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CHAPTER I 

INTRODUCTION 

Lattice theory as it is known today was first introduced 

by E. Schroder in 1890, even though in 1824, while researching 

in mathematical logic, G. Boole introduced an important class 

of lattices called Boolean Algebras. Several years later, in 

1897* R. Dedekind arrived at the same conclusions as Schroder 

did, Dedekind was credited with the discovery of distributive 

and modular lattices. As a result of this early work and 

large contributions made later by G. Birkhoff, lattice theory 

became recognized as a substantial branch of abstract algebra. 

Lattice theory has applications in various areas of meth-

ematics. For example, in the study of lattices of subgroups 

of groups, lattices have been helpful in studying the structure 

of a group. Birkhoff, in his book on lattice theory, discusses 

applications of lattice theory to the areas of logic, prob-

ability, functional analysis, and topology. Lattice theory 

also has applications in theoretical physios, particularly in 

the areas of quantum mechanics and relativity. 

Because lattice theory is so vast, the primary purpose of 

this paper will be to present some of the general properties of 

lattices, exhibit examples of lattices, and discuss the prop-

erties of distributive and modular lattices. Chapter I, in 

addition to containing a brief history of lattice theory, will 



contain the basic definitions from abstract algebra needed to 

develop lattices. Chapter II will be devoted to the develop-

ment of some of the general properties of lattices, and 

Chapter III will be primarily concerned with distributive and 

modular lattices. 

The undefined notions in this paper will be those of an 

"ordered pair" and a "set." 

Let each of A and B be a set. 

Definition 1.1. The Cartesian product of the set A by 

the set B, denoted by A x B, is [(a,b): a <£ A, b£B]. 

Definition 1.2. A relation R on A,B is any subset of 

A x B. 

If A and B are the same set, the definition will read as 

follows: a relation defined on A is any subset of A x A. 

Throughout the paper, (a,b)£ R and aRb will mean the same and 

will be used interchangeably. 

Definition 1.3. The domain of a relation R on A,B is 

£a 6 Aj there exists a H B such that aRbJ. 

Definition 1.^. The range of a relation R on A,B is 

[b£B: there exists an a 6 A such that aRbJ. 

Definition 1.3. The relation f on A,B Is said to be a 

function on A,B if (a,b)£ f and (a,c)f f implies b = c. 

Definition 1.6. The function f on A,B is said to be 

reversible if (a,b)€ f and (c,b)€f implies a = c. 

Definition 1.7. A binary operation 0 on a set L is a 

function whose domain is L x L and whose range is a subset of L. 



Definition 1.8. The relation R on the set L is said to 

be an ordering relation if 

1) for eaoh a e L, (a,a)£ R; 

ii) for each pair a,b £ L, (a,b) £ R and (b,a)£R 

imply a = b; and if 

ili) for each triplet of elements a, b and o in L, 

(atb) € R and (b,c)£R imply (a,c)€R. 

For the relation M £, w a £b will be written instead of 

(a,b)£ s5 • 

Definition 1.9* The relation R on a set L is said to be 

the converse of the relation R on L if for x, y 6 L, then 

(x,y)£ R if and only if (y,x)£ R. 

Definition 1.10. Suppose that R is a relation defined on 

the set L. Then L is said to be partially ordered if R is an 

ordering relation. 

Theorem 1.1. The converse of an ordering relation is an 

ordering relation. 

Proof. Let R be an ordering relation defined on the set 

L, and let R be the converse of R on L. Let x€ L. Then 

(x,x)6 R and, by Definition 1.8, (x,x)e R. Thus, property (i) 

of Definition 1.8 is satisfied. If x, y is any pair in L 

such that (x,y)€ R and (y,x)£ R, then (y,x)£ R and (x,y)£ R. 

Since R is an ordering relation, x = y. Thus, property (li) 

is satisfied. If x, y, z is any triplet in L such that (x,y)e R 

and (y,z)£R, then (y,x) £ R and (z,y)£R. Thus, (z,x)€R, but 

this implies (x,z)6R. Hence, R is an ordering relation. 



Let P denote the set of positive integers, and let R be 

a relation defined by the following: for each pair of elements 

x, y P, xRy if and only if x is a divisor of y. Clearly, R is 

an ordering relation. Hence, the set P Is partially ordered by 

R. 



CHAPTER II 

GENERAL PROPERTIES OP LATTICES 

In this chapter, lattices in general, various types of 

complemented lattices, and chains are discussed. 

Definition 2.1. A set L is called a lattice if there 

are defined two binary operations, meet and join, which 

assign to every pair a, b of elements of L, uniquely an 

element a A b (meet of a and b) and an element a v b (join of 

a and b) such that the following lattice axioms are satis-

fied. Let a, b and c 6 L. Then 

(avb)vc = a v ( b v c ) 

a v b = b v a 

a V (a A b) » a. 

Lis (aAb) AC = aA(bAc), L2 

L3: a A b = bAa, lA 

L5: a A ( a v b ) = a, L6: 

Theorem 2.1. If L is a lattice, then aA a = a and 

a v a = a for all a in L. 

Proof. Let L be a lattice and 16 L. Then by Axiom L5» 

1 = 1A (1 VI) and 1 V 1 = 1V[1A (1V1)J . By Axiom L6, 

1 v[l A (IV 1)J = 1 . Hence, IV 1 = 1. To show that 1 A 1 = 1, 

note that 1 = lV(lAl). Then 1 A 1 = 1A[1V(1A1)J = 1. 

Corollary. If a and b are elements of the lattice L, 

then a A b = a v b if and only if a = b. 

Proof. Let a and b be elements of the lattice L such 

that a A b » avb. Then 



a = a V (a A b) 

= a V (a Vb) 

= (a v a ) V b 

= a V b 

=s b v a 

=s (b V b) V a 

= b V (b Va) 

« b V (b A a) 

a b . 

Hence, a = b . 

Let a and b be e lements of L such t h a t a = b . By 

Theorem 1 . 1 , a = a A a and a = a v a . Note t h a t a A a = aA b 

and a v a = a v b . Hence, a A b = a v b . 

Theorem 2 . 2 . If a and b a r e e lements of the l a t t i c e L, 

t h e n a A b = b i f and only i f b V a = a . 

P r o o f . Let a and b be e lements of the l a t t i c e L such 

t h a t a A b a b. By Axioms L6 and L4, 

a = a v ( a A b ) = a v b = b v a . 

Hence, a A b = b implies a = b v a . 

Suppose t h a t b v a = a . Then b = b A ( b v a ) = b A a = a A b . 

Hence, b v a = a Impl ies a A b = b . 

Theorem 2 . 3 . If a , b , c and d a r e f o u r a r b i t r a r y e l e -

ments of a l a t t i c e , then 

1 ) (a A c) v (b A d) 

= [ (a A c) v (b A d ) ] A [ ( a v b) A (c Vd)J ; and 



2) (aA b) V (b A c ) V (c A a ) 

= [ ( a A b) V ( b A o ) v (o a a ) ] A [ ( a V b ) A ( b V c ) A (cva)J 

P r o o f . Let a , b , c , and d be a r b i t r a r y e l e m e n t s o f t h e 

l a t t i o e L. By Axioms L I , L3, and L5, 

(aAc)A | ( a v b ) A (c v d)J 

= [a A (a V b)J A [o A ( o v d)J 
=* aA o 

and 

( b A d ) A [ ( a V b ) A (o v d ) ] 

= f b A (a Vb)J A [ d A (o V d ) ] 

= bA d . 

U s i n g Theorem 1 . 2 , (a A c ) A [ ( a V b ) A ( c V d ) ] = a A c i m p l i e s 

(aA c ) V [ ( a V b ) A ( c v d ) j = ( a V b ) A ( c v d ) and 

( b A d ) A [ ( a v b ) A (cVd)J = b A d 

i m p l i e s ( b A d ) v [ ( a v b ) A ( c V d ) J = ( a v b ) A ( o v d ) s o t h a t 

[ ( a A o) v (b A d ) J v ( a v b ) A ( o y d ) 

(aA o ) v [ ( b A d ) V ( a v b ) A ( c v d ) . 

(a A c ) V [ ( a y b) A (c Vd)J 
if 

= (a v b ) A (o v d ) . 

Hence , by Theorem 1 . 2 , 

[ ( a A c ) v ( b A d ) ] A [ ( a V b ) A ( c v d ) J = (aA c ) v (bA d ) . 

To prove p a r t ( 2 ) , n o t e t h a t ( i ) , 

( a A b ) A ( a v / b ) A (b v c ) A ( o v a ) 

= aA [ b a (a \/ b )J A ( b Y c ) A ( c V a ) 

= (aA b ) A (a V b ) A ( b V c ) 

= aA [ b A (a V b)J A ( b V o ) 
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= (a A "b) A (b v c) 

= aA [ b A (b v c)J 

= a A b. 

Similarly , ( I I), (b A c) A (avb )A' (b V C ) A (ova) = b A o and 

(ill), ( o A a ) A ( a v b ) A ( b v o ) A ( o v a ) = oAa. By Theorem 1.2 

and ( i ) , 

(a A b)v [ (a v b) A (b v c) A (a v o)J 

= (a vb) A (b v o) A (a V c ), 

and (11), 

(b A c) v [ (a v b ) A ( b v c ) A ( o v a ) ] 

a ( a v b ) A ( b v o ) A ( o v a ) , 

and (ill) 

( o A a ) v [ ( a v b ) A ( b v o ) A (o Va)J 

= ( a v b )A (b v o) A ( o v a ) . 

Thus, 

[(a A b) v (b AO) v (o Aa)]v [ (a Vb) A ( b v o ) A ( o V a ) ' 

= ( a A b ) v (b A c) v |(o A a) v [ (a v b) A (bvo)A ( c v a ) | 

= (a A b) v (b A o) v [ ( a v b ) A ( b v o )A (oVa)J 

= (aAb)v | (bA o)v [ ( a v b ) A ( b v o ) A ( o v a ) ] 

= (aAb)v [ ( a v b ) A (b vo ) A ( o v a ) ] 

= (a v b) A (b v c) A (o v a ) . 

