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CHAYTER I
PRO" #RTIES OF IDEALS

This paper presents an Iintroduction to the theory of
ideals in a ring with emphasis on ldeals in a commutative
ring with identity.

Basic definitions and properties of ideals are given
and these properties are studled in the classes of ideals
called extended and contracted ideals. The 1ldeal structure
in quotlent rings is inve . iiated with'respect to the ideal
structure of the rings cver which they lie and theorems are

provided to show appllications of the theory developed.

Definition 1-1. A set is a collection of objects;

these objects are called elements of the set.

Dafinition 1=2, A binary operation "o" on a set A is a

correspondence that assoclates with each ordered pair (a,b)

of slements of A a unlquely detsermined selement a o b of A,

Notation:
Small letters willl denote the elements of a set and

capital letters will denote sets.



€ means belongs to or is an element of,

¢ means does not belong %o or is not an element of.

C means 1s contalined in or is included in.

{ means proper containment (i.6., A<B means A is a
proper subset of B) when used betwsen sets and means less
than when used between elements of sets.

4 means less than or equal %o,

5. means the sum of,.

= means the same as.

Definition 1-3, A nonempty set G on which there is

defined a binary operation "o" is called a group (with re-
spect to this operation; provided the following properties
are satisfied.
(1) The operation "o" is associative. If a, b, ¢
are any elcments of G, then (a o b) oc =a o (b o ¢).
(2) There exists in G an identity element e such
tkat a o e = e 0 a = a for all elements a in G,

(3) For sach element a in G there exists an in-

verse a'l In G, such that a o a~1 = a'l 0 a=g@e,

Definltion 1-4, If R is a nonempty set on which there
areg defined binary operations 6 and @, which will be called
addition and multiplication respectively, such that the
following conditions hold, then R is a ring.

(1) Addition in R 1s associative.



(2) R contains an additive identity element.

(3) Tor each element a in R, there exists an
additvive inverse, denoted by -a, in the set R,

(L) Addition in R 1s commubtative. If a, b&R,
then a § b = b 8 a.

(5) 'Multiplication in R is associative,

(6) Multiplication in R is left distributive and
right distributive with respect to addition, il.e.,
a @ (b®c)=(ao®©b) ® (a @c) and
(a ®b) ©c = (a ®@c) & (b ® ¢c) for any elements a, b,
¢ in R,

Operation Notation.

In order %o simplify the notation, the product a @ b

for a, &R will sometimes be written as ab,

Dofinition 1-5. A ring is called a commutative ring if

and only 1f the operation of multiplication is commutative.

Delinltion 1-6, A ring is a ring with unity if and only

if there is a multiplicative identity (unity element) in the

ring.

Theorem 1l=1l. A nonempty subset A of a ring R is a sub-

ring of R if and only if the following two conditions hold.
(a) A is closed under the operations of addition
and multiplication defined on R.
(b) If a&A, then -a€A (1, P. 26),



Proof:

Conditlons (a) and (b) are required of all rings and
hence must be satisfied if A 1s a subring of R,

Conversely, if A 1s a subs2t of R satisfylng propertles
(a) and (b), then propefties (1), (L), (5), and (6) in the
definltion of a ring hold in R, hence hold in A also. Con-
dition (b) is identical to property (3) of this definition
so only the existence of an additive identity needs to be
shown in A, Since A 1Is not empty, it must contain at least
one element, say x. Under condition (b), =-x is also in A,
By condition (a), x ® (~x) 1s an element of A, but x & (-x)
is the additive identity of R. A contains an additive

identity and is therefore a subring of R,

Definition 1-7. Let A be a nonempty subset of a ring

R such that
| (1) a v (~b)& A if a and b are elements of A.
(2) ra€A if a€A and r€R.
Then A 1s called a left ideal in R.

The followlng statement is an equivalent definlition of
left ideal in R., A subset A of a ring R is a left 1deal in
R if and only if it is a subring of R such that ra is in A
for every r in R and every a in A,

A subset A of a ring R 1s a right ideal in R if and
only if it 13 a subring of R such that ar is in A for every

a In A and every r in R.



A left idesl is the same as a right ideal in a commu-
tative ring R since ar = ra for every a in A and every r in

R. In this case A is simply called an ideal.

Theorem 1-2. If a is an element in a ring R, then the
set A = {rai rGIR} is a left ideal in R.
Proof:

The sét A is not empty by construction. th ra and sa
be any two elements of A, Then ra & (-sa) = [r @ (-s)}a by
the right distributive law in R. But r & (-s) is in R,

hence ra & (-sa)€ A, If rlaéA and rzéR, then

rz(rla) = (rarl)aéA since r2rl€R. Hence A is a left ideal.

Corollary 1l-1. If a is an element in a commutative

ring R with unity, then the set A = {ra! réiR}'is an ideal
in R. PFurther, if B is an ideal in R and a€ B, then ALB,
Proof:

The flrst part of the corollary follows from theorem 1-2
and the definition of ideal. Now suppose that B i1s any ideal
such that a is an element of B., By the definition of a left
ideal, ra is in B for every r in R. ~But A = {ra !ré;ﬁ}, so
that ACB. This means that every ideal of R which containé

the element & must contain A.

Definltlon 1-8. The ideal A of corollary l-l1 is

called the principal 1ldeal generated by the element a,

denoted by (a). A ring in which every ideal is a principal



ideal is called a principal ideal ring.

Note. R will denote a commutative ring with unity

throughout the rest of the paper.

Definition 1-9, Let A and B denote ideals in a ring R,

define A + B ={a 0 b |a€a, b€ B},

Theorem 1-3, If A and B are ldeals in a ring R, then

A+ B 1s an ideal in R.
Proofl:

The set A + B 1is not empty since A and B are each
contained in A + B.

Let x and y be any two elecments of A + B, where

X =4a 6 b for some a in A, and b in B; y = a, & b0 for some

a, in A, and by in B. Then x © (=) = (a & b) & L—-(ao ® bo)]

= f:a @ (-ao)} ® [_“) O (-bo)}éA + B, since ‘{a o (-ao)] is an
element of A and [p ) (-bo)] 1s an element of B.

Let r be an arbitrary element of R; then rx = r(a & b)
= ra & rb by the left distributive law of R. But (ra & rb)

Is in A + B, since ra is in A and rb is in B.

Hence A + B 1s an ideal.

Definition 1-10. If A and B are ldeals in a ring R,

define the product of A and B as

k
AB =.{.Zlaibi, a;€ A, b;€ B, k arbltrary positive intege{}.
i=1



Theorem 1-l, If A and B are ideals in R, then AB i1s an

1deal in R.
Proof:

The set AB 1s nov empty by construction., Le

s

be any two elements of AB such that x = 3 a,by,
i=1

b

j=1

i

v

i = l, 2’ ‘." s and j = l’ 2’ 0‘0, t. Then

x 6 (-y) = Zaib @(-Za' b',). Let -a', = a
21 37 J

b'j =b ,, for 1% j£t. Hence

4]

+%
a,b, in AB

~®(-)=‘*>“b@ &
X N aj 2 j:ljj

J=1

in A and bj inB for J =1, 2, ee.y stb,

Let r be an arbltrary element of R, then rx

s+j s+j

| sk

= Eﬁra b, = (rai)bi in AB since ra, in A and
‘ i=1l

i}

fOI‘ i ""_'1, 2, 00y Se

Hence AB is an i1deal in R.

t x and y

a'jb'j for some aj, a'j in A and bi’ b'j in B, and

S+ 3 and

since a

J

8
=1 7 a;b,
1 iv1

b, in B

Lemma l=-l. If A and B arse ideals in R, then AB is con-

tained in A and AB is contained in B.

