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CHAPTER I 

PARTIALLY ORDERED SETS AND OPERATIONS 

ON PARTIALLY ORDERED SETS 

It may be said of certain pairs of elements of a set that 

one element precedes the other. If the collection of all such 

pairs of element® in a given set exhibits certain properties, 

the set and the collection of pairs is said to constitute a 

partially ordered set, Th@ purpose of this paper is to explore 

some of the properties of partially ordered sets. This chapter 

will discuss operations on partially ordered sets, chapter II 

will treat properties of ordinals and weak ordinals, and 

Chapter III will demonstrate soma properties of automorphisms 

on partially ordered sets. 

The notion of a partially ordered set is formally de-

fined by the following. 

Definition 1.1. A relation is a set of ordered pairs of 

elements. The domain of a relation R, designated by 2,(1), is 

the set of all first element* of the ordered pairs of R. The 

range of R, designated by R<R), is the set of all second 

elements of the ordered pairs of 1. 

Definition 1.2. The statement that R is a relation in a 

set A means that P is a relation such that R(R) [J D(R) d 

Definition 1.3. The statement that the ordered pair 

(A,<) is a partially ordered set means A is a set and < is a 
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relation An A such that 

A) if («*b) c «, (hie) t < then <a,c> « <, 

ii) if (a#M c < «nd (b,a) * « then a*b, 

and iii) (a,a) c « for all a e A . 

fh« above properties ar« called transitive, antisym-

metric and reflexive, respectively. 

Unless otherwise noted a cat will hava only m relation 

defined in it and a partially ordered set will be denoted by 

the aet naae. The name partially ordered set vill be shortened 

to poset* If k Is a aet and 1 is a relation in A, the statement 

(a,b) « 1 may be written alb. If BCA, a,b « B then a<J» in 

B if and only if *<p in A* Any two posets in a discussion 

are understood to be disjoint unless otherwise noted* 

Qmiimitimt 1.4. Let < be the relation in a poset A 

such that for a,b c A, a«b if and only if a«jb and bfca. 

Definition !»§« If A is a poset, a,b « A, let a>b mean 

b<a and let a»b mean b«a. 

D®f Ittition The cardinal sum of posets X and ¥ is 

X+Y » c where C * Xl/Y and a«b is C if and only if a«b in X 

or a«j£» in Y, 

Definition 1,7* The cardinal product of poeets X and Y 

i« XT • D where D » X*Y and d̂ jyLj, in D if and only if 

d| * (a^b^) $ d^ « {a2,b2) where a^a^ in X and bj^bj in Y. 

Definition !»§« A function f is a relation such that if 

(a,b) c f and <a,o) c f then b • c, An alternate notation for 

(a,b) • f ii b • f (a). 



Definition 1.9. Let A be a set with a relation R^ 

defined in it. Let B be a set with a relation &2 defined in 

it, The statement that f is an iaotone function such that 

D(f) * A, R(f) C B means *n ® f o r aiRla2 ^ A* 

Definition 1,10. The cardinal power of poset Y to the 

exponent poset X is Yx « E where f i S if and only if f is an 

isotone function such that D(f) • x, R(f) ClY. f<,g in E means 

f(a)<g(a) in Y for all a c X. 

Theorem 1.1. If A and B are posets, then M>B is a poset. 

Proof; Let A+8 « C. 

Let a«b in C and b<c in C. Then a<b in A or a<b in B. 

If a«b in A then b * A and hence c e A for b<c in C for no 

b e A, c e B. Thus a<b, b«c in A. From the transitive 

property a<c in A and hence a<c in C. By a similar argument 

a.<b in B implies a«c in C. 

Let a«b in C and b£a in C. Then either a«jb in A or 

a<b in B. If a«b in A then b«a in A. Thus b » a. If a<b 

in B then b«a in B. Thus b » a. 

Let a t C. Then a « A, a«,a in A thus a«a in C or « t B, 

a<a in B thus a^a in C. 

Thus the relation defined on C by the definition of 

A+B «* C is transitive, antisymmetric and reflexive. So C is 

a poset. 

Theorem 1.2, If A and B are posets, then AB is a poset. 

Proof: Let AB * D. 



Let i a 0 d2<S®3 ̂  D* Wm» d^ * , 

&2 * (a2,b2)' % ** ̂ ®3'b3^ *h«r® a>j,i,a2r a2*&®3 *n * AI*6 

^i<b2'
 b2*b3 i n B- By the transitive property *x<*$ and 

bl~b3 *R A and B respectively and d^£d3 in D follows from 

tli® cardinal product definition. 

Let d^dj In 0 and djid^ in D. Then d^ * *ai'bi^' 

d2 * <a2,b2>
 wll#r® *1**2' *2^*1 i n A a n d h x&2*

 h2^% 111 ®* 

Thus ai m &2* bl " b2 'rora antisymmetric property of 

peseta. Hence dj «* d2. 

Let d^ c D» Then d^ » (a^bj) vtieye *x^X *n A an^ 

blibX ln B b y t h e r e f l M l v e prop«rty- a , B O" dl-ai-

Thus tli® relation defined on D by the definition ©f 

AB •» D is transitive, antisymmetric and reflexive* Hence 

D is a poset. 

Theorem 1.3. If A and B are posets then 0A is a poset. 

Proof: Let 8 A « E* 

Let t<g in £ and g<h in 1. Then f (a)<g(a) in B for all 

a * A and g<a)«h(a) for all a « A. ly the transitive 

property f (a)<£(a) for all a e A, and f<jh in 1 follows fro® 

the definition ©f the relation in BA. 