Henoe, by Theorem 1.2, 

[(a A b) v (bA o) v ( cAa) jA | ( a V b ) A ( bvo )A (ova )J 

= (a A b) v (b A o) v (o A a ) . 

5fteorem ^ a a n& ^ are elements of a lattice L, then 

the relation w ^ d e f i n e d by a £ b if and only if a A b = a, is 

an order relation. 



Proof. Let a and b be any pair of elements in the 

lattice L, and let the relation " ~" be defined by a* b if 

and only if a Ab » a. Since aA a = a implies af a, property 

(i) of Definition 1.8 is satisfied. Suppose that x, y is 

any pair of elements in L such that x i y and y = x. Then 

xAy = x and yA x = y, but x A y = yAX. Thus, x - y, and 

property (ii) of the definition is satisfied. Suppose that 

x, y, z is any triplet in L such that xi y and yi z. Now 

x A y = x and y A z = y so that 

x = XAy = X A ( y A z ) = ( x A y ) / \ z = XAZ. 

Thus, xiz, and property (iii) of the definition is satisfied. 
0 

Hence, "^ " is an order relation. 

The dual of this theorem would read as follows: if a 

and b are elements of a lattice L, then the relation "£ t" 

defined by a = b if and only if aYb = a, is an order relation. 

Throughout the remainder of this paper, the statement that 

"a < bM will mean aA b = a and a 4 b. Also, a £ b and b^a 

will be used interchangeably. 

Definition 2.2. The element a of a lattice L is said to 

be an upper (lower) bound of the elements x and y, y, xeL, 

if x A a = x and yAa = y{xva = x and y v a = y). 

Definition 2.3. The element a of a lattice L is the 

supremum (infimum) of the elements x and y in L if 

i ) a i s an upper (lower) bound f o r x and y, and 

i i ) i f b i s any upper (lower) bound, then 

a A b = a (aV b = a ) . 
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Definition 2.4. If R Is a subset of the lattice L, then 

a6 R is said, to be a minimal (maximal) element of R if for 

each x 6 R such that xAa = x(xva = x), then x =s a. 

Definition 2.5. The statement that 0 (1) is a zero 

(unity) of a lattice L means that OAX = 0 (ivx = 1) for all 

x in L. 

Definition 2.6. A lattice is said to be bounded below 

if it has a zero, bounded above if it has a unity, and bounded 

if It has both a unity and a zero. 

Theorem 2.5« Every finite subset of a lattice has an 

Inflmum and supremum. 

Proof. Let A a£, ...» anJ be a finite subset of 

the lattice L. By induction, a^Aa^Aa^ ... Aan = .A a^ Is 

an element In L, where A a* denotes the meet of the n ele-
til 

ments of A. Let A ai = a and [l, 2, ..., nj. Then 

a j A a = a j A ( A a j ) 

= aj A (â  A a£ A ... A a j A aj+i""Aan) 

= (aj A aj ) A (â  A ... A a ^ A aj+lA... A a
n) 

= a j A (â  A • • • A a A a j-j-i A • • • A an) 

= • • • A a^ = a* 
fi 

Thus, a is the inflmum of the set A. By a dual proof, b = V alf 
a u. 

where V a± denotes the join of all the elements in A, is the 

supremum of the set A. 

Theorem 2.6. Every lattice has at most one minimal and 

one maximal element, which are the zero and the unity, res-

pectively. 
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Proof. Let L be a lattice with minimal elements m and 

ra', and let m*A m = c. Since m and m* are in L, then c 6 L. 

Note that m a c = m A (m A m*) = (m a m) A m' = m Am* = c. The 

fact that m is minimal implies that m = c. Thus, m 'A m = m, 

which means that m = ra*. Hence, there is at most one minimal 

element. By a dual proof there is at most one maximal element. 

To show that m is the zero of L, let x e L and let mAx = c £ L. 

Note that m A c = m A (m a x) = mAx = c. By the same reasoning 

as before, m = c and mAx = m. Therefore, m is the zero of 

the lattice L. By a dual proof, if there is a maximal ele-

ment in L, it is the unity of L. 

Definition 2.7. Suppose that a and b are elements of 

the lattice L such that a<b. Then the statement that ,rb 

covers a" means that there is no x € L such that a<x<b, and 

will be denoted by b>—a. 

The notation "a—(.b" means that a is covered by b, which 

is synonymous with "b covers a," and will be used inter-

changeably with it. 

Let M = £x^, X2» x̂ jj be a set of three elements. Then the 

set of all subsets of M forms a lattice with respect to the 

operations of union and intersection. To illustrate this, let 

al = (xlj » a2 = [x2] » a3 = (x3j » H = (xl> > a5 = [xl* x3$ ' 

a.6 = £x2, x3J ,0 = 0 (empty set), i = M. By observing Tables 

I (a) and I (b), it is seen that 

L = £0, i, a^i a2* a3' a4' a5» a6j 

satisfies the lattice axioms. 
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A 

i 

0 

aJ 

a2 

aZ 

&* i 

a, 

V 

i 

0 

al 

a2 

a 3 

a 6 

o 

i 

0 

al 

a2 

a3 

0- X 

0 

0 

0 

.0 

0 

0 

0 

0 

i 

1 

i 

1 

i 

i 

i 

i 

TABLE I (a) 

MEET OPERATION 

a. a. a i 

0 

a 

0 

0 

a 

1. 

a 2 

0 

0 

o 

a, 

0 

a, 

0 

0 

0 

a-

0 

a, 

a, 

a 

0 

a 

a 

0 

a 

a 

a 

TABLE I (b) 

JOIN OPERATION 

0 a- a. a. a( 

i 

0 

al 

a2 

a3 
a4 

a„ 

i 

al 

al 

a4 

a^ 

aZj, 

i 

a2 

a4 

a2 

H 

i 

a 6 

i 

a3 

a5 
a6 

a3 
i 

a5 

a 6 

i 

a4 
a2| 

i 

a4 

i 

i 

a, 

i 

at 

ai 

i 

R £ 

i 

a, 

a. 

a5 
a6 

1 0 0 

1 ai 0 

•2 0 a2 

I a3 

'4 ai a2 

1 a5 a3 

'2 a3 a6 

a 6 

i 

a 6 
i 

a6 

a 6 

i 

I 

a6 

The elements of L can be represented, graphically by Fig-

ure 1, which follows. Note that the elements are represented 
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by small circles? an element x is higher than an element 

y(x,y£ L) if y< x. A line segment then is drawn from y to x 

whenever y is covered by x. This type of representation, 

called a diagram, is used mainly to represent finite lattices. 

Note that by Theorem 2.5 L has an infimum and a supremum. 

Throughout the rest of this paper, the infimum of a lattice D 

will be denoted by inf D, and the infimum of a subset E of D 

will be denoted by infp R. The same type of notation, .i.e. 

sup D and sup^ R, will be be used for the supremum. Then the 
b b 

inf L A S A ! A ( A a1) = 0 and sup L = 0 v i V ( v a J = i. 
JZl J'1 « 

This lattice is also an example of a bounded lattice. In 

fact, the zero, minimal, and inf L are all the same element. 

The same is true about the unity, maximal, and sup L. 

Pig. 1—Lattice of subsets 

Definition 2.8. An element p of a lattice L bounded 

above is called an atom if for each xe L, either pA x = p 

or pAx = 0, where 0 is the zero of L and p ^ 0. 
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An example of an atom would be the element a2 in 

Figure 1. 

Definition 2.9. An element q of a lattice L bounded, 

above is called a dual atom if for each x€L, either q V x = q 

or q Vx = i, where i is the unity of L and q ̂  i. 

An example of a dual atom would be the element a^ shown 

in Figure 1. 

Definition 2,10. Suppose that L is a bounded lattice 

and that x is an element of L. Then x* is said to be a com-

plement of x if xAx* = 0 and xvx* = 1. A lattice L is said 

to be complemented (uniquely complemented) if each element in 

L has a complement (exactly one complement). 

Figure 2a below is an example of a complemented lattice. 

Note that for each x in the lattice there is an x* such that 

xax* = 0 and xvx* = i. For example, aAb = 0 and aVb = i, 

Figure 2b below is an example of a uniquely complemented 

lattice. Throughout the remainder of this paper, the lattice 

in Figure 2a will be called Lattice A. 

Fig. 2a-
Lattice A. 

Fig. 2b— 
Uniquely complemented 
lattice. 
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Theorem 2.7* If p and q are distinct atoms in a uniquely 

complemented lattice L, if p*£ L is the complement of p, and 

if p* is also a dual atom, then p'A q = q. 

Proof. Let L be.a uniquely complemented lattice, p and q 

be distinct atoms, p' be the complement of p, and p* be a dual 

atom. By Definition 2.8, p ^ 0, and either pAq = p or 

p Aq =* 0. Suppose that pAq = p. Since q is an atom, either 

pAq = q or pAq = 0, q / 0. If p A q = q, then q = p, which 

is a contradiction to the hypothesis. If pAq = 0, then p = 0, 

which again is a contradiction. Thus, the assumption that 

PAq = P is false so that pAq = 0. Using the fact that q is 

an atom, either p* A q = q or p'A q = 0. Suppose that p'A q - 0, 

The fact that p* is a dual atom implies that either pfV q = p* 

or p*v q = i, p* ^ i. If p'v q = p', then, by Theorem 2.2, 

p * A q — q and q = 0, which is a contradiction since q is an 

atom. If p'vq = i, then q would be a complement of p', but 

p* has only one complement, which is p. Thus, q = p, which is 

a contradiction. Hence, p'A q = q. 

Theorem 2.8. If L is a uniquely complemented lattice and 

p* is the complement of p(p?,p€L), then p* is a dual atom if 

and only if p is an atom. 

Proof. Let p* be the complement of p in the uniquely 

complemented lattice L, and suppose that p' is a dual atom. 

