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CHAFTER I

INTRODUCTION
Prelininary Remarks

1.1. Perhaps the grestest of all branches of mathe
enatiocs and certainly the dominant force in mathematica for
almost 300 years is the caloulus. And the central idea of
the ealeulus as developed by Newton ig the derivative of &
function. Although ocaleulus in its simplest form pertains
to & funotion of one real variable, the applications of the
subjeot more often than not involve funotions of several
variables and may even concern functions of an infinite
number of variables.

The primary purpose of this thesls iz to carefully
dovnlep and prove some of the fundamental, classiocal theorenms
of the differsntial caleulus for functions of two real
variables. The generalization of the ideas of derivative
and differentiable functions to two variables glves the
egsence of the gensralization to n-variables. B8ince sourses
in advanoed ocaloulus seldom give rigorous proofe in twoe-
variable caloulus, first-year graduate courses usually
restrict the treatment to functions of one variable, and
since advanoed graduate courses in analysis often involve
abstraot spaces, it seems that the two-variable case is

negleoted.
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Chapter I insludes most of the relevant definitions on
sets m functions that are needed in the thesis, and a
statement of certain basic results on sets of real numbers.
Chapter II will conaist of proofs of fundeamental theorems on
continnous and differentiable funotions of one real variable.
Chapter III will include proofs of fundamental, classicsl
theorems on differentiable functions of two real variables,
some of which are extensions of the theoreme on differentiable
funotions of one real variable in Chapter II.

Definitions
1.2, A funotion from A into B is & eorrespondense whioch
mates with every element t of the set A 2 unique element f(t)
of the set B. A 1s onlled the domain of the funstion and
Rp = {£(t)[t €A} 1 called the range of f. The funotion f is

g8aid to be defined on A.

1.3. A peal funotion of onme real yarisble is a function
from A into R, where A is a get of real numbers and R is the

set of all real numbers.

1.%. A zeal funotion of two real variables is a funotion
from A into H, where A i35 & set of ordered pairs of real
numbers and R 1s the set of ali resl nuubera.

1.5. A1l functions considered in this thesis are

funotions of the type defined in 1.3 and 1.4, and the domain

of definition will olarify which type 48 belng considered.
1.6, If ¢¢d, then [0,d] will denote the set of all real
numsbers t such that s <t <4 and (o0,4) will denote the sat of



all real numbars & suoh that & <t <ds [0,4] is oalled a
glosed interval and (0,4) is called an gpen interval.
1.7 If T i3 a real mumber and § > 0, then I( I §)
will denote the set of all real iambers t auch that
[t= T < §3
I{ 32 5) i2 an opsn interval of center [ amd length 25 .
1,8+ The mml sttt will mean "meane” or "means that.®

1.9« I35 I2e seey Ins oo i2 & descending infinitesimal
sequence of g}gm intervele s:: for emsch my L., CI,, and
lagnﬁ }z(zn) = 0y feee 1f €50 42 ohosen, then thers existe a
positive integer K &c¢ that whenever n 1z chosen such that
noN, then 1(I,) < €, whers 1(1,) denotes the length of the
closed interval I.

1.10. 4 set T of open intervels sovers a set S of real
pumbsys 353 each element of 8 balongs to at least one of the
intervals of T.

1,11, T 4s aun inderior point of 8 113 there exists s

$>0 8o that I{ 3 S)cs.

1,12, [ 48 a limit point of 8 133 Af S >0 is chosen,
then there 18 a tcS so that ¢ cX{ {35 ) ami ¢ £ 1.
1.13. U 4z an upper bound of © 113 for each $ ¢ 8, ¢ U,

1.14. L 3o @ lower bound of S s3: for emch ¢ 8, t 2L,
1,15, 8 42 bounded iss there exists an M >0 so that for

eaoh € ¢8, |t| <M.

1.16. K 48 8 lemst upper bound of 8 s:s K is an upper
bound of 8, anmd if <>0 is chosen, then there is a 6 ¢ 3 mﬁh
that t >E- ¢ .




1.17. X s s greateat lower bound of 3 :st k is &
lower bound of 8, and 1f ¢ > 0 ia Monim, then there iz a

t €8 suoch that & <kéc

1,18 If f 4= defined on I(§; §4)s then £ is continue
&t § c1¢ f ¢ > 0 1s chosen, then thers exists & S > 0s
§< Sqs B0 that uﬁomvar t is chosen such that |t T| < § ,
then [f{t)=f{5)]| <« € .

1.19, 1If there exists a 4 >0 so that for eash t such
that T <t < §+ §3 £(t) is defined, then f ig right-sontinuous
&% I 42 if ¢ 7 0 is shosen, then there exista & 550, § < §y»
go that whenever % 15 ohosen ruch Shat { < & <J+ §, then
|e(s)et(T)] < €

'1.20. If there exists & Sy 70 so that for each t such
that = §3 <t <5 f(t) is defined, then f i3 left-continuous
a8 § 133 Af ¢ > 0 iz chosen, ther there exists a S 70, § <§yq,
se that whensver ¢t is chosen such that S« (<t < I, then
| £ie)et{T)]| < €

1,21, If £ iz defined on [0,4], then £ is gontinuous on
0,47 s¢s £ 4o continuous at each I such that ¢ < {24, f is
right-continuous at ¢, and £ is lefte-continucus at 4.

1.22, If £ is definsd on I{ T3 $4), then £ is differ-
 entiable at | 535 there exists a real number A ac that if
€ >0 iz chosen, then there exists a $>0, § ¢ S4, so that
whensver ¢ 18 chosen szuch that 0 i)t- I < § » then

£{t)-r(3)

wrsspmmmememen s B | £ € o

&3
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If £ is differentiable at I, then A is denoted by £°( I) and
£9( T) is oalled the dexrivative of f at §.

1,23, If (a,b) is an erdersd paly of yesl numbers and
$ 70, then C({a,b); S ) will denote the set of sll ordered
paire of resl mumbers (x,y) = (a+sx, bt ay) such that

VaZze a2y < 55
Cl{{ayb); §) ia salled an gpen gircle.
1.26, H{(ayb)s S43 §g) will dencte the set of all
ordered puire of real mmbsre {x,7) » {atax,béay) suoh that
|ax)c Sy amd Iny)c Sp Bilaeb)s Sq5 Sp) is ealled an gpen

O WO L »
1.23, IZ P 18 o s« of ordered pairs of resl numbers,
then (a,b) 18 gn Anterier point of P css therz exists & 5 >0
so that C{(a,b)s §) C 2, |

1.26, If for smoh x c¢I{aj $4) f{x,b) is defined, then £

ueus 8t (=,b) xith Fespest to $he first yarisble s1:

Af € 70 iz chosan, then there exista a 50, § <S4, 80
that wvhenever Ax 1s chosen guoh thet [Ax|< § 4 then
| £{ae sxeb)et(a,b)] < € «

1.27, I fox emoh y ¢ I{bg Sq) fla,y) is dsfined, then f

that wvhensver o~y is chosen sush that (s yl ¢ §,. then
| £{asot ay)etiap)l 2 € . |

1,28, If £ 18 dei’ined on C({a,d)s $4), then f im con~
tinuous at (a,b) ses &F € > 0 is ohosen, then there exists o



§20, < 1+ 80 that whenever p»x and ay are chosen such

that
V tsaxé- Azy <§ ’

then |f(a+ ax,b+ay)=f(a,b)| ¢ €. The funotion £ is con-
tinuous on C((a,b); §4) t13 for each (x,y) ec((a.b);gl). r
is continuous at (x,y).

1.29. 1If for each x ¢I(a; 51) f(x,b) is defined, then
f is differentiable st (a,b) with respect to the first
yariable ::; there exists a real number A so that if € > 0
is ‘uhomn. then there exists a § > 0, §< 4§ 1+ B0 that when.
ever ax is chosen such that 0 </ax) < §, then

f(a+Ax,b)=f(a,b)

-Al‘e'
AX

If £ is differentiable at (a,b) with reapect to the first
variable, then A is denoted by f1(a,b) and £,(a,b) is called
the first-order partisl derivative of f at (a,b) with respest
%o the first varisble. Te funotion f, exists on C((s,b)s i)
133 for each (x,y) ¢C((a,b); $1)s £1(x,y) exists,

1.30. If for each y € I(b; §4) f(a,y) is defined, then
f is differentiable at (a,b) uith respect to the second
variable t:: there exists a real number A so that if € » 0 is
chosen, then there exists a § >0, §< §» S0 that whenever oy
is choasen such that 0 <[Ay|<§, then

f{a,b+ay)=-r(a,b)

"A‘LE_Q
Ay ,



If £ is differentiable at (a,b) with respeot to the second
variable, then A is denoted by‘f‘zta,b) and rz(a,b) is called
the firsteorder paertial derivative of f at (a,b) with respect

to the second varisbls. The funotion f, exists on C{(a,b); {1)

t3t for each (x,¥)¢ C({a,h); Si)’ fz(:x.y) exista,

1.31, If f is defined on c((a,h)g,fl), and if for each Ay
such that [Ay|[<¢ ,)’1 f’l(a.b* Ay) exists, then f is differentiable
at (a,b) with respeot to the first variable and then with res-

pect to the second variable :i: there existe a real number A so

that if €>0 is chosen, then there exista a 70, § 54’1, go that
whenever Ay lg chosen such that 0 < [ayl < §, then

fi{a,b+ Ay)srf, (a,d)
! 1 Al C € .

