```
DIRECT SUMS OF RINGS
```


APPROVED:

THESIS

Presented to the Graduate Council of the North Texas State University in Partial Ralfillment of the Requirementa

For the Degree of

MASTER OF SCIENCE

By

Dolin F. Hughes, B. S. Denton, Texas

August, 1966

PruFACe

This paper consists of a study of the direct sum U of two rings S and T. Such a direct sum is defined as the set of all ordered pairs (s_{1}, t_{1}), where s_{1} is an arbitrary element in S and t_{1} is an arbitrary element in T.

In the first two chapters, binary operations are defined on the set of ordered pairs so that this set is a ring. Also included are theorems concerning homomorphic mappings between the direct sum of S and T, subrings of this direct sum, and rings S and T.

The last two chapters contain a study of the relationship betweon direct sum rings or ideals and their components. Necessary and sufficient conditions are given in order that ideals in the direct sum of rings S and T with units be maximal, prime, or primary. Other theorems on topics including existence of zero divisors, irredundant primary representations of ideals, and the characteristic of a ring are stated and proved.

Examples are provided throughout the thesis in order to clarify definitions, to show that some theorems do not have converses, and to show the necessity of the hypothesis in some theorems.
HBDLZ JF CUNTINTS
Page
PrepAC: 111
Chapter
I. INTKUD.jCTOKY CONCePTS 1
II. humbiotphishis mive ISOMORPHISMS 10
III. PKOPERTIES OF KINGS 18
IV. PROPERTIES OF IDEALS 25
BIBLIOGRAPHY 51

CHAPPER I

INTKUDJCTOKY COHCEPTS

Definition 1.1.--Let A be a non-empty set. A binary operation " x " derined on A is a correspondence which associates with each ordered pair (a,b) of elements of A, a uniqueiy determined element $a x b o f A$.

Definition 1.2.--Consider a non-empty set K on which there aro defined two binary operations which may be called addition " + " and multiplication " *. If a, b $\in \mathbb{R}$ then $a+b$ and a - b are uniquely determined elements in k. Such a set is sald to be a ring if the set has the following properties with respect to these binary operations. Let a, b, and c denote arbitrary elements in R.
$P_{1} a+(b+c)=(a+b)+c$. This is called the associative law of addition.
P_{2}. There exists an element z of R such that $a+z=2$ for every element a of R. This z is called the zero element or additive identity. It can be shown that z is unique.
P_{3}. If a $\in \mathbb{R}$ then there exists an $x \in K$ which depends on such that $a+x=z$ where z is the additive identity. " x " is usualiy denoted by " $-a$ " and is called an additive inverge. It can be gnown that each a $\in K$ has a unique additive inverge.
$\cdot P_{4} \quad a+b=b+a \cdot f: 1+1 s$ called the commutative law of addition.
P_{5} (a-b) $c=a \cdot(b \cdot c)$ is the associative law of multiplication.
$P_{6} \cdot a \cdot(b+0)=a \cdot b+a \cdot c$ and $(b+c) \cdot a=$ $b \cdot a+c \cdot a . \quad$ Theso are tine $2 A f t$ and right oand distributive laws respectively.

It may be observod that the words addition and multipilcation do not necessarily refer to the familiar definitions Qiven in the case of rasi numbers.

Nutation.--Suppose a and b are arbitrary elements in a ring R guch that " $-b$ " is the additive inverse of b. For purposes of notation, denote $a+(-b)$ by $a-b$. It follows that $a-(-b)=a+b$.

Definition 1.3.--A ring k with the following additional property is called a commutative ring:
P_{7}. If a and b are arbitrary elements in K then $a \cdot b=$ b - a.

Definition l.4.--A ring K is said to have anity r_{e} if $r_{\theta} \cdot a=a \cdot r_{\theta}=a$ for every element a in R. This r_{θ} is also called a multiplicative identity. It is unique for any ring.

Definition 2.5.--Let i be a ring, and lat W be a subset of R. If W is also a ring, call W a subring of K. Since W is a subset of R, the binary operations defined on W are those operations defined on R restricted to elements of W.

Theorem 2.6.-A non-empty subset W of a ring R is a subring of K if and only if for every $w_{1}, W_{2} \in W$, it is true that $w_{1} \cdot w_{2} \in W$ and $w_{1}-w_{2} \in W$.

Proof.--Suppose that for every $w_{1}, w_{2} \in W$, it is true that $w_{1} \cdot w_{2} \in W$ and $w_{1}-w_{2} \in w$. Let $w_{1} \in S$, then $w_{1}-w_{1}=w_{z} \in W$. Thus w contains an additive identity w_{2}.

Suppose $w_{1}, w_{2} \in W$ then $w_{2}-w_{2}=-w_{2} \in W$. Thus $w_{1}-\left(-w_{2}\right)=w_{1}+w_{2} \in W$ and it follows that w is closed under addition. W is also closed under multiplication since \mathbf{w}_{1} - $\mathbf{w}_{2} \mathbb{W}$. Observe that for any \mathbf{w}_{2} in W, it follows that $\mathbf{W}_{2} \in$ from the above argument. Thus each element in was an additive inverse.

W inherits the associative laws of addition and multiplication, the commutative law of addition, and the distributive laws from the ring R.
because W satisfies the above properties, it follows that W is a subring of R.

Now suppose that W is a subring of $R_{\text {. }} I^{f} w_{1}$ and \mathbf{w}_{2} denote arbitrary elements of W then $\mathbb{w}_{1} \mathbf{w}_{2} \in W$ since W is closed under multiplication, and since $\mathbf{w}_{2} \in W$ implies ${ }^{-W} \mathbf{W}_{2}$, it follows by the closure of addition in W that $w_{1}+\left(-w_{2}\right)=w_{1}-w_{2} \in w$.

Depinition l.7.--Let S and T denote arbitrary rings. Consider the ordered pairs (s_{1}, t_{1}) and (s_{2}, t_{2}) where s_{1}, s_{2} and t_{1}, t_{2} are arbitrary elements of S and T respectively. Define (s, t_{1}) (s_{2}, t_{2}) if and only if $s_{1}=s_{2}$ and
$t_{1}=t_{2}$. The same symbol will be used to denote equality in rings S and T, but the notation will indicate the rings in which the equality refers. Now define addition, " Θ ", and multiplication, " \odot ", of these ordered pairs by $\left(s_{1}, t_{1}\right) \oplus\left(s_{2}, t_{2}\right) \Theta\left(s_{1} t_{s} s_{2}, t_{1} t_{t} t_{2}\right)$ and $\left(s_{1}, t_{1}\right) \Theta$ $\left(s_{2}, t_{2}\right) \theta\left(s_{1} \cdot s_{2}, t_{2} \cdot t_{2}\right)$ where t_{s}, and t_{t}, t^{\prime} are the binary operations defined on S and T respectively. Suppose $\left(s_{1}, t_{1}\right) \Theta\left(s_{2}, t_{2}\right)$ and $\left(s_{3}, t_{3}\right) \Theta\left(s_{4}, t_{4}\right)$, then $s_{1}=s_{2}, t_{1}=t_{2}, s_{3}=s_{4}$, and $t_{3}=t_{4}$. Observe that $\left(s_{1}, t_{1}\right) \oplus\left(s_{3}, t_{3}\right) \otimes\left(s_{1}+s s_{3}, t_{1}+t t_{3}\right) \theta\left(s_{2}+s_{4}\right.$, $\left.t_{2}+t_{4}\right) \Theta\left(s_{2}, t_{2}\right) \oplus\left(s_{4}, t_{4}\right)$. This means that the operation \oplus is well defined.

Again suppose $\left(s_{1}, t_{1}\right) \otimes\left(s_{2}, t_{2}\right)$ and $\left(s_{3}, t_{3}\right) \Theta\left(s_{4}, t_{4}\right)$. It then follows that $\left(s_{1}, t_{1}\right) O\left(s_{3}, t_{3}\right) \Theta\left(s_{1} \cdot s s_{3}, t_{1} \cdot t\right.$ $\left.t_{3}\right) \theta\left(s_{2}, s_{4}, t_{2}, t_{4}\right) \theta\left(s_{2}, t_{2}\right) \theta\left(s_{4}, t_{4}\right)$; therefore the operation O is well defined.

Notation. --The notation t_{a}, s^{\prime}, and t_{t}, t_{t} for binary operations in the rings S and T respectively will be shortened to + and - for usage in both rings S and T. The symbols used for elements in S or T will make it clear which binary operations are indicated by + and - . For example, sis s s_{3} will be written as $s_{1} \cdot s_{3}$ and $t_{1} t_{t} t_{4}$ will be written as $t_{1} t_{4}$

Definition 1.8. --The set of all ordered pairs (s ${ }_{1}, t_{1}$), where a is a arbitrary element in S and t_{1} is an arbitrary element in T, is called the direct sum of S and T and is denoted by $S: T$.

Notation.--U will be used to denote the direct sum of S and T hereafter. Also, for an ordered pair in U, an " $s^{\prime \prime}$ with a subscript refers to an element in S and a "t with a subscript refers to an element in T. These elements are arbitrary unless otherwise specified. For example, s, which always refers to the adilive identity in the ring S and t_{z}, which always refers to the additive identity in the ring T are not arbitrary.

Theorem 1,9. --The direct sum U is a ring.
Proof. --Suppose (s_{1}, t_{1}) and (s_{2}, t_{2}) are arbitrary elements of U. Then $\left(s_{1}, t_{1}\right) \oplus\left(s_{2}, t_{2}\right) \Theta\left(s_{1}+s_{2}, t_{1}+t_{2}\right)$ $\left(s_{3}, t_{3}\right)$ where $s_{1}+s_{2}=s_{3} \in S$ and $t_{1}+t_{2}=t_{3} \in T$ since S and T are closed under addition. So U is closed under the operation $(\rightarrow$.

Observe that $\left[\mathrm{a}_{1}, \mathrm{t}_{1}\right) \oplus\left(\mathrm{s}_{2}, \mathrm{t}_{2}\right] \oplus\left(\mathrm{s}_{3}, \mathrm{t}_{3}\right) \Theta\left(\mathrm{s}_{1}+\mathrm{s}_{2}\right.$, $\left.\left.t_{1}+t_{2}\right) \oplus\left(s_{3}, t_{3}\right)(0)\left(s_{1}+s_{2}\right]+s_{3},\left[t_{1}+t_{2}\right]+t_{3}\right) \omega$ $\left(s_{1}+\left[s_{2}+s_{3}\right], t_{1}+\left[t_{2}+t_{3}\right]\right) \theta\left(s_{1}, t_{1}\right) \oplus\left(s_{2}+s_{3}\right.$, $\left.t_{2}+t_{3}\right) \Theta\left(s_{1}, t_{1}\right) \oplus\left[\left(s_{2}, t_{2}\right) \theta\left(s_{3}, t_{3}\right)\right]$ since the respectfive additive operations in S and T are associative. So the operation \oplus defined in U is associative.

Also note that $\left(s_{1}, t_{1}\right) \oplus\left(s_{2}, t_{2}\right) \theta\left(s_{1}+s_{z}, t_{1}+t_{z}\right) \Theta$ (s_{1}, t_{1}), where s_{z} is the additive identity of S and t_{z} is the additive identity of T. Thus U has an additive identity $\left(s_{z}, t_{z}\right)$.

Let (s_{1}, t_{1}) be an arbitrary element in U. It follows that $\left(s_{1}, t_{1}\right) \oplus\left(-s_{1},-t_{1}\right) \theta\left(s_{1}-s_{1}, t_{1}-t_{1}\right) \theta\left(s_{2}, t_{2}\right)$
where $-s_{1}$ is the additive inverse of s_{1} and $-t_{1}$ is the additive inverse of t_{1}. Thus each element in U has an additive inverse.

Observe that $\left(s_{1}, t_{1}\right) \Theta\left(s_{2}, t_{2}\right) \Theta\left(s_{1}+s_{2}, t_{1}+t_{2}\right) \Theta$ $\left(s_{2}+s_{1}, t_{2}+t_{1}\right)\left(s_{2}, t_{2}\right) \Leftrightarrow\left(s_{1}, t_{1}\right)$ since the respectfive additive operations in S and T are commutative. Thus (1) is commutative in U.
$\operatorname{Note}\left(s_{1}, t_{1}\right) \odot\left(s_{2}, t_{2}\right) \Theta\left(s_{1} \cdot s_{2}, t_{1} \cdot t_{2}\right) \Theta$ (s_{3}, t_{3}) where $s_{1} \cdot s_{2}=s_{3} \in S$ and $t_{1} \cdot t_{2}=t_{3} \in T$ since S and T are closed under their respective multiplicative operations. Thus U is closed under the operation \mathcal{O}.

Also $\left(s_{1}, t_{1}\right) \odot\left[\left(s_{2}, t_{2}\right) \odot\left(s_{3}, t_{3}\right)\right] \Theta\left(s_{1}, t_{1}\right) \odot$ $\left(s_{2} \cdot s_{3}, t_{2} \cdot t_{3}\right) \Theta\left(s_{1} \cdot\left[s_{2} \cdot s_{3}\right], t_{1} \cdot\left[t_{2} \cdot t_{3}\right]\right) \Theta$ $\left(\left[s_{1} \cdot s_{2}\right] \cdot s_{3},\left[t_{1} \cdot t_{2}\right] \cdot t_{3}\right) \Theta\left(s_{1} \cdot s_{2}, t_{1} \cdot t_{2}\right) \odot$ $\left(s_{3}, t_{3}\right) \Theta\left[\left(s_{1}, t_{1}\right) \odot\left(s_{2}, t_{2}\right)\right] \odot\left(s_{3}, t_{3}\right)$ since the multiplicative operations of both S and T are associative. Thus U is associative under the operation \odot.

$$
\text { In addition, }\left(s_{1}, t_{1}\right) \odot\left[\left(s_{2}, t_{2}\right) \oplus\left(s_{3}, t_{3}\right)\right] \Theta
$$

$$
\left(s_{1}, t_{1}\right) \odot\left(s_{2}+s_{3}, t_{2}+t_{3}\right) \odot\left(s_{1} \cdot\left[s_{2}+s_{3}\right], t_{1}\right.
$$

$$
\left.\left[t_{2}+t_{3}\right]\right) \theta\left(s_{1} \cdot s_{2}+s_{1} \cdot s_{3}, t_{1} \cdot t_{2}+t_{1} \cdot t_{3}\right) \Theta
$$ $\left(s_{1} \cdot s_{2}, t_{1} \cdot t_{2}\right) \oplus\left(s_{1} \cdot s_{3}, t_{1} \cdot t_{3}\right) \in\left(s_{1}, t_{1}\right) 0$ $\left.\left(s_{2}, t_{2}\right)\right] \oplus\left[\left(s_{1}, t_{1}\right) \odot\left(s_{3}, t_{3}\right)\right]$ since S and T are rings which satisfy the distributive property. This shows that U satisfies the distributive property from the left. Simplardy, it follows that the property is satisfied from the right. So U is said to satisfy the distributive property.

Since J satisfies the above properties, it follows that U is a ring.

Notation.--By Theorem 1.9, the Inverse of any ordered pair (s_{1}, t_{1}) is ($-s_{1},-t_{1}$) which hereafter will be denoted by $-\left(s_{2}, t_{1}\right)$.

Theorem 2, 10. - The direct sum U is a commutative ring with unity if and only if both S and T are commutative rings with unities.

