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PruFACH

This paper consists of a study of the direct sum U of
two rings S and T. Such a direct sum is defined as the set

of all ordered palrs (sl, tl), whers s. 1a an arbitrary ele-

1
ment in S and t, is an arbltrary element in T,

1

In the first two chapters, binary operations are de-
fined on the set of ordered pairs so that this set is a
ring. Also included are theoroems concerning homomorphic
mappings between the direct sum of S and T, subrings of this
direct sum, and rings S and T.

The last two chapﬁers contain a study of the relation-
ship between direct sum rings or ideals and their components.
Necessary and sufficient conditiona are given in order that
1deals In the direct sum of rings S and T with units be
maximal, prime, or primary. Other theorems on topics in-
cluding exlistsnce of zero divisors, irredundant primary
representations of ideals, and the characteristlic of a ring
are stated and.proved.

Examples are provided throughout the thesis in order
to clarify definitions, to show that some theorems do not
have converses, and to show the necessity of the hypothesls

in some theorems.

118



Yapua JF CUNTSNTS

Page

Pﬁh“FAC:(; . . L d » » L] . * L L] . L] L] L] L] L] . . L] L ] - L] L d . iii
Chapter

I. INTROOJCTORY CONCEPTS . & 4 ¢ ¢ ¢ ¢ o a o o @ 1

iI. HUMOMORPHISOMS ANU ISOMORPHISMS , . . « « ¢ « & 10
III. PHOPURTIES OF KINGS . . 4 o o ¢ o o o o o o @ 18
IV, PROPcRTIES OF IDEALS . & v o 4 o ¢ o o o o o o 25

BI BLIOGRAP}{Y . L L] . L] . . L ] . . L] [ ] L] . . . . L] L L] L} 51

iv



CAAPTER I
INTRODICTORY COHCEPTS

Vefinition l,1l.--L2t A be a non-empty set, A blnary

oparation "x" defined on A i{s a correspondence which asso-

ciates with each ordered pair (a,b) of elements of A, a
uniquely determined element a x b of A,

Definition 1,2.--Consider a non-empty set R on which

thers are Jdefined two blnary operations which may be callsd
addition "+" and multiplication " * ®. If a, b € R then
a2+ band a ° b are uniquely determined elements in R,

Such a set 13 sald to be a ring if the set has the follow-
ing properties with respect to these binary operations.

Ist a, b, and ¢ denote arbltrary elements in R,

P, a+ (b+c)=(a+D)+c. This is called the
assoclative law of addition.

PZ‘ There exists an elemant z of R such that a + z = a
for every element a of R. This z is called the zero element
or additive identity. It can be shown that z is unique.

Pé. If a € R then there exlsts an x € K which depends
on a such that a + x = z where z 13 the additive identlity.

" ” "

x" 13 usually denoted by "-a" and 1s called an additive
inverse. It can be anown that each a € K has a unique

additive inverase,



'P4. a+ b= Db+ u, 13 13 called the commutative
law of saddltlon.

Peo ta *b) s c=2 b * c) ls the assoclative law
of multipllcation,

P a*\b+o)j=a*b+a*candlb+c)*an=
b *a+c * a. Thzic are the laft and right hand distribu-
tive laws regpectively.

It may be obssrved that the words addition and multi-
piication do not necessarily refer to the famillar definitlons
2iven In the case of rsal numbers,

Notation.--Suppose a and b are arbltrary elements 1in
a ring R such that "-b"™ 13 the additlive inverse of b. For
purposes of notation, denote a + (-b) by a = b. It follows
that a = (-b) = a + b,

Jofinition 1.3.--A ring R with the following additional

property 1s called a commutatlive rings

Pﬁ. If a and b are arbitrary elements in R then a * b =

b * a.

Definition l.,4.--a ring / 1s sald to have a unity r, if

r, *a=4a . r, = a for every element a in R, This r, 13 also

called & multiplicative identity. It is unique for any ring.

Definition l,5.«-let R be a ring, and 1lst W be a subaet

of R, If W 13 also a ring, call W a subring of R, Since W
1s a subset of R, the binary operations defined on W are

those operations defined on R reatricted to elements of W,



Theorem 1,6.~-A non-empty subset W of a ring R i3 a
subring of R if and only if for‘every wi, wo € W, 1t i3s
true that w, W, € W and wy - wy, € W,

Proof.--Suppose that for every wy, wy, € W, it 1s true
that w, ¢ w2€W and w; - w, € W, let w; € S, then
W, -wy = w € W. Thus W contalns an additive identity w,.

Suppo se w,, Wy € W thenw, - wy = -w, € W, Thus

z
w, - (-wp) = wy « wy € Wand 1t fellows that W 1s closed
under addition. W is also closed under multiplication since
w, W, € W, Obvserve that for any wp, in W, it follows that
-w, € W from the above argument. Thus each element in W has
an additive inverse,

W inherits the associative laws of addition and multi-
plication, the commutative law of addition, and the distri-
butive laws from the ring R,

Because W satisfies the above properties, it follows
that W 1s a subring of R.

Now suppose that W 1s a subring of R, If w; and wgp
denote arbitrary elements of W then v, * wo € W since W is
closed under multiplication, and since wo € W implies
-w, & W, 1t follows by the closure of addition in W that
w, (-wy) = wy) - wy €W,

Definition 1.,7.--lket S and T denote arbitrary rings.

Consider the ordered pairs (s;, t,) and (s, typ) where sj, sp
and t,, toare arbitrary elements of S and T respectively.

Define (sl, t,) ® (a5 t,) if and only if s) = ap and



S.- tﬁ' The same symbol will be used to denote equallty
in rings S and T, but the notatlon will indicate the rings
in which the squality refers., Now define addition, "@® "
and multiplication, " ® ", of those ordered pairs by
(sl, t1)® (az, ) ® (s +, 35, § +¢ ty) and (5, ) ®
(s, t,)® (3 o [ 35, & ¢y ty) where +,, -4 and +, ¢ ¢
are the binary operations defined on S and T respectively.
Suppoae (sl, t1)® (32, t2) and (34, t3)8(34, ty),
then 3, = 3, L. = by, 85 = 3, and ﬁs = t4. Observe that
(sl, tl)® (35, t3)®(sl+ s %30 B ¢ g tg) © (35 + , 34,
L t4)® (32, t2) ® (s, ty)e Thls means that the
operation @ 1s well defined.
Again suppose (al, tl) @ (3,, ty) and sy, ts) & (54, t4).
It then follows that (al, tl)<3 (a4, ty) ® (s » 4 83, £ * ¢
e %2t %y
the operation ® ia well defined,

ts)ii (52 I ) ® (a,, t,) ® (s,, t,); therefore

Notation.--The notatlon 4 o and + ., * ¢ fer binary

a’
operations in the ringa S and T respectively will be shortened

te + and °* for usage in both rings S and T, The symbols used
for elements in S or T will make it clear which binary epera-

tions are indicated by + and * . For exampls, 3 *4 33 will

be written as al . 33 and tl . t t4 will be written asa

*t ..
t1 4

Definition 1.8.--The set of all ordered palrs (s,, t,),

where '1 is a arbitrary element in S and tl is an arbitrary

element in T, is called the direct sum of S and T and is

denoted by S § T.



Notation.~-U will be used to denote the direot sum of

llsll

S and T hereafter, Also, for an ordered palr in U, an
with a subscript refers to an element in S and a "t™ with a
subscript refers te an element in T, These elements are
arbitrary unless otherwise specified. For example, Sy
which always refers to the adiitive identity in the ring S
and tz’ which always refers to the additive identity in the

ring T are not arbitrary.

Theorem 1,9.-=The direct sum U is a ring.

Proof.=-=-Suppose (al, tl) and (s,, tz) are arbitrary
elements of U, Then (al, tl) ® (32, t2) @ (sl + a5, t 4 tZK’B

(35, ts) where 3, + 3, = 8, € S and t; + t, = t; € T since S

and T are closed under addition. So U i3 closed under the

operation @ .

Observe that Bal, t1)® (32, tzﬂ @ (sa, tl’:)@ (al+ 85,
6, ¢ t2)® (L t5)® ([314— 52] + 34, [tlo— t) + t5)®
(sl+ [32+ 33], €, + [t2+ c;)@ (al, tl) ® (324- 355

t, + ts) ® (al, tl) ® (s t2) ® (33, ts)] since the respec-

2 2’
tive additive operations in S and T are associative. So the
operation @ defined in U i3 assocliative.

®
1+ tz)
(sl, t,), where s, 19 the additive identity of S and t, 1is

1
the additive identity of T, Thus U has an additive identity

Also note that ksl, tl)@ \sz, tz)@(sl-c- 3,0 b

(s, t).
2’ Tz
Let (s,, tl) be an arbitrary element in U, It follows

that (sl, tl)@ (-31, -tl) & (sl -8, % - tl)S (az, tz)



where -3, 1s the additive inverase of 8, and -tl 1s the
additive inverse of tl. Thus sach element in U has an
addltive inverss.

Observe that (sl, t )@ (s, tz)CD (8, + 55, ¢+ tg)@9

2’ "1
(32 + 35, t,« tl)ﬁi) (32, t2)® (sl, tl) since the respec-
tive additive operations in S and T are commutative. Thus
@ 1s commutative in U,

t

Note (sl, tl) O (15, t2)® (s « 8 . t2)®

2’ "1
(33, ts) where 3, * 3, = 8, € Sand t; * t, = t, € T since
3 and T are closed under their respective multiplicative
eperatienxs. Thus U is closed under the operation ©® .,

Also (s,, t,) O Bsz, ty) @ (a,, 1;3)] ® (s, tl)@
(s, 85, t, ° t3)€5 (al . [32 . aé], £, [te . té])éa
(Csy * 8,) * a4, [tl T ) )0 () o os,, by t2)©
(33, ts)% [(sl, tl) O] (32, tz)] O] (33’ ts) singce the
multiplicative operations of both 8 and T are associative,.
Thus U 1a assoclative under the operation ©.