Let f«g in 1 and g*j£ in E. Then f(a)«g{a) and g{aj«f(a} 

in B for all a t A. Since B is a poset f(a) » g(a) for 

all a e A by the antisymmetric property. Hence f * g. 

Let f « 1. fCa)«,f(a| in B for all a t A so f«,f. 

Thus the relation defined on 1 by the definition of BA 

is transitive, reflexive and antisywetrio. So B is a poset. 



The definition® of cardinal operations invite investigation, 

of the coiwRUtativer associative ana distributive properties of 

cardinal mums, product© and powers. The relation ,,»B has been 

taken without formal definition to mean "is the same ae". 

Isomorphism will be the relation used to compare two posets. 

Definition 1.11. A reversible function is a function f 

such that f(a) «• b and f (c) * b if and only if a ® c. 

Definition 1.12. If A is a set with a relation in it 

and B is a sat with a relation R2 in it, then A j. B (A is 

isomorphic to B) if and only if there exists a reversible 

function § such that D(Q) «• A, R(8) » B and aJt̂ b in A if and 

only if 8 (a) 1*2Mb) in B. 

Theorem 1.4. If A and B are posets then A+B * B+A and 

AB j. BA. 

Proofs i) Let C « A4-B. Let D * B+A. Let 0 be a function 

whose domain is C such that for all a « C, 8(a) * a in D. 

Clearly R(0) « D and © is reversible. Let a<b in C. Then 

a,b e A or a,b e B. If a,b » A then a«Jb in A so a«b in D 

or 9(a) 1.6(b) in D. Similarly if a,b e B, 6(a) <8 (b) in D. 

The proof that 9(a)<JJ(b) iraplie® a«,b follows similarly. Thus 

A+B * B+A. 

ii) Let C « AB. Let D * BA. Let 0 be a function 

whose domain is C and for all d e C, d * (a,b) where a e A, 

b e Bf @(d) «• (b,a.) & D. R(6) * D and @ is reversible for 

every (bra) e D is the image of exactly one (a,fo) e C. Let 

dj_<»d2 in C. Let d^ « (a^b^) and d2 » Ca2#b2) . Then a^ag 



in A and b][<>2 in R* Thus (b^a^ <(b2,a2) in D or 

in D. Let fl (d1) <8 (d2) in D. Then 0(d^) « (bj^a^), 

6(d2) » (l>2'
a2̂  b1^2 i n B an<5 ai«®2 i n A* ^ai»bi)^a2,b2^ 

in C or d^^dj in C. Thus AB ;v BA. 

Thus cardinal addition and multiplication are each 

commutative within isomorphism. 

Theorem 1.5. If A, B and C are posets, then 

A+ (B+C) * (A+B)+C and A(BC) * (AB)C. 

Proof; Let A, B and C each be a poset, 

i) Let D * A+ (B+C). Let E » (A+S)+C. Let ® be a 

function whose domain is D such that if a * D then 6(a) «• a t E. 

This is clearly a reversible function whose range is B. 

If a<jb in f> then 1) a<b in A so a«b in A+Bf hence a«b 

in E or E (a) <«(b) in E; or 2) a«jb in B+C in which case 2.1) 

a<b in B so a<b in A+B and a<p in E or 2.2) a«,b.in C so 

a«b in I, In any case a<b in D implies «(a)<,«(b) in E. 

Similarly ®(a),<0(b) in E implies a<p in ID and hence 

A+(B+C) * (A+B)+C. 

ii) Let D - A(BC). Let E » (AB)C. Let 6 be a function 

whose domain is r>. Let d « D. Then d • (a#t) where a e A, 

t t BC and t •» (b,c) where b e B, c c C. Let 

i(d) » ((a,b),c) e E. 9 is a reversible function whose 

range is E. 

Let dj<d2 in D where d^ * (a-^t^) •» (a^, (blrCj)) and 

d2 - (a2 ,t2) «* (a2, (b2,c2)). Then *£<&£ an<a tiit2* Since 

tx<t2 then
 clic2 * al-a2' blib2 C®l'bi>l(«2>b2* 



which with cl<p2 implies ( , C j ) <i U2#b2J ,c2) or 

®(dj.) 2L®{d2) * if ®(d^>£0(d2) then d^dg thus 

A<BC> i (AB)C. 

Thus cardinal addition and multiplication are each 

associativa within isomorphism. 

Theorem 1»6, If A, B and C are poset®, then A(B+C) * AB+AC. 

Proofs Let ht B and C be posets, Let D * B+C. Let E « AD. 

Let F » AB» Let 0 » AC, Let H • P-H3, Let e be a function 

wh©8# domain is E. Let (a,b) e E. Then a e A, b E D. Sine® 

b t D then b e B or b e C. Suppose b e B. Then (a,b) e AB 

and thus (afb) t H. Suppose b » C. Then (a,b) « AC and thus 

(a,fo) e H. For (a,b) e E let e<(a,b)) « (a#b) in H. Clearly 

since H consists of elements (a,b) as described above, 8 is 

a reversible function whose rang® ia H. 

Let (a1#b^) <,(a2rb2) in E. Then fcjSa2 in A* b^<b2 in D# 

Thus b^bj, in B or in C. Suppose b^t<b2 in B. Then 

(a^b^) <,(a2»b2) in F and hence (a^b^) < {a2 ,b2) in H. Suppose 

b^bj in C» Then (a^b^ < (a2#b2> in G and hence (a^b^ < (a2,b2) 

in H* In both cases <{&2*b2) in E implies 

©(ajifb^j,®(a2»b2) in H. 

