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CHAPTER I
INTRODUCTION

1. Content and Scope

1.1, Thie paper 1s primarily concerned with developing
the theory of real-valued functions of bounded variation and
those ideas which are closely related to this main topile.

In addition to this, some emphasis has been placed on the
relationship of the theory of funoctions of bounded variation
to specific areas of analysis. In partiocular, integration
theory has been chosen as the vehicle to demonstrate this
connection.

In this thesis the notion of bounded variation has been
treated primarily with respsct to funoctions of a real variable.
Furthermore, the domain of such functions is usually taken to
be an interval. Unquestionably this somewhat limits the scope
of this study, but the fundamental theorems of §7 indicate
that the class of functions whioch admits of this property is
indeed quite large. For those readers who might desire a more
abatract approach, certain sections of Chapter III might be of
partioular interest. In addition, 3Saks' Theory of the Integral
(1) indicates in considerable detaill how this idea might be
generalized.

1.2. In Chapter I the saltus funotion and functions which

posgess certain monotonicity properties are desoribed, and



several theorems are proved concerning the nature of such
funotions. Then in §5 8 close commection between these con-
cepts and Riemann integration is demonstrated. |

In Chapter II the notions of absolute eanﬁinuity and
bounded varistion are defined and discussed in considerable
detaill. Complete characterizations of functions having these
properties are given in this ohapter. In addition, certain
decomposition theorems and convergence theorems are included
here, Then in §8 the Riemann-Stieltjes Integral is defined,
and some signifiocant theoremsz are proved indicating how the
notion of bounded variation might apply to a study of inte-
gration.

In Chapter II1 the ideas of bounded variation and abso-
lute continuity are generalized. Based on one of these
generalizations, a short discussion 18 given of a olass of
functions which 1is Riemann-Stieltjes integrable in a broader
context than that usually considered. In addition, the
Burkill integral of a real-vealued interval function defined
in Euclidean n-space is discussed; and several theorems are
proved indicating the relationship of this integral to some
of the generalizations given in this chapter.

2. Definitions
1.3. The term point set will be used interchangeably
with gset of real numbers.
1.4e The glosed interval [a,b] will denote the set of
all real numbers x so that a< x <b; the gpen interval (a,b)

f



willl denote the get of all real numbers x so that a< x< b
(asb) will denote the set of all x so that a<x<bj and (a,b]
will denote the set of all x so that a<x<b,

1.5, If I = [a,5] i3 a closed interval, then I, will
be an gpen subinterval with respect to I (open relative to I)
if, and only if, I, i# the intersection of an open interval
with I. |

1.6. If 8 is a point set, then 8 is bounded if, and
only if, there exists a real number K>0 so that if x €S8,
then |xl< k.

1.7. Jm 2 limit point of the point set 8 means that if
I i2 an open interval containing 5 s then I contains at least
one point of 8 other than S N

1.8. The statement that the point set 8 is olosed means
that 8 contains all of its limit points; the slosure of 3 is
the set 3 itself together with all of ite limit points.

1.9. The staﬁemnt that K is an upper bound for the
point set 8 means that if x€3, then x<K; K is a lower bound
for 8 means that if x€ 8, then X< x.

1.10. The statement that K is the least upper bound
(greatest lower bound) for the point set 3 means that

1) K i1s an upper bound (lower bound), and
11) if €>0, then there exists an x €S so that
X>K-€(x <K+ €). Least upper bound will be denoted by lub
or max, and greatest lower bound will be denoted by glb or min.
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1,11, If S i= a set, then S is gountable 1f, and enly
Af, S can be mated biuniquely with s subset of the positive
integers. |

1.12, The statement that f is a funotion from (on) a
get A into s get B means that f is a correspomdence which
associates with easch element of the set A a unique elenment
of the set B. A is oalled the domain of £, and the collection
of mates of elements of A is called the range of £,

1.13. If the funetion f is defined on the set A, then
to say that £ is bou
bounded .

1.14, If ACB, then A is everywhere dense in B means
that B ia a subset of the slosure of A.

1,15, Two intervals I and J are said to be abutting if,
and only if, they have only one point in common and that
point is an end point.

1.16. If the funotion f is defined, except poasibly for
the point 5 s in some open interval I containing 'S ¢ then
1im £(x) = & mesns that if € >0, then there exists a 3>0
g0 that if 0<]x- §|<d and x €1, then Ie(x)-xl<€,
5’-’33*“1) = means that if € > 0, then there exista & 9> 0
g0 that if 0¢<x= S < §, then l£(x)-Al<E, Iam £(x) =
means that if € is chosen positive, then there existe a
950 50 that 12 0< S wx < 3, then lf(x)-} < € . It shoura
be understood that Af f is defined on [a,5] emd § = & or
§ = b, then Lin £(x) Wil be interpreted in terms of the

Lele

led on A means that the range of f e




appropriate one-gided limit. f-_&ms f(x) will be denoted by
£{5+), and lin £(x) will be denoted by £(§-).

1.17. If f s defined at x = ¢ , then f is gontinuous
at x =S 1f, and omly 1if, 1im £(x) = £(S5), where it is
understood that the limit does exiat. If f is defined on
the interval I, the statement that f is continuous on I means
that £ is continuous at each point of I.

1,18. The statement that the function f is uniformly
contimous on I = [a,b] means that if € >0, then there
exists a >0 80 that 1f x, and x, are in I andlx;-xp] < 2,
then If(x, )=£(x,)| < € .

1.19. A sequence A ={aj, 83, «uey 8y oes]is merely
a funotion f defined on the sget of positive integers so that
£(1) = a4, £(2) = 83y eos f(n) = Bps see o

1.20. let {rn} be & smequence of functions, all of whioh
are defined on [e,b]. If £ is a function defined on [a,b],
then the statement that the sequence {rn} gonverges to I on
[#,5] means that if x € [a,b] and € >0, then there exists a
positive integer N so that Af n>N, thon‘fn(x)«-r(x)l < €,
The sequence {f,] 1s said to gonverge unifermly to f on [a,b]
provided that for each € >0 there exists a positive integer
N (depending on € only) so that if n>N and x € (a,b], then
bt (x)-(x)| < €.

1.21. A descending, infinitesimal sequence of glosed
intervals {In} = { [an,bn]‘ is & sequence of intervals so that



1) for each positive integer n, I,,, C 1., and
11) the length of (I,), denoted by 1(I,), approaches
Zero a8 n inoreases without bound, i.s. lim «_}(xn) = O

1.22. If 8 is a point set, then S has Jozydan~Content-0
if, and only if, for emch € > 0 there exists a tmﬁa eol-
leotion I = {Ij, Ips «ees I} of non-overlapping open
intervals so that

1) 8 ciL:.;, I0 and
11) _‘El::‘ 1(I,) < € , where 1{I,) denotes the length
of I,.

The term gxterior Jordan~Content-0 may be used inter-
changeably wlth Jerdann«caﬁﬁant-o.

1,23, If 8 is & set of real numbsrs, then S has exterior
Lebesgus-Neasure-0 if, and only if, for each € >0 there exists
a oountable collection J of non-overlapping open intervals I so
that

1) =8 CIL{’;- I, end
1) IZ;II.(::)« €.

It should be noted that Lebesgue-Measure-0 1s equivalent
to exterior lebesgue-Measure-0 and that any countabdle set is
of Lebesgue~Neasure~0.

1.24, If the function f is defined on [a,b], the state-
ment that f has a bounded differense guotient on [a,b] means
that there exists a positive number M so that if aSe<d<bh,
then

l r{a)-r(e)
RN < H,.
d=0 '



1.25. A gubdivigion o of [a,b] is & finite set of

pointe {xXp X1y X2s ey Xp{ S0 that

&= Xg<X| <Xp<oee <Xy = b
The notation o~ 3 & = Xy <X§ <X3 <eee <Xy = b 18 sometimes
used to refer to the subdivision ¢—. The noxm of the sub-
division o, denoted by !l oI, 1g defined to be the max of
{(x1=x0)s (xp=x1)s eees (xp=xp.1)}.

1.26. To say that the subdivision 03 is e yefinement
of the subdivision ¢ means that if x € v, then x € 073,
i1.e. each subdivision point of ¢ iz a subdivision point of a5
The notation 973 >0~ will indicate that J7 1s a refinement
of 0.

1.27. If £ 1s a bounded funotion defined on I = [a,b],
then U(f3I) is by definition max{f(x)Ix €I1f, L(f;I) 1s
minf{e(x)ix € 1}, and S(r31) 18 maxfala = [ £(x;)=r(x,)], where
x4 and x; are arbitrary points of Iz.

If I = (ay,b) is an open interval, the definitions are
made in a gimilar fashlon.

1.28. Let £ be a bounded function defined on (a,b].
Iet Se(a,b). The following definitions are then made;
U(£3S ) = min {U(£3I)] where I 1 an open interval containing
S and 1ying in [a,5]}, L(£5§ ) = max {L(£51)| T 1= an open
interval containing § amd lying in [a,b], and

8(£35 ) = min{s(e31) | 1
18 an open interval containing J and lying in [a,b]f. 1If
S=aor J= b, the intervals I are taken open relative to

[e,1n].



1,29, The funotion f defined on [a,b] 18 said to ve
monotone non-decressing (monotone non-increasing) on [a,b]
provided that if x, and x, belong to [8,b] and x,< x,, then
f(xg) 2 r(xa)(f(xq9)2 £(x5)).

1.30, Let f be a bounded function defined on [s,b].

Iet "1 & = Xp< Xy < ses <X, = b be an arbitrary subdivision

of [8,5]. ¥, will denote the max of f on [Xy.1:Xy]» and my
will denote the min of £ on [xs,l,xi], where £ = (1, 2, eoep 1),
Then let

-]

Z Z By(xyexy_q)s

Z 1= > mlnyexy,).

————— ‘:'

These summations are called the upper and lower sums,

and let

respectively, of f with respect to 0. Then define :zho

upper Biemann integral of f on (2,v], denoted by Sf, to be
the min of < £ for all 9 of [a,5]. Similarly, define the
lower Riemann integral of f on [a,b], denoted by Sbr, to be
the max of "Zr for all o of [s.b] Then f is said to be

Bismam integrable on [..b] when S £ = yr; end the common
value of Sr and Sr 18 denoted by S £ and oalled the

Biemann integral of f on [a,b]. -

3+ Assumed Theorenms
1.31.  If {I,} = {Bpsbpll 42 & descending, infinitesimal
sequence of closed intervals, then there is & unique point
which belongs to I, for every n.



1.32. If the funotion f is continuous on I = [a,b],
then £ is bounded on I.

1.33. If the funotion f 1= continmuous on [a,b], then f
is uniformly continuous on [a,b].

1.3%. If the funotion f ie contimuous on [8,b], then £
assumes its max as a value, and assumes its min as a n;lﬁe..

1,35 If a and b are real numbers, then

| 1al=1bl] £ |a-b} < [al+}0l.

1.36. A necessery and sufficient condition that u'
funstion f be contimuous at x = § i8 that £(J-) anmd £($ +)
exist and £(§~) = £(§) = £(S+).

1.37. Any non-empty set 5 of real numbers that is
bounded from above (below) has 2 least upper bound (greatest
lower bound).

1.38 If T is a collection of open intervals covering
the closed, bounded set 8, then there exists a finite sub-
collestion T' of T which alsoc covers S.

1,39, If the functions f and g are bounded on e,b
snd o and ¥¥ are real numbers, then

1) 4f 0" and u"l are subdivisions of [a,b] se
thet o C g7y, then Zr> Z £ and Zr P {
i1) Af each of o md oy are mbdivumm of [a,0],

4 - b

111) L”r 2 ’r;
[N
iv) if £ and g are Riemann integrable on [u.'b] y then
o t+ﬂg is Riemann integrable on [u,b].
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1.40. A necessary and suffioient oondition that the
bounded funstion f be Riemann integrable on [a,b) is that
for each € > 0 there exists a subdivision o of [a,b] so
that irr- 2t <€,

4. HMonotonicity and the Saltus Punction

1.41. If the funstion f is bounded on I = [a,b], then
8(£31) = U(L31)=-L{f31).

Proof. Suppose that 8(f£3I)> U(f3I)=-L{f;I). Hence there
exists an € » 0 8o that 8(fjl)= € = U(L3I)=L(fsI)e Then by
1.27 there exist points x4 and X in I so that

| £{xq )=£(x,)| > 8(£31)= € &
Thus {£{x; }=f{x,)|> V(3 I)=L(f3I). But then either

12(xg )=2(xp)| = £(xq)=1(x5)
or If(xg)=r(x;)| = £(x,)=f(x;). Without loss of generality,
suppoas that ir(xi)-t(xz)l = £(xg)=f(xp). But £(xg)<0(r;1I)
by 1.27. Similarly, £(x3)2 L(f;I). Therefore

£(xy )=r(xp) < U(L3I)=L(L31),
a contradiction of our assumption.

Henoe S(£3I)SU(f3I)=L(f;1). The assumption that
8(£31)< U(L3I)=-L(f3I) leads to a similar contradiotion.

Thus 8(f3I) = U(L3I)=L(r3;1) and the theorem iz proved.

1.42, Jf the funotion f is bounded on the interval I
(open or olosed), then f is gontinuous at § € I Af, and only
AL, s(r38) = o,

Proof. Denote 3(£35) vy S(S). Without loss of gen-
erality, suppose that Ser= (asb).



i1

Iet £ bes continuouns at x = S « Choose €>0, Therefore
there exists & J$>0 so that if x€I and |x= S| < 9, then

£..
| £(x)-2( S )| < "

Then let I, = (§-35,8+3). It follows that if x; and x,
belong to I, then

| £0xy )=£(xp)] < -25-

Hence 3(f3I;)< € . Clearly 8(§)¢ 8(f31;). Therefore
8(8) = o. |

Now suppose that S(3) = 0. Ten chooss € >0. By
Definition 1.28 there exists an interval I = (o,d) lying in
I and containing S so that 8(f3I1;) < € . Let

9 = min( §we,dmS ).
Then choose x €I so that |x- §| < J. Hence x €L,. Thus
le(x)=2{ S ) £ 8(£311) < € . The contimuity of £ at S is now
apparent.

1.43. It 48 well known that if a funoction f is monotone
non-desreasing (monotone non-inoreasing) on [asb] and x €(a,b),
then the one-sided limits f£(x-) and f£(x+) exist (2). Similarly,
f{a+) and £(b-) exist.

In faot, if x €(a,b), f(x=) is merely the mex of f(y) for
81l y in [a,b] mo that y<x. Likewise, f(x+) is the min of
£(y) for all y in [a,b] so that y >x, It then follows easily
that f{x-) S £(x)S f(x+). This faoct together with the following

lemma proves quite useful.
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lemus. If the M £ is defined and monotome non-
sreasing on [a.]s S, and S, are an [ayv], amd 54 < 5o
m r151+)< £(S2-).
Proof. Let B = {xlx€( AT 53) « Then
£(S+) = min E<max B = £(S2-).

1.4k, Theorem. W&Mfumf and mono-
tone mndm&wm {monotone asing) on [Mrb]: then

Prgof. Suppose that f 19 monotone non~decrsasing on
[a,b], and let D denote the sst of points of discontinuity of
r on [a,b].

Let §€D. Then by 1.36 and 1,43 £(S-) ()< e(S+)
ana £(§-)<£(S+). Let 7, be a rational number contained in
the open interval (£(S-),e( 5+)).

Then suppose that S 1 and S, are distinot elements of D.
tet §4< 5,0 By 1,43, £(5,#)52(S5p-). Hence

(20§ 1=)ot( Sg+NNIL(S p=) ot ( Sp4)) = T
Thus x51 ¥ r§,e The sountability of D follows from the fact
that the set of rational numbers is countable.

1.45. If £ is defined and monotoms mom~c
(menotone pen-inereasing) on [s.b], then

S(£35) = £(S+)-r( SNt 8) = £(S=)=£(S+))e

Proof. The proof 1s given for the case when f ig mono-

tone non-decreasing.

Suppose that § € (a,b) in order that both one-sided
limits may be considered. Then suppose by way of contradiction
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that 8(S) # £{S+)-r(S~), ant consider the case where
8(S)> r(S+)-2(S«). Therefore there exists an €> 0 go
that 8(5) = £(S+)r(S=)+ € = £(S+)+ 5= -[£(S~)- £-T.
But then there exist points xy and x, in (a,b) so that

xq < §- Xyy £0xq) > £(Se)e "‘%"' and £(x,) <f( S«&)* -§—. Hence
S(5)> e(xy)-t(x)) = I£(x,)=2(x; )|, & contradietion.

