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CHAPTER I 

PROrSRTIES OP IDEALS 

This paper presents an introduction to the theory of 

ideals in a ring with emphasis on ideals in a commutative 

ring with identity. 

Basic definitions and properties of ideals are given 

and these properties are studied in the classes of ideals 

called extended and contracted ideals* The ideal structure 

in quotient rings is inve . irated with respect to the ideal 

structure of the rings c/er which they lie and theorems are 

provided to show applications of the theory developed. 

Definition 1-1. A set is a collection of objects; 

these objects are called elements of the set. 

Definition 1-2,, A binary operation "o" on a set A is a 

correspondence that associates with each ordered pair (a,b) 

of elements of A a uniquely determined element a o b of A. 

Notation; 

Small letters will denote the elements of a set and 

capital letters will denote sets. 



£ means belongs to or is an element of. 

^ means does not belong to or is not an element of. 

C means is contained in or is included in. 

< means proper containment (i.e., A < B means A is a 

proper subset of B) when used between set3 and means less 

than when used between elements of sets. 

Z means less than or equal to. 

J* means the sum of. 

= means the same as. 

Definition 1-3. A nonempty set G on which there is 

defined a binary operation "o" is called a group (with re-

spect to this operation) provided the following properties 

are satisfied; 

(1) The operation "o" is associative. If a, b, c 

are any elements of G, then (a o b) o c = a o (b o c). 

(2) There exists in G an identity element e such 

that a o e = e o a = a for all elements a in G. 

(3) for e&ch element a in G there exists an in-

verse a"-*- in G, such that a o a"-*- = a~^ o a e. 

Definition l-Ij.. If R is a nonempty set on which there 

are defined binary operations © and which will be called 

addition and multiplication respectively, such that the 

following conditions hold, then R is a ring. 

(1) Addition in R is associative. 



(2) R contains an additive identity element. 

(3) For each element a in R, there exists an 

additive inverse, denoted by -a, in the set R. 

(I4.) Addition in R Is commutative. If a, b€R, 

then a © b = b @ a . 

(5>) 'Multiplication In R is associative. 

(6) Multiplication In R is left distributive and 

right distributive with respect to addition, i.e., 

a ® (b © c) = (a ® b) © (a @ c) and 

(a © b) ® c = ( a ® c ) © (b @ c) for any elements a, b, 

c in R. 

Operation Notation. 

In order to simplify the notation, the product a © b 

for a, bCR will sometimes be written as ab. 

Definition i=£. A ring Is called a commutative ring if 

and only if the operation of multiplication Is commutative. 

DeflnJ tion 1-6. A ring Is a ring with unity if and only 

if there Is a multiplicative identity (unity element) in the 

ring. 

Theorem 1-1. A nonempty subset A of a ring R Is a sub-

ring of R if and only if the following two conditions hold. 

(a) A Is closed under the operations of addition 

and multiplication defined on R. 

(b) If a£A, then -a£A (1, P. 26). 
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Proof: 

Conditions (a) and (b) are required of all rings and 

hence must be satisfied if A is a subring of R. 

Conversely, if A is a subset of R satisfying properties 

(a) and (b), then properties (1), (i|), (5), and (6) in the 

definition of a ring hold in R, hence hold in A also. Con-

dition (b) is identical to property (3) of this definition 

so only the existence of an additive identity needs to be 

shown in A. Since A is not empty, it must contain at least 

one element, say x. Under condition (b), -x is also in A. 

By condition (a), x © (-x) is an element of A, but x © (-x) 

is the additive identity of R. A contains an additive 

identity and is therefore a subring of R. 

Definition 1-7* Let A be a nonempty subset of a ring 

R such that 

(1) a Q (~b)£ A if a and b are elements of A. 

(2) ra £ A if a £ A and r £ R . 

Then A is called a left ideal in R. 

The following statement is an equivalent definition of 

left ideal in R. A subset A of a ring R is a left ideal in 

R if and only if it is a subring of R such that ra is in A 

for every r in R and every a in A. 

A subset A of a ring R is a right ideal in R if and 

only if it i3 a subring of R such that ar is in A for every 

a in A and every r in R. 



A left ideal is the same as a right ideal in a commu-

tative ring R since ar = ra for every a in A and every r in 

R. In this case A is simply called an ideal. 

Theorem 1-2. If a is an element in a ring R, then the 

set A = |ra | r€ r J is a left ideal in R. 

Proof: 

The set A is not empty by construction. Let ra and sa 

be any two elements of A. Then ra © (-sa) = jjr © (-s)j a by 

the right distributive law in R. But r © (-s) is in R, 

hence ra © (-sa)6A. If r ^ € A and r^€ R, then 

rp(r a) = (r r )a€A since r r €R. Hence A is a left ideal. 
c. 1 1 2 1 

Corollary 1-1. If a is an element in a commutative 

ring R with unity, then the set A = |ra | r<£RJ* is an ideal 

in R. Further, if B is an ideal in R and a€B, then ACB. 

Proof: 

The first part of the corollary follows from theorem 1-2 

and the definition of ideal. Now suppose that B is any ideal 

such that a is an element of B. • By the definition of a left 

ideal, ra is in B for every r in R. But A = -|ra j r£ r| , so 

that ACB. This means that every ideal of R which contains 

the element a must contain A. 

Definition 1-8. The ideal A of corollary 1-1 is 

called the principal ideal generated by the element a, 

denoted by (a). A ring in which every ideal is a principal 



ideal is called a principal ideal ring. 

Note. R will denote a commutative ring with unity 

throughout the rest of the paper. 

Definition 1-9- Let A and B denote ideals in a ring R, 

define A + B = -£a © b | a£A, b€sj. 

Theorem 1-3. If A and B are ideals in a ring R, then 

A + B is an ideal in R. 

Proof: 

The set A + B is not empty since A and B are each 

contained in A + B. 

Let x and y be any two elements of A + B, where 

x = a © b for some a in A, and b in B; y = a © b for some 
* o o 

aQ in A, and bQ in B. Then x © (~y) = (a © b) © jj(ao © t>0)J 

= jja © (~a0)J ® [o ® (~fc>o)j€A + B, since |a © (~
a
Q)J i-

3 ar* 

element of A and jjb © (-bQ)J is an element of B. 

Let r be an arbitrary element of R; then rx = r(a © b) 

= ra © rb by the left distributive law of R. But (ra © rb) 

is in A + B, since ra is in A and rb is in B. 

Hence A + B is an ideal. 

Definition 1-10. If A and B are ideals in a ring R, 

define the product of A and B as 

AB = U | A, b^£ B, k arbitrary positive integer^. 



Theorem 1-4. If A and B are ideals in R, then AB is an 

ideal in R. 

Proof: 

The set AB is not empty by construction. Let x and y 

s 
be any two elements of AB 3uch that x = S a,bi, 

i=l 1 1 

t 

3 

i = 1 , 2, s and j = 1, 2, t. Then 

s t 
Si ' 
3 

b« . = b . for 1 ~ j . Hence 3 s+o 

y - 2 a'jb'j for some a^, a'j in A and b^, b'j in B, and 

x © (-y) a X © ( - Z a' b'J. Let -a' = a and 
i=l 1 1 1=1 " J s+o 

s t s+t 
x © (-y) = S a j b j © 2 ^3+jbs+j = £ aj bj i n A B since a^ 

J—1 j~l J~1 

in A and in 3 for j = 1, 2, ...» s+t. 

s 
Let r be an arbitrary element of R, then rx = r T 

i=l 

3 E 
= X ra b, = X (ra.)b. in AB since ra, in A and b. in B 

i=l 1 1 i=l 1 1 1 1 

or x ^ l j 2» «..j s. 

Hence AB is an ideal in R. 

Lemma 1-1. If A and B are ideals In R, then AB is con-

tained in A and AB is contained in B. 