A similar argument shows e ^ a ^ f o ^ } H i»pli®s 

(ai,bx)<(a2,b2) in E. Thus A(B+C) x AB+AC. 

Thus cardinal multiplication is distributive to the right 

over cardinal addition within automorphism. 

Corollary 1.1* If A, B and C are posets, then 

(A+B)C > AC+BC, 
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Proof* From Theorew 1.5 (A+B)C % C(A+B). 

Prom Theorem 1*6 C(A+B) CA+CB. 

From Theorem 1.5 CA+eB «w ac+bc . 

Hence (A+B)C % AC+BC. 

Definition 1.13. The ordinal sum of two poaets A and B 

is A t B « C where C ** h {J 1 and a«b in C if and only if 

1) a«b in A, 2) a«to in B or 3) a « A# b « B. 

Definition 1.14. The ordinal product of two posets 

A and B is A©B «* D where D ** A*B and d, <d„ in D means 
J.*3* d 

dl * ^ax#bl^ ' d2 "" *a2'b2* f o r al#a2 * A# bl'b2 e ® a n d 

i) ai<a2 i n A 

or ii) a. • a« in A and b,<b- in B, 
1 2 l~ 2 

Definition 1.15. The ordinal power of poset B to 

the exponent poaet A is E » ̂ B where f e I if and only if f 

is a function whose domain i® A and whose rang© is a subset 

of B. f«,g in E if and only if f(a)«g(a) or g(a)«£{a) in B 

for all a « A# and for every a t A such that g(a)«f(a) in B 

there i. «n V « in A for which in B. 

Theorem 1.7. If A and B are posets, then A # § is a poset. 

Proofs Let C * A # B. Let a<b and b«c in C. Either 

1) c c A or 2) c c B. If 1) c e A, then a,b e A so 

a<br b<c, a<c in A. Hence a<c in C. If 2) c c B then either 

2.1) a e A or 2.2} a e B. If 2.1) a c A then a<c by the 

addition definition. If 2.2) a e B then b e B for a<x for 
*4*» 

no x e A. Thus a<b, b<c in B so a<c in B and a<c in C. The 
Hat* * jsc set 

relation on C is transitive. 



Let a<b and b<a in C, If a c A then b * A for x<a for 
<ss» aqm 

no x e B. Thus a<b, b<a In A 10 a • b. If a i fi tinea b c B 
MM w 

for a<% for no x t A. Thus a«b# b«a ia B so a • b, The 
wen s s t * 

relation on C la antisymmetric. 

Let a c C. If a t A then a<,a ia A mo a<a in c. If 

a c B than a<a in B so a«a in C. In either case the relation 
ijpgsig aw 

on C is reflexive. 

The relation on C ia transitive, reflexive and anti-

symmetric. Thus C is a poset. 

Theorem 1.8. The ordinal product of two posets is a poset. 

Proofi Let D « A©B be the ordinal product of posets 

A and B. 

Let &yj*&2r ^2^3 i n D* T l M m m (a^bj,), ̂ 2 * *a2#b2^ 

and d^ •» (a3,b3) where *£**2
 A 0 r al * ®2 ^1^*2 **n ® 

and a2«a3
 A o v a2 * a3 A' ^2^3 i o B# S«ppose ai<a

2 

in A. Then i n A and hence d1<d3 in D. Suppose aj « a^ 

in A. Then either ®2'«®3 A, in which case a1<aj in A so 

d^dj in Dr or a2 •» »3 in A. If a^ <* a2 «• a3 In A then 

bi<b2, b2«^3 so bjijbj in B and hence d^<d3 in D. In every 

case dj<d2, d2«d3 in D implies 63I03 in D. 

Let d^dg, d2<d1 in D. aj,<a2 in a2
€®i *n A i s aot; 

possible. Hence a^ • a2. Then b^^ 2 and b2<jE»j_ in B, so 
bl "" b2* T h u 8 *1302' d2«dl i n D implies d^ • d2. 

Let d c D. Then a c A and a * a i n A , b * B and b<b 

in B. Hence d«d in D. 
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The relation imposed on A©B by the definition of ordinal 

multiplication is transitive, antisymmetric and reflexive. 

Thus D is a poset. 

It is not generally true that the ordinal power of one 

poset to another poset is a poset. 

laasaple. l»l, Let B be the ordered set of two elements 

a and b where a&a, a«£>» b<b* Let J be the set of integer® 

with their usual ordering. Clearly B and J are poaets. Let 
J™ 

E ** B. 

t, g, h e E exist such that f = {(x,y)|x c J and if x 

is odd y *» b» if x is even y « a), 

g » {(x#y)|x « J and if x is even y • b, if x is odd 
y » &}, 

and h * {(x,y)}x e J and if x is odd y * a* if x is 

even and x/2 is even y * a* if x is even and x/2 is odd 

y ® b}« 

The following illustrates these sets: 



II 

jff 
JL 8® 

( 4 1 & > ( 4 , b ( 4 1 a ) 

{ 3 , b > ( 3 # 3i ) ( 3 # a ) 

i 2 , a > ( 2 , b > ( 2 r b ) 

( 1 , b > ( 1 f & ) ( 1 9 a ) 

( o f Si > g * ( 0 r b ) h » ( o 9 a } 

(-1 , b > (-1 f fit ) (-1 9 a ) 

(-2 f m > 1-2 , b ) (-2 9 b ) 

(-3 f Id > (-3 $ H. > (-3 9 a ) 

(-4 # a ) (-4 0 h } C-4 9 a ) 

(-5 # b ) (-5 $ a ) (-5 9 a 5 

(-6 , a ) (-S JT b ) (-6 9 b ) 

Now g<f ia E for let x t J such that f(x)<g(x) In B. 

