) = cos{x). The function is continuous on each
of the intervals, and therefore on A, and thus is also
peripherally continuous on A. The inverse of F is not
peripherally continuous at the point O in the range.

For example, let U be the interval (-1/3, +1/3) about O
in the domain, Then the endpoints, i.e., the boundary
points, of any open interval containing F(0) will be
mapped partly into, and partly outside of U by the

function F-l.



As for the convergent sequence whose image converges
to the image of dits limit, consider the sequence {—3—;} ’
which converges to O in the range. The sequence 2F_l(%2}
converges to F_l(O), and yet P! is not peripherally

continuous at 0, as already noted.

+1

-1

Fig. 2.2--A peripherally continuous mapping whose
inverse is not peripherally continuous.

Although the next theorem does not deal specifically
with peripherally continuous functions, it is useful in
the proofs of several later theorems,

THEOREM 2.4 If C is a connected subset of a connec-
ted space X, and H is a subset of X such that HONC # @,
and HNC is a proper subset of C, then B(H){1C # £.

PROOF: Suppose, by way of contradiction, that

B(H)NC = . Let HNC = J, and C ~ J = K. Then JNK = ¢
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and JUK = C. Néte that K is a subsct of the complement
of H. Now J contains 1o limit points of K, or else these
limit points would be boundary points of H lying in C.
Likewise, K contains no limit points of J by the same
reasoning. Then J and'K are separated, and C is not
connected., This is a contradiction. Thus B(H)f\C # .

The next several theorems deal with various proper-
ties of peripherally continuous functions,

THEOREM 2.5 If F is a peripherally continuous
mapping from a space X into a space Y, and N is a ciosed
subset of ¥, then every component of Fﬁl(N) is closed.

PROOF: Denote F_l(N) by A, and let H be a component
of A, Suppose, by way of contradiction, that H is not
closed. Then there must exist a limit point q of H such
that q is not in H., Now g is not in A, or else HlJ{q}
is a subset of A and contains H, and since by Theorem 1.10
the set HLJiqj is comnected, then H would not be a max-
imal connected subset of A, i.e., a component of A.

Let F{(q) = z. Since ¢ is not in A, then z is not in
N, so that, since N is closed, there must exist an open
neighborhood V of z such that VAN = g.

+if H is degenerate, then i is a closed component of
A, and the proof would be concluded. Then suppose H is
not degenerate. Let p be an element of H. Then q # p,
so that there is an open neighborhood D of g such that

p is not in D. Thus DN H is properly contained in H, and



is not empty, since g is a limif point of H., Then therc
muast exist an open neighborhood U of q such that UCD,
and such that F(B(U))CV. Then, since VAN = @, it must
be true that B(U)NA = @, and thus B(U)NIU = . This is
a contradiction to Theorem 2.4. Therefore H must Le
closed.

Notice the similarity between the above theorem and
Theorem 1.15-c in Chapter I. A necessary and sufficient
condition that a function F be continuous is that the
inverse image of every closed set be closed. The above
theorem states that a necessary condition that a function
F be peripherally continuous is that the components of the
inverse image of every closed set be closecd.

Notice also the similarity between the following
theorem and Theorem 1.15-d, which gave necessary and
sufficiént conditions that a function F be continuous.

THEOREM 2,6 If F is a peripherally continuous map-
ping of a space X into a space Y, and N is a connected
subset of X, then F(N)C F(N).

PROOF: The proof follows almost immediately from
the previous thecorem. Denote F—I(FTET) by A. Then N
is a subset of A, and since N is connected, it must be at
least a subset of some component, say H, of A. Then, since

H is closed by the previous theorem, the closure of
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. the set N is a subset of H and thus of A, and F(N) is a
subset of F(A) = F(N).

THEOREM 2.7 Suppose F is a one to one peripherally
continuous mapping of a space X onto a space Y. OSuppose
that M is a nondegenerate connected subset of X, such that
X - M has only a finite numbe; of components. Let x be
~in the boundary of M such that x is a limit point of X - M.
Then F(x) is a boundary point of F(M).

PROOF: Let F(x) = y. It will be shown that for each
open neighborhood V of y there is an open neighborhood of
x whose boundary maps into V, such that there is a point
of the boundary in M and a point in X - M. This will give
a point of F(M) and a point of F(X - M) in V, since F is
one to one, and this will imply that y is a boundary
point of F(M). |

It needs to be shown at this point that there is an
open neighborhood H of x that does not contain any com-
ponent of X - M. Let K be a set of points consisting of
one point from each component of X - M. Then K must be
finite, and for each point t in K there must exist an
open neighborhood Ut of x such that t is not in Ut' If
one such open neighborhood is constructed for each point
in X, then the set of all such open neighborhoods must
be finite. Denote their intersection by . Then H is
an open neighborhood of x which is disjoint from the set

~

K. Thus if C is any component of X - M, then H cannot



contain C., Since x is a limit point of X - M, then U

must contain at least one point of X -~ M distinct from x.

Therefore H must intersect at least onc component of X - M

and this intersection must be properly contained in the
component,
Since M is nondegenerate, there is a point z of M

such that z # x., There is an open neighborhood A of x

such that z is not in A. Then D = AMlH is an open neigh-

borhood of x that does not contain z. There is an open
neighborhood . W of x such that W is contained in D, and
such that F(B(W))CV. Then W does not contain z, W is

a subset of H, and W clearly has the same properties

attributed to H in the preceding paragraph.