Proof. --Suppose S and T are commutative rings with unities. Then by Theorem 1.9, U is a ring. Let s_{1}, s_{2} and t_{1}, t_{2} be arbitrary elements of S and T respectively, then $\left(s_{1}, t_{1}\right) \odot\left(s_{2}, t_{2}\right) \Theta\left(s_{1} \cdot s_{2}, t_{1} \cdot t_{2}\right) \Theta\left(s_{2} \cdot s_{1}\right.$, $\left.t_{2} \cdot t_{1}\right) \Theta\left(s_{2}, t_{2}\right) \odot\left(s_{1}, t_{1}\right)$ since S and T are commutative rings. Thus U is a commutative ring.

The following observation confirms that U has a unity: $\left(s_{1}, t_{1}\right) \theta\left(s_{e}, t_{\theta}\right) \theta\left(s_{1} \cdot s_{\theta}, t_{1} \cdot t_{e}\right) \theta\left(s_{1}, t_{1}\right)$ where s_{e} the multiplicative identity of S and t_{e} is the multipledative identity of T. Thus (s_{e}, t_{e}) is the multiplicative identity of U.

Now suppose U is a commutative ring with unity. Furthermore suppose $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right) \in U . \operatorname{Then}\left(s_{1}, t_{1}\right) \odot$ $\left(s_{2}, t_{2}\right) \theta\left(s_{2}, t_{2}\right) \odot\left(s_{1}, t_{1}\right)$. This means that $\left(s_{1}, s_{2}\right.$, $\left.t_{1} \cdot t_{2}\right) \Theta\left(s_{2} \cdot s_{1}, t_{2} \cdot t_{1}\right)$ so that $s_{1} \cdot s_{2}=s_{2} \cdot s_{1}$ and $t_{1} \cdot t_{2}=t_{2} \cdot t_{1}$. It follows that S and T are commutative rings.

Note $\left(s_{1}, t_{1}\right) O\left(s_{\theta}, t_{e}\right) \Theta\left(s_{1}, t_{1}\right)$, where $\left(s_{\theta}, t_{e}\right)$ is
the multiplicative 1dentity of U. This meana that ($\mathrm{g}_{1} \cdot \mathrm{~s}_{0}$, $\left.t_{1} \cdot t_{e}\right) \odot\left(s_{1}, t_{1}\right) ;$ thus $s_{1} \cdot s_{0}=s_{1}$ and $t_{1} \cdot t_{0}=t_{1}$. So S and T have s_{0} and t_{e} for multipilcative identitios respeotively.

Heroafter a and t_{0} will refor to the multiplioativo identities in the ringa S and T respectively.

Definition dein.--A non-empty subset Q of a ring R is oalled an ideal in R if and only if it has the following proporties:

1. If a and b are elements in Q, then $a-b$ is an element in Q .
2. If a is an element in Q, then for every element r in $R, a \cdot r$ and r a are elements in Q. Since both a r and r a are elements in Q, this is the definition or a two-aided ideal.

Theorem dele.--An ideal Q in R is necesarily a subring of R.

Preaf.--By 1. of Definition 1.11, if a and b are elements in Q then $a-b$ is an element in Q. Using the facts that Q is a subset of R and il. of Definition 1.11, it follows that if a is an element in Q, then for every o in Q, a - c and c a are elements in Q. Now by applying Theorem 2.6, it follows that Q is a subring of R.

Example lel3.--This example shows that the converse of Theorem 1.12 is not true. That is, there exists a subring Q in a ring R which is not an ideal. Let Q be the set
of all real numbers of the form $x+y \sqrt{2}$ where x and y are integers. Define addition and multiplioation in the usual way. Now Q is a subring in the ring of real numbers. Note $\sqrt{3}(x+y \sqrt{2})=x \sqrt{3}+y \sqrt{3} \sqrt{2}$, but this is not an element in Q. Thus Q is not an ideal because il. of Definition 1.21 is not satiafied.

HOMOMORPHISMS AND ISOMORPHISMS

Definition 2el.--Lot R and M bo two ringa suoh that for arbitrary elements and b in R, there is assooiated in some determined way, unique image elementa a^{l} and b^{1} in M auch that $\left(a+_{r} b\right)^{l}=a^{1}+{ }_{m} b^{2}$ and $(a \cdot p b)^{2}=a^{2} \cdot b^{1}$, where $+_{r}$, ${ }_{r}$ and t_{m}, ${ }_{m}$ denote additive and multiplicative operations in R and M respectively. This mapping is called a homomorphism of R into M. If overy olement of is the image of some olement of R, the homomorphiam is of R onto M, denoted by $R \sim M$.

Dofinition 2.2.--If in a homomorphiam of a ring R onto a ring M, each element of M is the image of a unique element of R, the bomomorphiam is said to be an isomorphism, denoted by R M. This correspondence betweon elements is said to be one-to-one.

Thooren 2.3.--The set of all elements in U of the form (s, t_{z}) where $s \in S$ and t_{z} is the additive identity of T is a subring U_{s}^{2} of U which is isomorphio to S by the correspondence $s \leftrightarrow\left(s, t_{z}\right)$ or $s^{1}=\left(s, t_{z}\right)$, where s^{1} denotes the image of s under the proposed mapping.

Proof.--Let s_{1}, s_{2} be arbitrary elements in S then $\left(s_{1}, t_{2}\right) \odot\left(s_{2}, t_{2}\right) \Theta\left(s_{1} \cdot s_{2}, t_{z} \cdot t_{2}\right) \Theta\left(s_{3}, t_{z}\right)$, where $s_{1} \cdot s_{2}=s_{3} \in S$ sinoe S is olosed under multiplioation.

Thus it follows that $\left(s_{1}, t_{z}\right) O\left(a_{2}, t_{z}\right) \in U_{s}$.
Observe that $\left(s_{1}, t_{z}\right) \oplus\left(-s_{2},-t_{2}\right) \Theta\left(s_{1}, t_{z}\right) \Theta\left(s_{2}, t_{z}\right) \Theta$
 inverse of each olement in S is contained in S and also because S is closed under addition. Thus it follows that $\left(s_{1}, t_{z}\right) \Theta\left(s_{2}, t_{z}\right) \in U_{s}^{l}$, and it oan now be said that U_{s}^{l} is a subring of U by applying Thoorem 1.6 .

An arbitrary element s in S has (s, t_{z}) for ita image, so the mapping is into. Also, an arbitrary olement (s, t_{z}) in U_{s}^{1} has sor its preimage, so the mapping is onto.

Now let $s_{1}, s_{2} \in S$ where $s_{1} \neq a_{2}$. Aasume that these two different elements bave the same image. Then $s_{1} \rightarrow\left(s_{1}, t_{z}\right)$ and $s_{2} \rightarrow\left(s_{1}, t_{2}\right)$, but $s_{2} \rightarrow\left(s_{2}, t_{2}\right)$ by the correspondence. Thus ($\left.s_{1}, t_{2}\right) \Theta\left(s_{2}, t_{2}\right)$, and it follows that $s_{1}=s_{2}$ a contradiction to the assumption that the elementa vere different. Thus no two different elements in S bave the same image in U_{s}^{2} which makes the mapping one-to-one.

Note $\left(s_{1}+a_{2}\right)^{\prime} \rho\left(a_{2}+s_{2}, t_{2}\right) \Theta\left(s_{1}+s_{2} t_{2}+t_{2}\right) \theta$ $\left(a_{1}, t_{2}\right) \omega\left(a_{2}, t_{2}\right) \Theta a_{1}^{1} \oplus s_{2} \quad$ Similarly, $\left(s_{2} \cdot s_{2}\right)^{l} \theta$ $\left(s_{1} \cdot{ }_{2}, t_{2}\right) \theta\left(s_{1} \cdot a_{2}, t_{2}, t_{2}\right) \theta\left(a_{1}, t_{2}\right) O\left(s_{2}, t_{2}\right) \theta$ $s_{1}^{1} 0 \mathrm{~s} \frac{1}{2}$. The above equalities makes the mapping a homomorphism. So this one-to-one homomorphism means that U_{s}^{1} is isomorphic to S.

Theorem 2.4.--The set of all elements of U of the form (s, t) where $s, i s$ the additive identity of S and $t \in T$ is a subring U_{t}^{l} of U which is isomorphic to T by the
correspondence $t \leftrightarrow\left(s_{2}, t\right)$ or $t^{l}=\left(a_{2}, t\right)$ where t^{l} denotes the image of t under the proposed mapping.

The proof of this theorem follows from the argument used in the proof of Theorem 2.3 upon replacing elements of the form (s, t_{z}) by elements of the form (s_{z}, t) and replacing U_{a}^{l} by U_{t}^{l}.

Theorem 2,5. --The subbing U_{s}^{l} of U consisting of all elements in U of the form (s_{1}, t_{z}) where $s_{1} \in S$ and t_{z} is the additive identity of T, is an ideal in U.

Proof. --By Theorem $2.3 \mathrm{U}_{\mathrm{a}}^{\mathrm{l}}$ is a subring of U , therefore if $\left(s_{1}, t_{2}\right),\left(s_{2}, t_{2}\right)$ are arbitrary elements of U_{a}^{l} then $\left(s_{1}, t_{2}\right) \Theta\left(s_{2}, t_{2}\right) \in U_{s}^{l}$ by Theorem 1.6. Thus property 1. of Definition 1.11 is satisfied.

Suppose $\left(s_{1}, t_{2}\right)$ is an arbitrary element of U_{s}^{l} and $\left(a_{2}, t_{2}\right)$ is an arbitrary element of U. Then (a_{1}, t_{2}) O $\left(s_{2}, t_{2}\right) \Theta\left(s_{1} \cdot s_{2}, t_{2} \cdot t_{2}\right) \Theta\left(s_{1} \cdot s_{2}, t_{2}\right) \in U_{1}^{l}$ aline S is olosed under multiplication. Similarly (s, t_{2}) 0 $\left(s_{1}, t_{2}\right) \rho\left(s_{2} \cdot s_{1}, t_{2} \cdot t_{2}\right) \Theta\left(s_{2} \cdot s_{1}, t_{2}\right) \in U u_{s}$, which satisfies property il. of Definition 1. ll. It then follows that U_{s}^{2} is an ideal.

Theorem 2,6. --The subring U_{t}^{1} of U consisting of all elements in U of the form (s_{z}, t_{1}) where s_{z} is the additive identity of S and $t_{1} \in T$, is an ideal in U.

The proof of this theorem follows in a manner similar to the proof of Theorem 2.5.

Theorem_2.7.-The correspondence $\left(s_{1}, t_{1}\right) \rightarrow\left(s_{1}, t_{2}\right)$ is
a homomorphism of U onto $U \frac{1}{a}$. The elements of U which correspond to the zero element of U_{s}^{l} are the elements of U_{t}^{1}.

Proof. --An arbitrary element (s_{1}, t_{1}) in U has (s_{1}, t_{2}) for its image, so the mapping is into. Also, an arbitrary element (s_{1}, t_{2}) in U_{s}^{l} has (s_{1}, t_{1}) for its preimage where t_{1} represents any element of T. So the mapping is onto.

Let $\left(s_{1}, t_{1}\right)$ and $\left(s_{2}, t_{2}\right)$ denote arbitrary elements in U, then $\left(s_{1}, t_{1}\right)^{l} \Theta\left(s_{1}, t_{2}\right)$ and $\left(s_{2}, t_{2}\right)^{l} \Theta\left(s_{2}, t_{2}\right)$. It follows that $\left(s_{1}, t_{1}\right)^{1} \oplus\left(s_{2}, t_{2}\right)^{1} \Theta\left(s_{1}, t_{2}\right) \Theta\left(s_{2}, t_{2}\right) \Theta$ $\left(s_{1}+s_{2}, t_{2}+t_{2}\right) \theta\left(s_{1}+s_{2}, t_{2}\right)$. Note also that $\left[s_{1}, t_{1}\right) \oplus$ $\left.\left.\left(s_{2}, t_{2}\right)\right]^{1} \theta^{\left(s_{1}\right.}+s_{2}, t_{1}+t_{2}\right)^{1} \theta\left(s_{1}+s_{2}, t_{2}\right)$. Therefore it can be said that $\left[\left(s_{1}, t_{1}\right) \Theta\left(s_{2}, t_{2}\right)\right]^{1} \Theta\left(s_{1}, t_{1}\right)^{1} \oplus$ $\left(s_{2}, t_{2}\right)^{2}$. Similarly $\left(s_{1}, t_{1}\right)^{1} O\left(s_{2}, t_{2}\right)^{2} O\left(s_{1}, t_{1}\right) O$ $\left(s_{2}, t_{2}\right) O\left(s_{2} \cdot s_{2}, t_{2} \cdot t_{2}\right) O\left(s_{2} \cdot s_{2}, t_{2}\right)$, and $\left[\left(s_{1}, t_{1}\right) O\right.$ $\left.\left(s_{2}, t_{2}\right)\right]^{l} \Theta\left(s_{1} \cdot s_{2}, t_{1} \cdot t_{2}\right)^{l} \theta\left(s_{2} \cdot s_{2}, t_{2}\right)$. Thus the mapping is a homomorphism of U onto U_{s}^{d}.

The zero element of U_{B}^{2} is $\left(s_{z}, t_{z}\right)$. By the correspondonce, its preimage is any element of the form (s_{2}, t_{1}) where $t_{1} \in T$. But $\left(s_{z}, t_{1}\right)$ represents any element of U_{t}^{1}. Thus the elements of U which correspond to the zero element of U_{s}^{1} are the elements of U_{t}^{1}.

Theorem 2,8. --The correspondence $\left(s_{1}, t_{1}\right) \rightarrow s_{1}$ is a homomorphism of U onto S and the correspondence $\left(s_{1}, t_{1}\right) \rightarrow$ t_{1} is a homomorphism of U onto T.

Proof. -- By Theorem 2.7 the correspondence ($\mathrm{s}_{1}, \mathrm{t}_{1}$) \rightarrow
$\left(s_{1}, t_{z}\right)$ is a homomorphism of U onto U_{g}^{l}, and by Theorem 2.3 U_{a}^{2} is isomorphic to S by the correspondence $\left(s_{1}, t_{z}\right) \rightarrow s_{1}$. Because of the relationship between homomorphic and isomorphic sets, it can be concluded that the correspondence $\left(s_{1}, t_{1}\right) \rightarrow s_{1}$ is a homomorphism of U onto S. That is, if A is homomorphic to B, and B is isomorphic to C then A is homomorphic to C. It may be similarly concluded that the correspondence $\left(s_{1}, t_{1}\right) \rightarrow t_{1}$ is a homomorphism of U onto T. Definition 2.9. --The ideal $U_{\text {l }}^{l}$ in the ring U defines a partition of U into seta which are called residue classes modulo U_{s}^{l}. Two elements ($\left.s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right)$ in U are in the same residue class modulo U_{s}^{l} if $\left(s_{1}, t_{1}\right) Q\left(s_{2}, t_{2}\right) \in U_{s}^{1}$. In this case, (s_{1}, t_{1}) is said to be congruent to (a_{2}, t_{2}) modulo U_{d}^{l}, and this is written $\left(s_{1}, t_{1}\right) \equiv\left(s_{2}, t_{2}\right) \bmod U_{s}^{l}$. Express this set of classes by U / N_{s}^{1}.

Notation. --If $\left(s_{1}, t_{1}\right) \theta\left(s_{2}, t_{2}\right) \in U_{s}^{l} \operatorname{then}\left(s_{1}, t_{1}\right) \theta$ $\left(s_{2}, t_{2}\right) O\left(s_{1}-s_{2}, t_{2}\right)$. Since $t_{1}-t_{2}=t_{2}$, it follows that $t_{1}=t_{2}$. This means that any residue class modulo 0_{s}^{l} can be expressed as $\left\{\left(s_{1}, t_{1}\right) \mid s_{1}\right.$ is an arbitrary element in S, and t_{1} is a fixed element in T\}. Since each $t \in T$ determines a unique residue class modulo U_{t}^{l}, denote this residue class by $\{s, t\}$.