In addition, (sl, tl) ® [(32, tz) ® (35, ts)]e
(al, tl) C>(32 + 8y, b, ts)eb (sl . [?2 + 8.1, £
[, + £,)) © (s - S+ 8y C 3, by b, ety ts)fa
(sl I PYIR t2)® (sl * g, by ts) @ﬂsl, tl) QY
(85, tzﬂ ® [(al, t,) ® (33, tSZ] sinoce 3 and T are rlngs
which satisfy the dlstributive property. This shows that
U satlsfies the distributive property from the left. Simi-
larly, it follows that the property 1s satisfied from the

right. So U 1s said to satisfy the distributive property.



Since ' satiafles the above properties, it follows
that U 13 a ring.

Notation.--By Theorem 1.9, the lnverse of any ordered
palr (s, tl) is (-al, —tl) which hereafter will be denoted
by - (sl, tl).

Theorem 1,10.--The direct sum U is a commutative ring
with unity if and only if both S and T are commutative
rings with unities.

Progf.--Suppose S and T are commutative rings with
unities. Then by Theorem 1.9, U is a ring. Let 39, 35 and
tl, t2 be arbltrary elements of S and T respectively, then

(sl, tl)@(se, t2)@(sl PR t2)@ (s, ° 34,

to tl)€5 (s,, t2) C)(sl, tl) since S and T are commutative

rings. Thus U is a commutative ring.

The following observatlon ﬁonfirma that U has a unity:
(sl, tl) 53(36, to)éi (sl BT to)éa (al, tl) where
3, the multiplicative identity of S and te is the multipli-
cative identity of T. Thus (s, te) 1s the multiplicative
identity of U,

Now suppose U is a commutative ring with unity. Further-
more suppose (s, tl), (32, t2) € U, Then (al, tl) ®
t2)€9 (52, tz)(3 (al, tl). This means that ‘sl P
and

., t2)€9 (32 T ey, by tl) s0 that 8, * 8, = 8, °*

2 2 " 8

t. * t_=¢t_ ¢t It follows that S and T are commutative

1 2 2 1°
rings.

Note (sl, tl) C)(se, te)éb (31, tl), where (se, te) is



8

the multiplicative identity of U. This means that (sl ‘8,
£ te)®(a1, tl);thua 5, 3, = 3 andt -t = .

830 8 and T have s, and te for multiplicative identitiles
respectively.

Hereafter a° and te will refer to the multiplicative
identities in the rings S and T respectively,

Definitien 1,11l.--A non-empty subset Q of a ring R ia
called an ideal in R if and only if it has the followinmg
properties:

1. If a and b are elements in Q, then a - b is an
element in Q.

11, If a 13 an element in Q, then fer every element r
in R, a * rand r * a are elements in Q. Since both a * r
and r * a are elements in Q, this is the definition of a
two-slded idsal.

Theorem 1,12.--An ideal Q in R ia necessarily a subring
of R,

Proef.--By 1. of Definitien 1l.11, if a and b are ele-
menta in Q then a - b i3 an element in Q. Using the facts
that Q is a aubset of R and ii. of Defimnitien 1.11, it
fellows that 1f a 1s an element in Q, then fer every ¢ in Q,
a * ¢c and ¢ * & are elements in Q. Now by applying Theorem
1.6, 1t follows that Q is a subring ef R,

Exemple 1,13.--This example shows that the converse
of Theorem 1.12 is not true. That i1s, there exists a sub-

ring Q in a ring R which is not an ideal. Let Q be the set



of all real numbers of the form x +y V2 where x and y

are integers. Define addition and multipliocation in the
usual way. Now Q is a subring in the ring of real numbers.
Note V8 (x +y V2 ) =x /3 + y V& &, but this is not
an element in Q. Thus Q 1s not an i1deal because 1i, of

Definition 1,11 1ia not satiafled.,



CHAPTER II

HOMOMORPHISMS AND ISOMORPHISMS

Definitiop 2.,1.--let R and M be two rings suoh that for
arbitrary elements a and b in R, there 1a associated in some

determined way, unique image elements al and bl in N such

1 and (a - h)l=al° bl

1, 1
that (a + _ b) a” + D r m s

r
where Yo and « ‘m denote additive and multiplicative

r m’

operations in R and M respectively. This mapping is oglled
a homomorphism of R into M, If every element of M ia the
image of some element of R, the homomorphism is of R onto M,
denoted by R ~ N,

De tion .==If in a homomorphism of a ring R onto
a ring M, each element of M is the image of a unique element
of R, the homomorphiasm is said to be an isomorphlism, denoted
by R= M, This correspondence between elements is said to
be one-to-one,

Theorem 2.3.--The set of all elements in U of the form
(s, t,) where s € S and t, 1s the additive identity of T ia
a subring U: of U which 1s lsomorphic to S by the correspon-
dence s« (s, t,) or o - (s, t;), where sl denotes the
image of s under the proposed mapplng.

Proof.--let s;, s, be arbltrary elements in 3 then
(a1, t,) O (s, t,) @ (3; * 35, t, ° t,) & (35, t,), where
S; * 3 = 83 € 3 since S5 is closed under multiplication.

10



1l

Thus it follows that (s, t ) ®(s_, t_ )€ ul,
1l z 2 z s
Observe that (al, tz)® (—52, -tz)@ (al, t‘) c) (32, tz)@
(ul -8, tz -tz)CD (al‘-az,
jnverse of each element in S is contained in S and also

tz) € Ui ainoe the additive

because S is closed under addition. Thus it follows that

1l 1
(al, tz) ©) (32, tz) € Uy, and it can now be said that U,

is a subring of U by gpplying Theorem 1.6.

An arbitrary element s in S has (s, tz) for itas image,
so the mapping ia into. Also, an arbitrary element (a, tz)
in Ui has s for its preimage, so the mapping is onto.

N €S . A
ow let sl, 32 where sl * 32 ssume that thease

two different elements have the seme image. Then sl-o (al, tz)

and 3, (al, tz), but 8, (32, tz) by the correspondence.

Thus (al,'tz)éi (32, tz), and it follows that 8, = 8,

contradiction to the assumption that the slements were

a

different. Thus no two different elements in S have the
1
same image in U, which makes the mapping one-to-one.

1
Note (sl+ 32) @(al-o- 8 tz) O(al+ 8o b+ tz)@)

(al, tz)G) (32, tz)@ ai@u;. Similarly, (al . 32)1@
(sl ", tz)@ (sl y 8, tz . tz)®(al, tz) 0] (az, tz)@
si() a;. The above equalities makes the mapping a homo-
morphism. So thls one-to-one homomorphism means that Ui
1s isomorphic to S.

Theorem 2,4.--The set of all elements of U of the form

(s , t) where s 1s the additive identity of S and t € T is
z

1
a subring U, of U which 1s isomorphic to T by the



12

™

1. (s, t) where t! denotes

correspondence t e (s, t) or ¢
the image of t under the proposed mapping.

The proof of this theorem follows from the argument
used in the proof of Theorem 2.3 upon replacing elementa
of the form (s, tz) by elements of the form (s, t) and
replacing Ui by Ut.

Theorem 2,5.--The subring Ui of U consiating of all
elements in U of the form (s,, tz) where s, € S and t  1s
the additive identity of T, is an ideal in U,

Proof.--By Theorem 2.3 U% i3 a subring of U, therefore
1f (a4, tz), (85, tz) are arbitrary elements of U: then
(sl, tz) O (s,, t,) € Ui by Theorem 1.6. Thuas property 1i.
of Definition 1,11 is satisfied.

Suppose (sl, tz) is an arbitrary element of Ui and
(52, tz) 1s an arbitrary element of U. Then (s,, tz) ©
(52, ta)éb (al i PYRR T tz)ﬁb (al © 85, t‘) € Ui aince
S 1s olosed under multiplication. Similarly (s,, t,) ®
(al, tz)GD (52 © 8y, b, 0 tz)éa (32 * 8, tz) & Ui, which
satisfies property 1i. of Definitien 1l.11., It then follows

that U: is an ideal.

Theorem 2,6.--The subring Ut of U consiating of all
elements in U of the form (sz, tl) where s 1s the additive
identity of S and tli-T, is an ideal in U.

The proof of this theorem follows in a manner similar

to the proof of Theorem 2.5.

sorem .--The correspondence (s,, ty) - (s, t,) 1is
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a homomorphiam of U onto Ui‘. The elements of U whieh

correspond to the zero element of Ui are the elements of

1
t.

Proof.--An arbitrary element (s,, t;) in U has (s;, t,)

U

for 1ts image, so the mapping i1s into. Also, an arbitrary
element (s,, tz) in Ui‘ has (s,, t,) for its preimage where
t, represents any element of T. So the mapping 1s onto.

Let (a;, t,) and (s,, ty) denote arbitrary elements in
U, then (s, tl)lé-)(al, t,) and (s,, tz)l@ (ag, t,). It
follows that (s, tl)lG) (85, t2)1@ (a,, t,)® (3, t’z)©
(8)+ 85, t,+ £,) @ (s + 85, t ). Note also that ﬁ:l, t,)®
(35, t,l] le(sl v 55, £+ tz)l
it can be said that [(al, tl)@ (ay, tz)]l@(sl, tl)]'@
L P ta)l. Similarly (s,, tl)l@(az, tg)lﬁ(al, ) ©

® (8; + 3,, t ). Therefore

(55, tz)ﬁ(al © 8, t, ¢ tz)ﬁ(al i P¥ tz), and [(al, tl)G)
(32, tz)]lg(al ¢ 32, tl * tz)lg(ll ¢ 82, tz). Thus the

mapping is a homomorphiam of U onto Ui

The zero element of Ui’ is (a tz). By the correspond-

g’
ence, its preimage is any element of the form (sz, tl) where
t, € T. But (a,, t,) represents any element of Ut. Thua
the elements of U which correspond to the zero element of
Ul‘ are the elements of Ul.