Suppose, by way of contradiction, that B(W)N\(X - M)
is empty, or that B(W)NM is empty.

Case 1: Suppose that B(W)N(X - M) = . Then there is
a component C of X - M such that whc # ¢, and such
that W ¢ is properly contained in C. But, since
B(w)N(x - M)'= @, then B(W)NC = @, and this is
a contradiction to Theorem 2.4,

Case 2: Suppose that B(W)N M = $. Then WNM # 4,
since x is in the boundéry of M, and since z is
not in W, then WNM is ;ontained properly in M.

This is a contradiction to Theorem 2.4,
Thus there must be a point of the boundary of W

in M and a point of the boundary in X - M. Since the
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image of this boundary is contained in V, this is suffi-~
cient to show, as stated at the beginning of the proofl,
that x is a boundary point of F(M).

THEOREM 2.8 If F is a peruherally continuous
mapping from a space X onto a space Y, M is a subset of
Y, v is an element of the interior M° of M, x is an
element of F—l(y), then x is a limit point of F~1(M).

PROOF: Let U be an open neighborhood of x., Then
there is an open subneighborhood V of U, containing x,
such that VCU. Then M° is open about F(x) = y, so that
there must exist an open neighborhood J of x and which is
contained in V such that F(B(J))c M°.

Let p be an element of B(J). Then p # x, F(p) is

—l(Mo) and thus is an element

in Mo, P is an element of F
of F"l(M). In addition, since J is a subset of V, then
p must be an element of V, and thus of U. Therefore
every open neighborhood of x contains a point of F~1(M)
different from x, and fhus x must be a limit point of
F"l(M).

- THEOREM 2.9 I1If X and Y are metric spaces, {an is
a sequence of functions which approaches a.function F
uniformly, F and F# for each n maps X into Y, and each
Fn is peripherally continuous, then F is peripherally
continuous.

PROOF: Let p be an element of X. Let U and V be

open neighborhoods of p and F(p) respectively. Then
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there is an e > O such that S_(F(p))CV. Then ¢/6> 0, and
there is an n » 0 such that if m > n, then d(Fm(p), P(p)) < e/6.
Now Fm is peripherally continuous, so that there is an

open subneighborhﬁod Ul of U, containing p, such that
Fm(B(Ul))C:Se/6(Fm(p)). Hence, if z is a boundary point

of U;, then d.(Fm(z), Fm(p))< e/6. Then, using the triangle
inequality for a metric space, the two previous aistance
inequalities give d(Fm(z), F(p))< e/3. But the sequence

is converging uniformly, so that d(Fm(z), F(z))< e/6.

This, together with the inequality immediately before,
again using the triangle inequality, gives rise to the
inequality d(F(z),‘F(p))< e/3 + e/6 = e/2« e. Therefore
F(z) is contained in the open neighborhood Se(F(p)) which
is a subset of V, and thus the image of the boundary of

U1 is contained in V. Thus F is peripherally continuous,

In the above theorem, it is necessary that the
convergence of the scquence of functions be uniform. If
the sequence does not converge uniformly, it is not
-necessarily true that F is peripherally continuous. This
is pointed out in the following example.

EXAMPLE 2.4 Consider the sequence ian of functions
defined by Fm(x) = tan"(x) over the interval [o, ﬂyQ].
Each function Fm throws the closed interval onto the
closed interval EO,IJ. Fach Fm is continuous, and thus
is peripherally continuous by Theorem 1l.1. Notice,

however, that the seguence does converge, but not
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uniformly, to the function F which throws the closed
interval [0,7/4] onto the subset [0,1] of the Y axis,

and which is defined by F(x) = 0 if x is in the interval
[0,T/k), and ¥(x) = 1 if x = A/, This funciion is(clearly
not peripherally continuous at the point 1 in the range.
Consider an open interval V about 1 which does not include
0, in the range. The boundary points of any open interval
containing /4 will be thrown into 0, and thus cannot be

thrown into V., Thus F is not peripherally continuous.

+1
y = tanlx
2
Yy = tan " x
m
—vy = tan x
0
T/l

Fig. 2.3--A sequence of peripherally continuous
functions which converges, but not uniformly,

The remainder of the theorems in this chapter give
conditions under which a peripherally continuous function
will be continuous.

THEOREM 2.10 If F dis a peripherally continuous

mapping of a space X onto a space Y, and if for each
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closed subset M of Y, F~1(M) has only a finite numbex
of components, then F is continuous.

PROOF: If M is any closed subset of Y, then each
component of F-l(M) is closed, by Theorem 2.5. Since
there is only a finite number of components of M, then
their union is closed. But their union is F"l(M), and
thus_F”l(M) is closed. Then F is continuous on X, by
Theorem 1l.15-c.

THEOREM 2.11 If F is a peripherally continuocus
mapping of a space X into a space Y, and each x in X
has the property that for any open neighborhood U of
F(x), there is an open subneighborhood V of U, containing
F(x), such that X -~ F—I(V) has only a finite number of
components, then F is continuous.

