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CHAPTER I
INTRODUCTION

Iattice theory as it 1s known today was first introduced
by E. Schroder in 1890, even though in 1824, while researching
in mathematical logic, G. Boole introduced an important class
of lattices called Boolean Algebras., Several years later, in
1897, R. Dedekind arrived at the same conclusions as Schroder
did. Dedekind was credited with the discovery of distributive
and modular lattices. As a result of this early work and
" large contributions made later by G. Birkhoff, lattice theory
became recognized as a substantial branch of abstract algebra.

Iattice theory haé applications in various areas of meth=-
ematics., For example, in the study of lattices of subgroups
of grsgps, lattices have been helpful in studying the structure
of a group. Birkhoff, in his book on lattice theory, discusses
applications of lattice theory to the areas of logic, prob-
abllity, functlonal analysis, and topology. tattice theory
also has applications in theoretical physics, particularly in
the areas of quantum mechanics and relativity.

Because lattice theory is so wvast, the primary purpose of
this paper will be to present some of the general properties of
lattices, exhibit examples of lattices, and discuss the prop-
erties of distributive and modular lattices. Chapter I, in
addition to containing a brief history of lattice theory, will
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contain the basic definitlions from abstract algebra needed to
develop lattiges. Chapter II will be devoted to the develop-
ment of some of the general propertles of lattices, and
Chapter III will be primarily concerned with distributive and
modular lattices.

The undefined notions in this paper wlll be those of an
Yordered palir® and a "set.”

Iet each of A and B be a set. .

Definition 1.1, The Cartesilan product of the set A by

the set B, denoted by A X B, 1s {(a,b): a €A, DEBJ.
Definition 1.2. A relation R on A,B 1is any subset of

A X B,

If A and B are the same set, the definition will read as
follows: a relation defined on A is any subset of A X A,
Throughout the paper, (a2,b)€ R and aRb will mean the same and
will be used interchangeably.

Definition 1.3. The domain of a relation R on A,B is

{a € A: there exists a b&B such that aRb'}.

Definition 1.4, The range of a relation R on A,B is ‘

[bé B: there exlsts an a € A such that aBb}.
Definition 1.5. The relation f on A,B is said to be a

function on A,B if (a,b)€ f and (a,c)€é f implies b = ¢,
Definition 1.6. The function f on A,B is said to be

reversible if (a,b) € f and (c¢,b) € £ implies a = c.

Definition 1.7. A binary operation 0 \on a set L is a

function whose domain is L X L and whose range 1s a subset of



Definition 1.8. The relation R on the set L is said to

be an ordering relation 1if
1) for each ac¢L, (a,a) € R;
ii1) for each pailr a,be L, (a,b)éR and (b,a)éR
imply a = b; and if
11i) for each triplet of elements a, band ¢ in L,
(a,b)€¢ R and (b,c) € R imply (a,c)€ R.
For the relation " 4£," a£b will be written instead of
(a,b)e & .
Definition 1.9. The relation R on a set L 1s sald to be

the converse of the relation R on L if for x, y &L, then
(x,y)éﬁ if and only if (y,x)é€ R.
Definition 1.10. Suppose that R is a relation defined on

the set L. Then L is salild to be partially ordered if R 1s an
ordering relation.

Theorem 1.1, The converse of an ordering relation is an

ordering relation.

Proof. ILet R be an ordering relatlon defined on the set
L, and let R be the converse of B on L. Let xe L. Then
(x,x)& R and, by Definition 1.8, (x,x)e€ E; Thus, property (i)
of Definition 1.8 is satisfied. If x, 'y is any pair in L
such that (x,y)€R and (y,x) € R, then (y,x)€R and (x,y)€ R.
Since R is an ordering relation, x = y. Thus, property (ii,)
is satisfied. If x, y, 2z is any triplet in L such that (x,y)e §
and (y,z)éﬁ, then (y,x)€R and (z,y)€ BR. Thus, (z,x)€ R, but

this implies (x,z) € R. Hence, R is an ordering relation.



Let P denote the set of positive integers, and let R be
a relation defined by the following: for each palr of elements
X, ¥ P, xRy if and only if x is a divisor of y. Clearly, R is

an ordering relation. Hence, the set P is partially‘ordered by
R.



CHAPTER II
GENERAL PROPERTIES OF LATTICES

In this chapter, lattices in general, various types of
complemented lattices, and chalns are discussed.

Definition 2.1, A set L is called a lattice if there

are defined two binary operations, meet and join, which
asslgn to every pair a, b of elements of L, uniquely an
element a Ab (meet of a and b) and an element aVvdb (join of
a and b) such that the following lattice axioms are satis-
fied. Iet a, b and celL. Then
Ll: (aAb)Aac =an(bAc), IL2: (avdb)vec =avi{bve)
L3
L5

and =bAaa, I4: avb =bVa

an(avb) = a, I6: av{anb) = a,

Theorem 2,1, If L is a lattice, then ana = a and

ava = a for all a in L.

Proof. ILet L be a lattice and 1& L. Then by Axiom L5,
1 =1A(1v1) and 1V1 = 1V[1A(1v1) . By Axiom IL§,
1v[iA(1v1)] = 1. Hence, 1V1 = 1. To show that 1AL = 1,
note that 1 = 1v(1A1l). Then 1ALl = 1A[1v(1A1)] = 1.

Corollary. If a and b are elements of the lattice L,
then anb = a'vb if and only if a = b.

Proof. Iet a and b be elements of the lattice L such
that aAb = avb. Then



a=av(aAb)

i

avi{avb)

i

(ava)vdb

H

avb
= bva
= (bVvb)Va
=bv(bva)
bV (bAaa)

i

b.

H

Hence, a = b,

Let a and b be elements of L such that a = b, By
Theorem 1.1, a = aAa and a = ava., Note that aAa =aAnb
and ava = avb., Hence, aAb = aVvhb.

Theorem 2.2. If a and b are elements of the lattice L,

then aADb = b if and only if bva = a.
Proof. ILet a and b be elements of the lattice L such
that aAb = b. By Axioms L6 and L4, |
a=av(aAb) =avb = bva,
Hence, aAb = b implies a = bva.
Suppose that bva = a. Then b = bA{(bva) = bAa = aADb.
Hence, bva = a implies aAb = b.

Theorem 2.3. If a, b, ¢ and d are four arbitrary ele=-

ments of a lattice, then
1) (anc)Vv (bad)
= [(a/\ c) v (b/\d)] A [(aVb) A (ch)J; and



2) (aAb)V(bAc)VY(cAa)
= [(a/\b) VibAc)y (cAa)]AJ [(a\lb)/\ (bve)a (c vaJ.
Proof. ILet a, b, ¢, and d be arbitrary elements of the
lattice L. By Axioms L1, L3, and L5,
(anc)A[(avi)a(eva)]
= [a/\(a\/b)_]/\[c/\(cv d)]
= aAC
and
(bAd)/\[(avb)/\(cvd)J
[b;\(avb)_]/\ [d/\(ovd)]
= bAd.

It

Using Theorem 1.2, (aAc)A [(av b)A (e \/d)] = aNnc implies
(anc)v [(avb)a(eva)] = (avb)A (cvd) am
(bAa)A [(avb)a (eva)] = baa
implies (bAd)V [(avb)t\ (ch)] = (avDb)A (evd) so that
[(aA RY (b/\d):{V f(av b)A (cv d)]
(aAc)y {(b/\d)v [(av blA (ch'):]
(ane) v [(avd) A (o va)]
(avb)/\(cv’d).

Hence, by Theorem 1.2, .
[(a/\c)v(bf\d):[/\ [(av b) A (ch)] = (aA c)Vv (bAd).
To prove part (2), note that (1),
(a/\b)/\(avb)/\.(ch)A(cva)
aA[‘OA(a\lb)_]/\ (bve)A(cva)
(aADB)A(aVb)A (bVe)
an[ A (ave)]A (bve)

i

It



= (aADb)A (bve)
aA[b/\(ch)]

= a/\bc
Similarly, (i1), (bAc)A (avb)a (bve)a (cva) = bac and

(111), (cAna)A (avb)a(bve)Aaleva) = cAa. By Theorem 1.2

and (i),
(an®)v [(avp)a (bve)a(ave)]
= (aVvb)A(bve)A(ave),
and (i1),
(bAC)V[(aVb)A(ch)A(Ovaﬂ
= (avb)A(bve)Aa (cva),
and (111),
(cAa)V[(avb)A(bvc)A(oVaﬂ
= (avb)A (bve)a (eva).
Thus,

[(a/\b) v(b/\c)v(c/\a)]v [(aVb)/\ (bve)a (cVa)]
(anb)v (bac)v E(c/\a)v [(avb)/\ (bve)a (cva)_H
(aADd)v (bac)yv [(avb)/\ (bve)a (o\/a)]

(anDd)v {(b/\ c)v [(avb)/\ (bve)Aa (cva)]}
(aab)v[(avB)A(bve)Aleva)]

i

t

i

i

(avb)a(bve)a(cva).

Hence, by Theorem 1.2,

[(a/\b)v (ba c)v(c/\a)_-,/\[(a\/b)/\(bvc)/\(oVa)]
= (aAb)V (bAc)vichaa).

Theorem 2.4. If a and b are elements of s lattice L, then

the relation " ¢,” defined by a$b if and only if aAb = a, is

an order relation.