Let x £ L. Then xAp£L. Since p* is a dual atom, either 

(xAp)vp' = i or (xAp)vp' = p*, p» 4 i. If (xAp)vp' = p\ 

then, by Theorem 2.2, (XAP)AP' = xAp. Note that 
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(XAp)Ap' ~ XA (PAP*) = X AO = 0. 

Thus, X A P = 0. If (xAp)vp' = i, then, by the uniqueness of 

the complements, p = XA p. To finish the first part of the 

proof, suppose that p = 0. Since pf is the complement of p, 

p'A p = 0 and p'vp = 1. Now p'A p = 0 = p and, by Theorem 

2.2, p V P = P't Thus, p* = 1, which is a contradiction. 

Hence, p / 0 and p is an atom. By a dual proof, the converse 

is proven. 

Definition 2.11. Suppose that L is a lattice bounded 

below and that x is an element of L. Then u is said to be a 

semicomplement of x if XAU = 0. If u ^ 0, then u is a proper 

semicomplement. 

Definition 2.12. Suppose that a and b are elements of a 

lattice L such that a < b. Then 

i) [a,bJ - |x 6 L: a = x and x £ bj ( [a,bj is said to 

be an interval of L); 

ii) (a,b) = L: a<x<bj; 

iii) (a,bj = jfx 6 L: a < x and x 4 bj; and 

iv) (a] = L: a£xj. 

Definition 2.13« Suppose that L is a lattice and that R 

is a subset of L. Then the statement that R is a convex set 

means that a,b€R (a< b) and xefa.bj imply x £ R. 

Theorem 2.9. If L Is a lattice bounded below, then the 

set of all semicomplements of x€ L forms a convex set. 

Proof. Let L be a lattice bounded below, x be an element 

of L, and C = |u£ L : X A U = oj be the set of semicomplements of 
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x. C Is not empty since 0£ C; that is, x/\ 0 = 0. Let q£ C. 

Then XAq = 0. If ye L such that yAq = y, y / q, then 

yAx = (yAq) Ax = yA(qAx) = yAO = 0. Thus, y 6 G and G 

is convex. 

Definition 2.1̂ -. An element x of a lattice L Is said to 

be an inner element of L if x is not a bound of L. 

Definition 2.15* A lattice L is said to be semicomple-

mented if every inner element of L has at least one proper 

semicomplement. 

Deflnltlon 2.16. A lattice L bounded below is said to 

be weakly complemented if for each pair a,b6L, a<b, there 

exists an x£ L such that aAx = 0 and bA x 4 0. 

Theorem 2.10. Every weakly complemented lattice is semi-

complemented. 

Proof. Let a be an inner element of the weakly comple-

mented lattice L. By Theorem 2.6, a is not maximal, so there 

exists an element x € L such that x v/a = x and x 4 a. By 

Definition 2.15, there exists an element y £ L such that aA y = 0 

and XAy 4 0. To show that y 4 0, suppose that y = 0. Then 

x A y = x A 0 = 0, which is a contradiction. Thus, every inner 

element of L has at least one proper semicomplement. 

Theorem 2.11. Every uniquely complemented lattice is-

weakly complemented. 

Proof. Let x and. y be a pair of elements of the uniquely 

complemented lattice L such that x< y and let x'6 L be the 

unique complement of x; that Is, XAX* = 0 and xvx* = i. To 
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show that y A xf £ 0, suppose that y A x* = 0. Note that 

yVx* « (yvx)vx' = yv(xvx') = yvi = 1. Using the fact 

that x Is the complement of x* and the fact that yA x* = 0, 

x = y, which is a contradiction since x / y. Thus, x*A y 4 0 

and L is weakly complemented. 

The converse of this theorem is not necessarily true, 

for Figure 3 is an example of a lattice which is weakly com-

plemented but not uniquely complemented. Note that aAb = 0, 

avb = i, b A c = 0, and b V c = i, but a 4 cj that is, b has 

two distinct complements a and c. 

0 

Pig* 3—Lattice B 

Definition 2.17. A lattice L bounded below is said to be 

section complemented if for each pair x, a£L such that 

xA a = x, 

there exists u 6 L such that x A u = 0 and xvu = a. 

An example of a section complemented lattice would be the 

lattice shown in Figure 2a. 

Theorem 2.12. Every section complemented lattice bounded 

below is weakly complemented. 
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Proof. Let x and. y (x«cy) be a pair of elements of a 

section complemented lattice bounded, below. Since L is 

section complemented there exists an element u 6 L such that 

x Au = 0 and xvu = y. To show that UA y £ 0, suppose that 

UAy = 0. Note that u v y = uv(uVx) = (uvu)vx = uvx = y. 

By Theorem 2.2, uvy = y implies UAy = u. Thus, u = 0. 

But y = x\zu=xV0 = x, which is a contradiction since x< y.. 

Hence, for each pair of elements x> y (x< y) in L there 

exists an element u such that UAX = 0 and u A y 0 , which 

means that L is weakly complemented. 

Theorem 2.13. A lattice L bounded below is Weakly com-

plemented if and only if there exists for every pair of 

distinct elements u and v in L an element x such that 

( U A V ) A X = 0 , ( V V U ) A X 0 . 

Proof. Let x, y be a pair of elements of a lattice L 

such that xAy = x and x ^ y. Also, suppose that there exists 

an element u£L such that (xAy)Au = 0 and (xvy)Au 4 0. 

Then, since x A y = x implies xvy = y (Theorem 2.2), 

0 = ( x A y ) A U = x A u 

and 0 4 ( x v y ) A u = yA u. Thus, L is weakly complemented. 

Let x and y be distinct elements of the weakly comple-

mented lattice L such that x A y = x. There exists an element 

u6L such that XAU = 0 and yA u 4 0. Since xAy = x implies 

x v y = y , (XA y) A u = 0 and (x v y)A u 4 0. 

Definition 2.18. Suppose that L is a lattice and that R 

is a subset of L. Then R is said .to be a sublattice of L if 

for each pair x, y 6 L, then xAye L and xvy 6 L. 
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The subset [i, a^, a^, a2 J ~ ® lattice L shown in 

Figure 1 is an example of a sublattice of L because for each 

pair x, y in R, xAy and x vy are also in R. Note that not 

every* s u b s e t of a l a t t i c e is a sublattice# For example, the 

subset S as ̂  i, a^, ag, oj of the lattice L shown in Figure 1 

is a lattice with respect to the ordering of L, but note that 

a 4 A a6 / s* Thus, it is not a sublattice. 

iheorem 2.1^-. A s u b l a t t i c e of a l a t t i c e L i s convex i f 

and only i f a , b £ R i m p l i e s [ a A b , avbjc R. 

Proof- I^t R be a sublattice of the lattice L. Suppose 

that a , b£ R implies [ a A b , aVbJ C B. Let a and b be a pair 

of elements in R. By Definition 2.12, 

[aAb, aVbj = ̂  x £ L: a A b ̂  x and x i a v bj. 

Let xefa.b] and show that x e R. Note that xfi[a,bj implies 

a ix and x£b; that is, a A X » a and b V x = b. Nov; 

(a A b) A x A (b A a) A x = DA (a A x) = b A a = a A b 

and (a vb) v x = a .v ( b v x ) = a v b . By Theorem 2.3, a A b i x 

and x s a v b . Thus, x£ [ a A b , avb] C H. Hence, R is convex. 

Let a, b be any distinct pair of elements of R such that 

a A b = a. Suppose that R is convex. Note that a, b <£ R 

implies a A b , a v b 6 R. if [ a A b , a v b ] , then x£ R from 

the convexity. Hence, [ a A b , a V bj £ R. 

Definition 2.19. The function ip is a homomorphism of 

lattice Lĵ  into (onto) lattice L2 if the domain of if is 1^, 

the range is a subset of L2 (is L2)» and for every pair of 
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elements x, y in Llf (f (xAy) -- if (x) A if (y) and 

f f ( x v y ) = ¥ ( x ) V if ( y ) . 

Another way of stating this definition would be as 

follows: the lattice is homomorphlc with the lattice L2 

if there exists a function if with the properties stated 

above. The two forms of the definition will be used inter-

changeably. 

Definition 2.20. If if is a homomorphism of lattice 

into lattice Lg where L2 is bounded below by 02, then the 

kernel of the homomorphism If is ify = £ x 6 L-j_: <f(x) = 02J. 

Definition 2.21. A subset I of a lattice L is said to 

be an ideal if I satisfies the following two conditions: 

i) a, b £ I implies that a v b € I; and 

ii) for any element x in L, a £ I implies that 

a a x € I. 

The subset 1 - ^ 1 , b, oj of the lattice L shown in Figure 

3 would be an example of an ideal. Note that I is also a sub-

lattice of L. This is true for any ideal of a lattice. 

Theorem 2.15. If a homomorphism of a lattice has a 

kernel, then the kernel is an ideal of the lattice. 

Proof. Let if be & homomorphism of the lattice into 

the lattice Lg» be the kernel of the homomorphism Lf » and 

a, b be an arbitrary pair of elements in K̂> . Then (a) = 0 2 

and if(b) = 02. Note that <f(aVb) = if (a) V <f(b) = 0 2 V 0 2 = 02< 

This implies that a V b is an element of which satisfies 

condition (i) in Definition 2.21. Let x£Lj_. Note that 
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(f(aAx) = (a) A f (x) = Op A f (x) = Og. This implies that 

a A x 6 Kv , which satisfies condition (ii) of the definition. 

Since, by definition, C Lj_, K is an ideal of L^. 

Theorem 2.16. If ip is a homomorphism of lattice onto 

lattice Lg and is bounded, then L2 is bounded. 

Proof. Let cp be a homomorphism of the lattice , 

bounded above by i and below by 0, onto the lattice Lg. By 

the homomorphism there exist elements k and 1 in L2 such that 

(1) = k and f(0) = 1. Let x£ L2. By the onto property 

there is an element y £ L^ such that <f(y) = x. Since 

xvk = <j*(y)V ^>(1) = f (yv i) = ^ (i) = k 

and x M = ip(y) A ^ (0) = (yA 0) - if (0) =1, k and 1 are 

upper and lower bounds, respectively, for L2* 

Definition 2.22. A function is said to be an order 

homomorphism of a lattice L-j_ into (onto) a lattice L2 if the 

domain of V is L^, the range of ^ is a subset of L2 (is L2), 

and for every pair of elements a, b £ L, a A b = a implies 

^(a) A V (b) = ^(a). 