Proof: 
n 

Let x be any element of AB such that x = T a^bi for 
i=l 
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3otne &j_ in A and in B. In particular, since B is an ideal, 

and in B, this implies that b^ in R, Henca a^b^ in A by 

n 
definition 1-7. Therefore x = X a*b, € A and ABCA. 

i-1 

The proof of AB <13 is similar. 

Definition 1-11, If A and B are ideals in R, then the 

quotient A:B consists of all elements c in R such that cBCA 

( cB means {c)B ). 

The ore in l-5» If A and B are ideals in R, then A:B is an 

ideal in R. 

Proof: 

Since A and B are ideals, AB is contained in A by lemma 

1-1. Let a be any element in A; then aB is contained in A. 

This implies A is contained in A:B. Hence A:B is not empty. 

Let x, y be elements in A:B; then xB is contained in A 

and xb is in A for every b in B. Also yB is contained in A 

and yb is in A for every b in B. Fix b arbitrary; then 

xb © (-yb) is in A, Since the distributive law is valid in 

R, then [x € (-y)] b is an element of A or every b in B. 

Then (x © (-y)Jb is contained in A. Hence x © (-y) is an 

element of A:B. 

Let z be an element in A:Bj this implies that zB is con-

tained in A by definition 1-11. If b is an arbitrary element 

of B, zb in A implies that r( zb) is in A, r€R, by definition 

1-7. Then (rz)b in A, since multiplication is associative 



in R. This implies (rz)3 is contained in A or rz€ A:B. 

Hence A:B is an ideal in R. 

Definition 1-12. If A is an ideal in R, the radical of 

A, denoted by JA, consists of all elements b£R some pother 

of which is contained in A (i.e., if x is in the radical 

of A, then there exists a positive integer n such that x n 

is in A.) 

Theorem 1~6« If A is an ideal in R, then the radical of 

A is an ideal in R. 

Proof: 

The radical of A is not empty since A is contained in 

the radical of A. 

Let x and y be any two elements of the radical of A; 

then there exist positive integers m and n such that x m is 

in A and y n is in A. The term jx © (-y)] tn+n expanded yields 

m+n , / », , 
I c, x'V f°r binomial coefficients c, , or by the 

k=0 K k 

m+n , 
factorial notation X • rl , , (-1) x V m + n ) ~ k - Either 

lc=0 [tm+nj -jgJkl 

k is greater than or equal to m, or (m+n)-k is greater than 

or equal to n. Hence Jx © (-y)Jra+n is an element of A and 

x '<B (-y) is in the radical of A. 

Let r be an arbitrary element of R; then (rx)01 is equal 

to r V C A since r m€R, x^CA. Then rx is in the radical of 
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A and the radical of A is an ideal in R. 

Lemm.a 1-2. Every ideal in the ring of integers is 

principal. 

Proof: 

Let A be an ideal of ring R. If A = (0), then it is 

principal ideal. If A contains a number b not equal to 0, 

then it also contains -b, and one of these numbers is pos-

itive. Let a be the least positive element of A, and c an 

arbitrary element in A. If r is the non-negative remainder 

when c is divided by a, then c = qa + r for 0 ^ r < a . Since 

c and a belong to the ideal, c - qa = r belongs to the 

ideal also. Since r Is less than a, then r Is equal to zero 

because a is the least positive number of the ideal. Hence 

c = qa. Therefore all numbers of the ideal A are multiples 

of a. Hence A = (a), and A is a principal Ideal. 

Definition 1-13. Let R be a ring. An Ideal A is said 

to be prime If whenever a product be in A with b and c in 

R, then either b in A or c in A. 

Let m > l be an integer and suppose (m) is a prime ideal 

in the ring of integers. If m is not a prime integer, then 

m = ab, where a and b are integers different from 0, 1, -1. 

No generality is lost in assuming a and b positive, thus 

0 < a < m and 0 <b < m. But since (m) is prime, abC (m) 

implies that either a £ (m) or b£(m), and from this it 
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follows that ei l;aer a = ma' or l> - mb' fov some positive 

integers a* and b1. This is impc.> Lblo since both a and b 

are positive iater; ,-rs less than m. Thi contradiction 

implies m must be prime. 

Conversely, if m = p is a prime integer and the ideal 

(p) contains ab, where a and b are integers, it follows that 

ab = cp for some integer c. Hence p divides ab and so p 

divides either a or.b, whence (p) contains either a or b. 

It follows from the definition that (p) = (m) is a prime 

ideal. 

Definition l-llj.. Let R be a ring. An ideal A is said 

to be maximal if A is not equal to R and there exists 110 

ideals between A and R. (i.e., If ACKCR, either K = A, 

or K = R.) 

In the ring of integers I, every proper prime ideal is 

maximal (2, P. 112). For suppose A = (p) is any proper prime 

ideal in I, with another ideal B such that A<£8-«Cl. Then 

there exists an element t in B such that t is not in A. 

This implies t is not equal to jp for any integer j. Hence 

the greatest common divisor oft and p is 1. Since 1 is the 

greatest common divisor of t and p, there exist integers x 

and y such that 1 = tx + py. But tx is in B and py is in 

B also; this implies that 1 is in B. If 1 is in B, then 

3 = 1 , and this is a contradition. Hence A is maximal. 
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Definition l-lg>. Let R be an arbitrary ring and let A 

bo an ideal in R. Then A is said to be primary if the con-

ditions a, b in R, ab in A, a is not in A imply the existence 

of a positive integer ra such that b m is in A. 

Theorem. 1-7» Let Q be a primary ideal in R. If P is 

the radical of Q, then P is prime. Moreover if abC Q, a 

then bCP. Also if A and B are ideals in R such that AB is 

contained in Q an'dt A. is not contained in Q, then B is 

contained in P. 

Proof: 

Let Jq = P, and a, b C R such that ab€P. Suppose a<j£.P; 

then a n^Q, for any integer n. There exists an integer t, 

such that (ab)^CQ, or a^b^£ Q, and a^<£Q, implies (b^J^CQ, 

for some integer m. Hence b t m € Q implies b ^ j Q = P. 

Therefore P is a prime ideal. 

Now i.f ab£ Q with a^Q, then braCQ for some positive 

integer mj hence b = P. 

Also, if A is not contained in Q, there exists an 

element a £ A such that a <L Q, a b £ Q, for every b£B. But 
Q 0 0 

a Q ^ Q implies b C P for every bCBj hence BCP. 

Definition 1-16. Let Q, denote a primary ideal and let 

P = Iq. Then Q is said to be a primary ideal belonging to 

P or that Q is primary for P. 
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Theorem. 1-5. Let Q and P are ideals in a ring R such 

that 

(1) QCP. 

(2) If b£P, then b n 6 Q for some integer n. (n 

may depend on b) 

(3) If ab£Q, a^.Q, then b£P. 

Then Q, is primary with radical P if and only if these con-

ditions hold. 

Proof: 

Suppose Q, is primary with radical P; than QCP by 

definition 1-16. If b€P = then bn<£Q for some integer 

n. If ab € Q, a then b k€ Q, for some integer k since Q is 

a primary ideal. Hence bG^Q* = P. 

Assume (1), (2), and (3), if ab€Q, a^.Q, then b € P by 

(3). By (2) b£P implies bn£Q, for some integer nj hence Q 

is primary. To show P = Jq, show P Cjo" and JQCP. Let 

b€P, by (2) b n6 ?i implies b 6. Jq or P C JQ. Now if x£.Jq, 
JU 4" 

then x £ Q, where t is the least exponent such that x £ Q. 

If t = 1, then x<cQC? by (1). If t / 1, then x t - 1 ^ Q 

implies x € P by (3) • Hence J"qCP. 

The following statement is an equivalent form of con-

dition (3). 

If ab£Q, b^P, then a<~Q. 



Ik 

Corollary 1-2. Let R be a ring with unity, and let Q, 

P be ideals in R such that 

(1) QCP. 

(2) IT b £ P, then b n€ Q for some integer n. 

(3) P is a maximal ideal. 

Then Q is primary belonging to P. 

Proof: 

Let ab £ Q, b^P; it is necessary to show that a£ Q. 

