PROPERTIES OF EXTENDED AND CONTRACTED IDEALS

APPROVED:

THESIS

Presented to the Graduate Council of the North Texas State University in Partial Fulfillment of the Requirenents

> For the Degree of

MASCER OF SCIENC:

By

Geonge Chan, B. A.
Denton, Texas
August, 1966

TABLE OF CONTENTS

Chapter Page
I. PROPERTIES OF IDEALS I
II. EXTENDED AND CONTRACTED IDEALS 16
III. RELATIONS BETWEEN IDEALS IN INTEGRALDOMAINS D AND D_{M} • 33
BIBLIOGRAPHY -•••••••••••••••••••• 49

CTALTER I

PRO DRTIES OF IDEALS

This paper presents an introduction to the theory of idoals in a ring with emphasis on ideals in a commutative ring with identity.

Basic definitions and properties of ideals are given and these properties are studied in the classes of ideals called extended and contracted ideals. The ideal structure in quotient rings is inve. ifated with respect to the ideal structure of the rings civer which they lia and theorems are provided to show applications of the theory developed.

Definition 1-1. A set is a collection of objects; these objectis are called elements of the set.

Definjtion 1-2. A binary oneration " 0 " on a set A is a correspondence that associates with each ordered pair (a, b) of elements of A a uniquely determined element $a \quad o$ of A.

Notation:

Small letters will denote the elements of a set and capital letters will denote sets.
ϵ means belongs to or is an element of.
\notin means does not belong to or is not an element of.
C means is contiained in or is included in.
$<$ means proper containment (i.e., $A<B$ means A is a proper subset of B) when used between sets and means less than when used between elements of sets.
\leq means less than or equal to.
Σ means the sum of.
= means the same as.

Definition 1-3. A nonempty set G on which there is defined a binary operation "o" is called a group (with respect to this operation) provided the following properties are satisfied.
(1) The operation " O " is associative. If a, b, c are any elements of G, then $(a \circ b) \circ c=a \circ(b \circ c)$.
(2) There exists in G an identity element e such
trat $a \rho \theta=\theta 0=a$ for all elements a in G.
(3) For each element a in G there exists an in-
verse $a^{-1} \operatorname{in} G$, such that a $\circ a^{-1}=a^{-1} \circ a=e$.

Definition 1-4. If R is a nonempty set on which there are definod binary operations \oplus and Θ, which will be called addition and multiplication respectively, such that the following conditions hold, then R is a ring.
(1) Addition in R is associative.
(2) R contains an additive identity element.
(3) For each element a in R, there exists an additive inverse, denoted by $-a$, in the set R.
(4) Addition in R is commatative. If $a, b \in R$, then $\mathrm{a} \oplus \mathrm{b}=\mathrm{b} \oplus \mathrm{a}$.
(5) Multiplication in R is associative.
(6) Multiplication in R is left distributive and right distributive with respect to addition, i.e.,
$a \bullet(b \oplus c)=(a \odot b) \oplus(a \in c)$ and
$(a \oplus b) \odot c=(a \odot c) \oplus(b \odot c)$ for any elements a, b, c in R.

Operation Notation.
In order to simplify the notation, the product a 0 b for $a, b \in R$ will sometimes be written $a s a b$.

Definition $1-5$. A ring is called a commutative ring if and only if the operation of multiplication is commatative.

Definition 1-6. A ring is a ring with unity if and only if there is a multiplicative identity (unity element) in the ring.

Theorem 1-1. A nonempty subset A of a ring R is a subring of R if and only if the following two conditions hold.
(a) A is closed under the operations of addition and multiplication defined on R.
(b) If $a \in A$, then $-a \in A(1, P, 26)$.

Proof:
Conditions (a) and (b) are required of all rings and hence must be satisfied if A is a subring of R.

Conversely, if A is a subsot of R satisfying properties (a) and (0), then properties (1), (4), (5), and (6) in the definition of a ring hold in R, hence hold in A also. Condition (b) is identical to property (3) of this definition so only the existence of an additive identity needs to be shown in A. Since A is not empty, it must contain at least one element, say x. Under condition (b), $-x$ is also in A. By condition $(a), x \oplus(-x)$ is an element of A, but $x \oplus(-x)$ is the additive identity of R . A contains an additive identity and is therefore a subring oi R.

Definition 1-7. Let A be a nonempty subset of a ring R such that
(1) $a(-b) \in A$ if a and b are elements of A. (2) ra $\in A$ if $a \in A$ and $r \in R$.

Then A is called a left ideal in R.

The following statement is an equivalent definition of left ideal in R. A subset A of a ring R is a left ideal in R if and only if it is a subring of R such that ra is in A for every r in R and overy a in A.

A subset A of a ring R is a right ideal in R if and only if it is a subring of R such that ar is in A for every a in A and every r in R.

A left ideal is the same as a risht ideal in a commutative ring R since ar $=r a$ for every a in A and every r in R. In this case A is simuly called an ideal.

Theorem 1-2. If a is an element in a ring R, then the set $A=\{r a \mid r \in R\}$ is a left ideal in R. Proof:

Tho set A is not ompty by construction. Let ra and sa be any two elemonts of A. Then ra $\oplus(-s a)=[r \oplus(-s)]$ a by the right distributive law in R. But $r \oplus(-s)$ is in R, hence ra $\oplus(-s a) \in A$. If $r_{1} a \in A$ and $r_{2} \in R$, then $r_{2}\left(r_{1} a\right)=\left(r_{2} r_{1}\right) a \in A$ since $r_{2} r_{1} \in R$. Hence A is a left ideal.

Corollary 1-1. If a is an element in a commutative ring R with unity, then the set $A=\{r a \mid r \in R\}$ is an ideal in R. Further, if B is an ideal in R and $a \in B$, then $A \subset B$. Prool:

The first part of the corollary follows from theorem 1-2 and the definition of ideal. Now suppose that B is any ideal such that a is an element of B. By the definition of a left ideal, ra is in B for every r in R. But $A=\{r a \mid r \in R\}$, so that $A \subset B$. This maans that every ideal of R which contains the element a must contain A.

Definition 1-8. The ideal A of corollary 1-1 is called the principal ideal generated by the element a, denoted by (a): A ring in which every ideal is a principal
ideal is called a principal ideal ring.

Note. R will denote a commutative ring with unity throughout the rest of the paper.

Definition 1-9. Let A and B denote ideals in a ring R, derine $A+B=\{a \oplus b \mid a \in A, b \in B\}$.

Theorem 1-3. If A and B are ideals in a ring R, then $A+B$ is an ideal in R.

Proof:
Who set $A+B$ is not empty since A and B are each contained in $A+B$.

Let X and y be any two elcments of $A+B$, where $x=a \oplus b$ for some $a \operatorname{in} A$, and b in $B ; y=a_{0} \oplus b_{0}$ for some a_{0} in A, $a n d b_{0}$ in B. Then $x \oplus(-y)=(a \in b) \oplus\left[-\left(a_{0} \oplus b_{0}\right)\right]$ $=\left[a \oplus\left(-a_{0}\right)\right] \oplus\left[0 \oplus\left(-b_{0}\right)\right] \in A+B, \operatorname{since}\left[a \oplus\left(-a_{0}\right)\right]$ is an element of A and $\left[b \otimes\left(-b_{0}\right)\right]$ is an element of B.

Let r be an arbitrary element of R; then $r x=r(a<b)$ $=r a \oplus r b b y$ the left distributive law of R. But (ra $\oplus r b$) is in $A+B$, since $r a$ is in A and $r b$ is in B.

Hence $A+B$ is an ideal.

Definition 2-10. If A and B are ideals in a ring R, define the product of A and B as
$A B=\left\{\sum_{i=1}^{k} a_{i} b_{i} \mid a_{i} \in A, b_{i} \in B, k\right.$ arbitrary positive integer $\}$.

Theorem 1-4. If A and B are ideals in R, then $A B$ is an ideal in R.
proof:
The sut $A B$ is now empty by construction. Let x and y be any two elements of $A B$ such that $x=\sum_{i=1}^{s} a_{i} b_{i}$, $y=\sum_{j=1}^{t} a^{\prime} j^{b \prime} j$ for some $a_{i}, a^{\prime} j$ in A and b_{i}, b_{j}^{\prime} in B, and $i=1,2, \ldots, s$ and $j=1,2, \ldots, t$. Then
$x \otimes(-y)=\sum_{i=1}^{S} a_{i} b_{i} \oplus\left(-\sum_{j=1}^{t} a^{\prime} j^{\prime} \prime_{j}\right) . \quad$ Let $-a_{j}^{\prime}=a_{s+j}$ and $b_{j}^{\prime}=b_{s+j}$ for $1 \leq j \leq t$. Hence
$x \oplus(-y)=\sum_{j=1}^{S} a_{j} b_{j} \oplus \sum_{j=1}^{t} a_{s+j} b_{s+j}=\sum_{j=1}^{s+t} a_{j} b_{j}$ in AB since a_{j}
in A and b_{j} in B for $j=1,2, \ldots$, stt.
Let r be an arbitrary element of R, then $r x=r \sum_{i=1}^{s} a_{i} b_{i}$
$=\sum_{i=1}^{\mathbb{S}} r a_{i} b_{i}=\sum_{i=1}^{S}\left(r a_{i}\right) b_{i}$ in $A B$ since $r a_{i}$ in A and b_{i} in B for $1=1,2, \ldots, s$.

Hence $A B$ is an ideal in R.

Lemma 1-1. If A and B are ideals in R, then $A B$ is contained in A and $A B$ is contained in B.

Proof:
Let x be any element of $A B$ such that $x=\sum_{i=1}^{n} a_{i} b_{i}$ for
some a_{i} in A and b_{i} in B. In particular, since B is an ideal, and b_{i} in B, this implies that b_{i} in R. Hence $a_{i} b_{i}$ in A by dorinition 1-7. Therefore $x=\sum_{i=1}^{n} a_{i} b_{i} \in A$ and $A B C A$. The proof of $A B C B$ is similar.

Deinintion 1-11. If A and B are ideals in R, then the quotient $A: B$ consists of all elements c in R such that $c B C A$ ($C B$ means (c) B).

Theorem 2-5. If A and B are ideals in R, then $A: B$ is an ideal in R.

Proof:
Since A and B are ideals, $A B$ is contained in A by lemma I-I. Let a be any element in A; then $a B$ is contained in A. This implies A is contained in $A: B$. Hence $A: B$ is not empty. Let x, y be elements in $A: B$; then $x B$ is contained in A and $x b$ is in A for every b in B. Also $y B$ is contained in A and $y b$ is in A for every b in B. Fix b arbitrary; then $\mathrm{xb} 0(-\mathrm{yb})$ is in it. Since the distributive law is valid in R, then $[X \theta(-T)] b$ is an element of A every b in B. Then $[x \oplus(-y)] B$ is contained in A. Hence $x \oplus(-y)$ is an element of $A: B$.

Let z be an element in $A: B$; this implies that $z B$ is contained in A by definition 1-11. If b is an arbitrary ejement of $B, z b$ in A implies that $r(z b)$ is in $A, r \in R$, by definition 1-7. Then (rz)b in A, since multiplication is associative
in R. This implies ($r z$) 3 is contained in A or $r z \in A: B$.
Hence $A: B$ is an ideal in R.
Dufinition 1-12. If A is an ideal in R, the radical of A, denoted by \sqrt{A}, consists of all elements $b \in R$ some power of which is contained in \mathbb{A} (i.e., if x is in the radical of A, then there exists a positive integer n such that x^{n} is in A.)

