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PrLiFACii 

This paper consists of a study of the direct sum U of 

two rings S and T. Such a direct sum is defined as the set 

of all ordered pairs Is^, t^), where is an arbitrary ele-

ment In S and t^ is an arbitrary element in T. 

In the first two chapters, binary operations are de-

fined on the set of ordered pairs so that this set is a 

ring. Also included are theorems concerning homomorphic 

mappings between the direct sum of S and T, subrings of this 

direct sum, and rings S and T. 

The last two chapters contain a study of the relation-

ship between direct sum rings or ideals and their components. 

Necessary and sufficient conditions are given in order that 

Ideals in the direct sum of rings 3 and T with units be 

maximal, prime, or primary. Other theorems on topics in-

cluding existence of zero divisors, irredundant primary 

representations of ideals, and the characteristic of a ring 

are stated and proved. 

Examples are provided throughout the thesis in order 

to clarify definitions, to show that some theorems do not 

have converses, and to show the necessity of the hypothesis 

in some theorems. 

ill 
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CHAPTSK I 

INTrtOJJCTQHY COIICtSPTS 

definition 1.1.—I^t A bo a non-empty set. A binary 

operation "x" defined on A is a correspondence which asso-

ciates with each ordered pair la,b) of elements of A, a 

uniquely determined element a x b of A. 

Definition 1.2.—Consider a non-empty set K on which 

there are defined two binary operations which may be called 

addition and multiplication " • *. If a, b < R then 

a • b and a * b are uniquely determined elements in K. 

Such a set is said to be a ring if the set has the follow-

ing properties with respect to these binary operations, 

lot a, b, and c denote arbitrary elements in H. 

. a •* (b • c) - (a -*• b) • c. This Is called the 

associative law of addition. 

Pg . There exists an element z of H such that a * z » a 

for every element a of K. This z Is called the zero element 

or additive identity. It can be shown that z is unique. 

Pj . If a < rt then there exists an x fc B which depends 

on a such that a • x « z where z is the additive identity, 

"x" is usually denotod by w-aM and Is called an additive 

inverse. It can be snown that each a € K has a unique 

additive Inverse. 



P^. a • b » b a. This la called the commutative 

law of addition. 

P^. {a • b) * c = h ' ^b • cJ i3 the associativa law 

of multiplication. 

Pg. a M b + o) » a ' b • a ' c and {b * c) • a * 

b * a * c * a. Thaso are the left and right hand distribu-

tive laws respect!voly. 

It may bo obaorv^d that, the words addition and multi-

plication do not necessarily rofer to the familiar definitions 

given in the case of real numbers. 

Nutation.—Suppose a and b are arbitrary elements in 

a ring R such that w-bw is the additive inverse of b. For 

purposes of notation, denote a * (-b) by a - b. It follows 

that a - (-b) - a b. 

definition 1.3.—A ring K with the following additional 

property is called a commutative rlngi 

P7 . If a and b are arbitrary elements in K then a • b « 

b ' a. 

Definition 1.4.--A ring d is said to have a unity rQ if 

r • a - a • r » a for every element a in R. This is also 
O D © 

called a multiplicative identity. It is unique for any ring. 

Definition 1.5.--l>et R be a ring, and let W be a subset 

of R. If W ia also a ring, call * a subring of R. Since W 

is a subset of R, the binary operations defined on W are 

those operations defined on R restricted to elements of W. 



Theorem I.6.--A non-empty subset V of a ring R li a 

aubring of K if and only if for every w^, *2 * 1* i® 

true that w^ * Wg € W and wi ~ w 2 * *• 

Proof.—Suppoae that for every W p *£ * *, it la true 

that w^ • Wg€ W and *x ~ w 2 * *' ijet wi 4 s» then 

W1 ~ W 1 * *z * * contains an additive identity w 2. 

Suppoae w-̂ , Wg € W thenwz - Wg * -Wg € W. Thus 

w^ - ^-*2^ = wl * w 2 * * 411(1 ^ f ® 1 ^ o w a that * ia closed 

under addition. W ia alao cloaed under multiplication since 

w x • w 2 C W. Observe that for any Wg in W, it followa that 

-Wg € W from the above argument. Thua each element in W haa 

an additive inverse. 

W inherits the associative laws of addition and multi-

plication, the commutative law of addition, and the distri-

butive laws from the ring R. 

Because W satisfies the above properties, it follows 

that W la a subrlng of R. 

Now suppoae that * ia a aubring of R. If w^ and W2 

denote arbitrary elements of W then w-̂  • wg t W since W is 

olosed under multiplication, and since Wg € W implies 

-Wg € 1, it followa by the closure of addition in W that 

* 1 * * "1 " "2 * W* 

Definition 1.7.—Let S and T denote arbitrary rings. 

Consider the ordered pairs laj, t and (a & t 2) where a a 2 

and t p tg are arbitrary elements of S and T respectively. 

Define I a j, t ̂ ) • I a ̂  tg) if and only if a « a 2 and 



m tj, . The aame symbol will be used to denote ©quality 

In rings S and T, but the notation will indicate the rings 

in which the equality refers. Now define addition, * <5> 

and multiplication, n 0 of those ordered pairs by 

( Si, ) & I Sg , tg ) ® ta Sg , + t tg ) and ( Si , tx ) © 

(s2' *2} ® ( h * a a2' *1 * t t2) w h 0 r e +fl ' * a a n d +t» * t 

are the binary operations defined on S and T respectively. 

Suppo se ( s^, t^ ) ® I Sg, tg ) and I a3, tg ) © ( a4 , 14), 

then m 3g, t, * tg, 83 » 34> and *3 • *4* Observe that 

(a^ t^) $> (s3, t 3) <8> C • a a3, • t t 3) © (a2 • a4, 

t« • ^ t„) €> ( s0, t 0) ® ( a., t.). This means that the 
2 t 4 2* 2 4' 4 

operation© is well defined. 

Again suppose ta^, t^) ® ^32» ^2^ ^33» fc3^ ® ^a4» ^4^« 

It then follows that (a^, t^) © la3, tj)® (a^ • a
 a3» fcl * t 

t 3 ) % (8g • fl a4, t £ • t t 4) ® ia2> tg) <& (a4, t4); therefore 

the operation ® la well defined. 

Notation.--The notation * , • g, and ^ binary 

operationa In the rlnga S and T reapeotlvely will be ahortened 

to • and • for uaage In both rlnga S and T. The aymbola uaed 

for elements in S or T will make it clear which binary opera-

tiona are indicated by + and * . For example, ai * B
 a3 will 

be written aa a^ • s^ and t^ • t will be written aa 

4 1 * V 

Definition 1.8.—The aet of all ordered palra lap t^)* 

where a^ la a arbitrary element In S and t^ la an arbitrary 

element in T, la called the dlreot aum of S and T and la 

denoted by S 4. T. 



Notation.--U will be used to denote the direot sum of 

5 and T hereafter. Also, for an ordered pair in U, an "a" 

with a subscript refers to an element in S and a "t* with a 

subscript refers to an element in T. These elements are 

arbitrary unless otherwise specified. For example, ag, 

which always refers to the additive identity in the ring S 

and t , which always refers to the additive identity in the 
z> 

ring T are not arbitrary. 

Theorem 1.9.—The direct sua D li a ring. 

Proof.—Suppose (a^, t^) and (Sg, tg) are arbitrary 

elements of U. Then (a^, t^) © (s2, tg) <g> (s^ + 8g, • tg 

ts3, t^) where + ag ® gj t S and t1 • tg * T since S 

and T are closed under addition. So U is closed under the 

operation 0 • 

Observe that (Ja^, t^) @ (s^, tgJ) <J> ls3, tj) © (a1 • ag, 

h * '2' ® lV V ® (Cai + + V Cti * ^ " V * 
(ai • C»2 • »3], * Ct2 • )@ ( 3 l , t x ) 9 U2 * 

t g + t j l S l a j , t^) ® C a 2 . tg) ® la3, tjfl since the respec-

tive additive operations in S and T are associative. So the 

operation ® defined in U is associative. 

Also note that I a, , t.. ) @ I a , t ) €> I a. + s , t. • t ) ® 
I X Z Z X Z L Z 

la^ where a^ is the additive identity of S and t^ is 

the additive identity of T. Thus U baa an additive identity 

(a , t ). 
1 z 

Let (s^, t^) be an arbitrary element in U. It follows 

that Is, t ) ® l-s., -t ) ( a . - a ., t, - t, ) ® la , t ) 
1 1 1 * 1 1 1* 1 1 z* z 



where -a^ ia the additive inverse of a-̂  and -t-̂  la the 

additive inverse of t^. Thus each element in U haa an 

additive inverse. 

Observe that (a^, t^)<5)lag, t2) @> (s-̂  • ag, t^ • tg)© 

(s2 + s^, tg t^) ̂  (a2, t9) (a^, t-̂ ) aince the reapec-

tive additive operations in 3 and T are commutative. Thus 

$ ia commutative in U. 

Note (a1, tx) O (Sg, tg)% C • ag, t1 • tg) 

(a3, tj) where ' Sg s a3 < 3 and t^ • tg « t^ €• T since 

3 and T are cloaed under their reapeotive multiplicative 

•perati«i*a. Thua U la cloaed under the operation © . 

Alao (a^, t^) 0 Qa 2, tg) © (a3> tj)] ® (ax, t ^ © 

U 2 ' V '2 ' V ® l"l ' ts2 ' a P ' h * b 2 " V 1 ' ® 

( C sl * 82^ ' s3> & 1 - ^ ' V ® U 1 * a2* *1 ' *2' ® 

(a3, t3)@> C(a^, t^) © lag, tg)J © (a3, t^) ainoe the 

multiplicative operatlona of both S and T are aaaoclative. 

Thua U ia associative under the operation ® . 

In addition, (a^, t^) 0 (jag* tg) g) (s3, t 3 0 ® 

(a^ t^) <•> (a2 • a3, tg -*• t3) © (a^ * [a2 + a3l, t^ 

+ *3^ ® ^S1 * s2 * al * a3» * *2 + *1 fc3^ ® 

(a^ • ag, t^ • tg) ® 1 * a3, t^ * tg) © fla1# t^) 0 

(ag, tg J ) ® ® ^a3» ^3^ sinoe 3 and T are rlnga 

which aatiafy the diatributlve property. Thia ahowa that 

U aatiaflea the diatributlve property from the left. Simi-

larly, it followa that the property ia aatlafied from the 

right. So U la aaid to aatiafy the diatributlve property. 



