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CHAPTER I

PARTIALLY ORDERED SETS AND OPERATIONS

ON PARTIALLY ORDERED SETS

It may be said of certain pairs of elements of a set that
one element precedes the other., If the collection of all such
pairs of elements in a given set exhibits certain properties,
the set and the collection of pairs is said to constitute a
partially ordered set. The purpose of this paper is to explore
some of the properties of partially ordered sets, This chapter
will discuss operations on partially ordered sets, Chapter II
will treat properties of ordinals and weak ordinals, and
Chapter IIY will demonstrate some properties of automorphisms
on partially ordered sets.

The notion of a partially ordered set is formally de-
fined by the following.

Definition 1.1, A relation is a set of ordered pairs of

elements. The domain of a relation R, designated by D(R), is
the set of all first elements of the ordered pairs of R, The
range of R, designated by R(R), is the set of all second
elements of the ordered pairs of R,

Definition 1.2. The statement that R is a relation in a

set A means that P is a relation such that g(R)(/)E(R)C::A.

Definition 1.3, The statement that the ordered pair

(A,<) is a partially ordered set means A is a set and < is a

1



ralation in A such that
i) if (a,b) ¢ ¢, {b,e) ¢ < thea {8,0) ¢ <
1i) 1if (a,b) « < and (b,a) ¢ « then a=b,
and 1ii) (a,8) ¢ £ for all a e A,

The above properties are called transitive, antisym-
metric and reflexive, respectively.

Unless otherwise noted a set will have cnly one relation
defined in it and a partially ordered set will be denoted by
the set name. The name partially ordered set will be shortened
to poset, If A ig a set and R iz & relation in A, the statement
{(a,b) & H may be written akb, If BC2, a.,b ¢ B then asgp in
B if and only if a<h in A, Any two posets in a discussion

are understood to be disjoint unless otherwise noted.

PDefinition l.é., 1et < be the relation in a poset A

such that for a,b ¢ A, a<b if and only if ash and bia.
Pefinition 1.5, If A is & poset, a,b e &, let arb mean

bea and let arb mean bea.

Definition 1.6, The gardinal sum of posets X and ¥ is

X+Y =» C where C = X{/Y and agb in C 1f and only if a<h in X
ox astbh in ¥,

Definition l.7. The cardinal product of posets X and ¥

is XY = D where D = Xx¥ and d,%d, in D if and only if
dx = {al,hl}, ﬁz a iaz.bz} where a,x8, in ¥ and blépz in ¥.
pafinition l.8. A function £ is a relation such that if

{a,b) ¢ £ and (a,c) ¢ £ then b = ¢, An alternate notation for

{a,b) ¢ £ is b = £(a).



pefinition 1.9, Iet A be a set with a relation R

: 1
defined in it, ILet B be a set with a relation Rz defined in

it. The statement that f iz an isotone function such that
D(f) = A, R(f) C B means f(a,)R,f(a,) in B for all a,;R;a, in A,

Definition 1.10, The cardinal power of poset Y to the

exponent poset ¥ is Y* = E where f ¢ E 1f and only if £ is an
isotone function such that D(f) = ¥, R(f) C¥. f£fzg in E means
f(a)<g(a) in Y for all a e X.

Theorem 1.1. If A and B are posets, then A+B is a poset.

Proof: Let A4B = C,

Let a¢bk in C and bgc in C. Then agh in A or agb in B.
If a<bh in A then b ¢ A and hence ¢ ¢ A for bge in C for no
beg A, ¢ € B. Thus a<b, bgc in A, From the transitive
property a<c in A and hence agc in C. By a similar arqument
a<b in B implies as<c in C.

Let asb in C and bga in C. Then either agb in A or
a<b in B, If a<b in A then bga in A, Thus b = a. If agh
in B then bga in B. Thus b = a.

Let a ¢ ¢, Then a ¢ A, ata in A thus ag<a in C or a ¢ B,
a<a in B thus aga in C.

Thus the relation defined on C by the definition of
A4B = C is transitive, antisymmetric and reflexive. So C is
a poset,

Theorem 1,2, If A and B are posets, then AB is a poset.

Proof: Let AB = Ii,



Let d;<d, in D and dyzd, in D. Then 4y = (ay by},
dy = (az,bz}, dy = {aa,b3) where ajga,, 8,504 in A and
by tb,, bzéb3 in B. By the transitive property ajsa, and
bysb, in A and B respectively and d,<dj in D follows from
the cardinal product definition.

Let dysd, in D and d%d) in D. Then d; = (a,,b,),

dy = (ay,by) where a,sa,, a 8y in A and b_zb,, bysb in B,

= 1

Thus a; = ay, by = by from the antisymmatr;a property of
posets. Hence dl = d,,

Let 4, ¢ D. Then 4, = (a,,by) where aj;ca; in A and
bysby in B by the reflexive property. Hence dyx4,.

Thus the relation defined on D by the definition of
AR = D ig transitive, antisymmetric and reflexive. Hence
D is a poset,

Theorem 1.3, If A and B are posets then B2 is a poset.
A

Proof: lLet B = B,

Let f<¢g in E and g<th in E. Then f(a)xg(a) in B for all
a ¢ R and g(a)sh(a) for all a ¢ A, By the transitive
property f{a)<h(a) for all a ¢ A, and f<h in E follows from
the definition of the relation in B®,

Let f<g in E and g<f in E. Then f(a)xtg(a) and g(a)sf(a)
in B for all a ¢ A. Since B is a poset fla) = g(a) for
all a ¢ A by the antisymmetric property. Hence £ = g.