Proof. Let a and b be any pair of elements in the
lattice L, and let the relation " £" be defined by af b if

& implies a £ a, property

i

and only if aAb = a, Since ana
(i) of Definition 1.8 is satisfied. Suppose that x, y is
any pair of elements in L such that x4y and y£ x. Then
XAy =X and yAx =y, but xAy = yAax. Thus, x =y, and -
property (ii)‘cf the definition is satisfied. Suppose that
X, ¥, 2 is any triplet in L such that x%y and y% z. Now
XAy =x and yAzZ = y so that |
X =3xAYy =xA(yAZ) = (xAy)INZ = XAZ,

Thus, x££z, and property (iii) o'f‘ the definition is satisfied.
Hence, "£ " is an order relation.

The dual of this theorem would read as follows: 1if a
and b are elem.ents of a lattice L, then the relation " 2,"
defined by a2 b if and only if avb = a, is an order relation.
Throughout the remainder of this paper, the statement that
g & " Will mean aAb = a and a £ b. Also, a$b and b2a
will be used interchangeably.

Definition 2.2. The element a of a lattice L is said to

be an upper (lower) bound of the elements x and y, y, X€ L,
if xAa =x and yAa =y (xva =x and yva = y).

Definition 2.3. The element a of a lattice L 1is the

supremum (infimum) of the elements x and y in L if
i) a is an upper (lower) bound for x and y, and
ii) if b is any upper {(lower) bound, then

anAnb =a (avdb = a).
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Definition 2.4, If R 1s a subset of the lattice L, then

a€R is sald to be a minimal (maximal) element of R if for
each X € R such that xAa = x(xva = x), then x = a,

Definition 2.5. The statement that 0 (1) is a zero

(unity) of a lattice L means that OAx = 0 (ivx = 1) for all
X in L.

Definition 2.6. A lattice is said to be bounded below

if it has a zero, bounded above if it has a unity, and bounded
if it has both a unity and a zero.

Theorem 2.5. Every finite subset of a lattice has an

infimum and supremum.
Proof. lLet A ={a1, 80, eceey anj be a finite subset of

the lattice L. By induction, aqA az/\ a3 “ve /\an = A ay is

(%1}

an element in L, where K a; denotes the meet of the n ele-

($1]

ments of A. Let R a3y = a and jé{l, 2y eney n}. Then

#

n
aj/\ (}/;l aj)
aj N (all\azl\ eee N\ ajAaj+l---Aan)

aj/\a

]

il

(ajl\ aj) A(al/\ ooo/\aj—l/\ aj+1/\000/\an>

ii

ajA (all\ o--Aa«j__lA aj+1/\. oooAan)
= 8.1/\ ooo/\an = B

n
Thus, a 1s the infimum of the set A. By a dual proof, b =V 2y,

n [$-1]

where \/' asy denotes the join of all the elements in A, is the

(£

supremum of the set A.

Theorem 2.6. Every lattice has at most one minimal and

one maximal element, which are the zero and the unity, res-

pectively.
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Proof. ILet L be a lattice with minimal elements m and
m', and let m'Am = c. Since m and m' are in L, then cé€ L,
Note that mAc = mA(mAn') = (mAm)Anr® =man' = c. The
fact that m is minimal implies that m = ¢. Thus, n'Am = n,
which means that m = m'. Hence, there 1s at most one minimal
element.,. By a dual proof there 1s at most one maximal element.
To show that m is the zeroc of L, let x¢L and let mAX = ¢ €L.
Note that mAec = mA(mAX) = mAX = ¢. By the same reasoning
a8 before, m = ¢ and mAXx = me Therefore, m 18 the zero of
the lattice L. By a dual proof, if there is a maximal ele-
ment in L, it is the unity of L.

Definition 2.7. Suppose that a and b are elements of

the lattice L such that a<b. Then the statement that b
covers a'" means that there 1s no x€ L such that a<x<b, and
will be denoted by b>—a.

The notatlion "a—<b" means that a is covered by b, which
is synonymous with "b covers a,"” and will be used inter-
changeably with it.

Let M = {Xir Xp, XB} be a set of three elements. Then the
set of all subsets of M forms a lattice with respect to the
operations of union and intersection. To illustrate this, let
aq = {xlg, ap = {xz}, a3y = {XBZ, aj, = {xl, XZ}, ag = [xl, x3} s
ag = {xz, XB} y, 0 = # (empty set), i = M. By observing Tables
I (a) and I (b), it is seen that

L = {O’ i’ ai, 8.2, a3) au’, a5, 36}
satigflies the lattice axionms.



TABLE I (a)
MEET OPERATION

A i 0 ay a, a3 ay, a5 36
i i 0 a4 8, a3 34 as as
0 0 0 0 0 0 0 0 0
a4 al 0 aq 0 0 a4 aq 0
as as 0 0 ao 0 as 0 as
a3 a3 0 0 0 a3 0 a3 a3
au au 0 al 2y 0 aj al a2
a5 a5 0 aq 0 a3 aq a5 a3
a6 a6 0 0 8o a3 2y a3 a6
TABLE I (b)
JOIN OPERATION

\VZ i 0 al a, aB ay, a5 ag .
i i i i i i i i i
0 i 0 aq 8o 33 ay, a5 a6
al i al al aa 35 aa as i
8, i ap a) ao ag ay i ag
‘a3 i a3 a5 ag a3 i a5 a6
aL‘, i 8.4 aq' au_ i au i i
a5 i a5 aS i a5 i a5 i
36 i 36 i 8.6 Eis i i 36

12

The elements of L can be represented graphically by Fig-

ure 1, which follows.

Note that the elements are represented
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by small circles; an element x is higher than an element
y({x,y€ L) if y<x. A line segment then is drawn from y to x
whenever y 1s covered by x. This type of representation,
called a diagram, is used mainly to represent finite lattices,
Note that by Theorem 2.5 L has an infimum and a supremun,
Throughout the rest of this paper, the infimum of a lattice D
willl be denoted by inf D, and the infimum of a subset R of D
will be denoted by infp R. The same type of notation, i.e.
sup D and supD R, will be be used for the supremum. Then the
inf L=anain/( _/‘i\‘ aj) = 0and sup L = Oviv({ J,\Z aj) = i,
This lattice is ;iso an example of a bounded lattice., In

fact, the zero, minimal, and inf L are all the same element.

The same is true about the unity, maximal, and sup L.

Fig. l=--lattice of subsets

Definition 2.8. An element p of a lattice L bounded
above is called an atom 1f for each x€¢ L, elther pAX =D

or pAX = 0, where O is the zero of L and p # O.
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An example of an atom would be the element a, in
Figure 1.

Definition 2.9. An element q of a lattice L bounded

above 1s called a dual atom if for each x€ L, either qvx = q
or qVX = i, where 1 is the unity of L and q ¥ 1.
An example of a dual atom would be the element a5 shown

Ain Figure 1.

Definition 2.10. Suppose that L is a bounded lattice

and that x is an element of L. Then x' is said to be a com-
plement of x if xAX' = 0 and xvx' = 1. A lattice L is said
to be complemented (uniquely complemented) if each element in
"L has a complement (exaqtly one complement).

Figure 2a below is an example of a complemented lattice.
Note that for eamch x in the lattice there is an x' such that
XAXY = 0 and xvx' = 1, For-example, aAb =0 and avb = 1,
Figure 2b below is an example of a uniquely complemented
lattlice. Throughout the remaindér of thié paper, the lattice
in Figure 2a will be called Lattice A,

0 i
c
b a b
a
i -0
Fig. 2g== Fige 2b=~=
Lattice A, _ Uniquely complemented

lattice.
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Theorem 2.7. If p and q are distinct atoms in a uniquely

complemented lattice L, if p'¢ L is the complenent of p, and
if p' is alsgso a dual atom, then p*'Aq = g.

.g_r_'_c_)_q_f_‘_. Iet L be. a uniquely complemented lattice, p and g
be distinet atoms, p' be the complement of p, and p' be a dual
atom, By Definition 2.8, p # 0, and either pAg = p or

il

P AQ 0. Suppose that paAg = p. Since gq is an atom, either

L]

pPAgq = qor pAq =0, q # 0. If panq =gq, then q = p, which

is a contradiction to the hypothesis. If pAq = 0, then p = 0,
which agaln is a contradiction. Thus, the assumption that

PAQ = p is false so that pAq = 0. Using the fact that g is
an atom, either p'Aq = q or p'Aq = 0. Suppose that p'Aq = 0.
The fact that p' is a dual atom implies that either p'v q = p!
or p'vag =1, p' #i. If p'vq = p', then, by Theorem 2.2,
P'Aq =q and g = 0, which is a contradiction since q is an
atom., If p'vq = 1i, then g would be a complement of p', but

p!' has only one complement, which is p. "I_‘hus, q = p, which is

a contradiction. Hence, p'Aq = Q.

Theorem 2.8, If L is a uniquely complemented lattice and

p' is the complement of p(p',pée L), then p*' is a dual atom if
and only if p is an atomn. |

Proof. Let p’' be the complement of p in the uniquely
complemented lattice L, and supposge that p' is a dual aton.
Iet x€L. Then xApé€éL. Since p' is a dual atom, either
(xAP)VDP' = 1 or (xAp)vDp' =Dp', p* # 1. If (xAap)vp' =1,
then, by Theorem 2.2, (XAP)ADP' = XA p. Note that
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(xADP)ADPY = XA (PADP') = XAD = O,
Thus, XA p = 0. If (xAp)vp' = i; then, by the uniqueness of
the complements, p = XA p. To finish the first part of the
proof, suppose that p = 0. Since p' 1is the complement of p,
P'Ap=0and p'vVp =1. Now p'Ap = 0 = p and, by Theoren
2.2, p'vp =7p's Thus, p' = 1, which 1s a contradiction.
Hence, p # 0 and p is an atom. By a dual proof, the converse
is proven.