Theorom $1-6$. If A is an ideal in R, then the radical of A is an ideal in R.

Proof:
The radical of A is not empty since A is contained in the radical of A.

Let x and y be any two elements of the radical of A; then there exist positive integers m and n such that x^{m} is in A and y^{n} is in A. The term $[x \oplus(-y)]^{m+n}$ expanded yields $\sum_{k=0}^{m+n} c_{k} x^{k}(m+n)-k$ for binomial coefficients c_{k}, or by the factorial notation $\sum_{k=0}^{m+n} \frac{(m+n)!}{[(m+n)-k!k!}(-1)^{k_{x} k_{y}(m+n)-k}$. Either k is greater than or equal to m, or $(m+n)-k$ is greater than or equal to n. Hence $[x \oplus(-Y)]^{m+n}$ is an element of A and $x \theta(-y)$ is in the radical of A.

Let r be an arbitrary element of R; then $(r x)^{m}$ is equal to $r^{m_{n}} x^{m} \in A$ since $r^{m} \in R, x^{m_{2}} \in A$. Then $r x$ is in the radical of
A and the radical of A is an ideal in R.

Lemma 1-2. Every ideal in the ring of integers is principal.

Proof:
Let A be an ideal of ring R. If $A=(0)$, then it is principal idaal. If A contains a number b not equal to 0 , then it also contains -b , and one of these numbers is positive. Let a be the least positive element of A, and c an arbitrary element in A. If r is the non-negative remainder when c is divided by a, then $c=q a+r$ for $0 \leq r<a$. Since c and a belong to the ideal, $c-q a=r$ belongs to the ideal also. Since r is less than a, then r is equal to zero because a is the least positive number of the ideal. Hence $c=q a$. Therefore all numbers of the ideal A are multiples of a. Hence $A=(a)$, and A is a principal ideal.

Definition 1-13. Let R be a ring. An ideal A is said to be prime if whenever a product bc in A with b and c in R, then either b in A or c in A.

Let $m>1$ be an integer and suppose (m) is a prime ideal in the ring of integers. If m is not a prime integer, then $m=a b$, where a and b are integers different from 0, 1, -1 . No generality is lost in assuming a and b positive, thus $0<a<m$ and $0<b<m$. But since (m) is prime, $a b \in(m)$ implies that either $a \in(m)$ or $b \in(m)$, and from this it
follows that eifaer $a=m a{ }^{\prime}$ or $b \mathrm{mb}^{\text {f }}$ for some positive fntegers a and b^{\prime}. This is imporible since both a and b are positive iaterors less than m. Thi contradiction irplies m must be prime.

Conversely, if $m=p$ is a prime intecer and the ideal (p) contains $a b$, where a and b are integers, it follows that $a b=c p$ for some integer c. Hence p divides $a b$ and so p divides either a or b, whence (p) contains either a or b. It follows from the definition that $(p)=(m)$ is a prime ideal.

Definfition 1-14. Let R be a ring. An ideal A is said to be maximal if A is not equal to R and there exists no ideals between A and R. (i.c., If $A \subset K \subset R$, either $K=A$, or $K=R_{\text {. }}$)

In the ring of integers I, every proper prime ideal is maximal (2, P. 212). For suppose $A=(p)$ is any proper prime ideal in I, with another ideal B such that $A<B<I$. Then there exists an element t in B such that t is not in A. This implies t is not equal to fp for any integer j. Hence the greatest common divisor of t and p is 1. Since I is the greatest common divisor of t and p, there exist integers x and y such that $l=t x+p y$. But $t x$ is in B and $p y$ is in E also; this implies that I is in B. If 1 is in B, then $B=I$, and this is a contradition. Hence A is maximal.

Definition 2-15. Let R be an aroitrary ring and let A be an ideal in R. Then A is said to be primary if the conditions a, b in $R, a b$ in A, a is not in A imply the existence of a positive integer m such that b^{m} is in A.

Theorem 1-7. Let Q be a primary ideal in R. If P is the radical of Q, then P is prime. Moreover if $a b \in Q$, a $\mathbb{\&}$, then $b \in P$. Also if A and B are ideals in R such that $A B$ is contained in Q andi A is not contained in Q, then B is contained in P.

Proof:
Let $\sqrt{Q}=P$, and $a, b \in R$ such that $a b \in P$. Suppose $a \notin P$; then $a^{n} \notin Q$ for any integer n. There exists an integer t, such that $(a b)^{t} \in Q$, or $a^{t^{t}} \in Q$, and $a^{t} \notin Q$ implies $\left(b^{t}\right)^{m} \in Q$ for some integer m. Hence $b^{t m} \in Q$ implies $b \in \sqrt{Q}=P$. Therefore P is a prime ideal.

Now if $a b \in Q$ with $a \notin Q$, then $b^{m} \in Q$ for some positive integer m; hence $b \in \sqrt{Q}=P$.

Also, if A is not contained in Q, there exists an element $a_{0} \in A$ such that $a_{0} \& Q, a_{0} b \in Q$ for every $b \in B$. But $a_{o} \&$ implies $b \in P$ for every $b \in B$; hence $B \subset P$.

Definition 1-16. Let Q denote a primary ideal and let $P=\sqrt{Q}$. Then Q is said to be a primary ideal belonging to P or that Q is primary for P.

Theorem 1-S. Lat Q and P are ideals in a ring R such the t
(I) Q CP.
(2) If $b \in P$, then $b^{n} \in Q$ for some integer n. (n may depend on b)
(3) If $a b \in Q, a \notin Q$, then $b \in P$.

Then Q is primary with radical P if and only if these conditions hold. Proof:

Suppose Q is primary with radical P; then $Q C P$ by definition 2-16. If $b \in P=\sqrt{Q}$, then $b^{n} \in Q$ for some integer n. If $a b \in Q, a \notin Q$, then $b^{k} \in Q$ for some integer k since Q is a primary ideal. Hence $b \in \sqrt{Q}=P$.

Assume (1), (2), and (3), if $a b \in Q, a \notin Q$, then $b \in P$ by (3). By (2) $b \in P$ implies $b^{n} \in Q$ for some integer n; hence Q is primary. To show $P=\sqrt{Q}$, show $P \subset \sqrt{Q}$ and $\sqrt{Q} C_{P}$. Let $b \in P$, by (2; $b^{n} \in Q$ implies $b \in \sqrt{Q}$ or $P \subset \sqrt{Q}$. Now if $x \in \sqrt{Q}$, then $x^{t} \in Q$ where t is the least exponent such that $x^{t} \in Q$. If $t=I$, then $x \in Q \subset P$ by (I). If $t \neq 1$, then $x^{t-1} \notin Q$ implies $x \in P$ by (3). Hence $\sqrt{Q} \subset P$.

The following statement is an equivalent form of condiction (3).

If $a b \in Q, b \notin P$, then $a \in Q$.

Covolary 1-2. Let R be a ring with unity, and let Q, P oo idoals in R such that
(1) $Q \subset P$.
(2) I: $b \in P$, then $b^{n} \in Q$ for some integer n.
(3) P is a maximal ideal.

Then Q is primary belonging to P.
Proof:
Let $a b \in Q, b \notin P$; it is necessary to show that $a \in Q$. Consider the ideal $P+(b)$; then $P<P+(b) \subset R$. Since P is a maximal ideal, it follows that $p+(b)=R$ and $p+r b=a$ for some $p \in P, r \in R$, where e denotes the identity in R. By (2), there exists a positive integer k such that $p^{k} \in Q$ and also $(p+r b)^{k}=e$. The expansion of this equation gives $p^{k}+k p^{k-1}(r b)+\ldots+(r b)^{k}=\theta$, and $p^{k}+b\left(k p^{k_{p}}+\ldots+r^{k} b^{k-1}\right)=e$. Let t ionote $\left(i p^{k} r+\ldots+r^{k} b^{k-1}\right) ;$ then $a p^{k}+a b t=a$ by multiplying this equation by a. Then $a p^{k} \in Q$ since $p^{k} \in Q$, and $a b t \in Q$ since $a b \in Q$; hence $a \in Q$.

CHAPMER BIBLIOGRAPHY

1. McCoy, Neal H., Introduction to Modern Alpebra, Boston, Allyn and Bacon, Inc., 1960.
2. Moore, John T., Elements of Abstract Alzebra, New York, Macmillan Company, 1962.

CHAPTER II

EXTENDED AND CONTRACTED IDEALS

Definition 2-1. Let R be a ring. A ring R is said to contain a homomorphic image of R if there exists a mapping \bar{f} of R into R^{\prime} such that the operations of addition and multiplication are preserved. Then $\bar{f}(a \oplus b)=\bar{f}(a)$ 田 $\bar{f}(b)$ and $\bar{I}(a \odot b)=\bar{I}(a) \square \bar{I}(b)$ where addition is denoted by θ and Φ and multiplication i denoted by 0 and an rings R and R^{\prime} respectively. This mapping is called a homomorphism of R into R^{\prime}.

Throughout this chapter R and S will denote rings with unity, and \bar{f} will denote a honomorphism of R into S such that $\bar{f}(e)=e^{\prime}$ where e denotes the identity in R and e^{\prime} the identity in S. The relations between ideals in R and ideals in S will be discussed with ideals in R being denoted by capital letters with subscript r, and ideals in S by capital latters with subscript s. The operations of addition and multiplication will be denoted by \odot, \odot and \boxplus, \square in R and S respectively.

Wheorem 2－1．Let A_{s} be an arbitrary ideal in S ．Then $\vec{P}^{-1}\left(A_{s}\right)=\left\{x \mid x \in R, \vec{r}(x) \in A_{S}\right\}$ is an ideal in R ．

Proof：

Let $x, y \quad \bar{i}-1\left(A_{s}\right)$ ；then $\bar{f}(x \oplus(-y))=\bar{f}(x)$ 田 $\bar{f}(-y)$ ． Since $\bar{f}(x), \bar{f}(y) \in A_{s}$ and A_{s} is an ideal it follows that $\bar{f}(-y)=-\bar{f}(y) \in A_{s}(2, p \cdot 17)$ ．Therefore $\bar{f}(x \otimes(-y))=\bar{f}(x) \boxplus \bar{f}(-y) \in A_{s} ;$ hence $x \oplus(-y) \in \bar{S}^{-1}\left(A_{s}\right)$ ． If $r \in R$ ，then $\bar{f}(r x)=\bar{f}(r) \bar{f}(x) \in A_{s}$ since $\bar{f}(x) \in A_{s}$ and $\bar{Y}(x) \in s$ ．Hence $r x \in \bar{f}^{-1}\left(A_{s}\right)$ for any $x \in \bar{f}^{-1}\left(A_{s}\right)$ and $r \in R$ and therefore $\overline{\mathrm{r}}^{-1}\left(\mathrm{~A}_{\mathrm{s}}\right)$ is an ideal in R ．

Theorom 2－2．Let A_{r} be an arbitrary ideal in R ．Then $S\left(\bar{f}\left(A_{r}\right)\right)=\left\{y^{\prime} y^{\prime}=\sum_{i=1}^{n} s_{i} a_{i}\right.$ where $s_{i} \in S, a_{i} \in \bar{f}\left(A_{r}\right)$ ，n a positive integer $\}$ is an ideal in S ． Proof：

$$
\text { Lst } x^{\prime}, y^{\prime} \in S\left(\bar{I}\left(A_{r}\right)\right) \text { such that } x^{\prime}=\sum_{i=1}^{n} s_{i} a_{i}
$$