Let £ ¢ E. f(a)<f(a) in B for all a ¢ A so f«f.

Thus the relation defined on E by the definition of ph

is transitive, reflexive and antisymmetric. 8¢ E is a poset.



The definitions of cardinal operations invite investigation
of the commutative, associative and distributive propertiesz of
cardinal sums, products and powers. The relation "=" has been
taken without formal definition to mean "is the same as".
Isomorphism will be the relation used to compare two posets.

NDefinition 1.11. A reversible function is a function f

such that £(a) = b and f(¢) = b if and only if a = c.

Definition 1,12, If A is a szet with a relation Rl in it

2 in it, then A g B (A is

and B is a set with a relation R
isomorphic to B) if and only if there exists a reversible
function & such that D(8) = A, R(8) = B and aRyb in A if and
only if G(a)Rza(b) in B.

Theorem 1.4, If A and B are posets then A+B g B+A and

AB & BA.

Proof: 1) Let C = A+B, Let D = B+A, Let 8 be a function
whose domain is C such that for all a ¢ C, 6(a) = a in D.
Clearly R(8) = D and & is reversible., Let a<b in C. Then
a,b e Aor a,be B. If a,b e A then astp in A s0 a<h in D
or 8{a)<e(b) in p, Similarly if a,b ¢ B, 8(a)z8(b) in D,

The proof that 98(a)s<8(b) implies agth follows similarly. Thus
A+B A B+A.

ii) Let C = AB, Let D = BA, ILet @ be a function
whose domain is C and for all d ¢ ¢, 4 = {a,b) where a ¢ A,
beB, 6(d) = (b,a) ¢ D. R{8) = D and & is reversible for
every (b,a) ¢ D is the image of exactly one (a,b) ¢ C, Tet

ﬁlﬁgg in C. Let dy = (al,bl) and d, = (az,hz). Then ay%a;



in A and b sh, in B, Thus (bl,al)@(bz,az) in D or 6(d,)<e(d,)
in D. 1let e(al);g(dz) in D. Then 8(dy) = (by.ay),
9(d2) = (bz,az) where bl§p2 in B and alépz in A, (al,bl)gjaz,bz)
in C or dlgﬁz in C. Thus AB ~ BA,

Thus cardinal addition and multiplication are each
commutative within izomorphism,

Theorem 1.5. If A, B and C are posets, then

A+(B+C) % (A+B)+C and A(BC) ~ (AB)C.

Proof: lLet A, B and C each be a poset,

i} et D = A+(B+C). Let E = (A+B)4+C, Tet 6 be a

function whose domain is D such that if a ¢ D then 6(a) = a ¢ E,
This is clearly a reversible function whose range is E.

If agth in D then 1) agb in A so agb in A+B, hence agh
in E or 6(a)ge(b) in E; or 2) agb in B+C in which case 2.1)
asb in B so agh in A+B and agb in F or 2.2) agh in C so
agtbh in E. In any case agh in D implies 8(a)<s(b) in E,
Similarly 0(a)<eé(b) in FE implies asgbh in D and hence
A+ (B+C) ~

st

(A+B)+C.
ii) Xet D = A(BC). Let F = (AB)C. Let 8 be a function
whose domain is D, Iet d ¢ D, Then d = (a,t) wvhere a ¢ A,
t ¢ BC and t = (b,c) where b ¢ B, ¢ ¢ C. ILet
e(d) = ((a,b),c) ¢ B, ¢ is a reversible function whose
range is E.

Let d;%d, in D where &, = (ay,t;) = (a;,(b;,c;)) and

dy = (az,ty) = {ag,(by,cp)). Then a;ta, and ty3t,. Since
tyst, then bygb,, cy1%cy. 23535, bytby implies (ay,by)s(az,by)



which with ¢ 2, implies ((al.bl),cl}gj(az,b23,cz) or
0(dy)s8(d,). sSimilarly if e(d,)<6(d,) then d;2d, and thus
A(BC) ~ (AB)C.

Thus cardinal addition and multiplication are each
associative within isomorphism.

Theorem 1.6. If A, B and C are posets, then A(B+C) ~ AB+AC,

Proof: Let A, B and C be posets. Let D = B+C, Let E = AD.
Let F = AB, Let G = AC, Let H = F+G, Let 9 be a function
whose domain is E. Let (a,b) ¢ E. Then a ¢ A, b ¢ D. Since
beDthen b e Bor b e C. Suppose b ¢ B. Then (a,b) ¢ AB
and thus (a,b) ¢ H. Suppose b ¢ C. Then (a,b) ¢ AC and thus
(a,b) ¢ H. For (a,b) ¢ E let a((a,b)) = {(a,b) in H. Clearly
since H consists of elements (a,b) as described above, 8§ is
a reversible function whose range is H.