Definition 2.11. Suppose that L is a lattice bounded

below and that x is an element of L. Then u 1ls sald to be a
semicomplement of x if xAu = 0. If u # 0, then u is a proper
semicomplement.

Definition 2.12. Suppose that a and b are elements of a

lattice L such that a<{b. Then
1) [e,v] = 2}:GL: a ¢x and x:—‘.b} ([2,0] is said to
be an interval of L);
ii) (a,Db) :{xe Ls a<x<b§;
i11) (a,b] = ixEL: a<x and xéb}; and
w) (a] = zxé L: a% x}.

Definition 2.13. Suppose that L is a lattice and that R

is a subset of L. Then the statement that R is a convex set
means that a,b€R (a<b) and x€|a,b] imply x € R.

Theorem 2.9. If ‘L is a lattlice bounded below, then the

set of all semlcomplements of x€é L forms a convex set.
Proof. Let L be a lattice bounded below, x be an element

of L, and C = zué LixAau = O} be the set of semicomplements of
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X. C 1s not empty since 0€ C; that is, xA 0 = 0. Let g€ C,
Then xAq = 0. If y€ L such that yAq =y, ¥ # q, then
yAXx = (yAQ)AX = yA(qAXx) = yA0 = 0. Thus, y€C and C
is convex.

Definition 2.14. An element x of a lattice L is said to

be an inner element of L if x is not a bound of L.

Definition 2.15. A lattice L 1s said to be semicomple=

mented if every immer element of L has at least one proper
semlcomplement.

Definition 2.16. A lattice L bounded below is said to

be weakly complemented if for each pair a,be L, a<b, there
exists an x € L such that aAx = 0 and bAx # O.

Theorem 2.10. Every weakly complemented lattice is semi-

conmplemented.

Proof. Let a be an inner element of the weakly comple-
mented lattice L. By Theorem 2.6, a is not maximal, so there
exists an element x€ L such that xva = ¥ and x # a. By
Definition 2.15, there exlists an element y &L such that any = 0
and XAy # 0. To show that y # 0, suppose that y = 0. Then
XAy = XA0 = 0, which 1s a contradiction. Thus, every inner
element of L has at least one proper seumlcomplement.

Theorem 2.11. Every uniquely complemented lattice is

weakly complemented.
Proof. Let x and y be a palr of elements of the uniquely
complemented lattice I such that x<y and let x'e¢ L be the

unique complement of x; that ils, xAx' = 0 and xvx' = 1i. To
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show that yAx' # 0, suppose that yAx' = 0. Note that

yvx' = (yYyx)Vvx' = yv(xvx') = yvi= 1., Using the fact
that x is the complement of x' and the fact that yAx' = 0,

x =y, which is a contradiction since x # y. Thus, XAy # 0
and L 1s weakly conplemented.

The converse of thls theorem is noct necessarily true,
for Figure 3 is an example of a lattice which is weakly com-
plemented but not uniquely complemented., Note that aAb = 0,
avb =1, bAc = 0, and bVve = i, but a # c; that is, b has

two distincet complements a and c.

Fig. 3=--Lattice B

Definition 2.17. A lattice L bounded below is said to be

gection conplemented 1f for each palr x, a éL such that
XAa = X,
there exists ué L such that xAu = 0 and xvu = a,
An example of a section complemented lattice would be the
lattice shown in PFigure Z2a, ‘

Theorem 2.12., Every section complemented lattice bounded

below is weakly complemented.
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'_lz_:g_g_q_f_:. Iet x and y (x<¢y) be a palr of elements of a
section complemented lattice bounded below. Since L is
section complemented there exists an element ué L such that
XAu = 0 and xvu = y. To show that uny # 0, suppose that
WAy = 0. Note that uvy =uv(uvx) = (Uvu)vx = uvx = y.
By Theorem 2.2, uvy =y implies uAy = u.l Thus, u = 0.

But y = xvvu = xV0 = %, which is a contradigtion since x< ¥.
Hence, for each pair of elements X, y (x<y) in L'there

- exists an element u such that uAx = 0 and uA yi;@‘ 0, which
means that L is weakly complemented. .

Theorem 2.,13. A lattice L bounded below is weakly com-

plemented if and only if there exlsts for every palr of
distinct elemehts u and v in L an element x such that
(u/\v)/\‘x =0, (vvu)Ax # 0.

Proof. Let x, ¥ be a pair of elements of a lattice L
such that XAy = X and x # y. Also, suppose that there exists
an element ué L such that (xay)Aau = 0 vand (xvy)lnu £ 0.
Then_, since XAy = x implies xVy =y (Theorem 2.2),
| 0= (xAy)Au = XA U |
and 0 # (xvy)Au = yAu. Thus, L is weakly complemented.

Iet x and y be distinct elements of the weakly comple-
mented lattice L such that xAy = X. There exlists an element
ué L such that xAu = 0 and yAu # 0. Since xAy = X implies
xXvy =y, (xAy)Au = 0and (xvy)au # 0.

Definition 2,18. Suppose that L is a lattice and that R

1ls a subget of L. Then R is said to be a sublattice of L if

for each palr x, y¢€¢L, then xAyeé L and xvye¢ L.
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The subset Zi, 845 84 azj = R of the lattice L shown in
Figure 1 is an example of a sublattice of L because for each
palr x, ¥y in R, xAy and XvYy are also in R. Note that not
every subsel of a lattice is a sublattice. For example, “the
3ubget 8 = Zi, aps g, O_‘ of the lattice L shown in Figure 1
1s a lattice with respect to the ordering of L, but note that
ay N a6¢8. Thus, it is not a sublattice.

Theorem 2.14. A sublattice of aﬁlattice L is convex if

and only if a, bER implies [aAb, avb]C R.

Proof. ILet R be a sublattice of the lattice.L. Suppose
that &, b¢ R implies [aAb, avb] C R. Let a and b be & pair
of elements in R. By Definition 2.12, |

[a/\b, avb] = zxé L: anbfx and xéavb}. |
Let x¢ [a,b] and show that x € B. Note that x¢ [a,bj implies
afx and xS b; that is, anx = a and bVx = b. Now

(aAD)AX = (bAa)Ax = bA(aAx) =bAaa = anbD
and (avb)vx =av(bvx) = avb. By Tﬁeorem 2.3, anbix
and xfavb. Thus, x€ [aAb, avb] ¢ R. Hence, R is convex.

Let a, b be any distinct palir of elements of R such that
aAb = a, Suppose that R is convex. Note that a, béR
implies aAb, avbéR., If x¢ [a/\b, av b], then x€ R fronm
the convexity. Hence, [a/\b, av‘b_] { R.

Definition 2.19. The function  is 2 homomorphism of

lattice L4 into (onto) lattice L, 1f the domain of Y is Ly,

the range is a subset of Lo (is L2), and for every pair of
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elements x, y in Ly, P (xAay) = P(x) A iy (y) and
lxvy) = Y(x) v yy).

Another way of stating this definition would be as
follows: the lattice L is homomorpnic with the lattice L,
1f there exists a function (¢ with the properties stated
above. The two forms of the definition will be used inter-

changeably.

Definition 2.20. If (,0 is a homomorphism of lattice L4
into lattice L, where L, is bounded below by 05, then the
kernel of the homomorphism Lp is K('o = {xe Lys . P(x) = Ozj.

Definition 2.21, A subset I of a lattice L is said to

be an ideal if I satisfies the I"dllowing two conditions:
1) a, bel implies that avbeI; and
ii) for any element x in L, a€ I implies that
anxel.
The subset I = {i, B, O)( of the lattice L shown in Figure
3 would be an example of an ideal. Note that I is also a sub-
lattice of L. This is true for any ideal of a lattice.

Theorem 2.15., If a homomorphism of a lattice has a

kernel, then the kernel is an ideal of the lattice.

Eroof. ILet ¢ De a homomorphism of the lattice L; into
the lattice Lo, K? be the kernel of the homomorphismtf ,» and
a, b be an arbitrary pair of elements in Ky + Then (f (a) = 0,
and ¢ (b) = 05. Note that Y(avd) = Y(a) V{¥(b) = 0,V 0y = 05,
This implies that avb ils an element of Klf, which satisfies
condition (i) in Definition 2.21. let x€ L;. Note that
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Ylanx) = ¢(a) " @(x) = 0, A Y (x) = 0. This implies that
aAx €K, , which satlisfles condition (i1) of the definition.
Since, by definition, K‘f C Ly, K 1s an ideal of Lq.

Theorem 2.16. If ¢ 1s a homomorpnism of lattice Ll onto

lattice L2 and Ly is bounded, then L2 1s bounded.

Proof. Let § Dbe a homomorphism of the lattlce L4,
bounded above by i and below by 0, onto the lattice _LZ. By
the homomorphism there exist elements ¥ and 1 in L2 such that
Y(i) = k and ¥(0) = 1. Let x€ Lp. By thé onto propei‘ty
there 1s an element y & Ly such that Y{y) = x. Since
¢YIV P (1) = 0lyvi) = ¥ (1) |
P(rIA @ (0) = Y(yAO) = W(0) =1, k and 1 are

XVEK

1
It

k

and xA 1l

upper and lower bounds, respectively, for Lo.