The remaining oase leade to a similar contradiction.
Therefore the theorem iz proved.

1.46. I £ is defined and monotone non-decreasing on
[asb]s emd {x1s xps eecs x,) 48 & finite set of points go
thet a<x < xy ¢ ...ﬂ(%(b, then

ﬁmma)«-,‘; 3(xy )42 (b)=£ (b=) S £(b)=r(a).

Proof. Let (¥4 Y35 eaes Fpuq} be a finite collection
of polnts 50 that a<y; <X < ¥ <Ep<Tg< aee ¢ Py ¢ Xy <Fpyq <D
Then by 1.43, £(yy)=f(a)> t(at)=t(a), £{y,)=r(yy)2 8(x;),
£(y5)=f{yp) 2 8(xp)s couy £(¥py1)-Tlyy)2 8(x,)s and

£{0)=f(Tp4q) > £(D)=r(bw).
Adding these terms, the conolusion of the theorem ia obtained,
corollary. . Z::u 8(xq) < f{b=)er(as).
1.47, Ist f be defined and monotone non-decreasing on
[a,5]. ILet D be the set of points of discontimmity of f on
{(a,b}, Define the interval funetion ’!:' a8 followss

Pla,z] = m{AIA = flat)-t{n)+ _‘Z' 8(xq 4 (x)et(x=),
where Xis Xps eeep X, 18 any finite collection of points in
DN(a,x)} 1 x>a, and F{a,a] = 0. It should be remarked that
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the finite collections of peints in D could be ordered withe
wt: sltering the definition. As 2 result of 1.46 it is clear
that Fa,x] 1s well defined for any x in [a,b].

The following lemme will be helpful.
[a,b] a4 a <o <b, then F[um]*?[a.b] = p[a,b].

Proof. Suppose that Pla,¢]+P[c,b] < Pla,b]. Therefore
there exists an € > 0 so that Pla,o] +F[o,b]+ € = Pla,b].
Then Pla,¢] +F[e,b] = P[a,b]e € . But then there exists a
finite collection of points {xy, Xps eess %y, ¢} in [a,b] 80
that

t{at+)=1'(s)+ ‘i 8(x, )+8(0 )42 (b)=r(b-)
= flat)=f(a)+ 3 8lxy)+(f(e+)=f(0)4+f (o) (o))
+ £(b)ef(b=)> Fla,b] « € . .
Henoce, Pla,c]+P[o,b] < f{a+t)-f{a)+ Zl 8(xq )#(f(o+)et{c=) )+ (b)r (=),
Then let 4, denote those values of 1 so that x, <o, and
let A2 démm those values of i so that x4> c. Then
[rcw..r(m ‘g 8(xy )41 (0)=(0=)]
+ £{o+)=r(a)+ EZA ?(xiyﬂtb)»f(m)
5~ ‘Fﬁ‘oﬁl‘w [osb]s
8 contradietion.
 fhe assumption that Fla,c]+F[o,b] > P[a,b] leads to a
similar contradiction. Thus Pla,a]+F[o,b] = Pla,b], as was to
be proved. | |
Corollary. Jf Xj snd xp are in [a,b] amd = <xp, Shen
Flasxy] ¢ Plasx,]e o



1.48. Meorem. JIf f is defined and monotone mem-
daersasing on [am]- then the funstion h = f-F ia monotone
i-decreasing sontinuous on [a,b]
m Choose x; end xp in [a,b] so that x; <xp3. Then
h{xy)eh(xy) = £{xs)eP[a,xp]=(r(x;)=F[a,x;])
= £(x,) =t (x; )= [x34%,]
20

by 1.46,
Then, without loss of generality, suppose that Se(a,n).
Then choose € > 0. Therefore there exlats a 3>0 80 that if
x>5 amd x= § < 3, then | £(x)=£(S+)| < € . Hence
Ir(x)w[u.z]-.-m S )-rla, $1) = | 2(x)=r( S )er[S,x]I
= t(x)=r( S )eP[S ,x]
by L.86. I {Xqy eees Xn} is any finite collestion of points
in Bﬁ[n.x] !mﬁa%@? a8 in 1.47), then
(2 S +)me( S )+ b 8(xy )4 (x)=(x=]] 2 -P[§,x].
Hense .
£(x)=£( 8 )P [§,x] < t{xe)ut(S #)= 2 8(xy) < £x=)=2(S 40
But by 1.43, £{xe)=f(S+) = |£{ze)wr(§ 4-)1 <€,
The oase where x < S leads to e eimilar argument. Henoe
h is continuous at x = S .

5, The Riemarm Integral
[ﬁuhl then f is Rismamn W (B-integreble) on [ﬂ»b]
Proof. If f(a) = £(b), £ is constant on [a.b] and the
theoren follows, Therefore suppose that f(b) >f(a).
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Choose €>0. Then let 0~ be any subdivision of [a,b]

go that
€

f('b)mf(&}
Then consider Z r- 2 . Z -221f= .Z,“‘i‘”“‘i)luz.)‘

Il o 1l <

where 1(1,‘) denotes (xi-»x,‘,l). But

M I Wm u -
Zi g=mg 11(Iy) < rrecwrTs i Z 1-my)
€
5 s o (£{D)=f
T (£{b)=f{a))

= €,

Reintegrability follows from 1.40.
1,50, Theorem. A necessary and suffiolent condition

for a bounded funotion f defined on [s,b] to be B-intesrable
on [e,b] is that for each K >0, By = {x € [a,b]l8(x)2 K} e
of Jordan-Content-0.

Proof. Nesessity. Suppose that f is R-integrable on
[a,b]. Ten suppose by way of contrsdiction that there

exists a K> 0 so that Ex 18 of exterior Jordan-Content grestor
than € , for some positive number €. Therefore, if I = {In}
is any finite collection of open intervals covering Ey, then
the length sum of the elements of I is greater than €. Then
if o is any subdivision of [a,b], the points of Ey not
ocourring as subdivision points of o will have exterior
Jordan-Content greater than €. Hence i g & pa i €,

a contradiction of 1.40. Hence, for each K >0, Ex must have

Jordan~Content«0,
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Sufficlency. Since f is bounded on [a,b], there exists
a positive number M so that if x € [a,B], then lf(x)l< M.
Thus, 3(f;[a,b])s 2K,

Choose € > 0. Let k' be a paéiti.vo number so that

Then, by hypothesis, Ek' is of Jordan~Content-0. Now E,, can
be covered by a finite number of non-overlapping open intervals
relative to [a,b] with length sum as small as is desired.
Furthermore, this aolloction ean e ohcun gso that no olmexm
of Eye other than a or b eeul.d posaidbly be an end point of an
interval in this colleotion. Choose one such collection |
I* = { Iﬁ} = { (;n.bn)} with length sum less than

W
Then let I = tln} = {[‘n'bn].; denote the collection of closures
of elements of I'. 'Then the elements of I have length sum less
than

<.

by
Let {xnx be the collesction of snd polints of elements of I.
Then {x,f U{asb] forms a subdivision o * of [s,0].

Let H denote the collection of closed subintervals of
[asb] introduced by o-* which do not beleng to I. Let Hy€ H.
Then H,NEy, = #. Thersfore, around each element x €H, there
exists an open interval (relative to Hy) Iy = (og,dy) so that
(23 [0,+4,]) <k'. The collection of all such I, for x€H,
forms an open covering of Hy. Then by 1.38 there exists a
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finite subsovering I' = {Iyjs Iyys eces Izpje The set of end
pointe of elements of I' together with the end points of Hy
forms a subdivision Oy, of Hy so that Af I, € d'ﬁi, then
3(1’31&) <k'.

Then let o = V"U[U d"nz]u Hence, 0~ forme a #ube
division of [a,b}. Then

wa i_f = Z(x1m1)1(11)+ Z (ni-m,,)l.(x,).

where

z ni‘ﬂj_)l( I’_)

H.€H
denotes the appropriate sum taken over O, for all Hy € H.
But
(My~mg )1{Iq)+ My~mg )1
I_‘ZI (My-my)1(1q) H?L:H( 4=mq )1(Iy)
€ ,
< ‘
zl!x%l(h)m :(-_;Hl(li)

< 2M(es e (L)(M)

= €,
Re-integrability follows by 1.40.

1.51. Theoren. The bounded fumotion f defined on [a,b]
is R-integreble on [a,b] if, and only if, mmnagm
of discontinuity of f on [s,b] is of Lebesgue

Proof. Suppose that f is R-integrable on [u,b]

K = {Ky, Kz ...] be the set of all positive rationsl rumbers.
Then, by 1.50, for every positive integer n,

Eg, = {xla(x)2 ,3
has Jorden~Content-0. ‘Then, by 1.42, Ex C D
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Then cover EE& with a met of ¢pen intervals of length
sum less than -%-. where € iz an arbitrary positive number.
Cover Eg, with & set of open intervals of length sum less
than "gf" In general, cover E% with & set of c¢pen _s.wgmla
of length sum less than mfi-u Clearly, ss & result of 1,42,
D CA‘LeJ kEK&' and the sbove proscess gives &n open covering of

K
of length sum less than € . Therefore, U is of Lebesgue~
Meagure-0. |
" Now suppose that D has Lebesgue-Measurs-0. Choose K> O.
By previous remarks, Ey = ix‘lé(x).z K] is & subset of D amd
hae Mbaaguanxaasumée. It follows that By iz closed, and
obviously Ey 13 bounded. mon 1.38 implies that By 1s of
Jordan-Content«0, ﬁam&. f ie R-integrable by 1.5@, and the
proof is finished.
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CHAPTER II

ABSOLUTE CONTIRUITY AND
BOUNDED VARIATION

6. Definitions

2.1, If the funotion f iz defined on [a,b]((a,b)), the
statement that f is absolutely contimuous on [s,b]((a,b))
means that for eamch € > 0 there exists a o >0 so that if
{(xgox])a(200x3)s ceey (xpex1)] 4o any finite collection of
non-overlapping open intervals in [a,b]((a,b)) so that

. zi.‘*;. -zl

then .7 le(xi)ef(x,)l <€.

2.2, If £ is defined on [a,b] and

0T & ™ Xn<X| <Xp<osa<XEy =D
is a subdivision of [a,b], then the varistion of f with res-
pect to o, denoted by V(fjla,b]) or VI(f), is defined to
be ;.in I£(xy)=r(x; 4}l The notation Z f or
Zo,‘ £(xq)=r(xy_q)|
is sometimes used to indicate this sum.

2.3, If the function f is defined on [a,b], the total
variation of f on [a,b], denoted by V(r;[a,b]), iz defined
to be the max of V(f) for all o of [a,b]. The total
variation of f on [a,b) is sometimes denoted by V(f).

21
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2.4s If the funotion f is defined on [a,b], then f is
rariation on [,b] 1f, ana onmly 1f, the total
variation of £ on [a,b] ie finite.

2.5. If I = {(a,b) is an open interval, & subdivision
of (a,b) will be a finite set of points {Xps Xis Xzs vees Xl
sontained in (a,b) 80 that X< Xy < X< cve <Xy

2,6, If the function f iz defined on the open interval
I = (a,b) and 0 is a subdivision of I, then the variation
of f with respect %o o—, denoted by V(f5(a,b)), and the
total variation of £ on I are defined as in 2.2 and 2.3.
Similarly, £ ie of Dounded varistiem on I if, and only if,
the total variation of £ on I is finite.

2,7+ 1If the function I is defined on some open interval
I containing S, then the statement that f is of bounded
variation st x = § means that there exists an open interval
J = (0,4)C1 s that £ is of bounded variation on J,

2.8. If the funotion f is defined on the interval I
(open or closed), then the statement that £ is of wnbou
yaristion on I meens that f is not of bounded variation on I.

2,9, The statement that  is of unbounded varistion
x = § means that if I ig sn open interval containing S g0
that £ iz defined on I, then f is of undbounded variation on I.

2.10. If the function f is defined on [a,d], then

llcrll-?O vaig) =K
means that for esch € > 0 there sxists s 9 >0 so that if o
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ig & subdivision of [a,b] so that ) o] < S, then
} v (t)-k l<€.

2.11. If the funotion f is defined on [a,b] and 07 am
03 are two subdivisions of (a,b5], then v.?(q ) will denote only
those terms of Vgy(f) which are taken over intervals of @7
which lie entirely within some interval of T ,.

2,12, let 2 and b be two resl numbers so that aib. let
fq ani £, be bounded funstions dsfined for every real mumber t,
22t <b, 8o that £5(t) = x and £5(t) = y. The functions fy
ani f, are termed parameber fun » and intexrvel [a,b] 48
" araneter interval for She parsueter t. The omered
get A = {(x.y}lx = f,{t) and y = rztw} is said to be a simple
arc and is denoted by arec(a,b].

2,13, It 03 & = £y <y <ty cese <ty = b e & audb~
division of the parameter interval [a,b]. Then the length of
are (a,b), denoted by L{are[a,b]), 18 defined to be the max of

A

IR IR DRI LA TR RN AR P

for a1l o of [a,b]. Arafa,b] iz said to be zectifiable
and only if, L{arefa,v]) is finite.
2.1, Iet £ be o function defined on |a,b], and let

07t 8 = XK < vee KXy = b be & suddivision of [s.b].

CIEA E TE N B
will denote the saltus of the function f on [xl,-i.'xi] . The

S-variation of f with respect to 0, denoted by 2= _S(f), is
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defined to be. ;‘_ 8(s{x;_107,])¢ e total S-yariation of
t on [a,b] 1e defined to be the max of Z_ 8(f) for all ¢~ of
[@eb]. Then £ is said to have bounded S-variation on (asv]
if, and only if, the total S-variation of f on [a,v] te
finite. |

2.15. Let f and g be bounded funetions defined on the
closed interval I = [a,b]. Let

Ot 8= XgeX <Xg<loes Xy = b
be a subdivisien of [a,bl. Choose a point §, € E‘hi’xs.] for
1 =1, 2, ceey B Then define 2 fdg to be |
Z £0§4)(alxy)~glxy 1))

Then, if there ensts 8 real number I so tha.'a l.m ng = I,

o

independently of the cholce of subdivision wd the choioce of

5y I 18 called the Biemann-Stieltjes integral
8‘&1&1&305 ,muswl) of £ with ra‘ap&oot to g on [a,b]l. And ¢
1z said to be S-integrable With respest o g or f 1s merely
said to be g-integrable. I te denoted by |
| S fdg.

The following properties of the Stieltjes integral follow
from the definition and will be stated here without proofs.
If each of f3, f2, £1, 80 gy 18 a function defined on [a.b],

k and 1 are real numbers, and | b
Srldm. ffzdﬁlt and Sridgz
G (- %

G

{or merely the

exist, then b

b b
i) S (fiﬂb'fg )ﬁ31 = S fiﬁgl-b 51’26.513

e @ (-
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O

b b b
1) Sfi(dgi‘fti&g) = ngdgﬁ stﬁsz;
a .

b b
111) skfia(lsl) = k1 Sqd(mh

Q.

b
1v) Sj(s,_) = &, (b)eg, (8)s

C b b
v) if ac€céh, Sfidgi# Sfiﬁsl = Sf';ﬂdgx.
o c o

2.16. let the funotion f be defined and be of bounded
variation on [a,b]. If x€[a,b] and
T 38 XG<K < eeacXy WX
38 s subdivision of [a,x], define p(x) to be the max of
;w(rcx,_)~r(x,._1)).
where A denotes the intervals of o so that £lxy)efixy 4)2 0
and the max is taken with respect to all subdivisions o~ of
(a,x]. Define n(x) to be the max of Zalﬂxg)*t‘txg,;)h
where B, demotes the intervals of o~ so that (f{xg)-f(x; 4))<0
and the max i1s taken with respesct to all subdivisions o~ of
[8sx]. Define ¥(x) to be the total variation of f on [a,x].
It should be noted that p{a) = n{a) = v(a) = 0 and
v(b) = v(rs[s,v]).
The interval funotion v is ecalled the yariation funotion of f.
2.17. Let f be a funotion definsd on [a,b), and suppose
that Se[a,b]l. The statement that f is differentisble at x = O
means that there exists a real number K so that
£(x)-£(3)
1lim

Ko
x— § p L S =
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7. Abaclute Contimuity and Bounded Variation

2,18, Remark, Because of the close cormection between
the notions of abselute continuity and bounded variation, the
two ooncepts will be handled in the same section. However,
the first part of §7 will be devoted primerily to a study of
absolute continuity, while the latter part will bs soncerned
mainly with 2 disoussion of bounded variation.