Ay
If £ is differentiable at (a,b) with reaspect to the first
variable and then with respect to the second variable, then A
is denoted by f;,(a,b) and fiz(u,b) is called the gecond-order

partisl derivative of f at (a,b) with respeot to the first

yariable and then with respeot to the second variable. If f,
exiats on C((a,b); §;), then f;, exists on C((s,b); $4) 311 for

each (x,r) € C((a,b)s 51), t‘lz(x,y) exists.,

1.32, If £ ia defined on Cf (a.b);!lj, and if for each A X
such that |ax|c§; fp(a+ax,b) exists, then f is differentiable
at (a,b) with respect to the second variable and then with res-

pect to the first variable i1:: there exists a real number A so
that Af €¢>0 is chosen, then there exists a §70, {<d;, so that

whenever AX is chosen such that O<|ax( z §, then



fala+ axyb)ary(a,b)
AX

It £ is differentaidble at (a,b) with reapect to the second
variable end then with respeet to the firat variable, then A
iz denoted by faq(a,b) and fpq(s,b) iz cslled the second-
oxder partial derivative of f st (a,b) with respect
Becond yarisble and then with respect to the first mmm
I f, exista on C((a,b); S5)s then 54 exigte on C((e,b)s §,)
152 for emoh (x,¥) € ¢((a,b); §1)s f21(x,y) exists.

1.33. It should be olear that fn(mb), rza(n,b). and
"higher order® partial derivatives ocan be defined in a
similar menner,

1.34. If £ is defined on C((a,b); §4), then f ig differ-
gntiable at (a,b) 313 there exists an ordered pair of rosl
nunbers (A,B) so that if ¢ > 0 ie ohosen, then there exists
8 § 70y §¢§qs 80 that vhenever sx and Ay ars chossn such
that

- A L € o

4m z §,

f{a+ AX, D+ Ay)=r{a,b) Apx+BaAy

Vxe & Vi
1.35. If £ ie defined on C{(a,b)s $4), and 4if the angle
Xy 0«27, i5 measured in radians by & counter-clockwise
rotation from the positive ze-axis, ther £ ig differentisble
gt (a,b) in the direction x 333 there exists a real number A

then
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go that if ¢ > 0 is chosen, then thers exists & § > 0, { < J,_,
80 that whenever srs ig chosen such that 0 ca8 . §, then
f{a+ A8 008X 0+ 08 8inx Juf{a,b)
oo " - B l < €
ASB
If £ is differentiable at (2,h) in the direoetion X, then 4
is denoted by D(fs(a,b)s X ) and D{fs(a,d)s <) 48 omlled the

pionsl derivative of f at (a,b) in the direction

Asgumed Theorems
Borel Covering Theorem. If T i8 & got of open
Wmmtml then there sxists & finite sub-
got Ty of T which also soversg [o.d] .

1.37. Bolzans-Welerstrass Theorem. If & set 5 of resl
pumbers ig infinite and bounded, then 5 has at least onms limit
point.

1.38. If 8 ig non-smpty and S has an upper bound. hen
3 hes & unigue lesmst uppsr bound.

1.39. If 8 13 popw-empty and S has & lower bound, then
S has & unique grestest lowsr bound.

1800 I Is Ipe sees Ing eee 18 8 dosconding
od intervals, mmmg
WMW 5 such that for sach n, § € L.

1.4 & gloasd tmtexral contalne 511 of 201 Limhs gl

i.82. If o and 4 are reel pumbers
“a{»lc&l, < [Md[ <]a\~z-|d|
and led| = [s] |4| .




CHAPTER II

THEOREMS ON REAL FUNCTIONS
OF ONE REAL VARIABLE

2.1. Tneorem. If f is defined on [o,d] and f is con-
tinuous on [6,d), and Af f(c) and r(d4) differ in sign, then
thers exists @ point T, o < <4, such that £({) = 0.

Proof. Assume f(c) <0 and £(d)7 0. Divide [o,d] in
half, i.e. let

c+d o+d
[G’d] s [0,?]{] [?pd] °
Ir
c+d

f(-—-—-) = 0
2

the theorem 18 proved. Assunme

c+d
2
Then if
c+d
£ (=) >0,
2
choose
[ormr]
o s ’
*2
ir

o+d
£ () <0,
2

10
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choosge
o+l
[ ';*'ﬁ] .

Denote the chosen half by I; = [¢y,d4]; notice that
£{oq) 20,1(a4) >0,
and
4o
(L) = -;-.
Continue the process, assuming that each time a closed
interval is divided in half, the mid-point obtained, say
P, is such that f(p) ¥ 0; for if at any time r(p) = 0, the
theorem follows. In generael, I, = [on,dn'l. £(c,) <0, t(dn) >0,
and
d=o
(L, = —-2—5.
Clearly, Iys Ips eees Iny ees i8 a descending infinitesimal
sequence of closed intervals. By 1.40 there exists a unique
resl number | such that for each n, I ¢ I, Certainly,
T e [o,d4]).

Assume £( T )>0. By 1.21, f is either continucus at § ,
right-continuous at J , or left-continuous at { ; then
olearly, there exists a §>0 so that whenever t ¢ [0,4] is
chosen such that |t-T| <5 , then [£(t)-f(T )< £(F ). Since
11:3*2;5 I,) = 0, there exists a positive integer N so that when-

ever n is chosen such that n»> N, then l(In) £ § » L8

dnﬂﬁn < S .
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Choose n 7N and consider o,. Clearly, | o= U <¢§. There-
fore, [£(0,)=f( )| cf(§), and hence, f(o,)>0. But this
contradiets the fact that f(e,) <0. Therefore, £( ) 30,
and in a similar mammer it cen be shown that £( { )4 0. Thus,
£{%) = 0, and olearly ¢ < } ¢ 4.

Assume £(o) 70 and £{d)< 0. Then the theorem follows
by a simllar argument.

2.2. Theorem. If £ is defined on I{ s §y)s and Af ©
s contimuous st I, then there exists & >0, § < S, 80
that E = {£(£) [t €I( 33§ ) 5 38 bounded. |
Eroof. Since f is continuous at § , there exists a
§70, $< §q» 80 that whensver t 1s ohosen such that
lt"Z' <« § ,
then [f(t)-f(¥)|<1. Choose M = 1+ £(3) and let
teX(535).
Therefore, |f(t)-r(3¥ )| <1, ana, by 1.42, [£{t)]-]e(¥)]<1,
L.8. [£(t)]| £1+4|2(T )] = M. Therefore, E 1s bounded.
2.3. Theorem. If f is defined on [¢,4] and f is oon-
tinuous on [e,d] , then
1) E = {f(t) ] te[o,d]§ 18 bounded,
| 11) E has s unique least upper K and s unique
gXestest lower bound k, and
111) there sxists an 4 ¢ [0,d] guch that f(~4) = K
and there exists an x ;¢ [o,4] such that £(<,) = k.
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Proof of (1). For each § ocuch that ¢ <{ < d, it is
oleer thet there exists & §; >0 so that I(fs ;) ¢ [e:d]
By 2.2 there existz & § Y0, { ¢§4» 80 that

By= {0(t)| tex(356)8
is bounded. 8ince f is right-continuous at ¢ and left.
continucue at 4, an argument similar to the one used in the
proof of 2.2 oan be employed to find J,, J 370 so that each
of By = {£(t) | t ¢ I(e; 5,) N[0yd]§ and
B, = {rm{ t e X(d; S )N (0,d] §
iz bounded.

Let T denote the set of open intervals cbtained in the
preceding paragraph. Clearly, T oovers [e,d] . By 1.36 there
exists a finite subset Ty of T whioh also covers [o0,4] . Por
each interval J of Ty, there exists & positive number KJ 80
that for each t¢ JNle,d] , |f(t)| ¢ My Lot M be the largest
such M;. Choose t € [6;3] « Ten t¢J for some J €Ty and
[£(t)| < M;<M. Therefore, B is bounded.

Proof of (i11). Since E iz bounded, it is clear that E
hss an upper bound and a lower bound., By 1.38 and 1.39, E
has a unique least upper bound K and a unique greatest lower
bound k.

Proof of (1ii). Assume there does not exist an

= 1 € [e,d]
guch that f(x,) = K. By 1.16 there is & t, ¢ [c,d] such that
K 72(t;) 7> K~1. Similarly, there is a t, ¢ [6,d] such that
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k7 £(ty) > maximum(r(t, ),K-%). The process is continued,
thereby wmtmcts.ng an mrs.mee aat 8 of points

tis 20 evey bye oeo
atieh that for each n,

1
K>2(t,) > Ke w,

Clearly, 2 is bounded and the elements t, are distinct. By
1.37, 8 hee at least one 1imit point, say $ . By 1.41 1t
follows that 3 € [0,4] .