Let (a,;,b,)<(a,,b,) in E. Then a,ga, in A, by<b, in D.
Thus blgbz in B or b, sb, in C. Suppose b,<h, in B. Then
(al,bl);(az,bz) in F and hence (al,bl)&(az,bz) in H. Suppose
b;sb, in C. Then (a;,b,)c(a,,b,) in G and hence (a,,b;)<(a,,b,)
in H, 1In both cases (a,,b;)<(a,,b,) in E implies
6(al,b1)§e(a2,b2) in H.

A similar argument shows e(al'bl)éﬁ(az'bz) in H implies
(al'bl)i‘az'bz) in E. Thus A(B+C) o AB+AC.

Thus cardinal multiplication is distributive to the right
over cardinal addition within automorphism.

Corollary 1.1. If A, B and C are posets, then

(A+B)C n AC+BC.



Proof: From Theorem 1.5 (A+B)C n C(A+B).
From Theorem 1.6 C(A+B) ~ CA+CB.
From Theorem 1.5 CA+CB ~ AC+BC.
Hence (A+B)C » AC+BC,

Definition 1.13, The ordinal sum of two posets A and B

is A ® B = C where C = A( /B and asb in C if and only if
l) a<b in A, 2) a<b in B or 3) a ¢ A, b ¢ B.

Defipition 1,14, The ordinal product of two posets

A and B is AoB = D where D = AxB and d;2d, in D means

dl = (al,bl}, d2 = (az,bz) for ay,8, ¢ A, bl’bz ¢ B and
i) al<a2 in A
or ii) a; = &, in A and by<b, in B,

Definition 1.15. The ordinal power of poset B to

the exponent poset A is E = Ay where £ ¢ E if and only if £
is a function whose domain is A and whose range is a subset
of B. f«g in E if and only if f(a)x«g(a) or g(a)sf(a) in B
for all a ¢ A, and for every a ¢ A such that g(a)<f(a) in B
there is an a;<a in A for which f(a;)<g(2;) in B.

Theoxem l.7. I1f A and B are posets, then A & B is a poset.

Proof: Let C = A & B, Let ag<h and bgc in C. Either
l) ce Aor 2) ce B. If 1l) ¢ce A, then a,b ¢ A s0o
asb, bgc, agc in A, Hence atc in C. If 2) ¢ ¢ B then either
2.1) ae¢ Aor 2.2) a ¢ B. If 2.1) a ¢ A then ac<c by the
addition definition. If 2.2) a ¢ B then b ¢ B for agx for
no x ¢ A, Thus ag<b, b<c in B so at<c in B and ag<c in C. The

relation on C is transitive.



Let a<b and bga in C. If a ¢ A then b ¢ A for xga for
no x ¢ B, Thus asb, bsa in A gso a = b, If a e B then b ¢ B
for asx for no x ¢ A. Thus ash, b<a in B so a = b, The
relation on C is antisymmetric,

et a ¢ C, If a e A then agta in A so a<a in C, If
a ¢ B then ata in B so ata in C. In either case the relation
on C is reflexive.

The relation on C is transitive, reflexive and anti-
symmetric, Thus C is a poset.

Theorem 1.8. The ordinal product of two posets is a poset.

Proof: Let D = A¢B be the ordinal product of posets
A and B,

Let dy<d,, dygdy in D. Then 4, = (ay,b;), d; = (a,,by)
and d, = (ay,by) where a,<a, in A or a, = a, in A, blgpz in B
and aj<a, in A or ay = a5 in A, bygb, in B, Suppose aj<a,
in A, Then ay<aq in A and hence dlgﬁ3 in D. Suppose a; = a,
in A. Then either aj<a; in A, in which case a;<ay in A so
d12d3 in D, or a; = a, in A, If a; = ay = a3 in A then
bygby, bygby 80 bysb, in B and hence d;%d, in D. In every
case d,<d,, dygdy in D implies dy5d4 in D.

Let dygd,, d,%d; in D. aj<a, in A, ajz<a; in A is not
possible. Hence a; = a,. Then by<b, and by<b; in B, so
by = by. Thus dygd,, dosd, in D implies dy = d,.

let d ¢ D. Then a ¢ A and a = a In A, b & B and b<b

in B, Hence d<d in D.
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The relation imposed on AoB by the definition of ordinal
multiplication is transitive, antisymmetric and reflexive.
Thus D is a poset,

It is not generally true that the ordinal power of one
poset to another poset is a poset.

Example 1.1. Let B be the ordered set of two elements

a and b where aga, agh, bgh. Let J be the set of integers

with their usual ordering. Clearly B and J are posets. Let

E = Ip.

f, g, h ¢ E exist such that £ = {(x,y)|x ¢ J and if x
is odd y = b, if x is even y = a},

g = {{x,¥)]x ¢ J and if x is even y = b, if x is odd
y = a},

and h = {(x,y)|x ¢ J and if x is odd y = a, if x is
.even and x/2 is even vy = a, if x is even and x/2 is odd
Yy = bl

The following illustrates these sets:
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(4 , a) (4, b) (4, a)
(3,b) (3, a) (3,a)
(2, a) ({2 ,b) (2, b)
(1, Db) (1, a) (1, a)
f= (0, a) g= (0, b} h= (0, a)
(-1 , b) (-1, a) (-1, a)
(-2 , a) (-2 , b) (-2 , b))
(-3 , b)) (-3 , a) (-3 , a)
(-4 , a) (-4 , b)) (-4 , a)
(-5 , b ) (-5 , a) (-5 , a )
(-6 , a) (-6 , b)) (-6 , b))

- . *

L4 - -

Now g<f in E for let x ¢ J such that f(x)<g(x) in B.
Then x is even. Now x-l¢x in J and g({x-1)<f(x~1) in B,

f<h in E for let x ¢ J such that h(x)«f(x) in B. Then
x is odd. Now since x ig odd either (x-1)/2 is odd or
(x-3)/2 is odd. If (x-1)/2 is odd, let x; = x-1. If not, let
%y = x-3. Wow xy<x in J and f(x;)<h(x,) in B.