2,19. Remark. It should be mentioned here that a con-
giderable portion ét the motivation and arrengement for the
remainder of this chapter is dus te Natanson (1).

2.20. Jf he funotion f is defined and sbsolutely son-
tanmous on [e,b], then mm €>o0 mmma 3°0 go
shat o2 {(xyox]) 1y 48 & countebly 0lleotion
pairvise disjoint spen intervals o fhat lem,v S, then
Z [e(xy)etix, )< € .

Proof. BSuppose that the funotion f defined on [a,b] is
gbsolutely continuous by 2.1. Thua, Af € i8 & positive nun~-
ber, there existz a $>0 so that if {(xa,x;‘%:i iz a collection
of non-overlepping umn intervals so that

7: (13“"3—1) < 3,
then ,Z|r(x&)«»r(x&)l < €. Thenlet I= [I} = {lx,x,)} be
e sequence of mamim disjoint open intervals so that

™ £ S

pACHEN

Then consider the following monotone aaqnama of nonenegative
numbers: Fy = ‘r(xi)-—ﬂxﬁl, Py = Z |r(x13~t(xi)h ceey

'y
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n ntt

P = 2tttz 1y = Z lri-exply s
Since f is sbsolutely contimuous, F, ¢ €, and F € F . for
every positive integer n. Hence the sequence F = {F,} con-
verges %o & positive number €' £ € . Thus
[ )
2 le(x)er(x,)1 ¢ €.,

(S |

But € is arbitrary, and the asssertion follows.

2.21. If $he funobion f is defined on [a,b] and has e
sontimuous derivative ' on [s,b], then ¢ satisfies s
Idpschitz Copdition on [s,b].

Proof. &ince ' is continuous on [a.b], £* is bounded
on [8,5]. Iet K be & bound for f'. Then choose x; and xp in
[2,%] 20 that x;< x5. By the Mean Value Theorem of differ-
ential onloulus, thers existe a point x* € (xﬂxg) 80 that

£(xz)=r({xy)

£ ({x?) = - .
Xp-Xy

But |£(x")| < . Henece

\ £{xp)=r(xy) <k

XpeXy
and the theorem is proved.

2.22, Jf the function f getisfles s Lipsehits
en [s4b], then  1s abselutely gontinuov

Progf. ILet K0 be a bound for the difference quotient
of £ on [a,b]. Let € be a positive number. Then choose >0
so that 3 < -%-. Let {(x&,x;)} By be 2 finite colleotion of
non-overlapping open intervals so that E‘(x;yx&) <. Then,
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for 4 = 1, 25 seep By
- P{xy )mf(xg.q)
CxyeXy g ‘
Hence

.Zn:‘ f(xi)d(xﬁ < K¢ ij lxiuxal <K* ~§» = €,
Thus the theorsm is proved.

2.23. It the function f is sbsolutely gentinue
[s)6], them £ is bounded on [a,v].

Proof. Iet n = 1 in the definitvion of absolute con-
tinity, Thus, £ is seen to be sontinmeus on [g,b]. Then
f ie bounded by 1.32.

2.2k, I eaoh of f and & if an sbsolute

function gefined on [e,b), then
1) f+g is absolutely continucus on [myb];

11} feg i aveolutely continuous on (a,b]3
111) feg 48 absolutely continmous on [a,b];
iv) AP .%. ie defined and bounded on [a,b], then
-%- is abzolutely continuous on [a,u'b] .
Proof. Proofs of (i) amd (11i) will be given. The
proofe of the ether parte are similar te the ones given.
1) Choose €> 0. Tere exist positive mumbers O and
52 so that Af each of {{xvx;}} iﬁi and {(r”y;‘)}ﬁi is e
finite oollection of m’?\n«—a%ruppw open intervals so that
i{x;mxg ¢ 3y amd z‘(y;ﬂﬁ < 3,, then

n o, c
;=Z. \f(xi)*t(x&)l < ?



29

st T £ly])eflyy) ¢ S-. let §=min( §10 §55)s and 26t
{(xigxii} g,_ be a finite collection of palrwise dlsjoint open
intervals 3{ length sum less than S « Then
2 Ircxi)mx;»wcﬁmcxg)l
$ 2 etxg)etixg)l+ > | alxy)=slxy)|

¢z

$ i
2 2
= €,

111) By 2.23 both f and g are bounded on [a,b]. let M
ound for f, and let M, be a bound for g.
Choose € > 0. There exists a 3, >0 So that if
{‘ xiﬁxi )} 121
is any fmxm sollestion of non~overlapping open intervals so
that :ZT (xg=xy) < s then
M ECHECRTR ﬁ;

Sinilarly, there exists a J,>0 so that if {(xgex3)},% 1s
any finite oellacition of non-overlapping cpen intervals of
length sum less t}lan 52, then

| 8(x})-8(xy)] ¢ =
28,

L=

Let 9 = min( Sy, 5p), and let {(xi,x;}h:x be a finite ool
lection eof non~overlapping open intervals of length sum less
than S « Then

4
Z etxyatxy )iz dalx,) |

B
= 2 lt(x{)alxy)=(x, dalx, J4e(x, Da(xy )-1(x, )alx) |
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3 |
= Z etz ) atx] ety ) 4atx) (2 (xg Dot (x, )|

IA

i!f‘(xi)l la(zg)-gixy )] + é le(xg)! 10(xy )mt(x,) |
< By ﬁ lglzd)-glxy)] + n, é I£{xy )t (x,)]
< Wﬁf"’“”z‘?ﬁ‘:’
= €,

Hence, f+g is absolutely comtinuous on [a,b], and the preot

is completed.

2425, Iheoxem. If the function f ls defined snd abso-

gontinnous on [#,b], then £ mepe sets of exterior
M"W into sets of exterior Lebssgue-Measure~0.

- Exrgof. Without loma of generality, suppose that E C(a,b)
and that E has exterior measure 0. Denote the exterior
measuyre of E by m®(E).

Choose € > 0. By 2.20 and 1.34 there exista & 3 >0 so
that 4f I = {I,{ is & countably infinite collection (sequence)
of nem-overlapping open intervals so that 2 1(I;) € 3, then
Z (Myemy) < € , where M, and m, denote the msx and min res-
pectively of f on Ip. Let J = {Ju] ={lansby)} ve & sequence
of palrvise disjeint open intervals covering E so mis the
length sum of J 1s less than 3. Clearly, £(E)C nL;'ri (e op])
and U 2 [oy,05] C U [one#n]. But = (Mpemy) < €. Henoe
n*f(%) < € , and the theorem iz proved.

2.26. If the funstion f is defined and sbsolutely gcon-

\nuous on [&,b]({u..b)). then f is of bounded yariation on
[u.‘n]((a,bm
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Broof. Suppose by way of contradiotion that f is not of
bounded variation on ['a.‘b] Choose €= 1. There exists a
920 so that if { (xn,xna}m,i is any finite collestion of pair-
wise disjotnt open intervals so thet Z (xgexp) ¢ 8, then
Z lr(xn)wﬂxn)l < €. Then form a subdivision o of [8,b]
so that Il - 11<§8, It follows that there exists an interval
[xg_1s%3]€ 0 0 that f is not of bounded variation on
[xxnuxﬂ Hence there exists & subdivision

LA TR /Y2 MRS PRETTRS MY
g0 that v c(f;[xi 1*1&1)> 1. But Z Wl"”hﬁ.’ < S Henos,
from above, E, | £(yy)=tlyg.4)1 ¢ 1, o contradiction. Thus, f
is of bounded wariation on [a,b].

The proof goes through similarly if (a,b) is taken to be
open.

2.27. EMW*HWM@M&W
Linuous on its Mb the function g is absglute continuous
non-desreasing on [e,b], and the ranse of ¢ is
) W of the domain of f, then the gomposifiion fuuot
F(x) = f{a(x)) is absolutely contimuous on [e,b].

Proof. Choose € > 0. There exizts a J4> 0 so that if
{(yyzr;)} 1’,:1 is a finite collection of pairwise disjoint open
intervals contained in the domsin of £ so that Z(nw,‘ )< &y
then E:lt‘{yi)mr(y,_)! < € . Now g is absolutely continuous on
[a,5]. Therefore there exists a 5 >0 mo that if

{txgox)] gt
iz 2 finite collsotion of non-overlapping open intervals of
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length sum less than 52, then é lg(x;)*g(xi)\ < Siu But
g 18 monotone non~decreasing on [e,b]. Therefore
{tatzy)se(xy) 0} 4oy
is a finite collection of noen-overlapping open intervals in
the domain of f with length sun less then 3,. Hemoe
2 IRy )Pty )] = 2 Iftalxy))-tlalxy)) < €,
and F 1s absolutely contimaous on [a,b].

2,28, Bemark. Clearly, Af the funstion f is absolutely
sontinuous on [#,b], then f is continuous on [a,b]. Purther-
more, 2.25 shows that an absolutely continuous funotion maps
sets of exterior lebesgue~-Heasure-0 inte sets of exterior
Lebesgue~Neasure~0; and 2,26 shows that an ebasclutely conw
timmous funotion is eof bounded variation. Actually, these
three conditions form a complete charascterization of the
class of absolutely continuous functions. That is, Varberg
(2) proves that any continuous funotion f defined on [a,b]
which 18 of bounded variation and meps sete of measure zero
into sets of measure zero is absolutely continuous on [s,b].
The proef of this theorem involvee considerable material
about Lebesgus Nesmsure and the Lebesgue Integral which is not
disoussed in this thesis. For this reason the proof will be
omitted.

2.29. Exsmple. The purpose of this example 1s to show
that the converse of 2.26 iz not true. An example is given
of & funotion defined on [a.-i] which is monotone non-decreasing,
ocontimmous, and not absolutely continuous. Admittedly, the
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funotion discussed here is not the most cbvious one whioh
disproves the converse of 2,26,

Let I = [0,1]. Conetder the points of [0,1] to be
white. Blacken the open middle third of I, and oall this
blackened interval Ij;. Blacken the open middle third of
the two remaining white intervals and eall them Iy avd Io,.
Ip1 12 understood to be the open interval with the smallest
left end point. CJontinue in thiz fashion., lLet

Gy = KHU(:thKw} U(I31U:£32U133 UI%)U.,..
U(Z3 ULn Ueas ULane1)Ua s,
where the parentheses indicate the black intervals formed at
the various stages. The sat of whive peints Py = [0,1] -G,
is called the Cantor set, The blackened intervals of Gy are
talled the complementary intervals of the Cantor set.

The complementary intervals are new used to define =
funoction f. Define f{x) = # if x€Ijq. Define f(x) = § &f
X €Iy, 604 define f(x) = 4 if T€Iz;. In general, consider
the set of blaock intervals formed at the n®! ntages

Ings Ippe sees Iyon=is |
Defins £(x) = 2 if X€XLy, define £(x) = L 12 €1y, ooo,
and define af_y
tix) = mzugn
if x€L nwle Let £(0) = 0 and £{1) = 1, Then let X €(0,1)
8o that X, € Py, Define f(x,) to be the max of
{rix)x€ay and x< Xg e
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It 4= asserted that the funotion £ is monotone non-
decreasing on [0,1]. Choose x; and x, in [0,1] so that xj<xa.
If xy and xp belong to the same complementary interval of Ggs
then f{x;) = £(x,) and the monotonicity follows. If xy and
xp belong to complementary intervals formed at the same stage,
then f£(xq) < £(xz) by definition. Then suppose that x; and Xp
belong to Gy but that the interval contsining x; was produced
at the " stage and the interval eontaining x, was produced
at the kth stage. Let m = max(j,k). fhen at the n'? stage
‘there will be 231 total black intervals. Let |

| A= {Ig T2s eees 03

‘denste this subset of Gye The values that f assumes on these
Antervals will be

1 2 3 21

P T
respeotively. It ie then apparent that f(xy)<f(xp). Then
suppose that x; ¢ Gy and x, €Gy. But if X €Gy and X <Xy,
£(x) < £(xp) by the preceding argument. It follows ilmmedilately
that £(xy)<f(x,) since £(xy) is the max of all x€Gy so that
x<xq. If T4 € Gy and x, @ Gye then by definition £(xy) < fix,).
Then suppose that x; € Go and x, €Go. If By = {x€golx<x}
and By, = {xG%lx <x2}, 1t ie immediate that By CEy,. Hence,
£ is monotone non-decreasing on [0,1].

If x €Gys 1t is apparent that £ 1s continuous at x.
Suppose that x £Go. By definition, f(x) = f(x=). FPurthermore,
by the oonstruction of Ggye there exists s black interval in G,
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with left end point greater than x but as close to X ae ie
desived. Henoe, £(x) = f£(x+), and contimuity follows by 1.42
and 1.45.

In sddition, it is sasy te see that Py is of Jordsn~
content-0. Then choose €= 4. Let 3 be any positive number.
Hemoe there exists a finite collestion I = {Iz{ = {(sysby)]
of non-overlapping open imtervals (relative to [0s1]) =0 that
P C UI:. and 2'.'1(1,‘) < €. Purthermore, let the elements
of I be ordersd in terms of their left end points, i.s.

84 <8344+ Clearly, ay = 0. FNow by € Gy since the intervals
ef I are nonwoverlapping. Thus, a, €Gg. Furthermore, by and
as must belong to the sams complementary inmterval, for other-
 wise there exists a point of P, between by and ap, and I
would not cover 599. In general, f(by) = f{ay,q) for
| 1 =1, 2, eeey n=i,
Thuse . .
2 letoy)etiag)l = 2 (£(by)-t(ay))

= £{by)=r(ay)

= £{by).
But by must be 1, Thus, 2 If(b)-rlag)| = £(1) =1 > €.,
Therefors, £ is not absolutely continuous on [a,b].

2.30. If the functlon ¢ is defined and monofone pon-
deoressing (monotone nen-inoressing) on [a,b], then ¢ is of
bounded yerjetion on [s,v].

Proof. For definiteness, supposs that £ iz monotone non-
decreasing on [a,b]. Let 01 & = Xg<Xy <eso<Xp =Db bea
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subdivision of [s.,*b]‘ Then
T letxg)tlxy g ) = Z_(£lxg)-tlzg )
= P{b)-r{a).
The theorem follows immediately.

sation on [a.t], then |f! is of bounded veriation en [a.b].
Proof. Let ot & = Xg <Xy <X2 <L eos <Xy be & subdivieion
of [a,b]. Then
T etxy)etizgg)l 2 2 EIERTREICHRRT]
by 1.35. Hense
zﬂ_llnx,slmlrex&,ﬂ;[ < y(£3[asb])s
and the theorem follows,
2.32. If the functlon f is defined and of boundec
aation on [s,b], then  is bounded on [s,0].
Proof. A proof of the contrapositive is given. Choose
K> 0. Then there exists an x'€ {a,b) so that
le(x*) > k+[f(a)l .
Thus, |£(x*)]-1t(a)l > K. But I£(x*)-tla)l 2 1o(x*)It(a)l.
Then let -3 & = Xp<X) <Xz = b bs a subdivision of [asb] =0
that x4 = x'. Thus
V(f) = [£{xg)otlxo)l +lt(xp)-E(xs)l
= Je(x?)et(a)l +12{b)=r(x*)
2 |£(x?)-t(a)l
> K.
Hence, £ 18 mot of bounded variation on [a,b], and the proof
is finished.
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Corollary. JIf he funstion f is defimed and sbsolutely
:innons on (a,b), then f is bounded on (a2.b).

Proof. The corollary is an immediate consequence of
2,427 avd 2.32.

2.33. Example., Theoram 2,32 showed that bounded var-
iation inmplies boundedness. The converse is net tiue, for
consider the fanction f{x) = x asin % if x {0,3] and £(0) = 0,
The function f is bounded and continuous on [@, 2]. But £ is
not of bounied variation on [0,2] (3, p.100). |

2,34, If the funotion f is defined on [s,b], o amd o3

gubdivisions of [a,b], snd 0" c 03, then ¥ m‘vﬂ(tla

Proof. The proof follows immediately from the fact that
o coy and 1.35.

2,35. If emch of the funobions I and g is defined and of

ded yaristion on [a,v], then

1) f4g 18 of bounded variation on [a,b];
11) feg is of bounded varistion en [a,bl;
111) feg is of bounded variation on [e,b];
tv) it -%- i1s defined and bounded on [s,b), then
£ 12 of vounded vartation on [a,1].