Definition 2.10.--For the residue classes $\left\{S, t_{\}}\right\}$and $\left\{s, t_{2}\right\}$ modulo U_{s}^{l}, define $\left\{s, t_{1}\right\} \in\left\{s, t_{2}\right\}$ if and only if $t_{1}=t_{2}$. Now define addition, θ, and multiplication, θ, of these residue classes modulo U_{s}^{1} by $\left\{S, t_{1}\right\} \Theta\left\{s, t_{2}\right\} \Theta$
$\left\{s, t_{1}+t_{2}\right\}$ and $\left\{s, t_{1}\right\} \odot\left\{s, t_{2}\right\} \ominus\left\{s, t_{1} \cdot t_{2}\right\}$ respectively where + and - are binary operations defined on T. Here \otimes and $)$ represent well-defined binary operations.

Theorem 2.21. --The residue classes of U modulo U_{a}^{l} form a ring which has $\left\{s, t_{z}\right\}$ for its additive identity.

Proof. --By using the fact that T is a ring, it follow a that U / J_{s}^{l} is a ring.

Definition 2.12. --In a manner similar to Definition 2.9 the set of residue classes $0 / N_{t}^{1}$ may be defined. Here each s_{1} in S determines a unique residue class of U modulo U_{t}^{l} denoted by $\left\{s_{1}, T\right\}$.

Notation. --The symbols (\uparrow) and $\odot 111$ be used to denote the binary operations of $U N_{t}^{l}$ as well as those of $\mathrm{u} / \mathrm{U}_{\mathrm{s}}^{\mathrm{l}}$.

Theorem 2.13. --There exists an isomorphism between U_{a}^{1} and the residue class ring U / N_{t}^{1}, that is $U_{s}^{1} \cong U / N_{t}^{1}$. The correspondence to be considered is $\left(s_{1}, t_{2}\right) \leftrightarrow\left\{a_{1}, T\right\}$.

Proof. --An arbitrary element $\left(s_{1}, t_{z}\right)$ in U_{s}^{l} has $\left\{s_{1}, T\right\}$ for its image, thus the mapping is into. Similarly, an arbitrary residue class $\left\{s_{1}, T\right\}$ in U has (s_{1}, t_{2}) as a proimage. Thus the mapping is onto.

Arbitrarily choose two different elements (s_{1}, t_{z}) and $\left(s_{2}, t_{z}\right)$ in U_{s}^{l}. Assume that they have the same image, then $\left(s_{1}, t_{z}\right) \rightarrow\left\{s_{1}, T\right\}$ and $\left(s_{2}, t_{z}\right) \rightarrow\left\{\mathrm{I}_{1}, T\right\}$. But $\left(s_{2}, t_{z}\right) \rightarrow$ $\left\{s_{2}, T\right\}$ by the correspondence, so $\left\{s_{1}, T\right\} \Leftrightarrow\left\{s_{2}, T\right\}$ and it follows that $s_{1}=s_{2}$. Therefore $\left(s_{1}, t_{z}\right) \rho\left(s_{2}, t_{z}\right)$ ia a
contradiction that the elements were different. So no two different elements have the same image which makes the mapping one-to-one.

Observe that $\left[\left(s_{1}, t_{2}\right) \oplus\left(s_{2}, t_{2}\right)\right]^{2} \Leftrightarrow\left(s_{1}+s_{2}, t_{2}+t_{2}\right)^{1} \Leftrightarrow$ $\left(s_{1}+s_{2}, t_{2}\right)^{1} \theta\left\{s_{1}+s_{2}, T\right\} \theta\left\{s_{1}, T\right\} \Leftrightarrow\left\{s_{2}, T\right\}$ $\left(s_{1} t_{2}\right)^{1} \Theta\left(s_{2}, t_{z}\right)^{1}$.

Also, $\left[\left(s_{1}, t_{2}\right) \odot\left(s_{2}, t_{2}\right)\right]^{l} \theta\left(a_{1} \cdot s_{2}, t_{2} \cdot t_{2}\right)^{l} \Theta$ $\left(s_{1} \cdot s_{2}, t_{2}\right)^{l} \Leftrightarrow\left\{s_{1} \cdot s_{2}, T\right\} \Leftrightarrow\left\{s_{1}, T\right\} \quad 0 \quad\left\{s_{2}, T\right\} \Leftrightarrow$ $\left(s_{1}, t_{2}\right)^{1} \odot\left(s_{2}, t_{2}\right)^{1}$.

Thus there exists a one-to-one onto homomorphism, therefore it can be said that U^{l} is isomorphic to U / U_{t}^{l}.

Theorem 2, 14. -- The correspondence $\left(s_{1}, t_{1}\right) \rightarrow\left(s_{z}, t_{1}\right)$ is a homomorphism of U onto U_{t}^{l}, and U_{s}^{l} is an ideal in U which maps onto the zero of U_{t}^{l}. Furthermore, there exists an isomorphia between U_{t}^{l} and the residue class U / U_{s}^{1}, that is $U_{t}^{1} \cong U / U_{s}^{1}$ 。

The proof of this theorem is similar to the proof of Theorems 2.7 and 2.13.

Example 2.15.--Consider the ring I_{6} of integer a modulo 6 whose elements are $0 \frac{1}{6}, 1 \frac{1}{6}, 2_{6}^{1}, 3_{6}^{1}, 4_{6}^{1}$, and 5_{6}^{1}. Consider also rings I_{2} and I_{3} whose elements are $0{ }_{2}^{1}, I_{2}^{1}$ and $0 \frac{1}{3}, I_{3}^{1}$, 2_{3}^{1} respectively. It follows that $I_{2}+I_{3}=\left\{\left(0_{2}^{1}, 0_{3}^{1}\right)\right.$, $\left.\left(1 \frac{1}{2}, 0 \frac{1}{3}\right),\left(0_{2}^{1}, 1 \frac{1}{3}\right),\left(1 \frac{1}{2}, 1 \frac{1}{3}\right),\left(0 \frac{1}{2}, 2 \frac{1}{3}\right),\left(1 \frac{1}{2}, 2 \frac{1}{3}\right)\right\}$. Note that the following correspondence between elements of I_{6} and those of $I_{2}+I_{3}$ is an isomorphism:

$$
\begin{aligned}
& 0_{6}^{1} \leftrightarrow\left(0_{2}^{1}, 0_{3}^{1}\right), 1_{6}^{1} \leftrightarrow\left(1 \frac{1}{2}, 1 \frac{1}{3}\right), 2_{6}^{1} \leftrightarrow\left(0_{2}^{1}, 2_{3}^{1}\right) \\
& 3_{6}^{1} \leftrightarrow\left(1 \frac{1}{2}, 0_{3}^{1}\right), 4_{6}^{1} \leftrightarrow\left(0_{2}^{1}, 1 \frac{1}{3}\right), 5_{6}^{1} \leftrightarrow\left(1 \frac{1}{2}, 2 \frac{1}{3}\right) .
\end{aligned}
$$

Example 2el6.--Consider the direct am of the two rings I_{2} and I_{4}. Denote the elements of I_{2} by $0_{2}^{1}, 1_{2}^{1}$ and those of I_{4} by $0_{4}^{1}, 1_{4}^{1}, 2_{4}^{1}, 3_{4}^{1}$. It follows that $I_{2}+I_{4}=\left\{\left(0_{2}^{1}, 0_{4}^{1}\right)\right.$, $\left(0_{2}^{1}, 1_{4}^{1}\right),\left(0_{2}^{1}, 2_{4}^{1}\right),\left(0_{2}^{1}, 3_{4}^{1}\right),\left(11_{2}^{1}, 0_{4}^{1}\right),\left(1 \frac{1}{2}, 1_{4}^{1}\right),\left(1 \frac{1}{2}, 2_{4}^{1}\right)$, $\left.\left(1 \frac{1}{2}, 3_{4}^{1}\right)\right\}$. The set consisting of the elements $\left(0_{2}^{1}, 0_{4}^{1}\right)$, $\left(1 \frac{1}{2}, 1_{4}^{1}\right),\left(0_{2}^{1}, 2_{4}^{1}\right)$, and $\left(1 \frac{1}{2}, 3_{4}^{1}\right)$ is a aubring of the direct sum. It may be noted that the following set is a different subbing of the direct sum: $\left\{\left(0_{2}^{1}, 0_{4}^{1}\right),\left(0_{2}^{1}, 2_{4}^{1}\right),\left(1 \frac{1}{2}, 0_{4}^{1}\right)\right.$, $\left.\left(1 \frac{1}{2}, 2_{4}^{7}\right)\right\}$.

CHAPTER III

PROPERTIES OF RINGS

Theorem 3.1. --The correspondence $\left(s_{1}, t_{1}\right) \leftrightarrow\left(t_{1}, s_{1}\right)$ between the elements of $S+T$ and $T+S$ is an isomorphism.

Proof. --An arbitrary element (a_{1}, t_{1}) in $S+T$ has $\left(t_{1}, s_{1}\right)$ in $T+S$ for its image, so the mapping is into. Also an arbitrary element (t_{1}, s_{1}) in $T+S$ has $\left(s_{1}, t_{1}\right)$ in $\mathrm{S}+\mathrm{T}$ for its preimage. Thus the mapping is onto.

Arbitrarily choose two different elements (s_{1}, t_{1}) and $\left(s_{2}, t_{2}\right)$ in $S+T$. Assume that these elements have the same image. Then $\left(s_{1}, t_{1}\right) \rightarrow\left(t_{1}, s_{1}\right)$ and $\left(s_{2}, t_{2}\right) \rightarrow\left(t_{1}, s_{1}\right)$, but $\left(s_{2}, t_{2}\right) \rightarrow\left(t_{2}, s_{2}\right)$ by the correspondence. Thus $\left(t_{1}, s_{1}\right) \theta$ $\left(t_{2}, s_{2}\right)$, and it follows that $t_{1}=t_{2}$ and $s_{1}=s_{2}$. This means that $\left(s_{1}, t_{1}\right) \odot\left(s_{2}, t_{2}\right)$, a contradiction to the assumption that the elements were different. Thus no two different elements have the same image which makes the mapping one-to-one.

Note $\left[\left(s_{1}, t_{1}\right) \oplus\left(s_{2}, t_{2}\right)\right]^{1} \Theta\left[\left(s_{1}+s_{2}, t_{1}+t_{2}\right)\right]^{1} \Theta$ $\left(t_{1}+t_{2}, s_{1}+s_{2}\right) \Theta\left(t_{1}, s_{1}\right) \oplus\left(t_{2}, s_{2}\right) \Theta\left(s_{1}, t_{1}\right)^{1} \oplus\left(s_{2}, t_{2}\right)^{1}$. Similarly $\left[\left(s_{1}, t_{1}\right) \odot\left(s_{2}, t_{2}\right)\right]^{1} \Theta\left[\left(s_{1} \cdot s_{2}, t_{1} \cdot t_{2}\right)\right]^{1} \Theta$ $\left(t_{1} \cdot t_{2}, s_{1} \cdot s_{2}\right) \odot\left(t_{1}, s_{1}\right) \odot\left(t_{2}, s_{2}\right) \Theta\left(s_{1}, t_{1}\right)^{1} \odot\left(s_{2}, t_{2}\right)^{1}$. Thus there exists a one-to-one onto homomorphism between $S+T$ and $T+S$. This completes the proof that $S+T \cong T+S$.

Remark.--Since $S+T \cong T+S$, any theory concerning the ring $S+T$ will correspond to the theory concerning the ring $T+S$. Therefore one may speak of the direct sum of two rings without regard to the order of the direct sum.

Definition 3.2.--A commutative ring F with more than one element and having a unity is called a field if it has the additional property:

1. For every non-zero element "a" in F, there exists an " x " in F such that the multiplication of " a " by " x " yields the unity. This olement " x " is called the multiplicative inverse of " a ".

Theorem 3.3.--Asaume U is the direct sum of rings S and T where U is a commutative ring with unity. Also assume that both of S and T has more than one element. It then follows that U cannot be a field.

Proof.--Suppose S has a non-zero element s_{1}. Then (s_{1}, t_{2}) is a non-zero olement in U. The multiplicative inverse of (s_{1}, t_{2}) is the ordered pair with the multiplicative inverse of s_{1} in the first position and the multiplicative inverse of t_{z} in the seoond position. Hence (s_{1}, t_{z}) does not have a multiplicative inverse because t_{z}, the additive identity of T, does not have a multiplicative inverse in T.

Definition 3.4.--Suppose a, b, and o are oloments in a ring R whose additive identity is represented by r_{2}. If there exists a non-zero element b such that $a \cdot b=r_{z}$ or a
non-zero eloment c such that $c \cdot a=r_{z}$, then a la ald to be a divisor of zero. A non-zero divisor of zero is called a proper divisor of zero.

Theprem 3.5.--If both S and T have more than one element, their direct sum U has proper divisors of zero.

Proof.--Suppose S and T are rings such that s_{1} represents a non-zero element of S and t_{1} represents a non-zero element of T. Observe that $\left(s_{1}, t_{z}\right) O\left(s_{z}, t_{1}\right) O_{1}\left(s_{1} \varepsilon_{z}\right.$, $\left.t_{1} \cdot t_{z}\right) O\left(s_{z}, t_{z}\right)$. Both $\left(s_{1}, t_{z}\right)$ and $\left(s_{z}, t_{1}\right)$ are proper zero divisors.

Definition 3.6.--A commutative ring R with more than one element and having a unity is called an integral domain if it has the following additional property:

1. If $r_{1}, r_{2} \in R$ auch that $r_{1} \cdot r_{2}=r_{2}$ then $r_{1}=r_{2}$ or $r_{2}=r_{z}$, where r_{z} is the additive identity of $R_{\text {. }}$

Theorem 3.7.--Suppose U is the direct sum of rings S and T where U is a commutative ring with unity. Also suppose each of S and T has more than one element. Then U is not an integral domain.

This proof is contained in the proof of Theorem 3.5.
Example 3.8.--This example shows that if one of S and I has only one element and the other is an integral domain, then their direct sum U has no proper divisors of zero. It then follows that U is an integral domain in this example.

Suppose S is the zero ring which oontains only the element 0. Let T be the ring of integers. Inen $1 f\left(0, t_{1}\right)$.
$\left(0, \mathrm{t}_{2}\right) \in \mathrm{U}$ such that $\left(0, \mathrm{t}_{1}\right) \odot\left(0, \mathrm{t}_{2}\right) \Theta(0,0)$ where t_{1} and t_{2} are arbitrary integers, then $\left(0, t_{1}\right) \otimes(0,0)$ or $\left(0, t_{2}\right) \Theta(0,0)$ because $t_{1} \cdot t_{2}=0$ implies $t_{1}=0$ or $t_{2}=$ 0.

Definition 3.9.--If for an arbitrary ring R, there oxists a positive integer n such that "a" added to itself n times equals the additive identity r_{z} in R, denoted by na $=r_{z}$, for every element "a" in K, the least such n is called the charactaristic of R, and K is said to bave positive characteristic. If no such integer exista, R is said to have characteristic zero.

Definition 3.10.--Suppose m and n are positive integers such that $k m=p n=r$ where k and p are the smallest such positive integers such that the equation is true. The positive integer r is called the least common multiple of and n, and this is denoted by 1.c. $m .\{m, n\}=r$.

Theorem 3.11.--If S has characteristic $m>0$ and T has characteristic $n>0$, then U has characteristic l.c.m. $\{m, n\}=$ r.

