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CHAPTER I 

INTRODUCTION 

The fundamental problem is that of prediction; one knows what the 

physical state is now, can one predict what it will be in the future? 

This problem arises in classical dynamics, classical quantum dynamics, 

relativistic dynamics and relativistic quantum dynamics. 

What is it that one wishes to predict? Classically one usually is 

most interested in the coordinates of some physical entity at some given 

time. For quantum systems the wave function gives one the pertinent phys-

ical information one wishes at a certain given time. Therefore it is nec-

essary to have the equation that gives the change in the wave function with 

respect to some parameter, usually the time. The Schroedinger equation 

is well-known to be that equation for non-relativistic wave functions and 

the Dirac equation for relativistic (spin one-half) wave functions. Since 

it is possible to "derive" the Schroedinger equation from a correspond-

ence between infinitesimal canonical transformations of classical physics 

and infinitesimal unitary transformations of quantum physics, one might 

expect to be able to derive the Dirac, Klein-Gordon, etc. , equations by 

a similar correspondence. 

One should, of course, recognize that some quantum physics may 

not have a classical description, but the object of this endeavor is to 
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find to what extent the relativistic wave equations have a classical 

counterpart, or more accurately, can be derived from a classical 

correspondence. Since the above-mentioned correspondence is the one 

desired, it is best to look at that formulation of classical dynamics 

that will be best suited for a transition to quantum dynamics. The 

formulation in phase space is the one of most interest for this purpose. 

The coordinates in this space are the coordinates x^, and the momenta 

p^, both as functions of time. The time development of a physical sys-

tem in this formulation is given as a trajectory in phase space; these 

trajectories are of immediate interest. 

How does one generate trajectories in phase space? To answer this 

question one has to go to a representative space, that is, the space of 

coordinates which are the most familiar. A curve in three dimensional 

Euclidian space, E^, gives useful physical information. Now there are 

a large number of curves in this space which could serve as states of 

physical interest. How does one decide which ones to use? If a number 

could be attached to each curve in Eg arid then a way found for sorting 

out the curve that really fits the situation, the question could be answered. 

Let then a number be attached to curves by integrating the function 

L(x, x) along them, where 

^ ,T x = a t - { U 1 ) 



That is, consider the definite integral 

x)dt. (1-2) 
L0 

The sorting process will be: insert in the integral every curve of suit-

able mathematical nature, take the difference between the number 

obtained and one preceding and the one following until the changes show 

a change in direction. Rather, one would say, differentiate with respect 

to the class of curves, or functions under consideration and set equal 

to zero: 

f ' ° 
6] L(x ,x)d t=0 . (1-3) 

The process is well known and resul ts in the differential equation 

d 0L 3L 
dt 3x Dx r r 

0 . (1-4) 

Hence it is seen that the answer to the question of generating curves 

of physical interest is in the form of differential equations, the solutions 

of which are the required curves. The question of whether these are 

absolute or relative extremums is not considered here. 



Since the interest was in phase space, it would do better to modify 

the action principle slightly and take as the integral 

Xx 
p. dx1 

"0 

/ H dt (1-5) 

along the trajectories, where H is defined by 

H(x,p,t) = p. x. - L(x,x) (1-6) 

and 

P; 
d h 

i 3x. ' i 
(1-7) 

The variation of this integral gives the sorting, 

rxo . r 
J P i d x 1 - ) H dt 

X tQ 

= 0 (1-8) 

or 

| A5JX dx. + p^6 dx^ - | (6H dt + H6 dt) = 0; (1-9 X 



after integration by par t s 

[p. 6 x J X - [H fit] 
x 0 l o 

^ + j" |fip^ dx* - fix. dp^j - (6H dt + fit dH) = 0. 

(1-10) 

For fixed end-points the f i r s t te rm on the right vanishes, and using 

4 H - l 5 q , h i + ! n r 4 t + a 3 f r 6 p i 
(1-11) 

gives 

3 H 0H 
® P i l & i - ^ d t - 8 X i d P i + 9 ^ d 7 

+ 6t(dH - | 5 - dt = 0. (1-12) 

Since fip^ fix^ fit a r e all a rb i t rary variations, the only way for the 

integral to be zero i s to have 

9 H ?H 3 H 
« * i - 0 a t r d t ' d p i = - 1 % d t ' d H = a - f d t 

(1-13) 



or 

3H « 3 H * 0H (T-14A 
x i = W p i = " H - n - 1 1 1 4 ) 

For conservat ive sys tems H(x,t , p) i s independent of t, so that 

x = p = - ^ L . ( i- i5) 
i a p j ' i dx i 

These a r e called the canonical equations of motion. They give the 

t r a j e c t o r i e s in phase space that a r e of in te res t . 

Thus, within the bounds of in te res t , the fundamental equation of 

c lass ica l dynamics has been solved. To get into a be t te r posit ion fo r 

a t ransi t ion to quantum dynamics, i t i s necessa ry to extend the r e s u l t s 

somewhat. Thus, we consider the subject of canonical t r ans format ions . 

If one applies a r b i t r a r y t rans format ion of coordinates 

(x ,p)-^(x,p) , (1-16) 

then those t r ans fo rmat ions under which 

dx = 0H_, d Pi = _ a_H, (1-17) 
dt 0 p. ~ W aXj. 



transform into 

€ = •22-. d-18) 
dt (1 p. 3? d X. 

M 1 

are called canonical transformations (2). 