From the assumption and the definition of K, it follows
that £( T)¢K. 8Since r is either continuous at , right-
continuous at , or left-continuoue at I , then there exists
8 § >0 so that whensver t ¢ [0,4] is chosen such that
|t= %] < §, then

|£(t)-£( 1)) ¢« w.
2
Choose n such that
2
)
and [t - (| ¢ § . Then
| £e8,)-1¢ z>j< a2

and therefors

Kwf Ket
f‘tn) < f( 'S )"f"n—-é-}nu)p m K -um-;;n}ul.

But this contradiets the fast that
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1 E=-£{ §)
f(tn) 7 K e b Ko mmcsmmmm o
n 2

A similar argument will determine an < , ¢ [c,4] suoh that
f(xp) = ke
2.4, Theorem. If f is defined on [o,d] , and if thers
existe a point {, o < §<d, guch that £( I) is an upper
bound (lower bound) of E = J£(t) [ t ¢ [o,d]§ , and Af £°( )
exists, then £'( 7) = 0.
Proof. Assume £{ 1) 1s an upper bound of E. Since }
is such that o < { <4, there exists a (1 >0 so that
I( 53 §4) cloya] .
Assume £'(3)> 0. Then there exists a § >0, § ¢ §3, 80
that whensver t is chosen such that 0 < |[t-%] <« § , then
r£(t)-r(3)
| ==
Choose t such that 0 <t-{ < § . Since t-% >0, £*( ) >0,
and

-2 (3) [ < £ ).

r{t)-£(3)
} ! -f'(illcr'(}’),

t-{
it follows that £(t)=f( {) >0. This contradicts the assumption
that £( I) 48 an upper bound of E. Thus, £'( )30, and in a
similar manner it can be shown that £'( { ) {0. Hence,

£¢(3) =0,
Agsume f'( §) 18 a lower bound of E. Then the theorem
follows by a similar argument. |
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2.5. Theorem. If f is defined on I(f, S§4)s and if
£'( 3 ) exists, then f is oontinuous at § .
Proof. Choose ¢ > 0. 8ince f'( §) exists, there exists
8 §270, §p ¢ §q» 80 that whenever t is chosen such that
0<|t=% ¢ §s then
£(t)-r( 1)
e o£0( )| < 1

t=§
it follows that

W‘ Ir*(}) <1,
i.e. |
)ﬁﬁ;{.‘%ﬂ (14 e 1)
Choose
§ = min( Sg'iﬂr'e( ; )‘).

Choose ¢ suoh that |t=-T|< § . Assume t = {. Then
r(t) = £(3)
since f is a function, and therefore, [f(t)-f( {)| =0 <€ .
Asgume t # § ., Thus, 0<|t-{| ¢ §, and thevefore,
I £(t)-r( ¥ ),4 |
t- 3

1+ 20 %) 3

it follows that
Je(e)=e(3)) < Je=T ] (A+per( 1)) < SQa+]er( TH])

ml*f’f né
S RS
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Thus, [£{t)-f(3)| ¢ ¢ , and therefore, f is continucus at
5.

2,6. Theorem. If f is defined on [c¢,d] , f(o) = £(d),
end if f is right-continuous at o and left-continuous at 4,
and if for each t such that 0 <t<d £(t) exists, then there
exists a potnt T,0 < T<d, gueh that £*(F) = o,

Proof. By 2.5 and 1,21, f 4s ocontinuous on [s,d] .

Let E = [r(t)|te [e,d]]. By 2.3, E hae a unique least upper
bound K and a unique greatest lower bouni k, and there ig an
% 1 € [6,d] such that f(x4) = K and en < ,¢ [0,d] asuch that
f{x5) = k. If K =X, then olearly f'(t) = 0 for each t such
that ¢ <t <4 and the theorem follows.

Asgume K # k. Then at least one of X and k 1a different
from £(c). Suppose K # f(c), Then K = f{x4)>t(0), and
gince f(c) = £(4), K = £(x 1) >£(d). 8ince f is a funotion,
1t 18 olear that X, # o and x, # d} thus, ¢ ¢~y <d. Denote
X4 by §. Then by 2.4, £*( I) = 0. The argument is similar
Af it is assumed that k # f(o).

2.7. Theorem. If f and g are defined on I( {; §4)r amd
Af £°(5) and g°( §) exist, then

1) lg ere defined on I( 13 §4), (£¥g)*( T) exist
end (£2g)'( 1) = £2(3)2a'(3),
11) fg is defined on I( 7 S4), (£8)'( 3) exists
and (£2)'(3) = £{ TV)g* (3 )+a( Y)r*( ), ama
111) Af g(f) # 0, then there exists a §'>0 go that
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£ 15 defined on 1035 §*), (£=)*(7) exists ana
(_f__).(“ 5(3):'(3)-:(3)5'(1)
4 [e(¥ )]
Proof of (1). Consider the funotion f+g. Clearly, f+g
is defined on I( 3 §q).
Choose ¢ > 0. 8ince f'( ) and g'( I ) exist, there

exists a § 7 0y, § ¢ 54+ 850 that whenever t is chosen such
that 0 <|t=%[ ¢ § , then
£(t)-£(7)

’ t-

-r'(?)' ¢ -§-

and

g(t)-g(])
l t- 3
Choose t such that 0 ¢ |t=31| < § . Then
(r+g)(t)=(r4+g)( T )
' t-5
= f(t)*s(t)-f( §)-8(3)
t- I
£(t)er( ]} g(t)-g({ §)
< ........;.:.{.........f I)I /--m-:%-—--*a E))
< €,
Therefore, (f+g)*( J) exists and (f+g)'( I) = £7( })+g'( I).
The proof for the function f-g is similar.
Proof of (1i). Clearly, fg is defined on I( I; $4)
Chocse € > 0. Since f'( §) exists, there exists a § ,>0,

-g*( I)l ¢ <.
2

=[S e T) |

-7 §)-g*( 1)

§2 ¢ §1» 80 that whenever t ls ohosen such that
o<fe-3| < §,
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then
£(t)=r(F)

R——A—————— ’( z }’L € .

t- % sl X)) +1)
By 2.5, f is oontinuous at §{ ; therefore, there exists a
$§370, §3 ¢§4s B0 that whenever t is chosen such that

[8=F| ¢ $5, then

£{t)-2{7) € .
‘ L "'mg'( 1)1+1)

By 2.2 and 1.15 there exists a § ,7 0, { b <34» and an M0
so that whenever t ig chosen such that ltnﬂ ¢ § ys then
‘!‘(t)‘ <M. S8ince 8’( s) Oxiﬂtgg there exists a SS ?0,

5 1» 80 that whenever t is chosen such that
0 ¢fe-T| « §
then

m-g(g)‘(.—s.—-.

, glt)=g( §)

Choose S = min( §5, §4s § o §5)s Choose t such that
0o<fe-3| ¢ §.
Then
(£8)(%)=(£8) (T )
t- 5
=) £(t)a(t)-t(F )a( )
t- 3
= | £(8) [B(t)-a( T )] +a( 3 ) [E(t)-2( 3 ]
t-§

{20 DIt ( Tr+a( T)20( 3 )]l

IR ST A SETRSELIR BY

~£( §)e* (3 )-a( 3 )00 (3 )]
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el )E ) B(4)-6(1)]
B0 (D) |y

. 's<x>[%<t)~rcsr1
< -

rm-rm
| | =

~£(1)e" (1))
= {s(3 (9|

~£(t)g" (§)+£()5* (D)-£(D)e* (V)|

+lf(t) [g(fs)**g(n]
t-

£(t)- c
L -e1()|

\31“

+|t(e )|\fﬁ,llfiil -8 (I)‘+|g'(3)\\r(t)—r(i)|

€ € &
< |e(¥) + M g (1) Ol
(0| 3C1(3)|+1) 3M l '3(!5*(1)“1)

Therefore, (fg)*'( I) exists and
(£g)*(F) = £(T)ag'( T)+a( )L ( §).

Proof of (1ii). Since g'( ] ) exists, then, by 2.5, g
is continuous at J . Therefore, there exists a § , >0,

§ 2 < §1s 80 that whenever t is chosen such that [t-T] < §,,
then | g(t)-g( )| L‘g( § )‘, 1.8. g(t) # 0. Then %» is
defined on I( 33 §,).

Choose € > 0. Again, sinoe g i3 oontinuous at |, there
exists & §470, §4 <§,, 80 that whenever t is chosen such
that |t-F[< §,, then
lst 3| €|let 3113

glt)=g( ¥ )| <min( .
' | 2 u(le(3)|+)

).
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For each such t,

(%)
| 8(D) - |ate)] ¢ [a(D-gle)| = |alt)-a(l)|< !ﬁ-—--‘-

in other words,

-le(t)f ¢ - ﬁ%-)-‘».

and therefore,

) 2
sce)] [atn > ZL [3‘”

Since g'( 7 ) existe, there exists a § 520 § < 51, 80
that whenever t 1s chosen such that 0 <|t-%] ¢ § ys then
, s(t)-g(1) 6[3(3)]3
t-1
Choose § = min( §,, § 3+ §4). Choose t such that
0 ¢[t-¥| c § .