Proof. Proofs of (1) and (1ii) will be given. The proofs
of the remaining twe parts are similar,

1) Let 03 & = X3< X <€ ees <Xy = b be & subdivision of

{a,0], Then
Z_[(etxy )alxy ) )=(f(xg g 1relxg g )l
= T e txg)-£lxy_g D+lalxy)oalxyy )
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S 2 letxy)aflxy g N+ 2 lalxy)-glxy.y )l

< virs [s40])4(es [8sb]).
Part (1) follows. ‘

111} By 2.32, £ and g ave bounded on [a,b]. Let M; be
& bournd for f, ani let H; be a bound for g. lat ‘

0§t & = Xg<X] <Xp oo <Ey =D
be & subdivision of [a,b]. Then
T Ie(xy)alxy )=tixy g alxy )]

= T Ie(xy)aixg)=r(xy g Jolxy g 40(xgdalxy o )nr(xy)alxy )

= Z le(xy) (@lxg)elxg g ) 1+ xg.q ) (F{xy)erlxy g D)
Z1e0xy) lelxy)mglmy g M +laixg 3 )1 1£0xy )= xg )]
My Z_le(xy)=g(xy.g )|+ Za_l gixy)=alxy.y )]

< My (Vigs [ne0] ) )0, (V(r; [8,0] )0
hus the theorem follows,

2,36, Corollary. JIf f and g are defined and of hounded
variation on [a,b], and ¢ and d sre resl pumbers, then
e+f(x)#d-g(x) is of bounded variatien on [a,%].

2,37. Example. In 2.35 the function g was restrioted so
that its maipmml waa defined and bounded. This example
indicates that the boundedness restriotion cannot be remeoved.

Tet £(x) = 1 for all x € [0,1]. OCleariy, £ is of bounded
variation on [0. 1] « ‘Then consider the following funetion hs
n{x) = x if x€(0,1], and h(0) = 1. ILet

T anll | awxacxlc...<xnab
be a subdivision of [a,b]. Then

A

1.
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V(n) = .:2‘ Iniz,)=h(x,_ ;]|
= |1sh(xg ) +ln(x;)=h{x, )|
+h(x4)=h(x5)| +eootln(l)=hix, 4)]
= 2[(1-n({xy))] < 2.
In fact, it follows easily that v(n;[0,1]) = 2.
Then let g be & function defined on [#,b] so that
g{x) = ,.%..
if x €(0,1], and z(0) = 1. Clearly, ¢ i not bounded on
[0,1]. Ten g s not of bounded vartation on [0,1] br 2.32.
But
1 £{x)
nlx)  hix)
where both f and g have previously been proved to be of
bounded variation on [GQ 1].

2,38, If the fumction f is dofined en [e,b], then s
Becessary snd suffiolent condition thet £ he of bounded var-
lstion on [a,b] is thet Af o € [2,%), then f be of bounde
varistion on (s,c] axd [e,v].

Preof. Suppose that £ iz of bounded veriation on [s,b].
Clearly, if ¢ = a or ¢ = b, then f is of bounded variation

on [a,c] and [os8]. oOvviousiy, V(f;[e.e]) = 0, L.ec the var-

gix) =

iation of £ on ¢ ie O. , .
Then suppose that ¢ €(a,b). Ist 03 be a subdivision

"ot [a4c], and let 0, be s supdivieion of [o,b]. Then

o =0y U



forms a subdivieion of [a,b]. But
Vo lf) = Vg (£3[n,0] )47, (3 [0,b]) < V(fs [ayb])s
Thus, £ is of bounded variatien on [s,c] and [s,b].

Now suppome that f is of bounded variation on [s,0] and

[osb]. Let o be 2 subdivision of [a,b]. Let
02t & = Xp€0<Xy = D
be a subdivision of [a,b]. Then, setting o7 = g UJdp by
2.34,
Vol ) < Yoy (1) .

= Z le(xy)atlxg g )+ 2 I£0xy)-00xy )]

¢ v{rs[a,0))4+v(rs [o,0]).
Taus, £ is of bounded variation on [a,b].

2.39. If £ is of bounded varistion en [a,b] and a<c<b,
then Vv(rs[a,0])+v(fs [osb]) = V(f5[a,b]).

Proof. By 2.38, f is of bounded variation on [®,c] amd
[osb]. Let 0 be a subdivision of [8,0], and let 07, be &
subdivision of [o,b]. Then let 0" = @3 U dj. Therefore,

v (£3[a,0]) = V4 (3 (R00] )4V, (13 [es])s Hence

v (£s[asp])2 Vg (f5[a,0]V, (25 [n,0]).
Thus

v(£s[a,0]) 2 V(23 [a,0] )4v(r5 [s,0]).

In & similar fashion it oan be shown that

v(£s [asb]) < V(23 [a,0])+V(23[0,1]).
Hence, V(f3[a.b]) = V(r;[a,0])+v(2;[s,b]), and the proof is
finished.
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Note. In 2.40, 2.42, 2.43, 2.44, 2.45, and 2.46,
complete characterizations are given of the slass of funotions
which are of bounded variation. These theorems are especially
important, and reference will be made to them periodically
throughout the remainder of this paper.

2,40, Theorem. 4 funotion f defined on [=,b) is of
WW%C‘*"] if, snd only 1f, f gan be m&m

Proof. Suppose that f is of beunded variation on [s.b]
Iet v{x) be the variastion function of f which is defined in
2,16, 4s a result of 2.38 and 2.39, it i2 clear thet v is
well-defined and monotons non-decreasing on [s,bl. Then con-
sider the function h = vef defined for all x € [a,b], Choose
xq and X in [a,b] so that Xy <Xz« Then
h(xp)=h(xy) = v(xy)=f(xz)=[v(xy)=1(xy)]
= ¥(xy)=v{xy J=(f(x5)={x4 )]
But v(x;) = V(f3(a,x)] 149005 [x;0x,]) and vixg) = virs[n,x]).
Therefors ‘
h(xy)=h(xy)
= V(rs[aexy 1 )48 [xy s x,1)oV( 25 [maxy ] )= (2 (x5) =2 (x4 )
= V(3 [x1435] )= (£(x5)=L(xy))s
Obviously, V{f3[xqsxp]) 2 f{xp)=f(xq) . Henoe, h iz monotone
non-decreasing on [8,b]. Noticing that £(x) = v(x)=h{x), the
first part of the proof is completed.
If £ is expressible as the difference of two monotone
non=decreasing funetions, the concluzion followe immedlately
from 2.30 and 2.35.



b2

2.41, Theorem. If the funotien f is defined and of
bounded yariation on [=,b), then the gst D of points of dis-
sontinulty of f on [.b] 1s sountable.

Proof. By 2.40 there exist monotons funotions g and h
8o that £ = g-h. Clearly; if £ ie discontinuous at

X = S € ["sb]y
then either g or h must be discontinuous at x = S . me ocon-
olusion of the theorem then follows from 1.44 and the fact
that the union of two countable sets is countable.

2.42. Theorem. A function f defined on [a,b] is of

;don on [asb] if, and only if, theve existe o
monotone non-desressing function g defined on [e,b] go that
AL xy spd xp sre tn [%,5) amd x1< xp, then

£{x,)=1(xy) S glxp)mplxg ).

Proof. Suppose that V(f3[a,b]) is finite. Therefore,
by the theorem of 2.40, thers exist monotone non-decressing
funotions hy and h, defined on [a,b] so that

£{x) = hy(x)=hy(x)
for all x € [a,b]. Then choose x; and x, in [a,b] so that
X1 ¢ X3 Then
£(x)-2(xg) = hy (xp)=hp{xp)=[hy (%) )=hp(x4)]
= By (xy)ehy (x4 Jelhp(xs behin(xy .
But hp is monotons non-decreasing on [a,b]. Thus
£{xp)=t(xq) < by (xa)=hy(xg).
Setting hy = g, the first part of 2.42 48 completed.
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¥ow suppose there exists guch & funetion g ae is dese
oribed in the hypothesis, Choose Xi and xp in [a,b] so that
Xy ¢ Xy« Henoe, glxp)eg(xy)=[f(xy)er(x1)] 20, Bub

slxp)~glxy = [£(xp)-2(xq ] = glxa)ef(xy)= [elxg )ot(x; )],
Henoe the funetion h = g«f 18 monotone non~decreasing on
[8:0]¢ But £ = geh, and £ 12 of bounded variation by 2,40,

2,43, Theorem. Suppoge thet a<t¢d 1s g pa 2

inteyval and that fy(t) = x and £(t) = y gre funotione

defined for each t¢ [«,b]. men arels,b] iz rectifiable
apd only Af, £ and £ are of bounded varistion on [mb]

Preof, Supposs that £y amd t‘g are of bounded variation
on [8,b], Therefore there exist real numbers Vitys [a,b]}
snd ¥(f,3[a,b]) g0 that 1t o i suy sublivision of [a,b],
then V,(fy) < V(f15[a,0]) and V_(£2) £ V(f2;[a,0]).

Let ty amd %y 4 be real mumbers in [&,b] so that ty 4 < ty.
Then, by the Minkowski inequality,

[{fﬁ%)*ﬁwhl3)3‘*{%531}*13(‘%*1)}z] ¥

¢ [iey(8g)=ty (634 12] ¥ 4 [(£p08)ota(8y0)2] B
= |2y (tg )y (ty g ) #1008 )ela(ty 4)].

Henoe

A CEGIORR Ga o &

”n

L, = [ifg,(?ﬁg_)mt‘aiﬁgﬂx))aﬂfg(@ﬁwfa(t%gﬂzJ ¥
[£3 (g )=ry by g * Z | £2884)=22(t4.4) ]
ku [241] Y+v(2,; [0, 0] )
Thus, ave[e,b] is rectifiable,
Now suppose that arola,b] iz rectifiable and that either
fi or f is of unbounded variation on [a,bl. Without loss of

¢

_M:

h
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generality, suppose that £ is not of bounded variation on
[u.’b] Choose K > 0. mma there exists & subdivision 0~ of
[asb] =0 that ‘
Tttty )] = T Em,pmm))zji > K,
But
7: lmm-—-rm.mz <z lt‘i(@ﬂ*fa(%.z)la
+ Zlfzwﬁ*fg(ti.d”
“ﬁma
R CACHE T *‘fzwi)*fz(*a.-m“z]
z T [iecey)riey 403
> K.
Therefore a contradiotion ie achieved since K was arbvitrarily
chosen, and ars[s,b] is rectifiable. The theorem follows.
 2.4h, Gorollary EM&M&MM tSx, the
function y = f(‘x) is of bounded variation if, _mm.&'
the function f is m&ﬁ&&l&

2.45. Meoren. The funotion f defined on [a,1] is of
bounded varistion on [a,u] if, and only if. f ig of bounded
s~yariation on [e,b]. Purthermore, if f is of bounded
yaristion on [s,b]s then 8,(f;[s,b]) = v(r;[a,n]).

Exoof. Clearly, if f is of bounded S-variation on [a.b] M
then f is of bounded variation on [s,b]. Therefore, suppose
that f 1s of bounded variation on [a,b]. Iet

| O 8 & = Xp<X <evelXy = D
Consider ZG,B(I,_). Choose € > 0. Thers exist numbers y; end
yi 1n [xgex1] so that [£(y{)-r(r1)| > 8(r3 [xgexy] )~ ..%.,..
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Bepeating this process with respect to each I, € o7; & sub=
diviston o*® of [a,b) 1s formed so that V,.,(f)> = _s(I,)- ¢ .
8ince € was arbitrary, it follows that
8y(rs [m,0]) < v(£s [a,0]).
Hence, f is of bounded S-variation on [a,b]. The pre-
ceding remarks make the equality of V{fi[a,b]) ana 8,(f;[a,b])
obvious. Therefore the theorem has been proved.

2.46. Corollary. A function f defined on [a,b] is of
ounded S~yaristion on [a.b] if, and only if, there exist
monotone nen-decreasing funotions ¢ and h defined on [a,v] g0
that £ = g=h,.

2.47. Several characterizations have been given of

functions of bounded variation. The next theorem glives sonme
indication of the behavior of a funobtion whioh is not of
bounded variation on the olosed interval [s,u].

Zheorem. If the fumotion f is defined snd of unbounded
m&a&&e&sa (a1, mm m a point Se[m] g0
E={x€ &.b]lr(x) ig of unbounded variation at x}. then E is
glosed.

Proof. Divide I = [a,b] in half. £ must be of unbounded
variation on at least one of the halves by 2.38. If f is of
unbounded wvariation on both closed halves, choose the right
closed half and oall it I; = [ag,b3]. Otherwise, choose the
left closed half and oall it I4. Then divide I; in half and
choose that closed half JI; of Iy having the largest right end
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point so that f is of unbounded variation on Ip. Continue
this process. By induction, a descending, infinitesimal
sequence {In} of closed intervals ie formed so that f is oi‘
unbounded variation on I, for each positive integer n. Then
by 1.31 there exists a unique point § which belengs to I
for every n.

Then let (0,d) be an open interval (relative to I = [n.b])
containing §. sines {In} is infinitesimal, there exists a
poeitive integer N so that IyC(o,4). Hence, f is of unbounded
varistion on (0,d4). Therefore, by definition, f is of unbounded
variation at S.

How let y be & limit point of E = {x ¢ [a,b] |2 4g of
unbounded variation at xf. Jet J be an open interval ocone
taining ¥y . Thus, JNE ¥ #, and ¢ is of unbounded variation on
Jo. Therefore, Y€ E, and the theorem is proved.

imotion f 35 defined and of bounded
tien on [a.b]f and x¢ [a,0], then f is gontimuous at x if,
stion v(x) = v(fi[a,x]) is go

sontinulity, an attempt has been made to indicate an appliocation
of some of the material of Chapter I. Furthermore, in onder
that both one-sided limite may be considered, supposs that
fe(a,b). The body of the proof makes it clear how the end
points could be handled.

Suppose that £ iz contimuous. Choose € >0, By definition,
there exists a subdivision o of [a, § ] 2o that
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v.(e)>v(rs[e, §1)- €.
Also, there exists a J >0 so that if xe[a.%] and [x- S« S,,
then [£(x)-£(§)| < €. Consider the vefinement o' of o
whioh is formed by adding & point x* to 0 so that
Xpag < zt < 5
and lx'=§ 1¢ 3. Mmen U (r)2vAr)>v(ri[s,§11- €. mhus,
Vep (£)> V(£3(a, §))- €. Now |
% (1)

- "7:" I£0xy )mt{xy_g M+ Iex®)etin, ) ) +1e0 §)mt(x)].
mer&{?r@

ZAetxy )et(xy g )l +10xt )ut iz, 4 )) > Vigs[2,8 D)2 €.
Thus, if x'' ig any number so that x*<$x'% < § ’

v(zs[a,x*?)) > v(rs[a, §))-2 €.
Therefore, by 1.43, v{ §-)>v(§ ).

The proof of the faot that v(§+)¢v(S§) differs some-
whet from the work immediately above., There exists a sub-
division o= of [§ ,b] so that V, () >V(r;[8,0))- €, where
€ 12 an arbitrsry positive numbsr. There sxists a positive
number O eo that if S¢< x< §+ §, then (£(x)-r(S)I¢€.
Iet o ' be & refinement of o formed by adding a2 peint x° so
that § ¢<x'¢x, amd x'~ S€3. then

Vol (£) = Ie(x0)-e( 51+ It (xy )t (x))
* 'Z lrixi}-ﬂ*xi e € (e [S,6])
= v{r; [S,xr])evwies[x,0]).
But [£(x")-r(S)lc€ amt
| £(x, )-£(x*)] %iélr(xl)nf’(xi,l)l ¢ vies[x0,0]).
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Hense, 2 € > v(£3 [§,x']). Thus
viti[a, § 142 € > v(rs[a,x'])2 v( §+).

Therefore, v{§ )2 v(§+). The continuity of v follows from
1.36.