Then x is even. Mow x~l<x in 3 and g(x~l)<£(x-l) in 8. 

f<h in E for let x e J such that h(x)<f (x) in B. Then 

x is odd. Now sine® x is odd either (x-l)/2 is odd or 

(x-3)/2 is odd. If (x-l)/2 is odd, let x1 - x-l. If not, let 

x^ » x-3. Now x1<x in J and f(Xj)<h(xj) in B. 

By the transitive property if E is a poset f«h. 

Consider g(4) *# b and h{4) «• a. Clearly |4)«grC4> in 

B. But for all x in J either g(x) « h<x) (when x is odd 
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or x /2 la odd) or h(x)<g(x) in B (when x/2 Is even). Thus 

no x^«4 ©xists for which g(x^) <h(Xj) and hence gjyh. Hence E 

is not a poset. 



CHAPTER II 

WEAK ORDINALS, CHAINS AND ORDINALS 

Definition 2.1. The element a of poset A is a minimal 

element of A if and only if x<a for no x s A. 

Definition 2,2. Let 0[A] be the set of all minimal 

elements of poset A. 

Definition 2.3, A partly ordered set X is weakly well 

ordered, or a weak ordinal, if and only if every subset of X 

contains at least one minimal element. 

Definition 2.4. A weak ordinal A is an ordinal if and 

only if every subset S of A has exactly one minimal element* 

The minimal element of an ordinal is called the least element. 

Theorem 2.1. If B is a subset of a weak ordinal A# 

then B is a weak ordinal. 

Proof: Let S £~B. Then S CZ&. Hence S has a minimal 

element. Every subset of B haa a minimal element,* so B is 

a weak ordinal. 

Theorem 2.2. The ordinal sum of two weak ordinals is 

a weak ordinal. 

Proof j Let C *» A « 1 where A and B are each weak ordinals. 

Let 5 O c. Suppose S CB. Then S has a minimal element. 

Suppose s4TB. Then • S /) A is a non void subset of A 

and hence there i® an x « such that x t OfS^J. Now 

x e OfS] for let b e s. Either b e A or b c B. If b t ft, 

13 
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then fc> « so b^x. If b t B then x<b. In ©very case S 

has a minimal element. Hence C is a weak ordinal* 

Theorem 2.3. The ordinal product of two weak ordinals 

is a weak ordinal. 

Proofs Let C « AoB where A and B are both weak ordinals. 

Let S C C , The following exhibits a minimal element in S. 

Recall fro® the definition of ordinal multiplication 

that € - A*B. Thus D(S) <Cd{C) « A. Hence 0{D(S)] is not 

empty. Let a « OfD{S)]. Let Sj_ CZ S such that 

D(S^) *»'{«}„ Since C B then OfRtS^)! is not empty. 

Let b t OtRfSj)] be chosen. The following argument show» 

that (a,b) t OfS]« 

Let (c,d) c S where <c,d) 4s («*b). Then c^a for 

a e 0{D(S) ]. Suppose c <f a. Then (c#d)|(arb) for (c,d)«(a,b) 

only if c«a. Suppose c « a. Then d *(* h for c * a, d * b 

implies (c,d) » (a,b). Also d^b for d c R(Sj) and 

b c 0 tR(S^) 1 . Thus d|,b so (c,d) $ (a,b) . Thus (a,b) « 0{S}. 

Hence C is a weak ordinal. 

Theorem 2.4. The cardinal sum of two weak ordinals 

is a weak ordinal. 

Proof: Let C » A-HB where A and B are weak ordinals. 

Let S ̂ C . Suppose •» S 0 A is not empty. Then OlSjJ is 

not empty since S^CT A. Let a * OtSjJ be chosen, a < O(S) 

for if x i 3 then x t A or x « B. If x e A then x^a. If 

x © B then x^a. Suppose Sj » S /) A is empty. Then s C b 

so 0fS] is not empty. Hence C is a weak ordinal. 
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Theorem 2.5. The cardinal product of two weak ordinals 

is a weak ordinal. 

Proof; Let C * &B where A and B are both weak ordinals. 

Let S CZC. Then D(S)<ir A ®®d hence has a minimal element. 

Let a e 0[D(S) ] be chosen. Let b * R(S) CTB be chosen. 

(a,b) « 0[S] for if (c,d) c S then e^a so (c,d){(a,b). Hence 

C is a weak ordinal. 

It is not generally true that the cardinal power of on® 

weak ordinal to another is a weak ordinal. 

Example 2.1. Let C • Bm where B « {0,1} and m is the set 

of non negative integers with both B and m ordered in the usual 

manner. Let S C c such that g e S if and only if 1 e R(g) • 

Let f c S be chosen. Since D(f) » w and » is an ordinal, 

let n be the least element in D(f) such that f (n) « 1. Then 

f(x) • 0 for all x«n. Since f is isotone, f{x) « 1 for all 

x>n. Let g e S such that g(x) « 1 for all x>n and g(x) » 0 

for all xfin. Then g(x),«f{x) for all x c m and f(n)|<gf?n} so 

g<f. Since for f e S there exists g * S such that g<f, C 

is not a weak ordinal. 