PROOF: Let x be an element of X, Let U be an open
neighborhood of F(x). Then there is an open neighborhood
W of F(x), contained in U, such that X - F—l(w) has only
a finite number of components. Now X - F-l(w) is clearly
the same as F_l(Y - W). Since W is open, then Y - W is
closed, and X - Ffl(w) is the inverse image of a closed
set, Then by the same reasoning as that in the proof
of the previous theorem, X - F~l(w) is closed. Therefore
F-l(W) must be open. Now F-l(w) contains x, and
F(Fhl(w)) = W is a subset of the arbitrarily chosen
neighborhood U of x. Then F is continuous on the space X

by Definition 1.23.
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THEOREM 2.12 Suppose that F is a peripherally
continuous mapping of a space X into a space Y. Suppose
that if N is a closed subset of Y and x is an element of
X - F—l(N), then there is a neighborhood R of x such that
R intersects at most a finite number of components of
F—l(N). Then F is continuous.

PROOF: Let x be an element of X, and let V bé an
open neighborhood of F(x). Denote the complement of V
by N, which is closed in Y. Then F(x) is not in N, and
thus x is not in F-l(N), and x must therefore be in
the complement of F_l(N). Then there is an open neigh-
borhoed R of x such that R intersécts at most a finite
number of components of F~1(N). Now from Theorem 2.5,
each of these components is closed, since N is closed,
and since there is only a finite number of them, their
union, denoted by T, is closed and is a subset of F—I(N).
Now x is not in F—l(N), and thus is not in this union,
and thus is not in the intersection of R and T. Since
x is in R, then RN (X - T) # @, and since (X - T) is
open, then RN (X - T) = W is open. Since the union of
the components of F—l(N) is exactly Fﬁl(N), then the only
part of R which lies in'F-l(N) must lie in T. Therefore
W lies in the complement of F‘l(N),‘ and thus F(W) lies
in the image of the complement of F*l(N), which is V,

Therefore F is continuous at x and thus on X.



CHAPTER IIX
GRAPH MAPS AND CONNECTIVITY MAFPS

The definition of a connectivity map depénds on the
notion of a graph map., The definition of a graph map is
therefore given first, and then the definition of a
connectivity map. Properties of the graph map are devel-
oped first, and the remainder of fhe chapter will be
devoted to connectivity maps. The definition of a con-
nectivity map will be given again at that time,.

It has already been mentioned that all spaces will
be assumed at least Hausdorff, regular and conneccted.
These and other special conditions for the spaces dealt
with will be mentioned from time to time in the course of

the chapter.

Grapli Maps

DEFINITION 3.1 Let F be a mapping from a space S
into a space T. Define g(x) = (x, F(x)) for each x in S.
Then g is a mapping from S into SxT, and g is called the
graph map of F. Then g(S) is called the graph of F, and
g(S) is a subset of SxT.

DEFINITION 3.2 Let F be a mapping from a space S
into a space T. Then F is a comnnectivity map if and only
if for every connected subset C of S, g(C) is connected,

where g is the associated graph map of F.

30
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Since the statement of the theorems in this chapter
will involve both the function F and the function g, then,
for purposes of simplification, it will be assumed that
whenever the functions F and g are mentioned, they will be
exaétly as defined in Definitions 3.1 and 3.2.

Therefore in the following theorems and definitions,
F will be a mapping of a space S into a space T, an& g
will be its associated graph map. If F is required to
be an onto mapping, it will be so stated.

In order to develop properties of the graph map,

a discussion of the topology imposed on the space SxT
is needed.

DEFINITION 3.3 If S* and T¥% are the topologies for
the spaces S and T respectively, then B¥ is a topology
for SxT, where B¥* is the set c¢f all possible unions of
subcollections of the set B = iUxV / U in S$*%, V in T*} .

In other words, an open set in the cross product
space SxT will be the cross product of an open set in
S and an open set in T, or is the union of such cross
products. If SxT is EZ’ then it has been established
many times, in other publications and texts, that B* can
be thought of as unions of open circles in the plane.

A very important point needs to be made at this time,.
If W is any open neighborhood about a point p = (x,y) in
SxT, then W, it has be:n assumed, is the union of a

collection of cross products of sets open in S and T.

¢



Then there must exist open neighborhoods U and V of x
and y respectively, where U is open in S and V is open
in T, sucli that UxV is open in SxT and is a subset of W.
It will be assumed that the open set UxV possesses the
same degree of arbitrariness that was required of W.
Therefore, whenever an arbitrary open neighborhood of
~a point p = (x,y) is required, it will be assumed that
it takes the form of UxV.

Many times the set g(S) as defined in Definition 3.1
is thought of as a topological space in its own right.
The topology for g(S) is made up of sets formed by the
intgrsection of an open set in SxT with g(S). That is,
if G is open in g(S), then G is the intersection of an
open subset of SxT with g(S). This is what one would
expect from Definition 1.15 in Chaptér I. Therefore, it
follows from the above paragraph that when an arbitrary
open set W is required in g(S), it can be represented
as W = (UxV) Ng(s), where U and V are open in S and T
respectively.

Notice that the function g is one to one, since
each x in S is matched with its image under F. Since
F is a function, then two points of S could not be mapped
to the same point in S3SxT.

THEOREM 3.1 The function F is continuous if and

only if g is continuous.