Now suppose that v is contimuous at x = § € [a,b].
Choose € > 0, There exists a S) 0 so that 4f %€ [a,b] ama
lx= S| < 3, then lv(x)=v(§ )| ¢ €. Por definitensss,
suppose that x > § . Ten

Iwtx)ev( §) = 1v(e; [§ x| = vies [§.x]).
But obviously lf{ §)-t(x)l ¢ vir;[§ ,x])y Lee. f(x)-r(§)< €,

2.49, Exsmple. Theorem 2.48 demonstrated that a funotion
£ of bounded variation has exactly the same points of dis-
contimuity as ite variation funotion v. This example shows
that a funotion of bounded variation anmd its variation funetion
need not be differentiable at the same points. Consider the
following funstion f defined on [0,2]t £(x) = x 4r 0¢x %1,
apd £(x) = 2-x 1€ 1 <x £2, (learly, f iz of bounded varistion
on [0,2](v(£;[0,2]) = 2) bus not differentieble et x = 1. How-
ever, v(x) = x for every x€[0,2]. fhus, v is differentiable
at all points of [0,2]. |

2,50, If £ is & funotion defined and of bounded varistion
on [a,b], then, by 2.40, f can be written as the differsnce of
two monotons non-decremsing functions, say g and hy L.e.
£ = geh. Let G(x) = G[a,x] be the interval funetion of 1.4
that 1s obtained from g, and let H{x) = E[a,x] be the interval
funotion that is obtained from h. If x€ [a,b], define
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rela,x] = r#(x) to be G[a,x]-H[a,x]. The interval runction
% then leads to another decomposition of funotions of
bounded variation.

m By 2.40, £ = geh, where both g and h are mono-
tone non-decreasing on [a,b]. Let G and H be the interval
functions of 1.47 discussed above. Then, by 1.48, both g~G
and h-H are moncotons non-decreasing and continuous on [u.b] .
Henss both functions are of bounded variation on [a,b]).
Furthermore, the funotion fef#* = (g-G)-(h-H) 18 continuous
and of bounded variation on [a,b]. Thus, £ = (f=f®)4r®, and
the proof is thryough.

2.51. Corollary. If the funotion f is of bounded var-
iation on [a,b), then the set of points of discer
£ on [a4b] 42 the set of points of discontinuit
[a‘b].,

2.52. The following two theorems indicate some con-
ditions under which the total variation of a function may be
defined by a limiting process.
eo; JIf the function f ias sontinuous and of bounded
veriation on J;a,b], then lim v (f3la,b]) exists and is the
total varistion of f on [a,b'_\.
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Proof. Choose € > 0. By definition, there exists a
subdivision o %1 & = X3¢X1 <400 <Xy = b of 8,b 80 that
V2 (r)> v(rs[a,n])- v-%mu g * has a finite number of sub-
division points, say N. Also, by 2.48, the varistion
function v is continuous on [m,b). Therefore there exists
& 91>0 go that if y; and y, belong to [8.,b) and

[ yyey2] ¢ S:,v
then
"y ; €
v{yy)eviys) < P

Choose & positive number o <min( & 1,%& « Then let

Tt 8 = Xg ¢X{ < vee Xy = b bs any subdivision so that
Ilotlic §,
Then let i be the largest positive integer so that x, < xy.
ir x; = X4y then V (f3 [a.x;]) 2 l£(xy)-f(xg)l. But suppose
that x;< Xy, Then
v (r3[a.xg] )*f;; >V, (s [a,x;] Hlt(xi)-r(x;)l
2 | e(xq )et(xg)].
Then let J be the largest positive integer so that x, £xj.
It followa that
2 (= )47, (23 [x10x3]) > 1€(x1 )=t (xg49 )]
h +¥ (r;[x;.,. z'])*lr(x )»r{x‘}l
o 41025 2 3
2 f(xp)=r(xy)
But mince thers exist N.l subdivision points of o in {(a,b),
it follows that

v |
=+ w—% > ¥ elf).
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‘ € \ €
Obviously, V_(f)2 V,(f). BHence, V’c_(t)w-ém)v;_,(tb V(f)=- -

Therefore, | V(£)-V_(f)| < € , and the proof is finished.
2.53. Iheorem. If the funotion f is defined, continuous,
and of bounded varistion on [a,b), them 1tm Z s(f;lxy ;.x,))

mngmmmmif@[a-%
M Choose € >0. By 2.52 thers exista a >0 so

that if ¢~ 1s a subdivieion of [a,b] so that /o 1l <, then
Vo £)> V(fs[ayb])= € . Lot O3 & = X<y <Xy Coee Xy =D
be a subdivision of [a,b] so that lloy 11< 3, Since ¢ is
continuous on [a,b], f assumes ita max and min on [x4_4sx,] »
say at 511 and Jp,. ILet xy 4 < 5115 531§ Xys e+ the
extreme points are labeled acsording to the natural ordering
of the real numbsrs., To reiterate, no mention hae been made
of whether ﬁjli) or f( 521) is the max or min. This cone
vention is mainteined in the remainder of the proof.
Then let 0™, e the refinement of 0 formed by adding
the points 511 and ng to [xg.30xy] for £ =1, 2, e00y n.
Clearly, 1103 11¢ 8. maus, ¥ (f)> v(£;[a,0])- €. But
1208 g )=t0xg g I+10( S20)-2( S 1)) + It (xy )t \PR}
2 e §ay)-r084,))
= 8(f35[xy.40%4] )0
Then Z_8(f3[x3.10%4]) ¢ Vr2(f) € Vf3[asb])e But
Z, 83 [xy-10%1))2 V2)> Ve [a,0])- € .
Therefore, V(fi[a,b])= € ¢ Zo_s(rg [xy.4s%4] ) ¢ Virs[a,0] )+ €,
and the theorem is proved.
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2.54, fThe funotions p and n defined in 2.16 are ocalled
the positive and negative variations, respestively,; of £ on
[’»gb]a

It is easily seen that if o~ is a subdivision of [e,b)
and x' 18 & point in [s,b], then

AT TE=E(x101) 2 T (2lxg)=txsy))e
8imilarly

A ERR AL AR AP
Hence, if 0~ 1z a refinement of ¢, then

of 2 Z -
Z  (fi{xy) f‘”iﬂl)) A¢ﬁf($i) £(xg.4))

Ag?

and

o

These observations s2implify the proof of the following theorenm.

Theorem. If the function f e defined and of bounded
varistion on [a,], then

1) f(x)=f(a) = p(x)-n(x)s and

11) the totel variation of the funoction f on [a,x]
is the sum of the poaitive and negative variations of f on
[8:x)s 4.8. v(x) = p{x)en(x).

Proof. (1) Suppose by way of contradiection that there
exists an x € [a,b] so that f(x)«f(a) >p(x)-n(x). Hence there
exists an € > 0 so that £(x)-f(a) = p(x)-n(x)+ € = p(x)=(n(x)=-€),
There exists a subdivision o of [a,x] so that

%r'f(xg_)*f(xg_-ﬂ' >n{x)=€ .
Certainly, ‘z;_rtr(mmr(x,,,,nﬁ p(x). Hence

'BZ- Ie{xy)txy 4 N 2 §¢lr(x&)~f(x.&,13! .
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£(x)-(2)> Z (flxy)-tlzg 1)) Z letxy)otixg o)
= T (try)erlryy )+ T U00xy)tlx )
= f{x)=f{a),
and & contradioction iz achieved.
| The sssumption that £{x)ef(2) < p(x)-n(x) leads to &
aﬁm&l&r sontradiction. Whenoe, r(x)»f(q) = p{x)-n(x).
(11) let 0"3 & = X5 <Xy €Xp<Ceue <Xy = b be & BUb-
division of [e,b). ‘Men
V.if) = ?:_r (£lxg)=f{xy 4))¢ %Jﬂxi)“f(xiwiﬂ
¢ pix)m(x).
muaa, v(r3[a,x]) = v{x) ¢ plx)m(x).
Then let 0"y end 0, be subdivisions of [a,x]. Hence
Z (£(xg)=lxy 1))+ g Z lf‘(xi}«ﬂxi )l
£ “Zr(r(xuwr(x,,,.;;))-v Z I£{xy )t {xy 4)]
= Yorq U ap(f) e
< V(tsfasx]h
Thue; pl{x)in(x) € vix), and the theorem is proved,
2.55. Bueoyem. If A = {f,] is a sequence of funotions
lefined on [a,b], emoch function of A is of bounded mmugm
[m]s the total yariation of f, is less than s fixed
| ve yumber K for ssch positive integer m, and {fy} con-
m m 8 funotion f defined on [e,b], then f is of bounded
mm.a[m] Purthermore, the total varistion of f on
[Nb] is pot greater than K. |
Progf. Choose € > 0, 1ot 02 8 = X< X <X Cose <X = D

be a subdivision of [a,b]. There exists a positive integer Hy



g0 that if n>Ny, then
| £4(xg)=t(x )|< €
there exlats a poeitive integer N, so that if n >Ny, then

O wf ) «——s—n P
[ £nixy) (x"“‘zgm.}‘ ;

there existe a positive integer Ny, S0 that if n>Ny,.q, then

‘ Lp{xp)=tix,)|¢ ;é;s«

Iet N = max(Nys Nps eeey Ni), and choose n>N, Therefore
L £0xg )t (xy g ) =Itplxy)aty(xy )]
L £n(xy )=t xy )40 (Rg g )ulp(xgg) ]
S | plxy )=tz )1 +10(xy g )=Lp(xy 9 )]
<« £,
k+1
Therofore, | £(xy)=(x; s ) < | £5(xy )etnlxy )]+ m% Summing
over 0y V,(f) <V (fy)+€ < V(fy3[a,0])+€ <K+ € . Hence,
v(es ['u,b"])qﬁx, and the proof is finished.

2.56. Example. In Theoren 2.55 the variations of the |
funotions in the sequence A = {fy} were bounded in & uniform
fashion, i.e. there existed a positive number K zo that
V(fyi[#sb])< K for every positive integer n. This theorem
cannot be strengthensd to the extent of omitting the uniform
bound of the variations, for consider the following sequence
of functions defined on [0,1]s

1 1
f‘ﬂ?) =1, £4(X) = 0 Af X' F ey
2
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f‘(iz :‘(1) f 3) 1
2lg) = Rl = 250 = L

£(x) a} 1{1 -
x - 3. b o i~ W— ———— e n
Y b)’ ’

. §
fales) = 1 40 m =1, 20 wouy 291, f,(x) = 0

otherwine; .o « Clesrly, linm { "m r, vhere f({x) = 1 4if
:xe[o.ﬂ and xw«%w. vhers 2 18 an integer and n is a poa-
itive integral power of 2; amd f(x) = 0 otherwiss. Obviously,
£ 18 net of bounded varistion on [0,1] . |
2.57. Theorem. If © 1s an infinite gollestien of
funotions defined on I = [a,b), ant if here exists s pos-
itive number K go that f€E implies that f is bounded I
and for each countably infinite collsction E* of E, there
exists s gequence E' of funotlons fyom 5% whioch converges
every point of I'.
proof. Let I' = {xy, X3 cees Xps esee a2 Lot B o s
wm‘bmw infinite subcollection of E', Then list the elements
of E%, L.gs B = {f1s 24 cees fpy eeoe Lot
‘ By = {t‘l(xﬁ, folxg)s eves fuix1), uw}v |
To eliminate the trivial esse, Bsuppose that By is infinite.
Then by the Bolzano-Welerstress Theorem thers exists a cone

vergent sequence of points in By. Denote this sequence by
Ai = {fll (ﬁl}g flz(l’i ) $ veowy fmgxi)g e a?q Iet
El - {fiig figg sewy fing 'y &}g



56

and 1t By = {f11(x2), £12(%2)s sees Finixa), ves}s Again,
there exists s convergent sequence of points from By, say
Ay = {fzﬁxg), P22{x2)s sevs LopiZp)s sesfs ILat

Eg = {fﬁlg Tons esey Popn .u;.
Continue In this fashion. |

Thus, & nested ssquence {En} of collections of funetions
has been formed. Let f; = fiy; let n, be the next smallest
positive integer so that fy, € Bp; let ng be the next
smallest positive integer so that z‘,_na €Eq3 ees « Consider
the sequence F = {1, ., 1,4 +os fipys e+efe Obviously,

P CE®,

Then let § be s pesitive integer. There existe only &
finlte mumber of slements of F not in Ey. And that sube
gequense of ¥ in B 4 senverges at X3 gince any rearreaugoment
of B4 will cenverge at Xgqe Pubting 7 = Et, the proof is
finished.

| 2.58. Theoyem. If E iz an infinits gsollect!
and if there exists a posmitive pumbe:

functlon & st svery peint of [e,b].
then [g(x)| ¢ X.

Proof. let B = {ry, Tz, «..] be the set of rational
numbers in [a,b] together with the mumber s. By 2.57 there



57

exleta a sequense ¥ = { rﬁ} of funotions of B which cenverges
at every point of R. Iet x; snd x. bs two elemsnts of R so
that x; < x5, et Ay, = liz {rn(x;, )}, and let

bep = 2n ftalx2)}
Suppese that Ay, < Ay, . Henee thero exists an € > 0 so that
Aot € = Ay, s But there exists a positive integer N go that
Af 0K, then | fnlxy Jekyy)¢ S and |1, (xp)mar, ¢ 5
Terefore, |f(xp)afy(xy )thy~hy,| = frlxp)=fplxg JoAgy =4y, < €,
Therefore, fn(xz)-fp(%1)<€ =[Azy=hy,] = 0, 2 contradiction of
the monotonlelty of fy. Thus, putting g'(ry) = in {tn(ry)],
g' is seen to be monotone nonedeoreasing on [2,b]. If x¢R,
define g'{x) to bs the max of g'{ry) for all vy €R 8o that
ry<xe It follows easily thab g' is monctone non~decreasing
en [a,b].

Then by 2.41 the set of points of diseomtirmity of o' on
[2/0] 15 countable. Iet D, denote this set. Ist D, denote
the m& of points of [a.b] on whish g' is ocontimuous, %.g.

Dz = [a,b]-D;. Suppose that x; €3, and x; € 2. Choose € > 0.
There exists & >0 3o that 4f x€[a,b] and Ixex;l ¢ §, then
Jg?(x)-g"(2q)] ¢ -§-. Choose x, and x3 in R 80 that

Xgw §¢ Zp <Xy <X3<xH 3o
Merefore, lg*{x;)-g' (25} ¢ __e__ and gt ({xy)=g* (x5} ¢ ..S,
But Llw {fn(x)} = &' (xz) amt z.m n {£5(x5)} = £'(x4). Homoe
mum exists a positive mmmr H 8o that if n N, then

| £,(x2)=8" {x5)] ¢ «ﬁ;
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and 'fn(‘l‘g)*@’(iﬁg“ £ *%*- Therefore, 'fn(xz)--g'(xl‘)l < €
and |2, (xq)eg’(x4)| ¢ € . But fy(x) 2 fylxg) 2fp(xg)e There-
fore, | f,(xs)=g'(x1)] ¢ € , and ft'ﬁ converges 4t every point
of Do.

Now, by 2.57, there exists e sequence { !‘;; of elements
from F whioh converges at every point of Dyj. It follows
easily that the sequense {fy] converges at every point of
[a,b]. I fact, if {fn} converges at x € [a,b], then

RICRENCI AT REMCHE
Define the funotion g to be the limit funotion of the sequence
{£2]. e proof of the momotonisity of g is idenmticel to that
of g'.
Then consider g(b). Simse g(b) = 1im {tn(v)], ama
{eatod}ex
for every positive integer n, g(b)s K. Thus, the proof is
sompleted.

2.59. Theorem tinite colilesation of funciions
mm[m] mmmmmmwm

h fumotion ave bounded by the positive number K, then
there exists g sequence of fumotions in E which converges
funotion F at sach point of [e,b]. Purthemm
yariation on [a,b).

Proof. Let £EE and define go(x) to be V(f;[a,x]) and he(x)
to be V(f3[a,x])=f(x). The functions g, and he are monotone
non~decreasing by 2.37. Purthermore; for each fCE, g and he
are bounded by 2K.
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Ten let By = {golre B} amt let B, = fnclrer], =y
2.58 there exists an infinite ssquence Ej = {(gr), 3 of ele-
mentes of E; so that Eq converges at every point of [a,0].
Denote (gp), by gp . Let B = {£,1 be the sequence of ele-
ments of E assoolated with Eq, 1.g. the function £ is the
funotion from which g was ebtained. Les E, = fhy Ir,€ Ea}
Applying 2,58 again, thers exists a sequence Eg = f h%?; of
elements of E; so that the sequence E, converges at every
peint of [e,b]. Purthermore, if E4 is ordered so that the
agsociated sequence of f's forms a subsequence of Ey, the
convergence of Eg will not be disturbed. Let Eg be ordered
in this fashion. Let E, be the subsequence §£5{ of E, whion
is associated with Ege

Then let g be the limit funotion of the sequence Egy and
let h be the limit function of the sequence Eg. Then choose
€ >0 and let x€[a,b]. There exists a positive integer N so
that 1f n>N, then lgtm(x)wg{x)l < -%» and lhfnix)mcx}h .%-.
Gonsider hy . The subsoript of f), in the sequence E, is
certainly as large ss n. Let i denote the subsoript of £, in
Ey. Of course, £y €8y, Since 1> N, it follows that

lgfi(x’)ﬂﬂx)l*\hriﬁx)ah(x)! <€,
Therefors, Ig,ifxlmhri(x)*ig(x)ah(x))| < € ., But
Efl(x}“hf&(x’ = fy(x).