Theorem 2.8.--The correspondence (s,, t,) * s, 1s a
homomorphism of U onto S and the ocorrespondence (al, tl)"’

tl is a homomorphism of U onto T,
Proof.--By Theorem 2.7 the correspondence (s,, t,) -
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(sl, tz) 13 a homomorphism of U onto Ui, and by Theorem 2.3
Ut 1s isomorphic to S by the correspondence (al, tz) -8,
Because of the relationship between homomorphic and iso-
morphic sets, it can be concluded that the correspondence
(al, tl)‘* 3, 1s a homomorphism of U onto S. That is, 1if

A is homomorphic to B, and B 1s isomorphic to C then A 1s
homomorphic to C, It may be similarly concluded that the

correspondence (al, tl) "tl i1s a homomorphism of U onto T.

Dofinition 2,9.--The ideal U™

s
partition of U into sets which are called residue claases

in the ring U defines a

modulo Ui. Two elements (sl, tl), (52, t2) in U are in the
1 1
same residue class modulo U. if (8, tl)C)»(ae, tz) €v,.
In this case, (sl, tl) 1s said to be congruent to (s, tz)
1 - 1
modulo Uy, and thia 1s written (a,, tl) = (32, tz) mod U,
Express this set of clasaes by U/Ui.
- 1l
Notation.--If (al, tl) @(az, tz) € U then (al, cl)e
(32, ta)éb (sl - 8, tz)' Since t, - t, = t_, 1t follows
that tl - t2. This means that any residue class modulo Ui

can be expresaed as {}al, tl) lsl is an arbltrary element

in 8, and t. is a fixed element in T}. Since each t € T

1
determines a unique residue class modulo Ul,ldenote this

residue class by {S,ﬁ}.

Definition 2.,10.--For the residue classes {S,t} and
§, t,} modulo Ui, define {3, t}® {8, ¢t} ir and only if
t, = t,. Now define addition, @ , and multiplication,
of these residue classes modulo U:: by {S, t]} ® {S, te} o
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{s, t;+ t} and {5, t} @ {s, .y © {8, & tz'} respectively
where + and * are binary operations defined on T, Here &
and & represent well-defined binary operations.

Theorem 2,11.-~The residue classes of U modulo Ui form
e ring which has {S, t;& for 1ts additive 1dentity.

Proof.--By using the fact that T 1s a ring, it follows
that U/Ui is a ring.

Definition 2,12.--In a manner similar to Definition 2.9

the set of residue classes U/Ut may be defined. Here each

1

8, in S determines a unique residue class of U modulo Ut

denoted by {}1, T}.
Notation.--The symbols @ and &© will be used to
denotse the binary operations of U/Ut as well as those of
1
U/Ua'

Theorem 2,13.--There exists an isomorphism between Ui

and the residue class ring U/Ut, that 1s U'}“ U/Ut. The
correspondence to be considered 1s (sl, tz) > {}l, T}.

Proof.--An arbitrary element (s tz) in Ui haa {}l, T}

1°?
for its image, thus the mapping is into. Similarly, an
arbltrary residue claas {}1, T} in U has (al, tz) as a pre-
image. Thus the mapping is onto.

Arbitrarily choose two different elements (al, tz) and
(52, tz) in Ut. Assume that they have the same image, then
(8, ¢,) = {al, T} and (s, tz)—-»{al, T}. But (32, tz) -
{35, T} by the correspondence, 80 {}1, 7} © {}2, T} and 1t

follows that s) = a,. Therefore (s, ti) C)(se, tz) is a
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contradiction that the elements were different. 8o no two
different elements have the same image which makes the
mapping one-to-one,

Observe that [(sl, t,) ® (s, t:z)]l o (8 ¢ 85, &, + tz)l@
(3, + 3,, tz)l ® {7+ 35 T & {s,, T} @ {82, T} ©
(srxz)léb (s, t’)l.

Also, [(3;, t,) © (a,, £, (a; a5, t, tz)l &
(87 * 35, tz)lé {al ' 8, T © {31, T o {52, T} &
(s, tz)l@(az, tz)l.

Thus there exists a one-to-one onto homomorphism,
therefore it can be said that U% 1s isomorphic to U/Ui.

Theorem 2.14.--The correspondence (sy, t;) —»(s,, t;)
1s a homomorphism of U onto Ut, and Ui is an ideal in U which
maps onto the zero of Ut. Furthermore, there exists an iso-
morphism between Ut and the residue class U/U:, that 1s
ug ® vl

The proof of this theorem i1s similar to the proof of
Theorems 2.7 and 2.13.

Example 2.15.--Consider the ring Ig4 of integers modulo

6 whose elements are Oé, 1%, 2%, 3%, 4%, and Sé. Consider

also rings I, and I5 whose elements are Oé, 1% and Oé, lé,

Zé respectively. It follows that I, + Iy = {30%, O%),

1 1 1 1 1l 1 1 1 1 1
(15, 03), (03, 13), (13, 13), (05, 23), (1, 2x)}. Note
that the following correspondence between elements of Ig
and those of I, + Iy 13 an isomorphism:

1 1 1 1 1 .1 1 1 .1
0g «* (05, 03) , 1+ (15, 13) , 2g +* (03, 23)

1 1 .1 1 1 .1 1 1,1
3g ¥ (1, 03) , 4g < (0, 1) , 55 «* (15, 25%).
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Example 2,16.--Conaider the direct sum of the two rings

I, and 14. Denote the elemonts of 12 by 0%, 1% and those of

1 1 1 1 . 1 1
I, by Oy, 14, 24, 34. It follows that Ip+ I,= {{op, 0y),

1 1 1 1 1 1 1 1 1 1 1 1
(05, 1), (03, 23), (03, 33), (13, 0g), (13, 1), (15, 24),
(lé, Si)}. The set consisting of the elements (0%, Oi),

1

1
(1, 13), (oé, 2}

), and (lé, St) is a subring of the direct
sum, It may be noted that the following set las a different

subring of the direct sum: {10;, Ot), (Oé, 21), (lé, Oi),

(1%, zi)}.



CHAPTER III

PROPERTIKS OF RINGS

Theorem 3,1.--The correspondence (s;, t;) «* (%, 8 )
between the elements of S+ T and T + S 1s an isomorphiam.
Proof.--An arbltrary element (s, t,) in S+ T has
(t, 8) in T + S for ita image, so the mapping 1s into.
Also an arbitrary element (¢, 83) in T 4+ S has (87, ¢)
in S+ T for its preimage. Thus the mapping is onto.
Arvitrarily choose two different elements (sl, tl) and
(%5, &) in S + T, Assume that these elements have the same
image. Then (8, t1) = (t;, 8 ) and (s, &) = (4, &),
but (s,, t5) = (ty, 35) by the correspondence. Thus (¢, CRAS
(t,, 85), and 1t follows that t) = t, and & = s;. This
means that (s,, ¢t ) ® (s, t5), a contradiction to the
assumption that the elements were different. Thus no two
different elements have the same image which makes the
mapping one-to-one.
Note (a8, t7) @ (a5, tz)]l ® [(s) + 35, & + te))l 5
(ty+ to, 81+ 32) @ (1), 0) ®itg, 1) ® (s, 1) @ (52, t2)°.
Similarly [(s;, t)) O (sg, tz)]]' Os * s, ty ° te)]l®
(t) * ta, 89 * 8)@® (), 51) O(ty, 35) @ (s, t1)1®(32, tg)l.
Thus there exists a one-to-one onto homomorphism between S + T

and T + S, This completes the proof that S 4 7% T 4+8S,

18
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Remark.--Since S+ T = T + S, any theory concerning the
ring S + T will correspond to the theory concerning the ring
T + S, Therefore one may speak of the direct sum of two
rings without regard to the order of the direct sum.

Definition 3,2.--A commutative ring F with more than
one element and having a unity 1s called a field if it has
the additional property:

1. For every non-zero element "a™ in F, there exists
an "x" in F such that the multiplication of "a™ by "x™ ylelds
the unity. This element "x™ i1s called the multiplicative
inverse of "a".

Theorem 3,3.--Assume U 1s the direct sum of rings S and
T where U 1s a commutative ring with unity. Also assume
that both of S and T has more than one element. It then
follows that'U cannot be a field.

Proof.--Suppose S has a non-zero element 3] Then
(s;, t;) 1s a non-gero element in U. The multiplicative
inveras of (al, tz) 1s the ordered pair with the multipli-
cative inverse of s; in the first position and the
multiplicative inverase of t, in the seoond position. Hence
(al, tz) does not have a multiplicative inverse because t,,
the additive identity of T, does not have a multiplicative
inverse in T,

Definition 3,4.--Suppose a, b, and ¢ are elements in
a ring R whose additive identity 1s represented by rge. If

there exists a non-zero element b such that a *« b = r_ or a
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non-zero element ¢ such that ¢ * a = T then a 1s asaid to
be a divisor of zero. A non-zero divisor of zero is called
a proper dlvisor of zero.

Theorem 3,5.--1f both S and T have more than one els-

ment, thelr direct sum U has proper divisors of zero.

Proof.-~Suppose S5 and T are rings such that 3, repre-
sants a non-zero element of S and t, represents a non-zero

1
element of T. Observe that (al, tz) O] (sz, tl) ® (al T8,

t, *t,)® {s,, t,). Both (s, tz) and (s, tl) are proper
zero divlisors.

Definition 3,6.--A commutative ring R with more than
one element and having a unity is called an integral domain
if it has the following additional property:

1. If ry, Ty € R such that ry Ty, T, then r,=r, or
r,=r,, where r, 13 the additive identity of R,

Theorem 3,7.--Suppose U is the direct sum of rings S
and T where U 13 a commutative ring with unity. Also
suppose each of S and T has more than one element. Then
U is not an integral domain,

This proof i3 contained in the proof of Theorem 3.5.