Since the above come from an action principle, one is interested 

in the equivalence of functionals, that is, the functionals 

J" - H(x,p, t)Jdt (1-19) 

and 

J [p.x. - H(x, p, t) J dt. (1-20) 

One can state the following; relation without proof (4): two functionals 

of the form 

/F( t ,x ,p)d t (1-21) 
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are said to be equivalent if their integrands differ by a function of the 

form 

g(t,x,p) = ™ + S p. a dG(t,x,p) (1-22) 
f i=l ( i 

where dG is a total differential. 

Taking difference of the integrands of interest, 

(p.x. - H) - (p.x. - Ej = ~ G (t, x, p) (1-23) 

or by using 

x. = x.(x, p, t), p. = p.(x, p, t) (1-24) 

one can write G(x,p,t) variously as 

G 1 = t)» G2 = G2^x ' P' G3 = G3^P'x ' G4 = G4^P?P» $ 

Here, of most interest is Gg, so that 

dG£ 0G2 . ?G2_L ?G2 
d F = axTxi + a^7pi + "at"* (I-25) 



From (1-23) 

p i = a G 2 / 0 x i ^ 

x i = ^ 2 / ^ 

dGty 
H = H + - r r - • (c) 

ot 

(1-26) 

One savs that Gn i s a generating function, such that if it i s known, 
Lk """ '' ' ' ' ' 

the transformation 

(x, p)—(x, p) 

i s determined. 

Of part icular in teres t is the generating function 

G 1 = xi*V ^" 2 7 ^ 

Then (I-17a) and (I-17b) become 

P i = P i 

x. = x. l I 

(1-28) 

(1-29) 

and Gj is just the identity transformation. 
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Introduce now the infinitesimal contact transformation. One 

writes 

(x, p)—{x, p) 

as 

x. =x. + 6x., p. = p. + 6p.. 
1 1 1' *i *i *i 

It can be said here that interest will be in those transformations 

which shift the coordinates (x^, p..) an amount (x^ + dx^, p^ + dp^) 

with respect to the same coordinate f rame, rather than a relabeling of 

coordinates, such as changing to polar coordinates, etc. (5). 

Consider the special generating function, G w h e r e e is some 

infinitesimal parameter of transformation, 

G2 = G 1 + cK(x, p) (1-30) 

or 

G0 = x.p. + eK(x,p). (1-31) 
u 1 1 

One has a generating function that differs by an infinitesimal amount 

from the identity transformation. Then (I-26a) and (I-26b) give 
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6p. = - e ™ (1-32) 
*1 nxi 

7i 
5x. = <• eK 

i pfa + 
(1-31) 

and to f i r s t order in p. 

6x. = c (1-32) 
l 0pi 

An important observation is that if one takes € - dt, and K as 

the Hamiltonian H, 

6Pi = - d t l : = d t ^ = d p i ' ( I " 3 3 ) 

and 

ex. = dt ® . dt ^ = dx.. d-34) 
i ?p. dt i 

One comes to the following conclusion: if one takes K, the 

generator of the infinitesimal canonical transformation, to be the 

Hamiltonian H, then one can change the coordinates and momenta at 

time t to those at time t + dt, 

f i ' p i ) H ^ i + 6 X i ' P i + 6 P i 
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This is then the dynamical postulate (1, 3,4): the c lass of all t r a jec to -

r i e s of a physical system is determined by the unfolding-in-time of a 

canonical t ransformation. 

Lastly consider the definition of the Poisson bracket for y and u 

functions of x and p, 

PjUt ?v F)ju dv 
?x. Bp. Dp. ?)x. l *i l iy 

(1-35) 

and notice that 

Xi = [xt, H Pi P t > H]c; (1-36) 

f rom (1-35) it follows that 

x., x. 
i ] 

= 0, > i ' PJ ] = 0' [ X i ' P i ] c = 6 i f ( I " 3 7 ) 

and 

6p. =dt[p iH] (_, 6x. = d t [ x r H ] c . (1-38) 

These relat ions a r e very useful for the analogies to be drawn in quantum 

mechanics. 
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CHAPTER II 

THE FUNDAMENTAL PROBLEM OF NON-RELATIVISTIC 

QUANTUM DYNAMICS 

Classical mechanics was developed in the last chapter in such a 

way that it would lead to an analogy with quantum mechanics. Dirac (1) 

makes the connection between classical and quantum dynamics very 

explicit. That is, dynamical variables such as the velocity and momen-

tum can be given quantum descriptions, namely through changing the 

Poisson brackets into Commutator brackets. One thus assumes the 

following general mathematical framework of classical quantum m e -

chanics as given: linear operators, state vectors, and their adjoints, 

and the probability interpretation of these quantities (1,2). 

Momentum and position can be considered physical observables in 

quantum theory and are represented by Hermitian operators operating 

in a linear vector space. The analogy with classical mechanics, set up 

by Dirac, comes f rom 

[A,BJc = (iTi)"1 [ S , § ] (n - i ) 

where X and B are Hermitian operators. 

14 
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If one writes in analogy to equation (1-38) 

6F = — [ £ , 6 ] (II-2) 

where G is the generator of the infinitesimal unitary transformations, 

F becomes 

f = F + 6F = F + ~ [ $ , £ ] = UFU+ , (II-3) 

where 

U = 1 - ^ cG, U+ = 1 + ~ eG+, (II-4) 

with the conditions 

UU+ = I; G = G+. (II-5) 

The connection to the state vectors comes through the operators. 