Just as in Definition 2.19, an equivalent way of stating 

this definition would be as follows: a lattice Lj_ is order 

homomorphic with lattice L2 if there exists a function ^ with 

the properties described above. Again, the two forms will be 

used interchangeably. 

Definition 2.23 (a). Suppose that L is a lattice and 

that C is a subset of L. Then C is said to be a chain if for 

each pair x, y£C, either xAy = x or xv^y = x. 
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Definition 2.22 holds for chains since each chain of a 

lattice L is a sublattice of L and hence a lattice. 

Theorem 2.1?. If is an order homomorphism of a chain 

into a chain C2, then if is a homomorphism of the chain 

into the chain C2. 

Proof. Let ^ be an order homomorphism of the chain 

into the chain C2. ^ is a function whose domain is C-j_ and 

whose range is a subset of C£. Let a, b be a pair of ele-

ments in . By Definition 2.23 (a), either a A b = a or 

aAb = b. If aAb = a, then, since ^ is an order homomor-

phism, If/ (a) A (b) = ^(a). Note that 

Vf (aA b) = ^ (a) = <j/ (a) A \p (b). 

Using the fact that every chain is a lattice and Theorem 2.2, 

aAb = a implies a V b = a and Vj/(a)A if (b) = ̂  (a) implies 

^(a)v ^ (b) = y (b). Thus, 

vy (a V b) = vf/ (b) = vf (a) V ^ (b). 

If aAb = b, by an analogous argument, lj/(aAb) = ^ (a) A ̂  (b) 

and ^ (a\/b) = (a) V Cf/(b). Hence, ̂  is a homomorphism of 

C-j into 0^ • 

Theorem 2.18. If f is a homomorphism of lattice L^ onto 

lattice L2, and if a non-empty subset R of L2 is an ideal of 

L2, then the set S = £ x 6 L-̂ : (x) £ R j is an ideal of L^. 

Proof. Let Lf> be a homomorphism of lattice L-j_ onto 

lattice L2, let the non-empty subset R of L2 be an ideal of 

L2, and let S = | X ^ : if (x) 6 RJ. S is not empty since for 

each h 6 R there is an x6 L^ such that tf(x) = h. Let a and b 
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be a pair of elements in S. Note that Lf(aVb) = (a) V if (b) 

and if (a)V if (b)6R implies that a Vb £ S. Let z ^ . Then 

If (z A a) ~ Lf> (z) A Lf (a). Now Lf (z) £ L2 and R an ideal of Lg 

imply lp(z) A if (a)£R2. This in turn implies that z A a <£ S. 

Thus, S is an ideal of L\. 

Definition 2.23 (b). If a, b is a pair of elements in a 

lattice, then a and b are said to be comparable if either 

a a b = a or avb = a; otherwise, a and b are said to be incom-

parable, denoted by a lib. 

The pair of elements a^ and ag in Figure 1 is an example 

of incomparable elements, and the pair a^ and a^ is an example 

of comparable elements. 

Theorem 2.19. If a, b is a pair of elements in a lattice 

L, then a and b are incomparable if and only if a A b< a and 

a < a Vb. 

Proof. Let a, b be a pair of incomparable elements of 

the lattice L. Since a, b 6 L, then a A b, a v b 6 L. Note that 

(a A b) A a = b A (a A a) = b A a = a A b and a = a A (a Vb). Now 

a lib implies (aA b) 4 a and (a Vb) ̂  a. Thus, a A b < a and 

a< a V b. 

Suppose that a, b is a pair of elements of L such that 

a A b < a and a < a V b. Then aAb / a and a / avb. Thus, a 1/ b. 

Definition 2.24. An element a of a lattice L is said to 

be meet-reducible if there exist in L elements a-p a2 such 

that a = a1Aa2, a < a^, and a<a2. 
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Definition 2.25. An element a of a lattice L is said to 

be meet-irreducible if for each pair b, c of L such that 

bAc = a, either b ~ a or a = c or both. 

The definitions for join-reducible and join-irreducible 

are duals of Definitions 2.24 and 2.25, respectively. 

Definltlon 2.26. An element a of a lattice L is said to 

be meet-prime if for each pair of elements a^ and a2 of L, 

alA a 2s a implies either a or a2 4 a or both. 

The dual of this definition is the definition for a join-

prime element. 

Theorem 2.20. If L is a complemented lattice, then every 

join-prime element p of L, p 4 0» is an atom of L. 

Proof. Let L be a complemented lattice vrith zero, 0, and 

unity, i. Let a be a join-prime element of L, suppose that 

a 4 0, and let x£L. Since L is complemented there exist 

elements x' and a* such that a'A a = 0, a'va = i, x'A x = 0, 

and x* v x = i. Note that (x*V x)A a = iA a = a. Then, by 

Theorem 2.4, aixVx, which is equivalent to x'Vxia. By 

the dual of Definition 2.26, x'vx^a implies that either x* £ a 

or x£ a. Suppose that x^a. By the dual of Theorem 2.4, x^a 

implies xva = x and, by Theorem 2.2, xva = x implies xAa = a, 

Suppose that x*> a. Then x' ̂  a implies x'Va = x• which 

implies X'A a = a. Thus, if x' > a, then 

XAa = xA(x'Aa) = (x A x *) A a •- 0 A a = 0. 

Hence, a is an atom of L. 
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By a dual proof, the dual of this theorem Is true. The. 
t 

converse of this theorem is not always true. Consider the 

lattice shown in Figure 4. Note that a and b are the only 

join-prime elements. They are also atoms, but neither is 

complementedi 

0 

Pig. ^—Non-complemented lattice 

Theorem 2.21. A lattice is a chain if and only if every 

one of its elements is meet-irreducible. 

Proof. Let L be a lattice such that if a6 L, then a is 

meet-irreducible. Let x, y be any pair in L. Then XA y6 L. 

Clearly, x A y = xA y. Since XA y is meet-irreducible, then 

either x = XA y or y = x A y. By Theorem 2.2, y = x Ay 

implies x = xv y. Hence, L is a chain. 

Suppose that the lattice L is a chain. Let c be any 

element of L, and let a, b be any pair of elements in L such 

that a A b = c. Since L is a chain, either a Ab = a or 

a V b a a. If a A b = a, then a A b = a = c. If a V b = a, then, 

by Theorem 2.2, a A b = b and b = c. Hence, each element of L 

is meet-irreducible. 
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Definition 2.27. Suppose that L Is a lattice and. that c* 

is a chain in L, Then c is said to be maximal if there exists 

no chain in L which would properly contain c. 

Chain Axiom. For any chain C of a lattice L there exists 

at least one maximal chain c such that c contains C. 

Theorem 2.22. Every chain of a lattice L has an upper 

"bound if and only if L contains a maximal element. 

Proof. Let C be a chain of the lattice L. By the Chain 

Axiom there exists a maximal chain c which contains C. Let r 

be an upper bound of c" and suppose that r is not a maximal 

element of L, Then there exists an x in L such that x v r -• x 

and x 4 r. If x u , then x/\ r = x and, by the corollary to 

Theorem 2.1, x = r, which is a contradiction. Thus, x^c. 

Note that for each y <£ c, y A r = y. By Theorem 2.2, x v r = x 

implies x A r = r so that 

x/\y = xA(yAr) = (xAr)Ay = rAy = y A r = y. 

Thus, c v [xj is a chain which properly contains c, but this 

contradicts the fact that c is maximal. Hence, r is the 

maximal element in L. 

To prove the converse, suppose that the lattice L has a 

maximal element m. Then, by Theorem 2.6, m is the unity i. 

Let C be any chain in L and ye L. Note that y A l = y. Hence, 

i is an upper bound for C. 

Definition 2.28. Suppose that L is a lattice. Then L 

satisfies the minimum (maximum) condition if for each x£ L, 
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all the chains formed by letting x "be the maximal (minimal) 

element are finite. 

Theorem 2.23* If- a lattice L satisfies the minimum 

(maximum) condition, then for each x£ L there exists at least 

one minimal (maximal) element m <£ L such that x v m = x 

(x A m = x). 

Proof. Let x be an element of the lattice L. Either x 

is a minimal element in L or not. Suppose that x is not min-

imal. Then there exists an x^6 L such that x^a x = x and 

x-j_ ̂  x. This implies xj_< x. Either x^ is minimal or not. 

Suppose it is not. Then there exists an x2 6 L such that 

x 2 A x x = x 2 

and x-l ̂  x2, which again implies x 2< x-̂ . By a continuation 

of this process and the fact that L satisfies the minimum con-

dition, a finite chain x x< < ... < x^ < x, which has the 

property that if y€ L and yA x K = y, then y = xK, is obtained. 

Thus, Xj£ = m is a minimal element, and if x£ L, then mA x = m. 

Hence, by Theorem 2.3, m v x - x. 

By a proof analogous to the preceding one there exists a 

maximal element M £ L such that x A M = x. 

Corollary. If L is a lattice satisfying the maximum 

(minimum) condition, then every chain of L has a maximal 

(minimal) element. 

Proof. Let L be a lattice satisfying the maximum con-

dition, let R be any chain in L, and let x be an arbitrary 

element in R. Since any subset of L villi satisfy the maximum 
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condition, R, in particular, will. Thus, there exists a 

maximal element i£ R such that ma x = x. Hence, every chain 

has a maximal element. 

By a similar proof, every chain has a minimal element. 

Theorem 2.2k. A lattice satisfies both the maximum and 

minimum conditions if and only if every one of its chains is 

finite. 