By the transitive property if E is a poset g<h.

Consider g(4) = b and h(4) = a. Clearly h(4)<g(4) in

B. But for all x in J either g(x) = h(x) (when x is odd
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or x/2 is odd) or h(x)<g(x) in B (when %/2 is even). Thus
no xlﬁ4 exists for which g(x1)<h(xl) and hence gi¢h. Hence E

is not a poset.



CHAPTER II
WEAK ORDINALS, CHAINS AND ORDINALS

Definition 2.1. The element a of poset A is a minimal

element of B if and only if x<a for no x ¢ A.

Definition 2,2, Let O[A] be the set of all minimal

elements of poset A,

Definition 2.3, A partly ordered set X is weakly well

ordered, or a weak ordinal, if and only if every subset of X
contains at least one minimal element.

Definition 2.4, A weak ordinal A is an ordinal if and

only if every subset S of A has exactly one minimal element,
The minimal element of an ordinal is called the least element.

Theorem 2.1. If B is a subset of a weak ordinal A,

then B is a weak ordinal,

Proof: Let S B. Then 8§ (CCA. Hence S has a minimal
element. Every subset of B has a minimal element; so B is
a weak ordinal.

Theorem 2.2. The ordinal sum of two weak ordinals is

a weak ordinal.

Proof: Let C = A & B where A and B are each weak ordinals,
et 8 C C. Suppose S (B, Then S has a minimal element,
Suppose S B. Then 8y = g /]&Ais a non void subset of A
and hence there is an x € Sy such that x ¢ 0[81]. Now
x ¢ 0[S8] for let b ¢ §. Either b ¢ A or b e B. If b ¢ A,

13
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then b ¢ 8§, so bfx. If b e B then x<b. In every case S
has a minimal element, Hence C is a weak ordinal.

Theorem 2.3. The ordinal product of two weak ordinals

is a weak ordinal.
Proof: Let C = RoB where A and B are both weak ordinals.
Iet S (CC. The following exhibits a minimal element in S,
Recall from the definition of ordinal multiplication
that C = AxB. Thus D(8) (_D(C) = A. Hence O[D(S)] is not
empty. Let a ¢ O[D(S)]. Let 31Cs such that
D(s;) = {a}. since R(S;) C B then O[R(Sy)] is not empty.
Let b ¢ 0[&(81)] be chosen. The following argument shows
that (a,b) e 0O8].
Let (c,d) ¢ S where (¢,d) ¥ (a,b). Then cta for
a &€ 0[D(S)]. Suppose c ¥ a. Then (c,d){(a,b) for (c,d)<(a,b)
only if c<a. Suppose ¢ = a, Then d ¢ b forc=a, d =b
implies (c,d) = (a,b). Also dfb for d ¢ R(S;) and
b e O[R(S;)]. Thus dafb so (c,d)f(a,b). Thus (a,b) € O[S].
Hence C is a weak ordinal.

Theorem 2.4, The cardinal sum of two weak ordinals

is a weak ordinal.

Proof: Let C = A+B where A and B are weak ordinals,
Let 8 C C. Suppose 8y = 8 13 is not empty. Then O[S,] is
not empty since 8,(C A. Let a & O[S,] be chosen, a e O[S]
for if x € S then x ¢ Aor x ¢ B, If x ¢ A then xfa. If
x ¢ B then xta. Suppose S; = s/12 is empty. Then SCB

so 0[S] is not empty. Hence C is a weak ordinal.
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Theorem 2.5. The cardinal product of two weak ordinals

is a weak ordinal.

Proof: Let C = AB where A and B are both weak ordinals.
Let S C. Then D(S) A and hence has a minimal element.
Let a ¢ O[D(S)] be chosen. Let b ¢ R(S) C B be chosen.
(a,b) & 0[S] for if (c,d) e S then cta so (c,d)$(a,b). Hence
C is a weak ordinal,

It is not generally true that the cardinal power of one
weak ordinal to another is a weak ordinal.

Fxample 2.1. Let C = B” where B = {0,1} and w» is the set

of non negative integers with both B and ¢ ordered in the usual
manner. Let S CC such that g ¢ S if and only if 1 ¢ R{g).
Let £ ¢ § be chosen. Since D(f) = v and w is an ordinal,
let n be the least element in D(f) such that f(n) = 1. Then
f(x) = 0 for all x<n. Since f is isotone, f(x) = 1 for all
x>n., Let g ¢ 8 such that g(x) = 1 for all x»>n and g(x) = 0
for all x<n. Then g(x)<f(x) for all x ¢ » and f(n)fg(n) so
g<f. Since for f ¢ S there exists g ¢ S such that g«<«f, C
is not a weak ordinal.