Let S. be a complete set of commuting Hermitian operators, subject 

them to a unitary transformation 

t . = Ua.U+ (II-6) 
1 1 

and their eigenvectors to 

| a . ' > = U | a . ' > (II-7) 

t 
where |a^ > are orthogonal eigenvectors belonging to the operators a.. 
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U is required to be unitary in order to preserve the probability inter-

pretation. If 

U = I - ^ G 

then 

6 | a ' > = -g-eG|a'> . (II-8) 

The statement of the fundamental problem of quantum dynamics 

and its solution in two equivalent forms is given below. 

(a) Given the operators representing the observables of the system 

at a certain time, how does one find them at a later time? 

Solution: The temporal behavior of the operators representing the 

observables of a physical system is determined by the unfolding-in-time 

of a unitary transformation 

F = ( ih)" 1 [F ,H]+ H (II-9) 

where the step has been taken of identifying Ii, the Hamiltonian, as the 

generator of the infinitesimal unitary transformation. Since H is a 

function of x. and p., it is useful to recall that 1 i 

0, (II-10) 
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[x . ,p . ] = ih6.j and (11-11) 

o. (n-12) 

(b) Given the initial state j a, t > of the system, how is the state 

at time t, | a, t > determined from this? 

To find a solution to this question, one takes a linear operator T, 

the application of which gives 

| a , t > = T(t , t 0) | a , t 0 > . (II-13) 

T has the properties 

T(t,t)= 1 

T(t2' tl)T(tl'to) = T(t2'to)" (n-14) 

From what has been developed one can write T as an infinitesimal 
#'"N. 

unitary operator with the help of the infinitesimal generator H(t) and 

6t the infinitesimal parameter , that is, 

T(t + St, t) = 1 - ~6tH(t). (II-15) 

Consider (11-13) 

T(t + 6t, t ) ja, t > = | a , t + 6 t > (11-16) 
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or 

= _ L g | a > t > . (n-17) 

Taking the limit as t->0, 

Um i t . | a , t + M > _ - j M > _ Q|.| t > ( n . 1 8 ) 

whence 

i* = H | a , t > . (11-19) 

What has been done is to identify H(t), the Hamiltonian of the 

system, as the generator of the time transformation. This is possible 

because of the analogy one is able to draw between canonical transforma-

tions in phase space and unitary transformations in Hilbert space. In 

essence, this leads to the way state vectors behave and hence to equation 

(IV-19), which is Schroedinger's equation, or to (II-9), which is 

Heisenberg's equation. 

Consequently, (II-9) or (11-13) with (11-15) will be taken as the 

fundamental dynamical equations in this work. 
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CHAPTER III 

THE RELATIVISTIC SCHROEDINGER EQUATION 

The two foregoing chapters have been presented to give a possible 

development of non-relativistic quantum dynamics to this point. The 

usual presentation of relativistic quantum dynamics starts with the 

development of a quasi-classical Hamiltonian; and this development is 

given here for contrast with the chapters to follow. 

The expression for the relation between energy and momentum from 

special relativity is 

E = c \/m0 c
2 + P x

2 + p y
2 + p z

2 (III-1) 

and it is "natural" to let the Hamiltonian, since it is usually equal to the 

energy of the system, be 

H = c v / m ( ) c
2 +p 2 . (Ill-2) 

Then (11-20) becomes 

i T i ~ = cy'mgC'1 +P2 -i. (HI-3) 
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It is to be noted that the positive square root was taken to avoid problems 

of negative energy. 

There is great difficulty in dealing with (III-2) as a square-root 

operator (5). Further, equation (III-3) is so unsymmetrical in the order 

of differentiation that it cannot be generalized in a relativistic way when 

fields are present. The space and time coordinates also appear in an 

unsymmetrical form. 

If holding to the f irst order nature of the time derivative is 

dispensed with, one can write 

„2 2^2 2 4 ,TTT E = c p + nig c (III-4) 

and use the correspondence 

0 _j± E — i1\ -g£-, p = -iliV 

and one gets the more symmetrical form 

_£2 J L l t v O = ^ 2 C2V2 _ m 2 c2^ ^ ^ ^ 

at 

or the covariant form, 

_2„2 
tf(x,t) = 0 (m-6) 

2 2 
m c 

• + ij-
Ti . 
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where 

• = V2 - - 1 J* . (m-7) 
c at 

This is the Klein-Gordon equation which is sometimes known as the 

relativistic Schroedinger equation (3). Although every solution of (HI-3) 

is also a solution of (III-6), the converse is not true (2). This equation 

is a correct one, describing spin-zero particles, if ^ (x, t) is a scalar 

wave function. 

Here one should take note of the fact that the procedure was from 

quantum mechanics to relativistic quantum mechanics. Remembering 

that it is possible to go over to non-relativistic (classical) quantum 

mechanics by way of classical mechanics, one might ask whether it is 

possible to transform from relativistic mechanics to relativistic quantum 

mechanics. Historically it has not been done this way. The relation 

between energy and momentum is derived in the usual texts on quantum 

physics, but the canonical formalism which was followed above is usually 

not presented. 

The most objectionable feature, however, is that equation (11-19) 

is carried, with no further assumptions, over into relativistic quantum 

mechanics. Equation (11-19) definitely puts time and space on an un-

equal footing. Relativistic mechanics treats space and time 
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symmetr ical ly . Even Irom what one knows about non-relat ivist ic 

quantum mechanics, it is easy to see the symmetry cropping up, such 

as in the principle of uncertainty, that i s 

A x A p > ih 

and 

A t A E > h. 