Hence, lf&(x)mcg(x)nh(x)}l <€ . Thus the sequence En = if‘,;}
converges to F = geh on [2,8]. By 2.37, F ie of bounded var-
istion on [a,b], and the proof is finished.
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8. The Riemann-Stisltjes Integral

'unstion defined on [ﬂwh] »
LIRLLON on [ﬂ:h]a then

Proof. Without lose of gemerality, suppose that g=0
and that g ia monstons non-decreazing on [a.b] Parthermore,
sinoe f i contimious en [a,b), then f iz uniformly contimuous
on [a,1]; and £ assumes ite max and min es values.

et 071 & = Xg¢ Xy < ave <X, = D be & subdivision of
[asb]. 8, will denote 2_M,(g(xy)-glxy 1))s Where M; is the
max of £ on [x;_44x3]¢ 1et I be the min of S_for all ¢ of
(asb). Certainly, I ia well defined since f is bounded from
below,

Then choose € > 0, and let o %4 & = Xy <Xy < van <Xy = D
be a subdivision of [a,b] so thet |18 4 [< €. Iet 3, ve s
positive nweber go that if x{ amd X, are in [a,b] and

| xpoxz | < 84,

then
€

A S

2(g(v)-g(a))

Let Sg be the nin of {(ximxﬂ),(xznxi), covs (Xpexp g)fe
Then let d be a positive number so that

S < min( s,,.-%é';..

fﬁxi }wf{xz) <

Let ¢ be a subdivision of [a,b] so that |l o= 1l< 3,
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Then consider the subdivision o U ¢* and the sum

8¢ y g% Certainly, S, U, * <5 % Therefore,
ls,. o o*1l<€.
Let I = {Iy} denote the subtutervals of o— wiich contain sube
division points of g%, and let J = {J) | denote the sub-
intervale of 0~ which lie entirely within some subinterval
of g-%. Choose Jy€J. Ten the tern of 2 fag iuvolving Jy
is of the form ﬁsa)(g(x,‘)«g(%)h If my and Mg are the
min and max, respeotively, of f on Jy, then obviously
my £2(54)% Ny |

But o1l < 3. Hence

ot €
ﬁqf( . ) & cm——————————
f30) < e

Terefore, |5 ;ourte Z £ ) (slx;)e(xy.q))| < =5~y where
8 jouc* and erdmt;a the appropriate sums taken only over
the colleoction J of clomed intervals which occcurs in both
subdivisions 0" and o U o*. Then choose I, €I, There existe
a point x' e o * so that if Ynel and ¥, are the end points of
Ins then y, 4 <x'< y,. A comparison is made of the terms
£S5 )elry)-aly, ) and B, (g(x*)esly, o ) )+H,(e(r,)-2(x*)),
where M, . and M, denote the max of f on [ymi.x'] and
[xe +Tpls Tespectively.
S N elyy ) ey g )= Mg (8(x*)=g (7,4 )
+ % (glyy,)-g(x")) |
= |20 $ ) (elyy ) =g lyy g J4e(x* )=glx?))=H,_s ((x* J8(rn.1 )
- My (8(y,)ealx* )|
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= | (205 )1, (el =g (x) )4 ( 00 S L )nby g Mal(xt)mgly, 4 )) |
£ 14e(S p)-m) gty ) =gz #1208 p)eity g 1 8(x*)glyy g )]
But |y,-¥y.11<Sye Therefore |
(20§ p)=1) 1) T dmglx?) | +12(§ n)oMys || elx)-glrpy)]
€ ety Vomiv VY.

¢ (87 o lTns))e
2 (a(broata)) & a6 Tn-1))
‘Mma,l&ruo’*m ZﬁM'( -y Henoce, |Zt‘d5~ﬁa,ua-*"€

2
Bmlao-u,,.n»zu € . Terefore, |2 fdg-1/<2 €, amd

the theorem is proved.
2.61. Remark. It should be noted that if s, is defined
to be 2 al(eg(xl)mg(x,“i)). where my is the min of f on

[xz-i'?‘a.] ’
the I of 2.60 can be defined to be the max of 8 for all g~ of

anotion defined on [u,bj.
bounded the positive MM Ky ¢ i2 of bounded
&Em-s_m S tdg exists, then | Y tdg | < K*V(g;[mbj).
Proef. let c-1 & = xalxzt xa( ses Xy = b be a sudb-
division of [_a,b) Then
. Z (5 ¢) (elxy)glxy g )]
< ?: ) £(S ) g(xy )-glxy 4 )]
< &Els{xiiws(xz,g)l
¢ E-Vig [#+8]).
The theorem followa.
2.63. Two proofs will be given of the following theorenm.

In particular, the second proof indlestes how the preperties
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of funotions of bounded variatior applies to sertain theorems
in mtaamﬂm theory.

To facilitate the proof, let

._Z_,'_fﬁg = i my (g{xy)=g{xy 1))

where my is the min of I on [x4.qs%4]c That is, Z_o_rm 18
merely the lower sum s, of 2.61 defined for the partioular
functions f and g.

Theozem. If & A8 & function of bounded
,% [%"]* and ifn} is a sequence of contimuous funckions
mmmmw f defined on [m]. hen
andg - S fag.
Wg. {1) The integral Yrdg obvioualy exists since f
is neocessarily centinuous. 8ince g is of bounded variation on

n-wa

[t,,b]. it may be assumed that g is monotone non-deoressing on
[a,b]. Parthermore, suppose that gia in order to avoid the
trivial case.

Choose € > 0. Thers exists a positive integer N so that
if n>¥ apd x €[a,b], then |tn(x)=£(x)}| « €. Choose n>N.
There exists a mmwzawu oy of [a,b] so that

| {tuaa~ Zraiel <€,
and there exists a subliviaten o3 of [a,b] a0 that
| Smgﬂima <€,
Also, there exists a § > 0 so that if x; and x3 are in [&.'&]
g0 that |xg~xs] < 3, then |£(xy)=t(x;)] <€ and
| £nlxy )etylxz)| < € «
Let 03 be any subdivision of [asb] so that Il Il < 3. Then
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let o'w oy Uoy U 0%. Clearly, ' Sg‘dm- Zf‘dgl <€
and | anas» ng ] ¢€. Choose x and x* in [x:&d.xi]
Thus, tx-.xﬂ <3 s and |f(x)=f{x') | < €. Similarly,
|fa(x)=ry(x*) | < €.
Then let yi be an element of [xy ,,x;] #o that £(yy) 1s the
min of £ on [x,y“l;x,‘]. Similarly, let yy€ [xﬁ,ﬁx&] so that
fnlyz) is the min of £, on [x%,.,,x,} Then let ¥4 be an
arbitrary point in ["1*1*31]' Thus
| £(r5)=try) 1 +12n(r2)=2(y3) | < 2 € .
Henoe, |fn(ya)=f(ryy)=[fnly3)=£{y3)| <2 €. Terefore,
Ifnlya)-tlyg)l <3 €.
It followe that | Z fdg- Z fnig | 3 € (a{b)~gla)). But
| < rae- Smglﬂ T fute- jrnag <2 €.
'ﬁmmmm
Hli’”nda:- E‘ds |

< 2€+| zﬁdgu andgk 2€+3€~(g(b)-gla)).
Since € may be chosen arbitrarily small, the conclusion
followe.
, = of. (2) Since f is continuous on [a,'b], the integral
Smg exista by 2.60. Choose € > 0. There exists a positive
igtegor ¥ so that if n> N and x€ [a,b], then

e
) ‘ )wt ) < - .
b | £alm)-tlx) |« cmmiames

b
Now | gfndaw Stﬁgl = | (%eot)ael. But, vy 2.62,
= | S(f *ﬂé& "K“V(ﬂ[lib])w
where K is the bmmd for fp-f. Clearly
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K 5 . . c .
Vigs [a.5] 141
Hence
b |
’ S(fnwf)’da l CKV{gs [31‘3])
a €
< e * v pb L
Ty T (a5 [a,0]) <€

Thus, the proefl is eamplwea.,

260 3¢ (ris am rlde extat gat ¢ 1o zonotons
non-deoreasing on [a,b], then S"mg: < j Itlag.

Proof. Choose €>0. There exists & J>0 so that if
g~ is 2 subdivisien of [a.b] go that |lo-1l <3, then

b
ISfdgm ng J< .S..

and | Z Iflas- Llrlagh L. memmm
!Stédslq = fag|+ --< 2 lrlam ..§.

But 2 |tlag < | Slflﬁ.gl* ——— S—Hldg + S, Thus
o - 2 2

b b *
| Smgl < Smdme,

and the proof is through. a

2,65, If the funotion f is gontinuous and the funotion
& 18 of bounded variation on [a,b], then P(x) = Sfdm..x.
bounded yariation on [s,b]; and ¥ is contimuous at all points
of sentimiity of & o [a].

Proof. The funotion g ig assumed to be monotons nons

decreasing on [a.,b] without loss of generality.

Let 073 & = X< X  <X2LevscXy=Db be & an‘bdl.vlsmn of
[ayb]. Then
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e X
Za_‘?(xi)‘r(xlﬂi)‘ = Z 'Sfdg-n yfﬁ.gl l

-1
= 5| mm fdg- f rag |
o hi-
- ZISmg]
Kgl
£ ZxVies[xy.q0xy])s
K

where K; is the bound of f on [x,mg_,:&]‘ Letting K >0 be the
bound for f on [a,b],

Z EyVe[xy 0]V & T Ves[xy 905,

= K(g(b)~g(a)).

Hence, F is of bounded variation on [a,b].

Now suppose that Sc[a,b] 18 a point of sontimuity of g
By 2.48, the variation function v(x) = ‘V{t;[&,x]) ia cone
timous at x = S Choose € > 0. There exists a S >0 so
that 1f x € [a,b] and |x- §/< ), then

1 (g3 [aex])=V(gs[as $]) ] < -%-

(vhere K is the aforementioned bound for f). For definitenesas,
suppose that x >S and x~5< So Then
| Mx)-F(§)] = | f?dsl<lt'?(m[§ .:z])<K°-§~.
3

The contimuity of P iz now apparent.

2.66. Theorsm. Let f be s continuous funotion defined on
fav]. 1t e= {on} s & sequence of funstions of bounded ver-
lation defined on [a,b], the bound for the variation of
elements of G 1s m and the sequence {ﬁn} gonverges to

the funstien & st sach point of [a,%], then S‘ras existe amd
11n_( #ag,, = it’ds;

-
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£xoof. ILet K be the uniform bound for the variation of
the functions in G. Then, by 2.55, g is of bounded variation
on [a;b} and Vig: [a,b])‘ K. 38y 2.60, S;&g exists.
Now, by 1.33, £ is uniformly continucus on [a,b]. Choose
€ > 0, and let ) be s positive number so that u’xxawsxgm
in [a.b] so that lxg_wxgl < S, then le(xg)etixp)] < € « Lot
ot a= Tg<Xy<eee <Xy = b be & sublivision of [a,b] so that
Nelle¢ S. How there exists a mamﬁm integer Ny so that if
n? Hy, then “
|£0xy ) (8xy Delxg) 1=t (xy ) g (g Dosin(x)) | € =504

i:mm exists a pon.w&w mizwar Nz so that if n >Ng, vhm
lr(xg)(s(xg)m(xi))«r(xaltsn(xz)omn(xg))l< -g-i cee}

thnm exists a p@auwe integer N so that if n> Ny, bhm
lf(xk)(s(rk%a(xk,.a))*t(xk)(sn(xk)mn(xm.i))l < ........

Lot J- max(Nyy Nos eeey Nk). and chooss n%> N, memmm

IZf(x,_Hs(m;)m{xi,l))-.‘Z £0xy)(g(xy)ealxy 4] < €.
~ Then oonsider

b b
| Sfds'» L“‘%*’ [

h [ad b 3
(re = T (rde
o S Ixi- .
R R M
= .z j(fwt(xg))w Z, gt(xg,)ds
l"l - ) S
R %
= §~ I(r«-r(xi)mw ‘2; £iz,) rag
R LR
-z 5(r~r<x,nm Z £(xy ) (&(xy)-g(xs_1 ).

Ryl



68

b R * R LYY
smfdgn* = z' sf’«f(xi))dgn,* L=Z| Sf(xi)dsn“

’. *L' K‘|

R x; R
z S(r-r(x,,))&sn# 2 £0xy) (gpe(xy )-gpalxyy))-

[N
Ai-y

fmamrm:a .
|Smg.- mgn,}m IZ (£-£(x,)dg

xLI

+ 7: £(xy ) (g(xyq )= [ Z S (fut(xx))dgn,

RTINS

+ Et‘(x,)(&anxi)*an«( 1)) '
< |f (r.-r(x,))ag‘. % S(ruf(xi))agnﬁl

HCw

R
+ 2z r(xi)(s(xi)-s(xt,x))

R
- ”Z' £(xg ) (8palxy)=gpalxg 1)) ]
R *e
<1 Z etz ateenn |+ €
R ,:"
< 2 5«5:(:,))&(@-3,,,)14» €.
=t Xi-»

But if 5, € [x,_y,%,], then|x,- S41< 3, and [£(xy)-£(S5,)l<€.
Furthermore, for every positive integer n, V(g-s,i[a,b]) < 2K.
Hense

b
| Sm&" f*‘-ﬁn* |
f l S(rw ) e-gne)|+ €

€ € *V(gegyes [8,0])+ €
< €(2K)+ € .
8ince € may be chosen arbitrarily small, the proof is finished.
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CEAPTER III
SOME GENERALIZATIONS OF BOUNDED VARIATION

9+ Introduetory Remarks

3e1. Bemark. In Chapter II, bounded variation was dis-
sussed almost entirely in terms of functione defined on
closed intervals. The notion of the variation of & function
defined on an open interval was defined in 2.6, bdut Wry
1ittle material was presented in this context.

This ochapter seeks tc indieate how the concept of bounded
variation ocan he gensralized. Several methods of general-
ization are explored. A special type of subdivision or
partition of a closed interval is defined. This type of sube
division, called & B.partition, leads to e discussion of a
clasz of funotions which ars termed S-messurable. In addition,
bounded veriation is defined for funotions defined on a
broader class of point sets than ¢losed intervale on the real
line. In particular, interval funstionz in Euclidean n-space
are discunsmed. This discussion prompts the short development
of the Burkill integral which was mentioned in the introduction
to the thesis,

10, Definitions
3¢2. If E 18 a set of real numbers, then a subdivizion
of E is a finite set of pointe {xg, Xys esey ‘n} &0 that
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X €B for 4 = 0y 1, 2, «usy n, and
Xg< Xy <Xp Cooe ¢ Xpe
3«3, If £ is a function defined on the point set E and
"8 Xp< X< eee <Xy 18 & subdivision of B, then the variation
of £ Mith reepeot to o~ is defined to be Z _lf(xy)-r(x, ,)I.
The motation V_(f3E), V_(f), or Zs_f 15 sometimes used. The
total variation of f on E, denoted by V(f3E), is defined to
be the max of V_(f) for all ¢~ of E. 'Then f iz said to be of
beunded variation on E if, and only if, V{(f;E) is finite.
344, If T = [a,b] 18 & slosed interwal, then the state-
ment that the eountable solleotion T = { In} of closed
subintervals of J 48 & B-partition of J means that
1) [aw] = () 1, ama
11) 1f L # k amd I NI # §, then I; and I, are
abutting intervals. In addition, a degenerate interval of
the form [§,5] 18 allowed provided that § does not velong
to any other interval in the colleetion ?. 4 similar definition
iz made for J being opesn or half open.
35. It fy = {1} em 2, = {3,] are B-partitions of
[24b], then the product of the two B-partitions, denoted by
By* Fas i defined to be the set

A= {Inn%} ’

In€f,, Im €f,
where the following restrictionc are placed on At
1) At I,NJ, €A, then I,NJ, # #, and
11) Af L NI, = {x], then I, NIy €4 1f, ana only 1r,
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there do not exist positive &nﬁamm n' and n' so that
I3, 16 non-degenerate and contains x.