It iz not generally true that the ordinal power of one
weak ordinal to another is a weak ordinal.

Fxample 2.2, lLet C = B for B and w as defined in Example

2.1. Let f ¢ C such that f(n) = 0 for all n ¢ w. Let
Cl = C‘“{f}o
Suppose g € Cl is a minimal element, Let M be the set

of all m ¢ w such that g(m) = 1, Since w is an ordinal, there
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is a least element in M. ILet my be the least element in M,
et h ¢ Cl such that h{n) = g(n) for all n ¢ w except m, . Let
h(m) = 0, Then h(ml)ﬁg(ml). Now g(m) th({m) for all m ¢ w.
Hence h<g. This contradicts the supposition that g is a
minimal element in Cl. Hence cl has no minimal element.

Since C has a subset with no minimal element, then C is
not a weak ordinal.

Definition 2.5. 2 chain A is a poset such that a,b ¢ A

implies agh or bga.

Definition 2.6, If A is a poset the statement that C

is a chain in A means that CC A and C is a chain.

Definition 2.7. The statement that C is a maximal chain

in a poset A means that C is a chain in A; and if ¥ is a chain
in A, then c4o W,

Definition 2,8. Let A be a poset with relation <. A

o

relation <on A such that A is a chain under < and a<b if
a<h is called a strengthening of A,
The set A is clearly a chain under the relation <,

pefinition 2.9, Let A and B be two chains which are not

necessarily disjoint. XLet R, be the chain relation on A and
let Ry be the chain relation on B. Furthermore let Ry = Ry
for the set A /1B. Let C = AL/ B. TLet R, be the relation
on C such that

1) aRyb if aRyb;

2) aR,b if aRgh:
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3) aR,b if there existe a ¢ such that aR,c, cRgh
or aRgc, cRyb;
and 4) anvb if ae¢ A, b e B and bRYa is not implied
by 1), 2) or 3).
Then C is a merger of A into B.
R, is obviously a chain relation on C. 2Also note that in
the case of disjoint chains a merger is an ordinal sum.

Axiom 2,1. PEvery chain C in a poset A is a subset of

a maximal chain M in A,
Birkhoff shows that Axiom 2.1 is equivalent to the axiom
of choice.l

Theorem 2.6, A strengthening exists for every poset.

Proof: let A be a poset. Then by Axiom 2.1 each chain
in A is contained in a maximal chain in A. Iet S be the set
of maximal chains in A. Let S be well ordered.

Let s;,3, be the first two elements of 8. Let t, be the

merger of 84 into 85, Let 8p € S. Let ts' e L_) t,- I1f
a<h

a,b e tg' let agh if and only if a<b in t? for some y<8, Let
tg be tg' merged into s;. Observe that tB' is a well defined
chain which preserves the order of elements in all previous
chains. For suppose there exists a first 8 such that tﬁ' is

not such a chain, Let a,b ¢ tg', Then a,b ¢ L_j t,. et s
o<

and sy be the first maximal chains in which a and b appear,

lgarrett Birkhoff, Lattice Theory, Vol. XXV of American
Mathematical Society ColYoguim Publications, (Rhode TIsiand,
19561), pp., 42-44.
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respectively. Suppose v = £ and agb in 8, Then athb in all t,
for ven<B. Hence agh ¢ tp'. Suppose u<t, Then a ¢ tg' and
hence asth or bga in t; and in all t  for Egn<B. Thug ash or
bs<a in tg,'. Hence, by contradiction, tg is well defined for
all 8.

Let <(bm the relation resulting from the merger of all
elements of 8 as described above. < is a strengthening of A.

Obviously a strengthening on A is not unigue unless A

is a chain, for the ordering of the elements of § is arbitrary.

Theorem 2.7. A poset A may be strengthened to an ordinal
if and only if A is a weak ordinal.

Proof: 1) If A is a weak ordinal the strengthening
described in Theorem 2,6 is an ordinal. For let A1<:}A. Fach
element of 0[A4] is in a different 8 ¢ S. Let 8, be the set
of all such s. Let x, ¢ 0{A13 such that xy is an element of
the least s ¢ 5,. Then x, is the least element in 0[&1] by
the construction of <. Suppose a ¢ A; such that a ¢ 0lngl.
Then a>x for some x ¢ 0[Ay]. Hence xj;<x<a 80 Xx;<a. So x3
iz the least element of 2, under <. Hence A is an ordinal.

2) If A is not a weak ordinal some subset of A has no
minimal element. ILet Ay A be such a set. Iet x5 ¢ Ay.
Since xg § 0fay] there exists x;<x; in A;. Suppose
X0*%Xy>. - - « ¥ in A;. Since x, ¢ 0[2,] there exists
Xpe1<%p in By. Let C = {xg,%3,. . . . }. Now
KOXXqye o v o EpdXpgq o oo 0w in €. Hence C< A with no least

element under <.



CHAPTER III
AUTOMORPHISMS ON POSETS

Definition 3.1. An automorphism on a partly ordered

set X is an isomorphism whose domain is X and whose range

is X.