Definition 2.22. A function Y 1is said to be an order

homomorphism of a lattice L; into (onto) a lattice L, 1if the
domain of W is L,, the range of Y is a subset of L, (is Ly),
and for every pair of elements a, b€L, aADb = a implies
Y{a)A Y(b) = Y(a).

| Just as in Definition 2.19, an equivalent way of stating
this definitlion would be as follows: a lattice L is order
homomorphic with lattice L, 1f there exists a function WY with
the properties described above. Agaln, the two forms will be
used interchangeably.

Definition 2.23 (a). Suppose that L is a lattice and

that C is a subset of L. Then C l1s sald to be a chain if for

each paly x, vy€C, elther XAy = X or XVYy = X.
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Definition 2.22 hnolds for chains since each chain of a
lattice L is a sublattice of L and hence a lattice.

Theorem 2,17. If Y is an order homomorphism of a chain

C1 into a chain Cons then Y 1s a homomorphism of the chain Cq
into the chain C,.

Proof. Let Y be an order homomorphism of the chain Cy
into the chain C,. Y is a function whose domain is Cq and
vhose range 1s a subset of C,., ILet a, b be a palr of ele-
ments in Cy. By Definition 2.23 (2), either a/\jb = a or
anb =b. If aAbd = a, then, since Y is an order homomor-
phism, Y (a) A Y (b) = Y(a). Note that

W (aAD) = Y(a) = Y(a) A Y (b).
Using the fact that every chain is a lattlce and Theorem 2.2,
aAb = a implies aVb = a and Y(a)A ¢ (b) = (a) implies
W(a)v Y (b) =V (b). Thus,

Y {avb) = Y(b) = Y(a)V Y (b),
If and = b, by an analogous argument, Y {aAb) = ¥ (a)A Y (b)
and ¥ (avb) = WY(a)Vv Y (b). Hence, k{) is a homomorphism of
Cy into C,.

Theorem 2.18. If ¢ is a homomorphism of lattice L onto
lattice Lo, and if a non-empty subset R of L, is an ideal of
Lo, then the set § = {xele P (x)e RE is an ideal of Lq.

Proof. Let Y be a homomorphism of lattice L, onto
lattice Ly, let the non-empty gubset R of Ly be an ideal of
Ly, and let S = {x €Ly Lp(x) € R}. S is not empty since for

each h €R there is an x€ Ly such that {(x) = h. Let a and b
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be a palr of elements in S. Note that (aVvb) = Y(a)Vv ¥ (b)
and ¢ (a)V Y (b) €R implies that aVDbeS, Llet z€L;. Then
P{zra) = Lf(z)/\ tp (a). Now $(z)& L, and R an ideal of L,
imply 4 (z) A Y (a)&Rpz. This in turn implies that zAaéS.
Thus, S is an ideal of Li. ‘

Definition 2.23 (b). If a, b is a pair of elements in a

lattice, then a and b are said to be comparable 1f either
aAb =a or avdb = a; otherwise, a and b are sai.d to be incom-
parable, denoted by all b.

The pair of elements ay, and ag in Flgure 1 is an exanple
of incomparable elements, and the pair a; and ajp, is an example
of comparable elements.

Theorem 2.19., If a, b is a palr of elements in a lattlice

L, then a and b are incomparable if and only if aAb<a and
aaVvhb.

Proof. ILet a, b be a pair of incomparable elements of
the lattice L. Since a, bé€L, then aAb, avbél. DNote that
(aAb)Aa =bA(ana) =bAa = anb and a = aa(avb). Now
allb implies (aaDb) £ a and (avb) # a. Thus, aAb<<a and
adaVvb.

Suppose that a, b 1s a pair of elements of L such that
aAb<{aand a<aVb. Then aAb #£a and a £ avb. Thus, all b,

Definition 2.24. An element a of a lattice L is said to

be meet-reducible if there exist in L elenments a1, 8o such

that a = ajAay, acay, and a<ay.,
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Definition 2.25. An element a of a lattice L is said to

be meet-irreducible if for each pair b, ¢ of L such that
bAc = a, either b = a or a = ¢ or both.
The definitions for Jjoin-reduclible and join-irreducible
are duals of Definitions 2.24 and 2.25, respectively.
Definition 2.26. An element a of a lattice L is said to

be meet-prime if for each palr of elements aq and ap of L,
ai1A ap ¢ a implies elther a;4 a or a,%a or both,

The dual of this definition is the definition for a join-
prime element.

Theorem 2.20. If L is a complemented lattice, then every

join=-prime element p of L, p ¥ 0, is an atom of L.

Proof. Let L be a complemented lattice with zero, 0, and
unity, i. Iet a be a Join-prime element of L, suppose that
a £ 0, and let x€L. Since L is complemented there exist
elements x' and a' such that a'Aa = 0, a'va = i, x'Ax = 0,
and x'vx = 1., Note that (x'v)Az = iAa = a. Then, by
Theorem 2.4, aéx‘\/x, which is equivalent to x'*Vx2a. By
the dual of Definition 2.26, x'v x2a implies that either x'2a
or xg a. Suppose that x2a., By the dual of Theorem 2.4, x2a
implies xva = x and, by Theorem 2.2, xVvVa = X implies XA a = a.
Suppose that x'2 a. Then x'2 a implies X'V a = x' which
implies 'x'/\ a = a. Thus, if x'2 a, then

xAa = XA(x'Aa) = (xXAxX')Aa = 0Aa = 0.

Hence, a is an stom of L.
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By a dual proof, the dual of this theorem is true. The.
converse of this theorem is not always trué. Consider the
lattice shown in Figure 4. DNote that a and b are the only
join-prime elements. They are also atoms, but neither is

complemented.

0

Fig. 4--Non-complemented lattice

Theorem 2.21. A lattice is a chain if and only if every

one of its elements is meet-irreducible.

Proof. Let L be a lattice such that if a€ L, then a is
meet~irreducible. ILet %, ¥ be any pair in L. Then xanyé€ L.
Clearly, XAY = XA Y. Since XA Y is meet-irreducible, then
either x = X/\y or ¥ = XAYy. By Theorem 2.2, ¥ = XAY
implies x = Xvy. Hence, L is a chain.

Suppose that the lattice L is a chain. Let ¢ be any
element of L, and let a, b be any pair of elements in L such
that a Ab = ¢. Since L is a chaln, either anb = a or
avb = a. if anb = a, then aADbd = a = c¢c. If év‘o = a, then,
by Theorem 2.2, aAb = b and b = ¢. Hence, each element of L

is meet-irreducible.
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Definition 2.27. Suppose that L is a lattice and that ¢

18 a chain in L., Then ¢ is said to be maximal if there exists
no chain in L which would properly contain ¢.

Chain Axiom. For any chain C of a lattice L there exists

at least one maximal chain ¢ such that © contains C.

Theorem 2.22. Every chain of a lattice L has an upper
bound if and only if L contains a maximal element.

Proof. Let C be a chain of the lattice L. By the Chain
Axiom there exists a méximal chain © which contains C. let r
be an upper bound of ¢ and suppose that r is not a maximal
element of L. Then there exists an x in L such that xvr = x
and x # r. If x¢c, then XA r = x and, by the corollary to
Theorem 2.1, x = r, which is a contradiction. Thus, x¢'5.
Note that for each y¢¢, yAr = y. By Theorem 2.2, XVTr = X
implies XA = r so that |

XAY = XA(JAT) = {ZATIAY = TAY = JAT = ¥.

Thus, ¢V {X} is a chain which properly contains ¢, but this
contradicts the fact that ¢ is maximal. Hence, r is the
maximal element in L.

To prove the converse, suppose that the lattice L has a
maxlmal element m. Then, by Theorem 2.6, m is the unity 1i.
Let C be any chain in L and y&¢ L. Note that ynAl = y. Hence,
1 is an upper bound for C.

Definiﬁion 2.28., Suppose that L is a lattice. Then L

satisfies the minimum (maximum) condition if for each xé& L,
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all the chains formed by letting x be the maximal (minimal)
element are finite,

Theorem 2.23. If a lattice L satisfles the minimum

(maximum) condition, then for each x€ L there exists at least
one minimal (maximal) element méLlsuch that xvm = x
(xAm = x),

Proof. Let x be an element of the lattice L. Either x
is a minimal element in L or not. Suppose that x is not mine
imal. Then there exists an x4 € L such that XA X = X and
Xq # Xx. This implies xy< X. Either X4 1s minimal or not.
Suppose it is not. Then there exists an Xp€ L such that

XpAXy = Xp |
and Xq # Xp, which again implies X,< X;. By a continuation
of thils process and the fact that L satisfies the minimum con-
dition, a finite chain XK< Xy 1< ene <x1<x, which has the
property that if y€ L and yA Xg = Y then y = Xy is obtained.
’I_‘hus, Xg = m is a minimal element, and if x€ L, then mAx = m.
Hence, by Theorem 2.3, mvx = X,

By a proof anslogous to the preceding one there exists a
maximal element M&L such that xAM = x,

Corollary. If L is a lattice satisfying the maximunm
{minimum) condition, then every chain of L has a maximal
(minimal) element.