Slnc^ 'J satisfies the above properties, It follows 

that U is a ring. 

Notation.--By Theorem 1.9, the inverse of any ordered 

pair (s^ t ^ is (-3 1, -t^) which hereafter will be denoted 

by - (s1, t^). 

Theorem 1.10.--The direct sum U is a commutative ring 

with unity if and only if both S and T are commutative 

rings with unities. 

Proof.—Suppose S and T are oommutative rings with 

unities. Then by Theorem 1,9, U is a ring. Let s^, Sg and 

t,, t a be arbitrary elements of S and T respectively, then 
JL £* 

( al' tl ) ® U 2 ' t2) @ U 1 * V tl ' t2 ) ® ( a 2 * al» 

t * t, ) 0 I s0, t„) © ( s,, t, ) since S and T are commutative 
2 X 2 2 X X 

rings. Thus U is a commutative ring. 

The following observation confirms that U has a unity. 

Csx, t x) © (se, t 0) ® (sx • s 0, t x • t e ) @ (sx, t x) Where 

aQ the multiplicative identity of S and t Q is the multipli-

cative Identity of T. Thus I a . t ) ia the multiplicative 
G © 

Identity of 0, 

Now suppose U is a commutative ring with unity. Further* 

more suppose (s^, t^), ^a2» *"2̂  € U* ^ e n ^ai» ® 

(Sg, tg) © ls2, tg) 0 ( s ^ tx). This means that (s;L * a2, 

* tg)€> (Sg • s x, tg • t x) so that S]L • a 2 = 8g • B1 and 

t • t a t 0 • t.. It follows that 3 and T are commutative 
1 2 2 1 

rings. 

Note ( s ^ t x) © ( s q , t o ) © l s 1 , tx), where l s e , tfl) is 
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the multiplicative Identity of U. This means that (a^ * 8e * 

t^ • t^) S> ( , t^ )j thus ai * a 6 * and t^ • t# » t^. 

So 3 and T have a# and tQ for multiplicative identities 

respectively. 

Hereafter s# and t^ will refer to the multlplioative 

identities in the rings 3 and T respectively. 

D p H b U I M iUU»-- A non-empty subset Q of a ring R is 

oalled an ideal in R if and only if It has the following 

properties: 

1. If a and b are elements In Q, then a - b is an 

element in Q. 

11. If a la an element in Q, then for every element r 

in R, a • r and r • a are elements In Q. Since both a • r 

and r • a are elements in Q, thia is the definition of a 

two-sided ideal. 

Theorem 1.12.--An ideal Q in R Is necessarily a aubrlng 

of R. 

Proof .—By 1. of Definition 1.11, if a and b are ele-

ments In Q then a - b is an element In Q. Using the faota 

that Q la a subset of R and 11. of Definition 1.11, it 

follows that if a ia an element In Q, then for every c in Q, 

a • c and c • a are elements in Q. Now by applying Theorem 

1.6, it followa that Q la a aubring of R. 

Armpit* 1.13.—Thia example ahowa that the converae 

of Theorem 1.12 la not true. That la, there exiata a aub-

ring Q in a ring R which ia not an ideal. Let Q be the aet 



®f all real numbers of the form x + y J2 where x and y 

are Integers. Define addition and multiplication In the 

usual way. Now Q Is a subring In the ring of real numbers. 

Note V5 (x • y 4% ) ~ x • j & 42 , but this is not 

an element in Q. Thus Q is not an ideal beoause 11. of 

Definition 1.11 is not satisfied. 



CHAPTER II 

HOMOMORPHISMS AMD ISOMORPHISMS 

Definition 2.1.—Let R and M be two rings auoh that for 

arbitrary elements a and b In R, there la associated In some 

determined way, unique Image elements a* and b^ In M such 

that (a -f r b) 1 9 a* + m b 1 and (a • p b)1 » a* • B b \ 

where +_, • and + , * denote additive and multiplicative 
T T HI Bl 

operations In R and M respectively. This mapping is called 

a homomorphlsm of R Into M. If every element of M is the 

image of some element of R, the homomorphlsm Is of R onto M, 

denoted by R ~ M. 

Definition 2.2.-—If in a homomorphlsm of a ring R onto 

a ring M, each element of M is the image of a unique element 

of R, the homomorphlsm Is said to be an isomorphism, denoted 

by R * M. This correspondence between elements is said to 

be one-to-one. 

Theorem 2.5.—The set of all elements in U of the form 

(a. t_) where s € S and t_ Is the additive identity of T is 
Z» Z> 

a aubring of U which la isomorphic to S by the oorreapon-

dence a *•* (a, t z) or a"*" • la, where a* denotes the 

Image of a under the propoaed mapping. 

Proof.—Let a^, 82 he arbitrary elementa In S then 

(Sl, tz) © (a2, t 2) e I ax • a2, t% • t s ) @ U 3 , te), where 

al * 32 * a3 € 3 alnce S la oloaed under multiplication. 

10 
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Thua i t fo l lows t h a t l a . , t ) O l a 0 , t ) € U 1 . 
X 2 c, T* 9 

Obaerve t h a t l a ^ , t ^ ) ^"®2» j ) ® ® ^ a 2 ' t
s ^ < ® 

la -a , t - t ) © ( a , - a „ , t ) t o j ainoe t h e a d d i t i v e 
1 2 z s 1 2 s 0 

inverae of each element i n S la con ta ined In S and a l ao 

becauae S i a c loaed under a d d i t i o n . Thua i t f o l l o v a t h a t 

(a , t ) 0 la , t ) € . U g , and i t oan now be aa id t h a t 
1 s 2 s 

i a a aubr ing of U by applying Theorem 1 . 6 . 

An a r b i t r a r y .element a i n S haa ( a , t ) f o r i t a image, 
% 

ao the mapping ia i n t o . Alao, an a r b i t r a r y element ( a , t ) 
£ 

In U, haa a f o r i t a preimage, ao t h e mapping l a o n t o . 

Nov l e t a , a * S where a . # a A a a u m e t h a t theae 
1 2 1 2 

two d i f f e r e n t e lements have the aame image. Then a . •» l a . , t ) 
X X 2* 

and a g -• l a ^ t ^ ) , bu t a g - * l a g , t ^ ) by the eorreapondenoe. 

Thua la , t ) ® la , t ) , and i t fo l lowa t h a t a » a Q , a 
X 25 ** 2» X 5̂ 

c o n t r a d i c t i o n t o the aaaumption t h a t the elementa were 

d i f f e r e n t . Thua no two d i f f e r e n t elementa i n S have the 

aame image in Ug which makea the mapping o n e - t o - o n e . 

Note la a ) * ® l a a , t ) ® i a . + a , t + t )<S> 
1 2 L d % 1 c «• ® 

l a i» t ) © ( a g , S i" 1 1 1 1 1 , 1 !* * a
2

j l ® 

U 1 • *2 ' V ® l , l ' ' 2 ' S ' S ' ® 1 " ! ' V ® ' * 2 ' V ® 

a 1 0 a 1 . The above e q u a l i t i e s makes the mapping a homo-
1 2 

morphiam. So t h i a one- to-one homomorphism means t h a t Ug 

i a iaomorphio to S . 

Theorem 2 .4 . - -The aet of a l l elementa of U of the form 

la , t ) where a la the a d d i t i v e i d e n t i t y of 3 and t € T i s 
s 1 s 

a subr ing of U which i s isomorphic t o T by the 
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correspondence t *•* t) ° r * ^*b' ^ where t denotes 

the Image of t under the proposed mapping. 

The proof of this theorem follows from the argument 

used In the proof of Theorem 2.3 upon replacing elements 

of the form (a, t ) by elements of the form (s_f t) and 
z 

replacing by 

Theorem 2.5.—The aubring U* of U consisting of all 

elements in U of the form Cs1# t^) where s x € 3 and t s is 

the additive identity of T, is an ideal in U. 

Proof.—By Theorem 2.3 U* is a aubring of U, therefore 

if (s,, t ), lsc, t ) are arbitrary elements of U* then 
1 Z c Z 9 

(a., t ) © (s0, t )
 e uj by Theorem 1.6. Thus property i. 

x Z & Z 3 

of Definition 1.11 is satisfied. 

Suppose Is-p t^) is an arbitrary element of U* and 

(sg, tg) is an arbitrary element of U. Then (s^, t^) O 

u 2 , t 2 ) ® ( S l • «2, t, • t 2 ) ® ( « x • >s. t t) « u j . m o . 

S is olosed under multiplication. Similarly (sg, tg) ® 

(s1# t a ) ® (s2 • s1, t 2 • t g ) ® ls2 • slf t 8) * which 

satisfies property ii. of Definition 1.11. It then follows 

that U 1 is an ideal. 
fl 

Theorem 2.6.—The subring of U consisting of all 

elements in U of the form (sz, t x) where s% is the additive 

identity of S and t^«-T, is an ideal in U. 

The proof of this theorem follows In a manner similar 

to the proof of Theorem 2.5. 

Theorem 2.7.~-The correspondence Is^, ^1^ ^®1* 
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a homomorphiam of U onto U^. The element a of U which 

correspond to the zero element of uj are the elements of 
8 

Proof .--An arbitrary element la-̂ , t^) in U has (â , t^) 

for ita image, ao the mapping ia into. Alao, an arbitrary 

element (â , t̂ ,) in U* haa la-̂ , t-̂ ) for its preimage where 

t-̂  represents any element of T. So the mapping la onto. 

Let (a 1, t-̂ ) and la2, tg) denote arbitrary elements in 

U, then la^, tj^igMa^, t^) and ls2, tg)
1© la2» 

followa that I t^) $ I ag, ̂ 2̂  ® ( î i t j) $ (a g, t^)© 

( â  • a2, tJJ ̂  t j) 9 1 â  • a2' • Koto alao that {J *̂1̂  ® 

(3g, tgO1®^!"*- a2# • tg)1 <®> (a-̂  • a2» t^). Therefore 

it can be aaid that [la-̂ , © tag, t*2^*®^al» *1^® 

(a2, tg)
1. Similarly lalf t ^ O U g , tg)1® (a1# tg) © 

Ca2, t8)€>(Sl • a2, tz • t^JeXaj^ • «2, t#), and Qalf © 

lag* t 2 ^ 1 ® ^ a l * a2» tl * t2^ 1®^ ,l * a2' tz^' Thua tha 

mapping la a homomorphiam of 0 onto U1. 