3.6. If the funetion f is defined on [a,b], then the
statement that f iz generalized monotone non-decreasing on
[2,5] neans tnat there exists a Bpartition £ = {I,| of
(2,5] s0 that if 1, €/, then £ is monotons non-decreasing
on I.

3.7. If the function £ im defined on [a.’b]. then the
statement that the function f is absplutely continmous in
the generalized sense on [a,b](GAC on [a,b]) means that
there exists a B -partition & = { In} g0 that £ is absolutely
continucus on each Iy € /5 .

3.8. The function f defined on [a,b] 18 of generalized
bounded variation (GBV) on [a,b] if, and only if, there
exists a B-partition fF = {Ip} of [a,v] so that £ 1s of
bounded variation on I, for every I, € /& .

3.9. let each of f and g be a funotion defined on [a,b].
The statement that f ls S-measurable with resgpect to g on
[a,b] means that there exists a Bepartition /7 = {x,,}ar [asb]
g0 that £ 1s Stleltjes integrable with respect to g on I, for
each I, € /5. It follows that both f and g are bounded on Ip
for every 1, € /5.

3,10, Iet A = {“n} be a sequence of real numbers. The
statement that the limit superior {an} = K means that

1) for each € > 0 there exists only a finite num-
ber of valﬁea of n so that a, > K+ € , and
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11) for each C >0 there existe an infinite number
of values of n so that a,> E~ €. The statement that the
Limyt inferior {sy} = X means that

i) for each € > 0 there exists only a finite mne
bexr of values of n go that a,<E~ ¢ , and

11} for eash € > 0 there exists an infinite number
of values of n so that a,< X+ € . The notation lim sup and
iim Inf is used to denmots 1limit superior and limit iuferior,
respeetively. It follows readily from the definitions that
if 4 = {s,] 1s any sequence of real mumbers, then

1im m{%} $ 1im sup{en$.
3+11. Iet E, denote Puelidean n~space, l.e. the space
of all n-tuples (Xj, Xps eoey Xp); Where X3 12 & real number
for L =1, 2, 3, «eey N. An n-tuple of this form iz called
8 point in E,, and a point set in B, 1s merely & collection
of peints in E,. | pval I in By is the collsotion of
all netuples (Xj, X2s seep Xp) 80 that ay $x,<by, and a,

and by are real numbers so that ay <hy for 4 = 1, 2, «vey n.
It should be remarked that the interwval I is actually deter-
mined by the two pointe (mi,; 82y «eep 8y) and (b, bpy eee byl
The terms oriented rectangle and interval will be used inter-
changeably when referring to E,. Thg notation
I= [a14b15 ageb2s cees apneby]

iz sometimes used to denote the interwal I,

3.12. The statement that I is an gpen interval in B,
means that I is the set of all pointe (X4, X3y eeey Xp)
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determined by inequalities of the fora
81< Xg < D1 < X< D2y sesy By <Xy <Bpy
where a3 and by are real numbers and a, ba for 4 = 1, 24sesyns

3.13. Let Ry be an oriented rectangle in E,. G(Ry) will
denote the claas of all oriented rectangles in E, which are
subsets of Rye ‘

3.14. Iet C be class of oriented rectangleas I in I,.
If g is o resl-valued funotion defined for eash 1€¢, then §
ie called a pectangle funetion {intervei function) defined on
C. The tern interval funotion will be used almost exolusively.

3415, If I = (81,011 82,023 +ees 8yby ] 18 an oriented
rectengle in B,, then the yolume of I, denoted by I/, is
defined to be fl';(b,‘-ui).

3.16, If I = (81,015 820D25 oo} Byudy ] 18 an interval
in E,, then the interior of I, demoted by I°, 1s defined to be
the open interval definsd by the following inequalities:

81 <Xp <Byy B3 <Xp<Bps veey By <X, <bye
3+17. 1et Ry be a fixed oriented rectangle in E,. 4
division p{o-) of By is a finite colleotion
Bys Bps eees By
of oriented rectangles in O(Ey) so that By /1R = # 17 1 # .
The notation p(o~)s Byy Bas e+eey By 12 used to indloate a
partial subdivision.

3+18. A gubdivision o of By is s partial subdivision
P(a)s Byy Bps «ovs By Of By 80 that (J By = By The notation
03 Bys Bpy eeey By i3 used to indicate 2 subdiviasion.
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3.19. Let By be an oriented rectangle in E,, and let §
be an intervel function defined on C{Ry). The funotion f# is

said to be absolutely oonbimious on By if, end only if, for
each €> 0 thers exists 2 O>0 so that Af

P(o)t Bys Bos eees By .
1s axy pertial subdivision of By so that Z |Bg] < 3, then
2‘ |#(r) | < €. |

3.20. ILet Ry be & fixed oriented rectangle in E,, and

let # be an intervel funoction defined on C(RBpy). ILet

pla=)e Byy Bpy eesyp By
be 2 partiel subdivision of Rg. Defins V(. ,(#;3,) to be
Z. |#(z,)1. Vp(o-) (#3Ro) 18 called the waristion of # on Ry
with respect to p(c-) and im sometimes denoted by V,( )(#).
The fotal variation of # on Ry, denoted by V(fiRy), is defined
to be the max of vx,(‘,_,tma) for all partial subdiviesions of
Rgs # 12 3aid to bs of bounded variastion on Ry if, and only
if, V{P1Ry) 1s finite.

3.21. let Ry be an oriented reotangle in E,, and let
be an interval funstion defined on C(Ry). Then # is said to
be of restricted bounded variation (HBV) on R, provided that
there exists two positive numbers M and 3 eo that if plo)
is a partial subdivision of By so that p{e)1l < 3, then
;L;)lm;m M. The funotion § is sald to be of upper restrioted

bounded yariation (lower restrioted bounded Yeriation) on ‘3(%3
provided that there exists twe positive mumbers 5 end H so that
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if p(0") is any partial eubdivision of By so that llp{e)l| < J,
then 2 #(Ry)< M Z #(2))> -

3.22, 1If By is an oriented reodangle, and § is an
interval funstion defined on C{R,), then # is said to be
bounded on By(C(Ry)) provided that there exists a pesitive
number X so that if REC(Ry), then |#(a)]<n.

3.23. Ilet B, be a fixed oriented rectangle in E,, end
let REC{Ry). R is defined by a set of inequalities of the
form &y £ x4 £ bl* a5 SX2€ Doy eees B $2u<0,ye The porm of B,
denoted by IIR]l, i3 defined to s the max of (by-ay) for
L =1, 2, cuey N

3.24. lLet Ry be an oriented rectangle in B,, and let

'3 Byy Bys vees By be a subdiviasion of Bge The porm of 0,
denoved by /oI, is defined to be the mex of I|Rgl| for
L =1, 25 eeey N

3+25. let Ry be an oriented rectangle in E,, and let
0t Byy By sesy By be a subdivieion of Bge If # 12 an
interval funstion definsd on O(Rg), define F(a3Rp) o e
;., #(z,).

3.26. ILet Ry be an oriented rectangle in E,, and let §
be an interval funstion defined on C{H,). fThen # iz sald %o

g soreasing (monotone non-inorsasing) on Ry if,
and only if, for each R€ C{(B,) and for each subdivision O~ of
By #(R) < F{osR)(H(osR) < P(R)),

3.27. If Ry 48 an interval in E, and § iz an interval

funotion defined on C(Ry), then the statement that # is
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(finitely) additive on R, means that # is both monotons non-
decreasing and monotone non-inersasing on Ej.

3.28. let By be an oriented reoctangle in E,, and let ¢
be an interval funotion defined on G(By). Let B €C(Ry).
Then define the uppsr Burkill inbtegral of # over R to be the
max(lim sup #(0,3R)), where the max is taken with mnpéw
to all sequemces {0y} of subdivisions of R so that

REYULATER D
and define the lower Burkill iatezral of # over R to be the
min{lin inf @( 0 3R)), where the min is taken with respeot
to all sequences {0} of eubdivisions of R so that

11!! Hopu, W = 0.
The upper and lower meaamu arve denoted by 5 g and jﬂ,
respectively. The funsction # 1s said to be ML M"
grable (B-integrable) provided that both S # and Sﬂ are
finite and Sﬂ = j §. Tis common value is taken to be

the Burkill integrel at‘ # on R,

1i. Bounded Varlation on an Arbitrary
Point Set E M the Open
Intervals (a,b) and (~oc0,4c0)

3.2, JIf the function f is defiusd
dation on the point set B, Bhen I is bounded

Proof. Let SCE. Ten, if x€E, £ (x)-t( § )1 £ Vi£1ED.
Hemove, |£{x)] ¢ V(£3E)+)£(S )|, and the comslusion follows.

3.30. If the functions I and g are defined on the point
get B, gnd £ and g are of bounded yariation on E, then
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1) f+g is of Wwunded variation on Ej
11} f-g is of boundasd variation on Ej
111) f°g ia of bounled variation on B; and
v) 1t -.%. 1z definad and bounded on E, mm’-iuv
iz of bounded variation on X.
Proof. The proof follows in a similar fashion to that
of 2.35, |
3.21. funotioz
[aiﬁﬂs‘ﬁ 18 everywhere
3@;1@5&@3{9@PE, thon I iz of bounded
virs [asb]) = V(£3E).
Proof, let 0°3 & = Xg<CX1< ees <Xy = b be & subdivision
of [8,5], and choese €7 0. Then let o't Yp<¥3< vee< Ty b
& subdivision of E 2o that
| £ixg)=t(yy)] ¢ Smm,
2n

for § = 0y 1, 25 ceey N mﬂn

M-

lt('x&)uﬂxh& ) ,

"~
-

Ms

| t‘(x;)wt(y,ﬁi M '5‘71,1 l“f(x;..z )N

<3 _€
Z gty )] +180xy)=1lry) |+ o

a)

< i:l ’fﬁri)*f(yiwi)l* *ﬁ*

LY

L

< V{fsE)+ € . |
~Therefore, V(fi[a,b]) < V(£3E). But, obvicusly, V(fjE)S< v(rs[a,b]).
Thus, the theorem is proved.
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3.32. Bemark. As has been indloated in 3.29 and 3.30,
uuv%rul of the theorems of Chapter II may be generalized for
funetions having an arbitrary aset of real numbers E as their
domain. Howsver, auch generalization can prove to be quite
mechanisal. Therefore, rather than pxaaouttng‘a reiteration
of the theorems of the preceding chapter, attention will now
be fooused briefly on the notion of bounded variation for
funotions defined on open intervals. An extensive aatulaaing
of theorems for such funotions will not be attempted. Rather;
a few selected properties are stated and verified. These
serve t@ indjicate in general how the concept of bounded vare
iation might be handled for sush funotions. In particular,
a close vonnestion bestween the development of the theory for
funotions defined on a "finite® open interval (a,b) and the
theory for funotions defined on (»ao,*oo) is demonstrated.

3.33. If the function f is defined and of bounded var-
lation on (a,b) amd (a,b)D(ag,b1), then £ 18 of bounded
Yaristion on (aj,b1). Purthermore, V(f3{ag,by))< V(fi(a,b)).

FProof. The proof 1s an immediate consequence of
Definitions 3.2 and 3.3.

3.3%. If the funotion f is defined and of bounded yar-

MQ (a,b)((~ 00,+00)), then
1) ar § n%ﬂ. ﬁu%ﬁ and 0<X<D, then

nl_g)mov(r;(s ~xy $+x)) = V(£3(a,0))3
11) ir x>0, 1&&:(::‘;(»::.::)& = V(f3(=00,400));
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113) Af acx<h,
}gmbv(ﬂ(tax))
= V(fy (uﬂ”}iﬂnﬂftb X))
= V(f3(=004+0)))s
iv) (for the case where f is defined and of bounded
variation on (=o0,4c0)) f can be written as the difference of
two mmtmnq non-decreasing funotions g and h so that
| ,‘%‘fﬁ(x’ = O
Proof. (1) Choose € > 0. There existe 2 subdivision
0t XgC X1 & sne (Xy of (a,D) 80 that
Y (f3(a,0)) > V(f3(a,sb))- € .
Let d = min(b=Xn,xg=a), and choose x so that 0<| Doxl= Dex < 3.
Therefore, a < §Sx< Xo< Xp< S 4xcn. Obviously,
V(3 ( §-x, § 4x))2 v (£3(a,b)),
wut v(£s( S-x, S +x)) < v(£;(a,b)). Henoe
| V(L3 (a,s0))-V(£4(§ -x, S4x)) | < €,
and the proof of (1) is finished.
(11) Choose € > 0. There exists a subdivision
03 Xp<Xy3< o <Xy
of (=00,+c0) g0 that ¥ (f3(ec0y+0)) > V(f(wcoy40))e €
Iet d = max{lxgls1x,/)y and ohoose x > 3. It follows easily
that | V(fs{=00,+00))-V(f3(=x,x)})] < € .,
{111) ‘The proof of (i11) ies similar to the proofs of the
preceding two parts.
(1v) Iet g(x) = V(fj({~0ex])e It i8 to be understood
that any subdivision o of (-0 ,X] must inoclude the point x.
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let h(x) = g{x)-f(x). Clearly, g is monotone non-decreasing
on (-00,+00), Then let x; and Xy be two real numbers so
that x4 < xp. It follows that
g(xz) = V(f3(-copx,])
= V(£ (=00,%])4V(L3[%4,%5] ).

Henoe, h(x,)=h(x;) = V(f3[x;4x5])=(£(x3)=f(x1))2 0. Thus, h
{8 monotone non-desreasing. Therefore, f = g-h, and the
first assertion in (iv) is proved.

Now choome € >0, There exists a subdivision

0" 8 Xg<Xy< eoe < Xy

of (-m,+o0) g0 that V _(£)> V(f;(wcos4°))e € . Let N be the
largest integsr so that K< x,., Choose x so that x< N, snd ‘
suppose that V(fj(=co,x]) > € . But now, V(f3(x,+o))27V ().
Therefore, V(fj(=00,x])+V(f}(x;40)) > V(f3({~00,40)), a
contradiotion. Henoe, g(x) = V(fj(=e0,x))< €, and the
proof is finished. |

12. Generalized Bounded Variation
and the Be-partition

3.35. Meorem. If sach of f1 = (T} and f2 = {In] 4s
& B-partition of [a,b], then f1°/2 is & B-partition of [a,v].

Proof. let L, €/ and J,¢ 7, #o that I,NJ, # 4.
Clearly, this intersection forms a closed interval. Parther-
more, by definition, [3;° 3, is countable. Therefore,
represent ﬂ 1* B 2 by a collestion { 'r,,} of olosed intervals.
Let 1 and 1' be two positive integers so that Ty/1Ty, # 4.
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Now, by definition, there exist positive integers n end n'
80 that T, = 1,134, and there exist positive integers m
and m' so that Tqs = L, 1J;¢. By the definition of B
partition, I, = I, Ip emd I, are ebutting, or I/, = 4.
If Iy = Iy it follows immediately that J,» and J,. must be
abutting intervals, I this is net the case, then I, and
I, must be abutting closed intervals., In either case, there
exists a unique point x which belongs to Ty and Ty,
Furthermore, neither Ty nor Ty¢ is degenerate, Suppose
that Ty were degenerate. Then either I, or J,+ is degenerate,
or I, amd J,, are sbutting intervals. If I, = [5,51, then
either I, 18 I, or S ¢Im. It Iy=I, = [S,f] s then
Ty = Tyes & sontradiotion since ;Bi'ﬂg iz & set and an ele~
ment is named in s set only one time. If 3 ¢ Iys then
7,17y = #, o centrediction. Then euppose that I, end J,.
are sbutting. Then J,+ 18 degenerate or not. If 1t is
degenerate, gimilar contradictions to the oneas above are
veached. If I, and Jn¢ are abutting and neither is degenerate,
it follows that Tys is non-degenerate. Thus, T4 § F1° fay 8
contradistion. Obviously, e €L{T§3‘ = [a,b), and the theorem is
proved.
3.36. If emch of the functions f and & is defined and
GAC on [a,b], then
1) f+g 18 GAC on [a,b]s
11) f-g ig GAC on [a.b];
111) feg 18 GAC on [a,b]s
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iv) if -%- is defined on [a,b] and there exists a
n-pawwma /3= {Iy} so that 2~ 12 bounted on eash I, € /5,
then "g" 18 GAC on [a,b].