~s§l

L]

Then
{6y ()
& & -g*(T) &(t) sm g*(¥)
- mael « Erre |
t- 3 Te(%)] [s(3)]
‘ &(1)-g(t) g' (1) (¥ 3'(1) ‘
SBIS1I(E1) | s(8)1a(l) - a(erell) [a(3)] 2

s('b)-s(f) ; g' (1) 1
(§))+ -
- , ls('f)L ls(!) s(t),
lg* (3}

"(D)]+

¢ |h3(ﬂ”&(””3ﬁ)”

" mg(x)”
s(t)-a:(i)

\m)lls(m ‘ }gm»s(m
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2 c[aM]?  2e"(N  ¢/la(1)))
[£(302 & [a(1)]2]e(V)] 4([e"(1)]+1)

< b
2 2
= €,
1
Therefore, («)'( 3 ) exists and
g
1 -5'(3)
() ¥ (T ) = g o
g [&(3)]
Sinoce
f 1
—— fu-a-"
g g

and since 1t is olear that there exists a §' 70 so that f
and -Zé;- are defined on I(J; §'), then by (i), --g- is
defined on I(3s §5'), (—é—)'( I) exists and

£ 1
(=)' ($) = (£—)"(3)
8 g

1 1 |
£LE) (=) V(D)4 () (D) £ ()
8 8

= f(!):fli:ié + -1-f'(3)
[e(3)]° &(3)
(3L (D)-r(T)g*(3)
[s(3) 2
2.8. Theorem. If f is defined on [o,d], and if f is

right-continuous at ¢ and left-continuous at 4, and _1;_1_‘_ for
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each t such that o <t ¢d f'(t) exists, then there exists a
poiut §, o <icd, such that
e (D) = r(d)-f(a)‘
d-c
Proof. For each t ¢[c,d] , let
£{d)-f{c)
g(t) = £(0) s ($'=C )
d-c
and F(t) = f{t)=g(t); clearly, g 18 right-continuous at ¢
and left-continuous at 4, and although the details will not
be given, it follows that F is right-continuous at ¢ and
left-continuous at 4, It is also olpar that for each t such
that c ¢t <«d g*(t) exists and

f(d)=r{c)
g'(t) =

H
deo

therefore, by 2.7 (1), F'(t) exists and

£(d)=t
(L) = £ (t)m (d)=f(c)

d-o
Now F(e) = P(d); therefore, by 2.6, there exists a point § ,
¢ ¢<§ <d, such that P*{ ) = 0. Thus,

r(d)=1r(o)
0 = F.(I) = f’(r)-— SR S ¢
de=c
In other words,
f{a)=-r{a)
f'(g) D evemmamamermsnT——
d-o

and the theorem is proved.
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2.9. Theorem. If g is defined on I(J;§4) and g°(J)
exists, and if f 1is defined on I{e; §,), = = g{§), and

£'(a) exists, then there exists a §370 80 that P = r{g)

ie defined on I( 3§ ), P'( Y ) exists, and F'(Y) = £*(a)g*(]).
| Proof. By 2.5, g is continuous at J, and with this
faét: it will follow that there exists a § 370 so that F = f(g)
is defined on I( ¥ 33). ,t{t ésb'all now be shown that P'( 3 )
exists and F'(3) = £'(a)g*( % ). |
Cage I. Assume g'(J) = 0. Choose ¢ > 0. Since g'(3) = 0,
there exists a S,“j 0, § B < S 4+ 80 that whenever t is chosen
such that 0 <|t-T| ¢ §,, then
&{t)-&(T) e
| -3 | T
Since f'(a) exists, there existe a § p Y0, 55 ¢ § 4+ 80 that

whenever x ig chosen such that 0 <|x-a] ¢ § P then

f(x)=f({a)
————— wf'(ﬂy)l‘ < 1;
X8

and henoce,

ey PR
 Since g is continuous at ¥, ‘there exists a § 6§20, $g 9!1’
so that whenever t is chosen such that lt«-]’l z § 4* then
[&(t)=a(3) ] < S,
Choose § = min( SB’ Syr» $4)+ Choose t such that
0<(t-F] g .

Iet x = g(t). Assume g(t) = g( §); then f(g(t)) = f(g( §))
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since f 1s a funotion, and therafore,

F(t)-P f{g(t))=f((3
(£)-F(3) )| | (slen-elet))
t-§ t-7
Assume g(t) # g( J), L.2. x # a; then
F(t)-F(}) fleg(t))=r{g({))
m mf’(ﬂ)&'(}) l " —
t=
/r(x}»r(u)
Cte

r(x)ur(a) X8
N p 2

t(x)wr(a)

Is(t)-‘s(n

l T +1ﬂ--s-n
C1f*(a)] )lf'(a>|+1

= & .
Case II, Assume g'( ) # 0. Choose € >0. Since
g'(3) £ 6, there exists a § b? 0 S@ ¢ SI’ 80 that whene
ever t is ohagen sush that 0 <[¢t-F| < § y» then |

t)- 1 g
’g( )-a(3) S)' £ min( e |& (})I)

mn’( . wmpacnpesovs } o
¢ erta)|+1) 3 2

t-3
Since f'(a) exists, there oxists a 55 >0, ,fs < Ja, so that
whenever x 18 chosen such that 0 <|x-a| ¢ § 5» then

' f{x)-f{a)

Tl

- (a) , s min(msm,nné-)

3le*(1)]
Since g 1s continuous at I, there exists a § .7 O, Sg ¢ 840
80 that whenever t is chosen such that |t- 3| ¢ § g then

|a(t)-a(T)) < $ge
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Choose § = min{ {4, § ;s §¢)e Choose t such that
G&”ei»'ﬂcs. ILet x = g(t). Now g(t) o g( I ) since
g{t) = g{ J) contradiots the fact that

(t)eg(3) (1
A2 L P AL
B
Thus, z # &.
Then
P(t)=F(3) £{g(t))=(a(}))
\ (8)-r(s -t (e)e' (9| ~l sle))-rle .-Ma)g'cs;]
fe =
£{x)=t -
= (X) (a) - -f'(l)ﬁ'(})‘
Xws, t-¥

f{x)wf(a) xea X-a
B | enmrreae  owe mr'(n)mf'(a)«f'(&)s'ﬂ)l
T8 bm] b} t-3

£(x)=f
M-f'm if‘(a)‘
p -

x-a

gd

¥y

f:; «s'(})'

f(x)-f(a)
m(z - S o (ﬂ.}l
X8l

+[r'(a)llw ..gt(‘})l

t-§
t)g(3 £(x)=f(a) (=)t
B ] D oo [T e
Xeilh

+/r'(u), /w «-a’(?)'

<~f~~£w|g'<!>] St [24(a)] <
3 03 TS AT TS TS,

< € 4



Cases I and II verify that F'( J) exists and
PUS) = £(a)g*(T).



CHAPTER III

DIFFERENTIABLE FUNCTIONS
OF TWO REAL VARIABLES

3.1, Suppess f and z are funotions of two real variables

defined on C((a,b); §). Then r(x,b), x < I{a; §), and
$(asy)y v €X(bs §),

-are functions of one real variable; thus, £(x,b) and f(a,y)
oould be denoted by F(x) and G(y), for instance. It is
evident, therefore, that the theorems of Chapter II have
immedinte analogues for funotions of two variables when one
of the varisbles is held constant. One aueh analogue is the
faliow&ng theorem on partial derivatives.

XL £ and g are defined on C((a,b); §),

and if fy(a,b), f(a,b), g (a,b), and

g2(a,b) exist, then f+g is defined on

C((asd)s 5)y (f+g)y(a,b) and (f+g),(a,b)

exist, and (f+g),(a,d) = f, (a,b)+g, (a,D)

and (f+g),(a,b) = £5(a,b)+g,y(2,b).
It is clear that similar theorems on partial derivatives can
be stated for the functions f-g, gy, and ngm.

Theoren 392 will be an analogus of 2.9, The other
analoguee will not be stated, although they will be used from
time to time by referring to the theorsms in chuptér II.

28
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3.2, Theorem. If r, and 8, are resl mumbers snd for
each r 61’(2"03 $q) 8‘%50) is mr and 51(1’00593, exists,
and if £ 1s defined on I(T; $5)s § = g(rgesg)s and £4(J)
exists, then there exists & §, >0 go that for each

r €I{rgs $3)s
F(rys,) = f{g{res,)) is defined, Fy(rg.s,) existe, and
Filrgesg) = £°(1)gq(rg.=ql.

Broof. The theorem follows by 2.9.

3.3. It should be clear that an appropriate change in
the hypothesis of 3.1 concerning g would be sufficient for
Fo(rgesy) to exist and for Fy(rp.8y) to be equal to

£7(3)ga(rgesy).