Proof. Let L be a lattice satisfying the minimum and 

maximum conditions. Suppose that there exists a chain R in 

L such that R has an infinite number of elements. By the 

corollary to Theorem 2.23, R has a minimal element m. Let 

Rj_ = R-|mj. Note that R^ is a chain and also has a minimal 

element m-j_ with m<m^. In general, R^ = w^ e r e 

mK-l ^ e minimal element in R^.i* Since 

IO 

Rj£ is a chain vrlth a minimal element mK, and mK_^< mK. Thus, 

the infinite chain m < m-j_ < ... < m^ < ... is obtained. But this 

contradicts the fact that L satisfies the maximum condition. 

Hence, every chain in L is finite. 

Suppose that L is a lattice and that each chain in L is 

finite. Let x€ L. Each chain formed by letting x be either 

a maximal or a minimal element must be finite. Thus, L sat-

isfies both the minimum and maximum conditions. 

Theorem 2.25. A lattice satisfying the minimum (max-

imum) condition has a zero (unity). 



30 

Proof. Let L be a lattice satisfying the minimum con-

dition, and. let x £ L. By Theorem 2.23 there exists at least 

one minimal element in L and, by Theorem 2.6, it is the zero. 

By a dual proof, a lattice satisfying the maximum condition 

has a unity. 

Lemma. If the lattice L satisfies the maximum condition, 

then every subset of L has at least one maximal element. 

Proof. Let L be a lattice satisfying the maximum con-

dition, let H be a subset of L, and let x£ R. Either x is a 

maximal element of R or not. Suppose that it is not. Then 

there exists an X|6B such that x^ v x = x^ and x^ ^ x; that 

is, x<x^. Either x^ is a maximal element of R or not. 

Suppose it is not. Then there exists an element x2 6 R such 

that x̂ v/ x2 = x2 and x^ 4 x2; that is, x^< x2. Since L sat-

isfies the maximum condition, after a finite number of steps, 

the chain x < x^ < x2 < ... < xr is obtained such that if y 6 R 

and yvx r = y, then y = xr. Thus, xr is a maximal of R, and 

the lemma follows. 

Theorem 2.26. In a lattice satisfying the maximum con-

dition, every one of its elements can be represented as the 

meet of a finite number of meet-irreducible elements. 

Proof. Let L be a lattice satisfying the maximum con-

dition, and let S be the set of all elements in L which cannot 

be represented as the meet of a finite number of meet-

irreducible elements. To show that S is empty, suppose that 

it is not. Let K £ S, and suppose that K is meet-irreducible. 
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Note that K = KAK. Thus, X can be represented as the meet 

of a finite number of meet-1 rreducible elements, vihich con-

tradicts the preceding assumption. Thus, K is not meet-

irreducible. Furthermore, every element in S is not meet-

irreducible. By the lemma, S contains a maximal element m. 

Since m is not meet-irreducible, there exist elements x and 

y in L such that xA y = m, x ^ m and y 4 m. Note that 

xAi = xA(xAy) = (xAx)Ay - xAy = m and 

yAm = yA(xAy) = xA(yAy) = XAy = m; 

that is, m<x and m< y. But the fact that m is maximal, m<x, 

and m < y together imply that x and y do not belong to S. 

Since x, y € L-S, x and y can be represented as the meet of a 
r 

finite number of meet-irreducible elements; that is, x = A x., 
$
 iS> 

and y = A y. where x*, y* (i = 1, r; 3 = 1, ..., s) are 
J xi J A J r 

meet-irreducible. Thus, m = xa y = ( A x« ) ( A y J i which 
L*l j;/ i 

is a contradiction since m 6 S. Hence, S is empty, and the 

theorem follows. 

Wieorem^^^. Xf 9 . q — ^ • . . ^ar bQ*̂ —̂ bi • ̂  * »«-~~-̂bg 

are two chains of join-irreducible elements in the lattice L, 

and ifa-jjJbjjCj =0, 1, r; k = 0, 1, ..., s), then 

amAb n =
 ao/^bO f o r e a c h Pair of indices 

m, n(m 0, 1, «.«, r | n •" 0, 1, ..., s). 

Proof. Let aQ— (...—(ar and bQ—̂ b-j_ (... —(bs be 

two chains both belonging to the lattice L and both satisfying 

the hypothesis of the theorem. To prove this theorem, math-

ematical induction will be employed several times. First, it 
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w i l l be used to show t h a t aQ A b n = aQ Ab Q , f o r 

H Of 1 , • . » , 31 

then induc t ion w i l l be employed to show t h a t A b n = aQ A b 0 , 

f o r m = 0, 1 r and n - 0, 1, s . To show t h a t 

a 0 A"t>i = a o A ^0 ' 

l e t x - a Q A bjL. Note t h a t 

x A a 0 = ( a 0 A b 1 ) A a 0 = ( a 0 A a
0 ) A b x = aQAb-j^ = x . 

If x = b l f then b^A a 0 = b l s which i s a c o n t r a d i c t i o n s ince 

a 0 l | b jL . If x = b 0 , then a 0 A b 0 » bQ» which aga in i s a c o n t r a -

d i c t i o n . Thus, x, b^, and bQ a r e d i s t i n c t . Now 

(bQVxjVb^ = ( b 0 V b 1 ) V x = b-jV (a^A bj_) = b^ 

and ( b Q v x ) AbQ = bQ imply bQ ̂  x V b Q ^ b^. Since bQ—Cb ,̂ then 

e i t h e r b Q V x = b 1 or b Q v x = bQ . If b Q v x = b 1 , then b^ i s 

not j o i n - i r r e d u c i b l e , which i s a c o n t r a d i c t i o n . Thus, 

b0V x = b 0 

and, by Theorem 2 .2 , bgAx = x . Hence, 
a 0 A l 3 l ~ x - bQ A x = bQ A (aQ Ab^ ) = (bQ Ab^) A aQ = bQA a Q . 

Suppose t h a t a ^ b . ^ = aQA bQ (1< s) i s t r u e , and show t h a t 

a 0 / ^ t > l + l = V b 0 i s ' f c r u e* a 0 A b i + 1 = y . If x i s replaced 

by y, b-j_ by b^ + ^, and bQ by b-̂  i n what has j u s t been shown, 

then aQAb- j^ = a 0 A b 0 . Hence, a 0 A b n = aQAbQ f o r 

n = 0, 1, . . . , s . 

By an analogous p roo f , a
m A = sQA ^ o r m ~ ^> *•*» r* 

To show t h a t a^A b n = aQa bQ f o r n = 0, 1, . . . , s , l e t 
a l A b^ = z . 

By p roof s analogous to the preceding one, bgAz = z and 
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a f l A z = z . Hence, 

a^ a b = z 

= z A z 

= (aQA z) A (bQ A z) 

= a o A A A "Dq A a^A "b̂  

= a 0 A b 0 . 

Suppose that a^ A "b-̂  = aQ A bQ} 1< s . Then show that 

a l ^ ^1+1 ~

 a 0 ^ ^0* 
Let a^A = u. In the proof above, replace aQ by a^, b^ 

by b 1 +^, x by u, and bQ by b^. The resu l t obtained w i l l be 

a l ^ b l + l = a l A b l * Bu'fc a l A °1 =
 S-QA^Q. Hence, 

a l A b n = a 0 A b 0 

f o r n = 0, 1, s . Suppose that a K A b n = a 0A b^ for 

n = 0, 1, s . Then show that a^+^A b n = &qAt>o for 

n = 0, 1, . . . , s . Let - v. In a s imi lar manner, 

a K A v = v and 

aK+l/l^^'l ~ v = a K ^ v = a K ^ a K + l ^ ^ l = a K ^ b l == a 0 ^ b0* 

Now suppose that aK+i A "b-̂  = a0A"bQ, 1< s , and show that 
aK+l-A ^1+1 = aQA bg* L e t aK+i A b i + i = w. Using preceding 

techniques, aK / \w = w and a-̂ A w = w. Thus, 

a K+l A b l + l ~ vr 

w A w 

aK ^ w A b^ A w 

aK A aK+l A t>i+i A b l A aK+l A ^i+i 
aKA 

w 
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Hence, by the principle of induction, amA"bn = a0/^b0 for 

ra = 0, 1, ..., r and n = 0, 1, ..., s. 

Note that if the condition 

ajl|bK (j = 0, 1, r; K = 0, 1, s) 

were removed, then a 0Ab 0 may or may not be equal to a^A 

In fact, if the chains were arranged in the following manner, 

a0—^al—(• • • — — ( t > 0 — • • ~ ~ » then 

b,q A b^ a-̂ A b^ (1 ̂  0), 



CHAPTER III 

DISTRIBUTIVE AND MODULAR LATTICES 

In this chapter, techniques for characterizing distrib-

utive and modular lattices will be presented. 

Definition 3.1. A lattice L is said to be distributive 

if for each triplet of elements, x, y, z, the following con-

ditions hold: 

i) xA(yVz) = (xAy) V(XAZ); and 

ii) x v (yA z) = (xvy)A(xVz), 

Theorem 3.1. A lattice satisfies property (!) if and 

only if it satisfies property (ii). 

Proof. Let L be a lattice such that each triplet sat-

isfies property (i), and let x, y, z be a triplet in L. By 

Property (i), 

(xvy)A(xVz) = j(x v y)A xj V (x vy) A z 
r 

= xv| (xv y)A z 

= x V [z A (x V y)j 

= x V [(z Ax) v (z A y)J 
= [xV (z Ax)]v {z Ay) 

= x V (z Ay). 

Conversely, if each triplet of L satisfies property (ii), 

then by a dual proof, each triplet satisfies property (i). 

35 
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As a result of this theorem, any lattice which satisfies 

either property (i) or property (ii) is distributive. Chains 

are examples of distributive lattices. 

Theorem 3*2. Every sublattice of a distributive lattice 

is distributive, and if f is a homomorphism of the distributive 

lattice L onto a lattice L*, then L' is also distributive. 

Proof. To prove the first part of the theorem, suppose 

that L is a distributive lattice and that G is any sub-

lattice of L. Let x, y, z be any triplet of G. Since 

x, y, z € L, 

x A (y v z) = (XA y) v (x AZ) . Note that x, y, z€G Implies, by 

the definition of sublattice, yA z € G and xA(yvz)6 G. Hence, 

G is distributive. 