$y^{\prime}=\sum_{j=1}^{m} s^{\prime} j_{j}$ where $s_{i}, s_{j} \in S, a_{i}, b_{j} \in \bar{f}\left(A_{r}\right), n$ and m positive integers and $i=1,2, \ldots, n, j=1,2, \ldots, m$ ． Then $x^{\prime} \mathrm{B}\left(-y^{\prime}\right)=\sum_{i=1}^{n} s_{i} a_{i} ⿴ 囗 十\left(-\sum_{j=1}^{m} s^{\prime} j_{j}\right)=\sum_{i=1}^{n} s_{i} a_{i} \mathbb{m}_{i=n+1}^{m+n} s_{i} a_{i}$
where $s_{n+j}=-s ' ;$ for $j=1,2, \ldots, m$ ，and $b_{j}=a_{j+n}$ ． Thus x^{\prime} 团 $(-y)=\sum_{i=1}^{m+n} s_{i} a_{i}$ ．Since $a_{i} \in \bar{T}\left(A_{r}\right)$ ，this implies tiact $\sum_{i=1}^{m+n} s_{i} a_{i} \in S \bar{f}\left(A_{r}\right)$ and x^{\prime} 田 $\left(-y^{\prime}\right) \in S\left(\overline{\mathrm{I}}\left(A_{r}\right)\right)$ ．

If $r \in S$, then $r x^{\prime}=r\left(\sum_{i=1}^{n} s_{i} a_{i}\right)=\sum_{i=1}^{n} r\left(s_{i} a_{i}\right)=\sum_{i=1}^{n}\left(r s_{i}\right) a_{i}$ is the element of $S\left(\bar{f}\left(A_{r}\right)\right)$.

Therefore $S\left(\bar{f}\left(A_{r}\right)\right)$ is an ideal in S.
Definition 2-2. In A_{S} is an ideal in S, the ideal $\overline{\mathrm{F}}^{-1}\left(\mathrm{~A}_{\mathrm{s}}\right)$ is called the contracted ideal, denoted by $\mathrm{A}_{\mathrm{s}}{ }^{c}$, or the contraction, of A_{S} in R. If A_{r} is an ideal in R, the ideal $\bar{S}\left(A_{r}\right)$ generated by $\bar{f}\left(A_{r}\right)$ in S is called the extended icaal, denoted by $A_{r}{ }^{\theta}$, or the extension, of A_{r} in S.

Theorem 2-3. If $A_{s} \subset B_{s}$ then $A_{s}{ }^{c} C B_{s}{ }^{c}$; and if $A_{r} \subset B_{r}$ then $A_{r}{ }^{e} \subset B_{r}{ }^{e}$.

Proof:
First, assume $A_{s} \subset B_{i ;}$, and let x be an arbitrary element of $A_{S}{ }^{c}$. Then $\bar{f}(x) \in A_{S} \subset B_{S}$ by definition, hence $x \in B_{S}{ }^{c}$. Since x is an arbitrary element of $A_{S}{ }^{c}$, it follows that $A_{S}{ }^{c} \subset B_{S}{ }^{c}$.

Now, assume $A_{r} \subset B_{r}$, and let $y^{\prime} E A_{r}{ }^{\theta}$, then $y^{\prime}=\sum_{i=1}^{n} s_{i} \bar{P}\left(a_{i}\right)$ for some positive integer $n, i=1,2, \ldots, n, s_{i} \in S, a_{i} \in A_{r}$. Since $a_{i} \in A_{r} \subset B_{r}$, this implies $a_{i} \in B_{r}$ or $\bar{f}\left(a_{i}\right) \in B_{r}$ e for each 1. Also, $s_{i} \bar{P}\left(a_{i}\right) \in B_{r}{ }^{\theta}$ by definition, heme $V^{\prime}=\sum_{i=1}^{n} s_{i} \bar{P}\left(a_{i}\right) \in B_{r}^{\theta}$ since $B_{r}{ }^{e}$ is an ideal in S. Therefore $A_{r}{ }^{e} \subset B_{r}{ }^{e}$.

Theorem 2-4. $\quad\left(A_{S}{ }^{c}\right)^{e} C A_{S}$; and $A_{r} C\left(A_{r}\right)^{e}$. Proof:

First, let $y^{\prime} \in\left(A_{s}\right)^{e}$, then oy definition $y^{\prime}=\sum_{i=1}^{n} s_{i} \bar{f}\left(a_{i}\right)$, for some $n, i=1,2, \ldots, n, s_{i} \in S, a_{i} \in A_{s}{ }^{c}$. Since each $a_{i} \in A_{s}{ }^{c}$, it follows by theorem 2-I that $\bar{f}\left(a_{i}\right) \in A_{s}$. Also $s_{i} \bar{Y}\left(a_{i}\right) \in S A_{s}=A_{s}$; hence $y^{\prime}=\sum_{i=1}^{n} s_{i} \bar{Y}\left(a_{i}\right) \in A_{s}$ and therefore $\left(A_{s}\right)^{e} \subset A_{s}$.

Now, let $x \in A_{r}$, then $\bar{P}(x) \in A_{r}{ }^{e}$ by theorem 2-2. This implies $x \in\left(A_{r}\right)^{c}$ by definition 2-2. Therefors $A_{r} \subset\left(A_{r}\right)^{c}$.

Notation.
$A_{r}{ }^{0 C}$ means $\left(A_{r}{ }^{e}\right)^{c}$, and $A_{S}{ }^{c e}$ means $\left(A_{s}\right)^{\rho}$.
$\bar{f}\left(x^{n}\right)$ means $(\bar{f}(x))^{n}$.
Theorem 2-5. $\quad A_{S}{ }^{c e c}=A_{S}{ }^{c}$; and $A_{r}{ }^{\text {ece }}=A_{r}{ }^{e}$.
Proof:
First, $A_{s}{ }^{c e} C A_{s}$ by theorem 2-4, hence $\left(A_{s}{ }^{c e}\right)^{c} C A_{s}{ }^{c}$ by theorem 2-3. Also $\left.A_{s}{ }^{c} C\left(A_{s}\right)^{\circ}\right)^{\theta c}$ by theorem 2-4; therefore $A_{S}{ }^{c e c}=A_{S}{ }^{c}$.

Now, $\left(A_{r}{ }^{e}\right)^{c e} \subset A_{r}{ }^{e}$ by theorem 2-4. Also $A_{r} \subset A_{r}{ }^{e c}$ by theorem 2-4; therefore $A_{r}{ }^{e} C\left(A_{r}{ }^{e c}\right)^{e}$ follows by theorem 2-3. Hence $A_{r}{ }^{\text {ece }}=A_{r}{ }^{e}$.

Theorem 2-6. $A_{S}{ }^{c}+B_{S}{ }^{c} C\left(A_{S}+B_{S}\right)^{c}$, and $\left(A_{r}+B_{r}\right)^{e}=A_{r}{ }^{e}+B_{r}{ }^{e}$.

Proof:
First, $A_{S} C A_{s}+B_{S}$ for A_{s} and B_{s} in S; then $A_{S}{ }^{c} C\left(A_{S}+B_{S}\right)^{0}$ by theorem 2-3, and $B_{S} \subset A_{S}+B_{S}$ implies $B_{S}{ }^{C} C\left(A_{S}+B_{S}\right)^{c}$. Hence $A_{S}{ }^{c}+B_{S}{ }^{c} C\left(A_{S}+B_{S}\right)^{c}$.

Now, $A_{r} \subset A_{r}+B_{r}$ for A_{r} and B_{r} in R, then $A_{r}{ }^{e} \subset\left(A_{r}+B_{r}\right)^{e}$ by theorem 2-3, and $B_{r} C A_{r}+B_{r}$ implies $B_{r}{ }^{e} C\left(A_{r}+B_{r}\right)^{e}$. Hence $A_{r}{ }^{e}+B_{r}{ }^{e} C\left(A_{r}+B_{r}\right)^{e}$. Also, let $y^{\prime} \in\left(A_{r}+B_{r}\right)^{e}$, then by definition, $y^{\prime}=\sum_{i=1}^{n} z_{i} \bar{f}\left(a_{i} \oplus b_{i}\right)=\sum_{i=1}^{n} s_{i} \bar{f}\left(a_{i}\right)$ 日 $\sum_{i=1}^{n} s_{i} \bar{f}\left(b_{i}\right)$ for n a positive integer, $i=1,2, \ldots, n, a_{i} \in A_{r}, b_{i} \in B_{r}$, $s_{i} \in S$. Since $a_{i} \in A_{r}$, the , $) \in A_{r}{ }^{e}$ and $s_{i} \bar{f}\left(a_{i}\right) \in A_{r}{ }^{0}$ by theorem 2-1, this implies that $s_{i} \bar{f}\left(a_{i}\right) \in A_{r}{ }^{e}+B_{r}{ }^{e}$. Since $b_{i} \in B_{r}$, then $\bar{f}\left(b_{i}\right) \in B_{r}^{e}$ and $s_{i} \bar{f}\left(b_{i}\right) \in B_{r}{ }^{e}$ by theorem 2-1, this implies $s_{i} \bar{f}\left(b_{i}\right) \in A_{r}{ }^{e}+B_{r}{ }^{e}$. Fence $y^{\prime}=\sum_{i=1}^{n} s_{i} \bar{P}\left(a_{i}\right) B \sum_{i=1}^{n} s_{i} \bar{P}\left(b_{i}\right) \in A_{x}^{\theta}+B_{r}^{B}$ or $\left(A_{r}+B_{r}\right)^{e} C A_{r}^{e}+B_{r}{ }^{e}$. Therefore $\left(A_{r}+B_{r}\right)^{e}=A_{r}^{e}+B_{r}^{e}$. Theorem 2-7. $\left(A_{S} \cap B_{S}\right)^{c}=A_{S}{ }^{c} \cap B_{S}{ }^{c}$, and $\left(A_{r} \cap B_{r}\right)^{\theta} \subset A_{r}{ }^{\theta} \cap B_{P}{ }^{e}$.

Proof:
First, $\left(A_{s} \cap B_{s}\right) \subset A_{s}$ for A_{s} and B_{s} in S, then $\left(A_{S} \cap B_{S}\right)^{C} \subset A_{S}{ }^{c}$ by theorem $2-3$, and $\left(A_{S} \cap B_{S}\right) \subset B_{S}$ implies $\left(A_{S} \cap B_{S}\right)^{c} \subset B_{S}{ }^{c}$. Hence $\left(A_{S} \cap B_{S}\right)^{C} C A_{S}{ }^{C} \cap B_{S}{ }^{c}$. Let $x \in A_{S}{ }^{c} \cap B_{S}{ }^{c}$, then $x \in \Lambda_{S}{ }^{c}$ and $x \in B_{S}{ }^{c}$. This implies $\bar{f}(x) \in A_{S}$ and $\bar{f}(x) \in B_{S}$
by theorem 2-i. Then $\bar{f}(x) \in \Lambda_{s} \cap B_{S}$ by the definition of intersection. Hence $x \in\left(A_{z} f B_{s}\right)^{c}$ or $A_{s}{ }^{c} \cap B_{S}{ }^{c} C\left(A_{s} \cap B_{s}\right)^{c}$. Therefore $\left(A_{S} \cap B_{3}\right)^{c}=A_{S}{ }^{c} \cap B_{S}{ }^{c}$.