Jebe It will be convenient to have 2.8 stated in the
following, more general form. if a and Ax are real
numbers, Ax # 0 and Af f is defined on

[a,a+ A x] ([a+nx48), 1f BT <0),
and if f s right-continuous at a(a+ox) apd left-gsontinuous
at a+ sx(a), and if for sach t such that
actecatax{atnx ct Cn)
£'(t) exists, then there exists & 6, 0 < o<1, Qﬁﬁw
r{a+ax)=f{a) = axt'(a+ o ox).

3e5. Theorenm. lLet Ax,Ay70. If for each x such that

& <X ca+ Ax £(x,b) i8 defined, and f is right-continuous at
(a,b) and left~gontinuous at (a+ax,b) with respect to the
ﬁmwv and for each x guch that & <x ca+ax fy(x,D)
exists, and if for each y such that b <y <b+ oy f(a+arx,y)
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is defined, and f is right-continuocus at (a+sx,b) and left-
gentimuous at (a+Ax,b+2y) with respect to $he gecomd
yarisble, snd for eash y guch that b<y <b+Ay f£,(atax,y)
existe, Shen there exist o4 and ©,, 0< 0., 0,41, guch

that
fla+rdx, b+ Ay)=r{a,b)
= oxfy (a+ ©4 A Xyb)+ Ayf,(a+ Ax,bb 62 oy)e
Proof. let
f{a+ ax,0+a y)er(a,b)

= f{a+tAx,b+Ay)nl(a+A x, D)+ {at+Ax,D)ur{a,b).
By 3.4 there exicts a @49 0 <64 <1, so that
flav AX,D)ut(a,b) = A,:s:tlcm eiax,b).
8imilariy, there exists a One 0 <0, <1, 80 that
flarAx,btoy)=l(a+rx,b) = Ayrz(uﬁAx.w esz).
and the theorem is proved.

3.6, Theorem. If f is defined on C((asb); J§,) and t,
apd f,, exist on C((a,b)s $y)s and Af f,, is gontimuous at
(a,b), and if for each o x guoh ghat [8x|< J, fy(a+ax,d)
exiets, them f,,(a,b) exists and f,, (a,b) = £,,(a,b).

Proof. Choose € > 0. Since f,, is oontinuous st (a,b),
there exists a § > 0, §< §y, 80 that whenever Ax and Ay
are chosen such that

qux‘* Azy < 3,

then f’iz(m&bx,w ny)»tm(a.b) Y4 -%-.

Choose b x such that 0 < jAxl ¢ §,
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Cage 1. Assume Ax >0. Now, sinse f,(a+s x,b) and
fo(a,b) exist, there exists a 3 >0 80 that whenever Ay
is chosen such that 0 <« /by l< 53. then

flat Ax, DAY )=L{at+AXx,d) € AX
) o “fa(“*A X,b)‘ L e——
Ay ' b

and

f{a,b+ay)=r(a,b) €AX
’ - i dfz(ﬁ'b)’ L ww——
AY 4

Choose oy much that 0 < [aylc § . ana V a2x+ a2y 2§,
For eaoch x sush that a ¢<x <a+ AX, let
g(x) = £(x,b+ay)-r(x,b).
For each such x, fy(x,b+ay) and ti(x,‘b) exist; by 2.7 (4),
g'(x) exiats and g'(x) = fi(x.MAy)—rz(x,b). Consider
gla+ Ax)eg{a). By 3.4 there exists a 61. 0 ¢ el z1, such
that gla+ ax)=gl{a) = Axgt(a+ 8y AxX), and
A xgt(a+ &, AX) = Ax[r1(a+ 6y AX, b+ Ay)a-tl(a-f- 01 A x,b)];
there exists a ©,, 0 49341. go that
£y {a+ ©4 A X,b+ Ay)-fi(a-k 84 AXyb)
= byfm(a-f Q4 A X, b+ 0, AY).
Therefore,
glat+ Ax)eg(a) = Axayfm(m 6, ax,b+ ozoy),
and by definition of g,
gla+ ax)=g(a)
= [f(a+ ax b+ ay)-(at Ax.h)] - [r(a.m A y)mf(a.h)] .

Henoe,
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rm(a*b 04 AX,b4 ©, aAy)

1 f(a+ox,b+ay)=r{a+tax,b) 1 fla,b+Ay)=r{a,b)
ax Ay | Ax Ay

Since 0 ¢ 61. 6211, it follows that

£1,(2,b)- .‘.6.2.... 4fya(a+ 0y AX,b+ 0, Aay) < i‘w(a,b)‘-mgu
Hence,

, _€ ;
rm(a.b)u -;. 3 f‘w(aﬂ- 61 A x,b+ 92 AY)

1 f(ﬂ“" DX, bép y)*t(&""A x.b) 1 f(l;b"' A y)‘f(ﬁ‘b)
AX Ay | Ax Dy

1 €AX
L. — [f2(ﬂ‘*‘ Ax,b)+
Ax }

- = [ratem- £27]

'y
AX

rm(a,b)wg- >fyplat e ax, b 0,n7)

1 f(a+ax,b+sy)-r(a+ax,db) 1 f(a,b+py)=ri{a,b)

= - g

AX Ay A X Ay

1 ¢AX 1 eAX
> -;-; [fz(a*l-Ax,b)-» --v?-- ] - X; [fgfl:b’**—n;——] ‘

fa(a+ ax,b)-r)(a,b)

-

£
Ax 2

»

Cagse II., Assume Ax <0, A similar argument will yield
the same inequalities derived above; the details are omitted.



f {a+ Ax,b)ﬂfz(a,b)
-€ ¢ bkl fm(a,b) < €,
AX

in other words, since

ig(a* 8 X,b)=f,{a,b)

N x "‘fg.z(ﬂwb)l <€

“'ax exists and rmea,b) = rm(u.b).

3.7. Example, Consider the following functions
£(Xs¥) = 2xFwgoerms 2. vhen (x,y) 4 (0,0)3
X"y
f(0.0) = 00
For each (x,y) such that (x,y) # (0,0), f,,(x,y) and
£, (xy7) exist and £y,(x,7) = fm(x.y). But although

£12(0,0) and £,,(0,0) exist, £,,(0,0) # £, (0,0).

3.8, Theorem, If f is defined on C((a,b); §,), and
Af f is differentiasble at (a,b), then fy(a,b) and £ (a,b)
exist, and f,(a,b) = A, and f,(a,b) = B,.

Proof. Choose ¢ > 0. Since £ is differentiable at
(ayb), there exists a §70, § < §q» 80 that whensver A x
and Ay are chosen such that

Ovazx+A2y<f,

then

r{a+ Lx.bway)mf(a,b) AfA:meAy I
¢ €

\/m v 2z+ a2y

Choose A X such that 0 ¢ [dx] ¢ § and let Ay = 0.

33



34

Then

) f{a+ AX bray)=-ria,b) Ap A ”Ef AY

V Azx+ Azy \‘ Agx-# Azy

fla+ Ax,b)=rf(a,b)
Y

Therefore, f4q(a,b) exists and f4(a,b) = A, In a similar

food

~Af\46~

menner, it oan be shown that f,(a,b) exists and f,(a,b) = Bg.
3.9. Theorem. If f is defined on C((a,b); §4), and if
£, exists on C((a,b); §,) and £, is gontinucus at (a,b), and
Af fy(a,b) exists, then f is differentiable at (a,b).
Proof. let (AgyBg) = (fy(a,b).f,{a,b)), and choose
€ 0. Since rata.h) exists, there exists a § 5> 0, Sz ¢ §qo
80 that whenever A y 18 chosen such that 0 < |[ay| < § 2
then
f{a,b+ Ay)-r{a,db)

~tala.m) | < €
Ay

8ince f, is oontinuous at (a,b), there exists a §.>0,

3
S 3¢ §4s B0 that whenever Ox and A y are chosen such that

then
| £5(a4 ax, 0+ AF)-1,(a,b))| ¢ .%

Since fl(a,b)l exists, there exists a § 5?0 $ b & 51, g0 that

whenever A X is chosen such that 0 ¢ [ax|c § y» then

f(a+ ax,b)=r(a,b)
) . -ty (a,0)| ¢ <.
Ax 2
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Chooge § = min( 52. §40 §4)+ Choose Ax and Ay such
that

GLV ax'tnA‘?‘y Lsi

Cage I. Assume Ax = O, Then Ay # 0, and therefore,
’ f({a+ Ax,b-&v‘n;y)-f‘(a.'b} fit‘a,b) A:::-i-%(a.b) Ay /

Va2x+ a%y Velx+ a2
f{a,b+ ay)=f(a,db)
Case II. Assume AX # 0. Let
f{a+px,b+ay)=fa,Dd)
= f{at+ AX, D+ Dy )=f(a+AX,b)+f{at Ax,b)=F(a,b).

Now there exists a © , 0 < 6¢i, such that
tla+ Ax, bt AY)~f(a+AX,D) = Ayfa(a-& AxX,b+ @Ay).
Since 0 < 8<1, f,(a,b)= —5= o fy(a+AaX,bt 04F) ¢ rz(n,b)-wg—.