It is not generally true that the ordinal power ©f one 

weak ordinal to another is a weak ordinal. 

Example 2.2. Let C « *B for B and m mm defined in Example 

2.1. Let f « C such that f(n) • 0 for all n * ». Let 

Cx « c - { f l . 

Suppose g e is a minimal element. Let M be the set 

of all b e u such that g(m) * 1. Since m is an ordinal, there 
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is a least element in M. Let be the least element in M, 

Let h c such that h(n) * g(n) for all n e w except m . Let 

h(m^) » 0. Then hCra^)<g(m^). Now g(ra){h(m) for all m t «. 

Hence h<g. This contradicts the supposition that g is a 

minimal element in C r Hene. ̂  has no minimal element. 

Since C has a subset with no minimal element, then C is 

not a weak ordinal. 

Definition 2.5. A chain A is a poset such that a,b c A 

implies a<b or b^a. 

Definition 2.6. If A is a poset the statement that C 

is a chain In A means that C C A and C is a chain. 

Definition 2.7. The statement that C is a maximal chain 

in a poset A means that C is a chain in A? and if N is a chain 

in A, then c4^N. 

Definition 2,8. Let A be a poset with relation <. A 

relation -< on A such that A is a chain under •< and a<b if 

a<Jj is called a strengthening of A. 

The set A is clearly a chain under the relation 

Definition 2.9. Let A and E be two chains which are not 

necessarily disjoint. Let Ra be the chain relation on A and 

let Rg be the chain relation on B. Furthermore let Ra * Rg 

for the set A /I B. Let C « A U B. Let Ry be the relation 

on C such that 

1) aRyb if aRab; 

2) aR^b if aRgb? 
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3) aR^b if there exists a c such that &Rwc# cRgb 

or aUgC, cRab? 

and 4) aRTb if a t A, b e B and bl^a is not implied 

by 1) , 2) or 3) . 

Then C Is a merger of A into B* 

Ry Is obviously a chain relation on C. Also not# that in 

the case of disjoint chains a merger is an ordinal sum. 

Axiom 2.1. Every chain C in a poset A is a subset of 

a maximal chain M in A. 

Blrkhoff shows that Axiom 2.1 is equivalent to the axiom 

of choice.1 

Theorem 2.6. A strengthening exists for every poset. 

Prooft Let A be a poset. Then by Axiom 2.1 each chain 

in A is contained in a maximal chain in A. Let S be the set 

of maximal chains in A. Let 5 be well ordered. 

Let *i$*2 b e first two elements of S. Let t2 be the 

merger of into »2* Let Sg c s. Let tg* * U v If 

arb f tg' let a<p if and only if a«b in t for some Y<8. Let 

tg be tg' merged into Sg, Observe that tg' is a well defined 

chain which preserves the order of elements in all previous 

chains. For suppose there exists a first 8 such that tg' is 

not such a chain. Let a,b t tg*. Then a, b « I J t , Let s 
p «<$ 

and S|- be the first maximal chains in which a and b appear* 

1Garrett Blrkhoff, Lattice Theory, Vol. XXV of American 
Mathematical Society ColloquimPublications, {Rhode 
IOTTTTSTT^-li. ' 
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respectiveIf, Suppose u - { and a<b in ŝ « Then a<b In all 

for v<t»<&. Hence a«b e tg*. Suppose u<C. Then a c t?* and 

hence a<b or b«a in tr and in all t for Thus a«jb or 
'tfH* ws® t J5| 

b«a in t0'. Ranee, by contradiction, tg is well defined for 

all g. 

Let -<C be the relation resulting from the merger of all 

elements of S a* described above. <ia a strengthening of A. 

Obviously a strengthening on A is not unique unless A 

is a chain, for the ordering of the elements of S is arbitrary. 

Theorem 2.7. A poset A may be strengthened to an ordinal 

if and only if A is a weak ordinal. 

Proofs 1} If A is a weak ordinal the strengthening 

described in Theorem 2.6 is an ordinal. For let A^ d A* Each 

element of 0[A^] is in a different s « S. Let b© the set 

of all such s. Let « 0[A^] such that is an element of 

the least s « SQ. Then %l is the least element in OJA^I by 

the construction of ̂ . Suppose a « A^ such that a f 0|AjJ. 

Then a>x for some x t OfAjJ. Hence x^x<a so x^<a. So x^ 

is the least element of A^ under •<. Hence A is an ordinal. 

2) If A la not a weak ordinal some subset of A has no 

minimal element. Let AjC^A be such a set. Let x0 s A ^ 

Since x0 | OfajJ there exists x1<xQ in A^, Suppose 

' * • % in K1' s i n a @ *» * 0fAl5 th*r* ®xist® 
xn+l<xn i n hl' Let c " {x0,xlr. . . . >. Now 

x0>x1>. . . . xn>xn+1 . . . . in C. Hence C<=h with no least 

element under K. 



CHAPTER 111 

AUTOMORPHISMS ON POSETS 

Definition 3.1. An autosjorphism on a partly ordered 

set X is an isomorphism whose domain Is X and whose rang® 

is X. 

Definition 3.2, A group is a set with a closed binary 

operation defined on it which is associative, has an identity 

and has an inverse for each element of the set. 

Definition 3.3. Let £ and g be two automorphisms on 

a poset A. Let f*g denote the relation whose domain is A 

and inch that f *g(a) * f(g(a)| for all a « A. 