Consider the ideal P + (b); then P <P + (b)CR, Since P is 

a maximal ideal, it follows that P + (b) = R and p + rb = e 

for some p£.P, rGR, where e denotes the identity in R. By 

(2), there exists a positive integer k such that p^€Q. and 

also (p + rb)k = e. The expansion of this equation gives 

pk + ]iCpk-l(rb) + ^ + (rb)^ = e, and 

p^ + b (kp^r + ... + r^b^"*^) = e. Let t •' onote 

(kp^r + ... + r^b^"1); then apk + abt = a by multiplying 

If If 

this equation by a. Then ap € Q since p £ Q, and abt£.Q 

since ab € Q; hence a£ Q. 
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CHAPTER II 

EXTENDED AND CONTRACTED IDEALS 

Definition 2-1. Let R be a ring. A ring R* is said 

to contain a homomorphic image of R if there exists a 

mapping f of R into R' such that the operations of addition 

and multiplication are preserved. Then f(a © b) = f(a) B9 f(b) 

and f(a 0 b) = f(a) Q f(b) where addition is denoted by © 

and £0 and multiplication i^ denoted by 0 and & in rings R 

and R1 respectively. This mapping is called a homomorphism 

of R into R!. 

Throughout this chapter R and S will denote rings with 

unity, and f will denote a homomorphism of R into S such 

that f(e) = e' where e denotes the identify in R and e' the 

identity in S. The relations between ideals in R and ideals 

in S will be discussed with ideals in R being denoted by 

capital letters with subscript r, and ideals in S by capital 

letters with subscript s. The operations of addition and 

multiplication will be denoted by ©, ® and S3, 0 in R and S 

respectively. 

16 
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Theorem 2-1. Let Afl be an arbitrary ideal in S. Then 

(Aa) = jx |x£R, f(x)£Aa} is an ideal in R. 

Proof: 

Let x, y r'"1(As); then f (x © (-y)) = f (x) Q f(-y). 

Since f(x), f(y)£Ag and Ag is an ideal it follows that 

f(~y) = -f(y)£ Ag (2, p. 17). Therefore 

f(x © (-y)) = f(x) a f(-y) C As; hence x © (-y) £ f "
1 ^ ) . 

If r£R, then f (rx) = f(r)f(x)£A since f (x) € A and 
s s 

f(r)£S. Kence rx£f""1(As) for any xCf
-1(Ag) and r£R and 

therefore f~^(A ) is an ideal in R. 

Theorem 2-2. Let Ap be an arbitrary ideal in R. Then 

S(f (Ar)) = -|y' |y' = where s i£ S, ajC f(Ap), n a 

positive integer I is an ideal in S. 
J 

Proof: 

Let x', y' €S(f(A )) such that x' = £ s, a., 

- 1 = 1 

y' = Z 3' jb j where s±t s»j£s, a±t bj€f(Ap), n and m 
J ~*1 

positive integers and i = 1, 2, n, j = 1, 2, ..., r m, 

n ra n m+n 
Then x' S i-y') = S s i a i ® (-Is'.b.) = I s,a, 0 s,a. 

i=l ' j=l i=l 1 1 i=n+l 1 

where sn+j = -s»^ for j = 1, 2, ..., m, and b j = aj+n. 

m+n 
Thus x1 ffl (-y') = X siai • Since a^£f(Ar), this implies 

m+n _ 
that £ s, a £Sf(A ) and x' ffl (-y1) £ S(f (A„)). 

i=l T 
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n n n 
If r€S, then rx' = r( Z s-a.) = 2>(s,a.) = £ (rs,)a, 

I=i X 1=1 1 1 1=1 1 A 

is the element of S(f(Ap)). 

Therefore S(f(A^)) is an ideal in S. 

Definition 2-2. If Ag is an ideal in S, the ideal 

f""^(As) is called the contracted ideal, denoted by A
 c, or 

the contraction, of A in R. If A r is an ideal in R, the 

ideal Sf(A^) generated by f(A ) in S is called the extended 

ideal, denoted by A r
e, or the extension, of A in S. 

Theorem 2-3, If A S C B S then A g
c C 3 g

c; and if A r C B r 

then A p
e C B r

Q . 

Proof: 

First, assume A QC3., and let x be an arbitrary element 

of A 3
c. Then f(x) € A g C B g by definition, hence x£B s°. 

Since x is an arbitrary element of A g
c, it follows that 

A a
c C B s

c . 
n 

Now, assume A r C 3 , and let y' (£ A e, then y» = s. f (a. } 
i=l 

for some positive integer n, i = 1, 2, ..., n, s± € S, a i £ Ar. 

Since a i € A r C B r , this implies a ^ Bp or f ( <EBr
e for each 

i. Also, s if(a i)€B r
e by definition, her.e 

n ^ 
y* = , X s,f (a, ) CB^,q since B e is an ideal in S. 

i=l 1 r 

Therefore A p
e C B ® . 
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Theorem 2-k. (A g
c) eC A s; and A p C(A r

e) G. 

Proof: 
n 

First, let y' € (A ) , then by definition y' = £ s . f (a, ), 
i=l 

for some n, i = 1, 2, n, s±£S, a i C A g
c . Since each 

a. C A it follows by theorem 2-1 that f(a.)€ A . Also x B i s 
— n _ 

Sif(ai)€SAs = A g; hence y' = £ s^f (a^) C Ag and therefore 

U s
c ) e C A s . 

Now, let x £ A r , then f (x) € A^
3 by the ore in 2-2. This 

implies x € (A^6)0 by definition 2-2. Therefore A p C ( A r
e ) c . 

dotation. 

Ar
ea means (A^6)0, and A s

c e means (AS°)
Q. 

f(xn) means (f(x))n. 

Theorem 2-5. A s
c e c = As°; and A r

e c e = A r
e. 

Proof: 

First, A 3 °
e C A 3 by theorem 2-k, hence (A g

C 0) cCA 3
c by 

theorem 2-3. Also A s° C(A g
c) Q C by theorem 2-i+j therefore 

A cec . c 
s s • 

Now, (A p
e) C QCA p

e by theorem 2-1+. Also A r C A p
e c by 

theorem 2-1].; therefore A r
e C(A r

0 C) e follows by theorem 2-3. 

Hence A r
Q c e = A r

e. 

Theorem 2^6. A g° + 3 S
C C(Ag + B s)

c, and 

(Ar + B r)
e = A p

e + B r
e. 
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Proof: 

First, A s C A g + Bg for Ag and Bs in S; then 

A S°C(A 3 + Bs, •' by theorem 2-3, and B S C Ag + Bg implies 

B S
C C(A s + Bs)

c. Henco A s
c + B s

cC(A s + 3S)°. 

Now, A r C A p + B r for Ap and 3 p in R, then Ar® C(A p + Br)
e 

by theorem 2-3, and 3 p C A r + Br implies B r
e C (Ap + Br)

e. 

Hence A r
e + B r

e C ( A p + Bp)
9. Also, let y' £(A r + Br)

e, then 

n ___ n _ n _ 
by definition, v1 = £ a.f (a, © b. ) = s. f (a ) Q £ s , f(b. ) 

i=l 1 1 1 1=1 1 1 i=l 1 

for n a positive Integer, i = 1, 2, . n , a^£ A^, b^<£ Br, 

s^£S. Since a^£ A^, the., • . ) £A^ e and s^f(ai)£Ar>
e by 

theorem 2-1, this implies that s^f (a,L) £ A r
e + B r

e. Since 

bi £ Br, then f (bi) £ b p
e and s if(b i)£B r

e by theorem 2-1, 

this implies s^f(b^)£Ap
e + B r

e. Hence 
e 

C Ay + Dx 
n n 

y' = sif (ai) E3 2 £ Ai> + 3
r
 o r 

i=l J" i=l 

(Ar + B r)
eCA r

e + B r
e. Therefore (Ar + Br)

e = Ar® + B r
e. 

Theorem 2-7* (ASABS)° = A g
0 A B s

l , and 

( A r A B r ) e C A r
e A B r

e . 