The zero element of ia (a_, t.). By the oorreapond-
8 m m 

ence, ita preimage ia any element of the form (az> t^) where 

t^ C T. But (as, t-̂ ) represent a any element of U^. Thua 

the elementa of U which correspond to the zero element of 

U1 are the elementa of U1. 

Theorem 2.8.—The correspondence (â , ) -* a-̂  ia a 

homomorphiam of U onto S and the oorreapondenoe (a-̂ , t^) 

t̂  ia a homomorphiam of U onto T. 

Proof. —By Theorem 2.7 the oorreapondenoe (a^, t-̂ ) •* 
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(a-,, t ) la a homomorphlsm of U onto and toy Theorem 2.3 
JL Z 8 

U* la isomorphic to S by the correspondence la^, t%) -* a^. 

Because of the relationship between homomorphlc and iao-

morphic seta, it can be concluded that the oorreapondenoe 

(s^, t^) -» s^ is a homomorphlsm of 0 onto S. That la, if 

A is homomorphic to 5, and B is iaomorphlo to C then A la 

homomorphlc to C, It may be almllarly ooncluded that the 

correspondence (s^, t^) la a homomorphiam of U onto T. 

Definition 2.9.—The ideal in the ring U definea a 

partition of U into aeta which are called realdue claaaea 

modulo Two elementa (s^, t^), (ag, tg) in 0 are in the 

same residue claaa modulo if (a^, t ^ ) © ( a g , tg) € U^. 

In this case, (s^, t^) is said to be congruent to (sgt tg) 

modulo and this is written (a^, t^) s (a2, t g) mod U*. 

Express this set of classes by o/oi. 

Notation.—If (a^, t ^ J ^ C a g , *2^ * Ua t h e n ^al* 

tag, t g ) 0 Ca^ - 8g, t^). Since t^ - t g * t^, it followa 

that t^ - tg. Thia means that any realdue claaa modulo U* 

oan be expreaaed as £(a^, t^) I a^ la an arbitrary element 

in 3, and t^ is a fixed element in T}. Since each t € T 

determines a unique residue clasa modulo denote thia 

residue class by £s,t}. 

Definition 2.10.--For the residue clasaea ^S,t^ and 

tg} modulo U*, define (S, t ^ $ {s, tg3r if and only if 

t^ m tg. Mow define addition,^ , and multiplication, 0 , 

of these residue classes modulo by £s, t ji 0 {s» • 
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{s , tg"i and {s, t £ 3> {s , 0 {s , t x • t ^ r r e s p e c t i v e l y 

where + and • are b ina ry o p e r a t i o n s de f i ned on T. Here ^ 

and 0 r e p r e s e n t w e l l - d e f i n e d b ina ry o p e r a t i o n s . 

Theorem 2,11,—The r e s idue c l a s s e s of U modulo form 
8 

a r i n g which has { s , t ^ f o r i t s a d d i t i v e i d e n t i t y . 
2* 

Proof.—By us ing the f a c t t h a t T i s a r i n g , i t fo l lows 

t h a t U/tJ^ i s a r i n g . 
s 

D e f i n i t i o n 2 . 1 2 . - - I n a manner s i m i l a r to D e f i n i t i o n 2.9 

the s e t of r e s i d u e c l a s s e s may be d e f i n e d . Here each 

s^ i n S determines a unique r e s i d u e c l a s s of U modulo 

denoted by {s^, T^. 

Nota t ion .—The symbols ^ and O w i l l be used to 

denote the b ina ry o p e r a t i o n s of U/U^ as we l l as those of 

U/ t f J . 

Theorem 2 . 1 3 . - - T h e r e e x i s t s an isomorphism between 
8 

and the r e s i d u e c l a s s r i n g t h a t i s 

correspondence to be cons idered i s ( s ^ , t ^ ) {®1» T^* 

Proof . - -An a r b i t r a r y element ( s ^ , t ) i n has {s^, t } 

f o r i t s image, thus the mapping i s i n t o . S i m i l a r l y , an 

a r b i t r a r y r e s i d u e c l a s s {s^, T^ in U has l s ^ , t ^ ) as a p r e -

image. Thus the mapping i s on to . 

A r b i t r a r i l y choose two d i f f e r e n t e lements I s^ , t ^ ) and 

( s „ , t ) i n U * . Assume t h a t they have the same image, then 
6 Z 8 

l s l f t s ) -» {s 1 , T} and (Sg, t g ) - * T}. But U g , t # ) 

( s 2 , T} by the correspondence , so {s^, t } ^ ( s 2 , *}• and i t 

fo l lows t h a t s^ * Sg. There fo re l a ^ , ^ £ ) ® t s g , t g ) i s a 
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contradiction that the elements were different. So no two 

different elements have the same image which makes the 

mapping one-to-one. 

Observe that B s x , tg) © ( Sg, t , a ^ ^ al "*• ®2» ^ 

( s ^ s 2, t z)
X # { s x + S2, T> ^ { a ^ T} $ {B 2, T } $ 

i a2' t* ) 1* 

Also, [(sx, t 2 ) © (s2, t 2 ) ] X ^ (• 1 • a 2, tz • t^)1 ^ 

t a l * a2» t , ) 1 ^ {ax • a 2, T} ^ £ax, T} O fa2, T } 

I s p S ) X ® ^ a2» * 

Thus there exists a one-to-one onto homomorphiam, 

therefore it can be aaid that U * ia isomorphic to U/U^, 

Theorem 2.14. — T h e oorrespondenoe ia^# t^) -»la 8 f t^) 

la a homomorphiam of U onto and la an ideal in U which 

mapa onto the zero of U^, Furthermore, there exiata an iso-

morphism between and the residue olaaa U/U^, that ia 

The proof of this theorem la almilar to the proof of 

Theorema 2.7 and 2.13. 

Example 2.15.—Conaider the ring I g of integera modulo 

6 whose elements are Og, lg, 2g, 3g, 4g, and 5g. Conaider 

alao ringa I g and Ij whose elements are 0 2, 1 2 and Oj, lj, 

2g reapectively. It follows that 13 * * 3 * "^®2» ®3^» 

(l|, Oj), loj, X3), llg, 13), log, 2J), llj, 2j)}. Not. 

that the following correspondence between elements of Ig 

and those of I 2 4- 1^ la an isomorphism: 

°6 °S» ' *6 — » 1*2. 2S> 

»6 • " • H p *£> . 8 « 83'• 
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•Example 2»16.—Consider the direct sum of the two rings 

lg and *4. Denote the elements of lg toy Og, lg and those of 

x4 toy O4, I4, 24, 34. It follows that lg •+ I4
 58 *(jOg, oj), 

®̂2» 4̂̂ » ®̂2» ®4̂ » ®4̂ » ^2» ®4̂ » ^2» ^2» 4̂̂ » 

uj, »i)}. The set consisting of the elements (Og, 0^), 

llg, I4), (Og, 2^), and (lg, 3^) Is a sutorlng of the direct 

sum. It may toe noted that the following set Is a different 

sutorlng of the dlreot sums 0°2» 04)* l°2# ^4), ilg» ^4)* 

(lg, 24)}. 



CHAPTER III 

PROPERTIES OP RINGS 

Theorem 3.1.—The correspondence la-̂ , t-j_) *-* a^) 

between the elements of S + T and T + S is an Isomorphism. 

Proof .--An arbitrary element ( , t^ ) in S 4- T has 

(t]_# ) In T 4- S for ita image, ao the mapping is into. 

Alao an arbitrary element (t^, a^) in T 4- S has la^, t^) 

in S 4 T for its preimage. Thus the mapping I a onto. 

Arbitrarily choose two different elements Ia^, t^) and 

(sg, tg ) in S + T. Assume that theae elementa have the aame 

image. Then (â  , t^) -• (t^, â  ) and I 82, t2 ) -+ )» 

but (ag, tg) ag) by the correapondence. Thua lt^, â  )<§> 

(tg, ag), and it followa that t̂  • tg and â  » Sg. Thia 

means that (a-̂  , t̂  ) © I ag , tg)f a contradiction to the 

assumption that the elements were different. Thua no two 

different elementa have the aame image which makes the 

mapping one-to-one. 

Note Ba x, t^) © lag, tg)]
1 ® [(ax • a2, tx «- © 

(ti • t2, S]_ -v- 32) ® 1 » â  ) © 112, 83) ® t ai, t^ )* © I 82» tg ) , 

Similarly 0 8l» fel) ®^ a2» fc2 ©ft al * «2» *1 * ̂ 0 ® 

^ 1 * *2» S1 * a2) ® (tx , ax ) O (tg, a2 ) <i> ( ax , tx )*© ( a2, t2 )* . 

Thua there exiata a one-to-one onto homomorphlam between S + T 

and T • S. Thia complete a the proof that S + T * T 4- S. 

18 
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Remark»—Since S + T » T + S, any theory concerning the 

ring S 4- T will correspond to the theory concerning the ring 

T + S. Therefore one may apeak of the direct aum of two 

rings without regard to the order of the direct aum. 

Definition 3.2.--A commutative ring F with more than 

one element and having a unity ia called a field if it has 

the additional property: 

i. For every non-zero element "a" in F, there exists 

an "X* in F auch that the multiplication of "a* by "x" yields 

the unity. This element "x* ia called the multiplicative 

inverse of "a". 

Theorem 3.3.—Aasume U is the direct sum of rings S and 

T where U is a commutative ring with unity. Also assume 

that both of S and T haa more than one element. It then 

follows that U cannot be a field. 

Proof.--Suppose S has a non-zero element s^. Then 

(si, tjj) is a non-zero element in U. The multiplicative 

inverse of (a-p t 8) is the ordered pair with the multipli-

cative inverse of s^ in the first position and the 

multiplicative inverse of t £ in the seoond position. Hence 

(s^, t z) does not have a multiplicative inverse beoause t 8, 

the additive identity of T, does not have a multiplicative 

inverse in T. 

Definition 3.4.—Suppoae a, b, and c are elements in 

a ring R whose additive identity is represented by r%. If 

there exists a non-zero element b such that a • b » r 8 or a 
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non-zero element c auch that c • a * r , then a ia aaid to 
z 

be a divisor of zero. A non-zero divisor of zero la called 

a proper divisor of zero. 

Theorem 3.5.—If both S and T have more than one ele-

ment, their direct sum U has proper divisors of zero. 