Example 3,8.--This example shows that if one of S and
T has only one element and the other ia an integral domain,
then thelr direct sum U has no proper divlisors of zero. It
then follows that U is an integral domain in this example.

Suppose S 1s the zero ring which oontains only the ele-
ment O. Let T be the ring of integers. Then if (O, tl),
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(0, t,) € U such tnat (0, t,) ® (o, t2) ® (0, 0) where £

and t, are arditrary integers, then (O, tl)ﬁa (0, 0) or

(0, tQ)GD(O, 0) because t, * t, ® 0 Implies ¢, = Oor t,=

2 1 2

O,

Definition 3,9.-~-If for an arbitrary ring H, there

n_n

exlsts a posltive Integer n such that "a" added to itself

n times c¢quals the additive ldentity r, in R, denoted by

na = r,_, for every element "a" in R, the least such n is
called the characteristic of R, and R 1s said to have posl-
tive characteristic. If no such integer exista, R 1s sald

to have characteristic zero.

Definition 3.10.-~Suppose m and n are positive integers
such that km = pn =r where k and p are the smallest such
positive integers such that the equation is true. The posi-
tive integer r 13 called the least common multiple of m and
n, and this 1s denoted by 1. c¢. m. {m,n} = r.

Theorem 3.,11.--If S has characteristic m>0 and T has
characteristic n » O, then U has characteristic 1. c. m. {m,d}:
r.

Proof.--Since 1. o. m. {m,ny=r, there exlsts positive
integers k and p such that km = pn = r. Since S has char-
acteristic m and T has characteristic n, then for any element
1Y in 8, ms, = 8, and for any element t, in T, nt, = Ly

1

Thus for any element (s tl) in U, 1t follows that r(sl, t’.l)ﬁB

l’
(rsl, rtl)@(kmal, pntl) @(ksz, ptz)O(az, 'cz). Thus the

characteristic of U 1s elther lesz than or equal to r.
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Suppose that the characterlistic of U {3 less than r,.
Then thero exlats an inteper O < § < r such that for every

element (s, t;) tn U, Jls,, tl)é@ LJsy, JE)) @ (s, tz).

Thus Js. = s for all elements 3. in S and jt. = t for all
1 z 1 1 z

elements ty in T. Since Jj is not the 1. c. m. {p, ﬁ}, it
followa that m does not divide j or n does not divide j.
Suppose that m does not divide j, then m # j, and since m
13 the characterlstic of S, 1t follows that j i1s not less
than m. Thls means that m < J, thus j= mz + w where z 1ia
an integer and 0 ¢ w < m. It follows that jsl = (mz + w) s =

1

mzs) + w3, = zm3, + Ws, = 23 + W3 = 3+ ws = wa and Jal.-:

3, thus ws) = 8. but since w« m, ws, = 3, for all 3 in
S contradicts that m is the characteristic of 3, therefore
m must divide j. In a simlilar manner, it follows that n
must divide j; hence the least common multiple of m and n
divides J. This contradicts J < r, henoe the characteristic
of U 1s not less than r. The characteristic of U is there-
fore equal to the l. c. m. {m, n} = r.

Theorem 3,12.--If S has characteristic zero, then U has
characteristic zero.

Proof.--Since S has characteristic zero, it follows
that for each arbltrary integer m > O, there exists an ele-
ment 8. in S such that ms, + 8. (s

1l 1
for any integer m > O, there exlsts an element (s

may depend on m). Thus
1 tl) in
U such that mls, gl)C)(mal, mtl)ﬁB(sz, tz), which means

that U has characteriastic gzero.
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Theorem 3.13.~--If U has characteristic r » O, then 3 has

characteristic m > O and T has characteristic n > O such that
le Co m, {m, ﬁ} = r,

Proof.--Since U has characteristic r > O, it follows
that for any element (s, t,) in U, rla,, t,) @ (rs), rtl)G;

(s tz). This means that for any element s, in S, rs; = 8

z’ z

and for any element t in T, re; = . It follows that
O<m<rand 0 €< n s r,

Suppose that r is not a multiple of mythen r = am + b
where a and b are positive integers and O < b < m. For each

3, 1n 8, 1t follows that rs) = fam « 1) 8, = ama; + bsy =

as, + bsl = bal and rs; = s.. Thus bsl = g_ for any element

z
3 in 3 which contradicts that m is the characteristic of 3,
This means that r is a multiple of m, and in a similar
manner it follows that r is a multiple of n.

Now suppose that there exists a common multiple j of

m and n less than r. Then for integers al and bl, alm =
bln = j < r. Observe that sy, tl)CD (Ja,, jtl)(:)(almsl,

1 1
b ntl)QD(a S,

U, But this contradicts that the characteristioc of U 1s r.

1
b tz)<5 (sz, tz) for any element (s, t;) in

Thus since r 1s a common multiple of m and n and since there
is no common multiple of m and n less than r, 1t follows that
r=1., c. m. {b, d}.

Theorem 3.14.--If U has characteristic zero, then elther

S has characteristic zero or T has characteristic zero.

Proof.--If S has characteristic m > 0 and T has
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charactsristic n > O then U has characteristic 1. c¢. m. {m, nY
by Theorem 3.11, Trls contradicts the zero characteristic of

U; hence either S or T has :2ero characteristic,



CHAPTER IV
PROPERTIES OF IDEALS

Theorem 4,l.--Suppose U' 1s an 1deal in U. If S has a
unity 3 and T has a unity te then there exlst 1deals S'
and T 1in S and T respectively such that U' = s' 4+ 7',

Proof.--by a previous theorem, the correspondence

(al, 1 10 tl)"

tl 1s a homomorphlsm of U onto T. Let S' be the image of

tl) —» 8. 1s a homomorphism of U onto S and (s

U' in the first homomorphism and T' be the image of U' 1in

the second homomorphism. The following argument for the
first homomorphism shows that S' is an ideal.

Choose two arbitrary elements a tn 8'. Then there

1’ %2

1+ 5 € T such that (s, t.), (a,, t,) € U' with

1 tl) — s, and (32,

of 8, -3, ia (al -8, b - tz)ﬁb(a

since U' {s an ideal, so 8, - 8,

choose s, € S and 8. € S', Then there exists (34, tt) €U

t5) €U with t

exlists ¢t

(s tz) - 8 Observe that a preimage

2.
1 tl) 9(32, te) €U

€ S, Now arbitrarily

and (s t. € T such that (s, t4) — 8

4’ b
Note that a preimage of s

s’ 4

and (s t5) - 3 is

4 %
ts) € U' because U' 1s

5.
. t5)€9(34, t4)C3(a

5’
(84 . 5?

8 tg t‘)GD (as, ts)CD (34, t4)

6U'. Thus 34 . 356 s' and 35 . n‘e. 8'. It can now be

said that S' 1s an ideal.

35, t4
an ideal. Similarly (ss .

a5
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A similar argument for the second homomorphism ylelds
that T' 1s also an ideal.

Once again conslder the ideal s' 1n 8. If 3] 1s any
element of Sx then there exlsts an element in U' with 8 in
the first position, say (s, tl) € U', It follows that
(al, tl) ®(se, t.z) @(sl, tz) € U, Thus U' contains all
elements in U of the form (sl, tz). In a similar manner, u'
contains all elements of the form (a_, tl) where t, € 7.
Thus U' contalnas all sums of these elements since U' is an
{deal, That is, U' contains S' + T',

Now let (s, tl) be an arbitrary element in U' then
8 € 3' and Y € T' by the construction of S8' and T . Hence
U' 1s contained in 8' + T', Thus 1t can be concluded that
u' =38 + 7',

Remark.--In all of the following theorems where 8' and
T' are ideals in S and T respectively, both S and T are
assumed to have unities. This will insure that the ideal U'
fs the direct sum of S' and T', and the aymbol U' will ve
reserved for this direct sum.

Theorem g,g-—S' is an i1deal in S and T' 1s an 1deal in
T 1f and only if U' 1s an ideal in U,

Proof.--Suppose S' 1s an ideal in S and T' i1s an 1deal
in T. Let (s;, ), (a,, t,) € u', then (87, t;) @ (35, )
(8, - 85, & - t5) € U' because S' and T' are ideals closed
under their respective subtractlons.

Now let (a;, t,) € U and (s,, ty) € U', then (s, t)) @
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(s, tg)@(sl " ey, b o) € U' pecsuse S' and T' are
ideals. Similarly (s,, ty) O (g, tl)€ u', so U' 1s an
jdeal in U. The converse folilows from Theorem 4.,1.

Definition 4,3.--If A and B are sets with the property

that every element of A 1s alao an element of B, then A 1=
called a subsethof B and the gelationahip i1s denoted by

AS B, If AS B and A+# B then A 13 called a proper subset
of B, and the notation A € B 1a used.