Time, an absolute in Newtonian dynamics, gives way to absolute 

" i n t e r v a l s , " defined by 

, 2 , 2 , 2 , 2 , 0 2 

ds = dx + dy + dz + dx 

or 

ds^ = g dx^dx^ , x^ = i c t . (IH-8) 
liv 

One can call s the "p rope r t i m e . " The motion of a par t ic le is now 

described by a "wor ld l ine" in four-dimensional space, where the co-

ordinates a r e the following functions of proper time (1), where 

x = x(s), y = y(s), z * z(s) , t = t(s), (III-9) 

or in four-vector fo rms 

x1 ̂  = xM(s), 11 = 0 , 1 , 2 , 3 . 
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One also invokes covariance of any dynamical equations. That is, 

the form of the equations of motion should remain the same in any frame 

of reference. More explicitly, the equations are covariant under Lorentz 

transformations. 

For these reasons one can raise one small objection to equa-

tion (III-6); that is, it is just an ad hoc equation. Equation (III-6) was 

not derived like (11-20), yet it is important in that it is covariant. 

Setting as a guiding principle the fact our dynamical equation should show 

"manifes t" covariance, a formulation will now be developed that exhibits 

Lorentz covariance at each step of the development (1). 

A few aspects of relativistic particle dynamics should be summa-

rized here. The four-velocity is defined by 

x'M = ^ (III-10) 

and, calling the rest mass, one defines the four-momentum 

P M = m 0 x t (n i - i i ) 

which leads to the invariant 

2 
P P = m,,^c^ = P^ - P (HI-12) 
-ju~ju 0 - -
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.0 
where p is the ordinary momentum, and P turns out to be the ordi-

nary total energy, thus the relation (III-l). 

It is also possible to give a quasi-classical treatment to derive 

the Hamiltonian (III-2) in this chapter (4). Starting with the usual assump-

tion 

5 / Ldt = 0 (III-13) 

and taking 

L = - m 0 c 2 \A - /32 , where j8 = v/c, 

for a f ree particle, one obtains the Euler-Lagrange equations, 

d 
dt 

mnx. 0 i 

Vl~-~/32 

= 0, P. = 
m 0 x i 

1 yr? 
(Ill-14) 

From the formal definition of the Hamiltonian 

H = p.x. - L, 
*i l 

(III-15) 

H = 
rnAx.x. O i l 

\Jl - |32 

2 r a2 
+ m n c v 1 - / 3 , 0 

(III-16) 
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or 
2 

mAc 
H = V - j j r ( m - m . 

Cf) 
To get this into the "canonical" form, multiply the second equation of 

(II-4) by c2 , square it, square (III-17) and subtract this from it, 

4 2 2 
0 „ mnc c m n y 

H2 - c 2 S 2 = ,—2~\ - , 2\ (III"18) 

(l - I f ) (l - pi 

or 

a 2 2 ' V 4 ^ 
H

2 . c
2

p
2 = — ° * r - (HI-19) ( l " P2) 

or 

H =\/c2~p 2 + m 2 c 4 . (HI-20) 
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CHAPTER IV 

THE HOMOGENEOUS CANONICAL FORMALISM 

In relativistic mechanics the integral 

L(x(t),x(t))dt (IV-1) 

has to be replaced by one that is invariant under the Lorentz group of 

linear homogeneous coordinate transformations. 

In order to treat the four space-time coordinates on an equal 

footing, one writes the equations of the possible paths in parametric 

form as 

xM = x | i(s) (jut = 0,1,2,3) , 

where s is an arbitrary scalar parameter, not necessarily the proper 

time. 

The most logical generalization of (IV-1) is_ -

/ F ( X ( S ) , X 1 ( S ) , S ) ds. (IV-2) 

The integral can have physical meaning only if it is invariant under 

transformation of the parameter s. 

28 
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To investigate what properties F must have to make (IV-2) parameter 

invariant, consider another parameter cr related to s by 

CT=CT(S), A ' > 0 (IV-3) 

and write the inverse transformation as 

s = s(cr), s ' > 0. (IV-4) 

Take 

xV(s(cr))= iV(o), cr^s^ = a v tf(s2) - (IV-5) 

so that 

x ' y ( s ( a ) ) s ' ( a ) = (a). (IV-6) 

One requires invarianee in the sense that the transformed Lagrangian 

£(cr), i '(a)) should satisfy 

F 2 F" 2 

Js F ( S , X ( S ) , X ' ( S ) ) ds =J §((J, 4(a), 4'(cr))ds. (IV-7) 
1 1 
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Substituting s from (IV-3) and using (IV-5) and (IV-6), one obtains-

FA
 2F(S(<T), l(FF), S'(CJ) da = * ( A , 4(<J), «'(a)) da. (IV-8) 

Thus it is seen that if $> is defined as the integrand on the left of (IV-8), 

the invariance requirement is satisfied. (IV-8) gives the required trans-

formation property of F upon a change in parameter: 

i , i ' ) < I V - 9 > 

If F is positive homogeneous of degree 1 in the x^f and does not 

depend explicitly on s, then (IV-9) shows that $ does not depend explic-

itly on a, and 

= F ( £ , £ t ) . (IV-10) 

Thus in this case the transformed Lagrangian is the same function of the 

new variables as F is of the old ones (6). 

There is the possibility of using a nonhomogeneous Lagrangian, 

but it will not be dealt with here (4, 5). 