32



33

PROOF: Supposec that F is continuous. Let p = (a,b)
be an element of g(S). Then b = F(a), a is in S, and
g(a) = {(a, F(a)) = p. Denote the relative topology for
g(s) by R. Let V be an open neighburhood about p. Then
there are neighborhoods W and M of a and F(a) respectively
such that V = (WxM)N g(S). Now there is an open neigh-
borhood W, of p such that F(Wl)C M, since F is continuous,
Let A = wlf\W. Then A is an open neighborhood of a, and
F(A)CM. Then ACVW and F(A)C M implies that AxF(A)C WxM.
Then E‘;xF(A) ng(S:)]C [WxMﬂg(Sﬂ = V. Thus, since
gla)Cfaxr(a)n g(S], then g(A)C V, and g is continuous.

Suppose that g is continuous. Let t be in S. Then
F(t) is in T. Let V be an open neighborhood of F(t). Let
U be any open neighborhood of t. Then (t, F(t)) is in
UxV, and is in UxVMNg(S) = A. Then, since g is continuous,
there is an open neighborhood U, of t such that g(Ul) is
a subset of A. Then g(Ulﬂ:EMNT]g(Sy. Let x be any point
in U;. Then (x, F(x)) is in UxV, wvhich implies that F(x)
is in V, so that F(Ul)C.V. Thus F is continuous.

The function g possesses a very important property
that is used many times in succeeding proofs.

THEOREM 3.2 The function g is an open and closed
mapping.

PROOF: It will be shown first that g is an open
mapping. Let U be an open subset of S. Now the space T

is open in itself, so that UxTMNg(S) is open in g(S$), and
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clearly consists of all ordered pairs of the form (x, #(x))
for each x in U. Since this is the definition of g{(U),
then g{U) = UxTNg(S), so that the image under g of an
open subset of S is open, and thus g is an open mapping.

It will now be shown that g is a closed mapping.

Let V be a closed subset of S, Then S - V is open, and
g(s - V) is open. But, since g is one to one, then

g(s - V) = g(s) - g(V), and since this is the\0pen comple-
ment of g(Vv), then g(V) must be closed. Thercfore g is

a closed mapping.

The fact that g is one to one, and is an open and
closed mapping, regardless of whether g or F is continuous,
leads to a very interesting theorem.

THECREM 3.3 If g is a graph map, then gnl is always
continuous.

PROOF: It has already been noted that g is one to
one, so that g"l is a function. From Theorem 1.15-b,

a function £ is continuous if and only if for each open
subset U of the image space, the set f“l(U) 15 open.,
Since-the inverse of g—l is simply g, then g—l must be
continuous by virtue of the fact that its inverse maps
open sets to open seots.

It turns out that if F is continuous, that is, what
some call well behaved, then the associated graph map

& 1is well behaved indeed.
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THEOREM 3.4 If I is continuous, then g is a homeo-
morphism,

PROOF: For g to be a homeomorphism, g and g-l
must both be continuous, and g must be one to one and
onto.

Since I is continuous, then g is continuous. It
was shown in the preceding theorecm thaf g-l is continuous,
It has already béen shown that g is one to one, and g
is certainly omto the space g(S).

Therefore g is a homeomorphism,

The following theorem gives sufficient conditions
that F and g be continuous.

THEOREM 3.5 If g(S) is compact, S is Tl and first
countable, then F and g are continuous.

PROOF: Let p be an element of S. Let fpnz be a
sequence of points converging to p. Suppose, by way of
contradiction, that {g(pni} does not converge to g{(p),
d.e., that g is not continuous, by Theorem 1.16.

Since g is one to one, the set gg(pni} is an infinite
subset of g(S). Let U be an open neighborhood of g(p)
such that there is an infinite number of elements of
{g(pna-Noutside of U, This neighborhood must exist since
{g(pnﬂ- does not converge tb g(p). Denote the complement
of U by V. Then there is an infinite number of points
of the set within V. Now g(S) is countably compact from

Theorem 1.18, and since V is the complement of U, it is
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closed, and this is also countably compact, by Theorem 1.20.
Then the infinite subset Z of {g(PnB which lies in V must
have a limit point g in V, and by~Theorem 1.7, there must
exist a sequence [qn} of points of Z which converges to ¢.
Since gq lies in the complement of U, and p is in U, then
g # p. Notice that the sequence [qng is a subsequence of
{g(gnﬁ . Then, since g is one to one, the sequence {qnj
is the image of an infinite subsequence {pﬁ} of {Pri'
Or, to put it in another way, the sequence gpéj is the
continuous image under g_l of the convergent sequence {qn}.
Then, from Theorem 1.16, {p&} must converge to g~l(q) = t
in S. Again, since g is one to one, p #¥ t since g(p) # q.
This is a contradiction to Theorem 1.5. Therefore g is
continuous, and thus so is F,

The following theorem is similar to Theorem 3.1.

THEOREM 3.6 The function F is peripherally con-
tinuous if and only if g is peripherally continuous.