Proof: 

First, (A 3 A B S)CA S for As and Bg in S, then 

(A s A3 a ) c CA g° by theorem 2-3, and (A g A B s ) C B g implies 

( A s A 3
3 ) C C B s ° . Hence ( A g A B s ) c C A g

c A B S
C . Let x £ A g

c A B s
c 

then x £ Aa° and x £ B s
c . This implies f (x )£. Ag and f (x) £ B S 
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by theo rem 2 - 1 . Then f ( x ) £ A s A B s by t h e d e f i n i t i o n of 

i n t e r s e c t i o n . Hence x £ {A / • B g ) c o r A3
C A Bg

cc. (A s A 3 S)
c. 

T h e r e f o r e (A sAB 3)
c = AS

CAI3S
C. 

Now, ( A r ^ B r ) C A p by t h e d e f i n i t i o n of i n t e r s e c t i o n ; 

t h i s i m p l i e s ( A r A B p ) e C A I >
e . A l s o A p A B r C B r i m p l i e s 

( A r A B r ) e C B I >
Q . Hence 

Theorem 2 - 8 . A s
c B g

c C ( A S B S ) c , and (ArBr)
Q = Ar°Br

e. 

P r o o f : 

F i r s t , l e t z be an a r b i t r a r y e l e m e n t of A °B 0 where 
S 3 

n 
Z = i ? i X i 7 i ^ X i ^ A s ° a n d y i € B s ° ' 1 = 1> 2> • • • » n » f o I > 

some p o s i t i v e i n t e g e r n . T h i s i m p l i e s t h a t f ( x ^ ) £ A g
c e C A g 

and f ( y . ) £ B s ° e C B s f o r e a c h i = 1 , 2, n . Then 

f ( x i ) f ( y i ) = f ( x i y i ) € A s 3 s f o r e a c h i = 1 , 2 , . . . , n . 

n ___ _ n 
T h e r e f o r e = £ x ^ i ) = f ( z ) € A s B a . Hence 

z € ( A s B s ) c and A s
c B s

c C ( A g B s ) 0 . 
k 

Nov;, l e t z ' € (A B ) e . Then z ' = £ s , f ( c . ) where 
i = l x x 

n i 
° i = f o r a 5 1

£ A x " S i £ s ' 1 = ! . 2» • • • . k 

and j*̂  = 1 , 2 , , f o r some p o s i t i v e i n t e g e r k . H e r . e , 

f ( a . ) £ A e , f ( b i ) C 3 e , and f ( a ^ ) 7 ( b . ) = f ( a i b * 1 C A . V 
i P J i J i J i J i r r 

n ' 1 _ n i 
f o r e a c h 1 . . T h e r e f o r e 5) f ( a , b , ) = f ( £ a , b ,• } 

j , =1 J i i ' j . = l J i J i 

f (c.£ J £ Aj-^Bp®. S i n c e s , £ 8 , t h i s i m p l i e s t h a t 
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k 
>.-Lf(°i)<E Ar Br

0 and £ s^f()£ Ar
eBr

a. Therefore 

(ApBr)
eC;Ar

G3r
e. 

Also, let 'w1 be an arbitrary element of Ap 'Br
e where 

• k 

wf = 'i f o r x'i^- Ar»Q and y^CBp0. Let 

• mi ni 
x» = £ s, f (a . ) and y» = £ t, f(b, ) for s. , t, € S, 

1
 n=l i Ji 1 j =1 jI Ji Ji Ji 

a-t £ Ap and bj €. Br, for some positive integers and n^. 
mi nl 

Then x' y» = ( £ s, f (a, ))( £ t . f (b . )) 
i i ji=i Ji Ji ji=i Ji ^ 

= (s1f(a1)) (bx)) 0 (a1f(a1))(t2f(b2)) B ... 

0 (sm f(a ))(t xf(b _>1)) b (s f(a ))(t f(b )) 
i i i i mi mi ni ni 

= snt f(a_b ) ffl s t f(a b ) ffi ... 0 1 1 1 1 1 2 1 2 

Sm -i ) £B S t f(aw b ). 

5. jL i, 1. jL i 

Since Ar and b^£ B^, this implies that â b̂ <£. A^B^, 

and 'f(aibi)e (A^)
0. Also, s t € S, hence 

3^( a
i
t >i) £ ̂ ArBx»)° • Using the same argument, 

lt2f(ai°2^ (ArBr)6' •••» ^ ^ n ^ ^ € (ArBr)9 follows• s 

Since the sura of all these terms is contained in (ApBp)
8, it 

follows that (ArBr)
8 and w' = ^ x1 ±7». £ (ApBr )

e. 
1=1 

Hence Ar
e3r

eC (ArBr)
Q and therefore (Â JŜ ,)0 = Ar

eBr,
a. 
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Theorem 2 - 9 . (A : B j u C A c : B c , and 

(A„ : B j e C A ® : B e 

s 

,r . . 

Proof : 

F i r s t , s ince Ag : dQ ~ Ag : B , then (As : B g )B s CA g 

by the d e f i n i t i o n of q u o t i e n t i d e a l . This imp l i e s 

((Ag : B 3 ) B / C A S
C by theorem 2 -3 , and (Ag : B s ) c B s ° C A 3

c 

by theorem 2 - b . Hence (Ag : B g ) ° C A g
c : B s

c . 

Now, s ince (Ap : B^jB^CA^, i t f o l l ows t h a t 

((Ap : B r ) 3 r ) e C A r
e by theorem 2-3 , and (Ap : B r ) e 3 r

e C A r
e 

by theorem 2 - 8 . Hence (Ap : B r ) e C Ap
9 B r

e . 

Theorem 2-10 . ( /a*s }
c = JAS° , and ( J k r ) 6 C j ^ r

G . 

P roof : 

I f x £ 7 a s
c , then x n <£Aa° f o r some p o s i t i v e i n t e g e r n 

by d e f i n i t i o n 1 - 1 2 . Then by d e f i n i t i o n 2 -2 , (f (x) ) n <£A 3 . 

By d e f i n i t i o n 1-12 aga in , f ( x > e J v and x £. ( JX*g)c. Hence 

vA s
cC(JTS)

C. NOW i f y <£ ( Ja"s )
0 , i t f o l l o w s t h a t f ( y ) € J A q . 

This imp l i e s ( f ( y ) ) n = f (y11) £A„ f o r soma p o s i t i v e i n t e g e r n , 

and y n € Ag
c by d e f i n i t i o n 2 -2 , so y £ J a s ° . Hence 

( J T s ) c c / V and t h e r e f o r e (Ja~s)
C = i A

s ° * 

Now, i f x ' £ ( J T ) 6 , then x 1 = £ s f (a ) f o r a, £ JaI, 
1=1 1 1 x x 

S, k a p o s i t i v e i n t e g e r , and i = 1, 2, k . Since 

a^(£yAp , t h i s imp l i e s (a^) f o r some p o s i t i v e i n t e g e r 

n^ , f o r each I . Also f ( a i ) n i = ( f ( a ^ ) ) n i ; thus 



2h 

( si)
n-f ( ) n i = (si^(ai))

ni€ Ar
e for each. i. Hence 

s^f(a^) for each i = 1, 2, ..., k and therefore 

k 
x' = 

1=1 
S s j f t a j j e j v o r U A i . ) 9 C / V ' . 

In the comparison between theorems 2-I4. and 2-5, the 

containments in theorem 2-1}- become equalities when A„ is an 
hS 

extended ideal and Ar a contracted ideal. However, an ideal 

in S need not be an extended ideal, and need not be the 

extension of its contraction; this implies that A g
c o< As is 

possible. Also, an ideal in R need not be a contracted 

ideal nor need it be the contraction of its extension; hence 

Ar
ec^>Ap is possible. Theorem 2-5 implies that if an ideal 

in S is an extended ideal, it is the extension of its con-

traction, and that if an ideal in R is a contracted ideal, 

it is the contraction of its extension. These results are 

stated in the following theorems. 