Proof.--Since 1. o. m. $\{m, n\}=r$, there exists positive integers k and p such that $k m=p n=r$. Since S has characteristic m and T bas characteristic n, then for any element s_{1} in $S, \operatorname{ms}_{1}=s_{z}$, and for any element t_{1} in $T, n t_{1}=t_{z}$. Thus for any olement $\left(s_{1}, t_{1}\right)$ in U, it follows that $r\left(s_{1}, t_{1}\right)$ @ $\left(r s_{1}, r t_{1}\right) \theta\left(k m s_{1}, p n t_{1}\right) \Theta\left(k s_{2}, p t_{z}\right) \omega\left(s_{2}, t_{z}\right)$. Thus the characteristic of U is either less than or equal to r.

Suppose that the characteristic of U is less than r. Then there exists an integer $0<j<r$ such that for every element ($s_{1}, t_{1}, \ln J, f\left(s_{1}, t_{1}\right) \otimes\left(j s_{1}, j t_{1}\right) \Theta\left(s_{z}, t_{2}\right)$. Thus $j s_{1}=s_{z}$ for all elements s_{1} in S and $j t_{1}=t_{z}$ for all elements t_{1} in T. Since j is not the l. c. $m .\{m, n\}$, it follows that m does not divide j or n does not divide j. Suppose that m does not divide j, then $m \neq j$, and since m is the characteristic of S, it follows that f is not less than m. This means that $m<j$, thus $j=m z+w$ where z is an integer and $0<w<m$. It follows that $j s_{1}=(m z+w) s_{1}=$ $m z s_{1}+w s_{1}=2 m s_{1}+w s_{1}=2 s_{2}+w s_{1}=s_{2}+w s_{1}=w s_{1}$ and $j s_{1}=$ s_{z}, thus ws $s_{1}=s_{z}$. but since $w<w_{1}=s_{z}$ for all s_{1} in S contradicts that m is the characteristic of S, therefore m must divide j. In a similar manner, it follows that n must divide j; hence the least common multiple of m and n divides f. This contradicts $f \leqslant r$, henoe the characteristic of U is not less than r. The characteristic of U is therefore equal to the l.c.m. $\{m, n\}=r$.

Theorem 3.12.--If S has characteristic zero, then U has characteristic zero.

Proof.--Since S has characteristic zero, it follows
that for each arbitrary integer $m>0$, there exists an element s_{1} in S such that $m_{1} \neq s_{z}$, (s_{1} may depend on m). Thus for any integer $m>0$, there exiats an element $\left(s_{1}, t_{1}\right)$ in U such that $m\left(s_{1}, t_{1}\right) \Theta\left(\mathrm{ms}_{1}, m t_{1}\right) \Theta\left(s_{2}, t_{2}\right)$, which means that U has characteristic zero.

Theorem 3.13.--If U has characteristic $r>0$, then S has characteristic $m>0$ and T has characteristic $n>0$ such that i. c. m. $\{m, n\}=r$.

Proof.--Since U has characteristic $r>0$, it follows that for any element $\left(s_{1}, t_{1}\right) \ln U, r\left(s_{1}, t_{1}\right) \Theta\left(r s_{1}, r t_{1}\right) \Theta$ (s_{z}, t_{z}). This means that for any element s_{1} in $S, r s_{I}=s_{z}$ and for any element t_{1} in $T, r t_{1}=t_{z}$. It follows that $0<m \leq r$ and $0<n \leq r$.

Suppose that r is not a multiple of m, then $r=a m+b$ where a and b are positive integers and $0<b<m$. For each s_{1} in S, it follows that $r s_{1}=[a m+b] s_{1}=a m s_{1}+b s_{1}=$ $a s_{z}+b s_{1}=b s_{1}$ and $r s_{1}=s_{z}$. Thus $b s_{1}=s_{z}$ for any element s_{1} in S which contradicts that m is the charaoteristic of S. This means that r is a multiple of m, and in a similar manner it follows that r is a multiple of n.

Now suppose that there exists a common multiple j of m and n less than r. Then for integers a^{1} and $b^{l}, a^{l} m=$ $b^{l_{n}}=j<r$. Observe that $j\left(s_{1}, t_{1}\right) \Theta\left(j s_{1}, j t_{1}\right) \Theta\left(a^{l} \mathrm{~m}_{1}\right.$, $\left.b^{l} n t_{1}\right) \Theta\left(a^{l} s_{z}, b^{l} t_{2}\right) \Theta\left(s_{z}, t_{z}\right)$ for any element $\left(s_{1}, t_{1}\right)$ in U. But this contradicts that the characteristio of U is r. Thus since r is a common multiple of m and n and aince there is no common multiple of m and n less than r, it follows that $r=1$.c.m. $\{m, n\}$.

Theorem 3.14.--If U has characteristic zero, then either S bas characteristic zero or T has characteristic zero.

Proof.--If S has characteristic $m>0$ and T has
charactarigtic $n>0$ then U has characteristic $1 . c . m .\{m, n\}$ by Theorem 3.11. Tris contradicts the zero characteristic of
U; hence either S or T has zero characteristic.

CHAPTER IV

PROPERTIES OF IDEALS

Theorem 4.1.--Suppose U^{\prime} is an ideal in U. If S has a unity s_{θ} and T has a unity t_{θ} then there exist ideals S^{\prime} and T^{\prime} in S and T respectively such that $U^{\prime}=S^{\prime}+T^{\prime}$.

Proof.--by a previous theorem, the correspondence $\left(s_{1}, t_{1}\right) \rightarrow s_{1}$ is a homomorphism of U onto S and $\left(s_{1}, t_{1}\right) \rightarrow$ t_{1} is a homomorphism of U onto T. Let S^{\prime} bo the image of $U^{\prime \prime}$ in the first homomorphism and T^{\prime} be the image of U^{\prime} in the second homomorphism. The following argument for the first homomorphism shows that S^{\prime} is an ideal.

Choose two arbitrary elements s_{1}, a_{2} in S^{\prime}. Then there exists $t_{1}, t_{2} \in T$ such that $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right) \in \sigma^{\prime}$ with $\left(s_{1}, t_{1}\right) \rightarrow s_{1}$ and $\left(s_{2}, t_{2}\right) \rightarrow s_{2}$. Observe that a preimage of $s_{1}-s_{2}$ is $\left(s_{1}-s_{2}, t_{1}-t_{2}\right) \Theta\left(s_{1}, t_{1}\right) \Theta\left(s_{2}, t_{2}\right) \in U^{\prime}$ since U^{\prime} is an ideal, so $s_{1}-s_{2} \in S^{\prime}$. Now arbitrarily choose $s_{4} \in S$ and $s_{5} \in S^{\prime}$. Then there exists $\left(a_{4}, t_{4}\right) \in U$ and $\left(s_{5}, t_{5}\right) \in U^{\prime}$ with $t_{4}, t_{5} \in T$ such that $\left(s_{4}, t_{4}\right) \rightarrow s_{4}$ and $\left(s_{5}, t_{5}\right) \rightarrow s_{5}$. Note that a preimage of $s_{4} \cdot s_{5}$ is $\left(s_{4} \cdot s_{5}, t_{4} \cdot t_{5}\right) \odot\left(s_{4}, t_{4}\right) \odot\left(s_{5}, t_{5}\right) \in U^{\prime}$ because U^{\prime} is an ideal. Similarly ($\left.s_{5} \cdot s_{4}, t_{5} \cdot t_{4}\right) \odot\left(s_{5}, t_{5}\right) \odot\left(s_{4}, t_{4}\right)$ $\in U^{\prime}$. Thus $s_{4} \cdot s_{5} \in S^{\prime}$ and $s_{5} \cdot s_{4} \in S^{\prime}$. It can now be said that S^{\prime} is an ideal.

A similar argument for the second homomorphism yields that T^{\prime} is also an ideal.

Once again consider the ideal S^{\prime} in S. If si is any element of S^{\prime}, then there exists an element in U^{\prime} with s_{1} in the first position, say $\left(s_{1}, t_{1}\right) \in U^{\prime}$. It follows that $\left(s_{1}, t_{1}\right) \odot\left(s_{\theta}, t_{z}\right) \Theta\left(s_{1}, t_{z}\right) \in U^{\prime}$. Thus U^{\prime} contains all elements in U of the form (s_{1}, t_{z}). In a similar manner, U^{\prime} contains all elements of the form (s_{2}, t_{1}) where $t_{2} \in I^{\prime}$. Thus U^{\prime} contains all sums of these elements since U^{\prime} is an ideal. That is, U^{\prime} contains $S^{\prime}+T^{\prime}$.

Now let (s_{1}, t_{1}) be an arbitrary element in U^{\prime} then $s_{1} \in S^{\prime}$ and $t_{1} \in T^{\prime}$ by the construction of S^{\prime} and T^{\prime}. Hence U^{\prime} is contained in $S^{\prime}+T^{\prime}$. Thus it can be concluded that $U^{\prime}=S^{\prime} \dot{+} T^{\prime}$.

Remark. --In all of the following theorems where S^{\prime} and T^{\prime} are ideals in S and T respectively, both S and T are assumed to have unities. This will insure that the ideal U^{\prime} is the direct sum of S^{\prime} and T^{\prime}, and the symbol U^{\prime} will be reserved for this direct sum.

Theorem 4e2--S' is an ideal in S and T^{\prime} is an ideal in T if and only if U^{\prime} is an ideal in U.

Proof.--Suppose S^{\prime} is an ideal in S and T^{\prime} is an ideal in T. Let $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right) \in U^{\prime}, \operatorname{then}\left(s_{1}, t_{1}\right) \Theta\left(s_{2}, t_{2}\right) \theta$ $\left(s_{1}-s_{2}, t_{1}-t_{2}\right) \in U^{\prime}$ because S^{\prime} and T^{\prime} are ideal closed under their respective subtractions.

Now let $\left(s_{1}, t_{1}\right) \in U$ and $\left(s_{2}, t_{2}\right) \in U^{\prime}$, then $\left(s_{1}, t_{1}\right) \mathbb{O}$
$\left(s_{2}, t_{2}\right) \Theta\left(s_{1} \cdot s_{2}, t_{1} \cdot t_{2}\right) \in U^{\prime}$ because S^{\prime} and T^{\prime} are ideals. Similarly $\left(s_{2}, t_{2}\right) \odot\left(s_{1}, t_{1}\right) \in U^{\prime}$, so U^{\prime} is an ideal in U. The converse follows from Theorem 4. 1.

Definition 4.3. --If A and B are sets with the property that every element of A is also an element of B, then A is called a subset of B and the relationship is denoted by $A \subseteq B$. If $A \subseteq B$ and $A \neq B$ then A is called a proper subset of B, and the notation $A \subset B$ is used.

Lemma 4.4.--Suppose that both S^{\prime} and $S^{\prime \prime}$ are subrings In S and that both T^{\prime} and $T^{\prime \prime}$ are subrings in T. If $S^{\prime} C S^{\prime \prime}$ and $T^{\prime} \subseteq T^{\prime \prime}$ then $S^{\prime}+T^{\prime} \subset S^{\prime \prime} \dot{+1}$.

$$
\text { Proof. --Let } S^{\prime}=\left\{s^{\prime} \mid s^{\prime} \in S^{\prime}\right\} \text { and } T^{\prime}=\left\{t^{\prime} \mid \text { } t^{\prime} \in T^{\prime}\right\}
$$ then $S^{\prime}+T^{\prime}=\left\{\left(s^{\prime}, t^{\prime}\right) \mid s^{\prime} \in S^{\prime}, t^{\prime} \in T^{\prime}\right\}$. Now let $T^{\prime \prime}=$ $\left\{t^{\prime} \mid t^{\prime} \in T^{\prime}\right\} \cup\left\{t^{\prime \prime} \mid t^{\prime \prime} \in T^{\prime \prime}, t^{\prime \prime} \not T^{\prime}\right\}$ then $S^{\prime}+T^{\prime \prime}=\left\{\left(s^{\prime}, t^{\prime}\right) \mid\right.$ $\left.s^{\prime} \in S^{\prime}, t^{\prime} \in T^{\prime}\right\} \cup\left\{\left(s^{\prime}, t^{n}\right) \mid s^{\prime} \in S^{\prime}, t^{n} \in T^{n}, t^{\prime \prime} \notin T^{\prime}\right\}$ 。 Any arbitrary element ($s_{1}^{\prime}, t_{1}^{\prime}$) in $S^{\prime} \dot{+} T^{\prime}$ is also in $S^{\prime} \dot{+} T^{\prime \prime}$ since $a_{i}^{\prime} \in S^{\prime}$ and $t_{i}^{\prime} \in T^{\prime \prime}$. Thus it follows that $S^{\prime}+T^{\prime} \leq$ $S^{\prime} \dagger T^{n}$.

In a similar manner it follows that $S^{\prime}+T^{n} \subseteq S^{n}+T^{\prime \prime}$. But there exists an element s_{1}^{n} in S^{n} such that $s_{1}^{\prime \prime} s^{\prime}$ since $S^{\prime} \subset S^{n}$. Thus for any element t_{1}^{n} in $T n,\left(s_{1}^{\prime \prime}, t_{1}^{n}\right) \in S^{n}+T^{n}$
 Thus since $S^{\prime} \dot{+} T^{\prime} \subseteq S^{\prime}+T^{n}$ and $S^{\prime}+T^{n} \subset S^{n}+T^{n}$, it can be concluded that $S^{\prime} i^{\prime \prime} \subset S^{\prime \prime}+T^{\prime \prime}$.

Lemma 4.5.--Suppose that both S^{\prime} and $S^{\prime \prime}$ are subrings in

s'c s".
Proof.--Let $j^{\prime}+T^{\prime}=\left\{\left(s^{\prime}, t^{\prime}\right) \mid s^{\prime} \in S^{\prime}, t^{\prime} \in T^{\prime}\right\}$ and $S^{\prime \prime}+T^{\prime}=\left\{\left(s^{\prime \prime}, t^{\prime}\right) \mid s^{n} \in S^{\prime \prime}, t^{\prime} \in T^{\prime}\right\}$. Since $S^{\prime}+T^{\prime} C$ $S^{n}+T^{\prime}$, it follows that for any element ($\left.s_{i}^{\prime}, t_{i}^{\prime}\right)$ in $S^{\prime}+T^{\prime}$, ($s_{i}^{\prime}, t_{i}^{\prime}$) is also $\ln S^{\prime \prime}+T^{\prime}$. This implies that for any olement s_{i}^{\prime} in $S^{\prime}, s_{i}^{\prime} \in S^{\prime \prime} ;$ hence $S^{\prime} \subseteq S^{\prime \prime}$. Also since $S^{\prime}+T^{\prime} C$ $S^{\prime \prime}+T^{\prime \prime}$, there exists an element ($\left.s_{1}^{\prime \prime}, t_{i}^{\prime}\right)$ in $S^{\prime \prime}+T^{\prime}$ such that $\left(s_{1}^{\prime \prime}, t_{i}^{\prime}\right) \notin S^{\prime}+T^{\prime}$. But since $t_{i}^{\prime} \in T^{\prime}$ it follows that $s_{1}^{\prime \prime} \notin S^{\prime}$, thus $S^{\prime} \subset S^{\prime \prime}$.

Definition 4.6.--Suppose R is a ring which contains a set of ideals A_{1}, for $1=1,2, \ldots$ such that $A_{1} \subset A_{2} \subset \ldots$. These ideals A_{1} are said to form a strictiy increasing sequence.

Definition 4.7.--If for a ring R, every strictly increasing sequence of ideals contains only a finite number of ideala, then the ascending chain condition is said to hold in R.

Theorem 4,8,--Suppose S and T are rings which have unities. The ascending chain condition holds for S and T if and only if it holds for $U=S i T$.