Suppose that f is a homomorphism of the distributive 

lattice L onto the lattice L*. Let x', y*, z* be any triplet 

in L. Since the function f is onto, there exist elements x, y, 

and z in L such that f(x) = x*, f(y) =y", and f(z) = z*. To 

show that L' is distributive, show that x', y•, and z' satisfy 

property (i) of Definition 3.1. Note that 

(X'A y*) v (X*A z*) = [f(x)Af(y)Jv jf(x)Af(^)J 

= f (XA y) v f (XA z) 

= f£(x Ay) v (XA z)j 

= f[x v (yA z)J 

= f (x) V f (yA z) 

= x* V [f (y) A f (z)J 

= x' V (y*a z»). 

Thus, L* is distributive. 
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Lemma 3»1« If a, b, and x a r e arbitrary elements of a 

lattice L such that a £ b, t h e n a V x - b v j and a A x ~ b A x. 

Proof. Let a, b, and x be elements of a lattice L such 

that a £b. By Theorem 2.4, a ̂  b implies aA b = a. Using 

lattice Axioms LI and L3 and Theorem 2.1, 

(a A x) A (b A x} = a / \ ( x A ( b A x ) ) 

= a A (b A (x Ax)) 

= (a A b) A x 

= a A x . 

Hence, by Theorem 2.4, a A x £ bA x . By Theorem 2.2, a A b = a 

implies av b = b. Note that 

(a Vx) V (b Vx) = a v (x V (b v x)) 

= a V (b V (x \/ x ) ) 

~ a V (b\/x) 

= (a Vb) V x 

= b Vx. 

Now ( a v x ) V , (bVx) = bVx implies (a v x) A (b V x) = a V x . 

Hence, a\/x£bvx. 

Theorem 3.3. If for each triplet x, y, z of a lattice L 

xA(yvz}£ (xAy)v(xAz), then (x v y) A (x v z) £ x V (y A z), 

and conversely. 

Proof. Suppose that for each triplet x , y , z of the 

lattice L that x A ( y V z ) i (x A y) V (x A z ). Then let x , y , z 

be a triplet of L, and consider (x v y) A ( x v z ). Note that 

(x v y ) A (x V z ) i j(x V y) A x j \ /£(x V y) A z j = X vjz A ( X V y)J and 
zA ( x v y ) i (z A x) V {z Ay). By Lemma 3.1, 
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( x v y ) A ( X V Z ) 4 X V [ ( Z A X ) v (z A y)J 

= [x v (ZA x)] V (zAy) 

« xv (ZAy). 

Conversely, suppose that for eaoh triplet x, y, z of L, 

(xvy)A(xvz) - x v(yAz), Then, by a dual proof, 

( x A y ) v (XAZ ) ^ x A ( y V z ) , 

Thus, x A (y v z) i (x A y) v (x A Z ). 

Note that the dual of the statement 

"x A (Y v Z) = (x A Y) v ( X A Z ) " 

is the statement "x v (y A z) £ (x v y) A (X V Z ). " This fact was 

used to prove the converse of the previous theorem. 

Theorem 3.4. The lattice L is distributive if and only 

if for each triplet x, y, z of its elements, 

x A ( y v z ) i ( x A y ) v ( x A z ) . 

Proof. Suppose that for each triplet x, y, z of ele-

ments in the lattice L that x A (yvz)i (x A y) v (XAZ). Then 

let x, y, z be a triplet of L. By Theorems 2.3 and 2.4, 

( x A y)v (XA z) = ( X V X ) A (yvz) = x A ( y v z ) and, by Theorem 2.4 

and the corollary to Theorem 2.1, (x A y)v (y A z) = x A(y V z). 

Thus, L is distributive. 

Let x, y, z be any triplet of the distributive lattice L. 

By Definition 3.1, x A (y V z ) = ( x A y ) V (XAZ). - Thus, by the 

corollary to Theorem 2.1 and Theorem 2.4, 

XA(y v z) i ( X A y) v (x AZ). 

Note that by replacing x A (y V z) i (x A y) v (XAZ) with 

x V (y a z) * (xV y) A (x vz) in Theorem 3.4, the dual theorem is 

obtained and is proved by a dual proof. 
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Theorem 3»5. A lattice is distributive if and only if 

for each triplet x, y, z of its elements, (x v y) A zfrxv(yAz). 

Proof. Suppose that for each triplet x, y, z in the 

lattice L that (xvy)A z 6 x v (yAz). Let x, y, z be a triplet 

in L. Note that (x v y) A (x v z) i xv £Y A (X V Z )J . Since 

YA (x vz) = (xvz) A y| x V (ZA y), then, by Lemma 3.1, 

x v j f ( x v Z)A y £ x v j ^ x v ( y / v z ) ] 

= (x v x) v (yAz) 

= x v (y A z ) . 

Thus, ( xVy)A (xVz)i xv (yA z). 3y Theorems 2.2 and 2.4, 

XV (y A z) = (x v y) A (xvz) and, by the dual of Theorem 3.4, L 

is distributive. 

Let x, y, z be any triplet of the distributive lattice L. 

Since z = ZA(ZVX), then, by Theorem 2.4, z I z v x = xvz. 

By Lemma 3.1. (xvy)A z = (xvy)A (zVy) and, by property (ii) 

of Definition 3.1» (x V y)A (x V z) = x V(y A z). Thus, 

(x v y) A z ~ x V ( y A z ) . 

Definition 3.2. A lattice L is said to be modualr if 

for each triplet x, y, z of L such that XA z = x, then 

x V ( y A z ) = ( x V y ) A z . 

Theorem 3»&» Every sublattice of a modualr lattice is 

modular, and if f is a homomorphism of a modular lattice L 

onto a lattice L*, then L' is also modular. 

Proof. Suppose that L is a modular lattice and that G 

is any sublattice of L. Let x, y, z be a triplet of G such 

that XAZ = x. Since x, y, z e L, x V (y A z) = (xvy)Az, 
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Nov; x, y, z £ G implies y A z d G and xv(yAz) G. Hence, G 

is modular. 

Suppose that f is a homomorphism of a modular lattice L 

onto a lattice L*. Let x*, y *, z* be any triplet of L* such 

that x'AZ* = z'. Since the function f is onto, there exist 

elements x, y, and z in L such that f(x) = x', f(y) = y', and 

f(z) = z *. Note that x • y (y' A z') = f(x)v f (y) A f (z )J. 

Since f is a homomorphism, then 

f (x)v f(y) Af(z) = f (x) V f (yA z) 

= f |x V {y A z )J 

= f [(x v y) A zj 

= f (x v y) A f (z) 

= [f<*> v f(y)J A f (z) 

= (x* v y») A z1. 

Hence, L* is modular. 

Theorem 3.7. A lattice L is modular if and only if for 

each triplet x, y, z of L such that x a z = x, 

xV y A (x V z )J = (xvy)A(yvz). 

Proof. Let L be a lattice. Suppose that for each trip-

let x, y, z of L such that xA z = x, 

Xvj^yA(xVz)J a (xVy) A (xV z). 

Let x, y, z be any, triplet of L such that xA z = x. By 

Theorem 2.2, xAz = x implies xVz = z. Note that 

xv[yA(xvz)J =: x V (y A z) 

and (xv y) A (xv z) = (xVy)Az. Thus, xv (yA z) = (xVy)a z. 

Hence, L is modular. 
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To prove the converse, suppose that the lattice L i s 

modular, and let x, y, z be any triplet in L. Note that 

x A (x V z) = x. Thus, since L is modular, 

xV £ y A (x Vz)] = (x v y) A (xy z). 

Theorem 3.8. Suppose that L is a modular lattice and 

that x, y, z is any triplet of L. Then (zvy)Az = y/\ z if 

and only if (z v y) A x = y A x . 

Proof. Let L "be a modular lattice, and let x, y, z be 

any triplet of L such that (x v y) A z = yA z. Note that 

(x yy)A y = y. Since L is modular, 

y v j z A(IV y)J - (yyz)A(xyy), 

but yv[ z A (xvy)J = yy (yA z) = y so that y = (y V Z)A (xvy). 

Hence, 

yAx = [ (yv z)/\ (xy y)j A X 

= (y y z) a [ (x v y) A x J 

= (yv z)A x 

= (z y y) A x . 

To prove the converse, suppose that x, y, z is any trip-

let of L such that yAx = (z vy) A x. Note that (zyy)A y = y. 

Since L is modular, yv £x A (Z V y)J = (y v x) A (zvy), but 

yv[xA (zV y)J = y v (yA x) = y so that y = (yv x) A (z vy). 

Hence, yA z = £~(y Y x) A (Z V Y)] A z = (yvx)Az = (xVy)Az. 

Definltlon. Suppose that a, b, c is a triplet of ele-

ments of the lattice L. Then the statement that the triplet 

a, b, c has a median means that 

(a A b) Y (bA c) y (c A a) = ( a v b ) A ( b v c ) A ( c y a ) . 
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Theorem 3«9« The lattice L is modular if and only if 

each triplet a, b, c such that a A c = a has a median. 

Proof. Suppose that each triplet a, b, c in L such that 

a /\ c = a has a median. By lattice Axioms L5, L6, and L4, 

a V (b A c ) = £ a A ( a V b ) ] v [ ~ ( b A c ) y [(b A c} A cjJ 

= [a A (a V b)J V (b A c) V jj b A c) A cj. 

Now, by hypothesis, 

a A ( a v b)J V (b A c) V ["(bA c) A c j 

= [ a v (avb ) J A (b V C)A [ (bA C)V c j 

as (a v b) A (b V c) A c 

= (a v b) A c. 

Hence, a V (b A c) = (a v b) Ac, and L is modular. 

Suppose that L Is modular. Let a, b, c be any triplet 

of L such that a A c = a. By Theorem 2 . 2 , a A o = a Implies 

a v c = c. Nov; ( a A b ) v (b/\c) v (cAa) = ( a A b ) v ( b A c ) V a . 