Proof. Let L e a lattice satlisfying tThe maximum con-
dition, let R be any chain in L, and let x be an arbitrary

element in R. Since any subset of L will satisfy the maximum
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condition, R, in particular, will. Thus, there exists a
maximal element mé R such that maAx = x. Hence, every chain
has a maximal element.

By a similar proof, every chain has a minimal element.

Theorem 2.24., A lattice satisfies both the maximum and

minimum conditions if and only if every one of its chains 1is
finite.

Proof. Let L be a lattice satisfying the minimum and
maximum conditions. Supposge that there exlists a chain R in
L such that R has an infinite number of elements. By the
corollary to Theorem 2.23, R has a minimal element m. Let
Ry = R-{g}. Note that Ry is a chain and also has a minimal
element my with m<mq. In general, Ry = RK—l'{ﬁK-l} where
myg_q is the minimal element in By 1. Since

RO Ry DRz) ... D Rg 1) Bk,
RK is a chain with a minimal element My, and mK_1< Mice Thus,
the infinite chain m<m;< ... <{mg{... is obtained. But this
contradicts the fact that L satisfies the maximum condition.
Hence, every chain in L is finite.

Suppose that L is a lattice and that each chain in L is
finite., ILet x€ L. Each chain formed by letting x be either
a maximal or a minimal element must be finite. Thus, L sat-
isfies both the minimum and maximum conditions.

Theorem 2.25. A lattice satisfying the minimum (maxe-

imum) condition has a zero (unity).
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Proof. ILet L be a lattlce satisfying the nminimum con-
dition, and let x€ L. By Theorem 2,23 there exlsts at least
one minimal element in L and, by Theorem 2.6, it is the zero.
By a dual proof, a lattice satisfying the maximum condition
has a unity.

Lemma. If the lattice L satisfles the maximum condition,
then every subset of L has at least one maximal element.

Proof. ILet L be a lattice satisfying the maximum con-
dition, let R be a subset of L, and let x&€ R. Elther x is a
maximal element of R or not. Suppose that it 1s not. Then
there exists an xy € R such that x3vx = Xl and xq # x; that
is, x<Xxq. Either x4 1s a maximal element of R or not,
Suppose it is not. Then there exists an element x5, € R such
that x4V Xp = X, and xq # X,3 that 'is, x;< Xp. Since L sat-
isfies the maximum condition, after a finite number of steps,

the chain x<x1< ¥Xp2<{ «..<X is obtained such that if ye R

r

and yVxn. =Y, then y = x,,. Thus, x.. is a maximal of R, and
r r r

the lemma follows.

Theorem 2.26. In a lattice satisfying the maximum con-

dition, every one of its elements can be represented as the
meet of a finlte nunber of meet-irreducible elements.

Proof. Let L be a lattice satisfylng the maximum con-
dition, and let 5 be the set of all elements in L which cannot
be represented as the meet of s finite number of neet-
irreducivle elements. To snow that S ig enpty, suppose that

it is not. Iet K€S8, and suppose that K is meet-irreducible.
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Note that K = XAK., Thus, K can be represented as the meet
of a finite number of meet-irreducible elements, which col~
tradicts the preceding assumption. Thus, K is not meet-
irreducible. Furthermore, every element in S is not meet-
irreducible, By the lemma, S contains a maximal element m.
Since m is not meet-irreducible, there exist elements x and
vy in L such that XAy =m, x # m and y # m. Note that

xAm = XA(XAY) = (XAX)AY = XAy = mn and

i

YyAR = JA(XAY) = XA(YAY) = XAY = m;
that is, m<x and m¢ y. But the fact that m is maximal, mdx,
and m<y together imply that x and y do not belong to S. |
Since x, y€L-S, x and y can be represented as the mee{: of a
finite number of meet-irreducible elements; that is, x =[5 Xy
and y =J_S/x\“;y'j where X, yj(i = 1y eeey :rc_'; } = 1,5..., g8) are
meet-irreducible. Thus, m = XAy = (L/:\‘ Xy ) (J{\l yi), which
is a contradiction since mé€S. Hence, S is empty, and the
theorem follows.

Theorem 2,27, If ag—<aj—(...—ay and bg—<b1—r( . . —bg

are two chains of Jjoin-irreducible elements in the lattice L,

and if ajljbk(j =0, 1, vee, T3 X =0, 1, ..., 8), then
am/\bn = ag/\ by for each palr of indices
m, n{m =0, 1, eee, ;3 1 =0, 1, cea, 8).
Proof. Let'ao-—{ai——{...-——(ar and by—<by—(. .. —bg be
two chains both belonging to the lattice L and both satisfying
the hypothesis of the theorem. To prove this theorem, math-

ematical Induction wlll be employed several times. First, it
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n=20,1, cev, 83 |

then induction will be employed to show that am/\bn = aO/\bO,
form=20,1, «e., rand n =0, 1, ..., s. To show that

agAby = aO/\bO,
let x = agAby. DNote that

XAag = (agAby)Nag = (apgAag) Aby = agAby = X.
If x = by, then b1A ag = b, which is a contradiction since
aglibg. If x = by, then agAbg = by, which again 1s a contra-
diction. Thus, X%, bl’ and bO are distinct. Now
(bgvx)VDby = (bgVDy)Vx = bV(agAby) = Dby

and (byVx)Aby = by imply byé xVbyE&by. Since bs—<b;, then
either bOVx = bl or bo\/x = bo. If bovx = bl’ then bl is
not join-irreducible, which is a contradiction. Thus,

bgV x = Dby
and, by Theorem 2.2, byAX = x. Hence,

agAby = X = bgAX = byA(agAby) = (bO/\bl)Aao = bgA age
Suppose that agAb; = ayA b, (L< s) is true, and show that
agA bl+1 = aO/\ bo is true. ILet ao/\blﬂ =y, If x is replaced
by ¥, by by bysq, and bo by bl in what has just been shown,
then ag /\b1+1 = ao/\bo. Hence, ag /\bn = ag /\bo for
n=290,1, ..., 8.

By an analogous proof, a A bo = ao/\bo form =0, 1, .oe, T.
To show that a;ADb, = ao/\bo forn =0, 1, ..., 8, let

all\ bl =

By proofs analogous to the preceding one, bogAz = z and



aO/\z = Z. Hence,
al/\ bl = Z

= ZNZ

= (aO/\ ZI N (bol\z)
Suppose that al/\ b1 = ag/N bo, 1< 8. Then show that
Let aqN b1+1 = u. In the proof above, replace g by a4, 'bl
by b1+1, X by u, and bo by bl. The result obtained will be

al/\bn = ao/\ bo

forn=20,1, ..., 8. Suppose that ag/Aby, = agA bO for
n=20,1, ..., s Then show that ax+t A by = ao/\bo for
n = O, 1, . ooy s. I.:et aK+1A bi = V. Il'l a Similar manner,

agN\v = v and

agii AL =V = ap AV = agAag, Aby = agAby = agAby.
Now suppose that aK+1/\bl = ao/\bo, 1< s, and show that
ag A D1y = agAbye  Let ag A by4q = W. Using preceding
technlqgues, aK/\ w o= W and all\ w = w., Thus,

Bg+1/N Prag = W

= WAV

i

aKAW/\blA W

i

S NBgii AP1L1 AP A g APy 41
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Hence, by the principle of induction, am/\bn = ao/\bo for
m=20,1, ..., rand n=0, 1, ..., s.
Note that if the condition
aijK (J=0,1, ooy 3 K=0, 1, vu., 8)
Wefe removed, then apA by may or may not be equal to al/\ bm.
In fact, if the chains were arranged in the following manner,
ag—<ay— .o ~a~<by—( .. —(b, then
agAby # a;ADb, (1 # 0).



CHAPTER III
DISTRIBUTIVE AND MODULAR LATTICES

In this chapter, techniques for characterizing distrib-
utive and modular lattices will be presented.

Definition 3.1. A lattice L is sald to be distributive

if for each triplet of elements, x, y, 2z, the following con-

ditions hold:

]

i) xn({yvz) (xAy)V(xAZ); and
i1) xv(yaz) = (xvy)n(xvz).

Theorem 3.1. A lattice satisfies property (i) if and

only if it satisfies property (_ii).
Proof. ILet L be a lattice such that each triplet sat-

isfles property (i}, and let x, ¥y, z be a triplet in L. By

[(XVy)/\ XJV[(X Vy)/\z]

XV!_ (xvy)a z]
xv[z/\ (xVy')]

xv[(z/\x)v (Z/\y)]

Property (i),

(xVyIA (xVvz)

i

il

i

= [xv(z/\x)]v (zAy)
= xV{(ZAY).
Conversely, if each triplet of L satisfies property (ii}),
then by a dual proof, each triplet satisfies property (i).

35
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As a result of this theorem, any lattice which satisfies
either property (i) or property (ii) is distridbutive. Chains
are examples of distributive lattices.

Theorem 3.2. BEvery sublattice of a distributive lattice

is distributive, and If £ is a homomorphism of the distributive
lattice L onto a lattice L', then L' is also distributive.

Proof. To prove the first part of the theorem, suppose
that L 1is a distributive lattice and that G is any sub-
lattice of L. Let x, ¥y, z be any triplet of G. Since

Xy, ¥y 2 €L,
xA(yvz) = (xAy)v(xnz). Note that x, ¥y, z €G implies, by
the definition of sublattice, yAnz €G and xA(yVvz)é€ G. Hence,
G is distributive.