Proof.--Suppose the ascending chain condition bolds for U. Also suppose that the ascending chain condition does not hold for S. Then there exists a atrictiy increasing sequence of ideals in S denoted by $S_{1} \subset S_{2} \subset \ldots$ which is not finite. Observe that $S_{1}+T$ is an 1deal in U by Theorem 4.2 for $1=$ $1,2, \ldots$, and that $S_{1}+T \subset S_{2}+T C \ldots$ is an infinitely strictly increasing sequence in U, where the containment
follows from Lemma 4.4. But this contradicts the asumption that the ascending chain condition holds for U. An argument similar to the above could be made if T were assumed to not satisfy the ascending chain condition instead of S. Thus it follows that the ascending chain condition holds for both S and T if it holds for U.

Now assume that the ascending chain condition holds for both S and T. Also suppose that $1 t$ does not hold for U. Then there exists a strictly increasing sequence of ideals in U denoted by $U_{1} \subset U_{2} \subset \ldots$, which is not finite. By Theorem 4.1, there exist ideals S_{1} and T_{1} such that $U_{i}=$ $S_{1}+T_{1}$ for $1=1,2, \ldots$. This meana that either S_{1}, S_{2}, \ldots such that $S_{1}<S_{2}<\ldots$ is infinite or T_{1}, T_{2}, \ldots such that $T_{1} \subset T_{2} \subset \ldots$ is infinite, where theso containments follow from Lemma 4.5. But this contradicts the assumption that both of S and T satisfy the ascending ohain condition. Hence it can be concluded that U satisfies the ascending chain condition if S and T satisfy the ascending chain condition.

Definition 4e9.--Suppose R is a ring whioh contains a set of ldeals A_{1} for $1=1,2, \ldots$, such that each subsequent ideal is properly contained in the preceding one, denoted by $A_{1}>A_{2}>\ldots$. These ideals A_{1} are said to form a atrictly decreasing sequence.

Definition 4.10.--If for a ring R, every atrictly decreasing sequence of ideals contains only a finite number of ideals, then the descending chain condition is said to
hold in R.
Theorem 4.21.--Suppose S and T are rings which have a unity. The descending chain condition holds for S and T if and only if it holds for $U=S$ i T.

Proof.--Exchange the words descending for ascending and decreasing for increasing, and the proof of Theorem 4.8 can be used here.

Definition 4.12.--Suppose R is a ring. An ideal A in R is said to be maximal if $A \neq R$ and there exists no ideals between A and R. Thus if A is a maximal ideal and K is an Ideal such that. $A \subseteq K \subseteq K$, then either $K=A$ or $K=R$.

Theorem 4.13.--An ideal $U^{\prime}=S^{\prime}+T^{\prime}$ is maximal if and only if either $S^{\prime}=S$ and T^{\prime} is maximal in T or $T^{\prime}=T$ and S^{\prime} is maximal in S.

Proof.--Suppose $U '$ is a maximal ideal in U. Also suppose that $T^{\prime}=T$ and S^{\prime} is not maximal in S. Then there exists an ideal $S^{\prime \prime}$ such that $S^{\prime} C S^{\prime \prime} \subset S$, and by Theorem 4.2, $S^{\prime \prime}+T^{\prime}$ is an ideal in U. Furthermore by Lemma 4.4, $S^{\prime}+T^{\prime} C$ $S^{n}+T^{\prime} \subset U$. But this contradicts the assumption that $S^{\prime}+T^{\prime}=U^{\prime}$ is a maximal ideal in U.

Secondly suppose U^{\prime} is maximal ideal in U. Also assume that $T^{\prime} \neq T$ and S^{\prime} is maximal in S. Hence $T^{\prime} C T$ and it follows that $S^{\prime}+T^{\prime} C S^{\prime}+T \subset U$ by Lomma 4.4. But this contradicts the assumption that $S^{\prime} \not \dagger^{\prime} T^{\prime}=U^{\prime}$ is maximal ideal in U.

Thirdly suppose U^{\prime} is a maximal ideal in U, and also
assume that $T \neq T$ ard S^{\prime} is not maximal in S. Then there oxigts an ideal $S^{\prime \prime}$ quch that $S^{\prime} \subset S^{\prime \prime} \subset S$, and it again follow by iemma 4.4 that $s^{\prime}+T C S^{\prime \prime}+T^{\prime} C U$. But this contradicts the agsumption that $S^{\prime} \dot{+} T^{\prime}=U^{\prime}$ is a maximal ideal in U.

In a similar manner, it can be shown that U ' is not maximal In each of the following three cases: (1) $S^{\prime}=S, T^{\prime}$ is not maximal in T; (2) $S^{\prime} \neq S, T^{\prime}$ is maximal in T; and (3) $S^{\prime} \neq S, T^{\prime}$ is not maximal in T. The only other cases are the conclusions desired. Thus $S^{\prime}=S$ and T^{\prime} is maximal in T or $T^{\prime}=T$ and S^{\prime} is maximal in S if U^{\prime} is a maximal ideal in U.

Now suppose $T^{\prime}=T$ and S^{\prime} is a maximal ideal in S. Also suppose U^{\prime} is not a maximal ideal in U. Then there exists an Ideal $U^{\prime \prime}$ such that $U^{\prime} \subset U^{\prime \prime} \subset U$. By Theorem 4.1, $U^{\prime \prime}$ may be expressed as a direct sum, say $U^{\prime \prime}=S^{\prime \prime}+T^{\prime \prime}$. Thus $1 t$ follows that $S^{\prime} \dot{+} T^{\prime} \subset S^{n}+T^{n} \subset S+T$ Since $T^{\prime}=T$, it may be concluded that $T^{\prime \prime}=T$. This means $S^{\prime} C S^{*}<S$ by Lemma 4.5. But this contradicts the assumption that S^{\prime} is a maximal ideal in S.

In a similar way, it can be shown that U^{\prime} is maximal whenever $S^{\prime}=S$ and T^{\prime} is maximal in T. Thus U^{\prime} is a maximal ideal in U if $S^{\prime}=S$ and T^{\prime} is maximal in T or $T^{\prime}=T$ and S^{\prime} is maximal in S.

Example 4.14.--Let $S=T$ be the set of integers and $S^{\prime}=T T^{\prime}$ be the even integers. Observe that $U^{*}=S+T T^{\prime}$ is
an ideal siach that $U^{\prime} C$ U'C U. It follows that $S '$ and T ' are maximal ideals in S and T respectively but U^{\prime} is not maximal in U.

Definition 4.15.--Suppose R is a commutative ring. An ideal A in R is said to be prime if whenever a product b - $c \in$ A with $b, c \in R$ then $b \in A$ or $o \in A$.

Theorem 4, 16. - An ideal $U^{\prime}=S^{\prime}$ i T^{\prime} is prime if and only if either $S^{\prime}=S$ and T^{\prime} is prime in the commutative ring T or $T^{\prime}=T$ and S^{\prime} is prime in the commutative ring S.

Proof.--Assume U^{\prime} is a prime ideal in the ring U. Then one and only one of the following four cases is posible:
(1) $S^{\prime}=S, T^{\prime}=T$;
(2) $S^{\prime}=S, T^{\prime} \neq T$;
(3) $S^{\prime} \neq S, T^{\prime}=T$;
(4) $S^{\prime} \neq S, T^{\prime} \neq T$.

Suppose case (1) is true; then both parts of the conclusion of Theorem 4.16 are implied.

Suppose case (2) is true when T' is not prime. Then there exists a product $t_{1} \cdot t_{2} \in T^{\prime}$ where t_{1} and t_{2} are elements in T such that $t_{1} \& T^{\prime}$ and $t_{2} \notin T^{\prime}$. If $s_{1}, s_{2} \in S^{\prime}$ then $\left(s_{1} \cdot s_{2}, t_{1} \cdot t_{2}\right) \boldsymbol{\theta}\left(s_{1}, t_{1}\right) \boldsymbol{O}\left(s_{2}, t_{2}\right) \in U '$ but $\left(s_{1}, t_{1}\right) \& U^{\prime}$ and $\left(s_{2}, t_{2}\right) \& U^{\prime}$ because $t_{1} \& T^{\prime}$ and $t_{2} \& T^{\prime}$. This then contradicts the assumption that U is a prime ideal in U. This situation for (2) is thus impossible.

Now suppose (2) is true when T ' is prime; then this case for (2) is one of the conclusions of the theorem.

Now suppose (3) is true when S^{\prime} is not prime. Then there exists a product $s_{1} \cdot s_{2} \in s^{\prime}$ where s_{1} and s_{2} are
arbitrary elements of S such that $s_{1} \notin S^{\prime}$ and $s_{2} \notin S^{\prime}$. Conalder $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right) \in U$ where s_{1} and s_{2} represent the above mentioned elements and $t_{1}, t_{2} \in T^{\prime}$. Now $\left(s_{1}, t_{1}\right) \mathbb{O}$ $\left(s_{2}, t_{2}\right) \Theta\left(s_{1} \cdot s_{2}, t_{1} \cdot t_{2}\right) \in u^{\prime} w i$ th $\left(s_{1}, t_{1}\right) \notin u^{\prime}$ and $\left(s_{2}, t_{2}\right) \notin U^{\prime}$ because $s_{1} \notin S^{\prime}$ and $s_{2} \notin S^{\prime}$. but this contraacts the assumption that $U '$ is a prime ideal in U so this situation for (3) is impossible.

Consider when (3) is true where S^{\prime} is prime, then this cage for (3) is one of the conclusions of the theorem.

Now for case (4), since $S \neq S$ there exists an element s_{1} in S such that $s_{1} \notin S^{\prime}$. There is also an element s_{2} in S^{\prime} such that $s_{1} \cdot s_{2} \in S^{\prime}$ since S^{\prime} is an ideal. Since $T \neq T^{\prime}$ there exists an element t_{1} in T^{\prime}, and there is an element $t_{2} \in T$ such that $t_{2} \notin T^{\prime}$. It follows that $t_{1} \cdot t_{2} \in T^{\prime}$ because T ' is an ideal. Thus ($\left.s_{1} \cdot s_{2}, t_{1} \cdot t_{2}\right) \Theta\left(s_{1}, t_{1}\right) \Theta$ $\left(s_{2}, t_{2}\right) \in U^{\prime}$ but $\left(s_{1}, t_{1}\right) \notin U^{\prime}$ since $s_{1} \notin S^{\prime}$ and $\left(s_{2}, t_{2}\right) \notin$ U^{\prime} because $t_{2} \notin T^{\prime}$. This means that U^{\prime} is not a prime ideal, a contradiction which means that case (4) is impossible.

Thus cases (1), (2), and (3) imply the conclusion and case (4) is impossible. This means that the hypothesis of the theorem implies the conclusion; that is, if U is a prime ideal in U then $S^{\prime}=S$ and T^{\prime} is prime in T or $T^{\prime}=T$ and S^{\prime} is prime in S.

Now assume that $T^{\prime}=T$ and S^{\prime} is a prime ideal in the ring s. Assume also that U is not prime. Then there exists $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right) \in U$ and $\left(s_{1}, t_{1}\right) \mathcal{O}\left(s_{2}, t_{2}\right) \in U '$ such that
$\left(s_{1}, t_{1}\right) \notin u^{\prime}$ and $\left(s_{2}, t_{2} ; \notin U^{\prime}\right.$. It follows that $s_{1} \cdot s_{2} \in$ S^{\prime} but $s_{1} \notin S^{\prime}$ and $s_{2} \notin S^{\prime}$ uocause $T^{\prime}=T$, thus making $t_{1} \in T^{\prime}$ and $t_{2} \in T^{\prime}$. This contradicts tae assumption that S^{\prime} is a prime lileai, and it can be conclujed that U ' is a prime ideal, $\ln U$.

In a similar way, it can be shown that U ' is prime whonever $S^{\prime}=S$ and T^{\prime} is prime in T. Thus U^{\prime} is a prime ideal in U if $S^{\prime}=S$ and T^{\prime} is prime in T or $T^{\prime}=T$ and S^{\prime} is prime in S.

Example 4.17.--Let S and T be the set of all integers. Then let S^{\prime} be the set consisting of all multiples of 3 and T^{\prime} be the get congisting of all multiples of 7. Multiplication to be used is the ordinary multiplication defined for integers. Here both S^{\prime} and T^{\prime} are prime ideals. Observe $6 \cdot 4=24 \in S^{\prime}$ with $6 \in S^{\prime}$, but $4 \notin S^{\prime}$ and $8 \cdot 7=56 \in T^{\prime}$ with $8 \notin T^{\prime}$, but $7 \in \mathrm{~T}^{\prime}$. Thus $(6 \cdot 4,8 \cdot 7) \Theta(6,8) \mathcal{O}$ $(4,7) \in U^{\prime}$ since $6 \cdot 4 \in S^{\prime}$ and $8 \cdot 7 \in T^{\prime}$, but $(6,8) \notin$ U^{\prime} and $(4,7) \notin U^{\prime}$. This means that U^{\prime} is not a prime ideal, but both S^{\prime} and T^{\prime} are prime ideals.

Definition 4.18.--Suppose R is a commutative ring. An Ideal A in K is said to be primary if the conditions $a, b \in$ R with $a \cdot b \in A$ and $a \in A$ implies the existence of an integer $n>0$ such that $b^{n} \in A$.

Theorem 4.19.--An ideal $U^{\prime}=S^{\prime} \dot{+} T^{\prime}$ is primary if and only if either $S^{\prime}=S$ and T^{\prime} is primary in the commatative ring T or $T^{\prime}=T$ and S^{\prime} is primary in the commutative ring S.

Proof.--The fo-iowine, two contradictions will be useful Later in the proof. First let J^{\prime} be a primary ideal in the ring U. Suppose S^{\prime} is not a primary ideal in the ring S and T' is an iafal in the ring T. Then there exists $s_{1}, s_{2} \in S$ such that $g_{1} \cdot s_{2} \in S^{\prime}$ with $s_{1} \notin S^{\prime}$ and such that for every interer $n>0, s_{2}^{n} \notin S^{\prime}$. Let $\left(s_{1}, t_{1}\right)$ and $\left(s_{2}, t_{2}\right)$ be elements of U, where s_{1} and s_{2} represent the above mentioned elements and where t_{1} and t_{2} are arbitrary elements in T^{\prime}. Now $\left(s_{1}, t_{1}\right) \sigma\left(s_{2}, t_{2}\right) \Theta\left(s_{1} \cdot s_{2}, t_{1} \cdot t_{2}\right) \in U '$ with $\left(s_{1}, t_{1}\right) \notin U^{\prime}$ because $s_{1} \notin S^{\prime}$. And for every integer $n>0$ $\left(s_{2}, t_{2}\right)^{n} \Theta\left(s_{2}^{n}, t_{2}^{n}\right) \notin U^{\prime}$ because $s_{2}^{n} \notin S^{\prime}$ which contradicts the assumption that U^{\prime} is a primary ideal.

Again let U^{\prime} be a primary ideal in the ring U. Suppose also that S^{\prime} is an ideal in the ring S and $T I^{\prime}$ is not a primary ideal in the ring T. In a manner similar to the one used in the first contradiction, it follows that U^{\prime} cannot be primary, a contradiction to the assumption that U^{\prime} is primary.

Once again assume $U '$ is a primary ideal in U. Then one and only one of the following four cases is possible:
(1) $S^{\prime}=S, T^{\prime}=T ;(2) S^{\prime}=S, T^{\prime} \neq T ;(3) S^{\prime} \neq S$, $T^{\prime}=T ;(4) \quad S^{\prime} \neq S, T^{\prime} \neq T$.

Suppose (1) is true; then both parts of the conclusion of the theorem are satisfied.