Lemma 4.4.--Suppose that both S' and S" are subrings
in S and that both T' and T" are subrings in T, Irf S'c 8"
and T' € T then S'+ T' < S"™ + T",

Proof.--let 8' = {s') s' € S'% and T' = £\ te 7%
then S' + T = {(a', t') | s' € 8', t' € T'}. Now let T" =
G'Vere Thufemicte T, £ ¢ ™} then S' + T" = {(a', t')|
ste s, t'eT}h v {(sa', t") s’ e s, the 1, t"¢ Y,
Any arbltrary element (3], ti) in S'4 T' is also in S'4 T®
since a} € S' and t; € T*", Thus it follows that S' + T' &
S' 4+ T,

In a similar manner it follows that S' & T" & 8" & TV,
But there exists an element s} in S" such that sj ¢ S' since
S' € 8", Thus for any element t] in T, (s}, t}) & 8" +
but (s, t]) ¢ 8'+ T". It follows that S' + T"Ccs"+ T",
Thus since S'+ T'ES S'+ T" and S'4+ T" ¢ s + T" it can be
concluded that S'+ T'C S" & T",

Lemma_4,5.--Suppose that both S' and S" are subrings in
S and that T' 1s & subring in T. If S'4 T'€ 8" & T, then
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S'c 3",

Proof.--Let o'+ T' = {{s', t') ! s' € 8', t' € T} and
smd T = {(s", t') )" e s", t'€ T}, Since S'4 T'cC
S" 4+ T', it follows that for any element (ai, ti) in S' 4 T*,
(s}, £] } 1s also In S"4 T'., This implies that for any ele-
ment 3] in S', s] € S"; hence S' € 8", Also since 8'+ T'C
S" 4+ T', there exlsts an element (33’ ti) in S+ T' such
that (s{, ti) ¢ S' + T'. But since ti € T' it follows that
a'£¢ S', thus S8'c 8",

Definition 4,6.--Suppose R is a ring which contains a
set of ldeals Ay, for 1 =1, 2,..., such that Alc— Ape ...
These ideals A1 are sald to form a strictly increasing
sequence,

Definition 4,7.--1f for a ring R, every satrlictly increas-
ing sequence of ideals contalns only a finite number of ideals,
then the ascending chain condition 1s said to hold in R,

Theorem 4,8.--Suppose S and T are rings which have
unities. The ascending chain condition holds for S and T
1f and only if it holds for U = S 4 T,

Proof.--Suppose the ascending chain condition holds for
U. Also suppose that the ascending chain condition does not
hold for S. Then there exists a strictly increasing sequence
of ideals in S denoted by S, © S, € ... which ia not finite,
Observe that Si-i T 13 an ideal in U by Theorem 4.2 for 1=
1, 2, «.. , and that Sl'; T C Sz-¥ TC ,.. 1s an infinitely

strictly increasing sequence in U, where the containment
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follows from lLemma 4.4. But this contradicts the asasumption
that the ascending chain condition holds for U. An argument
similar to the above could be made if T were assumed to not
satlsfy the ascending chaln condition instead of S. Thus it
follows that the ascending chaln condition holds for both S
and T 1f it holds for U,

Now assume that the ascending chain conditlon holds for
both S and T, Also suppose that it does not hold for U.
Then there exists a strictly increasing sequence of ideals
in U denoted by U1_<..U2 € ...ywhich is not finite, By
Theorem 4.1, there exist 1deals S1 and T1 such that U!.‘
Si<$ T, for 1 =1, 2, ... . Tnols means that elther S15 Spyeee
such that S, ¢ S, < ... 1s infinite or Tl, Ty, ++. such that
Tl‘C'Tz < ,,. is infinite, where these containments follow
from Lemma 4.5. But this contradicts the assumptlion that
both of S and T satisfy the ascending chain condition. Hence
it can be concluded that U satisfies the ascending chain
condition if S and T satisfy the ascending chain condition.

Definition 4,9.--Suppose R is a ring which contains a
set of ideals A1 for 1 =1, 2,,..y such that each subsequent
ideal 1s properly contained in the preceding one, denoted by
A1:> Az S .o s These 1deals A1 are said to form a atrictly
decreasing sequence.

Definition 4,10.-~If for a ring R, every atrictly
decreasing sequence of ideals contains only a finite number

of ideals, then the descending chain condition 1ls sald to
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hold in R,

Thecrem 4,11.~-Supposs S and T are rings which have a

unity. The descending chaln condition holds for 3 and T if
and only 1f 1t holds for U = S + T,

Proof.--Exchange the words descending for ascending and
decreasing for increasing,and the proof of Theorem 4.8 can
be used here,

Definition 4,12.--Suppose R is a ring. An 1deal A in R

1s said to be maximal if A # R and there exists no ideals
between A and R. Thus if A 1s a maximal ideal and K is an
i{deal such that A £ K € R, then either K = A or K = R,

Theorem 4,13.-~An ideal U'= S' 4+ T' 1s maximal if and
only if either S'= 8 and T' 1s maximal in T or T' = T and
S' 1s maximal in S,

Proof.--Suppose U' 1s a maximal i1deal in U. Also
suppose that T'™ T and S' is not maximal in S. Then there
exlists an ideal S" sueh that S' ¢ S" c€ S, and by Theorem 4.2,

S"4 T' is an 1deal in U. Furthermore by Lemma 4.4, S'+ T'c

e}

"4 T'<C€ U, But this contradicts the assumption that
S'4+ T'= U' is a maximal ideal in U,

Secondly suppose U' is a maximal ideal in U, Also
assume that T'# T and S' 1s maximal in S, Hence T'c T
and 1t follows that S'4+ T'c S'4+ T C U by Lemma 4.4. But
this contradicts the assumption that S'+ T' = U' {is a maxi-
mal ideal in U,

Thirdly suppose U' is a maximal ideal in U, and also
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assume that T' # T and S' .3 not maximal in S. Then there
exists an ideal 8" such that 5'< S" <€ S, and it again
follows by Lemma 4.4 that 3'+ T' € 8"+ T' € U, But this
contradicts the assumption that S' 4 T' = U' 13 a maximal
ideal in U,

In a s'‘milar manner, 1t can be shown that U' 1s not maximal
in each of the following three casest (1) S'= S, T' is
not maximal in T} {(2) S'# S, T' 1is maximal in T; and
() S'# S, T' i3 not maximal in T. The only other cases
are the conclusions desired., Thus S'= S and T' is maximal
in T or T'= T and S' 13 maximal in S if U' is a maximal
ideal in U,

Now suppose T' = T and S' 1a a maximal ideal in S. Also
suppose U' 1s not a maximal ideal in U. Then there exists
an ideal U" such that U'< U"< U, By Theorem 4.1, U™ may
be expressed as a direct sum, say U" = S" + T", Thus it
follows that S'+ T'c 8"+ T"cC S & T.. Since T' = T, 1t
may be concluded that T" = T, This means S'< 8" < 3 by
Lemma 4.5. But thia contradicts the assumption that S' ia
a maximal ideal in S,

In a similar way, it can be shown that U' is maximal
whenever S'= 5 and T' 1s maximal in T, Thus U' is a maximal
jdeal in U if S' = S and T' 13 maximal in T or T'= T and S'
is maximal 1in S,

Example 4,14.--Let S * T be the set of integers and

S' = T' be the even integers. Observe that U™ = 8 4 T' ia
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an ideal such that U'€ U"C U, It follows that S' and T'
are maximal ideals In S and T respectively but U' is not
maximal in U,

Definition 4,15.--Suppose R 1s a commutative ring. An

fdeal A in R i3 said to be prime if whenever a product b * ¢ €
A with b, ¢ € R then b € A or ¢ € A,

Theorem 4,16.--An 1deal U'= S' + T' is prime if and

only if elther 8' = S and T' i3 prime in the commutative ring
Tor T'= T and S' 1s prime in the commutative ring S.

Proof.--Assume U' 13 a prime ideal in the ring U, Then
one and only one of the following four cases is possible:

(1) S'=5s, T'=T; (2) S'= 3, T'#% T; (3) 8'# S, T'= T;
(4) S'# s, T # T,

Suppose case (1) 1is true; then both parts of the conclu-
sion of Theorem 4.16 are implied,

Suppose case (2) 13 true when T' is not prime. Then
there exists a product t; ° t, € T' where t, and t, are ele-
ments in T auch that t1¢ T' and t‘.2¢ T'. If sy, 3, €8
then (sl P tz)ﬁb (al, tl) C3(32, tz) € U' but
(s;, t;) ¢ U' and (s,, t,) ¢ U' because t; € T' and t, & T',
This then contradicts the assumption that U' is a prime
ideal in U, This situation for (2) ia thus impossible.

Now suppose (2) is true when T' is prime; then this
case for (2) is one of the conclusions of the theorem.

Now suppose (3) is true when S' is not prime. Then

there exists a product s, ° 8, € 3' where 3, and s, are
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arbltrary slements of 5 such that sl¢ S' and sg ¢ S'. Con-
sider (s, ty/, (35, t,) @ U where 1) and sg represent the
above mentioned elements and ty, ty, € T'. Now (89, %) ©
(a,, t2)@ (3) « 85, & ° o) € U' with (s, t;) ¢ U' and
(8o, tz) ¢ U' because sy € S' and 3, ¢ S'. »put this contra-
dlcts the assumptlion that U' i3 a prime ideal in Uy so this
situation for (3) is impossible.

Consider when (3) 1s true where S' is prime, then this
case for (3) 13 one of the conclusions of the theorem.

Now for case (4), =ince S # S' there exists an element
3y in S such that sl_é S'. There 1s also an element s, in
S' such that s; ° s, & S' since S' is an ideal. Since T # T'
there exists an element t, in T', and there 1s an element
t, € T such that t, ¢ T'. It follows that t; ° t, € T
vecause T' i3 an 1deal. Thus (s * 35, %) °* ty) ® (s, &) O
(a5, t2)€ U' but (sg, ty) ¢ U' since s € S' and (35, t2)4
U' because t22¢ T'. This means that U' 1s not a prime ldeal,
a contradiction which means that case (4) 1s impossible.

Thus cases (1), (2), and (3) imply the conclusion and
case (4) 1a impossible. Thls means that the hypothesis of
the theoren implies the conclusion; that is, 1f U' is a
prime ideal in U then S' = 8 and T' is prime in Tor T' = T
and S' 1s prime in S.