PROOF: Suppose that F is peripherally continuous.
Let x be an element of S. Let M and W be open neighbor-
hoods of x and g(x) respectively. Then W = UxVNg(s),
where U is an open neighborhood of x and V is an open
ﬁeighborhqod of F(x). Denote UMM by Z. Then Z is open
about x, and ZxVCVW, Ngw there is an open subneighborhood
Ul of Z and containing x such that ﬁICZZ. There is an
open neighborhood U2 of x such that U2CZU1, and such that

S

F(B(U,))C V. Since B(U,)C 'I'J'Z'C:Ulc: Z, then B(U,)xV is a
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subset of ZxV whiéh is a subset of W. Thus, if y is a
boundary point of UZ’ then g(y) = (v, F(y)) is an element
of B(UZ)XV and thus of W, so that g(B(U,))CW. Since U,
is a subset of M, then g is peripherally continuous.
Suppose that g is peripherally continuous. Let x
be an element of S, Let U and V Le open neighborhoods ol
x and F(x) respectively. Then UxV is open in SxT, and
g{x) = (x, F(x)) is an element of UxV. Then there is an

open neighborhood U, of x, contained in U, such that

1

g(B(Ul))CZUXV. Let y be a boundary point of U Then

1°
g{y) = (v, F(y)) is in UxV, which shows that F(y) is in
V for each y in B(Ul), so that F(B(Ul))CV. Thus F is
peripherally continuous,

THEOREM 3.7 If K is a connected subset of g(s),
then g_l(K) is connected in S.

PROOF: Since g-l is continuous, then the image of
a connected set under g_l is connected by Theorem 1.17.

THEOREM 3.8 If g is continuous, S is locally
connected, then g(S) is locally connected.

PROOF: Let p be an element of g(S). Then p is of

the form (a, F(a)) for some a in S. Let W be an open

neighborhood of p. Then g{a) p is an eclement of W.
Now g continuous implies that there is an open neighborhood
M of a such that g(M) is a subset of W. Also, S locally

connected implies that there is an open connected subset

C of M, containing a. Then g(C) is a subset of W, and
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since g is an opcn continuous mapping, then g(C) is an
open connected subset of W which contains p. Thus g(s)
is locally connected,

THECREM 3.9 If g is continuous, S is locally compact,
then'g(s) is locally compact.

PROOF: Let p be an element of‘g(S), and let W be an
open neighborhood of p. Then p = (a, F(a)) for some a in
S, and W = UxVN g(s) for some open neighborhoods U and V
of a and F(a) respectively. Since S is locally compact,
there is an open subneighborliood Ul of U, containing a,
such that<EI is compact. Notice that levf1g(s) is an
open subset of W containing p. Denote leVf]g(S) by Nl.

Now suppose that Q is an open covering of ﬁ;.
Then from Q can be constructed the set Q¥ which consists
of the inverse images of the open elements of ¢. It
is clear that Q% is a covering for G", and since g is
continuous, each of the elements of Q* is open, so that
Q% is din fact an open covering for ﬁ;. Then there is a
finite subcovering of ﬁ;, and the open images of cach of
the elements of this subcovering is a finite subset of
Q which covers WI. Thus ﬁ; is compact, and g(S) is
locally compact.

It might be thought that in Theorem 3.8, a suffi-

cient condition that g(S) be locally connected when S is

locally connected is th.t g map conmnected sets to
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connected sets., This is shown to be false in a later
example. Connectivity maps will now be taken up, begin-
ning with the restatement of the definition of a

connectivity map.

Connectivity Maps.

DEFINITION 3.4 Let F be a mapping from a space S
into a space T. Then [ is a connectivity map if and only
if for every connected subset C of S, g(C) is connected,
where g is the associated graph map of F.

THEOREM 3.10 If F is continuous, then I is a
connectivity map.

PROOF: The proof follows immediately from Theorem 3.1
which states that if F is continuous, then g is continuous.
If g is continuous, then the image of connected sets under
the mapping g are connected, by Theorem 1.,17. Thus F is
a conncctivity map.

The next theorem is used several times in the expla-
nation of examples,

THEOREM 3.11 If M is a connected subset of §, and
g(M) is not connected, that is, g(M) = HUK where H and K
are separated, then any limit points of g"l(H) that are
contained in g-l(K) are points of discontinuity of the

function F.

PROCOF: Let g*l(H) A, and g"l(K) = B. Then AUB = M,

and A and B are disjoint, since g-l is one to one. Since
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M is connected, A and B cannot be scparated, and thus at
lJeast one must contain a limit point of the other. Suppose,
without loss of generality, that B.contains a limit point x
of A. Then g(x) is in g(B) = K, and since H and K are
separated, there must exist an open neighborhood U of g(x)
such that U and H are disjoint. Let V be an arbitrary

open neighborhood of x. Then, since x is a limit point

of A, then V must contain a point of A, and thus the image
g(V) must contain a point of g(A) = 1, and cannot be con-
tained in U, Then the image of no open neighborhcod of x
can be mapped by g entirely into U, and thus x must be a
point of discontinuity of g, by Definition 1.23, and
therefore is a point of discontinuity of I by Theorem 3.1.

Theorem 3.10 states that if F is continuous, then it
is a connectivity map. The converse is not necessarily
true.,

EXAMPLE 3.1 For a noncontinuous example of a
connectivity map, consider the functiomn F(x) = sin(%) over
the real numbers., The function is bounded, but oscillates
near 0. If F(0) is defined to be O, then the function is
continuous everywhere but at 0. Consider any open neigh-
borhood U of O in the range, properly contained in the
interval [;l, +i]. Then any open neighborhood about 0
in the domeain is thrown onto the interval [;l, +ﬂ y Since
the function oscillates an infinite number of times be-

tween ~1 and +1 inclusive in any interval about 0. Thus
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no open neighborhood about O could be thrown into U, since

U is a proper subsct of [-1, +ﬂ .