Proof:
: n
Let x be any element of AB such that x = 'Z
=1

s bi for



Jome &

; in A and bi in B. In particular, since B 1s an idesl,

and bi in B, this implies that by in R. Hence 8;b; 1In A by

n .
~definltion 1-7. Thercfore x = F asb,€ A and ABCA,

i
N

The proof of ABCB is similar. .

Delinition 1-11. If A and B are ideals in R, then the

quotient A:DB conslists of all elements ¢ in R such that ¢BCA

( ¢B means {c)B ).

Theorem 1l-5, If A and B are 1deals in R, then A:B is an

ideal in R.
Proof':

Since A and B are ideals, AB 1s conbtained in A by lemma
1-1., Let a be any element in A; then aB 1s contained in A,
This implies A is contained in A:B. Hence A:B is not empty.

Let x, y be elements in A:B; then xB 1s contained in A
and xb is in A for every b in B. Also yB is conbtained in A
and yb is in A for every b in B, Fix b arbitrary; then
Xxb & (~yb) is in 4, Since the distributive law is valid in
R, thon [x @ (-7)]b is en element of A o every b in B.
Then {x & (—y)}B is contained in A. Hence x & (-y) is an
element of A:B,

Let z be an element Iin A:B; this implies that zB is con-
tained in A by'definition 1-1l., If b is an arbitrary element
of B, zb in A implies that r(zb) is in A, r&R, by definition

1-7. Then (rz)b in A, since multiplication is associative



in R. This implies (rz)3 is contained in A or rz€ A:B,

Hence A:B is an ideal in R.

Dofinition 1-12, If A is an ideal in R, the radical of

A, denoted by JE, consists of all elements bER some power
of which is contained in 4 (i.8., if x 18 in the radical
of A, then there exists a positive integer n such that x1

is in A.)

Theorsm 1-6, If A is an ideal in R, then the radical of

A is an ideal in R.
Proof:

The radical of A is not empty since A 1s contained in
the radical of A,

Let x and y be any two elements of the radical of A;
then there exist positive integers m and n such that x™ is

.

in A and y* is in A. The term ‘§ ® (_y£}m+n expanded yields

m+n
© Ckxky(m+n)—k

for binomlal coefficlents Cps OT by the
k=0
m+n K
factorial notation J (mtn) ! __ (_y) xky(m+n)"k. Either

k=0 pmin)-lkl
k is greater than or equal to m, or (m+n)-k is greater than
or equal %o n. Hence [% ® (_yi}m+n i1s an alement of A and
X ® (-y) is in the radical of A,

Let » be an arbltrary element of R; then (rx)® is equal

to r™xME€ A since rmER, x™CA., Then rx is in the radical of
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A and the radical of A is an ideal in R,

Lemma l-2, Every ideal in the ring of integers is

———————

principal.
Proof:

Let A be an ideal of ring R. If A = (0), then it is
principal ideal., If A contains & number b not equal to O,
then it also contains -b, and one of these numbers is pos-
itive. Let a be the least positive element of A, and ¢ an
arbitrary element in A, If r 1s the non-negative remalnder
when ¢ is divided by a, then ¢ = ga + r for O£r<a. Since
¢ and & belong to the ideal, ¢ - ga = r belongs to the
ideal also. Since r is less than a, then r 1is equal to zero
because a8 1s the least positive number of the ideal, Hencse
¢ = gqa. Therefore all numbers of the ideal A are multiples

of a. Hence A = (a), and A 1s a principal ideal,

Definition 1-13, Let R be a ring. An ideal A is said

to be prime 1f whenever a product be in A with b and ¢ in

R, then either b in A or ¢ in A,

Let m>1 be an linteger and suppose {(m) 1s a prime ideal
in the ring of integers., If m 1s not a prime integer, then
m = ab, where a and b are integers different from 0, 1, ~1.
No generality is 1ost‘in assuming a and b positive, thus
0<a<m and 0<b<m. But since (m) is prime, ab&€ (m)

implies that either a€(m) or b€ (m), and from this it
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follows that eltner a = ma! or b = mb' for some positive
integers at and b', Tnhis 18 impcs:ible since both a and b
are positive iater;ors less than m. Thi contradiction
implies m must be prime.

Conversely, if m = p is a prime integer and the ideal
(p) contains ab, where a and b are intesers, i1t follows that
ab = cp for some integer c¢. Hence p divides ab and so p
divides either a or. b, whence (p) contains either a or b.
It follows from the definition that (p) = (m) is a primé
ideal.

Definition l-liie Let R be a ring. An ideal A is said

to be maximal if A is not equal to R and there exists no
ideals between A and R. (i.e., If ACKCR, elther K = 4,

or X = R,)

In the ring of integers I, every proper prime ideal is
maximal (2, P. 112). For suppose A = (p) i1s any proper prime
ideal in I, with another ideal B such that A< B« I. Then
there exlsts an element t in B such that t is not in A.

This implies t 1s not equal to Jp for any integer J. Hencs
the greatest common divisor of t and p 1s 1, Since 1 is the
greatest common divisor of t and p, there exist integers x
and y such that 1 = tx + py, But tx is in B and py is in

B also; this implies that 1 is In B, If 1 is in B, then

B = I, and this is a contradition. Hence A is maximal.
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Definition 1-15., Let R be an arbitrary ring and let A

be an ideal in R. Then A is sald to be primary if the con-
ditions a, b in R, ab in A, a 1s not in A imply the existence

of a positive integer m such that b™ is in A.

Theorem 1-7. Let Q be a primary ldeal in R. If P 1s

the radical of Q, then P is prime. Moreover if ab€Q, a¢Q,
then bT P. Also if A and B are 1deals in R such that AB is
contained in § and A is not contained in Q, then B is
contained in P.

Proofl:

Let JQ = P, and a, b€R such that ab€ P, Suppose aQ‘,P;
then an;fer, for any integer n. There exists an integer ¢,
such that (ab)t€Q, or abvle Q, and atQ{Q implies (p%)M€Q
for some integer m. Hence b ™€ Q implies b€JQ = P.
Therefore P is a prime ideal,

Now .f ab€ Q with a@Q, then p™€ Q for some positive
integer m; hence b €JQ = P,

Also, 17 A is not contained in Q, there exists an

element a €A such that aogiQ, a b €Q for every b&B. But

ao(‘ng implies P& P for every b& B; hence BCP.

Dofinition 1l-16. Let Q denote a primary ideal and let

P = |Q. Then Q is said to be a primary ldeal belonging to

P or that Q 1s primary for P.
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Theorem 1-o. Lot @ and P are ideals in a ring R such

thet
(1) QCp.
(2) If bEP, then PPEQ for some integer n. (n

may depend on b).

(3) If ab€Q, a¢Q, then bEP.
Then Q is primary with radical P if and oniy if these con~
ditions hold,
Proof:

Suppose Q is primary with radical P; then QCP by
definition 1-16., If D&P?P = J'Q', then b€ Q for some integer
n. If ab&Q, a¢Q, then v¥e @ for some integer k since Q is
a primary ideal. ience belQ = P,

Assume (1), (2), and (3), if ab&gQ, afjéQ,, then b€P by
(3). By (2) bEP implies bR &EQ for some integer n; hence Q
is primary. To show P = J’@, show P CJQ and JQCP. Let
LEP, by (2) bPE 2 implies bEJQ or PCIQ. Wow if x€]Q,
Then xtéQ where t is the least exponent such that xté Q.
Ir t = 1, then x€QCP by (1). If & # 1, then x°~1¢Qq
implies x€ P by (3). Hence Jacr.