Now assume that T'*= T and S' 1as a prime 1deal 1in the
ring S. Assume also that U' 1a not prime. Then there exists

{34, £;), (ag, tp) € U and (87, t3) ©® (85, t,) € U' such that
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{3y, tl} ¢ U' and {8y, ol ¢ U'. It follows that s; * 35 €
S' but s; ¢ S' and 32¢ $' wecaunse T' = T,thus making t; € T'
and t, € T'. Tnis contradicts tne assumption that S' is a
prime {deal, and 1t can be concluded that U' 1s a prime 1ldeal,
in U,

In a similar way, it can be shown that U' is prime when-
ever S' = S and T' is prime in T, Thus U' is a prime ideal
tnU 1f S' = S and T' i3 prime In T or T' = T and S' 1s prime
in S,

Example 4,17.~--Let 3 and T be the set of all integers.
Then let S' be the set consisting of all multiples of 3 and
T' be the sst consisting of all multiples of 7. Multiplica-
tion to be used 13 the ordinary multiplication defined for
integers, Here both §' and T' are prime ideals. Observe
6 * 4 »24€ S' with 6 €3', but 4¢ S' and 8 * 7 = 56 € T'
with 8@ T', but 7€ T'., Thus (6 * 4, 8 + 7) &(6, 8) O
(4, 7) € U' since 6 * 4& S' and 8 *+ T € T', but (6, 8) ¢
U' and (4, 7) € U'. This means that U' 1s not a prime ldeal,
but both S' and T' are prime ideals.

Definition 4,18.--Suppose R is a commutative ring. An
1ideal A in R 1s sald to ve primary if the conditions a, b €
Rwitha * b€ A and a € A implies the existence of an inte-
ger n > 0 such that v € A,

Theorem 4,19.--An ideal U' = S' 4 T' is primary if and
only if either S' = S and T' is primary in the commutative

ring T or T'= T and 3' is primary in the commutative ring S.
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Proof.--The fo..owing two contradictions wlll be useful
later in the proof., First let U' ve a primary ideal in the
ring U. OSuppose S' !s not s primary 1deal in the ring S and
T' 1s an ideal in the ring T. Then there exists s;, s, € S
such that 3+ 3, € S' with 3 ¢ S' and such that for every
inteser n > 0, sg ¢ S'., let (s, tl) and (s,, tz) be ele-
ments of U, wherse 5 and 2, represent the above mentioned
elements and where ty and t, are arbltrary elements in T,
Now (al, tl) CD\az, t2) SUls; * 85, b ° t2) € U' with
(sy, t) ¢ U' because sl¢ S'. And for every integer n » O
P tz)néb (sg, tg) ¢ U' because sg ¢ S' which contradiocts
the assumption that U' 1s a primary ideal.

Again let U' be a primary ideal in the ring U, Suppose
also that S' is an 1deal in the ring S and T' is not a pri-
mary ideal in the ring T. In a manner similar to the one
used in the first contradiction, it follows that U' cannot
be primary, a contradiction to the assumption that U' is pri-
mary.

Once again assume U' is a primary ideal in U, Then one
and only one of the following four cases is possible:

(1) S'= S8, T'=T; (2) S'= 8, T'#T; (3) S'#+ S,
T'= T; (4) S'# 8, T'# T,

Suppose (1) 1s true; then both parts of the conclusion
of the theorem are satiasfled.

Suppose (2) is true when T' ia not primary. Then a con-

tradiction to the assumption that U' 1s primary is reached
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as was snown earlier,

Now suppose (2) 1s true when T' is primary. Then thls
case for (2) is one of the conclusions of the theorem.

Now suppose (3) 1s true when S' 1s not primary. Then
by the result at the beginning of the proof, a contradiction
to the assumption that U' {3 primary 1s reached.

Consider when (3) 13 true where 3' is primary. Then
this case for (3) i1s one of the conclusions of the theorem,
Now for case (4) there exist four possibilities:

(A) S' is not primary, T' 1s not primary; (B) S' is not
primary, T' 13 primary; (C) 8' is primary, T' 1s not primary;
(D) S8' is primary, T' 1s primary. The possibilities (A),

(B), and (C) lead to a contradiction that U' is primary by

the results at the beginning of the proof.

Consider possibility (D) when S'# S where S' is pri-
mary and T' % T where T' is primary. Filrat note that s
13 not an element of 8', For suppose s, € S'; then for

every s; € S 1t follows that a; * 8, = 8; € S'. This means

e
that S8' = S, which contradicts the assumption that S' # S,
Now let s; be an arbltrary element of 3'. It then follows
that sy + s, ® 8'. For suppose s; + s, € S' then (s + 3,) -
3) = 8, € 8!, a contradiction to the fact that s, & 3'. Nor
is any power of s;+ s, an element of S'. For suppose

(sl + ae)n = sg‘+ nag-l + ... 4 ns; + 32 € 8': then since
all of the terms preceding the last term in the expreasion

contain s;, it follows that the sum of these terms may be
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' n 1
expressed as s, € 3'. Thus (s, + se) = 3, + 8, € S' which
contradicts the abovs fact that s, * 36‘4 3' for every slle
s'.

Since T' # T for possibility (D), there exists tlé T
1
such that tlé T'. Observe that (s, tl) O ([s, + se'), tz)@
. . 1
(s, [ﬁl + 8]t tz)(D (s, tz) € U' where t, 1is defined

above and 3, 1s an arblitrary element of 38'., Note (sz, tl) ¢

U' since t, € T', and for every integer n > 0 (f[s, * 3.1 tz)n@

([sl + ae]?trz‘) ¢ U' aince [al + a;]' ¢ 8'., It then follows
that U' 1s not a primary ideal which 1s a contradiction to
the assumption. Thus case (4) is imposaible, and cases (1),
(2), and (3) imply the conclusion of the theorem.

Converasely, suppose T' ®= T and S' 1s primary in S. Since
S' i{s primary in 3 then 1if 9 326 S with 3 . 326 8! and
314- S!' 1t follows that there exists an integer n > O such
that sg € S', Observe also that for every element tl in T!
and for every integer m > O, t‘; € T', Thus if (al, tl),
(55, t,) € U with sy, tl) @(32, t2) € U' and (3, tl) ¢
U', it follows that s, @ S' and thus there exlsts an lnteger
n > 0 such that (32, tz)n@ (ag, tg) € U', This means that
U' 1s a primary 1deal for this case.

In a similar way, 1t can be shown that U' 1s a primary
{deal whenever S' = S and T' is a primary ldeal in T.

Example 4,20.--In this example, the ring 8 = {0, £ 2, *
4, ...} has no unity and the ring T = {0, 2 2, + 4, ...} has

no unity. It 1s then shown that there exists proper primary
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tdeals S'= {0,% 4, 8, ...} ana T'= {0, % 4, + 8, ...} In
S and T reapectively such that thelr direct sum 1s a primary
ideal,

Observe that S' 1s a primary ldeal, for suppose that
3, * 3 € S' and sl¢ S' where s;, 3, € S. Since 3, € S 1s
an even integer, 1t 1s of the form 2p for some 1integer p. It
. follows that sg = (2p)2 = 4p2¢5 8', so 3, ralsed to the power
two 1s in S' thus making S' a primary ideal. In a similar
fashion, it can be shown that T' is a primary ideal.

It follows that U', the direct sum of S' and T' 1s also
a primary ideal. For suppose that (s, t;) © (2q, ty) € U
and (s, tl) € U' where (s,, t;), (8,5, ty,) € U. Since
(85, tz)é U, 1t follows that s, € S and t, € T, Thus s, =
2m and t, = 2n for some integers m and n. Thus (a,, tz)zca
(2m, 2n)2@(4n,2 4m2) € U', so (32, t2) raised to the power
two is in U', This means that U' is a primary ideal.

Definition 4.21.~-Let R be a commutative ring. Denote

any element "x" in R added to 1tself n times by nx where n
1s a positive integer. If n is a negative integer, nx repre-
sents the additive inverse of x added to itself n times. Let
A={r > a+na | r is an arbitrary element in R, a i3 a
fixed element In R, and n is any integeﬁ}. Here A 1s sald
to be a principal ideal in R generated by a.

In particular suppose U = S + T is a direct sum. Also
suppose U' * 8' + T' 1s an ideal such that U' = {{p, ) ®

(sl, tl)@ ris,, tl) | p and q are arbitrary elements in S

—n, | d— — i ———
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and T respectively, 8, and ty are fixed elements in S and T
respectively, and r 1s any integer , Here U' is said to be
a principal ideal in the ring U where U' 13 generated by
(Sl’ tl).

Theorem 4,22,=--Let 3' and T' be 1desals in the commuta-

tive rings S and T respectively. U' = S8' 4% T' {s a principal

ideal if and only if S' and T' are principal ideals,
Proof.--Suppose that S'= {32\ 8= p ° 81 % ns;, where

p 1s an arbitrary element in S, sy 1s a fixed element in 8,

and n 1s any integer} and T'= {t5 | t5,= q * t; + mt), where

q 1s an arbitrary element in T, ty 1s a fixed element in T,

and m is any 1ntegef} are principal ideals in the rings S and

T respectively. Thus an arbitrary element in U' may be

expressed as (3,5, to) @ (p + 8 + nsy, q *+ t;+ mty). There

exists an integer k such that n = k + m, thus (52, t2)e

(p * a;+ k + m] s, * 8), @ * &) *+ mty)@ (p * 8, + [ka,+ |

msel © 87, q° tyt mty)® (b + kaej *8;+ ma;, q° bty nt1)€§ f

(Cp + kag) * 83, q° tl)@ \ma;, mty)) & (p + ka,, q)@(sl, t,)® :

m(a;, t;). Thus U'= {(p + ks,, q) Q(al, t1) + m(s;, tl)}

where all of the aymbols are defined above which means that

U' is a principal ideal generated by (s;, t;).
Now suppose that U' 13 a principal ideal. Then U' can

be expressed as {_(p, qQ) © (s, £)@rlsy, t;)S(p * 1,

qQ " t)® (rsy, rt;)@ (p * 37+ ray, q * £ + rey) \ p and

q are arbitrary elements in S and T respectively, 3; and t,

are fixed elements in S and T respectively, and r 1as any
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integer}. This means that 1 1s the principal generator of
3' and that t, i1s the principal generator of T'. Thus S' and
T!' are principal ideals whenever U' is a principal ideal.