Proof.—Suppose S and T are rlnga auch that s^ repre-

sents a non-zero element of S and t^ represents a non-zero 

element of T. Observe that (a,, t ) 0 (a , t.) ® (a, • a , 
X Z Z JL x S 

t-, * t )<3>(a_, t ). Both (.a,, t ) and (a , t.,) are proper 
1 Z Z Z X z Z X 

zero diviaora. 

Definition 3.6.--A commutative ring R with more than 

one element and having a unity ia called an Integral domain 

if it has the following additional property: 

i. If r^, r g € R auch that r^ • r g •* r^ then r^ » or 

r 0 » r , where r la the additive identity of R. 
G* Z Z 

Theorem 3.7.--Suppoae U ia the direct aum of rlnga S 

and T where U la a commutative ring with unity. Alao 

auppoae each of S and T has more than one element. Then 

U la not an integral domain. 

Thla proof ia contained in the proof of Theorem 3.5. 

Thl« example shows that if one of S and 

T has only one element and the other la an integral domain, 

then their direct aum U has no proper diviaora of zero. It 

then follows that U 1s an integral domain in thla example. 

Suppose S Is the zero ring which oontalna only the ele-

ment 0. Let T be the ring of integera. Then if CO, t^). 
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(0, tg) ̂  U such that (0, t^) O 10, tg) <g> (0, 0) whera t^ 

and tg are arbitrary integers, then 10, t ^ ) @ (0, 0) or 

to, tg) ® (0, 0) because t^ * t^ = 0 Implies t^ * 0 or t g » 

0. 

Definition 3.9.--If for an arbitrary ring ft, there 

exiata a positive integer n such that "a" added to Itself 

n times equals the additive identity r in R, denoted by 
2* 

na = r z # for every element "a" in K, the least such n is 

called the characteristic of ft, and R is said to have posi-

tive characteristic. If no such integer exists, H is said 

to have characteristic zero. 

Definition 3.10.—Suppose m and n are positive integers 

such that km = pn = r where k and p are the smallest such 

positive integers such that the equation is true. The posi-

tive integer r is called the least common multiple of a and 

n, and this is denoted by 1. c. m. {m,ny * r. 

Theorem 3.11.--If S has characteristic m > 0 and T has 

characteristic n > 0, then U has characteristic 1. c. m. {a,n}- « 

r. 

Proof .--Since 1. o. m. {m,ny*r, there exists positive 

Integers k and p such that km - pn * r. Since S has char-

acteristic m and T has characteristic n, then for any element 

s^ in S, as^ * s 8, and for any element t^ in T, nt^ « t^. 

Thus for any element la^, t^) in U, it follows that rla^, 

(rs,, rt, ) ® l k a s , , pnt, ) ® (ks , pt ) (a , t ). Thus the 
X 1 X X Z 2 « o 

characteristic of U is either less than or equal to r. 
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Suppose that the characteristic of U ig less than r. 

Then ther« exists an integer 0 < j < r such that for every 

element (s-̂ , t in 'J, s p t ^ ) ® l j s p jt^)©la , t ̂  . 

Thus js, «= a for ail elements s., in S and jt, * t for all 
1 z 1 1 z 

elements t^ in T. Since j is not the 1. c. m. {jn, rî , it 

fo1low3 that m does not divide j or n doea not divide j. 

Suppose that m does not divide j, then m ^ j, and since m 

is the characteristic of S, it follows that j is not less 

than m. This means that m < j, thus j = mz w where z is 

an integer and 0 < w < m. It follows that ja^ • (mz -v w) a^* 

mza. + is. » zms, «• wa, = zs •+• wa. * a + *s. * ws, and la, s 
1 1 1 1 z l z 1 1 J 1 

s , thus ws.. = a . faut aince w < m, ws, « a for all a. in 
z 1 z ' 1 z 1 

S contradicts that m ia the characteriatlc of 3, therefore 

m muat divide j. In a similar manner, it follows that n 

must divide j; hence the least common multiple of m and n 

divides j. Thia contradicts J < r, henoe the characteristic 

of U ia not leaa than r. The characteriatlc of U ia there-

fore equal to the 1. c. m. -{m, n} * r. 

Theorem 5.12.--If S haa characteriatlc zero, then U has 

characteristic zero. 

Proof.—Since S has characteristic zero, it follows 

that for each arbitrary integer m > 0, there exiata an ele-

ment a.̂  in S auch that ma.̂  # a^, (a^ may depend on m). Thua 

for any integer m > 0, there exiata an element ) in 

U auch that m(a, , t, ) <S)(msn , mtn )<fHa , t ), which means 
1 1 1 1 z z 

that U haa characteristic zero. 
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Theorem 3.13.--If U haa characteristic r > 0, then S haa 

characteristic m > 0 and T has characteristic n > 0 such that 

1. c. m. £m, n^ = r. 

Proof.--Since U haa characteristic r > 0, it follows 

that for any element ls^f t^) in U, t-̂ ) <S> (ra-̂ , rt^)® 

isz, ^2'* ^his means that for any element s-̂  in S, ra-̂  * 

and for any element t^ in T, rt^ * tg. It follows that 

0 * m $* r and 0 < n £ r. 

Suppose that r is not a multiple of m, then r - am •* b 

where a and b are positive integers and 0 < b < m. For each 

3^ in S, it follows that ra^ * (am + b] = ams^ + ba^ -

as + ba, = ba, and rs, * s„. Thua ba-. * a for any element 
S i x 1 Z X Z 

s^ in 3 which contradicts that m is the charaoteriatio of S. 

Thia means that r is a multiple of n, and In a similar 

manner it follows that r is a multiple of n. 

Now auppoae that there exista a common multiple J of 

m and n leas than r. Then for integers a1 and b1, a*m » 

b^n * j < r. Observe that jla^, t^) <=> Ija-̂ , jt-̂ ) <e) la^ma-^, 

b^tn) <5> (a^a , b1t.) @ la . t ) for any element la-,, t, ) in 
X Z Z Z Z x a. 

U. But this contradicts that the characteristic of U la r. 

Thua aince r la a common multiple of m and n and aince there 

ia no common multiple of m and n leaa than r, it follows that 

r * 1. c. m. {m, n$ « 

Theorem 3,14.--If U haa characteriatio zero, then either 

S baa characteristic zero or T haa characteriatio zero. 

Proof .—If S haa charaoterlatic m > 0 and T haa 
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character! atlc n > 0 then U haa characteristic 1. c. m. 

by Theorem 3.11. This contradicts the zero characteristic of 

U; hence either S or T has .wro characteristic. 



CHAPTER IY 

PROPERTIES OP IDEALS 

Theorem 4.1.--Suppose U' la an Ideal In U. If S bas a 

unity a and T has a unity t then there exist Ideals S* 
© © 

and T* in 3 and T respectively such that U1 ~ 3* 4- T1 . 

Proof.--by a previous theorem, the correspondence 

(s^, t^) —* is a homomorphiam of U onto 3 and (s^, t^) -* 

t^ la a homomorphism of U onto T. Let S* be the image of 

U1 In the first homomorphism and T* be the image of U* in 

the second homomorphiam. The following argument for the 

first homomorphism shows that S' is an ideal. 

Choose two arbitrary elements a^, Sg in S1. Then there 

exists t^, tg € T such that (s^, t^), lag, tg) € U1 with 

(s1# t^) -P sx and (sg, tg) -• Sg. Observe that a preimage 

of ax - s2 is (sx - Sg, tx - tg)©(s 1 # tx) ©(Sg, tg) € u' 

since U* is an ideal, so s1 - Sg € s' . Mow arbitrarily 

choose s. 6 S and a_ € S'. Then there exists (a,, t.) ̂ 0 
4 O 4 4 

and (s&, tg) € U* with t^, tg € T auob that (a4, t^) -* a^ 

and (s_, t_) -» ac. Note that a preimage of a. • ac ia 
D O O 4 O 

* ac» ® ^ becauae U* is 

4 %> 4 O 4 4 D O 

an ideal. Similarly (a& • a^, tg • ® ^a4' 
€ u' . Thus s . * s_ € S* and s • § <& 8* . It oan now be 

4 O D 4 

said that S* is an ideal. 

25 
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A similar argument for the second homomorphiam yields 

that T1 is also an ideal. 

Once again consider the ideal S1 in 3. If is any 

element of S1, then there exists an element in If' with ŝ  in 

the first position, say I ŝ  , ^ U' . It follows that 

( Si, t̂  ) © I sQ , tz ) <S> ( ŝ  , t̂  ) £ U' . Thus U1 contains all 

elements in U of the form (s^, t^). In a similar manner, U* 

contains all elements of the form I a^, ) where t̂  T1 . 

Thus u' contains all sums of these elements since U1 is an 

ideal. That is, U1 contains S1 4- T1 . 

Now let (s^, ) be an arbitrary element in U1 then 

ŝ  €. S' and t̂  * T1 by the construction of S1 and T1 . Hence 

f I * f 

U is contained in 3 • T . Thus it can be concluded that 

U* * 3* • Tf . 

Remark.--In all of the following theorems where S* and 

T1 are ideals in S and T respectively, both S and T are 

assumed to have unities. This will insure that the ideal U* 

is the direct sum of s' and T ', and the symbol U* will be 

reserved for this direct sum. 

Theorem 4.2--S* is an ideal in 3 and T* ia an ideal In 

T if and only if U* ia an ideal in U, 

Proof.--Suppose S' is an ideal in S and T* la an ideal 

in T, Let (s^, t^J, (sg, tg) fc U f, then (a-̂ , t-^Olsg, tg)S> 

(a^ - Sg, t^ - tg) C U1 becauae S1 and T* are ideala cloaed 

under their reapectlve subtractiona. 

Now let (a^, t^) € U and (sg, tg) « U 1, then (a^» t^) © 
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(a2, tg)© (ax * a2, * t2)
 e U' because S* and T* are 

ideals. Similarly (s2, tg)©(a 1 # t x ) * u ' , so o' la an 

ideal in U. The converse follows from Theorem 4.1. 

Definition 4.3.—If A and B are aeta with the property 

that every element of A is also an element of B# then A is 

called a subset of B and the relationship is denoted by 

A £ B. If A - B and A * B then A is called a proper subset 

of B, and the notation A c b is used. 

Lemma 4.4.——Suppose that both S1 and S" are subrings 

in S and that both T' and T" are subrings in T. If S' c S" 

and T' £ T* then S' 4- T' c. S" 4- T". 