The following statement 1s an egquivalent form of con-
dition (3).

If ab€Q, b¢P, thon a€Q.



1k

Coroliary 1-2, Let R be a ring with unity, and let Q,

# ve ideals in R such that
(1) QcCrPp.
(2) I bEP, then b"E€Q for some integer n.
(3) P is a maximal ideal.

Then Q is primary belonging to P.

Proof:

Let ab&€qQ, bg{P; it is necessary to show that a&Q.
Consider the ideal P + (b); then P<? + {b)CR., Since P is
a maximal ideal, it follows that P + (b) =R and p + rb = ¢
for some p&P, r&R, where e denotes the identity in R. By
(2), there exists a positive integer k such that pX¥€Q and

)¢

‘also (p + rb = 8, The expansion of this eguation gives

p¥ 4 ¥ l(rb) + ... + (rb)¥ = 6, and

kpk=1y = o, Let t “onote

oX + b{kpXe + ... + 1
(kpkr + sea + rkbk"l); then apk + abt = a by multiplying
this equatlion by a. Then apkéQ since pk€ Q, and abt&€Q

since ab € Q; hence a& Q.



CHAPTIER BIBLIOGRAYHY

1. McCoy, Neal H., Introduction to Modern Algebra, Boston,
Allyn and Bacon, Inc., 1960.

2. Moors, John T., Elements of Abstract Algebra, New York,
Macmillan Company, 1962.

15



CHAPTER II

EXTENDED AND CONTRACTED IDEALS

Definltion 2-1. Let R be a ring. A ring R' is said

to contain a homomorphic image of R if there exlsts a

mepping T of R into R' such that the operations of addition
and multiplication are preserved. Then f(a @ b) = F(a) B F(b)
and T(a @ b) = T(a) © F(b) where additlon 1s denoted by ©

and & and multiplication is denoted by @ and @ in rings R

and R' respectively. This mapping is called a homomorphism

of B into R?.

Throughout this chapter R and S will denote rings with
unity, and T willl denote a homomorphism of R into $ such
that f(e) = e! whers e denotes the identisy in R and e! the
identity in 8. The relations between ideals in R and ideals
in 83 will be discussed with ideals in R being dénoted by
capital letters with subscript r, and ideals in S by capital
letters with subscript s. The operations of addition and
multiplication will be denoted by'@, @ and @, 2 in R and s

respectively.

16
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Theorem 2-1, Let As be an arbitrary ideal in S. Then

e e

T “‘(AS) = {x %*E& R, I‘"(X)G_AS} is an ideal in R,
Proof:

Let x, ¥ E’“l(AS); then F(x & (~y)) = T(x) & F(~v).

Since T(x), 'f‘"(y)EIAS and A  is an ideal i1t follows that
"f(my) = -"f“(y)é As (2, p. 17). Therefore

Tlx ¢ (-y)) = T(x) B T(-y) €A ; hence x & (-y) €T L(a ).

3
If r€ER, then T(rx) = 'f(i')'f"(x)t’_‘As since ?(x)€As and

e

f(r)€ S. Eence rxé:'f""l(As) for any XGT'I(AS) and rER and |

therefore T-+(A_) is an idesl in R.

S

Theorom 2-2., Let Ar be an arbitrary ideal in R. Then

—

I8
S(£(a,)) = {y fyt = g-:lsiai where s; € 3, a;&€T(4,), n a

positive integer} is an ideal in S.

Proof:
_ n
Let xt, y'({S(f(AP)) such that x' = I S;a4,
i=1
m
yi o= jb* where sg, st CS aj» bjC (Ar)’ n and m
j= l

positive Integers and 1 =1, 2, ..., 0, J =1, 2, v.., m.
517 m+n

n
Then X' @ (~y') = iglsiai g (-3 s ‘bj> L s;a; B Y, s;a

=1 J 1=1 1=n+l = *

here = gl $ = =
where sm_j s 3 for } 1, 2y ¢eey, m, and bj aj_,_n.

m+n
Thus x' & (-y') = ig’jsiai. Since a; € T(A), this implies

m-n
taet EsiaiQSf(Ar) and x!' @ (~y') € S(F(4,)).
i=1 -



I8 1 n
If r€S, then rx' = v( ., s.a,) = T r(s.a,) = 2 (rs,)a
’ R = A = R R

is the elemen’ oi S{E”(AT)).

Therefore S(f(AI_)) is an tdeal in S.

Definition 2-2., Ii AS is an ideal in S, the ideal

'f"l(AS) is called the contracted ideal, denoted by Asc, or
the contraction, of As in R, If A, i¢ an ideal in R, %the
ideal S'f'(AP) generated by f(Ar) in S is called the extended

1deal, denoted bty A ®, or the extension, of A

I‘ 3 in S.

r !

Theorem 2-3. If AgCBg then A ,CCB.C; and if A,CB,

then A4,°CB,°,
Prool:

First, assume ASCB;J«, and let x be an arbltrary element
of ASC. Then T(X)GASCBS by definition, herice XE‘:BSC.
Sirce x 1s an arbitrary element of ASC, 1t follows that
Az CBGC.

n
Now, assume A,CB,, and let y'€A.%, then yv' = ¥ s,7(a,)
rTor X Rt e

for some positive integer n, 1 =1, 2, ..., n, si(’_s, a; € AL,
Since a; €A,CBy, this lmpllies a, € B, or f(ai)EBPCfJ for each

1. Also, s;T(ay) €BL®% by definition, herue
n

v'o= 3 sif(a4)c€Bre since BI,e is an 1deal in S.
1 L

There ore Al,eC B,%.,
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Theorem 2~l. (ASC)GCZA

pu

; and A, C(A e)C

8
Proofl:
¢ =
Pirst, let y't’“(As")e, then by definition y' = 2sif(a )
i=1
for some n, 1 =1, 2, ..., 1, si€S, aiEASC. Since each

a; €A®, 1t follows by theorem 2-1 that f(a )€A . Also

n
s;f(ag) € SAy = A_; hence y' = i};lsif( ) € A_ and therefore

cye
(A,%)°CaA,.
Now, let x€A,, then T(x)€Are by theorem 2-2. This

]

implies:&E(ATe) by definition 2-2. Therefors APCZ(Are)C.

Notation.

4,°C means (4.°)°, and 45°°% means (45°)°.

3

T(x™) means (F(x))™,

Theorem 2-5,

cec _ , ¢, ece _ e
Ag®C% = A % and A.9°% = 4,°,

Proof:

First, ASCGCZAS by theorem 2-L, hence (A.°®)®C44° vy
theorem 2-3. Also ASCC(ASC)GC by theorem 2-l; therefore
L cec _ 4 c

N eyce e ec

ow, (A,7)""CA,” by theorem 2-L. Also ALCAL®" by
theorem 2-l; therefore A,°C(4,°%)® follows by theorem 2-3

*

. ace _ e
dence Ar = Ar R
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Proof:
First, ASCAS + By for "\i‘s and By in 3; then
A8 C(hg + Bg)” by theorem 2-3, and B,C A  + B_ implies

¢ e r . ¢ c ¢
Bg C(AS + Bg)¥. Henmce Ag” + By C(ag + Bs) .