Theorem 3,1. The set of automorphisms on a poset forms 

a group under the product operation defined in Definition 3.3. 

Proof J Let f and g be automorphisms on a poset A, 

Then f*g is a reversible function. Let a<b in A. Then 

f (&)!§(*») «o f ag(a)fi£*g(b). Hence f*g is an automorphism 

on A. 

Let fj he the automorphism on A such that f^(a) » a 

for all a t A. Clearly f^*g » g*fx « g for every automorphism 

g on A. is the identity element. 

Let f be an automorphism on A, Let f**1 be an auto-

morphism on A such that f~*(a) * b if and only if f(b) * a. 

Then f-f"**1 » f ^ f • f^. f""1 is the inverse of f. 

19 
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Let f, g and h be automorphisms on A, Let a e A, 

<f- (g-h))(a> • f (g(h(a))). M a o ((£»g) -h) (a) • f(g(h (*))). 

Bene® f*(f»h) «* (f-g)»h and the product operation is 

associative. 

L<wtaa 3,1. If a chain C has an automorphism f ©a it, 

f 4s fj_# then f* is an automorphism or C for positive integer 

i and f* <f f* for positive integers i, j, i 4* j. 

i 

Proof: f is an automorphism on C by the closure 

property of groups. 

without loss of generality suppose i<j. f* <f f*+1 * f •f* 

for, since f is not the identity, there is an x * C such that 

fffNx)) + f^ (x). Suppose f ^ x M f (f^x)). Then 

(x)) so fi(x)<fA+1<x)<fi+2(xJ hence f1 + f i + 2. 

Suppose f1 4 f l + n for n, a positive integer, because 

there is an x e C such that f*(x)<fi+n(x). Then 

f(fi(x))<f(fi+n(x)) so f1 + fl*B+1. A similar argument 

follows the supposition that f*(x)»f (f^x)). Hence by 

induction f* f^» 

Theorem 3.2. If a chain C has aa automorphism f on it, 

f 4s f<£, then there are infinitely many automorphisms on C. 

Proofs Let f be an automorphism cm a chain C where 

f 4" f|_# the identity element. Define 

A • ig|gn • f
B,n « 1, 2, 3 . . . . since by Lemma 3.1, 

gi 4» gj for i 4" j# there are infinitely many elements of A 

and hence infinitely many automorphisms on C. 
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Corollary 3.1. The set of integers J has infinitely 

many automorphisms on it. 

Proof: The fraction f such that f <i) « i+l for all i « J 

is a non identity automorphism mi J, 

Lemma 3.2. If a e J then f (1) « n for exactly one 

automorphism f on J. 

Proof: Let n t J. Let f be a function such that for 

i f Jf f (i) «• i+s-1* Then f (1) * 1+n-l m n. Let j * J. 

f(j-n+1) • <j-n+l)+a-l * j. Thus f is a reversible function 

whose domain is J and whose range is J. Let k,m % J such 

that k«ja. Then k+n~l<jm+n-l so fCkJ«£{m>. Also if f{k)«f{Bi) 

then k4*n-l̂ ya4n-l so k<jm« Thus f is an automorphism on J. 

Suppose g is an automorphism on J such that g(l) * n. 

Furthermore suppose g + f. Then g(i) t f(i) for some i e J. 

Let J 1 be the set of all such 1, Further let J2 be the set 

of all such i»l. This is a well ordered set. Let ij be the 

first element in J2. Now g(ij~l) » ij-1+n-l * ij+n-2 so 

gdj^)>i1+n~2. But gdj) + ij+n-1 for f(i^) « ij+n-l. Say 

g(ij) * k. Then ij4«~2<i2+n--l«k, Thus ij+n-1 is the image 

of an element * such that i1-l<m<i1. No such m exists in J. 

J2 ha® no first element and hence has no elements. A similar 

discussion for J3, the set of all i « such that i«l, shows 

that J|_ has no elements. No i exists such that g(i) 4* f (i). 

This contradicts the supposition g + f. Hence g •* f. 

Definition 3.4. Let f and g be automorphisms on J. 

Then fRg if and only if f (1)<,g(l). 
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Theorem 3.3. The set Aj of automorphisras on J is iso-

morphic to J. 

Proof: Let 0 be a function whose domain is hj such 

that 0(f) * f(l). Then by Lemma 3,2 8 is a reversible 

function. Let fRg in Aj. Then 8(f) - f (l)<g(l) « e(g). If 

0(f)«®(g) then f (l)Rg(l) so fig* Hence Aj £ J, 

Definition 3>5. Let A and B be set®. The set of all 

functions whose domain is B and whose rang® is a subset of 

A is denoted by A*®. 

Theorem 3>4, There are uncountable many automorphisms 

on the set F+ of non negative rational numbers. 

Proof: Let f « 2** where 2 is the cardinal set {0,1} 

and as is the cardinal set of non negative integer®. 

Let ' be a function whose domain is t+ and whose range 

is « such that if r e R+ then r'<r<r'+l. 

Let © be a function whose domain is R+ and such that for 

r c R+ 

8 (r) - r'+afr-r'J+Mr-r*)2 

where b • f (r') and a •» modjtb+l). The range of ® is R* for 

let x e R+. If f(x*) » 0 then x is the 0 image of x for 

8(x) * X'+1(x-x')+0(x-x')2 « X. 