Proof.—Let S' * £s' \ s1 €; S'J- and T» * {t'\ t1 € T'"} 

then S' + T* - {(sf, t«) I s* fc S', t» € T'"> . Now let T" * 

{t* \ t' € T'> U {t" \ t" e T", t" i T«> then S' + T" • {(sf, t')l 

s' € S' , t1 € T»} O {is1, t") \ s' €. S' , t" t T", t" 4 T*}. 

Any arbitrary element (a-ĵ , *a *1®° * n T" 

sinoe s^C S' and t^ «- T". Thus It follows that S« 4- T1 S 

S' + T". 

In a similar manner it follows that S1 4- T" £ 3" 4- T". 

But there exists an element s£ in 3" such that s-[ ̂  8* since 

S' C 3". Thus for any element t" In T", (s£, t") €. 3" 4 T" 

but (aj, t J) 4- S' 4- T". It follows that S» * T ' C 3 " + T". 

Thus since S» 4- T1 S. S1 4- T" and S' 4- T" c 3" -V T", It can be 

concluded that S' 4- T« c s" 4- T". 

Lemma 4.5.—Suppose that both S1 and Stt are subrings In 

3 and that T' la a subrlng in T. If S'4 T ' C S " 4 T', then 
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S' C S \ 

Proof.—Let J' 4- T' * (is1, t')l s' € S« , t« €. T«> and 

S" 4- T' - {la", tf ) \ s" € S n, t' * T'"} . Since S' 4- T« c 

S" 4- T', it follows that for any element la^, t^) in 3' T't 

(a^, t-ĵ  ) la alao In S" 4- T' . Thla impliea that for any ele-

ment In S1 , a^ €. Stt; hence S' £ 3*. Alao aince S1 4- T* C 

S" 4- T1 , there exiata an element la", t^) in S w 4- Tf auoh 

that la£, t^) 4" S1 4- T' . But aince € T1 it followa that 

a* ^ S' , thua 3' C 3". 

Definition 4.6.—Suppoae R ia a ring which containa a 

aet of ideala A^, for i - 1, 2,,.., auoh that A^ c A g c. • • • • 

Theae ideala A^ are aaid to form a atrictly increaaing 

aequence. 

Definition 4.7.--If for a ring R, every atrictly increaa-

ing aequence of ideala containa only a finite number of Ideala, 

then the aacending chain condition ia aaid to hold in R. 

Theorem 4.8.—Suppoae S and T are ringa which have 

unitiea. The aacending chain condition holda for S and T 

if and only if it holda for 0 « S 4 T. 

Proof.—Suppoae the aacending chain condition holda for 

U. Alao auppoae that the aacending chain condition doea not 

hold for S. Then there exiata a atrictly increaaing aequence 

of ideala in S denoted by S 1 c. 3 g c ... which ia not finite. 

Obaerve that Ŝ ^ 4- T ia an ideal in U by Theorem 4.2 for i * 

1, 2, ... , and that S 1 4- T c Sg 4 T t , ia an infinitely 

atrictly increaaing aequence in U, where the containment 
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follows from Lemma 4.4. But this contradicts the assumption 

that the ascending chain condition holds for U. An argument 

similar to the above could be made if T were assumed to not 

satisfy the ascending chain condition instead of 3, Thus it 

follows that the ascending chain condition holds for both S 

and T if it holds for U. 

Now assume that the ascending chain condition holds for 

both S and T. Also suppose that It does not hold for U. 

Then there exists a strictly increasing sequence of Ideals 

in U denoted by U ^ C U g c ..., which Is not finite. By 

Theorem 4.1, there exist ideals 3^ and ^ auoh that 

4- T^ for 1 * 1 , 2, ... . This means that either 81» S2'*" 

such that S 1 c S g c ... is Infinite or T ^ Tg, ... such that 

T^ C Tg ... is infinite, where these containments follow 

from Lemma 4.5. But this contradicts the assumption that 

both of S and T satisfy the ascending ohain condition. Hence 

it can be concluded that U satisfies the ascending chain 

condition if 3 and T satisfy the ascending chain condition. 

Definition 4.9.—Suppose R is a ring whloh contains a 

set of ideals AA for 1 * 1, 2,..., such that each subsequent 

ideal is properly contained in the preceding one, denoted by 

A1 Ag 3 ... . These ideals A^ are said to form a strictly 

decreasing sequence. 

Definition 4.10.—If for a ring R, every strictly 

decreasing sequence of Ideals contains only a finite number 

of Ideals, then the descending chain condition la said to 
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hold In R. 

Theorem 4.II.--Suppose S and T are rings which have a 

unity. The descending chain condition holds for 3 and T if 

and only if it holds for U = S 4 T. 

Proof.--&xchange the words descending for ascending and 

decreasing for increasing,and the proof of Theorem 4.8 can 

be used here. 

Definition 4.12.--Suppose R is a ring. An ideal A in H 

is said to he maximal if A + R and there exists no ideals 

between A and R. Thus if A is a maximal ideal and K la an 

ideal auch that A — K £ R, then either K = A or K « R. 

Theorem 4.13.--An ideal U1 - S1 + T1 is maximal if and 

only if either S1 * S and T' is maximal In T or T' a T and 

S1 is maximal in S. 

Proof.--Suppose U' is a maximal ideal in U. Also 

suppose that T' * T and S' is not maximal in S. Then there 

exists an ideal S" such that Sf c 3" c St and by Theorem 4.2, 

S" 4- T1 is an ideal in U. Furthermore by Lemma 4.4, S' 4 T1 c 

S" 4- T' c u. But this contradicts the assumption that 

S» 4- T1 » U* is a maximal ideal in U. 

Secondly suppose U' Is a maximal ideal in U. Also 

assume that T'# T and S1 is maximal in S. Hence T* c. T 

and it follows that S' 4 T' c S1 4 T c U by Lemma 4.4. But 

this contradicts the assumption that S' 4- T1 • U' is a maxi-

mal ideal in U. 

Thirdly suppose U* is a maximal ideal in U, and also 
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assume that T' # T and S' la not maximal In S. Then there 

exists an ideal Sw such that 3' C s" c S, and it again 

follows by Lemma 4.4 that 3f 4- T' C sw 4- T1 c U. But this 

contradicts the assumption that 3' 4 T' * U' ia a maximal 

ideal in U. 

In a similar manner, it can be shown that U' is not maximal 

in each of the following three cases: (1) S1 - S, T' ia 

not maximal in T; (2) Sf # S, T' is maximal in Tj and 

(3) S1 * S, T' is not maximal In T. The only other cases 

are the conclusions desired. Thus S' * S and T' is maximal 

in T or T1 - T and S' is maximal in S if U' is a maximal 

ideal in U. 

Now suppose T' = T and S' is a maximal ideal in S. Also 

suppose U' is not a maximal ideal in U. Then there exists 

an ideal U" such that U* c U" U. By Theorem 4.1, U" may 

be expressed as a direct sum, say U" - 3W 4- T". Thus it 

follows that S1 4- T' c 3" 4- T"c 3 + 1 . Since T* * T, it 

may be concluded that T" * T. This means S' <- 3* 3 by 

Lemma 4.5. But this contradicts the assumption that S' is 

a maximal ideal in 3. 

In a similar way, it can be shown that U' is maximal 

whenever S'» S and T1 is maximal in T. Thus U1 ia a Maximal 

ideal in U if S' s S and Tf is maximal in T or T» • T and S' 

ia maximal in S. 

Example 4.14.—Let S • T be the aet of integers and 

S' « Tf be the even integers. Observe that U" * S + T1 ia 
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an ideal auch that U1 c UBC- u. It follows that Sf and T' 

are maximal ideals in S and T respectively but U' ia not 

maximal in U. 

Definition 4.15.—Suppose R Is a commutative ring. An 

ideal A in R is said to be prime if whenever a product b • c € 

A with b, c €. R then b A or o ^ A. 

Theorem 4.16.--An ideal U1 ® 3' i T' is prime if and 

only if either 3' * S and T' is prime In the commutative ring 

T or T 1 - T and S' is prime in the commutative ring S. 

Proof.—Assume U1 is a prime ideal in the ring U. Then 

one and only one of the following four cases is possible: 

(1) S ' » S , T ' » T j (2) 3' - S, T' * T; (3) 3' # S, T' * T; 

(4) S« * S, T» * T. 

Suppose case (1) is true; then both parts of the conclu-

sion of Theorem 4,16 are implied. 

Suppose case (2) is true when T1 Is not prime. Then 

there exists a product t^ * tg T1 where t-̂  and tg are ele-

ments in T such that t^ # T1 and tg ^ T1 . If a^, Sg €. 3' 

then (s^ • s g, t 1 * tg) @> (s^, t-^JOlsg, tg)€.U' but 

( s^, t^) # U' and (Sg, tg) ̂  U * beoause t^ 4- T' and tg 4- T' . 

This then contradicts the assumption that U' is a prime 

ideal in U. This situation for 12) la thus impossible. 

Now suppose (2) is true when Tf is prime; then this 

case for (2) is one of the conclusions of the theorem. 

Now suppose (3) is true when S' is not prime. Then 

there exists a product s-̂  * Sg S> where s^ and 3g are 
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arbitrary elements of 3 such that a^f£ S' and ag ̂  * ^ o n~ 

aider 1 a x, t ^ , U g , tg} «- U where ax and s 2 represent the 

above mentioned elements and t^, tg Tf . Now ( s^, t-̂ ) 

ls2, t 2 ! © • >2, tx • t 2) c U' ,1th l.1( tj) * U' and 

^S2' ^2^ ^ b 0 c a u a e 3 i ^ anc^ a2 ^ ^his contra-

dicts the assumption that U' is a prime ideal in Ujso this 

situation for (3) is impossible. 

Consider when (3) is true where S' is prime, then thia 

case for 13) is one of the conclusions of the theorem. 

Now for case (4), since 3 * S' there exists an element 

a-j_ in S such that s-̂  ̂  S' . There is also an element s 2 in 

S' such that a-ĵ  • Sg « 3' since S1 is an ideal. Since T * T' 

there exists an element t^ in T', and there is an element 

t 2 € T such that tg 4- T«. It follows that • tg * T« 

because T' is an ideal. Thus (a-̂  • Sg, t^ • tg) @ la-̂ , t-ĵ  © 

(a2, tg) €. U* but (a1, tj_) t 0' since ax * S' and lag, tg) 4 

U' because tg ̂  T'. This means that U' is not a prime Ideal, 

a contradiction which means that case (4) is impoasible. 