Following Synge (7), one may introduce the homogeneous Lagran-

gian function 

A(X q , Xp X 2 , X 3 , xQ
f, x ^ , X2*, x 3 ^ 
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For this function to have the proper dynamics, it should be positive 

homogeneous of degree 1 in the derivatives x T , i, e. , 

A (x, kx ') = kA (x,x ') (k> 0) (IV-11) 

and, by Eu le r ' s Theorem for homogeneous functions, 

x * = A. 
jJ, d x ' (IV-12) 

Also, one may define the Lagrangian action along any directed curve 

in four -space a s 

J 
L J s 

AT = J A ( x , x ' ) ds . 
!1 

(IV-13) 

As before , one requ i res the variation of this action to vanish, leading to 

6A t ~ / rr^~ 5 x u + T^r~ 6 x = (IV-14) 

Integration by pa r t s gives 

5 A L = 0 A 6x. 
ax< M 

2 

(~ 
els Ox * 

OA OA 6 x j j d s -

"1 

( I V - 1 5 ) 
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If the end points are held fixed, the first term vanishes and since 6x 

is arbitrary, the curve in space-time which satisfied (IV-14) is a solu-

tion of the equation 

iL | A . - ™_ = 0. (IV-16) 
ds 3x r ?x 

JU fi 

Introduce the usual Hamiltonian formalism in the manner of classi-

cal dynamical formalism. If one defines the momentum in the usual 

manner, 

p _ 5A (IV-17) 

p
 I-'-

the definition of the "Hamiltonian" becomes by use of the relation (IV-11) 

Q = x ' ^ P - A = x ^ 4 £ - ~ A = A - A = 0. (IV-18) 
- a 3P 

Attention should also be drawn to the fact that in order to have a 

canonical formalism, equation (IV-17) must be solvable for the x ^ ' s 

in terms of all the other variables, i. e . , 

'" = ' & • * ? ) ( w - 1 9 ) 
X 

or and x^ are canonically conjugate. 
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In order to solve (IV-17) for the x ' ^ s , it is required that 

3P 
•V 

ax1" 
{=• 0. (IV-20) 

(IV-20) comes from the following mathematical definition. Consider the 

equation 

x = x /y\ . . . y \ 
n nv 1 n J 

and by definition, n functions of n variables a re said to be independent 

when their functional determinant, A, does not vanish identically, where 

A 

ax. ?x. 

ay. ay n 

3x n ax n 
ay. ay. 

n 

v 
From (IV-12) differentiation with respect to xf yields 

3 A x" - 0. 
ax,M ax1 v 

(IV-21) 
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If not all the x1^ vanish (IV-21) shows that 

o 2 a 

ax , ' u 0x , y 
0. (IV-22) 

Therefore, not all the x ^ ' s can be separately solved as functions of 

P and x. One needs a further relation 

o(x,P_ )= 0. (IV-23) 

Following Synge (7), instead of imposing a Lagrangian A(x,x ?) , 

impose an entity that is called an energy equation, 

f?(x,P)= 0. 

This equation a r i ses as a necessary consequence of a search for a canoni- • 

cal formalism in four-space where one t reats time on the same footing as 

the space coordinates, and the need to find a canonical formalism in analogy 

with the non-relativistic case (1,2,3). 

Define a new kind of action, the Hamiltonian action , along curvcs in 

four-space, 

A = / P dx^. 
H J [l 

(IV-24) 

Vary (IV-24) under the constraint (IV-23), i. e. 

6 A JJ. = 6 J d x ^ + Q dw (IV-25) 
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where dw is an infinitesimal Lagrange multiplier. Variation, 

after partial integrals, gives 

6 A. 
H 

P 6x^ + 16P dx - 6 x d P + d w r — 6x + dw 6P \ 
J y -V- H H n -ju I. 

For fixed end-points and arbi trary x^ and P^ 

(IV-26) 

dx 

dw 
"Q 

dP 
~P 

dP ' dw 
-P-

da 

dX 

(IV-27) 

The curve which satisfies (IV-27), 

x = x (w) 

will have associated with it the vector field 

P = P (w) 
-H -i iy 

and one may take w as the parameter s, which is specified by the func-

tion O. 

The equations (IV-27) which are a consequence of the conditions 

= 0, f2= 0 j are called also the canonical equations of motion. These 

dynamics may be called Q-dynamics. 



36 

Once again canonical transformations have the same meaning, 

i. e. , for 

dx dP 
fi _ SO — jU _ cO 

ds 3P ds ^x 
-M M 

dx dP 
j£ _ dQ, — U _ riO 

ds ?P ds dx 
-\x n 

(IV-28) 

where ft. is treated as an invariant. 

Examination of the integral (IV-25) in light of those transformations 

and the theorem of Chapter II gives the same conclusions. Thus one 

finds a generating function G for canonical transformations. 

To get an infinitesimal contact transformation, introduce the gen-

erating function 

G(x,P) =x^P + F(x,P) ds, (IV-29) 

where F is an infinitesimal generating function and where ds is an 

infinitesimal parameter . According to 

p = JIQl x'M = dCf 
~~ M dxu ' 

M — jU 
x =x + 6x , p = P + 6P (IV-30) 

[i jj fi' -n -ix -n 
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then to first order (IV-29) becomes 

dP = P - P = -ds 4 ? 
~H - f i -n dP^ 

< W X M = d S l f L - < I V " 3 1 ) 

— M 

One sees that when F(x, P) = to(x, P) 

dx dP 
! l . m an / T V „ 9 ) 
ds ~ RP ' ds ~ " Px, ' u V " 6 A ) 

—[X Ji 

Considering (IV-32) in the light of Chapter II, and regarding (x, P) 

and (x, P) as two different points relative to the same set of coordinate 

axes, one may say that Q generates an infinitesimal increment in the 

coordinates and the momenta, (x, P)-*(x + 6x, P + 6P). 