Proof. (1) Thers exists o B-partition 3y = {zaf of
[2sb) so that £ 1= ebmolutely contimuous on eash I, ¢ [y«
8imilarly, there oxists a Bepartition /Fp = {Jo] of [a,b]
so that g i sbsolutely scontimious on essh J, € /7. Iat
fB= £4* 2+ The conclusien then follows from 2.24.

The proofs of (i1), (1i1), and (iv) follew in s similar
faghion, with the aid of 2.24.

3.37. If the funstion f is defined and GAC gn [e.b],
then £ is OBV on [a,b]. |

Proof. The proof follows from the definition of
genaralized bounded variation anmd 2.27.

3.38. JIf the funotion f is defined gni gensralized
ecxeasing on [s,b], thep £ 48 GEV on [u,'b]

The proef follows from 3.6 and 2.30.
ions £ apd g is GBV on |e,b],

f4g 18 GBY on [a,b];

11) f-g is GBV on [a,¥];

111) feg is GBV on [a,b]:

1v) 1f there exists a B-partition 4= {L,{ so thas
=== 18 defined and bounded on each I, € /F;, then -£- is GBV

mn [a.b]
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Zroof. With the aid of 2.35, the proof fellows in a
gimilar fashion to that of 3.36.

3.40. Exsmple. Consider the following funotion £ defined
on [0,1] + £(x) = d- 42 x (0,1] amt £(0) = o.

: i 1
[9*1] o= [QQQ]U[*':L]U [*gi]UataU[gipm]ano .

Let I, = [0,0] and .

i
In = [5v5m1)
forn=1, 2, ¢«¢e « Obviously, f i of bounded variation on
Iy and I, for every positive integer n. However, f is not
bounded on [0,1]; end, therefore, f is not of bounded var-
1ation on [0,1].

J.bi. A necessary and sufficient gondition that the
funotion f defined on [a,5] be of gemerslized bounded var-
istion on [s,b] is that thexe exist two gemerelized non-
deoxeasing funotions & and h defined on [e,b) go that f = g-n.

Proof. Suppose that £ 1s GBYV on [a,b]. Henoe, there
exists a B-partition /7 = {I,} so that f 1s of bounded var-
iation on each I, € /? . It follows then from 2.40 that f can
be written as the difference of twe nonotone nonedecreasing
functions on each I, € ﬂ .

Now suppose that f is the difference of two generalized
monotons non-desreasing functions g and h on [a,b]. There-
fore, there exist B-partitions [F; = {In} amd R, = {*’n 8o
that g 18 monotone non-decreasing on each I, € /74 and h is
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monotons none-decreasing on sach J, € /e lLet f = Y N o
Let Ty € /{. Then thers exist positive integers n and n' so
that Ty C I, and Ty CJye.. Honoe, both g and h are monotone
non~decreasing on Ty. Thus, £ is of bounded variation on
each Ty € /7, and the proof is finished,

3.42, If the funetion f is S-measurable with respect
%o the funotlons g and &, en [a»b] ad 4t the functions
and fp mwmwwm {anotiox

[2,5], tnen
1) £ ie S-measurable with respect to gi+gz on
(o] | |

[a.%)s

11) fy4f; is S-measurable with respect to g on

111) if X and ¥ are real mmbers, then X *f s
S-measurable with raspest to X*sl on [a.’b]. |
Proof. (1) Let /9 = {xn} be a Bepartition so that f
‘48 S-integrable with respect to z3 on eash I, € /{4, and
let [, = {J,] be & B-partition of [a,5] so that £ 1s &~
integrable with respest to gp on each Jn€ /& . Let
B = 12 = {m]:
It follows from 2.15 that £ is Seintegrable with mapaw to
g1+sp on esoh T, C // . Hensce, f is S-measurable with respect
to gy +z, on [a,1]. |
The proofs of (11) amd (1i1) follow in s similar fashion.
3.43. If there sxisbs s B-partition #= {I,] of [ai®]
entimuous on I, for sach In€ /7,
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ani $he funotion s is defined amd OBV on [s,b], then ¢ is

purable with respest to ¢ on [&,b]

Proof. The proof follows from 2.15, 2.60, and 3.35.

3.44, Clearly, the clase of Semeasurable funciions
contains funotions which are not S-integrable in the usual
sense. lLat £ be the function defined in 3.40, and let
g{x) = x for 05x 21, Then, obviously, f is S«measurable
with respest to g on [0,1] . But the funotion £ is not
bounded on [a,b]. Thus, unier Definition 2.15, £ is not S~
Integrable with respest to any funstion g defined on [0,1]).

13. Intervel Funstions and the
Burkill Integral

3.45. Theerem. (1) If By is an griented rectangle
By and # is g bounded, absolutely eontimuous }
funotion defined on C(Rp), then # 1s of boun
pn C(Ry).

Proof. Let B0 be a bound for # on By Choose € > 0
and let plo)t Bys Bpy ooy By be 2 partial subdivision on
Bgs There exists a 970 so that if Ri. Rg, veey Bm is any
finite collection of orienmted rectansgles in C{Ry) so that
(8])9/1(B})0 = # when 3 # § and Z IR}l <2 § , then

Z [#eel < € .

tet 4 = {8, € (el m,g <28} ant 106 4, = {B, € p(e)n €A
Bien Lot G = {010 G2 oees Gijbe & grouping of the elements
of 8,9¢Na, =91t 143 mngg?n €28 for § =1, 2yueey 1.
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Furthermore, the grouping G is such that the integer 1 is a
minimums that is, any other grouping satisfying the above two
conditions would have as many as 1 elements. Thus,
(1-1) § sn;iug Byl 4 | Ryl
Hence, (1-1) d ¢ By Diererore,
By

)

Now suppose that A, consiste of § elements. Clearly,

‘Ei' < lﬂol. Therefore, 3(22)5 '%ls Hence
Ri€ed, ™
gg 20l

23

But then
Z 18| = Z lor)l+ 7 | #(r))]
p () 6, A,

w e+ %‘J #(x,)|

GCQ

< 1¢ € +j°B

£ (..;B.g.,-n)' € +~(.~52.)B.
p) 29

sinoe |Ryl, €, s and B are in no way funotions of pla),
the theorem follows.

3.46. It Rq is sn oriented restangle in E, and saoh of
the interval funotions #; and §, is defined and sbsolutely
gontimous on C(By)s then

1) #4+8, 1s absolutely contimuous on C(By);
11) ¢4-#; is absolutely contimuous on C{Ry);
111) Af either f; or #, is bounded on C(Ry), then

g1°#; s sbsolutely continuous on C{Ry);
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iv) it % iz defined ani bounded on C(R,), then
% is abasolutely contimuous om C(Ry).
2roof. The proof iz sinilar So that of 2.24, ‘
3.47. x%mmmmm%mm
G(n@)s then # is bounded on C(By)e
mgg_ Iet RE€EC(Ry). 'Then p(o): R forme o partial
subdivision of By, and |#(R)| < V(giRy).
3.48. JIf By is an oriented rectensle in E, end each of
the interval fumotions #y and “2 is defined and of bounded
ariation on C(By), then
1) #4+8, is of bounded variation on C{Hg);
11) #y-f, is of bounded variation on C(Ry)s
111) #;°#> is of bounded variation on Q(B@h
iv) if ,l is defined and bounded on C(B)s then
5% is of bounded variation on ¢(Ry).
Ercef. The proof is similar 8@ that of 2.35.

349, &%Mmmwm%mﬂam
Apterval funotion defined onm C(Ry), then # is of yestrioted
bounded variation (RBV) on C(Ry) if, and only if, [ méﬁ.

ounded yeriation (LABV) on C(Rg).

Proofs Clearly, if # is of BBV on C(RBg), then it is of
LRBY and UEBV on C(Hy), for there exist positive numbers &
and M go that 1f p(q-) is any partial subdivision of Ry so
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that |lp{e) 1l < 3¢ then Vy( ,(#) <M. Hence,
-N <PZ‘_’¢(a1} < M,
and the first part of the theorem is proved.

Now suppose that ¢ is of LEBV and URBV on G{QO). There-
fore, there exist positive mumbers 94, My, 92, and X, 80
that if each of p(o~y) and p( o) is a partial subdivision of
Ry 80 that |Ip( o)1l < &) end lp(ar,) 11 < §,, then

Z BBy ) < By

“mp?;f(“a)’ My " '§ = ata( $10 §2)s and let

K = max(my,85).
Then let p{o-): Bys Rps sees By De a partial subdivision of
By o that lp(a-)il < 3. et A4 = {B,€ pla~)1d(R,)2 O
and let 8, = p(c- )= Oy Hence lzg(ni) [<H and

| ioﬁmiu < M.

Bus IE ﬁ(al)l wZ lﬂ(ﬁl)u M. Similarly,

" lizgm,,)l anz NARTERAE ERIE>
Hence, Z | #(R, )I*Z | scagl = Z lm,ﬂ ¢ 2M, and the

theoren .ta proved.

3.50. et By be an oriented rectangle in En, and let ¢
mwmwwﬁw(%h I R€C(Ry), then

I

m The proof follows from remarks made in 3.10.
3.51. Theorem. If By it an oriented rectangle in E, and
¢ is R-integrable on Ry, then for sach € > 0 there exists a
3> 0 so that if ¢ is any subdivision of By go that Il el] ¢ 3.

then lga-m-mc,)l <e.
RO
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Froof. Suppose by way of contradiction that the theorem
is false. Hence, thers exists an € > 0 so that if S is any
positive number, then there exists s subdivision ¢ of Ry 80
that 11 11<Q, and lsguﬂ(rm@)l 2 €. Then let {Sn?‘m
& sequence of positive mumbers so that lim {Sn} = 0. ILet

n %0
{"xx} be an associated sequence of subdivisions se that
Nay I € Sn and so that |g§-¢{rn;ao)|2 € for each pos-
(-]
1tive integer n. Clearly, nl_%m“ll nll = 0.

Thaen consider 1lim sup #( 0,3Ry) and lim inf F(0T,3R,).

Since S g = S aﬂ, it follows that
- e 0
lim sup #( aytBy) = Lim inf B oysky) = § 0.

’ [- )
Henoe; there exists only a finite number of values of n 8o
that #(05iRg)< §_ s <5~ and there exists only a finite
nunbar of values of n so that #( Tu'W > 'S‘Rﬁ -%—. Let W
be a positive integer so that °

fb Lenaymy e fou L

Hence, | Sg-ﬁ( OyiBy) | £ -%- < € , a contradioction of the
original assumption. Thus, the theorem is proved.

3.52. Theoren. Iet Ry be an oriented restangle in By,
and let # be an interval funotion defined on C(By). If
RE€C(Ry), then £ is B-integrable on R if, and only if, for
each €> 0 thers exists a §>0 so that if o and g are
subdivisions of R 8o that |lgj 11<§ and [lo5 /<, then
lgtoysm-#loasm) ) < €.

Proof. Suppose that # iz B-integrable on R. Choose
€ > 0, By 3.51 there exists a J>0 so that if o 1s a




91

subdivision of R so that [lo- I« S, then
lgmmml < K.,
R, 2

Let g3 and G be two subdivisions of R so that llgg 114 d
amd llgg i< 8. “Hence
- |fp-stoysmisl (gaamm | < €.
Therefore, |#(oy3R)=#(@31R) | < €, and the first part of
the proof is complete. |

Now choose €>0., Let jojfami {ope} be sequences of
subdivisions with norze going to 0 so that

11m sup #(c-piR) 2 gﬂ»- =

and lim inf #( O‘nnRV Sﬂ* -§~ Now there exists & pose
16ive mmber S so that if oy and o ere subdivisiens of B
so that llogil¢ § and llap Il < &, then

| 8¢ oy sR)-BlopsR)] < - |
Let § and k be positive ut%gmm so that ||og u< 3 olog, 1<,

e ijle sup #( o-nm)m -55-~. and

PGy iR)2 Lim dnf (o psR)+ ..%

Rense, #( yiB) 2 | g~ BE ant #(oyuim) ¢ § o 25, mue
| 9¢ qum TriR) 1< —%— Therefore,
g g < 5¢+ €.

R
EW € i= arbitrary. ﬁuma,

S"* o,

and the B-integrability tollwa fmm 350,
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~ 3+53. If By 18 an oriented pectangle in B, and the
,wmﬂmw@ﬁmm%mamm
ReR f‘-"‘, & 2h any EGQ{%L& A ¥ ) '

an additive interval fumobion mm o8 o(Ry).
Froof. A definition will be introduced first, If o

ani o-' are subdivisions of the oriented rectangle B, then
0 ' will be sald to form a refinement of o~ provided that
each subreotangle of o' is a subset of some subreotangle

of 0.

Let R* €C(Ry), and choome €>0. There exists a 3>0
8o that if each of o~ and o' is a subdivision of R@”ao that
Ho11¢3 and 11a-?)]< S , then lﬂo-;no}wﬂ(o";%}l <€ o -
Iet 07y bs a subdivision of By so that no subrectangle of o
contains an interior point of both R' and Ry-R', Purthemmore,
choose G~y 80 that |lojll< 3. Then let 0, be a sube
divisien of Ry so that l1g31|<3 » U coinoldes with g
on RywR', and g differs from 07 on R*, Then

190y 389)=#{ 0 3Ry) |
= | §( gy sRy=R }48( gy 3 B)=[#( 03 By=R* )4¥(ap5R")] |
= |#{oq38' J=Flo30%)| < € .
Hence, # iz Beintegrable on B' by 3.52.

Then let REC(Ry)e Lot 03 Ryy Bys «oop By be an arbie
trary subdivision of RH; and ochoose C > 0. By the first part
of this theorem, § is B-integrable on R;. Therefore, by 3.5,
there exists & J; >0 so that if o~ is e subdivision of By 80
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that llg11<d;, then | gmw—;agl‘ €. Iet
o't Rly Rhs sees Bn
be one such subdivision of By« Similarly, there exists a
31>0 so that if oy 1s & subdivision of B} @0 that
| l'l a"i H‘ 11
then
lgq-ﬁcw;;nvu SGor=tz o

Let 9 « nin( Sl,S,). 1 =1, 2 eeep ns Them leto g
be & refinsment m‘ U 0"1 so that | a-;* I 43".» Hence,
|z o Zpiai il ces aml ooy’ il <c
But | '

Z Ma-;'m;) = ﬁ(v{'skl)a
Hence, |§ﬁ» Z Sﬁ <z €.

By mmmm this process with respect to each B, € o—,

s positive mumber $, and a subdivision g of R are obtained
%o that 1f G 1s & Tefinement of Uy so that /07yl < 2
then I,HE'_ g'ﬁm Z Sn? | ¢ k°2 € + Repeating this process for
a third time, a refinement of 07y of 03 1s formed so that
Hay 1l < Sz ana | s - Z S ﬁl‘a € . It follows that Oy
satisfien the amwmm pmm. on U3y 1.8

Pa g i Sﬁsz €.
Henve, .

S”“ % Sg < (1) (2€). |
Since € 1s arbitrary, S S §, and the sddltivity of
the integral follows,

=1



ok

3¢5k, K%LMWWL&%: mm
interval f n # is sbsolutely sontingous kegzable
o8 Rg» then the sateres) fupesten S(n) = V;amm
Sontinuous on Ry.

Proof., let REC(Ry), and choose € > 0. There exists
& 3>0 so that if p(o-) 1s any partial subdivision of R so
emapz)lnil <Y, thanpz__)lﬁ(nz)l < €. lLet

Plo-)t Byy Byy ooy By
be one such partial subdivision of R. HNow there exists a
31 >0 8o that 1f 07 1s a subdivision of By €p(g-) so that
llog 11 < 3;s then | S”"ﬂ“—imi“‘ .%..; there exists &
positive number Sz &0 that 1f Ty I8 a m‘hawiatan of B, go
that llop 1l ‘Szu then | S fef{ap3Ba) | < -——5-; seey there
exists a 3,> 0 so that if o, i a eubdsvision of B, so that
Hogpll < §ps then | Sbﬂ(o—nmn)l < -§-- Let
g* mmin( S1. Sg. soey 5,&}
and 16t G fy G 28 sees "n be subdivisions of Byy Rpy esey Byy
respeotively, so that Nr i< S* for £ =1, 2, saep N
Hence, ‘Z l S.."*’W'i!ﬂx’ l ‘E + Therefore |
| fglee+ Zisepml.
But p(q-*) = U o3 forms & partial subdivision of R so that
Timl-3 In) S meme Z s pn)l <e,
pLa*)

QZ. SM* Z g gleze€. mtw. the theorem is proved.
T Ry plT) IR,
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