Notation. 

Denote by (C) the set of all ideals in R which are 

contracted ideals, and by (E) the set of all ideals in S 

which are extended ideals. 

An ideal A in (C) means there exists an ideal A C S 
1 s 

such that Ar = Ag
c. Likewise an ideal A» in (E) moans 

o 
there exists an ideal A» C R such that (A' )e = A' 

«*» X S 
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Theorem 2-11 * If A is a contracted ideal, then • r 

(A/)0 = Ar. 

Proof: 

c Since Ar C(C), then hT = AQ for soma ideal A gC S, hence 

3°)
e0 = V Ar

ec - vA °)a0 = A 0 by theorem 2-5. Therefore A r
e 0 = A„. 

Theorem 2-12. If As is an extended ider.1, then 

(As°)
e = As. 

Proof: 

Let As C (E), then there exists an ideal A pCR such that 

As = Ar
e, thus As

co = (Ar
e)ce = Ar

e by theorem 2-£>. 

Therefore As
ce = Ag, 

Definition 2-3. Let two sets A and A be given. If 

there exists a mapping of A onto A such that each element 

of A appears only once as an image, then the mapping is 

called biunique, and is referred to as a one-to-one corre-

spondence. In this case there exists an "inverse" mapping 

which associates with each element b of A that element of 

A which has b as its image. This mapping is denoted by 

A <3 t> A. 

Lemma 2-1. The mapping of the set of extended ideals 

in S onto "cheir respective contracted ideals in ft is a one-

to-one mapping. 

Proof: 

Let As and 33s be any two ideals in (E), such that Ag is 
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not equal to 3S. Now, if A g
c = 3 S

C, than (A£
c)e = (Bs°)

e by 

theorem 2-5. Hence Ag = BQ by theorem. 2-12, but this is a 

contradiction to the assumption. Therefore this is a one-

to-one mapping. 

Lemma 2-2. The mapping of the set of contracted ideals 

in R onto their respective extended ideals in S is a one-to-

one mapping. 

Proof: 

Let A p and be any two ideals in (C), such that A p 

is not equal to Br. Now,-if A r
9 = B r

e, it follows that 

<V>° = (Br
e)° by theorem 2-5. Hence A r = by theorem 

2-11, but this is a contradiction to the assumption. 

Therefore this is a one-to-one mapping. 

Theorem 2—13» There exists a one—to—one correspondence 

between the set of all contracted ideals in R and the set of 

all extended ideals in S. 

Proof: 

The proof follows directly from lemma 2-1 and lemma 2-2. 

Definition 2-k» Let two sets A and X be given. If it 

is possible to place the two sets into one-to-one corre-

spondence such that the mapping preserves the relations, 

i.e., if with every element a of A there can be associated 

an element a' of A in a biunique manner so jhat the relations 

existing between any elements a, b, ... of also exist 
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between the associated elements a', b', ... and vice versa, 

then thu two sets are called Isomorphic (with respect to the 

relations in question). The mapping itself Is called an 

isomorphism (1, pp. 2lf.-25>). 

Lemma 2-3» The set of all contracted ideals in R 13 

closed under ideal quotient formation. 

Proof: 

Let A.r and denote arbitrary contracted ideals In R. 

Then Ar = A p
e c and 3 r = B r

e c. Let A p
e = As and Br° = Bs, 

then (A : B j ° C A c : B c by theorem 2-9. Also, 
•3 o S & 

(As
c : 3 s

c) e3 £ = (As
c : B s

c) eB s
c o by theorem 2-12 since 3 g 

is an extended ideal. Then 

(A/ : B s
c) eB s = ((As

c : Bs° )BS
C )e C A S

C Q = Ag. Prom 

(As
c : B s

c ) ° 3 s C A s follows (Ag
c : 3 S ° )

Q C A S : 3 S by the 

definition of a quotient ideal; this implies 

,s
c : B £

c ) e c C {As : B s {A G : B c) e c C(A_ : B„)c by theorem 2-3* and 

(As
c : Bs°) C (A3

C : B s
c )ec by theorem 2-1+. Hence 

(Aa
c : B S^)C(A S : Bg)°. Therefore A s

c : Bs° = (As : 3 g)
c. 

Let f denote a homomorphic mapping of a ring R into a 

ring S such that the identity of S is the image of the 

identity of R. Consider the set of contracted ideals in R 

and the set of extended ideals in S where the contractions 

and extensions are performed with respect to the function f. 

Let 0 denote the one-to-one correspondence between the set 
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of contracted ideals in R and the set of extended ideals in S. 

The following results are then valid. 

The or* em 2-Vi* If (C) is closed with respect to addition, 

then the SUETI of two contracted ideals is the contraction of 

the extension of their sum and the sets (C) and (S) are 

isomorphic with respect to addition. 

Proof: 

Let Ap, 3r be elements of (C). Since (Ap + 3 ) is in 

(C), there exists an ideal Dg C(E) such that DQ° = Ap + Bp. 

Then Ap + Bp = Dg
c = (Ds°)

ec = (Ap + Bp)
0C by theorem 2-5. 

Since 0(Ar) = A.p
e and 0(Br) = Bp

e by lemma 2-2, thon 

£KAp + Bp) - (Ap + Bp)
e = Ar° + Bp

0 = 0(Ar) + 0(Bp) by 

theorem 2-6. Therefore (C) and (E) are isomorphic with 

respect to addition. 

Theorem 2-15. If (E) is closed with respect to the 

operation of intersection, then the intersection of two 

extended ideals is the extension of the contraction of their 

intersection and the sets (C) and (E) are isomorphic with 

respect to the operation of intersection. 

Proof: 

Let As, 3g be ideals of (E). Since A SAB SC(E), there 

exists an ideal Dp <£ (C) such that D ® = A„ A3 . Then 
x X 3 S 

A SAB S - Dp
6 - (Dp

e)ce = (AsABs)
ce by theorem 2-5. 

Since 0~1(AS) = As
c and ^"1(BS) = 3S° by lemma 2-1, 
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then 0~1(Asr\E3) = (A GAB S)
C = A S

C A 3 S
C = j^~1(As} A^~

1(BS) 

by theorem 2-7. Hence (C) and (E) are Isomorphic with 

respect to the operation of intersection. 

Theorem 2-16. If (C) is closed with respect to the 

operation of multiplication, then the product of two con-

tracted ideals is the contraction of the extension of thair 

product and the sets (C) and (E) are isomorphic with respect 

to the operation of multiplication. 

Proof: 

Let Ap, be ideals of (C). Since Ap3r £ (C}, there 

exists an ideal Dg £(!,) such that D o
c = ARBR. Then 

ArBr = D g
c = (D3

c )ec = (Ar,Br)
uC by theorem 2-5. 

Now, since 0(AP) = Av
e and 0(Br) = Br

e by lemma 2-2, 

then ̂ ^ApBj,) — (A^Bp) = Â » Bj» = 0(A^,) 0 (Bp) by theorem 2—8» 

Hence (G) and (E) are isomorphic with respect to the 

operation of multiplication. 

Theorem 2-17« If (2) is closed with respect to the 

operation of quotient formation, then the quotient of two 

extended ideals is the extension of the contraction of their 

quotient formation and the sets (C) and (E) are isomorphic 

with respect to the operation of quotient formation. 

Proof: 

Let A3> Bs be ideals of (E). Since (As : ES)£(E), 

there exists an ideal D r£(C) such that D ® = A_ : BO. 
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Then (Ag : 3 g) = D r
e = (Dr

e)ce = (Afi : 3 s)
c e by theorem 2-5. 

Since ^"1(A£j) = AQ° and 0~
1(3S) = B3° by lenma 2-1, 

than (As : Bg) = (As : Bs)
c = A s

c : B g
c = ^""J-(AS) : ) 

by lemma 2-3. Hence (C) and (E) are isomorphic with respect 

to ideal quotient formation. 