Now, $\left(A_{r} \wedge B_{r}\right) \subset A_{r}$ by the definition oi t intersection; this implies $\left(A_{r} \cap B_{i r}\right)^{e} \subset A_{r}{ }^{\theta}$. Also $A_{r} \cap B_{r} \subset B_{r}$ implies $\left(A_{r} \cap B_{r}\right)^{e} \subset B_{r}{ }^{\ominus}$. Hence $\left(A_{r} \cap B_{r}\right)^{\theta} \subset A_{r}{ }^{\ominus} \cap B_{r}{ }^{e}$.

Theorem 2-8. $A_{s}{ }^{c} B_{S}{ }^{c} C\left(A_{S} B_{S}\right)^{c}$, and $\left(A_{r} B_{r}\right)^{e}=A_{r}{ }^{0} B_{r}{ }^{e}$. Proof:

First, let z be an arbitrary element of $A_{S}{ }^{C_{S}}{ }^{c}$ where $z=\sum_{i=1}^{n} x_{i} y_{i}$ for $x_{i} \in A_{s}{ }^{c}$ and $y_{i} \in B_{s}{ }^{c}, i=1,2, \ldots, n$, for sone positive integer n. This implies that $\bar{f}\left(x_{i}\right) \in A_{s}{ }^{c e} \subset A_{s}$ and $\bar{f}\left(y_{i}\right) \in B_{s}{ }^{c e} \subset B_{s}$ for each $i=1,2, \ldots, n$. Then $\bar{f}\left(x_{i}\right) \bar{f}\left(y_{i}\right)=\bar{f}\left(x_{i} y_{i}\right) \in A_{s} \beta_{s}$ for each $i=1,2, \ldots, n$. Therefore $\sum_{i=1}^{n} \bar{T}\left(x_{i} y_{i}\right)=\bar{P}\left(\sum_{i=1}^{n} x_{i} y_{i}\right)=\bar{P}(z) \in A_{s} B_{s}$. Hence $z \in\left(A_{s} B_{s}\right)^{c}$ and $A_{s}{ }^{c} B_{s}{ }^{c} C\left(A_{s} B_{s}\right)^{c}$.

Now, let z' $C\left(A_{r} B_{r}\right)^{e}$. Then $z^{\prime}=\sum_{i=1}^{k} s_{i} \bar{r}\left(c_{i}\right)$ where $c_{i}=\sum_{j_{i}=1}^{n_{i}} a_{j_{i}} b_{j_{i}}$ for $a_{j_{i}} \in A_{r}, b_{j_{i}} \in B_{r}, s_{i} \in S, i=1,2, \ldots, k$
and $j_{1}=1,2, \ldots, n_{i}$, for some positive integer k. Hence, $\bar{f}\left(a_{j_{i}}\right) \in A_{r}{ }^{e}, \bar{f}\left(b_{j_{i}}\right) \in 3_{r}{ }^{e}$, and $\bar{f}\left(a_{j_{i}}\right) \bar{I}\left(b_{j_{i}}\right)=\bar{f}\left(a_{j_{i}}{ }_{j_{j}}\right) \in A_{r}{ }^{\theta} B_{r}{ }^{\theta}$ for each j_{i}. Therefore $\sum_{j_{j}=1}^{\sum_{i}} \bar{P}\left(a_{j_{i}} b_{j_{i}}\right)=\bar{f}\left(\sum_{j_{i}}^{n_{i}} a_{j_{i}} b_{j_{i}}\right)$ $=\bar{P}\left(c_{i}\right) \in A_{r}{ }^{e} B_{r}{ }^{e}$. Since $s_{i} \in S$, this implies that
$a_{j_{i}} \in A_{p}$ and $b_{j_{i}} \in B_{r}$ ，for some positive integers m_{i} and n_{i} ． $\operatorname{man} x_{i} y_{i}^{\prime}=\left(\sum_{j_{i}=1}^{m_{i}} s_{j_{i}} \bar{T}\left(a_{j_{i}}\right)\right)\left(\sum_{j_{i}=1}^{n_{i}} j_{i} \bar{f}\left(b_{j_{i}}\right)\right)$

$$
=\left(s_{1} \bar{\Gamma}\left(a_{1}\right)\right)\left(t_{1} \bar{I}\left(b_{1}\right)\right) \square\left(s_{1} \bar{f}\left(a_{1}\right)\right)\left(t_{2} \bar{f}\left(b_{2}\right)\right) \bar{B} \ldots
$$

$$
\mathbb{巴}\left(s_{m_{i}} \bar{f}\left(a_{m_{i}}\right)\right)\left(t_{n_{i}-i} \bar{f}\left(b_{n_{i}-1}\right)\right) \mathbb{E}\left(s_{m_{i}} \bar{f}\left(a_{m_{i}}\right)\right)\left(t_{n_{i}} \bar{f}\left(b_{n_{i}}\right)\right)
$$

$$
=s_{1} t_{1} \bar{f}\left(a_{1} b_{1}\right) \text { ⿴囗 } s_{1} t_{2} \bar{f}\left(a_{1} b_{2}\right) \mathbb{A} \ldots
$$

$$
s_{m_{i}}{ }^{t} n_{i}-\bar{I}\left(a_{m_{i}} b_{n_{i}-I}\right) \mathbb{E} s_{m_{i}} t_{n_{i}} \overline{\mathrm{I}}\left(a_{m_{i}} b_{n_{i}}\right)
$$

Since $a_{1} \in A_{1}$ and $b_{1} \in B_{r}$ ，this implies that $a_{1} b_{I} \in A_{r} B_{r}$ ， and $\bar{T}\left(a_{I} b_{I}\right) \in\left(A_{r} B_{r}\right)^{e}$ ．Also，$s_{I} t_{I} \in S$ ，hence $s_{1} t_{I} \bar{P}\left(a_{I} b_{1}\right) \in\left(A_{r} B_{r}\right)^{\theta}$ ．Using the same argument，
 Since the sum of all these terms is contained in $\left(A_{r} B_{N}\right)^{e}$ ，it follows that $x^{\prime}{ }_{i} y_{i}^{\prime} \in\left(A_{r} B_{r}\right)^{\theta}$ and $w:=\sum_{i=1}^{N} x_{i}{ }_{i} y^{\prime}{ }_{i} \in\left(A_{r} B_{r}\right)^{\theta}$ ．

Nonce $A_{r}{ }^{e} B_{r}{ }^{e} C\left(A_{r} B_{r}\right)^{\theta}$ and therefore $\left(A_{r} B_{r}\right)^{\theta}=A_{r}{ }^{e} B_{r}{ }^{e}$ ．

$$
\begin{aligned}
& s_{i} \bar{P}\left(o_{i}\right) \in A_{r} e_{B_{r}}{ }^{e} \text { and } \sum_{i=1}^{k} s_{i} \bar{P}\left(o_{i}\right) \in A_{r}{ }^{\theta_{B}}{ }_{r}{ }^{e} \text {. Therefore } \\
& \left(A_{r} B_{r}\right)^{e} \mathbb{C A}_{r}{ }^{a} B_{r}{ }^{e} . \\
& \text { Also, let 'w' be an arbitrary element of } \mathrm{A}_{\mathrm{Y}} \mathrm{~B}_{1}{ }^{e} \text { where } \\
& w^{\prime}=\sum_{i=1}^{k} x^{\prime}{ }_{i} y^{\prime}{ }_{i} \text { for } x^{\prime}{ }_{i} \in A_{r}{ }^{\theta} \text { and } y_{i} \in_{i}{ }^{e} \text {. Let } \\
& x_{i}=\sum_{i=1}^{m_{i}} s_{j} \bar{f}\left(a_{j_{i}}\right) \text { and } y_{i}^{\prime}=\sum_{j_{i}=1}^{n_{i}} t_{j_{i}} \bar{f}\left(b_{j_{i}}\right) \text { for } s_{j_{i}}, t j_{i} \in S \text {, }
\end{aligned}
$$

Theorem 2-9. $\left(A_{S}: B_{S}\right)^{c} \subset A_{S}{ }^{c}: B_{S}{ }^{c}$, and $\left(A_{P}: B_{r}\right)^{e} \subset A_{P}{ }^{e}: B_{P}{ }^{e}$.

Proof:
First, since $A_{S}: B_{S}=A_{S}: B_{S}$, then $\left(A_{S}: B_{S}\right) B_{S} \subset A_{S}$ by the definition of quotient ideal. This implies $\left(\left(A_{S}: B_{S}\right) B_{S}\right)^{c} \subset A_{S}{ }^{c}$ by theorem $2-3$, and $\left(A_{S}: B_{S}\right)^{C_{B}}{ }_{S}{ }^{c} C A_{S}{ }^{c}$ by theorem 2-4. Hence $\left(A_{S}: B_{S}\right)^{c} \subset A_{S}{ }^{c}: B_{S}{ }^{c}$.

Now, since $\left(A_{r}: B_{r}\right) B_{r} C A_{r}$, it follows that $\left(\left(A_{r}: B_{r}\right) B_{r}\right)^{\theta} \subset A_{r}^{e}$ by theorem $2-3$, and $\left(A_{r}: B_{r}\right)^{e_{B_{r}}^{e} C A_{r} e}$ by theorem 2-8. Hence $\left(A_{r}: B_{r}\right)^{e} \subset A_{r}{ }^{e}: B_{r}{ }^{e}$.

$$
\text { Theorem 2-10. } \quad\left(\sqrt{A_{S}}\right)^{c}=\sqrt{A_{S}} \text {, and }\left(\sqrt{A_{r}}\right)^{e} C \sqrt{A_{r}{ }^{c}} \text {. }
$$

Proof:
If $x \in \sqrt{A_{S}{ }^{c}}$, then $x^{n} \in A_{S}{ }^{c}$ for some positive integer n by definition 1-12. Then by definition $2-2,(\bar{f}(x))^{n} \in A_{3}$. By definition l-12 again, $\bar{f}(x) \in \sqrt{A_{s}}$, and $x \in\left(\sqrt{A_{s}}\right)^{c}$. Hence $\sqrt{A_{S}}{ }^{c} C\left(\sqrt{A_{S}}\right)^{c}$. Now if $y \in\left(\sqrt{A_{S}}\right)^{c}$, it follows that $\bar{I}(y) \in \sqrt{A_{S}}$. This implies $(\bar{f}(y))^{n}=\bar{f}\left(y^{n}\right) \in A_{S}$ for some positive integer n, and $y^{n} \in A_{S}{ }^{c}$ by definition $2-2$, so $y \in \sqrt{A_{S}}{ }^{c}$. Hence $\left(\sqrt{A_{S}}\right)^{c} \subset \sqrt{A_{S}}{ }^{c}$ and therefore $\left(\sqrt{A_{S}}\right)^{c}=\sqrt{A_{S}}{ }^{c}$.