Suppose that £ is a homomorphism of the distributive
lattice L onto the lattice L'. Let x', y*, z' be any triplet
in L. Since the function f is onto, there exist elements x, y,
and z in L such that f(x) = x*, f(y) =y, and f{z) = z'. To
show that L' is distributive, show that x', y', and z' satisfy
property (1) of Definition 3.1. Note that
[enzm] v [eexa f(%)]
= f{xAY)VI(xAz)
= f[(X/\y) V(xA z)_]
= f‘[x v{yA z)J
= f{x)V £ {yAz)
= x'v[f(y)/\ f(z)]
x'V{(y'Az').

i

(x'Ay")vix'az')

il

Thus, L' is distributive.
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Jemma 3.1. If a, b, and x are arbitrary elements of a
lattice L such that aib, then avx {bvz and aAxsbAx.
Proof. Let a, b, and x be elements of a lattice L such
that a2 £b. By Theorem 2.4, a$ b implies aAb = a, Using
lattice Axioms L1 and L3 and Theorem 2.1,
(aAnx)A(bAx) =aan{xn(bAax))
= aN{(bA(xAX))
= (aAb)AX
= aNX,
Hence, by Theorem 2.4, aAx<{bAX. By Theorem 2.2, aAb = a
implies avb = b. Note that
(avx)V (bVvx) =avi{xv(bvx))
=aVvV{bVv(xvx))
= av(bvx)
= (aVvb)Vvx
= DV X,
Now (avx)V.(bVvx) = bVvx implies (avi)A(bVx) = aVvx.
Hence, avx$ibvzx,

Theorem 3.3. If for each triplet x, ¥y, 2 of a lattice L

xA(yvz)é (xAy)v(xaz), then (xvy)a(zvz)sdxVv(yaz),
and conversely.

Proof. Suppose that for each triplet x, y, z of the
lattice L that xA(yvz)i(xanylvy{(xAz). Then let x, y, z
~be a triplet of L, and cousider (xvy)A (xvz). Note that
(xVYyIA(xVvz) éBxVy)AxJ \/[(x\/y)/\ z]: XV{Z/\ (X\Iy)J and
zA(xvy)é(znx)V (zAy). By Lemma 3.1,
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(xVy)/\(xvz)éxv[(zxxx)v(sz)}
= [xv(za x)]v (zAy)

xV(ZAY.

HH

Conversely, suppose that for each triplet x, y, 2 of L,
(xvy)Aa(xvz)éxviyaz)., Then, by a dual proof,
(xAy)vixaz)2xA(yVvz).
Thus, xA{yvz)s (xAy)vixaz).
Note that the dual of the statement
s alyve) S (xAy)V (xaz)"
is the statement "xv(yAaz)2 {(xvy)lanl(xvz).” This fact was
used to prove the converse of the previous theoremn.

Theorem 3.4. The lattice L is distributive if and only

if for each triplet x, y, 2z of its elements,
xAa(yvz)s(xay)vixaz).

Proof. Suppose that for each triplet x, y, z of ele=-
ments in the lattice L that xA{yvz)s (xAy)v(xAz). Then
let x, y, 2z be a triplet of L. By Theorems 2.3 and 2.4,
(xay)vixaz)é(xvx)alyvz) = xA(yvz) and, by Theorem 2.4
and the corollary to Theorem 2.1, (xAy)vi{yAaz) =xn{yvz).
Thus, L is distridbutive.

let x, ¥y, 2 be any triplet of the distributive lattice L.
By Definition 3.1, xA{yvz) = {(xAy)v (xAz).- Thus, by the
corollary to Theorem 2.1 and Theorem 2.4,

xA(yvz)i{xay)vixaz).

Note that by replacing xA {(yvz) i (xay)Vv(xAaz) with
xV(yaz)z (xvy)A(xvz) in Theorem 3.4, the dual theorem is

obtained and 1s proved by a dual proof.
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Theorem 3.5. A lattice is distributive if and only if

for each triplet x, y, z of its elements, (xvy)Azixv(yaz).
Proof. Suppose that for each triplet x, ¥, z in the
lattice L that (xvylazéxv(yaz). Let x, ¥, 2 be a triplet
in L., Note that {(xvy)A (xvz)ié xv[y/\ (xVv z):f .« Since
ya(xvz) = (xvz)ayi xv(zAay), then, by Lemma 3.1,
xv{ (xVv z)A y]é xv[xv {y A z)}
- (xvx)Vvi{yAz)
S xviyaz).
Thus, (xvy)A(xvz)ixv (yaz). By Theorems 2.2 and 2.4,
*V{yAaz)2(xvy)A(xvz) and, by the dual of Theorem 3.4, L
1s distributive.
Let X, ¥, z be any triplet of the distributive lattice L.
Since z = zA(z2VvVx), then, by Theorem 2.4, z$2VX = XV Z.
By Lemma 3.1, (xvy)Aazé(xvy)An(zvy) and, by property (ii)
of Definition 3.1, (xvyin({xvz) =xVv{yAz). Thus,
(xvy)Aazixviyaz).
Definition 3.2. A lattice L isg said to be modualr if

for each triplet x, ¥y, 2 of L such that xnz = x, then
xV{yAnz) = (xvy)Az.

Theorem 3.6. Every sublattice of a modualr lattice is

modular, and if £ is a homomorphism of a modular lattice L
onto a lattice L', then L' is also modular.

Proof. Suppose that L is a modular lattice and that G
is any sublattice of L. Ilet x, ¥y, 2 be a triplet of G such

that xAz = x. Since x, ¥y, z€L, xV(yAnz) = (xvy)Az.
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Now %, ¥, 2€ G implies yAZEG and xv{(yAnz) G. Hence, G
is modular.

Suppose that { is a homomorphism of a modular lattice L
onto a lattice L'. Let x%, ¥y*, z' be any triplet of L' such
that x*Az' = 2z, Since the function f is onto, there exist
elements x, y, and z in L such that f{x) = x', f(y) = y*, and
£(z) = z'. Nobte that x'v (y'A z') = £(x)v [f(y)/\ f(z>J.
Since f is a \homomorphism, then

v [ o) nsa)]

li

f(x)v £(yAz)
f‘[xv(y/\ z)_]
= f[(XVy)/\ zj
= f(xVy)Af£(z)
= [t v asiz)

— (X'V yr)/\ z?,

Hence, L' is modular.

Theorem 3,7. A lattice L is modular if and only if for

each triplet x, ¥y, z of L such that xnz = x,

XV{y/\(XVZ)] = (xvy)A(yvz).

Proof. ILet L be a lattice. Suppose that for each trip-

let x, ¥y, 2 of L such that xAz = x,

XV [y/\ (xv z)] = (XVy)n (}C\/Z).‘
Let %, ¥, 2 be any triplet of L such that XAz = x. By
Theorem 2.2, XAz = x implies xVz = zZ. Note that

xv[y/\ (xvz}] = xV{yAz)

and (xvy)Aa(xvz) = (xvylnz. Thus, xvV(yaz) = (xVy)A z.

Hence, L is modular.
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To prove the converse, suppose that the lattice L is
modular, and let x, ¥y, 2z be any triple’c in L. Note that
xA(sz) = x., Thus, since L is modular,

XV [yx\ (x\/z}] = {xvy)a (xvz).

Theorem 3.8. Suppose that L is & modular lattice and

that x, ¥, 2 is any triplet of L. Then (Xvy)Az = yAz if
and only if (ZVYyJAX = VYA X.

Proof. Let L be a modular lattice, and let x, y, 2z be
any triplet of L such that (xvy)Az = yAz. Note that
(xVvY¥)AY = ¥. Since L is modular, |

yv[rm (':f:vy)] = (yvzJA(xvy),
but yv[Z/\(xvy)] =yvi(yAz) =y so that y = (yvz)A(xvy).

Hence,

i

YAX [(yv zZ) A (XVy)]/\ X
{yvz)a [ (xvy)a x]

{(yvz)A X

il

i

(zvy)Ax.

i

To prove the converse, suppose that x, ¥y, 2z is any trip-
let of L such that yAx = {(zvVvy)Ax. Note that {(zvylAy = y.
Since L is modular, yv{:xA (zv;v)] = {(yvx)Aa(zvy), but
yv[x/\ (zv y)] = yV(yAX) =y so that y = (yvx)A(zvy).
Hence, yAZ = [(y\/x)/\(zv,y)]/\z = (yVX)IAZ = (XIVYy)AzZ.

Definition. Suppose that a, b, ¢ is a triplet of ele-

ments of the lattice L. Then the statement that the triplet
2, b, ¢ has a median nmeans that

(anb)yY (bAac)viena) = (avb)n{bve)Aanlcva).
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Theorem 3.9. The lattice L is modular if and only if

each triplet a, b, ¢ such that aAnc¢c = a has a medlan.

Proof. Suppose that each triplet a, b, ¢ in L such that
anc = a has a median. By lattice Axioms L5, L6, and Lb,

avibaAac) = [a/\ (a\/‘m)]v [(b/\ c)y [(b/\ c)A cﬂ

:[aA(aVb}V(bAc)VBbAoN\4
Now, by hypothésis,
[a/\(av b)}v (bAac)v [(b/\ o)/\c]
=[av (avb)]/\ (bVC)/\[ (bAc)V c_]
= {(avb)A(bvelnc
= '(avb)Ac.
Hmmeﬁav(bAo)z(avb)Ac,amlLismmmkm.