VU U L

Fig. 3.1--A noncontinuous connectivity map

The function is, however, a connectivity map. Consi-

der any connected subsct C of I, not containing 0. Sincec

1
P is continuous everywhere but at 0, then g is discouniin-
twous only at 0, is therefore continuous on C and thus

g(C) is connected. Now consider any connected subset U
of the domain containing O, The connected set U must

take the form of an intervai, and therefore the image

g(U) consists of an unbroken line in the second and third
guadrants, .an isolated point (0,0), and an unbroken line
in the first and fourth guadrants. It is evident from
Theorem 3.11 that any division of the image g{U) into -
two disjoint separated sets @ust result in the point (0,0)

being the one and only "division" point, which would



clearly be a limit point of the set in which it is not
contained, Thus the image of a connected set under the
mapping g is connected, and therefore F is a connecti?ity
map. Noticc that F is not one to one, a condition which
a later theorem points out is sufficient for a connec-
tivity map from a metric space into El to be continuous.

The idea for the next example is found in a paper
by 0. H. Hamilton, entitled "Fixed Points for Certain
Noncontinuous Transformations." The paper is found in the
Proceedings of the American Mathematical Society, volume
cight, number four, pages 754-755,

EXAMPLE 3.2 As an example in EZ of a connectivity
map which is not continuous, consider the following mapping
of a closed 2-cell I of radius 1 and center at the origin
into itself.

Let {r,®) denote a point of I, where 0<r<1.

Let g = ee—%. Let C be a topological ray defined by the
polar equation £(©) = e%/{(1 + e?) if 1 <9<, and (o,%)
if 0£6< %, As € increases without bound, the ratio

eq/(l + eq) approaches l. The ray C is depicted in Figure
3.2. The ray has every point of the boundary G of I as a
1limit point. Clearly, any circle withh radius less than 1
will intersect C in one and only one point. Then define

a mapping F from I into itself as follows. If x = (r,®)

is in I, 0<r <1, define F(x) to be the point of C which
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lies a distance (1 -~ r) from the origin, i.e., the point
of intersecction of C with a circle of radius (1 - r). It
has alrecady been noted that this point is unique., IFf

x = (0,0), the origin, henceforth denoted simply by O,

let F(x) be a particular point O' of the boundary of I.

@

Fig. 3.2--A noncontinuous connectivity map

Notice that all points of I which are the same dis-
tance from the origin arce thrown by I’ to the same point of
C. It turms out that F is continuous on I everywhere but
at the origin, and therefore the image under g of any
connected subset of I which does not contain the origin
will be connected. Consider, then, a connected subset W
of I which contains the origin. Suppose, by way of coantra-
diction, that g(W) is not connected. Then g(W) = HUK
where I and K are scparated, Let A = g_l(ﬂ), and let
B = gul(K). Then AUB = W, and A and B are disjoint.

But, since W is commected, then one of A and B must con-

tain a limit point of the other, and,k in light of Thecorem 3.11



Ll

there is only one such limit point, and this point is O,
Supposc, without loss of generality, that O is an element
of B and thus a limit point of A. Then g(O) is an element

of X, and since H and K arc separated, there must exist

open sets U and V‘of 0 and 0' respectively, such thaz

UxV = D is open in g(I) = C, D contains g(0), a point of

K, but no point of H. Notice that V can be chosen so

that F—l(V) is a subset of U, which a consideration of

the. construction of F will show. Then V cannot contain

any points of F(A). But, since 0' is a limit point of C,

as it lies in the boundary of I, then V must contain a

point (1 - t, ©) of ¢ - F(A). Then the set P = F_]‘(l - t, ©)
is a circle with radius t, and since (1 - t, ©) does not
lie in F(A), then PNA = P. Then A is divided into two
sets Al and AZ, where Al is outside of the circle P and
A2 is inside the .circle P, Clearly, the sets BlJAZ and A

1

are scparated, nonempty, and W is the union of BLJA2 and Al’
whiclh is a contradiction. Thus g(V¥)} must be counected,
and F 1s a connectivity map.

Theorem 3.8 states that if g is continuous, and S
is locally commnected, then g(S) is locally connected.
Theorem 3.9 states that if g is continuous, $ is locally
compact, then g(S) is locally compact. It is not suffi-~
cient that F be a connectivity map.

EXAMPLE 3.3 1In Examplé 3.1 a moncontinuous connec-—

tivity map was defined. The graph map g was not continuous,
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the space S was locally connceted and leocally coumpact,
but g{s) was not locally connected, and not locally
compact,

To show that g(S) is loéally cennectied, in Example
3.1, let U be an opcen circle Qith center at 0 and radius
less than 1. If any open subcircle V with center at O
is considered, it is seen that V contains infinitely
many disjoint segments of g(S), so that VNg(s) cannot
be connected.