The canonical equations themselves may be written 

V = [ v ° ] „ > V ' [ V ° ] e • 

where £ j c denotes the usual Poisson brackets. 

A note about the equivalence of Q -dynamics and A-dynamics will 

conclude this section (7). We have seen how (IV-23) gives a derivation 

of O from the Lagrangian. So start with 

0 = 0 (IV-33) 



38 

and restr ict P by imposing 

dx __ 
U y, 30 

d i ~ = ! : a F " < IV-34) 

where C is an undetermined factor. Solve (IV-33) and (IV-34) for P 

and C as functions of the xM ' s and x ' M , s and define A as 

A = P x 
- \ x 

Then tlie Hamiltonian action may be written 

A H = / V ^ = / V ' ^ d S = / A < x ' x ' ) d s (IV-35) 

and one sees that AJJ = A^ from the homogeneity of A; the equivalence 

is evident. 
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CHAPTER V 

KLEIN-GORDON EQUATION FROM £2-DYNAMICS 

There is now available a manifestly covariant method of describ-

ing dynamics in four-dimensional space-time. As long as one deals 

with a point particle free from interaction with other particles (except 

for possible direct collisions), the four coordinates (xq, Xp x^, x^) 

specify the state of the system at a certain value of the param-

eter s = Sq, and a " l a t e r " state of the system may be determined at 

a monotonically increased value of the parameter s. 

The dynamical problem takes the form: Given the operators of 

the system at a certain value of the parameter s, how does one find 

them at a monotonically increased value of the parameter? 

One may take the solution as: The parametric development of 

the operators representing the observables of a physical system is 

determined by a parametric unfolding of a unitary transformation 

F = (ih)"1 [ F , a U | f • (V-l) 

One also has 

dx P 
< v - 2 > 

40 
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and 

" / N / S "" 

X , X - 0, " 
M v . 

P- -i x , P = L M ~Mj 

' " V s . / s p , p ] 
~M -v] 

g iR. 

0 

(V-3) 

One is more interested, however, in the alternate approach to 

the Heisenberg form of quantum dynamics, the Schroedinger picture. 

For this purpose, one supposes that the state vector |x , s > is given 

at a certain value of the parameter, sQ, and it is wished to determine 

the state of the system at a later value of the parameter, s. 

Take then a linear operator s, the application of which gives 

v s > = H s ' s
0)i v s ° >• (V-4) 

S has the properties 

S(s, s) = 1, 

® ( s 2 ' s l ) ® ( s l ' s 0 ) = % 2 ' s 0 ) ' <V"5> 

With the help of the infinitesimal generator Q one can write S" 

as 

S(s +6 s, s) = 1 - i 6 s 0 . (V-6) 
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So that 

S(s + 5s) | x , s ^ = |x , s + 6s (V-7) 

and from (V-6) 

|x , s + 6s > - |x , s > 
~M 6s * = I V S >• <V"8) 

Taking the limit as 6 s—0, 

ill I x , s + 6 s > - )x , s > 

6s—0 K 6s * = fi'VS> ( V " 9 ) 

giving 

Six , s > 
i f t — f g — = n | x , s > . (v-io) 

This last equation is now taken as the evolution equation for 

relativistic quantum particle dynamics. It has the interesting property 

that when one applies the energy relation Q as an operator, one obtains 

the result that the state vector |x , s > is not a function of the param-

eter s, that is, (V-10) becomes 

Olx > = 0 . (V-ll) 
1 ju 
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Let us now find an explicit energy relation, 0 = 0 , for a free 

spinless particle. In order to do this, one uses the free homogeneous 

Lagrangian (1), 

A = mnc / g x 'x ' . 
0 v [iv fj, v 

The momentum from the usual definition is 

p _ J 4 _ 
-M ~ 3x ' 

m„cx ' 
_ 0 M 

, / g X 'x » (V-14) 
\l fw U v 

and, following the procedure of Chapter IV, one wishes to eliminate 

the velocities from this equation in order to find O and hence the 

canonical formulation. To do this just square (V-14), 

0 0 g x *x T 

P P = m n c (V-15) 
-jU-jU 0 g x 'x 1 

r U.v i± v 

so the energy relation is 

Q = P P - m„2c2 = 0 
-p-li 0 

Thus the relativistic "Schroedinger" equation will become 

P P - m 2 c 2 ] |x > = 0, 
- JU-JU 0 JI ju 
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or a more usual form is given by 

2 2 x ' x ' 

then the energy relation is 

V m = " m o ° ^ ( v " 1 5 > 

O = P P,, + m0
2o . (V-16) 

-jU-jU 

Thus one goes over to the quantum mechanical relativistic 

"Schroedinger" equation by making (V-16) an operator equation, i . e . , 

filx > = 0. (V-17) 
1 M 

One obtains a more usual form by using the correspondence 

P -» - i n 3 

H dx 

which gives 

^ . 2 8 0 2 2 = n -5— 5- mA c . 3x dx 0 
M M 

Letting 

2 2 
2 m 0 C 

x ~ 9— 



and 
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• dx dx 
M M 

(V-17) becomes 

• - x |x > = 0. 1 M 

This is, of course, the relativistic equation for scalar particles 

known as the Klein-Gordon equation. This equation was derived 

without placing time and space on different footings. Thus we have a 

M manifestly" covariant derivation of the Klein-Gordon equation. 
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CHAPTER VI 

RELATIVIST!C SPIN EQUATIONS 

The question now a r i ses that if the Klein-Gordon equation derives 

naturally from the homogeneous formalism, can one use this formalism 

to suggest relativistic particle equations with spin? It turns out that to 

ask this question implies the further question; is there a classical ana-

log to spin? 