How, further assume that A x>0 and Ay 20. Then
f{at Ax,b+ a7)=r(a,b) = Ayf,(a+ax,b+ 04y)+f(a+ Ax,b)=r(a,b)
€ 7. €
<Ay [fzcﬂ,b)*ﬂg—] +AX [fl(&,b)ﬁh—ﬁn]

¢ £1(a,b) Ax+r,(0,b) Ay-s-«g» V a2x+ A%y -h%- V' A%x+ a2y
= £, (a,b) Dx+f,(a,b) Ay+ € V 022+ A%y, and

f{a+ A X,b+ AY)=f(a,b) = Ayfy(at Ax,b+0Ay)+f (a+ Ax,b)=F(a,b)
> oy [fyan)m ] 40z [ry(a,0)- S|

> £,(a,5) Ax+f,(a,b) Ay~ -g- A2z+ A%y - "%‘ a2x+ A%y

= £, (a,b) Ax+r,(a,b) Ay- € V A%+ A%y .
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Thege same inequalities are obtained in a similar manner by
congidering the other allowable combinations of Ax and A y.
In both capes

V a2x+ A% Va2 a?
Therefore, f is differentiable at (a,b).

3.10. Theorem. If f is defined on C((a,b)s §,), and Af f
is differentiable at (a,b), then f is continuocus at (a,b).
Proof. Choose ¢ 7 0. Sinoe f is differentiable at (a,b),

f(a+ax,b+ Ay)=f(a,b) f£4(a,b) Ax+f2(a,b) Ay )
< € -

there exists a §, >0, Sz ¢ §49 80 that whenever A x and Ay
are chosen such that

0 ¢ VaZet A%y < §,,
then ,
fla+ Ax,b+Ay)=r{a,b) Ap AX4BoA Yy

V Azx-b Azy VAzx-l- Azy

Choose § = min( § 29

l(.x.

& ). Choose Axand Ay
1+lAf'+lel

V a2+ Ay < §.

If Ax= Ay = 0, then |f(a+ nx,b+ Ay)-r(a.‘b)l =0 €.,

guch that

Assume that not both of Ax and A y are zero. Then

' f{a+ Ax,b+t\y)-r(a,b)| L‘VAZ:H- Azy + ,ArAxd»BfAy‘

< \‘A‘?"m A%y + ’Afl |bx|+|B,) |ay]
¢ VaPzs a2y + \ag) Va%x+ a2y + |5, V a2+ o2y
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- \/ x4+ Azy (1+(Af|+|Br\)

e § (1+]a,] +|8,|)

¢ €
rerwprrw i UMD

= e .
Therefore, £ is continuous at (a,b).

3.11. Example. Consider the following function:

Xy
£(Xy¥) = wsmsemem, (X,7) # (0,0)3
x2+y2
£(0,0) = 0.
This funotion is continuous at (0,0), and ri(e.o) and fgto.o)
exist, but f is not differentiable at (0,0).
3.12, Example. Consider the following functilon:
£(x,y) = x24y%, x and y both rational;
£(x,y) = 0, otherwise.
This funotion is differentiable at (0,0) only.
3.13. Theorem. If f is defined on C((a,b); §,), and if
f is gontinuous at (a,b), then there exists s § 70, § ¢ § 4,
2o that E = {f(x,7))(x,y) ¢ C((a,b); §) is bounded.
Proof. Since f is continuous at (a,b), there exists a

$70, §<§,s B0 that whenever A x and Ay ere chosen such

that
VA21+A2y ‘5.

then |f(a+Ax,b+Ay)-f(a,b)| <1. Choose M = 1+|f(a,b)| and
let (x,y) € C{(a,b); §). Then for some Ax and Ay such that
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VA2x+ Azy < S,
(x,5) = (a+Ax,b+Ay). Therefore, |f(x,y)-f(a,b)| <1, and
hence, | £(x,7)|~|t(a,0)| c1, L.e. [£(x,7)| < 1+[f(a,b)]= M.
Therefore, £ iz bounded.

3.14.-Theorem. If f and g are defined on C((a,b); 51),

and if £ and g are differentiable at (a,b), then
1) flg are defined on C((a,b); §,) and g are

differentiable at (a,b)s

11) fg is defined on C((a,b); §q) and fg is
differentiable at (a,b); and

111) if g(a,b) # 0, then there exists s §°>0 go
that - is defined on C((a,b); §'), and -—g- is differentiable
at (a,b).

Proof. Consider f+g. Since f and g are differentiable
at (a,b), by 3.8, fl(a,b), fz(a.b). gi(a.b), and gz(a.b) exist
and f4(a,b) = .&r, f‘z(u,b) = Br, gl(a,b) = Ag, and gz(a,b) = Bs.

If f+g is differentiable at (a,b), then by 3.8,

(f+g), (a,b)
and (forg)z(u,b) will exist and (fﬁ»g)l(a.b) = Aﬂ_g and
(f+g)2(n,b) = Bﬂ-g'
Therefore, in view of 2.7 (1), it seems evident that Ar-e-As
and Bf+Bg would be natural choices for A, +g and Bo, "’

Let (Ar ) = (Af-l-As,B&Bs). Choose € > 0. Now

+g*Prig £
there exists & § > 0, ¢ ¢ §y» 80 that whenever Ax and Oy

are chosen such that



0 ¢ Vl@x-uszy < 5’

then
, f{a+ AX,D+Ay)=f(a,b) Afbx'&ﬁ Ayl

UAix-bb.zy VAx*-Ay

and

-~ M a2
V Azx+ Az,y V Azx* Azy 2

Choose AXx and Ay such that

< Jﬁzx""' Azy‘ < S .

gla+ DX, b+ Ay )=gla,b) A_ AX+B Ay' ¢

Then

\ 8%x+ n%y N aZz+ a2y

l f{a+AX,b+Ay)=f(a,b)+g(a+ AX,b+Ay)-g(a,b)

V aZx+ a2y

- Al’ AI'*'B:.AZY*A AI*BgAy I

B
A%x+ A%y

f{a+ Ax,b+ Ay)=f(a,b) Ap AX+Be Ay l

\ a2x+ a2y \ a%x+ a2y

)g(% Ax,b+ A.v)-g(a,b) A Ax+ZB
4 .

V a2x+ A%y \/A x+ 8%y

i~

¢ €

L}

Therefore, f+g is differentiable at (a,b).

39

(f+g) (a+ 2 x,b+ AY)=(r+g)(ayd) ) (Af*ﬁ_k&)AX*(Bf"‘Bg)AY l
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The above proof 1s very similar to the proof of 2.7 (1i).
Such will also be the case for f-g, fg, and -%. Por example,
choose (Ap 1By.) = (g(a,b)As+f(a,D)A .&(a,b)ByH (a,D)B, )5
then the required inequality will follow by using the same
type of argument used to obtain the inequality in the proof
of 2.7 (11).

3,15 Theorem., If f ig defined on C{(a,b); “1)’ and Af
fy and f, exist on C((a,b);§,), and Af £, and f, are differ-
entiable at (a,b), then f;,(a,b) and f,,(s,b) exist and

Proof. Chooss ¢ 5 0. Since 2‘1 and fg are differentiable
at (a,b}, by 3.8, fii("b)' fiz(aob)' le(ﬂ'tb); and fzz(ﬁtb)
Bxi&t and fll(agb) = Arlg flz(‘gb) = Bf’,’ le(‘gb) L Afz ﬂm

£r5(a,0) = szg therafore, there exists a § ,70, §, ¢ Sl’

80 that whenever Ax and Ay are chosen such that

0 « Nalx+ a?y < Sz*
then
, fl (&"’ Az;b“‘ by)*fl(apb) fli (&pb) A X"’fiﬁ(ﬂ.b) A y/ €
- o 4%
L N2
aZx+ nly Ya2x+ a2y
and

fg(aiv AX, b+ Ay)-»fz(a.b) - tm(a.b)b xé'faz(a,b) Ay’( €

£,
Va2xs a2y N aZx+ a2y o

Sinocs f44(a,b) and f,,(a,b) exist, there exists a
§370 85 <80
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gso that whenever A x is chosen such that 0 ¢ (Ax| ¢ $ 3
then |

of, (a,b) | ¢ &,
~ 11(2 )\ "

and whenever Ny is chosen such that 0 <[Ay| < § 3 then

£ (a,b+ay)=r {a,b)
' 2. 2. “fzz(ﬂ,b)‘ < ﬂg’*d
Ay L

Choose § = min( § s 83). Choose Ak such that

0< V¥ alu+ A%k ¢§

in other worde, 0 ¢ [aAk|V2 <§.
Assume Ak Y03 the procedure will be gimilar if Ak <O0.
For each x such that a < x ¢<a+ Ok, let
g{x) = £(x,b+ Ak)=f(x,b).
By 2.7 (1), g'(x) exists and g'(x) = fltx,b+Ak)-r1(x,b).
Consider g{a+ AX)=g{a). By 3.4 there exists s 06 , 0 <621,
go that gla+Ak)-gla) = Akg'(a+ ® Dk)., Therefore,
gla+a k)=-g(a)
= [ £(a+ AR,b+ A k)~ (a+ A K,b)] =[f(a,b+ A k)-f(a,b)]
= A k[f1(a+ ® AKX, b+ Ak)-fy (a+ 8 A K,Db) .
From the inequalities of the first paragraph, it follows that

Ak[ef,, (a,b)4f, ,(a,b)- "i"]’-fz(“ ® Ak, b+ Ak)-L, (a,b)
<Ak [efil(ﬂ,b)*flz(agb)*ﬁ%]

and
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© okfyq{a,b)= p k"‘f"‘ ¢ £y (a+ 642 k,b)=f; (a,b)
< euzzrn{u.b)usu-f».