Now, A,CA, + B, for A, and B, in R, then A eCZ(AI, + BI,)e
by theorem 2-3, and BI,CA + B implies B C.(A + Br)e.
fence Ar,e + BI,SC(AP + Br)e. Also, let y' €(4&, + then
n o _ n = n
by definition, y' = %, s,5(a; @ bi) = ¥, 8 f 2
i=1 {=1 * i=1

H

for n a positive integer, 1 1, 2, v.es 1, &y €A pr D3E B,

: Ve ©
siC{S. Since aieAr, the 'JL)CAr and sif( )CA by

theorem 2-1, this implies that a )C.A + Bre. Since

biEBr, then T(bi)ébre and si_f(bi)éIBpe by theorem 2-1,

this implles si'f‘(b.)éA ® + B,%. Hence

zys“m)%& Euii’b)éﬂ + B.° or

e e ., o 8 + B8 )8 =4 °
(A, + BL)"CA" + B.°. Therefore (A, + B,)" = A, + 3B

Theorem 2=T. (Asf\Bs)c = ASC/\BSC, and
8 e e
(A NB,) CALSNBLE,
Proof:
First, (AS/\BS)CAS for Ay and By in S, then
(AgNBy)°CA® by theorem 2-3, and (A,NBg)CB, implies

‘ c ¢ . ¢ ¢ c
(AS{‘\BS) < Bg". Hence (AsnBs) CAg NBS Let x€Ag NBg~,

—on £

then x€A,° and x€B,%. This implies T(X)€ Ay and F(x) €Bg
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by theorem 2~1. Then Tix)&A;NB, by the definition of
intersection. Honce xG(fksfaBa)c or A.SC/'\Bscc(ASF\BS)C.
Therefore (AgNB,)° = A°NBC,

’&ow, (Ar’\Bl,)C!‘;r, by the definition of intersection;
this impiles (A,NB,)°CAL®. Also A,NBLCB, implies

(ApNBL)°CBLe. Hence (4,.NB,)°C2.°NBLE,

Theorem 2-8. A °B,°C(4B4)°%, and (A.BL)° = 4,.9B.°.

Proofl:
First, let z be an arbitrary element of ASCBSG whare

n
7 = iz,xiyi for xiEASC and yiE BSC, i=1, 2, ¢y n, for
=4

some positlve integer n, This implies that ?(xi)ﬁAsceCAS
and f(yi)é BSCGCBS for each i =1, 2, ..., n. Then

'f"(xi)'i‘"(yi) = 'i"'(xiyi)éAsBs for each i =1, 2, .e., nN.

n
(Xiyi) = T( iglxiyi) = f(z)€ AgB,. Hence

sl

n
Therefore J,
i=1

c
2 E (AgBg)° and A°B ,°C (A B,)°.

-y

e - b \
Now, let z'€(A:B,)%. Then z' = J s;T(cy) where

N i=1

i

c, = jzzl&jibji for ainAP, bjiGBI,, 8;€8, 1 =1, 2, ..s, k
=

and jy =1, 2, 4., 0 for some positive integer k. Henrce,

i’

Tla, YEA®, Flo. )3 ®, and Fla, )¥(b: ) = Fla: b+ )€ A.°B.°
i’ gt T E i S R
1’1.‘_ ni
for each j,. Therefore 2 3’:‘7(&1. o, ) = f( I, as Dy )
Jo=L YL 3,51 %1t

- kY [5} e » e . » D
= f(c;J€A, BL . Since s,¢ S, this implies that
1
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|8
b - iy 2] y r
s.T(c. )& 5.°8.° and > sii(ci)é‘_ A, Br@' Therefore

(ArBr)a‘:—: AraBre .

Also, let w' be an arbitrary element of A, Bn® where
h)

k
- e .
wt o= Z:X’iy'i for x’ié Are and y’iC{ B . Let

i=1
x', = , s:T(a: ) and v! = t, F(b. ) for 8. , ts €8

a, (’:Ar and bj &€ Bn, for some positive integers my and N
Ji

my ny
Then x',y', = (% s, Tla, )N X &, F(b, ))
Y1 jizl ji ji jiz ji Ji

= (slf<al))(tlf(bl)) @ (slf.‘(al))(tzf(bz)} B ovee

B (sy Tlag ))(ty 1T(0n 1)) @ (s Flag )) (5, Flb, )

i 1 i i 1 i
- i
Fla Bs_ t_ Tla b ).
m ni—l my ni-—l ms N, mi n

Since aif-;’ A, and bl({ Br’ this implies that alblc—; ArBr’ i
and "f’(albl)e (ArBr)e' Also, sltlé S, hence
s.t. T(a b )&(A,B,)% Using the same argument,
e

<] Fy oy A - e e = ! o e -

Since The sum of all these terms is contained in (AI.,BI,)G, it
1

o gt t - A e o "'g\ ., foy e
follows that x iy’ic (AI,BI,) and w! i%"lx'iy'iL (4,B)°,
‘Honce An°B,C(A,B.)% and therefore (4.3.)° = 4,.%B_°.
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Theorem 2=9. (Ao BS)CCASC : B_.%, and

s S
(A, : BL)%caL® @ B,S.
Proof:
First, since A, : B4 = A_ ¢ D, then (Aq : BglBgCTAg

by bthe definition of quotient ideal. This implies
((ag s BS)BS)CCASC by theorem 2-3, and (Ag : Bg)°B,°CA®

by theorem 2-8. Hence (A

. c c . ¢
s'Bs)CAs : B,

Now, since (4, : Br)BrCAr’ it follows that

((Ap : BL)BL)®CAL® by theorem 2-3, and (A, : B,)®B.°CA®

by theorem 2-8. Hence (Ar- : 1‘:‘32:,)6C_,ZLI,6 : Bre.
Theorem 2-10, (]KS)C z= jASC, and (JA;,)GC/AI,‘?.

Proof:
[¢] 1 ., n c LS} K 4 .
If x€ JAg , then x"€Ag for some positive integer n
by definition 1-12. Then by definition 2-2, (f(x))néﬁ‘sa
By definition 1-12 again, F(x)€JA_, and x& (J&_)%. Hence
y & ? O, 8

h Cc(Ji)e. wow if y&(JE,)°%, 1t follows that F(y)€JA,.

-

This implies (F(yN™ = f‘(yn)EAé for some positive integer n,

—
and ynEASC by definition 2-2, so yéJ,ASC. Hence

prm—

QAs)CCJASC and therefore (\})TS)C = JA c

— I
2z . .‘;
Now, if x'& (JAL)Y, then x!' = 12—.:;'1311(&1) for aié:.JAI,:

si‘(: S, k a positive integer, and 1 =1, 2, +.., k. Sincs

n
ai(-_‘j.{—lr, this implies (ay) i@f&r for some positive Iinteger

n. g (F(ai))ni; thus

;» for esach i. Also T(ay)
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Fla )™M = & o o
(si) 1T 1 = (s, faai) € A,° for each i. Hence
(2 ) 1re for sach i =1, 2, ..., k and therefore
1{ — ~ g e
Xt = 5;_, (a. )CJF or (JA,) C‘fﬁ‘r@'

}-Jo

In the comparison between theorems 2-L and 2-5, the
containments in theorem 2=l become equalities when AS is an
extended 1deal and A, a contracted ideal. However, an ldeal
in S need not be an extended ideal, and need not be the
extension of its conbtraction; this implies that AS°Q<:AS is
possible. Also, an ideal in R need not be a contracted
i1deal nor need 1t be the contraction of its extension; hencs
A,°®>A, is possible. Theorem 2-5 irplies that if an ideal
in 3 18 an extended ideal, 1%t 1s the extension of its con-
traction, and that if an ideal In R 1s a contracted ideal,
1t 15 the contraction of 1ts extension. These results are

stated in the following theorenms,

No%ation.‘

Denote by (C) the set of all ideals in R which are
contracted ideals, and by (E) the set of all ideals in S
which are extended ideals.