Theorem 2-18. If (E) is closed with respect to the 

operation of radical formation, then the radical of an 

extended ideal ia the extension of the contraction of its 

radical formation and the sets (C) and (E) are isomorphic 

with respect to the operation of radical formation. 

Proof: 

Let A be an ideal of (E). Since J a ~ <£ (E), there exists 

an ideal D p€(G) such that Dr® = Then D r
e c = (JA~S)C 

by theorem 2-5, and D p = D r
e c = = Jas

c by theorem 2-11 

and theorem 2-10. Hence = Dr® = ( jl/)® = (JTs)
oe. 

The sets (G) and (E) are isomorphic with respect to 

radical formation since 0~^(Ja~q ) = (jAg)
c = J^Q° = ) • 

Theorem 2-1?. If Ps is a pr'.ne ideal in S and Qs an 

ideal in S which is primary for P s, then P g
c is prime and 

Qg° primary for P a
c in H. 

Proof: 

Suppose a, b £ R such that ab£P g
c and a^P 3°. This 

implies that f(ab)£ ? c e C P. or f (a)f (b) £ P_, where P_ is a 
o o s O 

r r. . Q 
prime ideal. But f (a) P3> since otherwise a € ? s . Hence 
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f ( b ) £ P 3 and b £ P s ° . T h e r e f o r e ? s ° i s a pr ime i d e a l . 

S ince Qs i s p r i m a r y f o r P a , t h e n Q s C P g , hence 

Q, c C P c by theorem 2 - 3 . 
*3 s 

0 J. Q 

Suppose a , b £ R such t h a t a b £ Qs and a C Q s • Thiu 
i m p l i e s t h a t f ( a b ) £ Q s ° e C Qs or f (s.)f (b) £ Q s , where Q3 i a 

1V , . 0 

p r i r aa ry f o r P g . But f ( a ) ^ ' Q s o t h e r w i s e a £ Q s . Hence 

f ( b ) £ F„ and b £ ?_ C by theorem 1 - 8 . 

I f b € P s
C , t h e n F ( b ) £ ? g

c e C P s = JcTs by theorem 2 - i | . 

Then ( f ( b ) ) n = f ( b n ) £ Q „ f o r some p o s i t i v e i n t e g e r n . 

T h e r e f o r e b n £ Q s ° ana hence Q3° p r i m a r y f o r P s ° by theorem 
i - e . 
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CHAPTER III 

RELATI OFS BETWEEN IDEALS 

IN INTEGRAL DOMAINS D AND D,, 
ri 

Definition. 3-l» A commutative ring R with more than 

one element and having a unity is called an integral domain 

if the following additional property holds. 

If r, s£R such that rs = 0, then r = 0, or 

s = 0 (3, p. 36). 

Definition 3-2. A nonempty set F is a field if F is a 

commutative ring with unity, having the property that every 

non-zero element in F has a multiplicative inverse. (i.e., 

If e is he unit, there exists a*"1 for each non-zero a in P 

such that a © a"-*- = e.) 

Definition 3-3. The set of all elements of a ring R 

which map into the zero of a ring S under a homomorphism f 

is cabled the kernel of the homomorphism. The kernel is 

denoted by >7. 

Definition 3-U. A multiplicative system (abbreviation 

m.s.) in an integral domain D is a nonempty subset M of D 

which does not contain the zero of D and which is closed 

under multiplication—that is, if in^M, m 2£M, then m ^ C M . 

33 
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The set of all quotients a/m» where a6D, m £ 1-1, is a 

subring of the field P containing the domain D. It will be 

denoted by and will bo called the quotient ring of D with 

respect to the multiplicative system M. There are two 

extreme cases. 

(1) If D is the set of all units in D, then Djyj = D. 

(2) If M is the set of all non-zero elements of D, 

then D̂ r = P. 

The following theorem (ii, pp. 221-222) is quoted with-

out proof for the case of an integral domain D. 

Theorem. 3-l» Lot C do not ; an integral domain and M a 

multiplicative system in D. There exists a homomorphism h 

of D into such that 

(a) The kernel N of h is the zero element in D. 

(b) The elements of h(M) are units in D^. 

(c) Every element of may be written as a 

quotient h(x)/h(m) for some x £ R and m€M. 

This homomorphism is called the canonical or natural 

mapping of D into and will be used throughout the 

remainder of Ihis chapter when refering to a homomorphism 

of D into D m. 

Definition 3-5. An element x of a ring R is said to be 

prir-o to an ideal Ar of R if ( : (>:)) = Ar (that is, if its 

residue class modulo is not a zero divisor in R/Ar). 
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A subset G of R Is said to be prime to A if each one 

of its el'. ment 3 is prime to A . 

Theorem 3-2„ Let M be a multiplicative sybtera in an 

integral domain D, and let DjV[ be the quotient ring of D with 

respect to M. If A p is an ideal in D, then A r
e o consists of 

all elements b in D such that bm £ A p for some m in M. 

Proof: 

Let J = ^ x j x <£ D, :-:n£ A p for some ni£Mj". An arbitrary 

element b of A r
e c is such that F (b) £ A V

Q, and by property 

(c) of theorem 3-1, an element of A p
e may be written in the 

k 
form £ ((h(xi)/h(mi) )h(a ), x ^ D , m£ a ^ A p , and k a 

i=l 

positive integer. Since M is closed under multiplication, 

the elements of A r
e may bo reduced to the form h(a)/h(m) for 

a € A p , ra€M. 'Thus b € A r
e C implies h(b) = h(a)/h(m) for some 

a <Z A r, m £ M. This implies h(b)h(m) = h(a) or h(bm) = h(a). 

Thus h(bm © (-a)) is the zero in D , and therefore 

bm © (-a) -<LN. From property (a) of theorem 3-1, it follows 

that bm = a £ A^, hence b 6 J and A p
e c C J . 

Now suppose b c J . There exists an element m in M such 

that bm € A r, hence h(b)h(m) € h(A ). Then h(b)£A ® since 
T 

h(m) is a unit in D M by property (b) of theorem 3-1. 

Therefore b(cA„0C implies J C A W
0 0 , 

•** 

The equality A„ e c = J follows from these containments. 
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The or era 3-J • Let M be a multiplicative system in an 

integral domain D, and let % be the quotient ring of D with 

respect to K. Then an ideal Ar in D is a contracted ideal 

(that is, A r = Ar
GC) if and only if M is prima to A r. 

Proof: 

First, A r C A r
e c by theorem 2-LL. Assume K is prime to 

Aj» and let thon bm^A^, for some m in M by theorem 

3-2. By the definition of M is prime to A , bm£A., implies 

that b(£Ar. Hence l r
e c C Ar. Therefore A^ = A r

e c. 

Conversely, suppose A r = Ar.
ec and let m be any element 

of M and x C D such that x € A r : (m), this implies that xra £ A . 

Then hi xm) £ A^e, whence h(x)h(m) ̂  A p
e. Ey property (b) of 

theorem 3-1, h(m) is a unit, hence h(x) £ A^9, this implies 

x<£A p
e c. Since = A r

e c, this implies that x € A p , and 

therefore (Ar : (m) )CA p. The containment A ^ C A p : (m) is 

valid for any m CD, hence A r = Ar, : (m). There for 3 M is 

prime to A p since m is arbitrary element of M. 

Theorem 3-U. Let M be a multiplicative system in an 

in^egr^l domain D, and let D^ be the quotient ring of D with 

respect to M; then every ideal in D M is an extended ideal. 

Proof: 

Let Ag oe any ideal in D-̂ , and let x ? be an arbitrary 

element of A g. Then x' = h(x)/h(m) for1 some x £D, m £ M , 

uhus h(x) £.A3 implies that Now h(x) Ag1""® implies 

' ~ 2 e ' /L \ m) in A g
c e xvhe re e ' denotes the multiplicative 
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identity in D M, ho nee A g C A s
c e , Also A g

c e C A s by th.. orora 2-l|, 

whonee A s = A s
c e and every ideal in DVi is an extended ideal. 