Suppose that L 1s modular. Let a, b, ¢ be any triplet
of L such that anc = a. By Theorem 2.2, aAc¢c = a implies
ave = c. Now (aAD)Vv(bAc)v(cAaa) = (aAb)Vv (bAc)Va.
Rearranging the texms,

(aAb)v. (baclva =[(anblvalv (bAc) = av(bAc),
but since L is modular, 7
{avb)Aa c
(avtﬁﬂ[(bVC)Aq]
(avb)A (bve)lA(ave).

av(bAo)

i

i

i

‘I‘hus; each triplet a, b, ¢ of L such that aAc = a has a
median. |

Theorem 3.10. A lattice is-distributive if and only if

every one of its triplets has a median.
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Proof. let a, b, and ¢ be a triplet of the distributive

lattice L. The fact that L is distributive implies

i) aA(bve) = (aAb)vianc), and

11) av(bAc) = (avb)Aa(ave).
Show that (aAb)v (ba clv (cAa) = (avb)A (bve)a (eva).,
By commuting a with ¢, ajAc with bAec, and using (1),
(aArv)v (anc) v(bAac)
[aneve)]v (bao).

(aAD)V (bAC)v (cAa)

il

it

By (11),

lan (ove)] v (ba o)

z[[ an (bve)]v b /\{[a/\ (chﬂij'

={ bv [a/\(b\/c)]}/\{c\/[a/\(b\/c)]}

-—-_z (bva)Aa {:bv(‘nv c}] A { (cva)a [cv(ch)}
[(ave)a bve)]a [leva)a (ovp)

i

i

(avd)A(bve)A(evala (cVb)
=‘(avb)/\(bvc)/\(cva)/\(b\/c).
Now, commuting the third and fourth terns,
(avDd)n (bve)a (eva)A(bve) = (aVvDb)A (bve)a (bve)a (ecva).
Since (bva)/\(bvc) = b Ve, then
(avb)Aa(bve)a (b.v c)Aleva) = (avb)A (bve)An(cva).
Hence, the triplet &, b, ¢ has a median.
Suppose that each triplet of the lattice L hasg g median,
Let a, b, and ¢ be 2 triplet of L. Since
(aAD)V (bac)v(cna) = (avDb)A (b’vc)/\ (ave),
then, by Lemma 2.1,
av[(aAb)v (ba c)v(c/\a)] = av[(av b)/\’(bvo)/\ (a\/c)_].
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By Axioms L1, L&, and LS,
| av [(a/\b)\/(b/\c)V(c/\a)]
= [av (a/\b)}v [—(b/\c)v(c/\a)‘]
= av]j(b/\c)v(o/\a)}
=I:av(c/\a)]v (bAc)
‘= av(bAac).
Note that av(ave) = (ava)ve = ave and, by Theorems 2,2
and 2.3, afave. By Theorem 2.9,
av{[(ave)a (bv o)A (eva)] = ga\/f(a\/b)/\ (ch)]f/\(cVa).
Similarly, b£bVe and, by Theorem 2.9,
[(avp)a (bve)] = [(bVa)/\(ch)] = bV{a/\ (bve)]
so that
{aV[(aV‘b)/\(bVC)]}/\(OVa)
={avfb\/(a/\(ch))l}/\ (cva)
= z(avb)v[a/\(bvc)]} A (cva)
= {(ovarv[aa ovael]f A (eva)
{bv[a\/(a/\(b\/c))lj/\ {(cva)
{(bva)Aa(cVva)

i

L

(avb)Aa(ave).

Thus, av {bac) = (avb)A(ave), and dually,
an(bve) = (aad)vianc).

Hence, L is distributive.

Theorem 3.11. A lattlce 1s modular if and only if no

sublattice of it 1s isomorphic with the lattice A shown in

Figure Z2a.
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Proof. ILet L be a modular lattice, and suppose that
there exists a sublattice Q of L which is isomorphic to the
lattice A shown in Figure 2a. Let 8 be a reversible function
which maps Q@ onto A. For a, b, ¢, 0 and 1 in A there exist
a'y b', o', 0', and 1' in Q such that 8(a') = a, 8(b') = b,
8(c') = ¢, 8(0") = 0 and 6(i') = i. Since Q is isomorphic to
A for each x and y in Q, 8(xAy) = 6(x)A0(y) and

B{xvy) = 6(x)Vvely).

To show that Q is not modular, consider 6(a'Ac'), e[a'v (b*A c')]
and 6[(a'v bt)A c'] . Note that

ela'Act)

it

g(at)A g(c')
= aAcC
= a
= 6(a’),
e[a'v (b'/\c')] = g(a')V [ G(b')/\e(c')]
= aVv(bAc)

av

i

i

a
6(a’),
e[(a-v pacr] = [e(an)v e(en)]a e(er)

= (avb)Aac

#

= i1 AC

i

C
= 9(0')'
Since @ 1is a reversible function, a'Ac' = a', a'v (b'Ac!) = at',

(a'vb')ac! =c', and a £ ¢ imply a' # ¢' so that
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a'Vv{b'Act') # (a'VDd')Ac',
Therefore, Q 18 not modular, which is a contradiction to
Theorem 3.6, Hence, the "only if part" of the theorem is
proved.

Let L be a lattice such that no sublattice of it is
isomorphic to the lattice A shown above. Suppose that L is
not modular. Then there exists a triplet x, ¥y, 2 in L such
that Az = x and xV(yAz) £ (xvy)Aaz. Note that x # z,
for if x = z, then xv {(yanz) = {(xvylnz, To show that y
and z are not comparable, suppose first that ya z = z. Then
XAy = (xA2)AY = xA(2ZAY) = XAZ = x. Now

xV(ynz) =xvz =2
and (xVy)Az =yAz =2z, Thus, xv(yAaz) = (xvy)az, which
contradicts the preceding assumption, and so yAaz # z., Now
suppose that yAz = y. By Theorem 2.2, yAzZ =y lmplies
yvz =2z, Note that xv{(yAz) = xvy and
(xvy)Vz =xV(yvz) =xVz = 2,

By Theorem 2.2, (xvy)V z = z implies {(xvy)Az = xVy. Thus,
xv(yaz) = (xvy)Aa z, which again contradicts the initial
assumption. Hence, y and z are incomparable. To show that x
and y are incomparable, suppose first that xAy = x. By
Theorem 2.2, XAy = X implies xvy = y. DNote that

(xvy)laz = yn z
and xA{(yAz) = (XAY)AzZ = XAZ = Xx. By Theorem 2.2,

xV{(yAzZ) = yA zZ.

Thus, xV (yAz) = (xVvy)A z, which is a contradiction.
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Consequently, xAy # x. Suppose then that XAy = y. Note
that (xvy)anz =xA2 =% and xA(yAzZ) = (XAY)AZ = FAZ,
By Theorem 2.2, xVv(yAz) = x. Hence, xV{ynz) = (xvy)Aaz,
which agaln 1s a contradiction. Hence, x and y are not com-
parable.

et (xvy)nz =¢', xVv(yAz) =a', xVYy = 1', yAzZ = 0O
and y = b', Now 1t must be shown that a', b*', c¢', 0', and 1i°
are all distinct. By the initial assumption, a' # ¢'. It
has previously been shown that 1' # b*® and 0' £ b'. Suppose
then that a' = i', i.e. xVv(yAz) = xvy. DNote that

(xvy)laz m[xv(y/\z)]/\ Z.
Since [xv (y/\z)]vz = xv[(y/\z)v z] = XVz =2 and, by
Theorem 2.2, [xv(y/\ z)]/\ z =xVv{(yAz), then
(xvy)lnz =xV(yAaz),

but this a contradiction, so a' # i*. Suppose that c' = 17,
i.e. (xvy)Az = xvy. By Theorem 2.2, (XVYy)AZ = XVYy
implies that (xvy)Vz =2, but (xvy)vz = (xVvz)Vy = zVy
so that z = z2vy. Thus, y =2zAYy, a contradiotionsince ¥y and
Zz are incomparable. Hence, ¢' # i'. To show that 0' # i,
suppose that 0' = 1', Then x V(yAz) =xVv(xVvy) = xVvy and
(xvy)az = (yaz)nz =yAz. Thus, xVv(ynz) = (xvy)nz,
which is a contradiction. Hence, 0' # i'. Suppose that
xv[(xVy)/\z].
But x/\{(xvy)/\z] = (xnz)A(xvy) = xA(xVYy) = x and, by

c' = 0', i.e. (xVy)Az =yAz, Then xV{(yA z)

I

Theorem 2.2, XV [(xVy)Az_] = (xvy)Aaz. Thus,
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xV(yAz) = (xVYy)Az,
which is a contradiction. Hence, c¢' # 0'.
If ¢t = Db', then
xvi{rnz)
xv[(xVy)/\z/\z]
= xV[(xVy)A z}

= XVYy

a'l

i

it

= it
a contradiction. Thus, c¢' # b'. In a similar manner it can
be shown that b' £ a' and a' # 0' so that a', b', ¢, 0',
and 1' are all distinct,

Let B = {a', b', o', O, 1'1. Next it will be shown

that B is a sublattice of L, i.e. Tor any palr x, y in B,
XAy €B and xvy€ B, By Theorem 2.3,

[(X/\X)V(y/\z)]/\[-(XV;Y)/\(}C\/Z)] = (xAx)V(ynz).
Since (xAx)viynz) = xviyAaz) an

(xvylalxvz) = (xvy)A z,

then [xv(y/\ z)] A [(XVy)/\ z] = xV{yAnz). Thus, a'Ac’® = a’',
Note that a'vb' = [xv (y/\z}]v vy = XVYy = 1 and
(a'vb')v(c'vb')
{[xv(y/\z)]\/ij {[(xvy)/\ z]vyj
[xviyaz)] V[(XV.V)/\ z] vy

= [—(xvy)/\ z]vy
= c'v b!