Rearranging the terms, 

{a A b) v/ (b A c) V a = J ^ ( a A b ) v a ] v ( b A c ) = a V (bA c), 

but since L is modular, 

a v ( b A c ) = (a v b) A c 

= ( a v b ) A £ ( b V c ) A c j 

= ( a V b ) A (bV c ) A (a V c ) . 

Thus, each triplet a, b, c of L such that a A c = a has a 

median. 

Theorem 3«10« A lattice Is distributive If and only if 

every one o f its triplets has a median. 
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Proof . a , b, and c be a t r i p l e t of the d i s t r i b u t i v e 

La t t i ce L. The f a c t t ha t L i s d i s t r i b u t i v e implies 
i ) a A ( b v c ) = (a Ab) v ( a a c ) , and 

i i ) a v ( b A o ) = ( a v b ) A ( a v c ) . 

Show t h a t (aAb) V ( b A c ) v (oAa) = (av/b)/ \ ( b V c ) A ( c V a ) . 

By commuting a with c, a/\ c with b Ac, and using ( i ) , 

( aAb) v (bA Q)V ( O A a) = (a A b) v (a A c) v (b A c) 

= [a A (b Vc)l V (bA c ) . 
By ( i i ) , 

[aA (bVc)]v (bAc) 

= [[ a A (b v c)] v b j A [[a A (b V cj j V c j 

= [ b v [ a A ( t v c ) ] ] A [ c v [ a A ( b V c ) ] j 

= [ ( b ^ a ) A [bY (b v c )jJ A [ ( C V a ) A [cv(bv c)jj 
= [ ( a v b ) A {bv c)J A [ ( c v a ) A ( c V b ) 

= ( a v b ) A ( b v c ) A ( c V a ) A ( c V b ) 

= (a v b) A ( b v c ) A (c v a ) A ( b V c ) . 

Now, commuting the t h i r d and four th terras, 

( a v b ) A ( b V c ) A ( o v a ) A ( b v c ) = ( a v b ) A ( b v c ) A ( b v c ) A ( e v a ) , 

Since (b VC)A ( b v c ) = b v o , then 

( a v b ) A (b v c) A ( b v c ) A (c Va) » (a v b ) A (b V c ) A (c v a ) . 

Hence, the t r i p l e t a , b . c has a median. 

Suppose t h a t each t r i p l e t of the l a t t i c e L has a median. 

Let a , b , and c be a t r i p l e t of L. Since 

( a A b ) v ( b A c ) V (OA a) = ( a v b ) A ( b v c ) A ( a v o ) , 

then, by Lemma 2 .1 , 

a v [ ( a A b ) v ( b A c ) v ( o A a ) ] = av [ (a v b) A (b v c) A (a V o )J . 
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By Axioms Ll , LA, and. L5, 

aV ["(aA b) v (b A c} v (c A a}J 

« [ a v ( a A b ) J v j~(bA o ) v ( c A a ) J 

= av [ (bA c) V ( c A a ) ] 

= [ a V ( o A a ) ] v ( b A c ) 

= a v (b A c ) . 

Note t h a t a V ( a v c ) = ( a v a ) v o = a v c and, by Theorems 2 .2 

and 2 , 3 , a 1 a V c . By Theorem 2.9» 

a v | [ ( a v b ) A (b v c ) ] A (o v a)J = j|a V £ \ a V b ) A (b v c )Jj A ( c V a ) 

S i m i l a r l y , b £ b v c and, by Theorem 2.9» 

[ ( a v b ) A (bVc )J = £ ( b v a ) A (b v c)J = bv £a A (b V c)J 

so t h a t 

£ a v J \ a V b) A (b v C ) J | A (c V a) 

= [ av jTb V (a A (b V o) )jJ A (c Va) 

= | ( a v b ) v [ a A (by c)]j A (o V a) 

= | ( b V a ) v [ a A (b v c )]J A (c Va) 

= [ b v ["a v (a A (b V c) )JJ A ( c v a ) 

= ( b v a ) A ( c V a ) 

= (a v b) A (a Vc) • 

Thus, a V(bA c) = (a v b)A (a v c ) , and d u a l l y , 

a A ( b v c ) = ( a A b ) v ( a A c ) . 

Hence, L i s d i s t r i b u t i v e . 

Theorem 3«H» A l a t t i c e i s modular i f and only i f no 

s u b l a t t i c e of I t i s isomorphic with the l a t t i c e A shown in 

Figure 2a . 
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Proof. Let L be a modular lattice, and suppose that 

there exists a sublattice Q of L which is Isomorphic to the 

lattice A shown in Figure 2a. Let © be a reversible function 

which maps Q onto A. For a, b, c, 0 and i in A there exist 

a', b*, o', 0*, and i' in Q such that 0(a*) = a, 0(b') = b, 

8(c') = c, 0(0*) = 0 and ©( i') = i. Since Q is isomorphic to 

A for each x and y in Q, 9(XA y) = ©(x)A 0(y) and 

0(xv y) = 0(x)V 0(y). 

To show that Q is not modular, consider 6(a'A c*), e[a'v (b'A c')J 

and 0^(a'v b') A c*J . Note that 

0(a' A c ') = 0(a')A 0(c1) 

=s a A c 

= a 

= ©(a*)» 

eja'V (b'Ac')] = 0(a') v [ 0(b») A 0(c»)] 

= a v (b A c) 

= a V 0 

= a 

= e(a'), 

e (a1 V b*) A c*] = [©(a') V 0(b')] a 6(c») 

= (a v b) A c 

= i A c 

= c 

= e(c'). 

Since 6 is a reversible function, a'Ac* = a', a fv (bfAc'} =a», 

(a * v b *) A of = c *, and a ^ c imply a * 4 c' so that 
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a'V (b'Ac1) 4 (a'Vb')Ac'. 

Therefore, Q is not modular, which is a contradiction to 

Theorem 3.6. Hence, the "only if part" of the theorem is 

proved. 

Let L be a lattice such that no sublattice of it is 

isomorphic to the lattice A shown above. Suppose that L is 

not modular. Then there exists a triplet x , y, z in L such 

that x A z = x and x v ( y a z) 4 {x vy)a Z. Note that x / z, 

for if x = z, then x V (yA z) = (x v y) A Z. TO show that y 

and z are not comparable, suppose first that yA z » z. Then 

x A y = ( x a z ) a y = x A ( z A y ) = x A z = x . Now 

x v ( y A z ) = x v z = z 

and (x V y ) A z = y A z = z . Thus, x v ( y A z ) = ( x v y ) A z , which 

contradicts the preceding assumption, and so yA z 4 z. Now 

suppose that yA z = y. By Theorem 2.2, y A z = y implies 

y V z = z. Note that x V (yA z) = xv y and 

(xv y) V z =s xv(yvz) = xvz = z. 

By Theorem 2.2, (xvy)vz = z implies (xv y) A z = x v y . Thus, 

x v(yA z) = (xv y)A z, which again contradicts the initial 

assumption. Hence, y and z are incomparable. To show that x 

and y are incomparable, suppose first that xAy = x. By 

Theorem 2.2, x Ay = x implies xvy = y. Note that 

(x vy) A z = yA z 

and x A (yA z) = (x A y) A z = x A Z = x. By Theorem 2.2, 

x V ( y A z } = yA z . 

Thus, xv (yAz) = (xvy)Az, which is a contradiction. 



Consequently, x A y 4 x. Suppose then that x A y = y. Note 

that (x v y) A z = X A z - x and x A (y A z) = (x A y) A z = J T A Z , 

By Theorem 2,2, x v (y A z) = x. Hence, x V (y a z) = ( x v y ) A z , 

which again is a contradiction. Hence, x and y are not com-

parable . 

Let (xvy)Az = c*, x v ( y A z ) = a*, x v y = yAZ = 0* 

and y = b*. Novr it must be shown that a*, b*, c*, 0*, and i* 

are all distinct. By the initial assumption, a' 4 c*. It 

has previously been shown that i' 4 b* and 0* 4 b*. Suppose 

then that a* = i", ,i.<s. x v ( y A z ) = xyy, Note that 

(xvy) A Z = [ x v (yA z)] A z. 

Since [x v (yA z)J v z = x V £(y A z) V z] = x V z = z and, by 

Theorem 2.2, £ x V (y A z)] A z = xv(yAz), then 

(x v y) A z = x V (y A z ) , 

but this a contradiction, so a* 4 i•. Suppose that c* = i*, 

_i.e. ( x v y ) AZ = x v y . By Theorem 2.2, (x V y) A z = x v y 

implies that ( x v y)v z - z, but (x v y) V z = (xvz)vy = z \ / y 

so that z = z v y . Thus, y = z A y, a contradiction since y and 

z are incomparable. Hence, c' 4 i*. To show that 0" 4 i*, 

suppose that 0* = i*. Then x V (y A z) = x v ( x v y ) = x v y and 

( x v y ) A Z = (y A z) A z = y A z . Thus, x v ( y A z ) = ( x V y ) A z , 

which is a contradiction. Hence, 0* 4 i*. Suppose that 

c* = 0 * , i,.e. ( x V y ) A z = yA z . Then x v (yA z) = x vj(x v y) AzJ 

But x A ^ ( x v y ) A z J = ( x A z ) A ( x v y ) = x A ( x V y ) = x and, by 

Theorem 2.2, xv £"(x v y) A z j = ( x v y ) A z . Thus, 
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x v (y A z ) ~ ( x v y ) a z , 

which i s a c o n t r a d i c t i o n . Hence, c* 4 0*. 

I f c ' = b t h e n 

a* = x y (y A z ) 

= x v £ ( x V y) A z A z ] 

= x V [ (xV y) A z] 

= x v y 

= i ' , 

a c o n t r a d i c t i o n . Thus, c* 4 b * . In a s i m i l a r manner i t can 

be shown t h a t b * 4 a " and a* 0 * so t h a t a * , b* , c ' , 0*, 

and i f a r e a l l d i s t i n c t . 