Theorem 3~5« Lot M be a multiplicative system in an 

integral domain D, and let D M be the quotient ring of D with 

respect bo M. Then the mapping A r > Ar,
9 is a one-to-one 

mapping of the set of contracted ideals in D onto the set of 

all ideals in D^, and this mapping is an isomorphism with 

respect to the ideal theoretic operations of forming inter-

sections, quotients, and radicals. 

Proof: 

Since every ideal in D M is an extended ideal by the 

previous theorem, it follows from theorem 2-13 that the 

mapping A r 1* Ar
e, of the set of contracted ideals in D 

into tne set of ideals in is a one-to-one onto mapping. 

This mapping is an isomorphism with respect to the ideal 

theoretic operations of forming intersections, quotients, 

and radicals by theorem 2-l£, theorem 2-17, and theorem 2-18, 

respectively. 

Tne ore m 3-o« Let Qp be a prir;. ,ry ideal of an integral 

domain D disjoint from a multiplicative system M, and let P7 

be its (prime) radical. Then P p Lc disjoint from M, and P 

<'"nd Qy are contracted ideals with recpect to 

Proof: 

Suppose xC D such that x € P and xCEM. Then there 

r 
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exists a positive integer n such that x*1 £ Qr since is 

primary Tor Pr, Since >: is an element of M^than any power 

of x belongs to M, !.n particular xn<£ K, This contradicts 

the disjointness of Q r and M, Therefore P p and >1 have no 

element3 in conraon; hence ?r, is disjoint from M. 

Let m bo any element of M and x c D such that x £ Pr : (m), 

then x:n<c?r. Since P p is disjoint from M, x € ? r by the 

definition of a prime ideal. Hence P r : (en) C Pr. The con-

tainment P r C (Pr : (si) ) is valid for any m in D, hence 

P r = Pr : (m). Since :a is an arbitrary element of M, then 

Pr is prime to M and hence Pr is a contracted ideal by 

theorem 3-3. 

Let m be any element of M and x £ D such that x £ Q r : (m), 

then xm<£Qr. Since then x £ Qr by theorem 1-8. Hence 

Q r : (m)CQp. The containment Qr C (Qr : (n)) is valid for 

any ra£D, hence Q,r = Q̂ , : (m). Since m is.an arbitrary 

element of M, then is prime to M and hence Q r is a con-

tracted ideal by theorem 3-3. 

T he ore PI 3-7. Let Q r be a primary ideal of an integral 

domain D disjoint from a multiplicative system M, and let P p 

be its prime radical. Then Q r
e is a primary ideal and Pr® 

is its associated prime in . 

Proof: 

Let x' and y' be elements of D M such that x' if. P^0 and 

Q 
x Jy«£P r , by property (c) of theorem 3-1, it follows that 
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x' = h(x)/h(m) for x£D, x £ ?r, m£M, y
! = h(y)/h(m!) for 

y£D, ra«€H» and x*y> = h'z)/h(m") for z <£Pr and m" CM. 3y 

b l x) q h (y ) _ b.{ 3 ) . 
subs j i t u t i on _ „ . hence 

h(rri) n(ra' ) h ^ m ) ' 

h (xym" © (-mm' z)) is the zero element of D,̂ . Therefore 

(xy:n!' © (-ramf z)) £N, hence xym" = mm'z by property (a) of 

theorem 3-1. Now xym" € ? p since z€ P r and thus x £ I\. i rep lie a 

yrri!f£Pr. But m"^P r since M Is disjoint from whence 

y £ P r ana h(y) = y'CP^
9. Therefore ?•/ is a prime ideal. 

Let a1 and b' be elements of such that a' <£. Q^0 and 

a'b1C . According to property (c) of theorem 3-1, it 

follows that a« = h(a)/h(m) for a£D, a £0^, rn<£M, 

b! = h(b)/h(m') for b£ D, m' CM, and a'b ' = h(c)/h(m" ) for 

c € Qr and m"£ M. It follows that h(abm" © (-ram'c)) is the 

z :ro element of , hence abm" — mm'c by property (a) of 

theorem 3-1. Since c€Q r it follows that abm"£ Qr and am"^Q. 

because a<̂ .Q,p, and m"^ M. Then b £ P̂ , since is primary for 

Pp and h(b)C.Pj, by theorem 1-8. Since the elements of h(M) 

are units in DM, then b» = h(b)€ P p
e. 

Since Q.x, Is primary for Pr, then Qr C? r, and hence 
i j Q 

Qr, C P p by theorem 2-3. 

.uel> x 1 be an arbitrary element in Py,̂ . By property (c) 

of theorem 3-1, P p may be written in the form 

r \r 

)/iu }) h(p^ ) | xt £ D, M, pj<E ? r, and k a positive 

;;egor|. Since M is closed under multiplication, the 
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elements of P r
Q may be reduced to the form h(p}/h(m) for some 

p £ P r , raCM. Thus x' = h(p)/h{m). There exists a positive 

n 
in be er n such that p €0^, since i3 primary for ? r. This 

^ | p 0 

implies that h(p ') CQ,^ . Also, since m Is an element of M, 

then any power of m belongs to M, in particular m n £ M s Thus 

x ? n = (h(p)/h(m))n = h(pn)/h( mn) = h(pn) 3 e '/h(mn) <£ Qp6 

where e' denotes the multiplicative identity in D,^ and hence 

x'^CQ^ as desired. 

Therefore Qj" Is primary for ? r° by theorem 1-3. 

Corollary 3-1* The mapping P r P r is a one-to-one 

mapping of the set of all contracted prime Ideals in D onto 

the set of all prime ideals in D^„ 

Proof: 

ivory ideal in is an extended ideal by theorem 3-b* 

In particular,•every prime ideal in Is an extended prime 

ideal by the previous theorem. Also, the contraction of a 

prime ideal is a prime Ideal by theorem 2-19. Hence it 
Q 

follows from theorem 2-13 that the mapping P p $» ijr of 

tbo set of contracted prime ideals in D onto the set of prime 

Ideals in is a one-to-one mapping. 

Definition 3-6. A ring R is called noetherian if it has 

an identity and if it satisfies the following equivalent con-

ditions (1), (2), and (3). 

(1) Every strictly ascending chain A Av ... 
1 2 
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of ideals of R Is finite. (Ascending chain condition). 

(2) In every non-empty family of ideals of R, 

there exists c. maximal element, that is, an ideal not 

contained in any other ideal of the family. (Maximum 

condition). 

G ) Every Ideal Ar of R has a finite basis; this 

means, that A contains a finite set of elements a-, 

<•» J. 

a2> a n such that Ap = Ra^ + Ra2 + ... + Ran. 
(Finite basis condition). 

theorem 3-8. If D Is a noetherian domain and M is a 

mulbiplicative system in D, then is a noetherian domain. 

Proof: 

Let Aq<^A3 < A ... be a strictly ascending chain 
1 2 3 

of ideals in DM. Since every ideal in D M Is an extended 

ideal, there exists Ideals Â , A„ < A_ <C . such that 
*1 x 2 f3 

(Ap ) = As for i = 1, 2, 3? .... Then 
i 1 

(Ar ) (Z. (Ap ) 0 Cd(A r )
0"<1... by theorem 2-3. In particular 

1 2 A 3 

(Si
r ) (Ar ) then (A ) (Ar, )e°, since 
i 1+1 i % i+1 

(Ap )
e° = (A ) for some I implies (A )6 = (A„ ) e c e 

^ •? J.1 ^ ^ a i i+1 i i 
, 6 0 8 f 0 
vA.„ ) = (Ay, ) . Therefore the chain 
*" i+1 ~I+1 

ec/ . ,eo , . ,ec 
(A.r ) (Ar ) (Ap )~ ... is a strictly ascending chain 

1 2 3 



i>2 

of ideals in R, hence must be finite. Thus the chain 
0 0 0 

(̂ r> ) -<£. ) <T ... must ba finite, otherwise an 
"1 "2 x3 

infinite strictly ascending chain of ideals in D is obtained, 

Therefore is a noetherian ring. Since the korne1 of the 

homomorphism of D into D-̂  is the zero element of D, it 

follows that D is a domain. 