If f(x') «* 1 then X is the • image of Vx-x^+x' for first 

note that (Yx-xp+x') * » (x*) * « x" since Vx-x''<1 and 

x' e » C R + . Then 
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$ (fx-x^x') » X ' +0 Cl̂ c-X ' -X ' ) +1 (Tx-x1' +x'-x')2 

« X'+CKX-X' 

• x'+x-x' 

tg» IF 

*"* J*, * 

0 is reversible for let x e St* such that 0(r̂ > * x and 

e(r2)
 m x. Then 

1) x « ri'+ai ̂ ri"rl' ) +bl ̂ rl"rl' )2 

2 
and 2J x * r2' +a2 ̂

r2"*r2' ̂  +b2 ̂ r2"r2 ' ̂  * 
jt. 

But since 0<#j_ * al ̂ rl~rl' ̂  +bl *rl""rl' and 

0<a2 «
 a2 ̂ r2"r2' *+b2 ̂ r2"~r2 ' *2<1' t h e n -1<®2~®1<1, Since 

rl" * r2,+*2~8lr tJien r2
,-l<r1

,<r2,+l. Now r^*, r2
1 « «. 

Hence r^* » r2'. It follows fro® the definition that 

al 13 a2' " b2' 8 0 and 2) above become 
rl' +al *rl~rl' * +bl *rl~rl'' 2 ™ rl'*al ̂ r2"*rl' **bl *r2~rl' ̂ 2 * 

This simplifies to 

a^(r^-r2)+bi((r^-r^')
2- (r2~rl')2) * 0. 

If bj_ «* Q, then * 1 and » r2< If » 1, then « 0 

and (rj-rj/)2 - Cr2-
ri')2. Since rj-r^iO, and *,2""rl,«0' 

then rj-rj' * x̂ -r-j,' and r^ * r2. In every case 8(2*3̂  m x, 

0(r,) « x implies r-, » r0. 
£, JL £> 

JL 

# preserves order, for let p<q in R . 
0(p) - p '+83̂  (p-p•) +bi (p-p»)2 

2 
and ®(q) * q'+*2(q-q

1)+b2(q-q•) . 

Either p* » q* or p*<q*. Suppose p'<q*. Then p'+l<,q' . 

2 
Also (p-p')+a2(p-p

1) <1. Then 
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8(p) * p'+a^p-p'J+bj (p-p»)2 

<p*+l 
«q* 

5S,+a2 '5^2(<1"*^') 2 
« ® (<j) , 

Suppose p'«q'. Then ax • a2, bx • b2 and p-q'«q-q'. 

Bence 

®(p) • p• +ax (p-p
1) +bx (p-p •)

2 

« q'+a2(p-q•)+b2(p-q•)
2 

<q • +a2 (q-q') +b2 (q-q')
 2 

m ®{q) . 

Ill every case p«q in R+ implies ®(p)<i(q) in 1*. 

!•«* ®(p)«»(q* ia R+. Suppose q<p. Then ®(g)«0(p). 

Thus G(q) * M p ) • Thus either q • p or S 1® not reversible. 

Either is a contradiction. Hence e(p)<e(q) implies p<q. 

Thus for f e 2*w an automorphism 8 has been defined. No 

two such automorphisms are equal for let f ,g e 2*m, f | g, 

Let ®£ be the automorphism defined on R* using f to define 

a and b. Let be the automorphism on R* using g to define 

a and b. For some a f «, f(n) + g(nj. Say f(n) « 1, g(n) • 0 

Consider the rational n+1/2, 

6£(n+1/2) «* n+1(n+l/2-n)+0(n+l/2-n)2 

» n+1/2. 

6g(n+1/2) » n+0(n+1/2-n)+1(n+l/2-n)
2 

* n+1/4. 

Hence f g implies @^ "f 8_. 
9 
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There are uncountably many elements of 2*w and for each 

f c 2*m there exists a distinct automorphism on R+. Hence 

R+ has uncountably many automorphisms on it. 

Definition 3.6. The statement that the cardinal of a set 

h is less than or egual to the cardinal of a set 1 means 

that there is a reversible function whose domain is A and 

whose range is a subset of B. 

Definition 3,7. The cardinal of a set A is equal to the 

cardinal of a set B if and only if the cardinal of each is 

respectively less than or equal to the cardinal of the other. 

Definition 3.8. The cardinal of A is less than the 

cardinal of B if and only if the cardinal of A is less than 

or equal to that of B and their cardinals are not equal. 

Theorem 3.5, Let S be a set with cardinal greater than 

or equal to the cardinal of R*, the real numbers. There exists 

a chain 0 whose cardinal is equal that of S such that the 

cardinal of all automorphisms on D is greater than the cardinal 

of S. 

Proof: Let E be a well ordered set whose cardinal is 

e<ptal to S. Let (0,1) be the open unit interval in 1®. Let 

D » 1®{0,1). 

D is a chain, for let (a^,b^),(a2,b2) « D. Then 

al'a2 * E ®° 

1) a1<a2r hence (a^,b1)<(a2,b2); 

2) (a2,b2)< (a^bj) ? 

or 3) a^ » a2, in which case since b^,b2 e (0,1) then 
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3.1> bx<^2, hence (a^b^) «(a2,b2) t 

or 3.2) b2ibl» hence (a2#b2)<(a1/b1). 

The cardinal of D is equal to the greatest of the 

cardinals of E and of (0,1). Hence the cardinal of D is 

equal to the cardinal of S. 