Now, if $x^{\prime} \in\left(\sqrt{A_{r}}\right)^{\rho}$, then $x:=\sum_{i=1}^{k} s_{i} \overline{\tilde{I}}\left(a_{i}\right)$ for $a_{i} \in \sqrt{A_{r}}$, $s_{i} \in S, k$ a positive integer, and $i=1,2, \ldots, k$, Since $a_{i} \in \sqrt{A_{r}}$, this implies $\left(a_{i}\right)^{n_{i}} \in A_{r}$ for some positive integer n_{i}, for each i. Also $\bar{f}\left(a_{i}\right)^{n_{i}}=\left(\bar{f}\left(a_{i}\right)\right)^{n_{i}}$; thus
$\left(s_{i}\right)^{n_{i}} \bar{P}\left(a_{i}\right)^{n_{i}}=\left(s_{i} \bar{I}\left(a_{i}\right)\right)^{n_{i}} \in A_{r}{ }^{e}$ for each i. Hence $s_{i} T_{i}\left(a_{i}\right) \in \sqrt{A_{r}}$ for each $i=1,2, \ldots, k$ and therefore $x^{\prime}=\sum_{i=1}^{k} s_{i} \bar{\rho}\left(a_{i}\right) \in \sqrt{A_{r}}$ or $\left(\sqrt{A_{i}}\right)^{\theta} C \sqrt{A_{r}{ }^{e}}$.

In the comparison between theorems $2-4$ and $2-5$, the containments in theorem $2-4$ become equalities when A_{s} is an extended ideal and A_{r} a contracted ideal. However, an ideal in S need not be an extended ideal, and need not be the extension of its contraction; this implies that $A_{s}{ }^{c \theta}<A_{3}$ is possible. Also, an ldeal in R need not be a contracted ideal nor need it be the contraction of its extension; hence $A_{r}{ }^{6 C}>A_{r}$ is possible. Theorem 2-5 implies that if an ideal in S is an extended ideal, it is the extension of its contraction, and that if an ideal in R is a contracted ideal, it is the contraction of its extension. These results are stated in the rollowing theorems.

Notetion.

Denote by (C) the set of all ideals in R which are contracted ideals, and by (E) the set of all ideals in S which are extended ideals.

An ideal A_{r} in (C) means there exists an ldeal $A_{s} C S$ such that $A_{r}=A_{S}{ }^{c}$. Likewise an ideal $A_{S}{ }_{S}$ in (E) means there exists an ideal $A^{\prime}{ }_{x} \subset R$ such that $\left(A^{\prime}\right)^{e}=A^{\prime} S^{\circ}$

Theorem 2-1. If A_{r} is a contracted ideal, then $\left(A_{p}{ }^{e}\right)^{c}=A_{r}$.

Proof:
Since $A_{r} C(C)$, then $A_{2}=A_{S}{ }^{c}$ for some sdeal $A_{S} C S$, hence
$A_{r}{ }^{e c}=\left(A_{S}{ }^{c}\right)^{e c}=A_{S}{ }^{c}$ by theorem 2-5. Therefore $A_{r}{ }^{e c}=A_{r}$.

Wheomem 2-12. If A_{S} is an extenced iden, then $\left(A_{S}{ }^{c}\right)^{e}=A_{S}$.

Proon:
Let $A_{S} C(R)$, then there existis an ideal $A_{r} \subset R$ such that $A_{s}=A_{r}^{\theta}$, thus $A_{S}{ }^{c \theta}=\left(A_{r}{ }^{\theta}\right)^{c e}=A_{r}{ }^{e}$ by theorem 2-5. Therefore $A_{S}{ }^{C \theta}=A_{S}$.

Derinition 2-3. Let two sets A and \bar{A} be given. If there exists a mapping of A onto \bar{A} suoh that each element of \bar{A} appears only once as an image, then the mapping is called biunique, and is referped to as a one-to-one correspondence. In this case there exists an "invorse" mapping which associates with each element b of \bar{A} that element of A which has b as its image. This mapping is denoted by $A \rightarrow \bar{A}$.

Lemne 2-1. The mapping of the set of extended ideals In S onto their respective contracted ideals in R is a one-to-one mapping.
Proof:
Lot A_{3} and B_{S} be any two Ideals in (E), such that A_{S} is
not equal to B_{S}. Now, if $A_{S}^{c}=B_{S}{ }^{c}$, then $\left(A_{S}{ }^{c}\right)^{e}=\left(B_{S}{ }^{c}\right)^{c}$ by theorem 2-5. Hence $A_{S}=B_{S}$ by theorem 2-12, but this is a contradiction to the assumption. Therefore this is a one-to-one mapping.

Iemma 2-2. The mapping of the set of contracted ideals in R onto their respective extended ideals in S is a one-to. one mapping.

Proof:
Let A_{r} and B_{r} be any two ideals in (C), such that A_{r} is not equal to B_{r}. Now, if $A_{r}{ }^{a}=B_{r}{ }^{e}$, it follows that $\left(A_{3}{ }^{\theta}\right)^{c}=\left(B_{r}{ }^{\theta}\right)^{c}$ by theorem 2-5. Hence $A_{r}=B_{i}$, by theorem 2-11, but this is a contradiction to the assumption. Therefore this is a one-to-one mapping.

Theorem 2-13. There exists a one-to-one correspondence betwoon the set of all contracted ideals in R and the set of all extended ideals in S.

Proor:
The proof follows directiy from lemma 2-1 and lemma 2-2.
Derinition 2-4. Let two sets A and \bar{A} be given. If it is possible to place the two sets into one-to-one correspondence such that the mapping preacrves the relations, 1.0., if with every element a of A there can be csscoiated an olement a^{\prime} of \bar{A} in a biunique manner so that the relations exibting botwoen any elements a, b, \ldots of ... also exist
between the associatcd elements a', b', ... and vice versa, ther thu two sets are called isomorphic (with respect to the relations in question). The mapping itself is called an isomorphism (1, pp. 24,-25).

Lemma 2-3. The set of all contracted ideals in R is closed under idoal quotient formation.

Proof:
Let A_{r} and B_{r} denote arbitrary contracted ideals in R. Then $A_{r}=A_{r}{ }^{\theta C}$ and $B_{r}=B_{r}{ }^{\theta C}$. Let $A_{r}{ }^{e}=A_{S}$ and $B_{r}{ }^{e}=B_{S}$, then $\left(A_{s}: B_{s}\right)^{c} C A_{s}{ }^{c}: B_{s}{ }^{c}$ by theorem 2-9. Also, $\left(A_{S}{ }^{c}: B_{S}{ }^{c}\right)^{C_{B}} B_{S}=\left(A_{S}{ }^{C}: B_{S}{ }^{c}\right)^{e} B_{S}{ }^{C \theta}$ by theorem 2-12 since B_{S} is an extended ideal. Then
$\left(A_{S}{ }^{c}: B_{S}{ }^{c}\right)^{\theta_{B}} B_{S}=\left(\left(A_{S}{ }^{c}: B_{S}{ }^{c}\right) B_{S}{ }^{c}\right)^{e} C A_{S}{ }^{c o}=A_{S}$. From $\left(A_{S}{ }^{c}: B_{S}{ }^{c}\right)^{\theta_{S}} C A_{S}$ follows $\left(A_{S}{ }^{c}: B_{S}{ }^{c}\right)^{\ominus} C A_{S}: B_{S}$ by the definition of a quotient ideal; this implies $\left(A_{s}{ }^{c}: B_{s}{ }^{c}\right)^{e C} C\left(A_{S}: B_{s}\right)^{c}$ by theorem 2-3, and $\left(A_{B}{ }^{c}: B_{S}{ }^{c}\right) \subset\left(A_{3}{ }^{c}: B_{S}{ }^{c}\right)^{e c}$ by theorem 2-4. Hence $\left(A_{B}{ }^{c}: B_{S}{ }^{c}\right) \subset\left(A_{S}: B_{S}\right)^{c}$. Therciore $A_{S}{ }^{c}: B_{S}{ }^{c}=\left(A_{S}: B_{S}\right)^{c}$.

Let \bar{I} denote a homomorphic mapping of a ring R into a ring S such that the identity of S is the image of the identity of R. Consider the set of contracted ideals in R and the set of extended ideals in S where the contractions and extensions are periormed with respect to the function $\overline{\mathrm{F}}$. Let ϕ dencte the one-to-one correspondence between the set
on contractod idcals in R and the set of extended iceals in S. The following rosults aro then valia.

Theorom 2-11. If (0 . is ciosed with respect to addition, then the sum of two contracted ideals is the contraction of the extension of their sum and the sets (C) and (E) are isomorphic with respect to addition.

Proof:
Let A_{r}, B_{r} be elements of (C). Since $\left(A_{r}+B_{r}\right)$ is in (C), there exists an ideal $D_{S} \in(E)$ such that $D_{S}{ }^{c}=A_{r}+B_{r}$. Then $A_{r}+B_{r}=D_{S}{ }^{c}=\left(D_{S}{ }^{c}\right)^{\theta c}=\left(A_{r}+B_{r}\right)^{e c}$ bJ theorem 2-5.

Since $\phi\left(A_{r}\right)=A_{r}{ }^{e}$ ard $\phi\left(B_{r}\right)=B_{r}{ }^{e}$ by lemma $2-2$, thon $\phi\left(A_{r}+B_{r}\right)=\left(A_{r}+B_{r}\right)^{e}=A_{r}{ }^{e}+B_{r}{ }^{e}=\not \varnothing\left(A_{r}\right)+\phi\left(B_{P}\right)$ by theorem 2-6. Thereiore (C) and (E) are isomorphic with respect to addition.

Wheorem 2-25. If (E) is closed with reapect to the operation of intersection, then the intersection of two extended ideals is the extension of the contraction of their intersection and the sets (C) and (E) are isomorphic with respect to the operation of intersection. Proof:

Lets A_{S}, B_{S} be ideals of (E). Since $A_{S} \cap B_{S} \in(E)$, there exiats an ideal $D_{r} \in(C)$ such that $D_{r}{ }^{e}=A_{s} \cap B_{s}$. Then $A_{S} \cap B_{S}=D_{r}^{e}=\left(D_{r}^{e}\right)^{c e}=\left(A_{S} \cap B_{S}\right)^{c e}$ by theorem 2-5.

Since $\phi^{-1}\left(A_{S}\right)=A_{S}^{c}$ and $\phi^{-1}\left(B_{S}\right)=B_{S}^{c}$ by Lemma 2-1,
then $\not \phi^{-1}\left(A_{S} \cap E_{B}\right)=\left(A_{s} \cap B_{S}\right)^{c}=A_{S}{ }^{c} \cap B_{S}{ }^{c}=\not p^{-1}\left(A_{S}\right) \cap \phi^{-1}\left(D_{S}\right)$ by theoren 2-7. Hence (C) and (D) are isomorphis with respect to the operation of intersection.

Theorem $2-16$. If (C) is closed with respect to the operation of multiplication, then the product of two contracted ideals is the contraction of the extension of their proauct and the sets (C) and (E) are isomorphic with respect to the operation of multiplication.

Proof:
Let A_{r}, B_{r} be ideals of (C). Since $A_{r} B_{r} \in(C)$, there exists an ideal $D_{S} \in(\mathbb{E})$ such that $D_{S}{ }^{c}=A_{r} B_{r}$. Then $A_{r} B_{r}=D_{S}^{c}=\left(D_{S}^{C}\right)^{e c}=\left(A_{r} B_{r}\right)^{e c}$ by theorem 2-5.

Now, since $\phi\left(A_{r}\right)=A_{r}{ }^{\theta}$ and $\phi\left(B_{r}\right)=B_{r}{ }^{e}$ by lemma 2-2, then $\phi\left(A_{r} B_{r}\right)=\left(A_{r} B_{r}\right)^{e}=A_{r} e_{B_{r}}{ }^{e}=\phi\left(A_{r}\right) \phi\left(B_{r}\right)$ by tineorem 2-8. Hence (0) and (E) are isomorphic with respect to the cperation of multiplication.