An ldeal A, in (C) means there exists an ideal A CS
such that A, = A ®. Likewise an ideal A'_ in (E) means

[¥]

there exists an ideal A',CR such that (A'r) g
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m

Theorem 2-1i, If A, 1s a contracted ideal, then

IJ
(Are)c = Ar‘
Proof:

Since A,C{C), then A, = ASC for some Zdeal A, C S, hence

c

c,ac
) ¢
3

Arec = A = A% by theorem 2-5. Therefore 4,%¢ = Ap.

3

Theorem 2-12, If Ag 1s an extended ide~l, then

Let AgC(E), then there exists an ideal A,CR such that
Ag = A%, thus Ag%% = (4:°)°% = A,° by theorsm 2-5.

Therefors Asce = As.

Definition 2-3. Let two sets A and & be given., If

there exists a mapping of A onto A such that each element
of & appears only once as an image, then the mapping is
called biunique, and is referred to as a one-to-one corre-
spondence. In this case there exists an "inverse” mapping
which associates with each element b of A that element of
A which has b as its imege. This mapping is denoted by

T S

Lemma 2-1. The mapping of the set of extended ideals
in S onto thelr respective contracted ideals in R is a one=-
to~-one mapping.

Proof:

Let Ay and By be any two ideals in (E), such that 4 is



-

no% equal to B.. WNow, if A.% = B.®, then (4,%)¢ = (B

s 3 [

tneorem 2-5, IHence A, = By by theorem 2-12, but thls is a
contradiction to the assumption. Therefore this is a cne-

to~one mapping.

Lemma 2-2. The mapping of the set of contracted ideals
in R onto thelr respective extended idesls in & is a one-to-
one mapping.

Let A, and B, be any two ideals in (C), such that A
is not equal %o B,. Now, 1if A% = B,®, it follows that
(Are)c = (Bre)c by theorem 2-5. Hence A, = B, by theoren
2-11l, but tihls is a contradiction to the assumption.

Therefore this is a one-to-one mapping.

Theorem 2-13., There exists a ons-to-one correspondence

betwecn the set of all contracted ideals in R and the sebt of
all extended ideals in S.
Proor:

The proof follows directly from lemma 2-1 and lemma 2-2.

Definition 2-li, Let two sets A and X be given. If it

is possible %o place the two sets into one-to-one corre-
gpondencs such that the mapping preserves the relations,
1.84, 1 with every element a of A there can be cosceiated
an element a' of & in a blunique manner so uhat the relations

existing between any elements a, b, ..., of .. also exist
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between Yhe assoclated elemenvs at', bf, ... and vice verssa,
then thu two sets are called isomorphic (with respect to the

relations in quoesiion). The mapping itself is called an

isomorphism (1, pp. 2L=-25).

Lamma 2-3. The set of all contracted ideals in R is

¢losed under ideal quotient formation.

Proof:
Let 4, ond Br denots arbltrary contracted ideals in R.
Taen 4, = A.°° and By, = B,°°. Let 4,° = A, and B.® = B,

r
then (AS : BS)CCZASG : BSC by theorem 2-9, Also,

— C - " C e 00 1 L P
= (Ag” : Bg ) Bg by theorem 2-12 since B

¢ = ((8,% ¢ B °)B

3 C)GCZAS“G = A From

3 ‘s

(5% = Bg®)B A, follows (A.° : B,%)®Ca, : B, by the

5

-

8
definition of a quotient ideal; this implies
c

(Ag7 ¢ Bsc)ecci(és : B.)® by theorem 2-3, and

)

(8, : B,°)C(4,° : BS)®® vy theorem 2-L. Hence

c . c . c S ¢ o, ¢ _ ) c
(4,7 ¢+ Bg")C(Ag : By) . Therefore 4,° : By~ = (4 : Bg)~ s

4

g

Let T denote a homomorphic mapping of & ring R into a
ring S such that the identity of S is the image of the
identity of R. Consider the set of contracted ideals in R
and the set of extended ideals in S where the contractions
and extensioﬁs are performed with respect to the function F.

Let ¢ derivte the one-to-~one correspondence betwoen the set
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ol contractcd ideals in R and the set of extended ideals in S.

Tae following results arec then valld.

Theorem 2-11. If (C) is closed with respect %o addition,

then the sum of two contracted ideals is the contraction of
the ¢xtension of their sum and the sets (C) and (E) are
isomorphic with respect tTo addition.
Proof:

Let A,, B, be elements of (C). Since (A, + Bp) is in

(C), there exists an ideal Dy €(E) such that DSC = An + Bp,

v 8C

Then A, + B, = Dsc = (DSC)GC = (&p + By)

by theorem 2-5,
Since P(Ap) = 4,° and @(B,) = B,.° by lemma 2-2, than

° +B.° = g(4,) + F(B,) by

theoren 2-6., Therelfore (C) and (E) are iscmorphic with

respect to addition.

Theorem 2-15., If (E) is closed with respect to the

operation of intersection, then the intersection of %Swo

-

extended ideals 1s the extension of the contraction of their
intersection and the sets (C) and (E) are isomorphic with

respect to the operation of intersection.
Proof:

Let Ay, B, be i1deals of (E)., Since AgNB € (E), there
exists an ideal Dy €(C) such that D,° = A NB_. Then

AgNBg =D,° = (D,°)°° = (AgNEGICC by theorem 2-5.

651

Since P(Ag) = A4,% ana g~Y(B.) = B_°

s) s by lemma 2-1,
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shen P (AgNE,) = (8gN34)°% = 4,°n8,% = g1 (ag) Nng-L(zy)
by theorem 2-7. Hence (C) and (I) are isomorphic with

respect to the operation of interseciion.

Theorem 2-16, If (C) is closed with respect %o the

operation of multiplication, then the product of two con-
tracted ideals is the contraction of the extension of their
product and the sets (C) and (E) are isomorphic with respect
to the operation of multiplication,
Proof:

Let A,, B, be ideals of (C). Since A,BL€{(C), there
exists an ideal D & (L) such that ch = LnBp.  Then
ApBp = D8 = (Dg%)%¢ = (4,B.)°° by theorem 2-3,

Now, since F(A,) = 4.° and #(B,) = B, by lemma 2-2,
then @(A,.BL) = (4,B.)°% = 4,°B.°% = #(4.)@(B..) by theorem 2-8

aen r°r rr ' Pr Sp r! 97 ren .

Hence (C) and (E) are isomorphic with respect to the

cperaticn of multiplication.

Theorem 2-17. If (E) is closed with respect to the

operation of quotient formation, then the quotient of two
extended ideals 1s the extension of the contraction of %their
guotient formation and the sets (C) and (E) are isomorphic

with respect to the operation of quotient formation.

Let 4y, By be ideals of (E). Since (Ag : B )€{&),

there exlsts an ideal Dy €(C) such that DI,e = Ag 1 By,
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- 1 C8
T ' s Bs}

+3
o
o
s
o
9%,
4]
i
&)
o
it
U
o]
o
o
it
S
3

by theorem 2-5.
93 "'1! - ] -l — c , T o >
ince @ {4,) = A" and g7(B,) = B, by lemna 2~1,
-1 -l -1
then g7 (A, : B e B )% = A0 0 Bg® = g ag) 2 4B

by lemma 2-3. Hence (C) and (E) are isomorphic with respect

to icdeal gquotient formatlon.

Theorem 2-18, If (E) 1s closed with respect %o the

overation of radical formation, then the radical of an
extended ideal 135 the extension of the contraction of its
radical formation and the sets (C) and (E) are isomorphlc
with respect to the operation of radical formation.
Proof:

Let A, be an ideal of (E). Since ]E;¢£(E)5 there exists
an ideal D,&(C) such that Dr,e = JAg. Then D, = = (JK:)G

by theorem 2-5, and D, = DI,ec = (JE;)C JA SC by theorem 2-11

and theorem 2-10. IHsnce fK; = Dr6 = (éﬂsc)e = (jK;)ce.