Thus cases U ) , 12), and (3) imply the conclusion and 

caae (4) ia impossible. This meana that the hypothesis of 

the theorem implies the conclusion; that ia, if U1 is a 

prime ideal in U then S' « 3 and T1 is prime in T or T1 * T 

and S' ia prime in S. 

Now assume that T' * T and S' la a prime Ideal In the 

ring 3. Assume also that U1 ia not prime. Then there exists 

Is,, l«2, t2)fe u and l«1( t 1 ) © ( » 2 , t2)«- u' .uota that 
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{s1P tx; 4 U« and I s2, t 2 j t U'. It follows that a1 • s 2
 € 

S' but a1 4 S' and s2 4 S' bncauae T1 * T, thus making t-j_ T' 

and tg €; T* . This contradicts tne assumption that S' ia a 

prime ideal, and it can be concluded that U1 ia a prime ideal, 

in U. 

In a similar way, it can be shown that U' ia prime when-

ever S' * S and T1 is prime in T. Thus U' is a prime ideal 

in 0 If S! 8 S and T' is prime in T or T1 * T and S1 ia prime 

in S. 

Kxamnle 4.17.—Let 3 and T be the aet of all integers. 

Then let S' be the set consisting of all multiples of 3 and 

T' be the set consisting of all multiples of 7, Multiplica-

tion to be used is the ordinary multiplication defined for 

Integers. Here both S' and T' are prime ideala. Observe 

6 • 4 • 24 6 S' with 6 e S f, but 4 4 S' and 8 • 7 - 56 « T' 

with 8 4 T', but 7 «- T1 . Thus (6 • 4, 8 * 7) © (6, 8) © 

(4, 7) U' since 6 * 4 « S' and 8 • 7 ^ T' , but 16, 8)^-

U' and C4, 7) 4- U1 . Thia meana that U1 ia not a prime ideal, 

but both S1 and T1 are prime Ideala. 

Definition 4.18.—Suppose R ia a commutative ring. An 

ideal A in R ia said to be primary if the conditions a, b 

R with a • b 6. A and a 4 A impliea the exiatence of an inte-
n _ . 

ger n > 0 such that b « A. 

Theorem 4.19.--An ideal U* * S1 4- T' ia primary if and 

only if either S» - S and T' ia primary in the commutative 

ring T or T1 » T and S' ia primary In the commutative ring 3. 
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Proof.--The fo_io*ln^ two contradictions will be useful 

later in the proof. Fir at let J' toe a primary ideal In the 

ring U. Suppose S1 ia not a primary ideal in the ring S and 

?' is an idoal in the ring T. Then there exists s^, ^ ^ 

such that a^ • Sg S1 with 4- S1 and such that for every 

inte.-er n > 0, 3g ^ S' . Let ( a^, t^) and (sg, tg) be ele-

ments of U, where a^ and 3g represent the above mentioned 

elements and where t^ and tg are arbitrary elements in T 1. 

NOW I 3^ , t-̂  ) © { Sg, tg ) © ( 3-̂  * Sg » • tg) U1 wi th 

la-̂ , t^) £ U' because s-̂  ̂  S1 . And for every integer n > 0 

I Sg, tg)n<£> ( Sg, tg) 4- U' because Sg 4- S1 which contradicts 

the assumption that U' is a primary ideal. 

Again let U1 be a primary ideal in the ring U. Suppose 

also that S' is an ideal in the ring S and T' is not a pri-

mary ideal In the ring T. In a manner similar to the one 

used in the first contradiction, it follows that U' cannot 

be primary, a contradiction to the assumption that U' is pri-

mary. 

Once again assume U* is a primary ideal in U. Then one 

and only one of the following four oases ia possible: 

U ) S' - S, T' - Tj (2) S' » 3, T« * T; (3) S' # S, 

T* * T; (4) S' # 3, T* # T. 

Suppose (1) ia true; then both parta of the concluaion 

of the theorem are satisfied. 

Suppose 12) la true when Tf ia not primary. Then a con-

tradiction to the assumption that U' la primary ia reached 
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as was shown earlier. 

Now suppose (2) is true when T' is primary. Then this 

case for i.2) is one of the conclusions of the theorem. 

Now suppose (3) la true when 3' ia not primary. Then 

by the result at the beginning of the proof, a contradiction 

to the assumption that Uf is primary is reached. 

Consider when (3) is true where 3' is primary. Then 

this case for (3) is one of the conclusions of the theorem. 

Now for case (4) there exist four possibilities* 

(A) 3' is not primary, T' is not primary; (B) S1 is not 

primary, T1 ia primary; tC) 3* is primary, T* la not primary; 

(D) S' is primary, T' la primary. The possibilities (A), 

(B), and IC) lead to a contradiction that U' ia primary by 

the results at the beginning of the proof. 

Consider possibility (D) when 3' # 3 where S' la pri-

mary and T1 * T where T' ia primary. Fir at note that a 0 

la not an element of S 1. For auppoae ae ^ 3'; then for 

every a^ £ S it follows that a^ • ae * a^ S1 . Thia me ana 

that 3' » S, which contradlcta th« aaaumption that S1 # S. 

Now let a^ he an arbitrary element of 3'. It then follows 

that s^ • s e ^ 3' . For auppoae a^ ae ^ S1 then (a^ + a Q) -

al s ae 3' » a contradiction t o the faot that aa €• 3' . Nor 

ia any power of a^+ ae an element of S
1. For auppoae 

^ al * ae^ n s al n al~^ •••"*' n a x + a® ^ 3'» then aince 

all of the terms preceding the laat term in the expreaalon 

contain a 1 # it follows that the sum of theae terms may be 
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expressed as Sg ^ Sf . Thus ( s^ a Q)
n - a 2 * ae ^ "klch 

contradicts the above fact that s^ • aQ 4- S
1 for every a^ €. 

S' . 

Since T' * T for possibility ID), there exists t ± & T 

such that t ^ T« . Observe that lsg, t ^ O C L ^ " * a
e"^ 

<V * fc
Z

)@lV V*"' Where *1 18 d0fined 

above and s-̂  is an arbitrary element of 3' • Note t s^» t^) ̂  

U' since t^ 4- T1 , and for every integer n > 0 I [a^ * a ) * * < § > 

( [s 4- a ^ t * ) * U« since [?1 + a J # 3' . It then follows 

that U* is not a primary ideal which ia a contradiction to 

the assumption. Thus caae 14) ia impoaaible, and caaea U ) , 

(2), and (3) imply the conclusion of the theorem. 

Conversely, suppose T* * T and S' la primary in S. Since 

S' la primary in S then if s ^ S g t S with ax • ag S' and 

a^4- S1 it follows that there exiata an integer n > 0 auoh 

that a!J ̂  S1 . Observe also that for every element ^ in T» 

and for every integer m > 0, t* 6 T'. Thus if (a^, t^), 

(s2, t 2) «• U with U x , t x) © (a2, t 2) ^ U' and Cax, t^) 4 

0t ̂  t follows that ^ S1 and thus thoro ©Jilsti an lnt©g©p 

n > 0 auch that (a2, tg)
n<S> la^, t£) « U«. Thia meana that 

U' ia a primary ideal for thia caae. 

In a similar way, it can be abown that U' ia a primary 

ideal whenever S1 * S and T' is a primary ideal in T. 

Examnle 4.20.—In this example, the ring 3 * {o, ± 2, t 

4, ...} baa no unity and the ring T * £o, ± 2, ± 4, .. ̂  haa 

no unity. It la then ahown that there exiata proper primary 
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ideals S» * {0, ± 4, t 8, . . a n d T» = {o, ± 4, ± 8, . . i n 

S and T respectively such that their direct sum Is a primary 

ideal. 

Observe that 3' is a primary Ideal,for suppose that 

3^ • sg £ S' and s^ ^ S® where s^, Sg ^ S. Since Sg ^ S is 

an even integer, it is of the form 2p for some Integer p. It 

follows that s 2 * (2p)2 *• 4p 2 £ S« , so 3g raised to the power 

two is in S ! thus making S' a primary ideal. In a similar 

fashion, it can be shown that T' is a primary ideal. 

It follows that U', the direct sum of S' and T1 is also 

a primary ideal. For suppose that (s^, t-^) ® (s2, tg) ^ U 1 

and (alf t^) 4 U' where la-^ t-^, la2, t g)
 c U. Sinoe 

(s t j C- U, it follows that s 2fe S and C T. Thus a 2 ® 

2 

2m and t_ ® 2n for some integers m and n. Thus iflg» ^2^ ® 

(2m, 2 n ) 2 € > ( 4 n 2 4m 2) « U«, so (sg, t g ) raised to the power 

two is in U'. This means that U' is a primary ideal. 

Definition 4.21.—Let R be a oommutative ring. Denote 

any element "x" in R added to itself n times by nx where n 

is a positive integer. If n is a negative integer, nx repre-

sents the additive inverse of x added to itself n times. Let 

A * £r • a • na \ r is an arbitrary element in R, a is a 

fixed element in R, and n is any integer^. Here A la aaid 

to be a principal ideal in R generated by a. 

In particular suppose D » S • T is a direct sum. Also 

suppose U« * 3' -V T' is an ideal auch that U» • -ftp, q) © 

lax, t x ) @ r ( a p I p and q are arbitrary elements in S 
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and T respectively, a^ and t^ are fixed elements in S and T 

respectively, and r is any integer . Here U' is said to be 

a principal ideal in the rin^ U where U' is generated by 

( » tĵ  ) . 

Theorem 4,22.--Let S' and T' be ideals in the commuta-

tive rings S and T respectively. U' = S' + T' is a principal 

ideal if and only if S' and T1 are principal ideals. 

Proof .--Suppose that S1 * {a2 \ s 2 - p * ns^, where 

p la an arbitrary element in S, s^ is a fixed element in S, 

and n la any integer} and T! £t2 \ t 2 - q * where 

q is an arbitrary element In T, la a fixed element In T, 

and m is any integer} are principal Ideals in the rings S and 

T respectively. Thus an arbitrary element in U' may be 

expressed as (a2, t2) © (p • a^ • na-p q • • at^). There 

exists an Integer k such that n » k + m, thua 183* *2^® 

Ip • a^ -*• {k + nQ ae • a^, q • t^ •* mt^) ® Ip • a^ 4- Qcae • 

maa3 • a^, q • t^ + mt^)<s>(Cp-v kae3 *
 ai + mai» 9 * *1 

(Cp • kae3 • aj_, q * t^)® i ) G> ip •* ka0, q) 0 ia1# *1^® 

mta^, t-̂ ). Thua U' - {(p kaft, q) © (a^, t^) + mla^, 

where all of the aymbola are defined above which means that 

U' is a principal ideal generated by (a^, t^). 