Le t B = [ a % b ' , c 1 , 0*, i * J . Next i t w i l l be shown 

t h a t B i s a s u b l a t t i c e of L, . i . e . f o r any p a i r x , y i n B, 

X A y € B and x V y £ B . By Theorem 2.3» 

[(x A x) V (yA z ) j A [*(x V y) A (x V z ) ] = ( x A x ) V ( y A z ) . 

S ince (x A x) v (y A z ) = x v / ( y A z ) and 

(x v y) a (x V z ) = (x v y) A z , 

t h e n j^x v (y A z)] A [{x v y ) A z ] = x V (y A z ) . Thus, a ' A c* = a ' 

Note t h a t a ' V b ' = [ x v ( y A z ) J v y = x v y = i* and 

(a* V b ' ) v (c * v b •) 

= | [ x V (yA z)J V y j V | ( x v y) A z ] v y J 

= [ x v (yA z ) ] v f ( x V y ) A z j v y 

= r ( x v y ) a z] v y 

= c * v b» 

i m p l i e s t h a t i*V ( c ' v b ' ) = c'V b ' . Note a l s o t h a t 



^9 

(c*v b») Vif = [f(x\/y)Az]vyJv(xvy) 

= [ (x vy) A z] V(x v/y) 

= x Vy 

= i*. 

Hence, i* = c'v^' = a * v b1. In a similar manner, 

0* = c*A b* = a*A b*. 

It is easily seen then that B is a sublattioe of L. 

Define <p = [ (c»,c), (a*,a), (0',0), (i*,i), (b»,b)J. 

The domain of ip is B and. the range is the lattice 

A = (a, b, c, 0, ij 

shown in the figure, (f is a reversible function since each 

element in B has one and only one image in A and each element 

in A has one and only one image in B. Now 

if (a'Ab') = y(0*) = 0 = a A b = (f(a') A l/>(b') 

and f (a'Vb') = if(i') = i = av b = (f(af) V (b'), 

Taking all possible combinations in this manner, for any 

x, y 6 B, If(xAy) = y (x) A if (y) and (x v/ y) = if (x) V f(y). 

Thus, the lattice B is isomorphic to the lattice A, But this 

is a contradiction; hence, L is modular. 

Corollary 1. No element of a bounded modular lattice 

has two comparable complements. 

Proof. Let L be a bounded modular lattice bounded above 

by i and below by 0, and suppose that there does exist an 

element y such that y has two distinct, comparable complements 

x and z. By definition, xAy = 0, yAz = 0, xvy = i, and 

y V z = i. Since x and z are comparable, then either XA Z = x 
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or XAZ = z, Hie proof by supposing XAZ = x is the same as 

the proof by supposing XAZ = z, so suppose that XAZ = X. 

The remainder of the proof is the same as the proof of the 

theorem. Thus, the sublattice formed from the elements a*, 

b*, o' o*, i', where a* = xi/(yAz), b* = y, c' - (xvy)Az, 

i* = x v y, o1 = yA z, is isomorphic to the lattice A shown 

in Figure 2a, which contradicts the theorem. Hence, 

Corollary 1 follows. 

Corollary 2. For the elements x, y and z of a modular 

lattice, xAz = x A y, x V z = yv z, and x A y = x imply x = y. 

Proof. Let L be a modular lattice, and suppose that 

x, y and z are elements of L such that XAZ S yA z, 

x v z = y v z, and xA y = x. Since L is modular, 

x V (z A y) « (x v z) A y, 

but xV(zAy) = xv (XAZ) = x and (xvz)Ay = (yvz)Ay = y. 

Hence, x = y. 

Theorem 3.3,2. Every distributive lattice is modular. 

Proof. Let x, y, z be any triplet in the distributive 

lattice L such that x £ z. Then, by property (ii) of Defi-

nition 3.1» xv(yAz) = (x v y) A (x v z). By Theorem 2.4, 

x ̂  z implies xA z = x and, by Theorem 2.2, XAZ = x implies 

x v z = z. Thus, x v(yA z) = (x v y)A Z. Hence, L is modular. 

Note that the converse of this theorem is not necessarily 

true, for consider the lattice B shown in Figure 3. Since 

no sublattice of 3 is isomorphic with lattice A, then B is 

modular, but B is not distributive since 
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a A (b v c) 4 (a A b ) v (a A c). 

Hence, this exhibits an example of a modular lattice which 

is not distributive. The following theorem shows that a 

distributive lattice can be characterized by examining its 

sublattices. 

Theorem 3.13« A lattice is distributive if and only if 

it has no sublattice isomorphic with either lattice A (the 

lattice in Figure 2a) or lattice B (the lattice shown in 

Figure 3)• 

Proof. Let L be a distributive lattice. By Theorem 

3.12, the fact that L is distributive implies that "L is mod-

ular. Then, by Theorem 3.11, there is no sublattice which 

is isomorphic to lattice A. Note that lattice B'is not dis-

tributive since a V (b Ac) -4 (a v b) A (a V c) and, by Theorem 

3.2, every sublattice of a distributive lattice is distrib-

utive. Thus, there is no sublattice of L isomorphic with 

lattice B. 

To prove the converse, suppose that L is a lattice such 

that no sublattice of it is isomorphic with either lattice A 

or lattice B. Suppose that L is not distributive. Either L 

is modular or it is not. If L is not modular, then, by 

Theorem 3.11, there is a sublattice isomorphic to lattice A, 

which is a contradiction. Thus, L is modular. By the contra-

positive of Theorem 3.10 there exists a triplet x, y, z in L 

such that ( x A y ) v ( y A z ) V ( Z A Z ) ^ (x v y) A (y V z ) A (x v z). 

Furthermore, by Theorems 2.3 and 2.k, 
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(x A y) v (yAz) V (x A z) < (xVy)A(yvz) A(xv /z ) . 

L e t 0* = (x A Y ) v ( y A z ) V(XAZ), I' = ( x v y ) A (y v z ) A (x v z ) , 

a - 0 ' v (x A 1 ' ) , b* = 0* V (y A i») and c* = 0' v ( z A i ' ) , 

Since 0 '< i» and L i s modular, 0* v (x A i») = (o* v x)A i» and 

0 f V (yA i ' ) = (0Vy) A i ' . Note that 
a ' A b » = [o»v (xA i*)J A [o»v (yA i * ) ] 

= (0 ? v r) A i ' A (0*v y) A I * 

= [(0* V x) A (0'V y)] A 1 ' . 

Now 0 * V x = ( x A y ) v ( y A z ) v (XAZ) v x = x V ( y A z ) , and 

O ' v y =: (x AY) v (y A z) v (x A z} v y = y v ( x A z ) so that 

a'AB' = { [ x v ( y A Z ) ] A [y v (XA z)jJ A i ' . 

oince yAziyiyv ( x A z ) and x A z i x, then 

a'A b' = 1»A {(y A z ) v [ x A[y V (x/\ Z)]]J 

= i 'A [ ( y A z ) v (XAZ) v ( x A y ) ] 

= 1'A 0' 

= 0*. 

In a similar manner, b'A C = a'A C « 0- and, by a dual 

proof, a ' v C = b ' v C = a ' v b ' = i'. Next It *111 be shown 

that 0', i', a', b' and c' are all distinct. Suppose that 

a* Kien a ' A b' = a' and a ' A c' = a*. By (theorem 2.2, 

a ' V b ' = b' and a ' V o ' = c', but a'v b' = i' and a ' V C = i'. 

Thus, b* = 1' and c' = 1'. Note that i' = i'A i' . b'A o' = 0', 

which is a contradiction. Hence, a' / 0'. Similarly, b' 4 0' 

and C 4 0' and, by a dual proof, i' / a', b', c'. Suppose 

that a' = b ' . Then a' = a' A a' . a ' A b ' = 0', which is a con-

tradiction. Thus, a' ^ b'. In a similar manner, a' J c' and 
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o* 7̂  b'. Hence, 0*, i', a*, b*, and c' are all distinct. 

Clearly, the set G = [ Q ,» i*> a*» b*, c*J is a sublattice of 

L. By a proof analogous to the proof to Theorem 3.11, the 

lattice G is isomorphic with the lattice B. But this is a 

contradiction. Hence, L is distributive. 

Corolla t j 1. Every element of a bounded distributive 

lattice has at most one complement. 

Proof. Let L be a distributive lattice bounded above by 

i and below by 0, Let x 6 L such that x has two complements 

x* and x", and suppose that x* 4 x". Then either x*'11 x* or 

not. If x1 and x" are comparable, then either x• A x" = xf or 

x'Ax" = x", but in either case, the set of elements 

{ x, x*, x", 0, i] 

forms a sublattice of L isomorphic with the lattice A, a con-

tradiction to Theorem 3.13. If x' II x", then x* A x" < x* < x* V xH. 

Since x* and xM are both complements of x, then X A X * = 0, 

x vx' = i, XAX" = 0 and x v x " = i. Note that 

(x'Ax") A X = X ' A ( X M A X ) = X ' A O = 0 

a n d (x* A x " ) V x = X V ( X * A X " ) = ( X V X * ) A ( X V X " ) = l A i = i. 

Similarly, (x'vx")vx = i and (xf v x") A x = 0. Thus, the set 

of elements[x, x' x", x' xM, 0, ij forms a sublattice of L 

isomorphic with lattice A, a contradiction. Hence, x* = x". 

Corollary 2. For the elements x, y, z of a distributive 

lattice, x A z = y A z and x v z = y v z imply x = y. 

Proof. Let x, y, z be any triplet of the distributive 

lattice L such that xA z = yA Z and x v z = y\/z. Thus, 
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x = xV(xAz) 

= xv(y A z) 

= (xvy) A (xv z) 

= (yvx)A(yVz) 

= yV(xAz) 

= y v/ (y A z) 

= y. 

Theorems 3.11 and 3.13 appear to be the most Important 

tools for determining whether or not a lattice is distributive 

or modular. Note that the lattice shown in Figure 3 (lattice 

B) has no sublattice isomorphic to lattice A. By Theorem 3.11» 

B is modular. Then, by Theorem 3.13, B is not distributive. 

This example Illustrates the use of Theorems 3.11 and 3.13. 
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