Definition 3.2, A group is a set with a closed binary

operation defined on it which is assoclative, has an identity
and has an inverse for each element of the set,

Definition 3.3, Let f and g be two automorphisms on

a poset A, lLet f.'g denote the relation whose domain is A
and such that f-g(a) = f(g(a)) for all a ¢ A,

Theorem 3,1. The set of automorphisms on a poset forms

a group under the product operation defined in Definition 3.3,
Proof: Let £ and g be automorphisms on a poset A.
Then f+g is a reversible function, Let agb in A. Then
gla)zg(b) so f-g(a)sf-g(b). Hence f+g is an automorphism
on A,
Let fl be the automorphism on A such that fl(a) = 8
for all a ¢ A, Clearly f1~g = g-fl = g for every automorphism
g on A. fl is the identity element.
Let f be an automorphism on A, IlLet f“l be an auto-
morphism on A such that £°1{a) = b if and only if £(b) = a,
Then f+f 1} = £ l.f = fl' ¢! is the inverse of £.

19
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Let f, g and h be automorphisms on A, lLet a ¢ A,
(£-(g-h)) (a) = f{g(h(a))). Alsoc ((f:g)-h)(a) = f(g(h(a))).
Hence f£-(g-h) = (f-g)+h and the product operation is
asgociative.

ILemma 3.1, If a chain C has an automorphism £ on it,

f 4% £,, then fi is an automorphism on C for positive integer
{ ana £1 + £3 for positive integers i, 4, 1 $ 4.

Proof: fi is an automorphism on C by the closure
property of groups.

Without loss of generality suppose i<j, fi fi*l = gogl
for, since f is not the identity, there is an x ¢ C such that
eietx0) 4 £ 0. suppose £t (x)<e(elix)). Them
el x))<eie(el ) so £1 () <21t (x) <£142 (x) henmce £l $ £i+2

Suppose £l + el e n, a positive integer, because

there is an x ¢ C such that fi(x)<fi+n

(x). Then

£(el (x)) £ (£ (x)) mo £ 4 #1471 A similar argument
follows the supposition that fitx)>£(fi€x)). Hence by
induction fi % el

Theorem 3,2. If a chain C has an automorphism £ on it,

£ & f,. then there are infinitely many automorphisms on C,
Proof: Let f be an automorphism on a chain C where

f & f,, the identity element. Define

A= {g'gn =fn=1,2,3....1) Since by Lemma 3.1,

g; + g4 for i $+ j, there are infinitely many elements of A

and hence infinitely many automorphisms on C.



21

Corollary 3.1. The set of integers J has infinitely

many automorphisms on it.

Proof: The function f such that £f(i) = i+l for all i ¢ J
is a non identity automorphism on J.

Lemma 3,2, If n e J then £(1) = n for exactly one

automorphism f on J.

Proof: Let n ¢ J. Let f be a function such that for
ieJ, £(1) = i4n-1., Then f(1l) = l4n-1 = n, Let j ¢ J,
£f(3-n+l) = (§-n+l)+n-1 = §. Thus f is a reversible function
whose domain is J and whose range iz J, Let k,m ¢ J such
that ksm. Then k4n-lgm+n-1 80 £(k)<f(m). Also if £(k)<f(m)
then k+n-l<mén-1 so kgm. Thus f is an automorphism on J.

Suppose ¢g is an automorphism on J such that g(l) = n,
Furthermore suppose g # £f. Then g(i) % £(i) for some i ¢ J.
Let J; be the set of all such 1. Purther let J4 be the set
of all such i»1. This is a well ordered set. ILet i; be the
first element in J,. WNow g{i;~1) = i;-1l4n-1l = iy+n-2 so
g(iy)»i;4n-2. But g(i;) # ij+n-1 for f(iy) = i,+n-1. sSay
g(il) = k, Then il+n»2€il+n~l<k. Thus i,+n-1 is the image
of an element m such that i,-lem<i,. No such m exists in J.
Jp has no first element and hence has no elements. A similar
discussion for Jdy, the set of all i ¢ Jy such that i<1, shows
that J; has no elements. No i exists such that g(i) 4 £(i),
This contradicts the supposition g ¢ f. Hence g = f.

Definition 3.4, Let f and g be automorphisms on J.

Then fRg if and only if £(1l)<g(l).
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Theorem 3.3. The set A; of automorphisms on J is iso~

morphic to J.

Proof: Let & be a function whose domain is A5 such
that 8(f) = £{(1). Then by Lemma 3.2 6 is a reversible
function. Let fRg in A.. Then &(f) = f(l)<g(l) = 68(g). If
6(£)<6(g) then £(1)Rg(l) so fRq. Hence Ay % J.

NDefinition 3.5. Let A and B be sets. The get of all

functions whose domain is B and whose range is a subset of

A is denoted by A*B,

Theorem 3.4. There are uncountably many automorphisms

on the set Rt of non negative rational numbers,

Proof: Let f = 2*¥ yhere 2 is the cardinal set {0,1}
and v is the cardinal set of non negative integers.