Now auppoae that U' is a principal ideal. Then U1 can 

be expreaaed as -{ip, q) 0(s^, t^) ® rl a-̂ , t^) © (p • a^, 

q • t^) © Ira-̂ , rt-̂ ) © Ip • a^ + ra^, q • t^ • rt-̂ ) \ p and 

q are arbitrary elementa in S and T respectively, a^ and 

are fixed elementa in S and T respectively, and r ia any 
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Integer). This means that Is the principal generator of 

S' and that t^ la the principal generator of T'. Thus Sf and 

T' are principal ideals whenever U1 is a principal ideal. 

Example 4.23.—Let both 3 and T be the ring of integers. 

Also let the ideal S1 in S be the even integers and the ideal 

T1 be T. It then follows that the direct sum of S' and T1 is 

a maximal ideal in the direct sum of 3 and T. U1 is also a 

prime ideal and a primary ideal. It also follows that 12, 1) 

generates Uf, so U' is principal in U. 

Lemma 4.24.—Suppose that the ideal S1 is the inter-

section of m ideals denoted by S' - 3^ O SJ, fi ... A 3^, and 

also suppose the ideal T' is the intersection of m ideals 

denoted by T1 •» A T£ A ... A T^. The following equation 

then holds: (S' A S' A ... A S») 4- IT' n T« n ... A T«) * 
JL C m JL d M 

(3^4- T p A (3£ 4- TJ!,) A ... A (S^ 4- T^). 

Proof.—Choose an arbitrary element Cs-̂ , t^) in 13£ A 

A ...A S^) + (T^ A T£ A ... A T^), and it then follows 

that s-̂  € for i ~ 1, 2, ..., m and t^ T£ for 1 * 1, 2, 

..., m. This means that ts^, ^ ) € 3| i for 1 » 1, 2, ..., 

a; therefore (s^, t^) ft (3£ 4- T£) A (3£ 4- A ... A lS^ 4-

!£). Thus it oan be concluded that (S| A S£ A ... A 3^) 4-

(T{ A T£ A ... A T^) S I 4 - TJ) A (3^ + ) A ... A i 

1£). 

Now choose an arbitrary element («g, t g) in l3£ 4- ) A 

(S£ 4- T£) A ... A (S^ 4- TJ). It then follows that (sg, tg)6 

Si Ti * * o r 1 2» ...» m. This meant that 8g € Sj, for 
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1 - 1 , and t2fe for i = 1, 2, ..., m. Therefore 

s 2 € S X ° S ^ . . . n s U n d t 2 6 T ^ T ^ ... H T^, ao 

la2, t 2) £ ( s i n s ^ . , . n s;) V it- n t«, n ... n t;), and 

in conclusion (S^ 4- T^) 0 (S^ + T«>) H ... H IS^ + ^ ) £ 

(S' n S' n ... A S« ) 4- IT* 0 T» o ... n T» ). Theae two con-
1 2 m Jl & ® 

tainmenta yield the desired equality. 

Remark.—The above reault may be expanded by obaerving 

that for any two aeta A and B, A 0 B s B n A. Thua the lemma 

ia atill true even after the order of elementa la arbitrarily 

interchanged in either 0*^* ^2* ^m^ 0I> *"n ^ 1 ' *̂ 2' **'* 

. As a consequence for example, If m ® 3 then the follow-

lng equation ia true: IS^ + T p n (SJ 4- T£) ft (SJ + TJ) -

(3^4- TJ) r> ISJ + ?<2) n (SJ + T p . 

Definition 4.25.—An Ideal E la aaid to be the lrre-

dundant interaectlon of a finite aequenoe Bg, •••» 

of ldeala if K la the Interaectlon of the aequenoe B^, Eg, 

•••» a n d K 1 8 n o t t h° l n t e r a o c t l o n o f a o m e P r oP e r 8 u b-

collectlon of the aequence Eg, E^. 

Thaorem 4.26.—Suppoae U» * S« X- T* where S« and T* are 

defined aa the Interaectlon of the ldeala In the aequence 

SJ, 81, ..., 3! and aa the Interaectlon of the ldeala In the 
X 2 ® 

aequence T£, T£, ..., T^ reapectively. If S' la the Irre-

dundant interaectlon of the aequenoe S£, S£, ..., of 

ldeala then Uf la the irredundant Interaectlon of the aequence 
S« + T w, S' + T" ..., S1 4 T" of ldeala where the aequence 
X X 2 2 M M 

T,% T", ..., T" of ldeala may be oonatruoted from {T£, T£ , 
x 2 m 
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..., T^} such that T* = J, 5 i TJ* 

Proof .--Since {s* S' S'l" has ra ideals and {T't 
X 2 HI X 

T' ..., T'j has n ideals it follows that either m < n. m » n. 
2' n ' 

or m > n. If m & n define T" = T» for 1 i 1 i * -1 and T" « 
i i m 

n n 
, n T'. Observe that . n T' is also an ideal aince it 
i = m i i « m i 

may be shown that the intersection of any finite number of 

ideals is an ideal. Now if m > n, define Tj* « for 1 i 1 i 

n and T" » T' for n < i St m. Thus it la possible to expreaa 

T1 as the intersection of a ideala. 

Now suppose that U' la not the irredundant Intersection 

of the sequence S' 4- T" S' 4- T", ..., S' 4- T* of ideala 
1 1 2 2 a m 

where U« » S« 4- T' = IS' n 3' A ... ft S 1) • IT? O T« ft ... ft 
1 2 • 1 2 

T") = IS» 4- T") ft (S» • T") ft ... ft (S« V T") by Lemma 4.24. 
m 1 1 2 2 m m 
Then U' may be expressed aa the interaection of a proper aub-

collection of the aequence S' + T" 8' 4- T" ..., S1 4- T n of 
1 1 2 2' m m 

Ideala. Thua upon omiaaion of a particular direct aum, aay 

S' T" and upon renumbering the remaining direct auma, it 
T P 
followa that U« » (S« 4- T") ft (SI + T*) ft ... ft {S' + T") * 

X X 2 2 M-X »-X 

( s ^ n s ^ n ...n ) 4- itj ft t" ft ... n t" J * s« 4- t« . 

Thia means that S' is not the Irredundant interaection of 

the aequence S' 3' ..., S' of ideala becauae S' may be 
X » R 

written aa a proper aubcollection of thia sequence. Thia ia 

a contradiction to the aaaumption that 3* ia the Irredundant 

interaection of the sequenoe , S^, ..., of ideala. Thua 

U' ia the irredundant intersection of the aequence 3^ -V- T", 
S2 * T2' S* * T* o f i d e a l a * 
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Kryinple 4.27.--In this example, let both S and T be the 

ring of integers with the usual binary operationa. The 

following is an irredundant representation of U1 such that 

the representations of £>' and T' are not irredundant. 

Let U« = 4 ) H (S<2 4- T p H IS£ + T^) A 4- T^) 

where ^ * TJ « {p, ± 3, ± 6, - T£ » {o, ± 4, ± 8, 

and = £o, ± 2, ± 4, ..."}. Thia means that U« * 

( n S J N s> n S^) -V (T^ A T^ A T^ A TJ) » {li2k, I2j) 1 k 

and j are integers^. Observe that 13^ 4- T^) A T^) A 

( S3 * T V " ( S1 ^ S2 n S3 } * ( T1 A T 2 ) * U' a l n C e t 0' 4 ) € 

(3^ A 3^ A S£) 4- (T£ A T^) but (0, 4) # U«. Alao (S*̂  4- T p A 

(s2* Ti) n (ss * T P * tsi n s2 n Si) * tTi n TiJ * u' alnce 

(0, 6) fe (SJ A S£ A S£) 4- IT£ A T£) but (0, 6) 4 U«. And 

( 4 - T P A (sj 4- TJ) n (SJ + T^) - isj n s£) V itj A n 

T£) ̂  0' ainee (6, 0) c tS£ A SJ) 4- (T£ A A T£) but (6, 0) 

#U«. Obaerve alao that (S£ + T p A IS£ 4- T£) f) (S£ 4- T£) « 

(SJ A S£)4- (T£ A T£ A TJ) * U* alnce (4,0) € tS^ A 3£) 4-

(T,1 A T« ft T') but (4, 0) 4 U«. Therefore IP haa an irre-

dundant lnteraection. But A A A * 3* and A 

T' A T* A T' * T' are not irredundant lnteraectlona alnce S•* 
1 Z o 

3[ A S£ and T' ~ A TJ. 

Theorem 4.28.— Suppoae U' » S* 4- T* where S' and T1 are 

proper ideala in S and T reapectively auch that S' » i 5 i 3i 

la an Irredundant intersection of primary Ideala. Then for 
• 

every aet of ideala T£, T£, ..., R in T auch that T»» ± Q X 

T», there exlata S£ 4- T£ for aome 1 » I, 2, ..., • which la 
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m 

not a primary Ideal. Alao, u' 3 i Q i *a n o t a Pr^" 

mary representation of U1 . 

Proof.—Since S' ia a proper ideal in 3 expressed as an 

irredundant intersection of {S}, S£, s;"i for every SĴ , 

i - 1, 2, m, it follows that 3^# 3. Since T1 ia a pro-

per ideal in T, it followa that for every aet of ideala T^, 
m 

TJ>, . r in T1 such that T1 * j. Q i there exista an 

ideal # T for aome integer p where 1 £ p £ m. Contained 

in the proof of Theorem 4.19 ia the reault that if S£ £ S 

and # T then SĴ  4- ia not a primary ideal. Since S^ + 

ia not a primary ideal, it followa that U* * j. * i * 

T^) ia not a primary repreaentatlon of U1 . 
m 

Theorem 4.29.—Suppoae S' — i Q i "here S1 ia the 

irredundant intersection of primary ideala .... s;, 

and T! * T. Then SĴ  4- T for every 1 - 1, 2, ..., m ia a 
• 

primary ideal, and U1 = S ' - t - T - ^ ^ ^ lS^ T) i a an irre-

dundant interaection of primary ideals. 