H

il

ijmplies that i'Vv (¢'Vv Db') = ¢'V b'., Note also that
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(c'vd')yif = {f(x\/y)/\ z]vy}v(X\/y)
[(xVy)Az]V(xVy)

]

= XVy
= 1,
Hence, 1i' = ¢'yvb' = a'v b'. In a similar manner,
0' = c'A D' = a'A b'.
It 1s easily seen then that B is a sublattice of L.
Define § ={(c',c), (a',2), (0',0), (i',1), (b',b)}.
The domain of Y is B and the range is the lattice
A ={a, b, ¢, 0, i}
shown in the flgure. ¢ 1is a reversible function since each
element in B has one and only one image in A and each element
in A has one and only one image in B. Now
@ (a'Ad') = Y(0') =0 =anb= ¢(a') A p(b’)
and Y (a'vb') = ¢(1') =i=avb= @a*)v y (b').
Taking all possible combinations in this manner, for any
X, ¥€B, Y(xAay) = P(x) AN Q(y) and @(xvy) = y(x)v ¢(y).
Thus, the lattice B is isomorphic to the lattice A. But this

i

i1s a contradiction; hence, L is modular.

Corollary 1., No element of a bounded modular lattice

has two comparable complements.

Proof. ILet L be a bounded modular lattice bounded above
by 1 and below by 0, and suppose that there does exist an
element y such that y has two distinet, comparable comnplements
x and z. By definition, xAy =0, yAz = 0, xVvy = 1, and

yvz = 1. Since x and z are comparable, then either xnz = x
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or XAz = z. The proof by supposing XAz = X ls the same as
the proof by supposing xA2z = 2, SO Suppose thafb XANZ = X,
The remainder of the proof l1ls the same as the proof of the
theorem. Thus, the sublattice formed from the elements af',
b*, ¢ o', 1', where a' = xV(yAz), b' =y, ¢' = (XVy)AZ,
it = xvy, ot = yA 2, is isomorphic to the lattice A shown
in Figure 2a, which contradicts the theorem. Hence,
Corollary 1 follows.

Corollary 2. For the elements x, y and z of a modular

lattice, xAZ = XAy, XVZ = yVZ, and XAy = b imply x = y.
Proof. Let L be a modular lattice, and suppose that
X, ¥y and z are elements of L such that xA 2 = yA 2,
XVzZz =yvz, and XAy = %, Since L is modular,
xvi(zay) = (xvz)Ay, ‘
but xV{(zAy) = xV(xAzZ) = x and (xvz)Ay = (yVZ)AY = ¥.
Hence, x = y.

Theorem 3.12., Bvery distributive lattice is modular.

Proof. ILet x, ¥y, 2 be any triplet in the distributive
lattice L such that x £2. Then, by property (ii) of Defi-
nition 3.1, xv(iyaz) = (xvy)a{xvz). By Theorem 2.4,
x¢ z implies XA 2z = X and, by Theorem 2.2, XA Z = X implies
xVz = 2. Thus, xv({yAaz) = (xvy)anz. Hence, L is modular.

Nofte that the converse of this theorem 1s not necessarily
true, for consider the lattice B shown in Figure 3. Since
no sublattice of B is isomorphic with lattice A, then B is

modular, but B is not dlistributive since
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an{obve) £ {andb)vianc).
Hence, this exhibits an example of a modular lattice which
i1s not distributive. The following theorem shows that a
distributive lattice can be characterized by examining its
sublattices.-

Theorem 3.13. A lattice is distributive if and only if

it has no sublattice isomorphic with either lattice A (the
lattice in Figure 2a) or lattice B (the lattice shown in
Figure 3).

Proof. ILet L be a distributive lattice., By Theorem
3.12, the fact that L is distributive implies that L is mod-
ular. Then, by Theorem 3.11, there is no sublattice which
is isomorphic to lattice A. DNote that lattice B’ is not dls-
tributive since aV (bAc) £ (avb)A{ave) and, by Theorem
3.2, every sublattice of a distributive lattice is distrib-
utive. Thus, there is no sublattice of L isomorphic with
lattice B.

To prove the converse, suppose that L ls a lattice such
that no sublattice of it is isomorphic with either lattice A
or lattice B. Suppose that L is not distributive. Either L
is modular or it is not. If L 1s not modular, then, by
Theorem 3.11, there 1s a sublattice isomorphic to lattice A,
which 1s a contrsdiction. Thus, L is modular. By the contra-
positive of Theorem 3.10 there exists a triplet x, y, 2 in L
such that (xAay)viiynanz)vizaz) # (xvy)a(yve)Aa{xvz).

Furthermore, by Theorems 2.3 and 2.4,
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(}C/\y)v(y/\Z)V(X/\Z)<(XVy)/\(yVZ)/\(X\/Z).
Let 0' = (xAyIViraz)vi(xaz), 1 = (}:Vy)/\(.‘)’VZ)/\(sz),
a' = 0'v (xAL'), b* = 0"V (yAi') and c? = 0 vizAair),
Since 0'< i' and L ig modular, O0'V (xA4i') = (Q'y X}A L' and
0"V (yAai') =Q'vy)Aai'. Note thas

a'Adb! = [O'V (xA i')} /\[O'v (yn i'}]

(O'"VIX)AL'A(O'y y)A LY
[(orvx)n (orv V] a i

il

Now 0'Vx = (xAy)v (yaz)v(xAaz)vx = XV(yAz), and

O'vy = (xAy)v (y/\z)v(X/\z)Vy = yVI{(xAz) so that
a'Ab’ :{[xv (yaz)]A [yv():/\z)_]j ALt

Since yAzE4ySyV (xAz) and XAZ ¢x, then

1A {(y/\z)v [x/\[yV(x/\ z)]]}

1A [(yAZ)V(XAZ)V(XAy)]

= 1'A Q"

]

a'A b’

]

= Q°,
In a similar manner, b'Ac' = g'A g = O and, by a dual
proof, a've' = b've! = a'vp! = i'. Next it will be shown
that 0, i', a', b' and ¢t are all distinct. Suppose that
a' = 0'. Then a'A b' = g and a'Ac' = g7, By Theorem 2.2,
a'vb' = b' and a'vet = c', but a'v b' = i' gnd a'v c?' = i,
Thus, b!' = i* and ¢! = i*. ©Note that 1' = 1'A 17" = br'Ac* = o,
which is a contradiction. Hence, a' £ 0°, Similarly, b' £ 0°
and c¢' # 0' and, by a dual proof, i* # a', b', ¢, Suppose
that a' = b', Then a' = a'Aa' = a'Ab' = 0', which is a con-

tradiction. Thus, a' # b'. TIn a similar manner, a' £ ¢! and
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c' # b'., Hence, 0', 1¥, a', b', and c® are all distinct.
Clearly, the set G = {O', it, a', b', c'} is a sublattice of
L. By a proof analogous tc the proof to Theorem 3.11, the
lattice G is isomorphic with the lattice B. But this is a
contradiction. Hence, L 1ls distributive.

Corollary 1. Every element of a bounded distributive

lattice has at most one complement.
Proof. Let L be a distributive lattice bounded above by
i and below by 0, ILet x€L such that x has two complements
x' and x", and suppose that x' # x". Then either x"!l x' or
not. If x' and x" are comparable, then either x*Ax" = x' or
x'"Ax" = x", but in either case, the set of elements
{x, xt, x" 0, 1]
forms a sublattice of L lsomorphic with the lattice A, a cone
tradiction to Theorem 3.13. If x°'Il x", then x'A X" x'< x'Vv x¥,
Since x' and x*" are both complements of x, then xaAx' = 0,
X VX' = 1, xAx" = 0 and xvx" = i, Note that
(x'"AX")AX = XA (X"AX) = X'A0 =0
and {(X'AX")VX = xVv(X'AX") = (xvI')A(xvx") = 1Al = i,
Similarly, (x'vx")Vvx =1 and (X'Vx")AXx = 0. Thus, the set
of elements{x, x' x", x* x", 0, i} forms a sublattice of L
ﬁ.somorphic with lattice A, a contradlction. Hence, x' = x".

Corollary 2. For the elements x, ¥y, 2 of a distributive

lat{:ice, XAZ =yAZ and XV2Z2 = yVz lnply X = ¥.
Procf. Let x, y, 2 be any triplet of the distributive

lattice L such that xAz2 = yAZ2 and XxXvz = yvz. Thus,
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= XV (xXAz)

»
I

xvi{yAz)

i

i

(xvy)A(xvz)

H]

(yvx)A (yvz)
yV(xAz) ’

il

yVviyAaz)

= y.

Theorems 3.11 and 3.13 appear to be the most important
tools for determining whether or not a lattice is distributive
or modular. Note that the lattice shown in Figure 3 (lattice
B) has no sublattice isomorphic to lattice A. By Theorem 3.11,
B is modular. Then, by Theorem 3.13, B is not distributive.

This example 1llustrates the use of Theorems 3.11 and 3.13.
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