Suppose (2) is true when T^{\prime} is not primary. Then a contradiction to the assumption that U^{\prime} is primary is reacbed
as was shown earlier.
Now suppose (2) is true when T' is primary. Then this case for (2) is one of the conclusions of the theorem.

Now suppose (3) is true when S^{\prime} is not primary. Then by the result at the beginning of the proof, a contradiction to the assumption that U^{\prime} is primary is reached.

Consider when (3) is true where S^{\prime} is primary. Then this case for (3) is one of the conclusions of the theorem.

Now for case (4) there exist four possibilities: (A) S^{\prime} is not primary, T^{\prime} is not primary; (B) S^{\prime} is not primary, T^{\prime} is primary; (C) S^{\prime} is primary, T^{\prime} ia not primary; (D) S^{\prime} is primary, T^{\prime} is primary. The possibilities (A), (B), and (C) lead to a contradiction that U^{\prime} is primary by the results at the beginning of the proof.

Consider possibility (D) when $S^{\prime} \neq S$ where S^{\prime} is primary and $T^{\prime} \neq T$ where T is primary. First note that s_{e} is not an element of S^{\prime}. For suppose $s_{e} \in S^{\prime}$; then for every $s_{1} \in S$ it follows that $s_{1} \cdot s_{0}=s_{1} \in S^{\prime}$. This means that $S^{\prime}=S$, wich contradicts the assumption that $S^{\prime} \neq S$. Now let s_{1} be an arbitrary element of S^{\prime}. It then follows that $s_{1}+s_{e} \leqslant s^{\prime}$. For suppose $s_{1}+s_{e} \in S^{\prime}$ then $\left(s_{1}+s_{e}\right)$ $s_{1}=s_{e} \in S^{\prime}$, a contradiction to the fact that $s_{e} \& S^{\prime}$. Nor is any power of $s_{1}+s_{e}$ an element of S^{\prime}. For suppose $\left(s_{1}+s_{0}\right)^{n}=s_{1}^{n}+n s_{1}^{n-1}+\ldots+n s_{1}+s_{\theta}^{n} \in s^{\prime}$; then since all of the terms preceding the last term in the oxpreasion contain s_{1}, it follows that the sum of these terms may be
expressed as $s_{2} \in S^{\prime}$. Thus $\left(s_{1}+s_{\theta}\right)^{n}=s_{2}+s_{\theta} \in S^{\prime}$ which contradicts the above fact that $s_{1}+s_{e} \notin S^{\prime}$ for every $s_{1} \in$ SI

Since $T^{\prime} \neq T$ for possibility (D), there exists $t_{1} \in T$ such that $t_{1} \notin T^{\prime}$. Observe that $\left(s_{z}, t_{1}\right) \odot\left(\left[s_{1}+s_{e}\right]_{z}\right) \Theta$ $\left(s_{z} \cdot\left[s_{1}+s_{\theta}\right], t_{1} \cdot t_{z}\right) \Theta\left(s_{z}, t_{z}\right) \in U$ ' where t_{1} is defined above and s_{1} is an arbitrary element of S^{\prime}. Note $\left(s_{z}, t_{1}\right) \notin$ U^{\prime} since $t_{1} \notin T^{\prime}$, and for every integer $n>0\left(\left[s_{1}+s_{0}\right]_{2} t_{z}\right)^{n} \Theta$ $\left(\left[s_{1}+s_{e}\right]^{n}, t_{z}^{n}\right) \notin U^{\prime} \operatorname{since}\left[s_{1}+s_{e} \notin s^{\prime}\right.$. It then follows that U^{\prime} is not a primary ideal which is a contradiction to the assumption. Thus case (4) is impossible, and cases (1), (2), and (3) imply the conclusion of the theorem.

Conversely, suppose $T^{\prime}=T$ and S^{\prime} is primary in S. Since S^{\prime} is primary in S then if $s_{1}, s_{2} \in S$ with $s_{1} \cdot s_{2} \in S^{\prime}$ and $s_{1} \notin S^{\prime}$ it follows that there exists an integer $n>0$ such that $s_{2}^{n} \in S^{\prime}$. Observe also that for every element t_{1} in T^{\prime} and for every integer $m>0, t_{1} \in T^{\prime}$. Thus if (s_{1}, t_{1}), $\left(s_{2}, t_{2}\right) \in U$ with $\left(s_{1}, t_{1}\right) \odot\left(s_{2}, t_{2}\right) \in U$ and $\left(s_{1}, t_{1}\right) \notin$ U^{\prime}, it follows that $s_{1} \notin S^{\prime}$ and thus there exists an integer $n>0$ such that $\left(s_{2}, t_{2}\right)^{n} \Theta\left(s_{2}^{n}, t_{2}^{n}\right) \in U^{\prime}$. This means that U^{\prime} is a primary ideal for this case.

In a similar way, it can be shown that U ' is a primary ideal whenever $S^{\prime}=S$ and T^{\prime} is a primary ideal in T.

Example 4,20. --In this example, the ring $s=\{0, \pm 2, \pm$ $4, \ldots\}$ has no unity and the ring $T=\{0, \pm 2, \pm 4, \ldots\}$ has no unity. It is then shown that there exists proper primary

1deals $S^{\prime}=\{0, \pm 4, \pm 8, \ldots\}$ and $T^{\prime}=\{0, \pm 4, \pm 8, \ldots\}$ in S and T reapectively such that their direct sum is a primary 1deal.

Observe that S^{\prime} is a primary ldeal, for suppose that $s_{1} \cdot s_{2} \in S^{\prime}$ and $s_{1} \& S^{\prime}$ where $s_{1}, s_{2} \in S$. Since $s_{2} \in S$ is an even integer, it is of the form $2 p$ for some integer p. It follows that $s_{2}^{2}=(2 p)^{2}=4 p^{2} \in S^{\prime}$, so s_{2} raised to the power two is in S^{\prime} thus making S^{\prime} a primary ideal. In a similar fashion, it can be shown that T is a primary ideal.

It follows that U^{\prime}, the direct sum of S^{\prime} and T^{\prime} is also a primary ideal. For suppose that $\left(s_{1}, t_{1}\right) O\left(s_{2}, t_{2}\right) \in U^{\prime}$ and $\left(s_{1}, t_{1}\right) \notin U$ where $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right) \in U$. Since $\left(s_{2}, t_{2}\right) \in U$, it follows that $s_{2} \in S$ and $t_{2} \in T$. Thus $s_{2}=$ 2 m and $\mathrm{t}_{2}=2 \mathrm{n}$ for some integers m and n. Thus $\left(s_{2}, t_{2}\right)^{2} \theta$ $(2 m, 2 n)^{2} \Theta\left(4 n^{2}, 4 m^{2}\right) \in U$, so $\left(s_{2}, t_{2}\right)$ ralsed to the powor two is in U^{\prime}. This means that U is a primary ideal.

Definition 4.21.--Let R be a oommutative ring. Denote any element " $x^{\prime \prime}$ in R added to itself n times by $n x$ where n is a positive integer. If n is a negative integer, $n x$ represents the additive inverse of x added to itself n times. Let $A=\{r \cdot a+n a \mid r$ is an arbitrary element in R, a is a fixed element in R, and n is any integer $\}$. Here A is ald to be a principal ideal in R generated by a.

In particular suppose $U=S+T$ is a direct sum. Also suppose $U^{\prime}=S^{\prime}+T^{\prime}$ is an ideal such that $U^{\prime}=\{(p, q) \odot$ $\left(s_{1}, t_{1}\right) \oplus r\left(s_{1}, t_{1}\right) \mid p$ and q are arbitrary elements in S
and T respectively, s_{2} and t_{1} are fixed elements in S and T respectively, and r is any integer . Here $U{ }^{\prime}$ is said to be a principal ideal in the ring U where U is generated by $\left(s_{1}, t_{1}\right)$.

Theorem 4.22. --Let S^{\prime} and T^{\prime} be ideals in the commuteLive rings S and T respectively. $U^{\prime}=S^{\prime} ; T^{\prime}$ is a principal ideal if and only if S^{\prime} and T^{\prime} are principal ideals.

Proof. --Suppose that $S^{\prime}=\left\{s_{2} \mid s_{2}=p \cdot s_{1}+n s_{1}\right.$, where pis an arbitrary element in S, s_{1} is a fixed element in S, and n is any integer $\}$ and $T 1=\left\{t_{2} \mid t_{2}=q \cdot t_{1}+m t_{1}\right.$, where q is an arbitrary element in T, t_{1} is a fixed element in T, and m is any integer\} are principal ideals in the rings S and T respectively. Thus an arbitrary element in U^{\prime} may be expressed as $\left(s_{2}, t_{2}\right) \Theta\left(p \cdot s_{1}+n s_{1}, q \cdot t_{1}+m t_{1}\right)$. There exists an integer k such that $n=k+m$, thus $\left(s_{2}, t_{2}\right) \ominus$ $\left(p \cdot s_{1}+[k+m] s_{\theta} \cdot s_{1}, q \cdot t_{1}+m t_{1}\right) \in\left(p \cdot s_{1}+\left[k s_{0}+\right.\right.$ $\left.\left.m s_{0}\right] \cdot s_{1}, q \cdot t_{1}+m t_{1}\right) \Theta\left(\left[p+k s_{0}\right] \cdot s_{1}+m s_{1}, q \cdot t_{1}+m t_{1}\right) \Theta$ $\left(\left[p+k s_{e}\right] \cdot s_{1}, q \cdot t_{1}\right) \Theta\left(m s_{1}, m t_{1}\right) \Theta\left(p+k s_{\theta}, q\right) \Theta\left(s_{1}, t_{1}\right) \Theta$ $m\left(s_{1}, t_{1}\right)$. Thus $U^{\prime}=\left\{\left(p+k s_{\theta}, q\right) O\left(s_{1}, t_{1}\right)+m\left(s_{1}, t_{1}\right)\right\}$ where all of the symbols are defined above which means that $U '$ is a principal ideal generated by (s_{1}, t_{1}).

Now suppose that U^{\prime} is a principal ideal. Then $U '$ can be expressed as $\left\{(p, q) \mathcal{O}\left(s_{1}, t_{1}\right) \Theta r\left(s_{1}, t_{1}\right) \Theta\left(p \cdot s_{1}\right.\right.$, $\left.q \cdot t_{1}\right) \Theta\left(r s_{1}, r t_{1}\right) \Theta\left(p \cdot s_{1}+r s_{1}, q \cdot t_{1}+r t_{1}\right) 1 p$ and q are arbitrary elements in S and T rospeotivoly, s_{1} and t_{1} are fixed elements in S and T respectively, and r is any
integer . This means that s_{2} is the principal generator of S^{\prime} and that t_{1} is the principal generator of T^{\prime}. Thus S^{\prime} and T' are principal ideals whenever U^{\prime} is principal ideal.

Example 4.23. --Let both S and T be the ring of integers. Also let the ideal S^{\prime} in S be the even integers and the ideal T^{\prime} be T. It then follows that the direct sum of S^{\prime} and T^{\prime} is a maximal ideal in the direct sum of S and T. U is also a prime ideal and a primary ideal. It also follows that (2, 1) generates $U '$, so $U '$ is principal in U.

Lemma 4.24.--Suppose that the ideal S^{\prime} is the intersection of m ideals denoted by $S^{\prime}=S_{1}^{\prime} \cap S_{2}^{\prime} \cap \ldots n S_{m}^{\prime}$, and also suppose the ideal T^{\prime} is the intersection of m ideals denoted by $T^{\prime}=T_{1}^{\prime} \cap T_{2}^{\prime} \cap \ldots \cap T_{m}^{\prime} \cdot T$ The following equation then holds: $\left(S_{i} \cap S_{2}^{\prime} \cap \ldots \cap S_{m}^{\prime}\right) i\left(T_{i}^{\prime} \cap T_{2}^{\prime} \cap \ldots \cap T_{i}^{\prime}\right)=$ $\left(S_{1}^{\prime}+T_{1}\right) \cap\left(S_{2}^{j}+T_{2}^{\prime}\right) \cap \ldots \cap\left(S_{1}^{\prime} \ddagger T_{1}^{\prime}\right)$.

Prool.--Choose an arbitrary element $\left(s_{1}, t_{1}\right)$ in $\left(S_{1} \cap\right.$ $\left.S_{2}^{\prime} \cap \ldots \cap S_{m}^{\prime}\right)+\left(T_{i}^{\prime} \cap T_{2}^{\prime} \cap \ldots \cap T_{m}^{\prime}\right)$, and it then follows that $s_{1} \in S_{i}$ for $1=1,2, \ldots, m$ and $t_{1} \in T_{i}$ for $1=1$, 2, $\ldots, m_{\text {. This means that }}\left(s_{1}, t_{1}\right) \in S_{1}+T_{1}$ for $1=1,2, \ldots$, m; therefore $\left(s_{1}, t_{1}\right) \in\left(S_{1}^{i}+T_{1}^{\prime}\right) \cap\left(S_{2}^{\prime}+T_{2}^{\prime}\right) \cap \ldots \cap\left(S_{1}+\right.$ $\left.T_{i}^{\prime}\right)$. Thus it can be concluded that $\left(S_{1}^{\prime} \cap S_{2} \cap \ldots \cap s_{1}^{\prime}\right) i$ $\left(T_{1}^{\prime} \cap T_{2}^{\prime} \cap \ldots \cap T_{m}^{\prime}\right) \leq\left(S_{i}^{\prime}+T_{1}^{\prime}\right) \cap\left(S_{2}^{\prime} i T_{2}^{\prime}\right) \cap \ldots \cap\left(S_{m}^{\prime}+\right.$ T!

Now choose an arbitrary element $\left(s_{2}, t_{2}\right)$ in $\left(S_{1}+T_{1}^{\prime}\right) n$ $\left(S_{2}^{\prime} i T_{2}^{\prime}\right) \cap \ldots \cap\left(S_{m}+T_{m}^{\prime}\right)$. It then follows that $\left(s_{2}, t_{2}\right) \in$ $S_{1}^{\prime}+T_{1}^{\prime}$, for $1=1,2, \ldots, m$. This means that $s_{2} \in S_{1}^{\prime}$ for
$1=1,2, \ldots, m$ and $t_{2} \in T_{1}$ for $1=1,2, \ldots, m$. Thereforo $s_{2} \in S_{1}^{\prime} \cap S_{2}^{\prime} \cap \ldots \cap S_{m}^{\prime}$ and $t_{2} \in T_{i}^{\prime} \cap T_{2}^{\prime} \cap \ldots \cap T_{m}^{\prime}$, so $\left(s_{2}, t_{2}\right) \in\left(S_{1}^{\prime} \cap S_{2}^{\prime} \cap \ldots \cap S_{m}^{\prime}\right)+\left(T_{i}^{\prime} \cap T_{2}^{\prime} \cap \ldots \cap T_{m}^{\prime}\right)$, and in conclusion $\left(S_{1}^{\prime}+T_{1}^{\prime}\right) \cap\left(S_{2}^{\prime}+T_{2}^{\prime}\right) \cap \ldots \cap\left(S_{m}^{\prime}+T_{m}^{\prime}\right) C$ $\left(S_{i}^{\prime} \cap S_{2}^{\prime} \cap \ldots \cap S_{m}^{\prime}\right)+\left(T_{1}^{\prime} \cap T_{2}^{\prime} \cap \ldots \cap T_{m}^{\prime}\right)$. These two containments yield the desired equality.