Theorem 2-17. If (E) is ciosed with respect to the operation of quotient formation, then the quotient of two extended ideais is the extension of the contraction of their quotient formation and the sets (C) and (\mathbb{E}) are isomorphic with respect to the operation of quotiont formation. Proot:

Let $A_{s} s B_{s}$ be ideals of (D$)$. Since $\left(A_{s}: E_{s}\right) \in(\mathbb{Z})$, there exists an ideal $D_{r} \in(C)$ such that $D_{r}{ }^{e}=A_{S}: B_{S}$.

Then $\left(A_{S}: B_{s}\right)=D_{r}^{e}=\left(D_{r}^{e}\right)^{c \theta}=\left(A_{\mathrm{S}}: B_{\mathrm{g}}\right)^{\text {ce }}$ by theorem 2-5.
Since $\phi^{-1}\left(A_{s}\right)=A_{s}{ }^{c}$ and $\phi^{-1}\left(B_{s}\right)=B_{g}{ }^{c}$ by lema 2-1,
thon $\not \phi^{-1}\left(A_{S}: B_{S}\right)=\left(A_{S}: B_{S}\right)^{c}=A_{S}^{c}: B_{S}^{c}=\not \phi^{-1}\left(A_{S}\right): \not \phi^{-1}\left(B_{S}\right)$ by lema 2-3. Hence (C) and (E) are isomorphic witia respect to ideal quotient formation.

Theorem 2-28. If (E) is closed with respect to the operation of radical formation, then the radical of an extended ideal 13 the extension of the contraction of its radical formation and the sets (C) and (E) are isomorphic with respect to the operation of radical formation. Proor:

Let A_{s} be an ideal of (\mathbb{E}). Since $\sqrt{A_{s}} \in(\mathbb{E})$, there exists an ideal $D_{r} \in(C)$ such that $D_{r}{ }^{e}=\sqrt{A_{S}}$. Then $D_{r}{ }^{e c}=\left(\sqrt{A_{S}}\right)^{c}$ by theorem 2-5, and $D_{r}=D_{r}{ }^{e c}=\left(\sqrt{A_{S}}\right)^{c}=\sqrt{A_{S}{ }^{c}}$ by theorem 2-11 and theorem 2-10. Hence $\sqrt{A_{s}}=D_{r}{ }^{\ominus}=\left(\sqrt{A_{s}{ }^{c}}\right)^{e}=\left(\sqrt{A_{s}}\right)^{c e}$.

The sets (0) and (E) are isomorphic with respect to radical formation since $\phi^{-1}\left(\sqrt{\Lambda_{s}}\right)=\left(\sqrt{A_{s}}\right)^{c}=\sqrt{A_{s}}{ }^{c}=\sqrt{\phi^{-1}\left(A_{s}\right)}$.

Theorem 2-1c. If P_{S} is a $p r$ me ideal in S and Q_{S} an ideal in S which is primary for P_{S}, then $P_{S}{ }^{c}$ is prime and $Q_{s}{ }^{c}$ primary for $P_{s}{ }^{c}$ in R. Proof:

Suppose $a, b \in R$ such that $a b \in P_{S}{ }^{c}$ and $a<P_{S}{ }^{c}$. This implies that $\bar{P}(a b) \in P_{S}{ }^{c e} \subset P_{S}$ or $\bar{r}(a) \bar{F}(b) \in P_{s}$, where F_{S} is a prime ideal. But $\vec{r}(a) \nmid \nmid P_{s}$, since otherwise $a \in F_{s}{ }^{c}$. Hence
$\bar{P}(b) \in P_{S}$ and $b \in P_{S}{ }^{c}$. Therefore $P_{S}{ }^{c}$ is a prime ideal. Since Q_{S} is primary for P_{S}, then $Q_{S} \subset P_{s}$, hence $Q_{\mathrm{s}}{ }^{c} \subset P_{\mathrm{s}}{ }^{\mathrm{c}}$ by theorem 2-3.

Suppose $a, b \in R$ such that $a b \in Q_{S}{ }^{c}$ and $a \notin Q_{S}{ }^{c}$. Thin
implies that $\bar{P}(a b) \in Q_{S}{ }^{c \theta} \subset Q_{S}$ or $\bar{P}(a) \bar{f}(b) \in Q_{S}$, where Q_{S} is primary for P_{S}. But $\bar{f}(a) \notin Q_{S}$ otherwise $a \in Q_{S}{ }^{c}$. Fence $\bar{f}(b) \in P_{s}$ and $b \in P_{s}{ }^{c}$ by theorem 1-8. If $b \in P_{S}{ }^{c}$, then $\bar{P}(b) \in P_{S}{ }^{c e} \subset P_{S}=\sqrt{Q_{S}}$ by theorem 2-4. Then $(\bar{f}(b))^{n}=\bar{f}\left(b^{n}\right) \in Q_{S}$ for sone positive integer n. Therefore $b^{n} \in Q_{S}{ }^{c}$ and hence $Q_{S}{ }^{c}$ primary for $P_{S}{ }^{c}$ by theorem 1-8.

CHAPTER BIBLIOGRAPIY

1. Van dor Waeraen, 3. I. Modem Algebra, Volume I, translatod by Fred Blum, New Yonk, Frederick Ungar Publishing Company, 195°.
2. Zariski, Oscar and Pierre Samuel, Commtative Algebra, Volume I, Princeton, N. J., D. Van Nostrand Company, Inc., 1958.

CHAPTER III

RELATMONS BETMEEN IDEAES

IN INTEGRAL DOMATNS D AND D M_{M}

Definition 3-1. A commutative ring R with more than one element and having a unity is called an integral domain if the following additional property holds.

If $r, s \in R$ such that $r s=0$, then $r=0$, or $s=0(3, p .36)$.

Definition 3-2. A nonempty set F is a field if F is a commutative ring with unity, having the property that every non-zero element in F has a multiplicative inverse. (i.e., If θ is he unit, there exists a^{-1} for each non-zero a in F such that a (0 $\left.a^{-1}=e.\right)$

Derinition 3-3. The set of all elements of a ring R which map into the zero of a ring S under a homomorphism \bar{F} is cailed the kernel of the homomorphism. The kernel is denoted by N .

Derinition 3-4. A multiplicative system (abbreviation m.s.) in an integral domain D is a nonempty subset M of D which does not contain the zero of D and which is closed under multiplication-that is, if $m_{2} \in M, m_{2} \in M$, then $m_{1} m_{2} \in M$.

The set of all quotients a / m, where $a \in D, m \in N$, is a subring of the fiold F containing the domain D. It will be donoted by $D_{\text {m }}$ and will bo called the quotient ring of D witt aespect to the multiplicative system M. There are two extreme cases.
(1) If D is the set of all units in D, then $D_{M}=D$.
(2) If M is the set of all mon-zero elements of D, then $D_{M}=F$.

The following theorem (4, pp. 221-222) is quoted without proof for the case of an intecral domain D.

Theorem 3-1. Let D denota an interral domain and Ma multiplicative system in D. There exists a homomorphism $\overline{\mathrm{h}}$ of D into D_{M} such that
(a) The kernel N of \bar{h} is the zero alement in D.
(b) The ejements of $\bar{h}(M)$ are units in D_{M}.
(c) Every element of D_{M} may be written as a quotient $h(x) / h(m)$ for some $x \in R$ and $m \in M$. This homomorphism is called the canonfcal or natural mapping of D into D_{M} and will be used tiroughout the remainder of his chapter when refering to a homomorphism of D into D_{M}.

Dofinition 3-5. An eiement x of a ring R is said to be primo to an idoal A_{p} of R if $\left(A_{r}:(x)\right)=A_{r}$ (that is, if its residue class modulo A_{r} is not a zero divisor in R / A_{r}).

A subset G os R is sata to be prime to A_{2} if each one of ftrs elments is prime to A_{r}.

Sheorem 3-2. Let M be a multiplicavivo system in an integral domain D, and let $D_{\text {M }}$ be tho quitient ring of D with respect to M. If A_{r} is an ldeal in D, then A_{r} sc consizts of all elements b in D such that bn $\in_{A_{r}}$ for some m in M. Proof:

Let $J=\left\{x \mid x \in D, x \in A_{r}\right.$ for some $\left.m \in M\right\}$. Ari arbitrary elemont b of $A_{r}{ }^{e c}$ is such that $\bar{h}(b) \in A_{r}{ }^{\circ}$, and by property (c) of theorer 3-I, an clement of A_{r}, may be written in the form $\sum_{i=1}^{k}\left(\left(\bar{h}\left(x_{i}\right) / \sqrt{h}\left(m_{i}\right)\right) \bar{h}\left(a_{i}\right), x_{i} \in D, m_{i} \in M_{i}, a_{i} \in A_{r}\right.$, anc $k a$ positive integer. Since M is closed under multiplication, the clements of $A_{p}{ }^{e}$ may be reduced to the form $\bar{h}(a) / h(m)$ for $a \in A_{r}, ~ m \in M$. Thus $b \in A_{p} \in c$ implies $\bar{h}(b)=\bar{h}(a) / h(m)$ for sone $a \in A_{r}, m \in \mathrm{M}$. This Implies $\bar{h}(b) \bar{h}(m)=\bar{h}(a)$ or $\bar{h}(b)=\bar{h}(a)$. Thus $\bar{h}(b m$ ($-a)$) is the zero in D_{N}, and thererore bm (4 (-) EN. From property (a) of theorem 3-1, it follows that $b m=a \in A_{r}$, hence $b \in J$ and A_{p} ećJ.

Now suppose beJ. There exists an element m in \mathbb{M} such that $b m \in A_{r}$, hence $\bar{h}(b) \bar{h}(m) \in \bar{h}\left(A_{r}\right)$. Then $\bar{h}(b) \in A_{r}$ e sirce $\overline{\mathrm{h}}(\mathrm{m})$ is a unit in D_{M} by property (b) of theorem 3-1. Thorefore $b \in A_{r}$ ec implies $J C A_{r}$ ec.

The equality $A_{r}{ }^{e c}=J$ follows fron these containnents.

Theorem 3-3. Let M be a multiplicative system in an Integral domain D, and let D_{M} be the quotient ring of D with respect to M. Then an idcal A_{r} in D is a contracted ideal (that is, $A_{r}=A_{D_{r}} 6 c$) if and only if M is primo to A_{r}. Prooi:

First, $A_{r} \subset A_{r}{ }^{8 c}$ by theorem 2-4. Assume M is prime to A_{r} and let $b \in A_{r} \in c$, thon $b \in A_{r}$ for some m in M by theorem 3-2. By the definition of M is prime to A_{r}, bmEA, implies that $b \in A_{r}$. Hence $A_{r} 00<A_{r}$. Therefore $A_{r}=A_{r}$ eo.

Conversely, suppose $A_{r}=A_{r}{ }^{\epsilon c}$ and let m be any olement of M and $x \in D$ such that $x \in A_{r}:(m)$, this implios that $x m \in A_{r}$. Then $\bar{h}(x n) \in A_{r}{ }^{e}$, whenco $\bar{h}(x) \bar{h}(m) \in A_{r}{ }^{e}$. Ey property (b) of thooren $3-1, \bar{h}(n)$ is a unit, hence $\bar{h}(x) \in A_{n}{ }^{\theta}$, this implies $x \in A_{r} c c$. Since $A_{r}=A_{r}$ ec, this implics that $x \in A_{r}$, and therefore $\left(A_{r}:(m)\right) \subset A_{P}$ the containment $A_{r} \in A_{r}:(m)$ is valid for any $m \in D$, hence $A_{r}=A_{r}:(m)$. Therefora M is prime to A_{r} since m is arbitrapy element of M.