The sets (C) and (E) are isomorphic with respect to

radical Tormation since %"I(JE;) = (jK;)c = jASC =\/ﬁ“1

Theorem 2~-1¢. IF Ps is & pr'me lideal in S and QS

idecal in S which is primary for P,, then Pﬁc is prime and
[
Q% primary for P.° in R
g P ary g +Ib Do

Proof:

Suppese a, DER such that abEPSc and at};’é?sc. This

ce W = iy ) - 3
<P, or 1(&)3‘.(;))61’ _» Wwhere ¥_ is a

implies that f(ab)EP S s

IS

prime ideal. But fla )¢;Ps’ since otherwise a€¥F, C. Hence

—



- ] c . . . A
T(b)E P, and bE& PSC. Therelore Py~ 1s a prime 1ldeal.

S
Sirce Qg is primary for Py, then Q CP,, hence

o fcr ¢ by theorem 2-3.

s s
~1 . ' N c ¢ c s,
Suppose a, b&R such that ab& Qg and adQ ", Tuls
. - 5 e 5 ¢ -y b= 2% - a
impliles that f{ao)EQs ec Qg or T(a)f{v)€E Qgs where Qg i3

primary for Pg. But _f(a)gﬁ Qg otherwise ag Qsco Jence

f(b)€ Py and b'é'.}’sc by theorem 1-8.
¢, then T(b)({Psce Py = ..jzzl-s by theorem 2-l.

: - n _ = . . ,
Then (£(b))" = i‘(bn)éQS Tfor some positive integer n.

. c . L c
Therefore bTEQ, and hence Q. primary for Py by theorem

3

1"80 }
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RulLATI0W3 BETWEREN IDEALS

IN INTEGRAL DOMAINS D AND D

Delinition 3~l. A commubtabtive ring R with more than

one element and having a unity is called an integral domain
if the following additional property holds.
If r, s€R such that rs = 0, then r = 0, or

s =0 (3, p. 36).

Definition 3-2. A nonempty set F is a field if F is &

commutative ring with uaity, having the oroporty that every
non-zero element in F has a multiplicative inverse. (i.e.,

If s

}is

s the unit, thsre exlsts a"l for esach non-zero a in F

such that a2 @ a~1 = ¢.)

-

DeTiaition 3-3. The set of all slements of a ring I

—

which map into the zero of a ring S under a homomorphism F
is cuiled the kernel of the homomorphism. The kernel is
denoted by W.

Derinition 3-h. A multiplicative system (abbreviation

m.8.) in an integral domain D is =a nonempty subset M of D

whailch does not contain the zero of D and which is closed

under multipliication--that 1s, if mlé‘M, my €, then M, 1y &M

33

L
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The set of all quotients a/m, where a€D, m&€M, is a

subring of the fisld F contalning the domain D. It will be
deroted by Dy and will bo called the quotient ring of D with
vespect to the multviplicative system M. Thesre are two

extreme cascs.
(1) If D is the set of all units in D, then Dy = 2.
(2) If M is the set of all non-zero elemants of D,

then Dy = F.

The following theorem (li, pp. 221-222) is quoted with-

s

out proof for the case of an integral domain D.

Theorem 3-1., Let D denot: an integral domain and M a

multiplicative system in D. There cxists a homomorphism h
of D into Dy such that
(&) The kernel N of @b is the zero element in D.

(b} The elements of h(M) are unite in D

oo
|

(¢) Every element of D,, may be written as a

'!\jl"
ES
quotient h(x)/h(a) for some x&ER and m& M,
This homomorphism is called the canonical or natural
mapping of D into Dy, and will be used throughout the

remainder of .his chapter when refering to a homomorphism

Definition 3~5, An element x of a ring R is said to be

prine to an idsal A, of R if (A, ¢ {(x)) = Ap {that is, 1T

e
-

-
ct
[ o]

residue class modulo Ar is not a zero divisor in R/Ar).
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A gubeset G of R 1s sald to be prime to AL, 1f each one
.

of 1ts eluments is prime to Ar"

“heorem 3-2. Let M be a multiplicative systenm

Iy

in an

’--

integral domain D, and letb D\JI be thse guuiient ring of D with

respect to M, If A, is an i1deal in D, then AI,‘“’O cons

e iGs of

[

all elements b in D such that bméEAI, for some m in M,

Proof:
'd -
Let = -ei 'x& D, :«’:mE_AP for some mé‘,M}. Ari arbitrary
Ap

13 such that hib) € 4,°%, and by property

elemcnt b of
(¢) of theorem 3-1, an element of AI,G may be wrilitten in the

form 7, ((h(xy)/nlay) )l 8,), ¥y &D, m3 &M, a3 &Ap, and k a

o]

ositive integer. Since M is closed under multiplication,
the clements of A, wmay be reduced to the foram ala)/d(m) for

a€hn, m&M, Thus b€A,"" implies h(b) = h{a)/Hlm) for some

=X

a€hn, m&M, This implies h(b)h(m) = h{a) or Hlbn) = hla).
Thus h(bm & (-a)) is the zero in D,» and thcrefore

bm & (-a) €W. From property (a) of theorem 3-1, it follows
that bm = agh,, hence b&J and 4,%°C7,

Now suppose b&J, There exists an element m in M such
that bm€A,, hence h(b)h(m)&H(A »)e Then H(b) & Arf’ since
h(m) is a unit in Dy by property (b) of theorem 3-1.
Therefore béAr.ec implies JCA, ec,

The equality 4,°¢ = J follows from these containments.
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Theorem 3~5. Let M be a multiplicative sysiem in an

lategral domain D, and let Dy be the quotient ring of D with
respect to M. Then an idcal A, in D is a contracted ideal

(that is, An = A,%%) if and only if M is prims to An.

First, A,CA4.%°% by theorem 2-li. Assume M is prime to
Ap ond let bﬁz”\.rec, then bm&4a, for some m in M by theoren
3=2. By the definition of M is prime to Ar’ bm<€ A, lmplies

. o v " " [6XW . . - - {
that bgAl,,. Hence i, CAI,. Therefore Ay = AL77,

€C

r and let m be any element

Conversely, supposs A, = A
of M and x&D such that xC€AL ¢ (m), this implies that xmEA_.
Then H{xm)éAre, whence ni{x)h{m)€A_°, By prupersy (b) of
thoorem 3-1, Alim) 1s a unit, hence H{x)éAre, this implies
x€ A%, Since A, = A.%°, this implics that x€A,, and

r ¢ (m))CAL. The containment A AL ¢ (m) is
valid for any mED, hence A, = Ay s (m). Therefor: M is

g
prime to A, since m is arbltrary element of M.
) r

Thecrem 3-L. Let M be a multiplicative system in an

integral domain D, and let DM be the quotlent ring of D witl

respect to M; then every ideazl in DM is an extended ideal,

Let A, be any ideal in Dys and let x' be an arbiltrary

g+ Then x' = h(x)/nlm) for some x€D, mel,
thus ‘n(x)éﬁAS implies that x&.g”. Yow H(x)éAS“e implics

. o ST Y s a Ce€ ] * 2 .
xt o= x) de'/oim) in Ag where e! denotes the multipl cative



' oo -
ldenilty in Dy, honce A Z45%%, 4lso £,°%C A oy thoooam 2wl
c L ) - o e g P
woonee Ag = A %% ana every 1deal 1n Dy, 1s an exbtended ideal.
a3 o