To show that g(S) is not locally compact, it will
be shown that g(S) is not 1ocally\compact at 0, Consider
the open circles U and V as defined in the preceding
paragraph. Let A = Vf\g(S). It will be shown that
. A = VNg(s) is not compact, by showing that A is not
countably compact, and using Theorem 1.18. The closure
of V clearly includes a point ¢ in the interval (0,1)
orr “he Y axis such that q‘% 0., Since O is the only point

that is in g(S), then ¢ is not in A. As

scen in ﬁhe preceding paragyvaph, V contains an infinite
number of disjoint segments of g(S). Thercfore A must
consist of this infinite number of segments, together
with their common points with the boundary of V. Con-
struct a sequence of points, one from each segment, which
converges to g. FEach of these points is in A, but the

point g is not. Then this sequence is an infinite subset



hé

of A which has no limit point in A. Therefore A is not
countably compact, and therefore is not compacti. Then
g(s) is not locally compact at O, and hence is not locally
coupact.

EXAMPLE 3.4 An example of a one to one connectivity
map whose inverse is not a commectivity map is the function
defined in Example 2.3 in the second chapter, and depicted
in Figuvre 2.2, The function F is continuous, and thus is
a connectivity map, but the invefse mapping is not a connec-—
tivity map. No nondegenerate connected set containing O,
that is, no interval containing 0 has a connected inmage
under g_l. The image of an interval containing 0 under
g- is split into two disjoint line segments, and thus
cannot be connected,.

THEZOREM 3.12 If I is a conhectivity map, then F
maps connected sets to connected sets.

PROOF: Let C be a connected subset of S. Now,
since F is a connectivity map, then g(C) = (CXF(C))r\g(S)
is connected, Suppose, by wéy of contradiction, that
F(C) is not connected. Then there exist disjoint sets
A and B such that AlB = @ = ANB, and AUB = F(c).

From Theorem 1.8, A and B are open in F(C), so that there
are open sets U and V such that A = UNF(C) and such that

B = VNF(C). Since S and U are open, then (SxU)Ng(C) = W
is open in g(C). Likewise, Z = (SXV)r\g(C) is open in g(cC).

Now, since A and B are disjoint, then U and V are disjoint,
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and hence Z and W are disjoint. Then Z2 and W are both

disjoint and open in g{C), and ZzUVWV = g{(c). Thus g(C)

is not comnected, by Theorem 1.8, and this is a contra-
diction. Therefore F(C) must be comnccted,

THEOREM 3.13 If ¥ is a conrectivity map from a Tl
space S onto a space T, p is an element of 5, U and V are
open neighborhoods of p and F(p) respectively, theﬁ every
nondegenerate connected subset of S containing p contains
a point q in U, unequal to p, such that F(g) is in V.

PROOF: Let C be a nondegenerate connected subset
of S containing p. Since F is a connectivity map, then
g(C) is connected. Let W = (UxV)N g{sS), which is open
and contains g(p). Suppose, by way of contradiction,
that C does not contain a point ¢ in U and unequal to p
such that F(q) is in V, i.c., that g(c)Nw = {é(pﬂ .

Notice that since C is nondegenerate, then C must
have at least a countably infinite number of points. If
C consisted of only a finite number of points, then,
since each point is a closed set in itself, any nonempty
proper subset of C would be closed, as well as its comple-
ment with respect to C. Then € could not be connected,
by Theorem 1.8, Since g is one to one, then g(C) must
also have at least a countably infinite number of points.,

Let A = g(C) - g(p), and let B = {g(p)} . Then
ANB = @, and AUB = 3(C). Also, A and B are nonempty

proper subsets of g(C). Since W is an open neighborhood
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of g{p) which is disjoint from A, then B contains no

limit points of A, and thus AND = #. But, since the’
degencrate set B is closed, being the image under tle
closed mapping g of a closed sect Zp}, then ANB = ANB = 7.
Therefore A and B are.separated, and hence g(C) is not
connected, which is a contradiction.

Then there must exist another point g in U such that
q # p, 9@ is contained in C, g(q) is in g{C) and hence that
F(q) is in V.

The above theorem merely =states that there must exist
at least one point g other than p in both C and U such
that F(q) is in V. It turns out that there must exist
at least a countably infinite number of such points. This
is easily seen when it is pointed out that the set B as
defined above would still be closed if it were composed of
only a finite number of points, and the proof would be
almost exactly the same.

The only difference between thie following theorem
and Theoreﬁ 2.5 is the subs?itution of "connectivity map"
for "peripherally continuous function." Notice again the
similarity to Theorem 1.15-c, which gives nccessary and
sufficient conditions that =a function be continuous.

THEOREM 3.14 If I is a connectivity map from a Tl
space S into a space T, and C is a closed subset of T,

then each component of Fcl(C) is closed.
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PROOF: Denote F—l(C) by D, and let W be a componént
of D, Suppose, by way of contradiction, that W is not
closed, Then there is a limit point q of W that is not
in W. Note that q is therefore not in D, or else che
set WL}{q3 would be connected by Tﬁcorem 1.10, and W
would not be a component of D.

Consider the set I = (WxC)f\g(S), which is closed
"in g(S) since W and C are closed. It will now be shown
that g(W) = E. Since F(W)CC, then from the definition
of g, (W) = (WxC)N g(s). Now the only difference be-
tween W and the closurc W of W is the set of limit points
of W which are not in W. But it was shown above thwat any
limit points which are not in W cannot be in D, and thus
the image under F of these limit points cannot be in C,
so that (WxC)Ng(s) = (Wxc)N g(sS). Therefore g(W) = E,
which was shown above to bé closed.

it has already been shown that WlJ{qz is ccuanected,
and since F is a connectivity map, g wU fal) = g(w)Uig(qB
is connected. Chus g(W’L’Bﬁ } is a connected set which is
the union of two disjoint, closed, and thus separated sets,
which is a contradiction. IHence W must contain all of its
limit points, and therefore is closed.