One route to answering the above has been to suppose that one has 

a fluid droplet described relativistically with internal rotational 

motion (1). This formulation leads to complications, such as non-local 

properties. 

Also one might just fix an intrinsic spin variable to a point in 

four-space (5), or one might use a Lagrangian with higher deriva-

tives (2, 6). However, these apparently still do not have a good quantum 

transition scheme. 

If one, on the other hand, just places trust in the homogeneous 

formalism and makes some assumptions, it might be possible to derive 

some spin equations in a quasiclassical manner. 

47 
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One can proceed by analogy with what was done for the K. G. 

energy relation. Suppose one has an energy relation that is linear in 

the momentum; say it is of the form 

n = r p ^ t n i 0 = o. (vi-i) 

This might be just guessed or might be considered a resul t of "factoring" 

the relativistic expression for energy, i. e. , the Klein-Gordon energy 

relation 

Q = P P ± m n
2 = 0 (VT-2) 

in the following manner. Introduce some hypercomplex numbers, r , 

such that 

f r P + m ( t P - mJ\ = P P - m 2 (VI-3) 
U - M 0/ —M-M 0 

(VI-3) requires the r to satisfy an expression of the form 

r r + r r = 2* (vi-4) 
\1V V JU 

and hence one obtains two "linearized" energy relations 

r / 1 ) = r P + m n = 0 (VI-5) 
H—H 0 v

 ' 
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and 

J 1 ) = r p - mft = 0. (VI-6) 

With the above new expressions (the plus sign will be used in what 

follows) and using the rules for deriving A when Q is known, one has 

y = ^ § - = ? C I > ( V I-7> 
—/i 

where £ is a factor to be determined and the 1/4 is introduced for 

convenience. Solving for C with no summation implied over the /i 's, 

k = x T (VI-8) 
4 * ju n 

and then summing over (j, 

I z £ = x T " 1 . (VI-9) 
4 n MM 

or 

£(4)c = e = xMr"1. (vi-io) 
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Accordingly, one wr i t e s 

A ( 1 ) = x ' P " 

c r p^, (vi-11) 
I X -

or f r o m (VI-1) 

A (1 ) = CmQ. (VI-12) 

• n " 1 • 

Using C> A = n i Q ^ r gives 

A ( 1 ) = m n x » r " 1 (VI-13) 
0 MM 

In re la t iv i s t ic c lass ica l mechanics it i s well known that the 

invariant action principle leads to a Lagrangian of the f o r m 

A = a W V V V (VI-14) 

which follows f rom the Minkowski me t r i c 

s f = ( ^ = g x ' V (VI-15) 
Vdju./ jU M 

which in turn i s a special case of the genera l Riemannian met r i c 

ds^ = g (x) dx^ dxU. (VI-16) 
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Letting T * be denoted by a , equation (VI-6) can then be written 
fX 

A ^ = m n a x (VI-17) 
0 MM 

This has the appearance of a linearized form of the Minkowski or 

Riemannian metrics; i. e. , if one wanted to obtain a linear metric from 

these "classical" metrics, one might attempt to write a "factored" form 

of A, thus let 

a x ' = s' (VI-18) 
MM 

or 

~7 ot x f = s' (VI-19) s MM 

where I is the unit matrix (3). The Minkowski metric (VI-15) can be 

written 

^ x ' M x ' ^ I = s ' 2 (VI-20) 

so that using (VI-19), (VI-20) becomes 

g x ^ x , V — a x ' = s '^ (VI-21) s' c a v ' 
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X1 r
X2 X 3 / l \ 

S X 2 X X k)W~ (VI-22) 

If one continues iterating on the left with (VI-19), 

if'z 
X j ««. X 

1 n 

X 1 X n 
a, x' . . . xT = s1 ' 

n 
(VI-23) 

so that dropping the sum and simplifying gives 

X, X , 1 , n .n g. . a. . . . a x' . . . x ' = s' . 
* 1 2 3 n 

(VI-24) 

Summing over all n! permutations of Xfl gives 

E 
ip( 

Sij \ • • 
1 2 3 

, 1 x' . . . x 
n 

X " , n = n!s n (VI-25) 

Now if one considers 

a. x* 1 = s' 
X X„ n n 

(VI-2 6) 
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a n d m u l t i p l i e s t h r o u g h b y 

a . . . a . x r . . . x . r 

A /V A 4 A 4 
1 n - l 1 n - 1 

( V I - 2 7 ) 

t h i s g i v e s 

X , X X . X 
. 1 . n - l t . 1 . n 

a . . . . a . x r . . . x ' = s T a . . . a . x T . . . x r 

A 4 A A ^ A 4 
1 n - l 1 n - l 

= s T a , . . . a . x . \ . . x . r 

2 n - l 2 n 

t n 

= s ' . ( V I - 2 8 ) 

S u m m i n g o v e r a l l p e r m u t a t i o n s 

a , . . . a , x . \ . . x ' 
X , X , a , n - l 

_ 1 n - l 1 

= n ! s ~ 
n 

( V I - 2 9 ) 

E q u a t i n g ( V I - 2 9 ) a n d ( V I - 2 5 ) 

| P } 
X * \ n " g X . X 

I OL . . .0.' 