Remark.--The above result may be expanded by observing that for any two sets A and $B, A \cap B=B \cap A$. Thus the lemma is still true even after the order of elements is arbitrarily interchanged in either $\left\{S_{1}^{\prime}, 3_{2}^{\prime}, \ldots, S_{1}^{\prime}\right\}$ or in $\left\{T_{1}^{\prime}, T_{2}^{\prime}, \ldots\right.$, $\left.T_{m}^{\prime}\right\}$. As a consequence for example, if $m=3$ then the following equation is true: $\left(S_{1}^{\prime}+T_{1}^{\prime}\right) \cap\left(S_{2}^{\prime}+T_{2}^{\prime}\right) \cap\left(S_{3}^{\prime}+T_{3}^{\prime}\right)=$ $\left(S_{2}^{\prime}+T_{3}^{\prime}\right) \cap\left(S_{1}^{\prime}+T_{2}^{\prime}\right) \cap\left(S_{3}^{\prime}+T_{1}^{\prime}\right)$.

Definition 4.25.--An ideal E is said to be the irredundant intersection of a finite sequence $E_{1}, F_{2}, \ldots, E_{m}$ of ideals if E is the intersection of the sequence E_{1}, E_{2}, $\ldots, E_{\text {m }}$ and is not the intersection of some proper subcollection of the sequence $\mathrm{K}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{m}}$ 。

Theorem 4, 26.--Suppose $U^{\prime}=S^{\prime} \notin T^{\prime}$ where S^{\prime} and T^{\prime} are defined as the intersection of the ideals in the sequence $S_{1}^{\prime}, S_{2}^{\prime}, \ldots, S_{m}^{\prime}$ and as the intersection of the ideals in the sequence $T_{i}^{\prime}, T_{2}^{\prime}, \ldots, P_{n}^{\prime}$ respectively. If S^{\prime} is the irredundant intersection of the sequence $S_{1}^{\prime}, S_{2}^{\prime}, \ldots, S_{m}^{\prime}$ of 1deals then U^{\prime} is the irredundant intersection of the sequence $S_{1}^{\prime} \ddagger T_{1}^{n}, S_{2}^{\prime}+T_{2}^{m}, \ldots, S_{m}^{\prime}+T_{m}^{m}$ of ideals where the sequence $T_{1}^{n}, T_{2}^{n}, \ldots, T_{m}^{n}$ of ideals may be constructed from $\left\{T_{1}, T_{2}^{\prime}\right.$,
$\left.\ldots, T_{n}^{\prime}\right\}$ such that $T^{\prime}=1 \stackrel{m}{n} T_{1} T_{1}^{n}$. Proof.--Since $\left\{S_{1}^{\prime}, S_{2}^{\prime}, \ldots, S_{m}^{1}\right\}$ has m ideals and $\left\{T_{1}^{\prime}\right.$, $\left.T_{2}^{\prime}, \ldots, T_{n}^{\prime}\right\}$ has n ideals it follows that either $m<n, m=n$, or $m>n$. If $m \leq n$ define $T_{1}^{n}=T_{1}^{\prime}$ for $1 \leq 1 \leq m-1$ and $T_{m}^{m}=$
 may be shown that the intersection of any finite number of ideals is an ideal. Now if $m>n$, define $T_{i}^{M}=T_{i}^{\prime}$ for $1 \leq 1 \leq$ n and $T_{i}^{\prime \prime}=T^{\prime}$ for $n<1 \leq m$. Thus it is possible to express T ' as the intergection of m ideals.

Now suppose that U^{\prime} is not the irredundant intersection of the sequence $S_{1}^{\prime}+T_{1}^{n}, S_{2}^{\prime}+T_{2}^{n}, \ldots, S_{m}^{\prime}+T T_{m}^{w}$ of 1deala where $U^{\prime}=S^{\prime}+T^{\prime}=\left(S_{1}^{\prime} \cap S_{2}^{\prime} \cap \ldots \cap S_{1}^{\prime}\right) \dot{(T M} \cap T_{2}^{m} \cap \ldots n$ $\left.T_{m}^{*}\right)=\left(S_{1}^{1}+T_{1}^{w}\right) \cap\left(S_{2}^{\prime}+T_{2}^{p}\right) \cap \ldots n\left(S_{m}^{\prime}+T_{m}^{n}\right)$ by Lemma 4.24. Then U^{\prime} may be expressed as the intersection of a proper aubcollection of the sequence $S_{1}^{\prime}+T_{1}^{n}, S_{2}^{1}+T_{2}^{n} \ldots, S_{m}^{\prime}+T_{m}^{n}$ of ideals. Thus upon omission of a particular direct aum, ay $S_{r}^{\prime} f_{r}^{m}$, and upon renumbering the remaining direct sums, it follows that $U^{\prime}=\left(S_{1}^{\prime}+T_{1}^{m}\right) \cap\left(S_{2}^{\prime}+T_{2}^{m}\right) \cap \ldots \cap\left(S_{m-1}^{\prime} T_{m-1}^{m}\right)=$
 This means that S^{\prime} is not the irredundant intersection of the sequence $S_{1}^{\prime}, S_{2}^{\prime}, \ldots, S_{m}^{\prime}$ of ideals because S^{\prime} may be written as a proper subcollection of this sequence. This is a contradiction to the assumption that S^{\prime} is the irredundant intersection of the sequence $S_{1}^{\prime}, S_{2}^{\prime}, \ldots, S^{\prime}$ of ideals. Thus U^{\prime} is the irredundant intersection of the sequence $S_{i}+T_{i}$, $S_{2}^{i}+T_{2}^{n}, \ldots, S_{i}+T_{m}^{n}$ of ideala.

- Example 4e27.--In this example, let both S and T be the ring of integers with the usual binary operations. The following, is an irredundant representation of U^{\prime} such that the representations of S^{\prime} and T^{\prime} are not irredundant.

$$
\text { Let } U^{\prime}=\left(S_{1}^{\prime} i T_{1}^{\prime}\right) \cap\left(S_{2}^{\prime} i T_{1}^{\prime}\right) \cap\left(S_{3}^{\prime}+T_{2}^{\prime}\right) \cap\left(S_{3}^{\prime}+T_{3}^{\prime}\right)
$$

$$
\text { where } v_{1}^{\prime}=T_{3}^{\prime}=\{0, \pm 3, \pm 6, \ldots\}, S_{2}^{\prime}=T_{2}^{\prime}=\{0, \pm 4, \pm 8 \text {, }
$$ $\ldots\}$, and $S_{3}^{\prime}=T_{1}^{\prime}=\{0, \pm 2, \pm 4, \ldots\}$. This means that $U^{\prime}=$ $\left(S_{1}^{\prime} \cap S_{2}^{\prime} \cap S_{3}^{\prime} \cap S_{3}^{\prime}\right)+\left(T_{1}^{\prime} \cap T_{1}^{\prime} \cap T_{2}^{\prime} \cap T_{3}^{\prime}\right)=\{(12 k, 12 j) \mid k$ and j are integers $\}$. Observe that $\left(S_{1}^{\prime}+T_{1}^{\prime}\right) \cap\left(S_{2}^{\prime}+T_{1}\right) \cap$ $\left(S_{3}^{\prime}+T_{2}^{\prime}\right)=\left(S_{1}^{\prime} \cap S_{2}^{\prime} \cap S_{3}^{\prime}\right) i\left(T_{1}^{\prime} \cap T_{2}^{\prime}\right) \neq U^{\prime}$ since $(0,4) \in$ $\left(S_{i}^{\prime} \cap S_{2}^{\prime} \cap S_{3}^{\prime}\right)+\left(T_{i}^{\prime} \cap T_{2}^{\prime}\right)$ but $(0,4) \neq U^{\prime}$. Also ($\left.S_{i}^{\prime}+T_{i}^{\prime}\right) \cap$ $\left(S_{2}^{\prime}+T_{1}^{\prime}\right) \cap\left(S_{3}^{\prime}+T_{3}^{\prime}\right)=\left(S_{i}^{\prime} \cap S_{2}^{\prime} \cap S_{3}^{\prime}\right)+\left(T_{1}^{\prime} \cap T_{3}^{\prime}\right) \neq U^{\prime}$ since $(0,6) \in\left(S_{i}^{\prime} \cap S_{i}^{\prime} \cap S_{3}^{\prime}\right)+\left(T_{i}^{\prime} \cap T_{3}^{\prime}\right)$ but $(0,6) \notin U^{\prime}$. And $\left(S_{1}^{\prime}+T_{1}^{\prime}\right) \cap\left(S_{3}^{1} i T_{2}^{\prime}\right) \cap\left(S_{3}^{\prime} i T_{3}^{\prime}\right)=\left(S_{1}^{\prime} \cap S_{3}^{\prime}\right)+\left(T_{1}^{\prime} \cap T_{2}^{\prime} \cap\right.$ $\left.T_{3}^{\prime}\right) \neq U^{\prime} \operatorname{sine\theta }(6,0) \in\left(S_{1}^{\prime} \cap S_{3}^{\prime}\right)+\left(T_{i}^{\prime} \cap T_{2}^{\prime} \cap T_{3}^{\prime}\right)$ but $(6,0)$ at \& U^{\prime}. Observe also that $\left(S_{2}^{\prime}+T_{1}^{\prime}\right) \cap\left(S_{3}^{1}+T_{2}^{\prime}\right) \cap\left(S_{3}^{\prime}+T_{3}^{\prime}\right)=$ $\left(S_{2}^{\prime} \cap S_{3}^{\prime}\right)+\left(T_{1}^{\prime} \cap T_{2}^{\prime} \cap T_{3}^{\prime}\right) \neq U \prime$ since $(4,0) \in\left(S_{2}^{\prime} \cap S_{3}^{\prime}\right) \dot{ }$ $\left(T_{1}^{\prime} \cap T_{2}^{\prime} \cap T_{3}^{\prime}\right)$ but $(4,0) \notin U^{\prime}$. Therefore U^{\prime} has an iredundant intersection. But $S_{i}^{\prime} \cap S_{2}^{\prime} \cap S_{1}^{1} \cap S_{3}^{\prime}=S^{\prime}$ and $T_{i} \cap$ $T_{1}^{\prime} \cap T_{2}^{\prime} \cap T_{3}^{\prime}=T^{\prime}$ are not irredundant intersections since $S^{\prime} x$ $S_{1}^{\prime} \cap S_{2}^{\prime}$ and $T^{\prime}=T_{2}^{\prime} \cap T_{3}^{\prime}$.

Theorem 4.28.--Suppose $U^{\prime}=S^{\prime} \mp T^{\prime}$ where S^{\prime} and T^{\prime} are proper ideals in S and T respectively such that $S^{\prime}=1 \underset{\sim}{m} S_{1}$ is an irredundant intersection of primary ideals. Then for
 T_{1}^{\prime}, there exists $S_{i}+T_{i}^{\prime}$ for some $1=1,2, \ldots, m$ which is
not a primary ideal. Also, $U V_{1} \stackrel{m}{n}_{1}\left(S_{i}+T_{i}\right)$ is not a primary representation of U '.

Proof.--Since S^{\prime} 1s a proper ideal in S expressed as an irredundant intersection of $\left\{S_{1}, S_{2}^{\prime}, \ldots, S_{m}^{\prime}\right\}$ for every S_{1}, $1=1,2, \ldots, m, 1 t$ follows that $S_{1} \neq S$. Since T^{\prime} is a proper ideal in T, it follows that for every set of ideals T, $T_{2}^{\prime}, \ldots, T_{m}^{\prime}$ in T^{\prime} such that $T^{\prime}=1 \stackrel{m}{n}_{N_{1}} T_{1}^{\prime}$, there exists an ideal $T_{p}^{\prime} \neq T$ for some integer p where $l \leq p \leq m$. Contained in the proof of Theorem 4.19 is the result that if $\mathrm{s}_{\mathbb{1}} \neq \mathrm{s}$ and $T_{p}^{\prime} \neq T$ then $S_{i}^{i}+T_{p}^{\prime}$ is not a primary ideal. Since $S_{1} \mp$
 T_{i}^{\prime}) is not a primary representation of U.

Theorem 4.29.--Suppose $S^{\prime}=1 \stackrel{m}{=} S_{1}$, where S^{\prime} is the irredundant intersection of primary ideals $S_{1}^{1}, S_{2}^{1}, \ldots, S_{m}^{\prime}$, and $T^{\prime}=T$. Then $S_{i}^{\prime}+T$ for every $1=1,2, \ldots, m$ is a primary ideal, and $U^{\prime}=S^{\prime}+T=1 \stackrel{n_{1}}{=}\left(S_{1}+T\right)$ ia an irredundant intersection of primary ideala.

Proof.--Since S_{1} is a primary ideal in S and $T^{\prime}=T$, it follows from Theorem 4.19 that $S_{i}+\mathrm{T}$ is a primary ideal in U. Since S_{1} is a primary ideal for all $1=1,2, \ldots, m, 1 t$ follows that $U^{\prime}=S^{\prime}+T=1 \frac{D_{1}}{=}\left(S_{1}+T\right)$ is an intersection of primary ideals. From Theorem 4.26, it may be concluded that the intersection of $S_{1}+T$ for $1=1,2, \ldots$, mia irredundant.

Theorem 4.30.--Suppose U Is a proper ideal in U where $U^{\prime}={ }_{1} \stackrel{m}{=} I_{1}\left(S_{1}+T_{i}^{\prime}\right)$ is an irredundant intersoction of primary
ideals. Then $A=\left\{U_{i} \mid U_{i}=S_{i}+T_{i}, 1=1,2, \ldots, m\right\}$ may be expressed as $B \cup C$, where $B=\left\{U_{1} \mid U_{1} \in A, U_{1}=S_{1} \ddagger T\right\}$ and $C=\left\{U_{i} \mid U_{i} \in A, U_{i}=S i T_{i}\right\}$. Furthermore, if $U^{\prime}=$ $S^{\prime}+T^{\prime}$ then the intersection of all S_{1} such that $S_{1}+T \in$ B and the intersection of all T_{i} such that $S+T_{i} \in C$ are irredundant primary representations of S^{\prime} and T^{\prime} respectively.

Proof. --Each ideal $S_{p}^{\prime}+T_{p}^{\prime}$ in A for $p=1,2, \ldots, m$, is primary in U^{\prime}, hence S_{p}^{\prime} is primary in S and $T_{p}^{\prime}=T$ or $S_{p}^{\prime}=$ S and T_{p}^{\prime} is primary in T by Tbeorem 4.19. Therefore every ideal in A is in B or C. The ring $U=S+T \neq S_{p}^{\prime}+T_{p}^{\prime}$ for all $p=1,2, \ldots, m$ since the representation of U^{\prime} is irredundant and since U^{\prime} is a proper subset in U. Thus the sets B and C are disjoint and $A=B \cup C$.

Now U^{\prime} is an irredundant primary intersection of those ideals in $B \cup C$. Since each $S f i t i n B$ is a primary ideal in U, it follows from the above argument that oach suoh S_{1} is primary in S. Let $U^{\prime}=S^{\prime} i^{\prime} T^{\prime}$ then $S^{\prime}=1 \stackrel{m}{n} \sum_{1} S_{1}$ and $T^{\prime}=1 \stackrel{m}{n} I_{i} T_{i}$ by Lemma 4.24. However $S_{j}=S 1 f S_{j}+T_{j}^{\prime} \nmid B$, thus S^{\prime} is the intersection of S_{1} such that $S_{i}+T \in B$. Furthermore, the intersection is irredundant, for if some S_{k}^{\prime} for $S_{\underline{L}}+T \in B$ can be eliminated from the representation of S^{\prime}, then $S_{k}^{\prime} \dot{T}$ can be eliminated from the representation of U^{\prime}. But this cannot happen since this representation of U^{\prime} is irredundant. Hence the intersection of elementa S_{1} suoh that $S_{\mathcal{X}}+T \in B$ is an irredundant primary representation of $\mathbf{S '}^{\prime}$. Using a similar argument, it follows that the

Intersection of elemonts T_{i} such that $S+T_{i} \in C$ is an irredundant primary representation of T^{\prime}.