DEFINITION 3.5 A space S is said to be semi-locally
conneccted at a point p if and only if for every open
neighborhood U of p there is an open neighborhood V of p

such that V is a subset of U, and suclhi that X - V has



only a finite number ol components. A spacc S is said
to be semi-locally conneccted if it is so at each of its
points.

The next two theorems give sulficient conditions
thﬁt a counectivily map be continuous.

THEOREM 3.15 If the function F is a connecctivity
map, S5 is Tl and g(S) is scmli-locally con~nccted, tﬁen
F is continuous.

PROOCF: Let p be an element of S. Let U be an open
neighborhood of g(p). Then, since g(S) is semi-locally
connected, there is a subncighborhood V of U, countaining
g(p), such that the complement W = g(S) - V of V has
only a finite number of components. Since V 1s open In
g(S), then W is closed. Then from Theorem 3.3, g = is
continuous, so that the inverse image of ecach of these
cowmpenents is also connected, and is a subset of gul(W)a
It will now be shown that thoese inverse images are
components of gul(w).

Let C be a component of W. Then g~1(c) is a
connected subset of ¢ = g~1(w). Suppose that A = gul(C)
were not a component of Q. Then there is a connccted
set B which is a component of Q and which contains A
propexrly. Then g(A) = € is a proper subset of g(B),
since g is one to one, and since { is a connectivity
map, then g(B) is coriected and is a subset of V.

This contradicts the origina’ assumption that C was a



component of W. Thus A must be a component of Q. Thus
R has only a finite number of components, since cach is
thie inverse image under g of a component of W,

Consider the component C of W. Since W is closed,
then the closure of C must be contained in W, and since
the closure of a connected set is connected, and C is a
component of W, then clearly C must be closed. Therefore
the inverse image of C, g~l(c) = A, must be closed. If
A were not closed, then the set ALJ{q} , where g is a
1imit point of A which is not contained in A, would be
conmnected. Then by the same reasoning as in the proof
of Theorem 3.14, the set g({A U {q} ) would be connccted.
Then, since g(a U {q}) = g(a)U Zg(q)} = CU{g(q)} , and if
q is not in A then g(q) is not in C, then there would
exist a connected set which was the union of two disjoint
closed sets, which is a contradiction. Thus each compo-
nent of Q must be closed, and since there is only a finite
number of them, their union, which is Q, is closed.

Then the complement Z cf ¢ must be open, and the
image under g must then be open. But, since g is one to
one, then g(z) = g(s - Q) = g(s) - g{Q) = g(8) - W=V
which is a subsct containing g(p) of the original arbi-
trarily chosen open neighborhood U of g(p). Then g

is continuous, and so is F.
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THECREM 3.16 If I’ is a one to one real valued
connectivity map {rom a locally connected metric space

X onto E then F is continuous.

1 2

PROOF: The fact that the image space 1is El shows

that connected sets take the form of intervals. Let P
be an element of X, Let {Un} be a countable local(base
for p., Since X is locally connected, there is an open
and connected subneighboriood Vl of Ul which contains p.
There is a Um in {0“3 suchi that UmC:Vl, and there is

an open and connected subneighborhood V2 of Um which
contains p. Then VZC:VI' Continue in this manner,
getting a countable local bgse {Vgg of open connccted
sets about p.

Let W be an open neigliborhood about F(p). Then
there is an open ncecighborhood Wl oon£ained in W and
containing F(p) such that Wy = (F(p) - e, F(p) + e) where
e is a positive real number. Denote the inverse image of

the right endpoint of W, by x, i.e., let x = Fnl(F(p) + e).

1

Likewise, let y = F"l(F(p) - e). Since F is one to onec,
then X # p # vy, so that there is a v in {Vn3 such that
Vm contains p but not x. Likewise, there is a Vt in {Vn}

such that Vt contains p but not y. Let Vp denote the

smaller of Vm and V in the sense of containment. Then

.t?

neither x nor y is in Vp° Also, since V_ is connected,

then F(VP) is conaccted in E.,, and takes the form of an

l’



interval, and clearly is a subset of WJ. Then F(VU) is
- b

a subset of W, and thus P is continuous at p and thus on X.

Notice that the previous theorem implies that any one
to one connectivity map from a locally connected first
couhtable space into the reals 1s continuous. Notice also
that the function g was never used in the proof. The proof
merely made use of the fact that if F is a connectivity map,
then F as well as g maps counnected sets to connected'sets.

This paper is by no mcans a thorough investigation
of peripheorally continuous functions, graph maps or
connectivity maps. [or example, many morc similarities
could be demonstrated between the properties of periph-
erally continuous functions, graph maps or connectivity
maps and continuous functions.

There are certainly other conditions which could
be required of the spaces so that peripherally continuous
functions and connecctivity maps would be continuous,
conditions likely to be simpler than those prescnted
here. A very interesting investigation might be to try
to set up Theorem 1.15 in Chapter I for peripherally
continuous functiions, and for conncctivity maps.

A subject not touched upon in this paper is when
peripherally continuous functions might also be connec-

tivity maps, and vice versa, without necessarily being

continuous. This coul’ be a very interesting subject.