Proof.—Since Sĵ  ia a primary ideal in S and T' » T, it 

followa from Theorem 4.19 that S^ 4* T* ia a primary ideal in 

U. Since S^ ia a primary ideal for all 1 • 1, 2, ..., a, it 

followa that U' =• S'-V T - (S^ + T) is an intersection 

of primary ideala. Prom Theorem 4.26, it may be concluded 

that the interaection of S'̂  + T for i « 1, 2, n It irre-

dundant . 

Theorem 4.30.--Suppose U' ia a proper ideal in U where 
m . 

U* * Q 2. *•* ̂  ifedundant intersection of primary 
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ideala. Then A « \ U[ = S[ + T£, i * 1, 2, . m } may 

be expressed as B u C, where B — "CiĴ  I U| € A, * T~}* 

and C = -{U£ \ € A, •= 5 •+• Tjf} . Furthermore, if U1 * 

S' + T' then the Intersection of all such that -V T <e 

B and the intersection of all such that S • T£ €r C are 

irredundant primary representations of S1 and T* respectively. 

Proof .--.Each ideal 4 in A for p * 1, 2, ..., m, 

is primary in U*, hence is primary in S and - T or * 

S and T£ is primary in T by Theorem 4,19. Therefore every 

ideal in A is in B or C. The ring U 36 S 4- T =* 8^ 4- T^ for 

all p * 1, 2, m since the representation of U1 la irre-

dundant and since U1 is a proper subset in U. Thus the seta 

B and C are disjoint and A = B o C. 

Now U' is an Irredundant primary Intersection of tboae 

ideala in B u C. Since each -V T in B la a primary ideal 

in Of it follows from the above argument that each such Sj[ 

* 

la primary in S. Let U' * S1 -V- T* then 3' * i Q l 

T* » i Q i T£ by Lemma 4.24. However * S If Sj • Tj ^ B, 

thua S1 is the intersection of S£ auoh that Sj[ -f T * B. 

Furthermore, the intersection la irredundant, for If aome 

S£ for S ^ + T f t B can be eliminated from the repreaentation 

of S', then S£ 4- T can be eliminated from the repreaentation 

of U'. But thia cannot happen since thla repreaentation of 

U* la irredundant. Hence the interaectlon of elementa SJ 

auoh that S | + T € B ia an Irredundant primary repreaentation 

of 3'. Using a similar argument, It follova that the 
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Intersection of element a such that S + Tĵ  £ C is an irre-

dundant primary representation of T'. 

Definition 4.31.--Suppose K la a ring whose additive 

identity la denoted by r . Then a t R Is said to be nilpotent 
2» 

if there exiata an integer n > 1 auch that » r . c- z 

Theorem 4.32.—The ideal U' - S' •+ T' haa a non-zero 

nilpotent element if and only if either of the ideals S1 or 

T' have non-zero nilpotent elements. 

Proof.--Suppose S' has a non-zero nilpotent element a^. 

Then there exists an integer n > 1 auch that a? * a . Thus 
i z 

(a,, t ) € U1 and it follows that (alf t ) n © l a ? , t n) ® 
X Z X 2* X I * 

Ca_, t ) which makea (a,, t ) a non-zero nilpotent element 
Z Z L' Z 

of U'. A similar argument could be used to show that U1 has 

a non-zero nilpotent element if T' haa a non-zero nilpotent 

element. 

Now suppose U1 has a non-zero nilpotent element la^, t^). 

Then one and only one of the following three oaaea la poaalble: 

(1) a 1 = ar, t 1 # t z; (2) a^ * az, m t^j (3) a^ ^ az, 

t 2. For caae one there exiata an integer n > 1 auch 

that t")€Dla s, ^hua la a non-zero 

nilpotent element in T aince t? = t . For caae two there 
X % 

exiata an integer m > 1 auch that (a-̂ , t 8 )
m ® ( a " , t") €> 

(a , t ). Thus a, la a non-zero nilpotent element in S aince 
Z Z X 

al s F o r c a a® three there exiata an integer p > 1 auoh 

that Ca^, t ^ ) p ® (a^, t^)€>(a s, ^hua a^ and are 

non-zero nilpotent elementa In S and T reapectively aince 
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aP * a and t? * t . This means If U' haa a non-zero nil-
1 z 1 z 

potent element then at least one of 3' and T' has a non-zero 

nllpotent element. 

Example 4.33.--Thla example ahowa that U• may have a 

non-zero nllpotent element and yet not both S' and T* have 

non-zero nllpotent elements. Let S' be the ring of integers 

with the zero nllpotent element 0. Note S' does not have a 

non-zero nllpotent element. Let T' be the residue olasa 

ring 1/(4). Note that in T» , [2] [2] » ft>3 » 0 3 l a « 

non-zero nllpotent element in T'. It follows that (0, (2]) 

is a non-zero nllpotent element in U'. 

Definition 4.34.--If A is an ideal in the ring R, then 

the radical of A, denoted by / A , conslata of all elements b 

of R such that some power of b is oontained in A. 

Theorem 4.35.—If U1 * 3' -V T1 where S' and T' are ideala 

in the rings S and T respectively then Js"1 • >Ft* * / u 1 * 

V3' 4- T>. 

Proof.—Suppose a^ JW' and t^ ̂  Jt1; then there exist 

integers m and n such that a® € 3* and t" C T'. Since Sf 

and T1 are olosed under multiplication, it follows that (a*)n 

£ Sf and (t£)a 6 T'. Thua (a™ tj") €>(a]L, t 1)
i m * U», and 

It can be concluded that (a^, t^) €: 4u"'. This aneana that 

M• 4- S /F». 

Now suppose (s^, t^) € >/u*, then there exists an Integer 

r aucta that (a^, = ^ Uf. It than followa that 

a£ €. s* and t* C T1 ao that a^ 4W* and ». Thua 
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v/TI' £ -/s' V Jt» , and It can now be concluded that JaT* -*• ̂Tt"* * 

Ju«. 

Definition 4,36,—Let A and B denote ldeala In the 

commutative ring K, then A b = {a b \ a t A, b €. b}-. 

Theorem 4.37.--If U« » S' 4- T« and U* * S" • T" are 

ideals in the commutative ring U,then U' U" = S9) + 

(T* $ T"). 

JProof.—Suppose (s^, t-̂ ) Uf and la^, t") ̂  U° where 

e S' , a!J € S", t^ * T», and tj * T" then la£, tj_)© (aj, 

tj) U' + U w. It follows that (a^, t^) © (a£, tj) © laj + 

a", t j + t p t iS' £ S") + (T« £ T»); thua U' • UM £ lS« $ 

S") + IT« $ T"). 

An arbitrary y in (S1 $ S") + IT' • T") ia of the form 

^a'l+ a", t^ + t") ao let (a^*- a", + t") t IS1 + S") • 

(Tt-$ t"). It follows that la^-f aj, + tj) « (a'p t^)@ 

( aJ, t*) € u« $ U"; thua (S« + S") 4- (T» * T") £ U» • U". 

Theae two containments imply that U' $ U" = (S1 *•* S") + 

(T» $ T"). 

Remark.--It may be ahown that In a commutative ring, the 

aum of any two ideala, that is A + B, ia alao an ideal. 

Definition 4.38.—Let A and B denote ldeala in the 

commutative ring R, then A * B al * ^ ai ̂  

p ia a positive integer}. 

Theorem 4.39..-If U» * S' V T» and U" » S" + T" are 

ideala in the oommutative ring U then U1 U" * (S' ̂  S") •+• 

(T* * T"). 
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Proof.--An arbitrary element x In U ' ^ U" la of the form 

1 | t[) © la", tj*j] , where € S', t[ €_ T» , aj € 3", 

and t£ T". It then follows that x£^ % \ t|) © (a", 

tjO © i l i Q«i • 4 ' ® l i « i al " i l l '1 ' 

tj) € IS1 * S") + (T» * T"). Thua o» * U" £ IS' * S") + 

{T1 ~ T"). 

An arbitrary element y in (Sf 3") (T' ̂  T") ia of 

the form * aj3> 1 t 1 N o w a a a u m e t h a t 

k > m; then y = t± | x {>{ •
 aJ\3, t f x ' tj3>» * h e r o H * 

tj - t z for i a m 4- 1, m • 2, ..., k. It followa that y may 

be expreaaed aa i !E i & ai * 8"» ^ ® i ̂  i (i ai * H ^ ® 

(a" • tjj] € U' * U". Thua IS' * S") • (T' • T " ) £ U " > U". 

Theae two containmenta imply that U 1 ^ U" * IS' ̂  S M ) + 

IT' * T"). 

Remark.--It may be ahown that in a commutative ring, the 

product of any two Ideals, that ia A ^ B, la alao an ideal* 

Definition 4.40.--Let A and B denote ideala In the 

commutative ring R;then A : B, called the quotient of A and 

B, conalata of all elementa c in R auch that c * b A for 

qvery b B. 

Theorem 4 . 4 1 . — I f U» =" S' 4- T* and U» * S" + T" are 

Ideala in the commutative ring U, then U' : U" * (S' : 3") + 

tT' t T"). 

Proof.—Let l a ^ t±) e U' : U"; then la l f ti><3>(aj, tj) 

€ u » for every (aj, tj) U". Since la-^, t^) O laj, tj)<§> 

(3l • aj, t^ * t£) ̂  U' for every (a", t£) 6 it followa 
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that 3^ * s" « S' for every fe S", and t^ • t" T* for 

every tj * Tn. Thus a ^ S' s S" and t ^ T* : TH, which 

means Is^ t^) e IS' : S w) 4- (T> : T"). It follows that 

U' : U B £ \S» : 3") 4- (T' s T"J. 

Now let Is-̂ , t^) be an arbitrary element of IS1 : S")4-

(Tf : Tn); then s-̂  * s£ € Sf for every s£ ̂  S" and t^ * t" £. 

T' for every tj « T". Thus lsx • aj, ^ • tJ)©(a ] L, t^) ® 

(aj, tj) « S« • T» * U» for every laj, tj) € s n 4- T" * U". 

This means (. a ^ u * : u"* follows that (S* ; S") + 

(T1 : T M) £ U' : Utt# and the above containments Imply U' : U" 

(S' : S") 4- (T1 : Tn). 

Remark.—It may be shown that In a commutative ring, the 

quotient of any two ideals is also an Ideal. 
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