Let ' be a function whose domain is r* and whose range
is w such that if r € R* then r'sr<r'+l,

Let 6 be a function whose domain is R* and such that for
r ¢ ®*

8(r) = r'+a(r~r')+b(r~r')2
where b = £(r') and a = mod,(b+l). The range of 6 is rY for
let x ¢ RY. If £(x') = 0 then x is the 6 image of x for
8{x) = x'+1(x-x"')+0(x-x") % = x,

If F{x') = 1 then x is the & image of Vx-x'+x' for first
note that (Wx-x'+x')' = (x')' = x' since Vx-x'<1 and

%' ¢ w( R, fThen
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E(V;:;7+x') = x'+0(7§:;?+x'~x‘)+1( X% 4x " -x") 2
= x'+(7§:;:)2
= x'4+x~-x'
= x.
0 is reversible for let x & R* such that 8(ry) = x and
6(r,) = x. Then
1) == rl'+al(rl~r1’)+bl(r1~r1')2
and 2) x= r2'+a2(rzwrz')+bz(r2wrz')2.
But since 0<s, = al(rlwrl')+b1(rl~r1')2<1 and
0¢84 = a2(r2~r2')+b2(r2»r2')z<l, then ~1¢32“81<1. Since
r,' = r,'+sy-8,, then ry'=l<ry'er,'+l. Now ry', ry' € .
Hence ry' = ry', It follows from the definition that
a; = aq, bl = by; SO 1) and 2) above become
rl‘+a1(rlwrl'}+b1(r1"rl')2 = r1‘+a1(rgnrl')+h1(r3wrl')2.
This simplifies to
al(rl~r2)+b1((r1~r1‘)2~(r2wr1')2) = 0.
If by = 0, then a; = 1 and ry = Yy, If bl = 1, then a, = 0
and (rlwrl’)z = (rzurl')z. Since rl~rl';e, and ry-ry'20,
then xlmrl' = rzmrl' and ry = r,. In every case e(rqy) = x,
8(ry) = x implies ry = r,.
9 preserves order, for let psg in rY,
8(p) = p'*alfv*p')+b1(pmp‘)z
and 8(q) = q‘*ath“q'l+b2(qu')2.
Either p’' = q' or p'<q'. Suppose p'<q'. Then p'+lsq'.

Also al(p~p')+a2(p~p')z<1. Then
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8(p) = p'+al(p~p‘)+bl(p~p')2
<p'+1
‘zq’
2q'+a,(q-q') +b, (g ') 2
= 8(q).
Suppose p'=q'. Then ay = a,, by = b, and p-q'zq-q".
Hence
6(p) = p'+a, (p-p')+b, (p-p')?
= q'+a,(p-q')+b, (p-q') 2
;ﬁ’*az(q~q')+b2(q*q')2
= 8(q).
In every case pfg in r* implies 6(p)<e{g) in rt.
Let 6(p)s8(q) in R*. Suppose q<p. Then ©(q) <6 (p).
Thus 6(q) = €(p). Thus either g = p or 6 is not reversible.
Either is a contradiction. Hence 0(p)<6(g) implies PLg.
Thus for £ € 2*Y an automorphism 0 has been defined. WNo
twe such automorphisms are equal for let f,g e 2*%, ¢ ¢ .
Let 6. be the automorphism defined on Rr* using £ to define
a and b. Let eg be the automorphism on RrRY using g to define
a and b. For some n ¢ w, £(n) % g(n). Say f(n) = 1, g(n) = 0,
Congider the rational n+l/2,
8¢(n+1/2) = n+l(n+1/2-n)+0 (n+1/2-n)2
= n+l/2,
8g(n+1/2) = n+0(n+1/2-n)+1(n+1/2-n)?2
= n+l/4.

Hence f + g implies Be % eq.
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There are uncountably many elements of 2*¥ and for each
f ¢ 2*¥ there exists a distinct automorphism 8¢ on r*., Hence
rR* has uncountably many automorphisms on it.

Definition 3.6, The statement that the cardinal of a set

A is less than or equal to the cardinal of a set B means
that there is a reversible function whose domain is A and
whose range ls a subset of B.

Definition 3.7. The cardinal of a set A is equal to the

cardinal of a set B if and only if the cardinal of each is
respectively less than or equal to the cardinal of the other.

Definition 3.8. The cardinal of A is less than the

cardinal of B if and only if the cardinal of A is less than
or equal to that of B and their cardinals are not equal.

Theorem 3.5, Let S be a set with cardinal greater than

or equal to the cardinal of R*, the real numbers. There exists
a chain D whose cardinal is equal that of § such that the
cardinal of all automorphismes on D is greater than the cardinal
of 8.

Proof: let E be a well ordered set whose cardinal is
equal to S. Let (0,1) be the open unit interval in R#. Let
D= Eo(0,1).

D is a chain, for let (a;,by),(a,,by) ¢ D. Then
ay,ay ¢ E 80

1) ajsaq,, hence (al,bl)ﬁ(az,bz);
2) ap<a;, hence (aj,bj)<(ay,by):
or 3 ay = a,, in which case since bl,bz ¢ (0,1) then
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3.1) blgpg, hence (al'b1)§(a2'b2)?
or 3.2) bygby, hence (a;,bj)s(ay,b,).

The cardinal of D is equal to the greatest of the
cardinals of E and of (0,1). Hence the cardinal of D is
equal to the cardinal of S.