Let f * 2*e. Let 8 foe a fauction on D such that 

1) if (x,b) t D and f (x) • 1, i((x,b)) - (x,b), 

and 2) if (xrb) « D and f(x) « 0, 8((x,b)) * (x,b
2). 

Clearly if (x,b) t D then (x#b) is the 0 image of exactly 

one element in D, namely 

1) (x,b) if f(x) « 1 

or 2) (x,fb) if f(x) » 0. 

Thus 8 is a reversible function and R(®) « D. 

Let (x^fb^)«,(x2/b2) in D. Then x2t
xl* Suppose x^<x2. 

Now (xj_,a)*(x2,b) for all a,b t (0,1) so 

• C(xi»b1))«(x1#l>1)«0{(x2rb2)). 

Suppose Xj • x2. Then b^s^j. Suppose f(x^) * 1. Then 

•((*irbi)) - (xi,b1)<(x2,
b
2) • ®((x2,b2)). 

Suppose f(Xj_) «* 0, Then 

6 ((xx,^)) • (x1fb1
2)<(x2,b2

2) ® f((x2#b2)). 

In every case (x^,b^) <,(x2fb2) in D implies 9 ((x^,b^)) <8 {(x2,b2)) 

in D. 

Suppose ©(x̂ b̂j)*,® (x2»b2) for some (x^b^ , (x2,b2) e 0. 

Suppose further that (X2 ,b2) < (xlfb^) . Then x2«pc1. But 

0**xl'bl^ " (x^,a^)<,(x2,a2) - ®({x2»b2)) 

contradicts x2«x^. Suppose x2 •* x^. Then bg^bj. But this 
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lead# to a contradiction. For if f(*,) ** 1, then (x_,b )«(x,,b,) 
1 2 2 * x 

implies •<(*2,b2))
<®<(x1/b1))» And if f » 0r then 

(x2,b2)<(x^b^) implies# b-^cfaj
2? but e(x^#b1)<$(x2»b2) implies 

2 2 bl *b2 T h u s ® a n isomorphism ©n D. 

For each f t 2*® define 9j> as above. Let A be the set of 

all such 8. 

If gff e 2*® and g + ** then g + f implies 

x c E such that g(x) <f f(x). Say g(x) « 1, f(x) « 0. Consider 

the @l©m@nt (xrl/2) e 0, 

•g{(x,l/2)> - (X*1/2} 

+ (X*J/4> 

• ®f (<x,X/2>) . 

Hence for each ©lament f c 2*® ther® exists an element 

* A, Hence the cardinal of A is greater than or equal to 

the cardinal of 2*® which is equal to the cardinal of 2*s. 

The cardinal of the set of all automorphi sms on R* 

is clearly greater than or equal to the cardinal of R*. 

It nay be that it is exactly equal to the cardinal of R*. 

if the cardinal of the set of automorphisms on an interval 

(a,b) in R* is equal to the cardinal of R* then so is the 

cardinal of the set of automorphisms on R*. The Internal 

(-1,1) is chosen in the next theorem to simplify arithmetic. 

It can easily be generalised to any fa,b) CT R*. 

Theorem 3.6. The cardinal of the set of automorphisms 

on the open interval (-1,1) in R* is equal to the cardinal 

§ 
of the set of automorphisms on Rff, 
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Proof t Let A be the set ©f automorphisms on (-1,1) and 

let & be tli® set of automorphisms on R*. 

11 Then tli# cardinal of A is less than or equal to the 

cardinal of B. For, let & be a function whoa# domain is A 

and such that for f i A, «<f) « g, a function defined as 

follows. g(x) «• x for all x * R*, x f (-1,1)« g(x) •» f (x) 

for all x * (-1,1) • Clearly g « B. Let f^ <f f2 in A, Then 

there is an x « (-1,1) such that f^(x) <f f2(x). Since for 

this x, (#(fjH(x) « f^(x) and (8(f^)) (x) » f2(x) then 

• <fx) + «(f2). 

Thus e is a reversible function whose domain is A and 

whose range is a subset of B# Hence the cardinal of A is 

less than or equal to the cardinal of B* 

2) The cardinal of B is less than or equal to that of A. 

Let • be a function whose domain is B and such that if 

f e B then #(f) • §, a function defined as follows. Let 

g(x) «* tanh (f (tanh"*1 (x))) for x « (-1,1). since tanh, f and 

tanh*"* are each reversible, then g is clearly reversible. Let 

xi«x2 in (-1,1). Then tanh""* (x1)^,tanh~^ (x2). Since f is an 

mitoBOrphiiia, f (taah-^Uif (taolT1^)). Finely 

tanh(f(tanh""*(x^)))£tanh(f(tanh"1(x2))) or g(x^)<g(x2)» In 

a similar manner g(x1)<rg(x2) implies x ^ . Thus g is an 

automorphism on (-1,1)• So g « A. 

Suppose f^ + f2 in a. Then fj(x) 4> f2(x) for some 

x * R*. Now y * tanh(x) for some y « (-1,1). So 
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gi(y) - tanh(f1{tanh"
1(tanh(x)))) 

tanhd^U)) 

4 taiih<£2(x)> 

• tanh(f2(tanh"
1(tanh(x)))) 

- g2<y>-

Thus g, 4 <32* . * « amA 
•mua • is a reversible function whose do»aln i* * 

w hos. range U a of A. — « » <* B l* 

less than or equal to the cardinal of A. 

3) F r o* 1) and 2) the cardinal of > U e ^ l to the 

cardinal of A# 
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