Theorem 3-4. Let M be a multiplicative system in an integral domain D, and let D_{M} be the quotient ring of D with reapect to $\overline{i n}$; then every idoal in D_{M} is an oxtonded ldeal. Proof:

Let A_{S} be any ideal in $D_{i f}$, and let x^{\prime} be an arbitrary Qlement of A_{s}. Then $x^{\prime}=\bar{h}(x) / \bar{h}(m)$ for some $x \in D, m \in M$, thus $\bar{h}(x) \in A_{S}$ implies that $x \in A_{S}{ }^{0}$. Now $\bar{h}(x) \in A_{S}{ }^{\text {ce }}$ implies $\left.x^{\prime}=\pi(x) \square e^{\prime} / \operatorname{kim}\right)$ in A_{s} ce where e^{\prime} denotes the multiplicative
identity in D_{M}, honce $A_{S} \leq A_{S}{ }^{\text {ce }}$. Also $A_{B}{ }^{c e} C A_{s}$ by themem 2-4, whence $A_{g}=A_{s}$ ce and every faeal in $D_{V_{1}}$ is an extenced idead.

Theorem 3-5. Lot M be a maltipilcative systom in an integral aorain D, and let D_{M} be the quotient ring of D with respect to M. Then the mapping $A_{r} \longrightarrow A_{r}{ }^{e}$ is a one-to-ono mapping of the set of contracted ideals in D onto the set of ail idoals in D_{M}, and this mapping is an isomorphism with respect to the ideal theoretic operations of forming intersections, quotients, and radicals.

Proof:
Since every ideal in D_{M} is an extended ideal by the previous theorem, it follows from theorem 2-13 that the mapping $A_{r} \longrightarrow A_{r}{ }^{e}$, of the set of contracted ideals in D into the set of ideals in D_{M} is a one-to-one onto mapping. This mapping is an isomorphism with respect to the ideal theoretic operations of forming interections, quotients, and radicals by theorem 2-15, theorem 2-17, and theorem 2-18, respectively.

Theorem 3-6. Let Q_{0} be a pririry ideal of an integral domain D disjoint from a multiplicative system M, and let P_{r} be its (prime) radical. Then P_{r} is disjoint from M, and P_{p} and Q_{p} ane contracted ideals witio reapect to D_{M}. Proof:

Suppose $x \in D$ such that $x \in P_{r}$ and $x \in M$. Then there
oxists a positive intoger n such that x^{2} E Q_{r} since Q_{r} is Primary $\operatorname{sor} P_{P}$. Since x is an element of M then any power of x bolones to M, in partioular $x^{n} \in M_{\text {. This contradicts }}$ tho dusjointness of Q_{r} and M. Theronore P_{r} and M have no elements in commong honce P_{r} is disjoint from M.

Let m be any element of Mand $x \in D$ such that $x \in P_{r}:(m)$, then $x \in P_{r}$. Since P_{r} is disjoint from $M_{,} x \in P_{r}$ by the desinition of a prime ideal. Hence $P_{P}:(m) \subset P_{r}$. Tho contanment $P_{r} C\left(P_{r}:(m)\right)$ is valid for any m in D, hence $P_{r}=P_{r}:(m)$. Since n is an arbitrary element of M, then P_{r} is prime to M and hence P_{r} is a contracted ideal by theorem 3-3.

Lot m be any element of M and $x \in D$ such that $x \in Q_{x}:(m)$, then $x m \in Q_{P}$. Since $m \& P_{r}$, then $X \in Q_{P}$ by theorem $2-8$. Hence $Q_{r}:(m) C Q_{r}$. The containment $Q_{2} C\left(Q_{r}:\left(m_{i}\right)\right.$ is valid for any $m \in D$, hence $Q_{P}=Q_{P}$: (m). Since mis. an arbitrary olement of M, then Q_{S}, is prime to M and hence Q_{Y} is a contracted ideal by thoorem 3-3.

Theopem 3-7. Let Q_{r} be a primary ideal of an integral donain D disjoint from a multiplicative aystem M, and let P_{r} be its prime radical. Then $Q_{P} e^{e}$ is a primary ideal and $P_{r}{ }^{e}$ is its associated prime in $D_{1 / 2}$.
2roon:
Let x^{\prime} and $y^{\prime \prime}$ be elenents $O^{\prime} D_{M}$ such that $x^{\prime} \psi_{P} P^{e}$ and x'f'EPa, by property (c) of theorem 3-I, it follows that
$x^{\prime}=\bar{h}(x) / \bar{h}(m)$ for $x \in D, x \in P_{r}, m \in M, y^{\prime}=\bar{h}(y) / h\left(m^{\prime}\right)$ for $y \in D, W^{\prime} \in M$, and $x^{8} y^{\prime}=\bar{h}^{\prime}(z) / h^{\prime \prime}\left(m^{\prime \prime}\right)$ for $z \in P_{r}$, and $m^{\prime \prime} \in M$. By

$\bar{h}\left(x y m^{\prime \prime} \oplus\left(-\mathrm{mm}^{\prime} z\right)\right)$ is the zero eloment of D_{jr}. Therefore $\left(x y m^{\prime \prime} \odot\left(-m^{\prime} z\right)\right) \in N$, hence $x y m^{\prime \prime}=m m^{3} z$ by property (a) of theorem 3-2. Now $x y m " \in P_{r}$ since $z \in P_{r}$ and thus $x \in P_{r}$ irplies ym" $\in P_{r}$. But m " $\& P_{r}$ since M is dis joint fron P_{x}, whence $y \in P_{r}$ and $\bar{h}(y)=y^{\prime} \in P_{r}{ }^{e}$. Therefore $P_{r}{ }^{\ominus}$ is a prime ideal. Let a' and b^{\prime} bo elenents of D_{M} when that $a^{\prime} \notin a_{r}{ }^{e}$ and able $Q_{p}{ }^{\epsilon}$. Accordine to proporty (c) of thccrem 3-1, it follows that $a^{\prime}=\bar{h}(a) / \bar{h}(m)$ for $a \in D, a \in Q_{r}, m \in M$, $b^{\prime}=\bar{h}(b) / \bar{h}\left(m^{\prime \prime}\right)$ for $b \in D, a^{\prime} \in M$, and $a^{\prime \prime} b^{\prime}=\bar{h}(c) / \bar{h}\left(m^{\prime \prime}\right)$ for $c \in Q_{r}$ and $m^{\prime \prime} \in M$. It follows that $\bar{h}\left(a^{\prime} \operatorname{man}^{\prime \prime} \cup\left(-\operatorname{ma}^{\prime} c\right)\right)$ is the aro element of D_{M}, hence $a^{3} m^{\prime \prime}=m^{\prime \prime} c$ by property (a) of
 because $a \phi Q_{r}$ and $m^{\prime \prime} \in N$. Then $b \in P_{r}$ since Q_{P} is primary for P_{r} and $\bar{h}(b) \in P_{r}{ }^{e}$ by theorem $I-8$. Since the elements of $\bar{h}(M)$ are units in D_{M}, then $b^{\prime}=\bar{h}(b) \in P_{r}{ }^{e}$.

Since Q_{r} is primary for P_{r}, then $Q_{P} \subset P_{r}$, and hence $Q_{r}{ }^{C} C P_{r}{ }^{e}$ by theoren 2-3.

Let x^{\prime} be an arbitrary element in $P_{r}{ }^{e}$. By property (c) of Gheorga $3-i, P_{r}^{e}$ may be written in the form $\left\{\sum_{i=1}^{i n}\left(x_{i}\right) / h\left(m_{i}\right)\right) \sigma\left(p_{i}\right) \mid x_{i} \in D, m_{i} \in M_{,} p_{i} \in P_{p}$, and k a positive trisgent. Sinco M is ciosed uncer multiglication, the
elements of P_{r}^{e} may be reduced to the form $\bar{E}(p) / \sqrt{L}(m)$ for some $p \in P_{r}, m \in \mathbb{M}$. Thus $x^{\prime}=\bar{L}(p) / h(m)$. There exists a positive into er n such that $p^{n} Q_{r}$ since Q_{r} is primary for p_{r}. This indians that $\bar{h}\left(y^{n}\right) \in Q_{r}{ }^{6}$. Also, since m is an element of M, then any power of m belongs to M, in particular $m^{2} \in M$. Thus $x^{n}=(h(p) / h(m))^{n}=\bar{n}\left(p^{n}\right) / \bar{h}\left(n^{n}\right)=\bar{h}\left(p^{n}\right) \quad e^{1} / h\left(m^{n}\right) \in a_{r} e^{e}$ where es denotes the multiplicative identity in D_{M}, and hence $x^{n} \in Q_{r}{ }^{e}$ as desired.

Therefore $Q_{p}{ }^{e}$ is primary for $P_{T}{ }^{e}$ by theorem i-8.
Corollary 3-1. The mapping $\rho_{r} \rightarrow P_{P}{ }^{8}$ is a one-to-one mapping of the set of all contracted prime Ideals in D onto the set of all prime ideals in D_{M}.
proof:
Every ideal in $D_{\text {M }}$ is an extended ideal by theorem $3-4$. In particular, every prime ideal in D_{M} is an extended prime ideal by the previous theorem. Also, the contraction of a prime ideal is a prime ideal by theorem 2-19. Hence it follows from theorem $2-13$ that the mapping $P_{r} \longrightarrow P_{r}{ }^{e}$ of tho set of contracted prime ideals in D onto the set of prime ideals in D_{M} is a one-to-one mapping.

Destifion 3-6. A ring R is called nocthorian if it has an identity and if it satisfies the following equivalent conditions (1), (2), and (3).
(1) Every strictly ascending chain $A_{r_{1}}<A_{r_{2}}<\ldots$
of icieals of R is finite. (Ascending chain condtion).
(2) In overy non-empty family of ideals of R, there cxists a maxinal eloment, that is, an idoal not ountrined fr any other ideal of the fomlly. (Maximum condition).
(3) Evory ideal A_{r} of R has a finite basis; this means, that A_{i} contains a finite set of elements a, $a_{2}, \ldots a_{n}$ such that $A_{n}=R a_{1}+R a_{2}+\ldots+R a_{n}$. (Pfnite basis condition).
hogem 3-8. If D is a noetherjan domain and M is a muluiplicative system in D, thon D_{M} is a noetherian domain. Proof:

Let $A_{S_{1}}<A_{S_{2}}<A_{S_{3}}<\ldots$ be a strictiy ascending chain of idoals in D_{M}. Since every ideal in D_{M} is an extended ideal, there exists ideals $A_{r_{1}}<A_{r_{2}}<A_{r_{3}}<\ldots$ such that $\left(A_{r_{i}}\right)^{e}=A_{N_{i}}$ for $i=1,2,3, \ldots$ Then $\left(A_{r_{1}}\right)^{c c} C\left(A_{r_{2}}\right)^{\theta c} C\left(A_{r_{3}}\right)^{\theta c} \subset \ldots$ by theorem $2-3$. In particular, $\operatorname{Af}\left(A_{r_{i}}\right)^{e}<\left(A_{P_{i+1}}\right)^{e} \operatorname{then}\left(A_{r_{i}}\right)^{\theta c}<\left(A_{p_{i+1}}\right)^{\text {ec }}$ since $\left.\left(A_{r_{i}}\right)^{e 0}=\left(A_{r_{i}+1}\right)^{\text {ec for some i implies }\left(A_{r_{i}}\right.}\right)^{e}=\left(A_{1_{i}}\right)^{\text {foce }}$ $=\left(A_{A_{1+1}}\right)^{80 e}=\left(A_{f_{i+1}}\right)^{0}$. Therefore the chain $\left(A_{I_{1}}\right)^{e c}<\left(A_{r_{2}}\right)^{e c}<\left(A_{r_{3}}\right)^{\text {ec }}<\ldots$ is a stractiy ascending chain
of Adoais in 2 , henoe must be fintite. Thus the chain $\left(A_{p_{1}}\right)^{0}<\left(A_{2}\right)^{e}<\left(A_{i_{3}}\right)^{c}<\ldots$ must be finite, othermise an intinate strictiy ascending chasm of ideals in D is obtained. Wherefore D_{M} is a noetherian ring. Since the komel of the nomonorpaism of D into D_{M} is the zero element or D, it rollows that D is a donain.