1 " 2 ' v 1 " 2 / 3 " n 

x \ . . x . ' = 0 
A H A 

1 n 

( V I - 3 0 ) 

w h i c h i m p l i e s 

£ rv rv - o * 

* l \ * X 1 X 2 

a . • a X = ° " 

n 

( V I - 3 1 ) 
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These a r e the conditions on the a ' s that follow f rom factoring 

the met r ic of special relativity in a general way. It should be noted 

that for only two a ' s , equation (VT-30) becomes 

a a. + a a = 2 g . (VI-32) 
U v v> jji by,v 

Which is the same a s the condition on the T ' s . One can then see that 

these two conditions (VI-4) and (VI-32) together with (VT-13) implies 

that a 2 = 1, T 2 = 1 or r = T ^ so that a =T . 
H ju M M M M 

One now can obtain Q, f rom either A or A ^ . Using i. e. , 

A = m o ( V I " 3 3 ) 

with the defining relat ion 

P = (VI-34) 
-ju ?x ' v ' 

M 

gives 

m„x 
p =

 0 M 

' g u U x ' , X x ' V 
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and if one introduces F at this point by multiplying through by T and 

summing over ju 

m„x T 
p r = U ^ M . (VI-35) 

g x , r x ' 
jUf 

One can "cut off" here if one assumes lhat the T ' s introduced the 

factoring of 

g,, x 'x ' 

or that 

m„x T 
= m ( ) (VI-36) 

V x ' M x ' " 

which gives 

N=Vm " m o = °> ( V I - 3 7 ) 

where one has eliminated the velocities and thus has obtained an energy 
o 

relation. This is to be contrasted with the derivation of Q = P P ± 
-M-M 0 

from A - - ^ ^ x ' ^ x ' ^ in the previous chapter. 
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Using 

A ^ = t m n a x ' 0 ju (J, 

with the following definition of P 
r 

p = 1 I M _ = j m n a 
4 9x 4 0 ju 

or using a = T and summing gives 

r ^ P - i | s m Q - :L:^(4)m0 

or 

0 = r P ± m . = 0, (VI-38) 
r* * 

since the energy relation i s the equation one obtains when the velocities 

a r e eliminated. 

Using the dynamical relation f rom Chapter V, that is , 

a [x q r > = 0, (VI-39) 

where q^ i s an " in t r ins ic" variable, the wave equation can be obtained. 
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Using (VI-38), there r e su l t s 

J ' V V 
d S 

r P i m„ 
fi-fi o 

X q y
> = 0, (Vl-40) 

and if the label that state vector, such a s 

I V q r > = I V y ' 

the wave functions will become column vectors. Hence the T ' s would 

become matr ices . It i s well known that ma t r i ce s a r e usually used to 

r ep resen t hyper complex numbers. 

For the case of n = 2 and letting X ^ Xg = v then (VI-31) 

becomes, with a. = T 
jti ju 

r r + r r = 2g , 
JU V v \U HV 

which a r e the conditions on the Dirac F ' s , and (VI-40) becomes the 
r 

Dirac equation for the electron. For n = 3, 4, . . . one will have the 

relat ions between the T ' s for the higher spin Duffin-Kemmer equations 

for mesons (3). 

In closing this chapter the paral le l between the " l inear" met r ic 

(VI-17) and that of "Wave Geometry" should be drawn (4). 
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The fundamental idea is that just as 

ds^ = g dx^ 6xu 

jU v 

characterizes the macroscopic space-time, perhaps the metric ds and 

wave function ^ characterize microscopic space-time, as 

ds vjr - y dx^ 

which is a possible kind of linearization of the general metric. 
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CHAPTER VII 

CONCLUSION 

Classical canonical formalism was developed and the usual transi-

tion schema to quantum dynamics presented. The question of transition 

from relativistic mechanics to relativistic quantum dynamics was answered 

by developing a homogeneous formalism which is relativistically invar-

iant; using this formalism the Klein-Gordon equation was derived as the 

relativistic analog of the Schroedinger equation. Using this formalism 

further, a method of generating other relativistic equations (with spin) 

was presented. 

It would be desirable now to study the Heisenberg formulation of 

quantum dynamics, in particular, the fact that for the case of the Dirac 

equation, the velocity and momentum are not proportional to each other, 

a fact that was not really used in developing the "linearized" metric. 

The "linearized" metric itself is of interest. Just what kind of 

geometry does it represent? What other possible kinds of metrics 

might be explored with the formalism that has been developed? 

The question of the relationship of this approach to formalisms 

which use Lagrangians with higher derivatives to represent equations 

with spin is also of interest (1,2). 

60 



61 

Lastly, zero mass particles might be studied using null geodesies, 

though a new parameter different from ds would have to be introduced. 
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APPENDIX 63 

SYMBOLS 

The following symbols are used throughout the discussion of the 

problem. 

It Hermitian operator 

c speed of light in vacuum 

E total energy 

G generating function 

g metric tensor 

H classical Hamiltonian 

fi ^ = Planck constant 

i imaginary unit 

L classical Lagrangian 

niQ proper mass 

P four-momentum 

p classical momentum 

q intrinsic quantum variable 

parametric operator 

s element of arc length 

T time operator 
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t time 

x coordinate 

a hyper complex number 

T hyper complex number 

y hyper complex number 

C undetermined factor 

A homogeneous Lagrangian 

£ coordinate 

a arbi trary parameter 

$ integrand in action integral 

^ wave function 

0 energy relation 

Subscripts: 

H 0, 1, 2, 3 

v 0, 1, 2, 3 

X • • •y n 
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