Example 4,23.--iet both 5 and T be the ring of integers.

Also let the ideal S' in S be the even integers and the ideal
T' be T. It then follows that the direct sum of S' and T' 1is
a maximal ideal in the direct sum of 3 and T. U' is also a
prime ideal and a primary ideal. It also follows that (2, 1)
goenerates U', so U' i3 principal in U,

Lemma 4,24.--Suppose that the ideal S' is the inter-

section of m ldeals denoted by S'= 8] N S5, N ... N S, and

also suppose the ideal T' 13 the intersection of m ideals
denoted by T'= T{ O T4 N .., A T!, The following equation

then holds: (S} A S, N ... N s!) + (TN LN ... 0 T;) *

-

(8§ + T{) N (8 + TH) O ... 0 (S + T2,
Proof.--Choose an arbltrary element (sl, tl) in (Si n
840 ... N S ¥ (T{ATLA ., AT, and 1t then follows

that s; € S5{ for1 =1, 2, «.., m and t, € Ti for L = 1, 2,

see,y, M. Tbia me ans that ‘31, tl) € Si ‘ Ti for 1 = l, 2, ooy
m; therefore (s, t,) € (3 + ) n (Sé'i Té) n ... N (S; ;‘

1 ' 1 2
g‘). Thus it ocan be concluded that (Sl N 82 n...N0 §.) +

(TN TN ...N T S8+ )N (32"" TN ... N (s! +
).

Now choose an arbitrary element (s,, t;) in (Si + Ti) n

L4

(8 # TA) N ... N (s;‘i- T!). It then follows that (35, r.z)e

s + T/, for 1 = 1, 2, ..., m. This meana that 8, € Si for
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1 =1, 2, ¢eo, m and tze‘Ti for 1= 1, 2, «ss, m, Therefore

! ] ' ] 1 1
s, € sln 32!\ ces N S} and tge Tlﬂ T2n e D T', 80
3 ' 31) 3 1 1 1
la,, t5) € (bln SHN ... n am)+ (T; N T2n ess N Tn)’ and

1 L Tr) N t 3+ T 1 L Pr) €©
in eonclusion (Sl + Tl) (32 + T2)¢\ eee N (S‘-+ Tn) c

> 3] % X me ? ! -
(5] 0 s, 0 cee D SL)+ T n T, n...n0 Tn)' These two con

tainments yleld the desired equallty.

Remark.--The above result may be expanded by observing
that for any two sets A and B, AN B= B N A, Thus the lemma
1s still true even after the order of elements 1s arbitrarily

interchanged in either {?', Sé, cvey S:} or in {?', Té, ooy

T;}. As a consequence for example, if m = 3 then the follow-
1+ TN "4 ty D ' g '
1ng equation 1s true: (Sl + Tl) (82 + Tz) {33<+ T3)=
14 1y O [ ' 1 3 '
(85 + Ty) O (5] + T2) N (sy + ‘rl).
Definition 4,25.--An ideal E is sald to be the irre-

dundant interasection of a finite sequence El’ 32, cosy E-

of ideals if E 1s the intersection of the sequence El’ Ez,

eesy %- and £ 1s not the intersection of some proper sub-

collection of the sequence El, Ez, P %..

Theorem 4,26.--Suppose U' = 8! + T' where S' and T' are
defined aas the intersection of the ideals 1n the sequence

Si, Sé, cecy S; and as the intersection of the ldeals in the

sequence T., Té, oy TA respectively. If S' 1s the irre-

dundant intersection of the sequence S/, Sé, ceey S! of
n
i{deals then U' is the irredundant intersection of the sequence

1 $ T, 554 Tos eees Sy + TJ of ideals where the sequence

T{, Tg, cosy T;'or ideals may be constructed from {?', Té ,
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] N
oo, T such that T' = L 0 .

1 1
Proof.~-~Since {S', Sé, ceny S;} has m ideals and {@i,

T, ees, T'Y has n ideals it follows that elther m < n, m=n,
2’ n

orm>n, If ms&n define T; = Ti for 1 €1 &£ m -1 and T;’=

n
2] T!, Observe that T' 13 alao an 1deal since it
i=m 1 i m 1

may be shown that the intersection of any finite number of

o

ideals is an 1deal. Now if m > n, define T1 = Ti for 1 81 &

n and T; » T' for n «1 £ m., Thus it 1s possible to expresa

T' as the intersection of m ideals,

Now suppose that U' 1s not the irredundant intersection

' L] n '- " e " T'
of the sequence Sl + Tl’ 52 + Tz, , Sn + o of ideals

1 = 14 t = (S'n 8! ... 8 « (T" N TN cee
where U S'4+ T ( 1 5 N S‘) ( 1 2 n

") = ' 4 ® '3 ") n '3 L .24,
Tm) (s8] + 1) n (s} + Tz) (sn+ T-) by Lemma 4.24
Then U' may be expressed as the intersection of a proper aub-

S!'4+ T*, St 4+ T, ..., S+ T"
collection of the sequence 1 1° S5 ° > Sy = of

ideala. Thus upon omission of a particular direct sum, aay

S'+ T", and upon renumbering the remaining direct sums, it
r r
Ut = (SY+ T") N (S + TN ... N(s'+ TV =
follows that (s 1) ( s + 2) (%n-l ‘21
' ! L ! '* .n .nOOO " = " '.
(Sl n 32 n...Nn sm-l) (Tl T2 n T;-l) S'+ T

This means that S' is not the irredundant intersection of
the sequence S!, Sé, coey %; of ideals because S' may be
written as a proper subcollection of this sequence. This 1is

a contradiction to the assumption that 8' is the irredundant

intersection of the sequence S', 8', ..., S' of ideals. Thua
2 n
U' 1s the irredundant intersection of the sequence S! 4 ™,

1 1

14 " t & %
Sé + T2, coey §. ﬁ. of ldeals.
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- Example 4,27.--In this example, let both S and T be the
ring of integers with the usual binary operations. The
following is an irredundant representation of U' such that
the representations of S' and T' are not irredundant.

= t 3 ' o3 ' 4 1)y 0O 1 3 '
Let U (s! &+ Tl) N (32+ Tl) n (ss+ ‘I‘z) (sa+ Ta)

1

where u'l='r:',)={o,i 3, 26, ..., s§=Té={o,t4,te,

...}, and 8§ = T} = fo,* 2, t 4, ..}. This meens that U'=
1 ' 1 1) 3 1 1 N e t) =

(8]0 s, NSy NSHF (TINTIATLNTY L2k, 1250V &

and J are 1ntegera}. Observe that (S:'L-i— Ti) n (Sé-'& Ti) n
t 4 ' 1 ' 1) 4 1 ' €
(Sa + Tz) = (5] 0 8} n S:s) + (71 0 T2) # U' since (0, 4)

(8] 0 8L N sy) + (T N TL) vut (0, 4) ¢ U'. Also (S] ¥y TN

A t & ™ 1 ' N g') 4 1 ' '
(sy % T1) N (S} + Ty) = (8]0 8 81) + (T] N T4) # U' since
(0, 6) € (S{ N S5 n Sy 4+ (T N TL) but (0, 6) € U'. And
1 4 1 1 4 1ty N ' 4 1) = 1 1) o ' 1
(Sl + Tl) O (Sa+ T2) (Ss + Ta) (81 n 83) + (Tl ) 'I'2 n

t ' 1 1) <4 w“
'ra)#- U' sinee (6, 0) & (SJ N SL)+ (T{ N TL N Ty) but (6, 0)

' . L[] L]
¢U « Observe also that (8'24- Ti) N (35-&- T'z) n (Sé-o— Té):

(sy 0 sgs)fr (TI A T, N TL) # U' since (4,0) € (8]

(T N T ) '1':'5) but (4, 0) € U', Therefore U' has an irre-

t ] ] 1 ] T
dundant intersection. But Sl ) 82 N 8:5 N S:5 = 8! gnd Tl ()

Ti n Té )] '1':'5 = T!' agre not irredundant intersections since S'=

1 ' 1= T A TY
Sl N 82 and T T2 TS'

Theorem 4.28.--Suppose U' = 8'3 T' where S' and T' are

' .
n ss)+

proper ideals in S and T respectively such that S' = N 13 1 Si

{s an irredundant intersection of primary ideals. Then for

n
every set of ideals T!, ’I‘é, svey T; in T such that T'= 121

T!, there exists S; + T{ for some 1 =1, 2, ..., m which 1s
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IDOH

not a primary ideal. Also, U'=, N, (8] + T{) ia not a pri-
mary representation of U',

Proof.--Since 8' 1s a proper ideal in S expressed as an
irredundant intersection of {§', 54y ecey S;} for every Si,
1=1,2, ..., my 1t follows that Si #+ 8, Since T' is a pro-
per ldeal in T, 1t follows that for every set of ideals T|,
Toy «oey T; in T' auch that T'= . 5 1 Ti, there exlsts an
idesal T; # T for some integer p where 1 < p < m. Contalned
in the proof of Theorem 4.19 is the result that if S} #5s
and T;=# T then S| + T; is not a primary ideal. Siéce S} +
TI') 1s not a primary ideal, 1t follows that U'= , 0, (S} 4
Ti) 1s not a primary representation of U',

Theorem 4,29.--Suppose S'= 1

irredundant intersection of primary ideals 3!, Sé, veey S

Hnou

1 9%, where S' 1s the
m’
and T'= T, Then Si + T for every 1 = 1, 2, «.., m 18 &
primary ideal, and U' = S' 4+ T = 1 E:l (Si-¥ T) 1a an irre-
dundant intersection of primary ideals.