Whentm 3-9. If ecch ideal with prime radical in a domain D is a prime power, then focals in D_{V} with prime radicals are also prime powers. Prool:

Let A_{S} be an ideal in D_{M}. Thore exists an ideal A_{p} in D such that $A_{T} e=A_{3}$. Suppose ${\sqrt{A_{3}}}^{e}=P_{S}$ is prime, then there exists a prime ideal P_{r} in D such that $P_{r}{ }^{0}=P_{s}$. In particulan,$\sqrt{A_{S}}=\sqrt{A_{P}}$ implies that $\left(\sqrt{A_{S}}\right)^{c}=\left(\sqrt{A_{2}}\right)^{0}=\sqrt{A_{2}}{ }^{0}$ by theorem $2-3$, and $P_{S}{ }^{c}=\left(\sqrt{A_{S}}\right)^{c}=\sqrt{A_{r}^{e c}}$ is prime by theorem 2-1c. Moreover, $\left(\sqrt{A_{S}}\right)^{c}=\sqrt{A_{S}}=\sqrt{A_{r}}{ }^{e c}$ by theonem 2-10. Since oach ideal with prime radisal in D is a prime power. thoxe exists a positive integer n suon that $\left(p_{s}{ }^{c}\right)^{n}=A_{s}{ }^{c}$ $=\left(A_{r}^{e}\right)^{c}=P_{r}^{n}$. This implies that $A_{r}^{e}=\left(A_{p}^{e c}\right)^{e}=\left(P_{x}^{n}\right)^{e}$ by theorem $2-5$ and $A_{r}{ }^{c}=\left(P_{r}\right)^{n}$ by theorem 2-6. Wharefore $A_{S}=P_{S}{ }^{n}$ as desired, whence ideals in D_{M} with prime radioals are prime powors.

Detinition 3-7. If cis an eloment of a rirg R with centity and A an ideal ia R, dofino
 Antegers ${ }^{\text {in }}$.

It is easy to see from the derinition of an ideal that $((c), A)$ in the above derinition is an ideal in R.

Lemma 3-I. If b, cere eiements of a ring R with idontity and A an ideal in R, then $((b), A)((c), A) \subset((b c), A)$. Proof:

Let $b, c \in R$ and A be an ldeal in R, then

 $a^{\prime}{ }_{j} \in A, n^{\prime}, k$ positiva integers $\}$. By depinition I-IO, $\left((b), A j((c), A)=\sum_{i=1}^{m} x_{i} y_{i} \mid x_{i} \in((b), A), y_{i} \in((c), A), m a\right.$ positivo integer $\}$. Let z be an arbitrany elenent of $((D), A)(\therefore), A) . \operatorname{Then} z=\sum_{i=1}^{m} x_{i} y_{i}$ for $x_{i} \in((b), A), y_{i} \in((c), A)$ and m a positive integer. Suppose $x_{k} y_{k}$ is an arbitrary term in this sum, thon $x_{k}=\sum_{i=1}^{n} r_{i} b 0 \sum_{j=1}^{k} r_{j} a_{j}$ for $r_{i}, r_{j} \in R, n, k$ positive intogers, and $y_{k}=\sum_{i=1}^{n} p_{i}^{i} 0$ o $\sum_{j=1}^{i} r_{j}^{i} j_{j}$ for $r_{i}{ }_{i}$ $n_{j} \in R^{\prime} n^{\prime}, K^{\prime}$ positive intecers. Ther

 oasy to see that $\left(\sum_{i=1}^{n} r_{i} b\right)\left(\sum_{i=1}^{n} r_{i} c\right) \in(b c)$ and the other three terms in this sum are elemenis of A. Hence $x_{k} V_{k} \in((b c), A)$. Since $x_{k} J_{k}$ is an arbitrary torm in the sum $\sum_{i=1}^{m} x_{i} y_{i}$, then every term in this sum is contained in ($(b), A)$. Fience $z=\sum_{i=1}^{n} x_{i} \pi_{i}$ is contained in $((b c), A)$ since $((b c), A)$ is an ideal. Therefore ($(b), A)((c), A) \subset((b c), A)$.

Theorea $3-10$. Maximal ideals of an integral comain D are prime.

Proof:
 and bcely. Then the ideals ($(b), M)$ and $((c), M)$ each contain N properly and since M is maximal, this implies that $((b), M)=D$, and $((c), M)=D$. Hence $((b), N)((a), N)=D D=D$. Since $b c \in M$, then $((b c), M) \subset M$. Hence $D=((b), M)((0), M) C((b c), M) \subset M$ is a contradioution to the acaumption that M is a maximal ideal. Therefore if be $\in \mathbb{M}$, either $b \in M$ or $c \in M$, whence M is a prime idead.

Desintion 3-3. A ring R is said to be a Dedekind domain if it is an integral domain and if every ideal in R is a procuct of prine ideals (4, p. 270).

Notation. If J is an integual doman and \bar{i} is a prime Lieal in J, the set of elemonts in J and not in P forms a multiplicative systom M . In this case tho quotions ring T_{m} Is denoted by Jpo

Desanition 3-9. An integral donain J will be said to bo almost Dedekind if, sivon any maximal ideal P of $J, ~ J p i s ~ a ~$ Dedokind ciomain (2, p. 813).

Theorem $2-11$. If J is an almost Dedekind domain, then propur prime ideals of J are maximal. Prooi:

Let M be a maximal ideal in J. Since a maximal ideal In an intogral donain is prime, this implies that I^{\ominus}, the extension of \mathbb{N} in $J_{\mathbb{N I}}$, is a prime ideal in J_{N} by theorem $3-7$. AIso, by theorem $3-3, N^{e c}=M \neq J$, hence M^{e} is a proper prime in J_{M}, and thus M^{e} is maximal in J_{M} since J_{M} is a Dedektnd domain. Suppose $Q \subset M$ is a proper primo ideal in J, then Q^{e} is a prime ideal in J_{M} by theorem $3-7$. But Q^{e} is not properly contained in \mathbb{M}^{e} since prime ideals are maximal in J_{M} In panticular, every prime ideal contained in M is a contractod Ideal in J by theorem 3-3, and there is a one-to-one corem spondence between prime ideals contained in M and all prine ideals in J_{14} by corollery 3-1. Hence Q in J is not properly contained in M. Since every ideal in a domain J is contained In a maximal jdeal (1 , p. 251), and each maximal iceal m combains no proper prime ideal excopt foself, it follows that propir primo ideals in J ane maximal.

Theoxen 3-2. The powers of a proper icieal in an almost Deacena doman J intarsectin (0) (1, p. 269).

Proon:
Let A ba a proper lioal in J anc p a aximal 1 ceal in J such that $A \subset P \subset J$. Then $A^{e} \subset p^{e} \subset J^{e}=J_{M}$ by theorem 2-3.
Since J_{M} is Dedekind domain $\prod_{n=1}^{\infty}\left(p^{e}\right)^{n}=\left(\right.$ zero ideal in $\left.J_{M}\right)$
(4. p. 217). Moreover, $n_{n=1}^{20}\left(A^{e}\right)^{n} C_{n=1}^{\infty}\left(p^{e}\right)^{n}$ impises $n_{n=1}^{\infty}\left(A^{n}\right)^{0}=\bigcap_{r_{n}=1}^{\infty}\left(A^{Q}\right)^{n}=\left(\right.$ zero ideal in $\left.J_{V}\right)$ by theorem 2-8. Thowerore $\bigcap_{n=1}^{\infty} A^{n} \subset\left(\bigcap_{n=1}^{\infty}\left(A^{n}\right)\right)^{e c}=\left(\text { zeroideal in } J_{n}\right)^{0}=(0) \subset J$. Fance $\bigcap_{n=1}^{\infty} A^{n}=(0)$.

Theorem 3-13. Each propor primary ideal of an almost Dedokind domain J is a power of a maximal ideal (2, p. 813). Proof:

If Q is primary for a maximal ideal P in J, then Q is primary for p^{6} in J_{p} by theorem 3-7. Since J_{p} is a Dedekind Comain, $Q^{*}=\left(P^{\epsilon}\right)^{k}=\left(P^{i r}\right)^{e}$ for some positive integer in since Jp has only one proper prime ideal. Since Q is prinary for $F, Q=Q^{e c}$ by theoren $3-3$. But because P is aximal in D, p^{k} is also primary for p by corollary 3-1. Therefore $p^{k}=\left(p^{k}\right)^{e c}$, and hance $Q=P^{k}$.

Concingy 3-2. Wach iceal with prtme racioal of an amost Dedekind domain is a prime power (2, p. 260). Proon:

The proof follows from tho above theorem sance prime ideals are maximal in an almost Dodelina donain.

The conditions of either theorem 3-13 or corollery 3-2 aro actually necessary and sufficient for a donain to be an alnost Dedekind domain.

1. Buttr, $\mathrm{H} . \mathrm{S}$. and R. C. Phillips, "Almost Multipifation Pirce," Ce, San Journcl of Mathematios, XVII (April, 1965), 267-277.
2. Gilmor, Robort W. Ji. "Intocral Donains which Are Amost Dedokind," Proceeding of the Amoxican Mathomatical Society, XV (Ootober, 1964), 813-818.
3. McCot, Neal H., Introanotion to Modom Almebra, Boston, Allyn and Bacon, Lnc. 1960 .
4. Zariani, Oscar and Pierre Semuel, Commatative Alcebna, Volume I, Princeton, N. J., D. Van Nostrand Company, Inc., 1958.

BLBLICCRAPHY

Bouks

Monoy, Neal H., Introduction to Mocera Algeora, Boston, Allyn and Bacon, Inc.s 1960 .

Moore, John T., Glements 2 Acstract Algetre, New Yow, Macmilan Company, 1902 .

Van der Vaerdon, B. L., Mocorn Alecbra, Volume I, translated by Pred Blat, Now Loxt, Froderick Ungar Puojiching Company, 2950.

Zapiski, Oscar ard Pieme Samuel, Comutative Algebse, Volume I, Princoton, N. J., D. Van Nostrand Companyo ino., 1958.

Articles
Buits, G. S. and R. C. Phillips, "Almost Tultipitce won Rings," Chacjan Journal of Matbematics, XVII (April, 2965), 207-277.

Gilmor, Robert W. Jr., "Integral Domains which Are Almost Dedekinc," Proceedtre. of the American Mathematical Society, XV (Octobe: 1964), 813-316.