Theorem 3-9. If each ideal with prime radical in a 

domain D is a prime power, than ideals in D̂ r with prime 

radicals are also prime powers. 

Proof: 

Let A 0 be an ideal in DM. There exists an ideal A„ in 
M J 1 J ? 

D such that A r
e = Ag. Suppose J~̂ ~3

 = ^3 is prime, tnen there 

exists a prime ideal in D such that Pr° = ?s. In 

particular, jAg = JAr
a implies that {JAb)° = ( J A r

Q ) ° = jAv,
e6 

by theorem 2-6, and ? g
C = (JAQ)

G ~ J A r
u C is prime by theorem 

2-19. Moreover, (JAs)
c = jAs° = JaJ 3 0 by theorem 2-10. 

Since oacn ideal with prime radical in D is a prime power, 

there exists a positive integer n such that (Pc,
c)n = A o

0 

= (Ar
e)c = p ^ . This implies that A p

Q = (Ap
ec)e = (?p

n)e 

by theorem 2-5 and A r
e = {Pr

e)n by theorem 2-6. Therefore 

As = ?s n a s desired, whence ideals in with prims radicals 

are prime powers. 
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De.fi nit ion 3-7. If c is an a lament of a ring R wi t h 

Identity arid A an ideal in R, define 
, V 

((c) j A) =jjL^i-:C ® £ r ,a ̂  :r. j r ,• £ R, a . £ A* r., k positive 
^'i •?=! 3 J ! J 

Integers j. 

It is easy to see from the definition of an ideal that 

((c),A/ in the above definition is an ideal in R. 

Lemma 3-1« If b, c are elements of a ring R with 

identity and A an ideal in R, then ((b),A)((e),A)C((be),A). 

Proof: 

Let b, c£R and A be an ideal in R» then 

( A K | 
((b),A) = j £ r^b © f jQ- -j p^, r.£.R, a £A, n, k positive 

x 1 ^ 1 
) ( n' k1 , 

integers;-, and ((c),A) = j D r ' c © £ r ' .a' •:?' r J.£R» 
J ti=l i ^ j Jj i j 

1 
aT £ A, n', kJ positive integers j*. By definition 1-10, 

f rn 
((b), A} ((c ), A) - | £ x.yi|xi€ ((b),A), yi€((c),A), m a 

] 
positive integer k Let z be an arbitrary element of 

J 
( (b),A) ' , ) ,A) . Then z = y for :< £ ( (b) ,A), y £((c),A) 

i=l 1 1 1 1 

and m a positive integer. Suppose x,.y^ is an arbitrary term 

k 
in t hi a sum, than x. = JC r. b © £ r .a.. for r,, r,£R, n, k 

i=i j=i 3 J 1 j 
n' k * 

positive integers, and y. = £ r % c © £ r' af . for r , 
1=1 j=l J J x 

i1' -cR, n', k1 positive integers. Then 
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-- ( £ ^ b ) ( £ r ' c) ffi ( £, r ,a 4) ( £r',c) 
i=l x i-1 j=l J J 1=1 " 

n I-;! k }-» 
C' ( Lt r, b) { £ r? ..a * .) © ( £, r.,a/) ( £ rJ -a ? .). It i a 

1=1 1 j=l J 3 y-=l J J j=l D J 

n r;' 
easy to sea that ( JC **, b) ( JZ r '. c ) <£(bc) and the other' three 

i=l 1 i=l 1 

terms in this sun are elements of A. Hence x^y^. £ ((be) ,A). 

m 
Since is an arbitrary term in the sura f] xiy. , then 

i-1 

every term in this sum is contained in ((be),A). Hence 

S-
z - JT x4y. is contained in ((be} ,A) since ((be),A) is an 

i-1 * 
ideal. Therefore ((b) ,A) ((c) ,A) CZ {(be),A). 

Theorem 3-10« Maximal ideals of an integral domain D 

are prime. 

Proof: 

Let M be a maximal ideal in Q and suppose b (p. M, c sp M, 

ana b c£K. Then the ideals ( (b),M) ana ((c),M) each contain 

K properly and since M is maximal, this implies that 

((b),M) = D, and ((c),M) = D. Hence ((b),M)((c),H) = DD = D. 

Since be € M, then ((bc),M)CK. Hence 

3 = ((b) , K) ((c ) ,M) <C ((be) ,M) <2 M is a contradiction to the 

assumption that M is a maximal ideal. Therefore if be € K, 

either b £ M or c £M, whence M is a prime ideal. 

Definition 3-6. A ring R is said to be a Dedekind domain 

if it is an integral domain and if every ideal in R is a 

product of prime ideals (1)., p. 270). 



flotation. If J is an integral domain and ? is a prime 

ideal in J, the set of elements in J and not in P forms a 

multiplicative system H. In this case the quotient ring 

is denote.3 by Jp. 

Definition 3-9. An integral domain J will be said to be 

almost Dcdekind if, given any maximal ideal P of J, Jp is a 

Dedokind domain (2, p. 813). 

Theorem 3-H« If J is an almost Dedekind domain, then 

proper prime ideals of J are maximal. 

Proof: 

Let M be a maximal ideal in J. Since a maximal ideal 

in an integral domain is prime, this implies that Me, the 

extension of M in J,p is a prime ideal in by theorem 3-7. 

Also, by theorem 3-3, i'*eC = M J, hence M8 is a proper prime 

in and thus M° is maximal in J since JJ;T is a Dedekind 

domain. Suppose QCm is a proper prime ideal in J, then Qe 

is a prime ideal in JM by theorem 3-7. But cf is not properly 

contained in Me since prime ideals are maximal in Jv. In 

particular, every prime ideal contained in K is a contracted 

ideal in J by theorem 3-3, and there is a one-to-one corre-

spondence between prime ideals contained in M and all prime 

Ideals in JM by corollary 3-1. Hence Q in J is not properly 

contained in M. Since every ideal in a domain J is contained 

in a maximal Ideal (Ij., p. 15> 1), and each maximal ideal M 

contains no proper prime Ideal except itself, it follows that 

propjr prime ideals in J are maximal. 
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Theorem 3~-2. The powers of a proper ideal In an almost 

Deaeld.nd domain J intersect in (0) (1, p. 269). 

Proof: 

Let A b-3 a proper ideal in J and ? a : axitnal ideal in J 

such. that A C p C j , Then AeC. peC. je = j., by theorem 2-3 -M 

Since JM is Do da kind domain 0 (IpS)n = (zero ideal in JM) 
n=l 

(ll, p. 21?). Moreover, f\ (A° ) n C A (P'J)n implies 
n=l n=l 

C*0 

rn\e _ ^ , a \ n A (A1) = A (A ) = (zero ideal in J«) by theorem 2-8. 
n=l n-1 

Therefore A An<c( A (An))ec = (zero ideal in JM)
C = (0)C J. 

n=l n=l 

i'.enca A A — (0). 
n~l 

Theorem 3-13* Each proper primary ideal of an almost 

Dedokind domain J is a power of a maximal ideal (2, p. 813). 

Proof: 

If Q is primary for a maximal ideal P in J, then Qe is 

primary for Pe in J by theorem 3-7. Since J is a Dedekind 
^ p 

domain, Qd = (?e)K = (PiC)e for some positive integer k since 

Jp has only one proper prime ideal. Since Q is primary for 

?, Q = Q e c by the ore,'a 3-3. But because P is axicnal in D, 

P k is also primary for P by corollary 3-1. Therefore 

- (pA)oC and nance Q = p*. 
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Corollary 3-2. Sach ideal with prime radical of an 

almost Dedekind domain ic a prime power {1, p. 266). 

Proof: 

The proof follows from tho above theorem since prime 

ideals are maximal in an almost Dodekind do.nain. 

Tho conditions of either theorem 3-13 or corollary 3-2 

are actually necessary and sufficient for a domain to be an 

al.no31 Dedekind domain. 
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