Theorem 3-5. Lot M be a maltipilcative systenm Ln ar

integral domain D, and let DM pe the quotleat ring of D with

respect to M. Then the mapping Ap s Are is a one-to-ons
mapping of the set of contracted ideals in D onto the set of
a.l 1deals in Dy, and this mapping is an isomorphism with

M -2 -

respect Go the ldeal theoretic operations of forming inter-
segctione, quotients, and radicals.
Proof:

Since every 1ldeal in DM 1s an extended ideal by

A I e al im ¥

previous theorem, it follows from theorem 2-13 that the
mapping A, ———p 4,7, of the set of contracied

ideals in D
into the set of ideals in Dy is a one-to-one onto mapping.
This mapping is an isomorphism with respect to the ideal
theoretic operatlions of forming inters-ctions, quotients,

and radicals by theorem 2-15, thsorem 2-17, and theorem 2-18,

reaspectivaly,

heoram 3-6, Letd Q. be a pris.ry ideal of an integral

domain D disjolat from a multiplicative system M, and let P,

be its (prime) radical. Then P ic disjoint from M, and P

r‘ l’l

cnd QT &re contracted ideals witn reczpect to Do

Suppose xE D such that X‘(":Pr and x& M, Then jHhere



]

4

*g

2
13

theorem 3-3,

Let

then xm& Qp.

»
.

Q}? ( m } C Q’l"‘ o The

any mE&D, hence Q.

c¢lement of M, then

tracted ideal by theorem

Theorem 3«7

domain D disjoint
be 1ts prime radical.
is itc =

-

Sincs

Since

M and

m be any elemant of

Since m¢ Pn, then x&Qp by theorem 1-8,

from a

Letv x' and y' be elements ol Dy such that xi

QP gince QT is

e Ao
s

¥ is an eleme of M, %then any power

This contradicts

Pr and M havs

ry
-

10

™

FAY

from
nd x€ D such that x€P, & (m),

disjoint from M, x€>r, by the

(m)C Po.

L
®

Hence P, The con-

valid for any m in D, hence

m is an arbitrary slenent of M, then

o~

hence P, is a contracted ideal by

M and

4

ce

x€ D such that xe’QI.

containment QPCZ(QP : (m}) is valid for
= Q, : (m). Since m is an arbltrary
Qn 1s prime to M and hence Q, is a con-

3"'30

Let Q, be & primary ideal of an integral
multiplicative system M, and let P..

ey
Then Q.° 1s a primary ideal and ?.,°

2sgociated prime in Dy,

<]

~

i
&na

o4 p
bl

oy property (c¢) of theorem 3-1, it Ffollows Yhat



%t = alx)/A{m) for x&D, x

NES

O e

D, m'&M, and xty! =

“"!

- (%)

st

H(V)

M
4,

) /alm

ard m" M,

gﬁl’r, me yi = oy ') Tor

A
/L ('Tl”}

By

=
{n

(i)

& (-mm'z)) 1s the

Wi

{xyn" @ (~mm'z)) €N, hence

-
3"-5. v

thcorem

e 1 3
yu" €P,. DBut m"¢ P » since

G

Yy EP, and nly) = yr€r 7.

Let at' and b' be clem

afb’GZQwe. According to

theorem 3-1. Since cC:uP

b

because a¢ @, and m"E M,
P, and H(b)éﬁ?r by theors
are unlts in Dy, then b' =

Since Qr

&

2
>

QP°CZP by theorem 2-3,

Let x' be an arbitrary element in P

¢ Soeoren 3.1, Pr may ove
[

1 Ly ‘a

Wi=1

inlogora. Since

zero slaoment ol DM‘

y oy
Now xym é*x*

croperty (c¢)

follows thnat hlab

is primary for Py

() ﬂ‘mi;)ﬂ(pi X; €D, myE M, p; EP,, and k

hencao

1)
Therelore
= mmiyg

xym" by property {(a) of

znnd thus
Therefore

ents of DW such that

adQ,, m&M,
= h(c)/M(m"

& {-mmic)) iz the

Tor

mt &M,

v if
il

i

abm" =

&

matc by property {(a) of

1% Tollows thnut abm& Qp and am"&Q,

Then béf?r since G, 1s primary for

m 1-8. Since the elements of h{M)
h{v)er.®.
then QTciPr, and hence

By property (c)

-

writ the form

ten in

M 1s closed uncer muitinliication, the
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slunents of Py, may be reduced to the Torm E{p)/o(m) for some
pEZPra m&EM, Thus x' = nl»)/B{m). There exists a positive
no.. , - .
ink. er n such that p*\,QT ince Q, is primary for ~.. This

- g - ER g 0 g ¢ P 1 o VL e 3
ailea that blypt) €Q. . Also, since m Ls an element of I,

then any powsr of m belongs to M, in partlcular m ¢
£ T )i bl LA ro & w ~ <]
% = (Hip)/Am))? = Bp™)/Ea™) = Ble?) B e'/H(n) € Q,

ty in Dyys and nhence

fris

whoere e' denobes the multiplicative iaent
ERS e 2 3
x1VE as desired.

€ 2 e " . D JS o y . -
is primary for I,~ by theorem 1-C.

i
O

Therelore

) . 1 - ,
Corollary 3-l. The mapping Py ~——p P.,° 1s a one-to-one

mapping of the set of all contracted prime iLdeals in D onto
the set of all prime idezls in Dy,
Proocfl:

Lvery ideal in DM is an extended ideal by btheorem 3=l

In

r-«

1 particular, every prime ideal in Dy 1s an extended prime

ic

Q:
]...J

by the previous theorem. Also, tae contraction of &

prime ideal Is a prime ideal by theorem 2-19, Hance it
e

Tfollows from theorem 2-13 that tne mapping 2, b Pr' of

N

tho set of contracted prime 1deals in D onto The set of prime

}..h

deals in Dy is a one-to-one mapping.

Delin.tion 3-6. A rins R is called noetherian if it has

s

an identivy and 1f 1t satlsfies the lollowing equivalent con-

ditions (1), (2), and (3).
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of ideals of R ig finite. (A&scending chain condition).

G

(2) In every non-cmpty family of ideazls of R,

thers cxicts ¢ maximal element, that ig, an idsc

bt
s
o]
ct

[4)

contadned ir any other ideal of thne fomily. (Maximum

(3) Lvery ideal A, of R has a finite basis; this
means, that A contains a finite set of elements «
A5y e-es 8y such that A, = Ray + Ras, + ... + Ra,.

(Finite basis condltion).

Lheowvem 3-8, If D is a noetherian domain and M is a

malviplicative system in D, then Dy is a noetherian domain.
Proof:

% - ¢ At o,
Let As-x\A52<:A83*\ +se D8 & strletly ascending chain

-t

ideals in DM' Since every ideal in Dy,

1 2 3
Fy
(A, )" =4, fori=1,2, 3 ..., Then
i i
. 6C . 8¢ 6C s ‘ -
(4, ) C:(AT ) c_’:(AP ) ¢ .. by theorem 2-3. In particular,
1 2 3
; e G , ec ac .
i (A, ) 4:(Ar )" shen (4, )V<< (A, )77, since
i i+1 i 1+1
eaC , agC . &ece
{ " ¥V = <Ar ) for some 1 implies (AP )8 = (Ar )
i 341 i i
3oe & .
= A ) = fAr ) Therefors the chain
Ti+l i+1

: ec . .
<L, )77 w.. 15 a strictly ascending chain
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trictly ascending chtain of

7

N7, woince the kornel of the

Therefore D, is a nostherian ring
nomomorpnism ol D into ID-;\,I 1s the zero element of D, it

follows that Df.is a donoin.,

[y ]

Lnsorm 3-9.  IT each ideal with prime radical in a

. v

demain D is a prime power, then idcals in Dy with prime
radicals are also prime powers.
Prooil:

Let AS be an ideal in D,. There exlists an ideal A, in

D such tnat Are = A5, Suppose fZ; = Py 1= prime, tnen there
exlsts a prime ideal P, in D such that P.° = P, 1In
particulanr, jE; = fﬁgs implies that (jK;)C = (.EZE)G = jl;gﬁ
vy theorem 2-95, and PSC = (fﬂ%‘c = jE;EE is orime by theorenm
2-1%¢. 1IMcreover, (jKé)C =‘;£;C = jK;EE by theorem 2-10.