Therefore,
f(a+ 6 ak,b+ Ak)nt’x(aﬁ» ©Ak,b)

= [fy(a+ o ak,b+ak)efy (a,b)]«[Fy (a+ & 8k, D)1, (a,b)]
A kflz(ﬁyb)"'l\k"':;"'ﬁ

and aimilarly,
Akfy,(a,b)~ Ak-g- ¢fy(a+ @ Dk, b+ Ak)-r, (a+ 0 8K,D).
Henoe,

a%x[ty,(a,b)~ -%-]4 akff; (a+ & ak,b+ A k)t (a+ 0.4 k,b))
¢ A‘?k[rw(a,b)q-o%.] ;

in other words,
p2k[ty5(a,s0)- -%-.] ¢[f(a+ Ak,b+ Ak)=f(a+ Ak,b)]
~[£{a,b+ dk)=r(a,b)]
¢ Azn[ru(u.w-%.] .

For each y such that b4y <b+ Ak, let
hiy) = f{a+nk,y)=r(a,y).
By using the same procsdurs on h that was used for 2y it
follows that
K [f 5, (asb)- ‘g‘]

< [f(a+ dX, b+ ak)-1(a, b+ AK)] = [f(a+ Ak, b)=1(a,b)]
Milfr,. (a,b)+E],
< Aty (aub) P 1
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Therefore,
%[t ,(a,0)- -92-»] ¢ Azk[tzi(a.b)-fwgu]

and
2 2 ' _(—‘
A k[le(&ab)* WZ ] V4 Ak[rig(“*b) 2 ]ﬁ

in other words,
-t < fz‘l(“b)'rlz“’b) <« € ,
Since ¢ y 0 was chosen arbitrarily, it 1s clear that
£59(a,b) = f‘izca,b)
and the proof is coumplete.
3.16. Theorem. If & and h are defined on I(V3§,),
and g'(§) and h*( {) exist, and Af £ 18 defined on
C{(a,b)s §,)»
a=g(J)and b=nh(T), and f is differentiable at (a,b),
then there exists a § ;>0 so that F = £(g,h) is defined on
(A Ssh F'( §) exists, and
P'(F) = £;(a,D)g'( {)+r,(a,0)n"( 3).

Proof. By 2.5, g and h are continuous at [ , and with
this fact it will follow that there exists a § 3 >0 so that
F = f(g,h) 48 defined on I(3; 53).

Case I. Assume g'({) = 0 = h'(3)., Choose ¢ > 0.
Since f is differentiable at (a,b), by 3.8, f4(a,b) and
fz(u,b) exist and rl(a.b) = Ar and f‘z(a.b) = By} therefore,
there exists & § , >0, Sy ¢ 52, 8o that whenever A x and

Ay are chosen guch that

0 < ‘JAzx*Azy 1.5&,



by

then

2.
NaZz+ Ay V a%x+ A%y
Since g*'( §) = 0 = h*( ), there exists a 5570. $5 39
8o that whenever t i1s chozen such that 0 thd’/ < § 5 then
) g(t)=g( ))c €

, f(a+ Ax,b+ Ay)=f{a,b) tlta.b)Axﬁ" (a,b) Ay ) 21

t=3 Z(Ifi(a,b)l+/r2(a,b)[+1)

and
l h(t)-h( ] ))é € .
t- ¥ 2(|24(a,D) [+ [, (a,b) +1)

Since g and h are continuous at § s there exists a

J620 §g ¢ §4s
8o that whenever t is ohosen such that |t- | ¢ 56’ then

| S 4
| s(t)-g( ¥ ’l“’ﬁ

St
|nte)-n 1)< =

Choose § = min( §30 S50 §¢)e Choose t such that
| 0¢ |t §
Lot At = t=(, Ax = g( T+ Aat)ag(]) and Ay = h(3+at)-h(}).
Then g( T+ at) = g J)+[e( T+ at)eg(T)] = a+Ax ana
h{3+0¢t) = h(T)+[(T+0t)-n(T )] = bray,
Now

Sk

|Ax|<v_2_
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Thus, Aaxﬂ- Ny < 52 and therefore,

V Azx-l- Azy < S .

Now, if Ax = Ay = 0, then
| R(e)-F( F)
| ==
F(5+0t)=F(T)
t-3
£(g(T+t),n( T+ n8))=r(a(§ )sn(§))
N T \
fa+ ax,D+py)=P(a,b)
- = \

= [t1a:p)g ( )4t (am0n1( 3] (

= (0 c€.
Assume that not both of AX and Ay are zero; then
0 « Vixs A%y < Sys
~and therefore,
F(t)-F(3)
l te
"I f(at Ax,b+Ay)=r(a,b)

t-3

f{atAx,bé Ay)-t(a,b) \/ A2x+ ooy l
V Azx“" Azy

lr(ﬁ- Az,%g:)—t(a,b)[/ Axl fla+ A::,b+ Ay)-f(a.b)// /
2 t-

A:m-Ay VAI*AY

=[f1(as0)8" (T Jar,(asbin (3

<



b6

D £,(s,p) Ax+fy(a,b)A y] ] la(t)«-a(i )

NaZes o2y

"‘l A(a,b)zsxdsrg(a.b)u)ﬂ] ' h(t)en(§) ’

tw
et :
€
£ )ty (a0)] +]t (a0 +1] 2[[2; (a,5)] +£5(8,5)] +1]

é
2[]t, (8,0)] +],(a,b)] +1]

+['r1(a.b)| +|f5(a,b)) +1]

= £,
Case II. Assume that not both of g'( {) and h*( T ) are
zeroj and for simplicity, suppose it is g'( {) that is not

zero. Choose ¢ >0 and let

i
€

L 1)
6(1&' (3] +1) 6(|n*(T)[+1)
Since I is 4ifferentiable at (a,b), by 3.8, fl(a,b) and
fz(u,b) exist and fi(a.b) = A, and fy(a,b) = Et.; therefore,

¢ = min(

there exists a § , >0, J; < §,» s0o that vwhenever 5 x and
Ay are chosen such that
0 < Nax+ A%y ¢ Su.
then
f(a+ Ax,b+py)-f(a,b) f;(a,b) Ax+f, (a,b) Ay

VAQ::* Azy V Azx+ Azy
Since g*'( §) and h*( () exist, g'( I) # 0, there exists a
S g? 0, § g ¢ 4+ 80 that whenever t is chosen such that

'c(-'..
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0 C‘%XI 4 552
then
s(t)-g(}) ¢ |&* (%)
' e “’"“msurl(a,mnﬂ ryut
and |
h(t)=h(})
anjm - '(S)I €
t-§ 6(|f,(a,0)|+1)

By 2.5, g and h are continuous at §{ ; therefore, there existe
a §g70, $ g < Si' 80 that whenever t is chosen such that
| =3 | < Sé, then

LN
-3

, g(t)-g(3)]|<

‘ﬁl

| n(e)en(Ta|c 2 ---.
Yz

Choose § = min( § 50 55'56" Choose t such that
0cfe-Y|c§ .
Let At =t-(, ax = g(T+at)-g(]) and Ay = n( ]+ at)-h(]).
Then g( T +at) = g(3)+[g( [ +Aat)-g(})] = a+ bx and
h(T+at) = i(T)+[n(T+a t)=n(1)] = beay.
Now Ax # 0, for AxX = 0 contradiots the fact that
|e* ()]

, m '»s (5)' < —

Since

Q™
F=3

0 ¢ le‘<

l

N

M
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and
$u

Nz

0 < Na2x+ 0%y LS

Assume ¢t~ § > 03 the procsdure will be similar Af t-7 1is

lbﬂc

1t follows that

agsumed to be negative. Now
P(t)=F(T) = F( 3+ 0t)-F(])

= f{g(J+at),h{§+at))«r(g(3),n(3))
= f(atAX, b+ Ay)=r{a,b).