Proof.--Since Si 1s a primary ideal in 8 and T*' = T, 1t
follows from Theorem 4,19 that Si-¥ T' is a primary ideal in
U. 8ince Si is a primary ideal for all i = 1, 2, ..., m, it
followa that U'= S'+ T = $ 5 1 (Si‘.*’ T) 1s an intersection
of primary ideals. From Theorem 4.26, it may be concluded
that the intersection of Si-@ T fori=1, 2, ¢e., m 1a irre-
dundant.

Theorem «~=Suppose U' is a proper ideal in U where

m *
ur= L, 0 (Si'f Ti) 1s an irredundant intersection of primary
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tdeals. Then A ={Uj | U= s]+ Ty, 1 =1, 2, ..., m} may
be expressed as B U C, where B = {Ui |\ Uj e, Ul = 8]+ Ty
and C =»{U{ \ Ul € A, U] =5 + T{}. Furthermore, 1f U'=

S'+ T' then the intersection of all S{ such that 8§ ¥ Te

B and the intersection of all Ti such that S + T{ € C are
irredundant primary representations of 8' and T' respectively.

Proof.--Each ideal S! + T' in A for p = 1, 2, ..., m,

p P
is primary in U', hence S") i3 primary in S and T£,= T or SI'>=
S and T! is primary in T by Theorem 4.19. Therefore every

P
ideal in A is in B or C. The rlngU'éS-‘tT*SI')-'%-T!', for

all p=1, 2, ..., m since the representation of U' ia irre-
dundant and since U' is a proper subset in U. Thus the sets
E and C are disjoint and A = B V C,

Now U' i3 an irredundant primary intersection of those
ideals in BU C. Since each S/ + T in B is a primary ldeal
in U, 1t follows from the above argument that each sush 3]
is primary in 8, Let U' = 8! + T' then S' = 1 ‘3 1 9{ and
™= & | T/ by Lomma 4.24. However Sy =S 1r 8} + Ty ¢ B,
thus S' is the intersection of S{ such that Si-‘ T € B,
Furthermore, the intersection ia irredundant, for if some
Sy for Sy +#+ T & B can be eliminated from the representation
of 8', then S + T can be eliminated from the representation
of U'. But this cannot happen alnce this representation of
U' is irredundant. Hence the intersection of elements S|
such that Sl‘l T € B is an irredundant primary representation

of 3!, Using a similar argument, it follows that the
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intersection of elemonts Ti such that S + Ti € C is an irre=-

dundant primary representation of T',

Definition 4,31.~-Suppose R 13 a ring whose additive

identity 1s denoted by e Ther a € R 13 sald to be nilpotent

1f there exlsts an Integer n > 1 such that a = T

Trheorem 4,32.~-~The ideal U'= S'% T' has a non-zero

nilpotent element 1if and only if either of the ideals S' or
T' have non-zero nilpotent elements.

Proof.~--Suppose S' has a non-zero nilpotent element 3.

Then there exlsts an integer n » 1 such that s? = 8,. Thus

(54, t,) € U' and it follows that (sy, tz)n@ (a!li, tl;)@
(az, tz) which makes (sl, tz) a non-zero nilpotent element
of U', A similar argument could be used to show that U' has
a non-2ero nilpotent element 1f T' has a non-zero nilpotent
element.

Now suppose U' has a non-zero nilpotent element (a,, tl).

Then one and only one of the following three cases 1s possible:

(1) 3,78, b # t; (2) 5,8, t) =t (3) s, #3,,

tl_#-tz. For case one there exists an integer n > 1 auch

that (az, tl)néD(sz, t?)é?ka t’). Thus t; 1s & non-zero

z’
nilpotent element in T since t? = tz‘ For case two there
exists an integer m > 1 such that (a), tz)n@(s:, t:)@
(sz, tz). Thus s, 1s a non-zero nilpotent element in 8 since
a? = 8. For case three there exists an integer p > 1 such

p P p
that (s,, tl) e (s7, tl)éb(az, tz). Thus s, and t, are

non-zero nilpotent elements in S and T respectively since
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s? =3 and tg = tz. This means i1f U' has a non-zero nil-
potent element then at least one of 8' and T' has a non-zero
nilpotent element.

Example 4,33.--Thls example shows that U' may have a
non-zero nilpoten£ element and yet not both S' and T' have
non-zero nilpotent elementa., Let S' be the ring of integers
with the zero nilpotent element O, Note S' does not have a
non-zero nilpotent element., Let T' be the residue class
ring I/(4). Note that in T', [2] [2] = [0], so(2) 1is a
non-zero nilpotent element in T'., It follows that (0, (2))

is a non-zero nilpotent element in U',

Definition 4.34.--If A is an ideal in the ring R, then

the radical of A, denoted by VA, consiats of all elements b
of R such that some power of b is contained in A.

Theorem 4,35.--If U' ® S' & T' where S' and T' are 1deals
in the rings S and T respectively then J¥3' * JT' = J(' =
Jstim,

Proof.--Suppose sle JS' and t. € ﬁ'; then there exist

1l
integers m and n such that s™ € S' and t" @ T', Since S

1 1
and T' are closed under multiplication, it follows that (a?)n
€ 8' and (,crln)me T', Thus (a'{? t’{')@(al, tl)“‘ U', and
it can be concluded that (s
s + JT' € JU.,

Now suppose (sl, tl) € Jﬁ‘, then there exists an integer

12 tl) € JO', This means that

r

aiCS' and c‘l'ﬁ'r' so that ale@ and t,

r such that (al. tl)r = ( t{) € U', It then follows that

€ ﬁ'o Thus
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Jire Js' ¥ {T', and 1t can now be concluded that JSt4+JT =
Jor,

- Definition 4.36.--let A and B denote 1deals in the

commutative ring R, then A ¥ B = {a+blaehr ve B}.

Theorem 4.37.--If U' = S' 4+ T!' and U" = 3" & T" are

{deals in the commutative ring U, then U' T U= (8'F s+

(T'% T").
Proof.--Suppose (s, tl)e U' and (s;, t;) € U" where

,'le s', s;e s", t'lé T', and t'{éT' then (s, t]) @ (a7,

t‘i) € U'% U", It follows that (s}, t'l)e (a;, t'{)@(a'l-t—
s}, &)+ 5]) € (S’ TS") 4 (TS T thus U' S U" S(3'%
S") + (T*% T"),

An arbitrary y in (S' % s") + (T'% T") 13 of the form

(s' + 3%, t' + t'i) so let (a'l+ a'{, tt+ t") e (s'F s")+

1 1 1l 1
(T*% T"), It follows that (a'1+ a'i, t] + t'i) ® (a3, t'l)@

(%, t]) € U'% U"; thus (S'3 s 4 ('S T S U S U,

These two containments imply that U' ¥ U™ = (St T s+
(T' % "),

Remark.--1t may be shown that in a commutative ring, the
sum of any two ideals, that 13 A + B, 1s also an 1deal.

Definition 4,38.--Let A and B denote ideals in the

commutative ring R, then A® B > £ a, b, a, € A, b, & B,
ie 1 i 1 1
p 1s a positive 1ntegef}.
Theorem 4,39.--If U' = S'4 T' and U" = S™ ¥ T" are

ideals in the commutative ring U then U'# U" = (S' & s5") +
(e~ T"),
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Progf.--An arbitrary element x in U'® U" 1s of the form
l[(si, ty) ® (si’, t;)], where s; € S,

M

1 tiE,T', 3263',
n
and ty € T". It then follows that x@il% 1 Bui, ti)g (ai',
n
n 1 . n . ny b L " " .
eyl ® g £y [Lef - sfs v OO VE =S T e S
£7) € (312 S") 4+ (TR T, Thus o' T UM S (S F ST +
(T' = T").
An arbitrary element y in (S' % 3") + (T'" T") 13 of
k m
the form (1{:1[3' . s;], 1 & 1[t' . t"]). Now assume that
- k
k 2m; theny = (, & l[a . 31], 1 £ 1[1:' . t‘i']), where t'l .
n
21
% 1 o " t .]® é t e ] @
be expressed as 4 £ 1[(31 al, t ti) L & 1[(31 ti)
(sF + t1)] € U'A U". Thus (S'4 8" & (T14 TS ULA UM

=t for i=m+1l, m+2, ..., ke It follows that y may

These two containments imply that U'#4 U" = (3'~4 35") +
(T* > T™").

Remark.--It may be shown that in a commutative ring, the
product of any two ideals, that 1s A% B, 1s also an 1deal.
Definition 4,40.--Let A and B denote ideals in the
commutative ring R:then A : B, called the quotient of A and
B, consists of all elements ¢ in R such that ¢ ° b &€ A for

every b € B,

Theorem 4,41.--If U' = S' & T' and U" = S" + T" are
{deals in the commutative ring U, then U' : U™ = (S' : 8") +
(T* ¢+ TV).

Proof.--Let (31, t.l) € U' : U" then (sl, tl)G (8{, t{)
€U' for every (a], t]) € U". Since (3, t,) © (9], t]) @

£, ° t;) € U' for every (ai', t;) € U" it follows

. ]
(8 * 85, &
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that sy * s] € S' for every s] € 8", and ty* t:'{ € T' for

every t'l'é T", Thus 3, € S' : 5" and £, &€ T' s T" which
means (s, tl) € (S' : S") 4+ (T' : T"), It follows that
gr o2 UM € (S' i 8") 4+ (T': TM),

Now let (sy, t;) be an arbitrary element of (S' : S") +
(T' 2 T"); then s, * a] € 8' for every azé S" and ) ° t'l' e
1"‘5 T". Thus (s, ° s:'i, LI tz)@(sl, tl)®

(s], t]) € '+ T' = U' for every (a7, t]) € s" + T = gV,

T' for every t

This means (s,, t,)€ U' : U", It follows that (S' : S") ¥
(T* ¢+ T") £ U' : U", and the above containments imply U' : U" =
(s* : s") + (T' : T"),

Remark.--It may be shown that in a commutative ring, the

quotient of any two ideals is also an ideal.
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