. ae . o e - AT
thcre exlsts a positive integer n such that (fs 3= ASC
— €\ C P i s . 1 ’ 8 M = ’ - T 3

(4,7)7 = Pp. This implies that 4,° = (4,5)¢ = (2,M)°

by tadorem 2-5 and Are = ('Pre)n by theorem 2-0. Thaorafore

5 I . , o . . .
AS = Ps 28 desired, whence ideals in D,. with prime radicals
iy . .

are prime powers.
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Derinition 3-7., I ¢ i3 an element of a ring R with
scentity and A an ideal 1a R, defline
s k %
e AL UV S TN DN . N - ~ . P A
(\Ui‘)t’*l =g it G & s T “«%‘;T'jyp:&.ﬁy M:*é;i, ., X JJOS:.%J..VSEJ
’\i““ E— J i o v
T when. t.) b

It is sasy Vo see Irom the delfinitlion of an ideal that

({e),A, in the above definlition is an ideal in R.

Lemme 3-1. If b, ¢ are elements of a ring R with

ldentity and A an ideal in R, then ({(bv),A)({c}),A) ((be),A).

»

Proof:

N -

et v, ¢c€H and 4 te an ldeal in R, then

e
2

» I
rs i ., - ‘é
( {*b ) 9’5:‘) = ‘gi};\,llﬁib @ :}-l 1’-'.8'3- ilﬁi, r

—
—
o

¢
}oai({e),A) = {é
poslivive integer . Lev z be an arbitrary element of ‘

({(0),A) . :),A). Then z = };‘,A y, for =y €((b),2), y

i i
i=1
and m a positive integer. Suppose Xy ¥y 1s en arbitrary term
&
n e
N N
in this sum, then x, = J.r.b & S r.,a. for rys *.ER, n, k
‘ o7 * =] J d J
ks b 'J
nt iy
P g g
positive Iintegers, and Ty = igir’ic @ - lr‘fia’i for »ft,,
== J: - “

ve intesers. Thern

s

1, nt, k! posii

iy
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- o~ e wy g
‘a L A i
o o v
Xpxme = (S weoil 2 rt,e) @ (ura){ Trt.c)
kv k R i A 1 o Y e i
i=1 A=l :j-—-l =L
- el J 1
v FREE . - P Y e . \ £ .,
G {2 r‘.go)\ '_ﬁff:a’j} & Lr'.:aj)( Ly T j‘-'”j/’ It 1o
2 A 8 o P en o &
=1 =1 5=1 3=
n it

terms In this sum are elemenis of A. IHence xyy, €((be),4).
o,

¥y, 18 an arbitrary term in the sum‘z,xiyi, Lhon
1=1

every term In this sum is contained in ({be),4). Hence

[€2]
}. Ad
3
O
e

i
7 = .fﬁxgyi is contained in {(bc),A) since ((bc),A) is an
310

ideal. Therefore ((b),A)({c),A)YT((be),A),

Theoren 3-1C., Maximal ideals of an integral domain D

are prime,
Proof:

Let M be a maximal ideal in D and suppose b, o i,
and bec€M¥. Then the ideals ({(b),}) fn"((c),M) each econtain

5,

M properly and since M 1s maxzximal, this implies %LHhat

D= ({(p),M)({c),M)T{(be),4M)CHM is a contradiciion Lo the
acsumption that M 1s a maximal ideal. Therefors if be €M,

either b€M or ¢ &M, whence M is a prime ideal,

DeXinicion 3=8. A ring R is said to be a Dedekind doma

1f It is an inbegral domain and 1f every ideal in R is a

by po 270},
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egrrel comaln and ¢ is & prime

elamonts In J and net in P forme &

Delinition 3=9. A4An iatepral domain J will be said to be

almost Dedekind if, siven any maximal idsal P of J, Jdp 1s a

Dedekind domain (2, p. 813).

Theorenm 3=11. I J i1s an almost Dedskind domain, then
proper prime ideals of J are marximal.

T~ B
Proofl:

Let M be a maximal ideal in J. Since a maximael ideal

extension ol M In Jy, 1s a prime ideal in J_ by theorem 3-7.
N

=S
-3
el
<
s
o’
et
ot
1%
(o3

GC ‘ .
eorem 3-3, M = M # J, hance M® 13 a vroper prims
. ) e s . - .
1n Jys and thus M~ is maximal in J,, since dar is a Dedekind

L i*1 4

domain. Suppose QEM is a proper prime idea

!,_.,J
[N
]
ey
bl
ct
jay
4t}
1
&
@

> g » herd ~ y g 6 o 13
la & prime 1deal in Jy by theorem 3~7. But Q7 is not properly

L1

since prime ldeals are maximal in J... In

-
it

"

very prime ideal contained in M is a conbractsd

w3
£
]
cr
s
o

£
}._}
o
3

»w
o

ideal in J by theorem 3~3, and there is a onc-to-one corrae
gpondence between prime L1dsals contained in M and all prime
ideals in JM by ¢orollsry 3-1. Hence Q in J is not properly
contained in M, Since every ideal in a domain J is contained
in a maximol ideal (i, p. 151), and each maximel iceal M
couvalns no proper prime ideal except itgellf, it follows that

propur prime ldeals in J are maximal.



Theoram 3-22, The powers of a proper ideal In an almost

N o 2l Y - 2 - Lyt
Dedelkind domain J interssct in (0) (1, p. 269j.

}..J
‘.—la
]

<

andé ? & aximal ida=s

J
such that ACPCJ, Then A°CP®C3° = Jy by theorem 2-3.

et}
Since Jy 1e Dedekind domain N (Pe)n = {zero idsal in Iy
- n=1
. 20
(L, po 217). DMoreover, n (A%)Pa N (PP)R taplies
n=1 n=l1
i) 23
(A = n (A%) = (zero ideal in Jy) oy theorem 2-8.
n=1 r=1

22 n IS TRY-T
Therelfore N AV ( n (A*) = {zero ideal in J

¥
n=1 n=1
pe] n
anice 0 A" = (0).
n:

hecrem 3-13. Bach proper primary ideal of an almoss

Dedekind domaln J is a power of a maximal ideal (2, p. 813).

I Q 1s primery for s maximel ideal P in J, then Q% 1s 1

w3
lo}

primary for P® in J, by theorsm 3-7. Since J_ is a Dedekind |

s 8 p€VK /iy E A _ 4 e 8 e ok
domain, Q7 = (2¥)% = (P"™)® ror some positive integer X since
Jp nag only one proper prime ideal. Since Q is primary fLor

& . 5 L 5 s s
F, @ = Q%Y by theoren 3~3, Bubt becazuse P is .aximal in D,
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Coro inry 32 Lacn laeal wiith prime radlical of an

The prcool follows from tho avove ftheorem since prime

o~

ideals are maximal in an alnost Dedelting domain.

The conditions of either theorem 3-13 or corollary 3-2

N

a2 &

[¢)

tually nccessary and sufficient for a domain to be an

olmost Dedekind domaln.
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