Definition 4.31.--Suppose K is a ring whose additive identity is denoted by r_{z}. Then $a \in R$ is said to be nilpotent if there exists an integer $n>1$ such that $a^{n}=r_{z}$.

Theorem 4.32.--The 1deal $U^{\prime}=S^{\prime} \ddagger T^{\prime}$ has a non-zero nilpotent element if and only if either of the ideals S or T ' have non-zero nilpotent elements.

Proof.--Suppose S^{\prime} has a non-zero nilpotent element s_{1} Then there exists an integer $n>1$ such that $s_{1}^{n}=s_{z}$. Thus $\left(s_{1}, t_{2}\right) \in U$ and it follows that $\left(s_{1}, t_{2}\right)^{n} \Theta\left(s_{1}^{n}, t_{2}^{n}\right) \Theta$ (s_{z}, t_{z}) which makes (s_{1}, t_{z}) a non-zero nilpotent element of U^{\prime}. A similar argument could be used to show that U ' has a non-zero nilpotent element if T^{\prime} has a non-zero nilpotent eloment.

Now suppose U^{\prime} has a non-zero nilpotent element (s_{1}, t_{1}). Then one and only one of the following three cases is possible: (1) $s_{1}=s_{2}, t_{1} \neq t_{2}$; (2) $s_{1} \neq s_{2}, t_{1}=t_{2} ;(3) \quad s_{1} \neq s_{2}$, $t_{1} \neq t_{z}$. For case one there exists an integer $n>1$ auch that $\left(s_{z}, t_{1}\right)^{n} \Theta\left(s_{z}^{n}, t_{1}^{n}\right) \Theta\left(s_{z}, t_{2}\right)$. Thus t_{1} is a non-zero nilpotent element in T since $t_{1}^{n}=t_{\varepsilon}$. For case two there exists an integer $m>1$ such that $\left(s_{1}, t_{z}\right)^{m} \Theta\left(s_{1}^{m}, t_{z}^{m}\right) \theta$ (s_{z}, t_{z}). Thus s_{2} is a non-zero nilpotent element in S since $s_{2}^{m}=s_{z}$. For case three there exists an integer $p>1$ suoh that $\left(s_{1}, t_{1}\right)^{p} \Theta\left(s_{1}^{p}, t_{1}^{p}\right) \theta\left(s_{2}, t_{2}\right)$. Thus s_{1} and t_{1} are non-zero nilpotent elements in S and T respectively since
$s_{1}^{p}=s_{z}$ and $t_{1}^{p}=t_{z}$. This means if U^{\prime} has a non-zero nilpotent element then at least one of S^{\prime} and T^{\prime} has a non-zero nilpotent element.

Example 4.33.--This example shows that U^{\prime} may have a non-zero nilpotent element and yet not both $S '$ and T have non-zero nilpotent elements. Let S^{\prime} be the ring of integers with the zero nilpotent element 0. Note S^{\prime} does not have a non-zero nilpotent element. Let T^{\prime} be the residue class ring $I /(4)$. Note that in T, [2] [2] $=[0]$, so $[2]$ is a non-zero nilpotent element in T^{\prime}. It follows that (0, (2]) is a non-zero nilpotent element in U^{\prime}.

Definition 4.34.--If A is an ideal in the ring R, then the radical of A, denoted by \sqrt{A}, consists of all elements b of R such that some power of b is oontained in A.

Theorem 4.35.--If $U^{\prime}=S^{\prime}+T^{\prime}$ where S^{\prime} and T^{\prime} are ideala In the rings S and T respectively then $\sqrt{S^{\prime}} i \sqrt{T^{\prime}}=\sqrt{U^{\prime}}=$ $\sqrt{3+N}$.

Proof.--Suppose $s_{1} \in \sqrt{S}$ and $t_{1} \in \sqrt{T}{ }^{\prime}$; then there exist integers m and n such that $s_{1}^{m} \in S^{\prime}$ and $t_{1}^{n} \in T^{\prime}$. Since s^{\prime} and T are closed under multiplication, it follows that $\left(s_{1}^{m}\right)^{n}$ $\in S^{\prime}$ and $\left(t_{1}^{n}\right)^{m} \in T^{\prime}$. Thua $\left(s_{1}, t_{1}^{n m}\right) E\left(s_{1}, t_{1}\right)^{m n} \in U^{\prime}$, and it can be concluded that $\left(s_{1}, t_{1}\right) \in \sqrt{J^{\prime}}$. This means that $\sqrt{S^{1}}+\sqrt{T^{1}} \subseteq \sqrt{U^{\prime}}$.

Now suppose $\left(s_{1}, t_{1}\right) \in \sqrt{U^{1}}$, then there exists an integer r auch that $\left(s_{1}, t_{1}\right)^{r}=\left(s_{1}^{r}, t_{1}^{r}\right) \in U^{\prime}$. It then follows that $s_{1}^{r} \in S^{\prime}$ and $t_{1}^{r} \in T^{\prime}$ so that $a_{1} \in \sqrt{S^{\prime}}$ and $t_{1} \in \sqrt{T^{\prime}}$. Thus
$\sqrt{U^{\prime}} \subseteq \sqrt{S^{\prime}}+\sqrt{T^{\prime}}$ ，and i^{\prime} can now be concluded that $\sqrt{S^{\prime}}+\sqrt{T^{\prime}}=$ $\sqrt{3^{1}}$ ．
－Definition 4．36．－－Lat A and B denote ideals in the commutative ring R ，then $A \hat{+} B=\{a+b \mid a \in A, b \in B\}$ ． Theorem 4．37．－－If $U^{\prime}=S^{\prime}+T^{\prime \prime}$ and $U^{\prime \prime}=S^{\prime \prime}+T^{\prime \prime}$ are 1deals in the commutative ring U ，then $U^{\prime} \hat{+} U^{\prime \prime}=\left(S^{\prime} \hat{\psi} S^{\prime \prime}\right) \dot{+}$ （T＇今 T＂）。

Proof．－－Suppose $\left(s_{1}, t_{1}\right) \in U^{\prime}$ and $\left(s_{1}^{n}, t_{1}^{\prime \prime}\right) \in U^{n}$ where $s_{1}^{\prime} \in S^{\prime}, s_{1}^{n} \in S^{n}, t_{1}^{\prime} \in T^{\prime}$ ，and $t_{1}^{\prime \prime} \in T^{n}$ then $\left(s_{1}^{\prime}, t_{1}^{\prime}\right) \Theta\left(s_{1}^{n}\right.$, $\left.t_{i}^{n}\right) \in U^{\prime} \hat{f} U^{n}$ ．It follows that $\left(s_{1}^{\prime}, t_{i}^{\prime}\right) \Theta\left(s_{1}^{n}, t_{i}^{n}\right) \Theta\left(s_{i}^{\prime}+\right.$ $\left.s_{1}^{n}, t_{1}^{\prime}+t_{1}^{\prime \prime}\right) \in\left(S^{\prime} \hat{+} S^{n}\right) \dot{+}\left(T^{\prime} \hat{+} T^{n}\right)$ ；thus $U^{\prime} \hat{\boldsymbol{t}} U^{\prime \prime} \subseteq\left(S^{\prime} \hat{+}\right.$ $\left.S^{n \prime}\right) \ddagger\left(T^{\prime} \uparrow T^{\text {¹ }}\right)$ 。

An arbitrary y in $\left(S^{\prime} \hat{\boldsymbol{t}} S^{n}\right) \dot{+}\left(T^{\prime} \hat{\nmid} T^{n}\right)$ is of the form $\left(s_{i}^{\prime}+s_{i}^{n}, t_{i}^{\prime}+t_{i}^{n}\right)$ so $\operatorname{let}\left(s_{i}^{\prime}+s_{i}^{n}, t_{i}^{\prime}+t_{i}^{m}\right) \in\left(S^{\prime} \hat{+} S^{n}\right)+$

 These two containments imply that $U^{\prime} \hat{\neq} U^{\prime \prime}=\left(S^{\prime} \hat{\boldsymbol{q}} S^{(m)}\right)^{i}$ （ $\mathrm{T}^{\boldsymbol{\prime}} \hat{\boldsymbol{+}} \mathrm{T}^{\boldsymbol{N}}$ ）．

Remary．－－It may be shown that in a commutative ring，the sum of any two ideals，that is $A \hat{+} B$ ，is also an ideal．

Definition 4．38．－－Let A and B denote ideals in the commutative ring R ，then $A \subset B=\sum_{1=1}^{p} a_{1} \cdot b_{1} \mid a_{i} \in A, b_{i} \in B$ ， p is a positive integer\}.

Theorem 4．39．－－If $U^{\prime}=S^{\prime}+T^{\prime}$ and $U^{\prime \prime}=S^{\prime \prime}+T^{n}$ are 1deals in the commutative ring U then U^{\prime} 今 $U^{*}=\left(S^{\prime}\right.$ 今 $\left.S^{*}\right)+$ （T＇今 $T^{\text {T }}$ ）

Proof．－－An arbitrary element x in $U^{\prime} \uparrow U^{\prime \prime}$ is of the form $1 \sum_{1}^{n}\left[\left(s_{i}^{\prime}, t_{i}^{\prime}\right) \odot\left(s_{i}^{n}, t_{i}^{n}\right)\right]$ ，where $s_{i}^{\prime} \in S^{\prime}, t_{i}^{\prime} \in T^{\prime}, s_{1}^{\prime \prime} \in s^{n}$ ， and $t_{i}^{\prime \prime} \in T^{\prime \prime}$ ．It then follows that $x \hat{E}_{1} \sum_{i}^{n} 1\left[\left(s_{1}^{\prime}, t_{i}^{\prime}\right) O\left(s_{i}^{n}\right.\right.$ ，

 （ T^{\prime} 人 $T^{\text {T }}$ ）

An arbitrary element $y \ln \left(S^{\prime} \hat{*} S^{\prime \prime}\right)+\left(T^{\prime} \hat{C n}\right)$ is of the form $\left(\sum_{i} \sum_{1}^{k}\left[s_{1}^{\prime} \cdot s_{1}^{n}\right]\right.$ ，$\left.\sum_{i=1}^{m}\left[t_{i}^{\prime} \cdot t_{i}^{n}\right]\right)$ ．Now assume that $k \geq m$ ；then $y=\left(\sum_{1} \sum_{1}^{k}\left[s_{i}^{\prime} \cdot s_{1}^{n}\right], 1 \sum_{i}^{k}\left[t_{i}^{\prime} \cdot t_{i}^{n}\right]\right)$ ，where t_{i}^{\prime} ． $t_{i}^{n}=t_{z}$ for $1=m+1, m+2, \ldots, k$ ．It follows that y may be expressed as $1 \sum_{1}=\frac{k}{=}\left[\left(s_{i}^{\prime} \cdot s_{i}^{n}, t_{i}^{\prime} \cdot t_{i}^{m}\right)\right] \Theta \sum_{i=1}^{k}\left[\left(s_{i}^{\prime} \cdot t_{i}^{\prime}\right) 0\right.$
 These two containments imply that $U^{\prime} \hat{\prime} U^{\prime \prime}=\left(S^{\prime} 今 S^{\prime \prime}\right)+$ （T＇今 T^{n} ）。

Remark．－－It may be shown that in a commutative ring，the product of any two ideals，that is A ：B ，is also an ideal．

Definition $4.40 .--$ Let A and B denote ideals in the commutative ring K ：then $A: B$ ，called the quotient of A and B ，consists of all elements c in R such that $c \cdot b \in A$ for every $b \in B$ ．

Theorem 4．42．－－If $U^{\prime}=S^{\prime}+T^{\prime}$ and $U^{\prime \prime}=S^{n}+T^{\prime \prime}$ are ideals in the commutative ring U ，then $U^{\prime}: U^{\prime \prime}=\left(S^{\prime}: S^{m}\right) \dot{+}$ （ $T^{\prime \prime}: T^{\text { }}$ ）

Proof．－－Let $\left(s_{1}, t_{1}\right) \in U^{\prime}: U^{n} ; \operatorname{then}\left(s_{1}, t_{1}\right) O\left(s_{1}^{n}, t_{1}^{n}\right)$ $\in U^{\prime}$ for every $\left(s_{1}^{n}, t_{1}^{n}\right) \in U^{n}$ ．Since $\left(s_{1}, t_{1}\right) O\left(s_{1}^{n}, t_{i}^{n}\right) \Theta$ $\left(s_{1} \cdot s_{1}^{n}, t_{1} \cdot t_{1}^{\#}\right) \in U^{\prime}$ for every $\left(s_{1}^{n}, t_{1}^{*}\right) \in U^{n}$ it follows
that $s_{2} \cdot s_{2}^{n} \in S^{\prime}$ for every $s_{1}^{n} \in S^{n}$, and $t_{1} \cdot t_{1}^{n} \in T^{\prime}$ for every $t_{1}^{\prime \prime} \in T^{\prime \prime}$. Thus $s_{1} \in S^{\prime}: S^{n}$ and $t_{1} \in T^{\prime}: T^{\prime \prime}$, whioh means $\left(s_{1}, t_{1}\right) \in\left(S^{\prime}: S^{\prime \prime}\right)+\left(T^{\prime}: T^{n}\right)$. It follows that $\left.\cup^{\prime}: U^{\prime \prime} \subseteq\left(S^{\prime}: S^{n}\right) \dot{(T \prime}: T^{\prime \prime}\right)$.

Now let (s_{1}, t_{l}) be an arbitrary element of ($\left.S^{\prime}: S^{n}\right)+$ $\left(T^{\prime}: T^{\prime \prime}\right.$; then $s_{1} \cdot s_{1}^{\prime \prime} \in S^{\prime}$ for every $s_{1}^{\prime \prime} \in S^{\prime \prime}$ and $t_{1} \cdot t_{1}^{\prime \prime} \in$ T^{\prime} for every $t_{1}^{\prime \prime} \in T^{n}$. Thus ($\left.s_{1} \cdot s_{1}^{\prime \prime}, t_{1} \cdot t_{1}^{\prime \prime}\right) \Theta\left(s_{1}, t_{1}\right) \theta$ $\left(s_{1}^{n}, t_{1}^{n}\right) \in S^{\prime}+T^{\prime}=U^{\prime}$ for every $\left(s_{1}^{n}, t_{1}^{m}\right) \in S^{n}+T^{n}=U^{\prime \prime}$ 。 This means ($\left.s_{1}, t_{1}\right) \in U^{\prime}: U^{\prime \prime}$. It follows that ($\left.S^{\prime}: S^{n}\right) \dot{+}$ $\left(T^{\prime}: T^{\prime \prime}\right) \subseteq U^{\prime}: U^{\prime \prime}$, and the above containments imply $U^{\prime}: U^{\prime \prime}=$ $\left(S^{\prime}: S^{\prime \prime}\right)+\left(T^{\prime}: T^{\prime \prime}\right)$.

Remary.--It may be shown that in a comutative ring, the quotient of any two ideals is also an ideal.

McCoy, Neal Henry, Introduction to Modern Algebra, Boston, Allyn and Bacon, Inc., 1960 .

McCoy, Neal Henry, Kings and Ideals, Buffalo, The Mathematical Association of America, 1948 .

McCoy, Neal Henry, The Theory of Rings, New York, The Macmillian Co., 1964.

MacDuffee, Cyrus Colton, An Introduction to Abstract Algebra, New York, John Wiley and Sons, Inc., 1940.

Moore, John T., Elements of Abstract Algebra, New York, The Macmillian Co., 1962 .

Zariski, Oscar and Samuel, Pierce, Commutative Algebra, Princeton, D. Van Nostrand Co., Inc., 1959.