Let f ¢ 2¢®, Let 8 be a function on D such that

1) 1if (x,b) ¢ D and £(x) = 1, 6((x,b)) = (x,b},
and 2) if (x,b) ¢ D and £(x) = 0, 8((x,b)) = (x,b%).
Clearly if (x,b) € D then (x,b) is the ¢ image of exactly
one element in D, namely
1) (x,b) if £(x) = 1
or 2)  (x,Yb) if £(x) = O,
Thus 6 is a reversible function and R(8) = D.

Let (xy,b;)£(x3,b,) in D. Then x,¢xy. Suppose x,<x,.

Now (xl,a)«(xz,h) for all a,b e (0,1) so
o ((xq,by))2(x,,b )28 ((x;,b))).
Suppose Xy = X,. Then hlgbz. Suppose f(xy) = 1. Then
0 ((xy,by)) = (x3,hy)5(xy,by) = 8((x3,b,)).
Suppose f(xl) = 0}, Then
8((x1,b))) = (x1,5;2)2(x,,05%) = 8((xy,b,)).
In every case (xl,bl)gsz,bz) in D implies 8((xy,b1)) 58 ((x;5,b,))
in D,

Suppose ﬂ(xl,hl)ga(xz,bz) for some (x1'b1)'(x2'b2) e D,

suppose further that (xz,b2)<(xl,bl). Then xy%xy. But
9((x1,b1)) = (xl,al);(xz,az) = 6((x,,b,5))
contradicts Xp<X, - Suppose X, = Xj. Then bp<b;. But this
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leads to a contradiction. For if f(xl) = 1, then (xz,bz)tcxl,bl)
implies a((xz,bz)iteltxl,bl)). And if f(%x;) = 0, then

2 2
(xz,bz)c(xl,bl) implies b, chl ; but G(xl,bl}gﬁtxz,bz) implies

blzghzz. Thus ¢ is an isomorphism on D,
For each £ ¢ 2+*F define 9, as above. Let A be the set of
all such 9.

If g,f ¢ 2*F and g % £, then 85+ 0g. For g # £ implies
X ¢ B such that g(x) % f(x). Say g(x) = 1, £(x) = 0. Consider
the element (x,1/2) & D,

04 ((x,1/2)) = (x,1/2)
$ (x,1/4)
= 8¢((x,1/2)).

Hence for each element f ¢ 2*F there exists an element
aﬁ ¢ A, Hence the cardinal of A is greater than or egual to
the cardinal of 2*%% which is egqual to the cardinal of 245

The cardinal of the set of all automorphisms on r#
is clearly greater than or egual to the cardinal of r#,

It may be that it is exactly egual to the cardinal of R*‘

If the cardinal of the set of automorphisms on an interval
(a,b) in r¥ 1s equal to the cardinal of ’*¥ then so is the
cardinal of the set of automorphisms on R#. The interval
{~1,1) iz chosen in the next theorem to simplify arithmetic.
It can easily be generalized to any (a,b) C r¥,

Theorem 3.6. The cardinal of the set of automorphisms

on the open interval (-~1,1) in r? 1s equal to the cardinal

of the set of automorphisms on Rs.
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Proof: Let A be the set of automorphisms on (-1,1) and
let B be the set of automorphisms on R#.

1) Then the cardinal of A is less than or equal to the
cardinal of B. Por, let 8 be a function whose domain is A
and such that for f ¢ A, 8(f) = g, a function defined as
follows. g(x) = x for all x ¢ R', x ¢ (-1,1). g(x) = £(x)
for all x £ (-1,1). Clearly g ¢ B. Let f1 % £, in A, Then
there is an x ¢ (~1,1) such that £, (x) ] £4(x), 8ince for
this x, (ﬁtfl)iix) = f,(x) and (8(f,))(x) = £,(x) then
0(£,) + 8(f,),

Thus 6 is a reversible function whose domain is A and
whose range is a subset of B, Hence the cardinal of A is
less than or equal to the cardinal of B.

2) The cardinal of B is less than or egual to that of A.

Iet ¢ be a function whose domain is B and such that if
£f ¢ B then ¢(£f) = g, a function defined as follows. Let
gix) = tanh(f(tanh”l(x)}) for x ¢ (~1,1). Since tanh, f and
tanh“l are each reversible, then g is clearly reversible. Let
%y%x, in (-1,1). Then tanh"l(xl)gxauh”lﬁxz). Since f is an
automorphism, f(tanh”ltxl));f(tanh“l(xz)}. Finally

tanh(f(tanh”lfxl)))gxanh{f(tanhwl(xz))3 or gix,)xg(x In

) -
a similar manner glxy)2g(x,) implies xl;xz. Thus g is an
automorphism on {~1,1). So g € A.

Suppose £, # £, in B. Then £, (x) $ £,(x) for some

X & 25. Now y = tanh(x) for some v ¢ (-1,1). Seo
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g, (¥) = tann(fltaann”l(tanh(x))))
= tanh(fl(x))
¢ tanh(f,(x))
= tanh(fzttanh"lttanh(x))3)
= g,(¥).
Thus g, + 9,

Thus ¢ is a reversible function whose domain is B and
whose range is a gubset of A, Hence the cardinal of B is
less than or equal to the cardinal of A,

3) From 1) and 2) the cardinal of B is equal to the

cardinal of A.
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