Therefore,
F(t)-F(3) f{a-b AX,b+AF)=f(a,b)
tm t=3
. fy{a,b)a x+f (asb) A y+ ¢! \‘ 2%+ n?y
t- §
2l rlfa,b)%+t2(a,b)i§+ ¢! ZI%[A ¢t ::;l
-t (ayD )s(t)--sﬁ)“‘~ . h{t)=h(§)
1 2\t te3

ls(t)-&(ﬁl . )h(t)-h('()l

< £;(8s0)g (§)+r, (a,D)0*(])

P SR TP S T = -

6 6 6 6 6 6
= fy(a,b)g"(3)+f,(a,D)*(3)+ €,
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and by a similar argument it follows that
P(t)=-P(3)
— Y1 (D) (Deyle oD €
Therefore,
F(t)-l"ﬁ)
\ F1la0)s (D+rp(amm (D | c€ o
Cases I and II verify that F*(t) exists and
F'(t) = t,_(u.b)s'(I)+f2(a.b)h’,(§)~

3.17. Theorsm. If r, and s, are real numbers and for
each r ¢I(rys §41) &l(r,sy) and h(r,s,) are defined, and
81(rge8p) and hy(r,,s5) exist, and if f is defined on
C((a,b); §,), & = g(rgssy) and b = h(ry,sy), and f is differ-
entiable at (a,b), then there exists a _{3)0 80 that for
each r ¢ I(rO; 53). F(r,ao) = f(g(r,ae).h(r,so) is defined,
Fl(ro,so) exists, and

Pi(rgesy) = £, (a,b)gy (ry,8,)4f,(a,0)hy (rye8,).

Proof. The theorem follows by 3.15.

3.18. It should be clear that an appropriate change in
the hypothesis of 3.16 concerning g and h would be suffiocient
for Fz(ra'“o) to exist and for thro.aa) to be equal to

fl(a,b)gz(ro.so)«rfz(a.b)hz(ro,so).

3.19. Theorem. Let A x,ay>0. If P is a set of ordered

pairs of real numbers and f 1s defined on P, and if for each t

such that 0 <t <1, (a+t Ax,b+t Ay) is an interior point of P.

and f is differentiable at (a+t ox,b+t Ay), then there exists

ap, 0«9 Ll,ggtb&t
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f{a+Ax,b+Ay)=-r{a,b)
= Axfl(a-l- & Ax,b+ DAY+ Ayf2(0.+ 6AX,b+ ©AY).

Proof. Since (a,b) and (a+dx,b+ay) are interior
points of P, there exist §,,§,)0 so that C((=,b); §,)CP
and C((a+ax,b+Aay); 52) L P. For each t such that

- Si <t <14 Sz,

let g(t) = a+t Ax, h(t) = b+t Ay, and F(t) = £{g(t),h(t));
by 3.16, F'(t) exists and |

Pr{t) = £5(g(t),n(t))eg* (t)+f,(a(t),h(t)In" ().
By 3.4 there exists a €6 , 0 ¢c© <1, so that

F(1)-F(0) = P*'(0+0) = F'(0O).
Now since
F'(e) = r1(a+ enx,b+ 6A y)Ax-c-rz(u OAX,b+rBAF)AY

and

F'(O0) = P(1)=F(0) = f(a+ax,b+AyY)=F(a,b),
the theorem is proved.

3.20., It should be clear that 3.18 is a generalization
of 2.8.

3.21. Theorem. If F is defined on N((a,b); {43 §4), and
Af F, exists on N((a,b); {43 §4)s P(a,b) = 0 and F,(a,b) # 0,
and if F, is continuous at (a,b), and if for each y such that

| y~b( < §,, F is continuous at (a,y) mith respect to the first
variable, then each of the following statements is true:

1) there exist §' amd (", 0<§°% §" < gy, 850 that

for each x such that |x-a| < §°, there exists exactly one vy,
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denoted by f(x), such that |y-b| < §" and P(x,y) = 0
iL) f is ocontinuous at a; and .
111) 4if P,(a,b) exists, then F is differentiable at
(a,0), £'(a) exists, and
Fy{a,D)

f’(a) B e e g

Fz(a.b)

Fi(a,f(a))
f'(‘) T e ARy
Fa(&.f(ﬂ))
Proof of (1). Assume F,(a,b)> 0. Since F, is continuous
at (a,b), there exists a § 20, §5 < §1, 80 that whenever x
and y ars chosen such that |x-a| « §, and [y-b| < Sz. then
Fy(a,b)
| Pa(x,7)=Py(a,b) ] { i

in other words,
Fgfayb) BFZ(aab)

———— LFz(x,y € mmenm—ct—— o

8ince F(a,b) exists and F,(a,b) 0, there exists a
S" >0, sn 3 st
80 that whenever y is chosen such that 0 < y~b<s § %, then

‘ Fla,y)-F(a,b)

— -Fy(a,b) | ¢ Fy(a,b)g

it follows that if 0 <y-b = §", then F(a,y) >0, and if
-§"cy-b <0, |
then F(a,y) < 0. |
Since F(a,b+ $") >0 and P(a,b~ §")< 0, and since F is
continuous at (a,b+ §7) and (a,b- §") with respect to the
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firat variable, there exists a §' >0, §* < §,, 80 that when-

ever x is chosen such that |x-a | < §', then ?

| P(x,+ §")eF(a,b+ §)| < Pla, 0+ §%),
i.8. F(x,b+ §*) >0, and|F(x,b- §")-F(a,b~ §")|< =F(a,b= §7),
i.e. F(x,b= ") <0,

Choose x such that |x-a| ¢ §'. Now F(x,b+ {") >0,
F(x,b= § ") <0, and sinoce P, exista on N, then, by 2.5, F is
continuous at (x,y) with respect to the second variadble for
each y such that be §" <y <b+ §", By 2.1 there exists a y
such that b= ¥ ¢y <b+ §% and P(x,y) = 0. Assume there existse
8 yy such that yy # s b= §" <y <D+, and F(x,yi) = O
Then, by 2.8, assuming Y <¥qs there exists a Yo such that
Y ¢¥p <¥y and F(x,yq )=F(x,y) = (y4~7)F,(X,¥,); but this iamplies
that Fp(x,y,) = 0, a contradiction of an earlier restriction
imposed on F,. Tnerefore, y is uniquely determined. The proof
is similar if F,y(a,b) iz assumed to be negative.
Proof of (i1). Choose ¢ > 0. Let
N' = {(x,7)] |x~a] < §°

and |y-b| ¢ 3”3. Then, by applying (i), there exists a <f;,
0 ¢ 3; <§{* and a 5.“;, 0 < ngm,in( §®, €), 80 that for each
x such that | x-a| ¢ 5;, there exists exsotly one y = g(x) such
that | y=-b] ¢ § p and F(x,y) = 0. Clearly, g(x) = £(x) for each
sush x. Thus, |[f(x)-f(a)] ¢ €, and therefors, f 1z continuous
at a.

Proof of (ii1i). The function F is differentiabdle at
(a,b) by 3.9.
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Choose ¢ > 0. Since Fg(a,b) # 0, and F, 1s continuous
at (a,b), it follows that -?- is continuous at (a,b). There-
fore, there exists a 5370, SB-mn( §% $"), where J§*
and § " are chosen as in (i), so that whenever Ax and a y
are chosen such that |ax| < 35 and lay| < §q» then
. - Z £ .

2( IFi(a,b)H-i)

It follows from (1) that thers exists a positive number M so

?Z(u-& AX,b+Ay) Fg(a,b)

that whenever Ax and Ay are chosen such that [ax| < 3 and
tayl < SB, then

1
' LM.
Fz(a-o- AX,D+Ay)

Since f 1s continuous at a, there exists a § 5?0 j“ < § 3*
8o that vhenever x is chosen such that |x-a| < §,, then

| £{x)-f(a) ] < §,. Since Fy(s,b) exists, there exists a §>0,
§ «§ys» S0 that whenever sx is chosen such that 0 < [ax|<§ ,
then

\ Fla+ bx::)nﬂa,b) -7y (a,) \ ";%_‘
Choose x such that Oc|x-al<d , and let y = f(x). Let
AX = Xmg and Ay = yeb = £(x)-f{a). Consider
0 = Fix,y)=Fla,b) = Fla+ 0x,b+ ay)=-F(a,b)
= [F(a+ ax,b+ ay)-F(a+ax,b))+ [F(at+ 4x,b)~F(a,b)].
Now there exists a € , 0 <© <1, go that

Fla+ ax,b+oy)-Flat Ax,b) = Asz(iH*A X,b+ 84 y),



sh

Thus, 0 = AyF,(a+sx,b+© Ay)+[F(a+ b2,b)-F(a,b)], L.e.
ny Fla+ Ax,b)~F(a,b) 1

B -

A x AX Fp(a+ ax,b+ @ ny)

Now

f{x)=r{a) tha,b}

s § %

b 0% Y Fz(a.b) |

by Fy(a,b)
Ax'Fz(a.,b)
F1 (ﬁgb) F(ﬂ‘*‘ Apr)"?(ﬁ’b) 1

tha.b) AX Fy(a+ Ax,b+ 60y)

B | omea——— -1(‘,13) *Fl(a’b)
th.b} Fz(a-t- AX,b+ ©Ay) Fz(M- Ax, b+ ©AYy)

Flatax,b)=F(a,b) 1 J

Ax | 'F‘z(a-i-Ax,b-l- eay)

i
Fg(a,b) Fz(u- 00X, b+ 0AY)

’Pi(a.b)l |

“'I . 1 F(a+ ax,b)=F(a,b) ‘

Fa(uv AX,b+ 60 y) AX

¢ |Fytanm | S
2(|F1{a,b)l~l~1) 2M

L €

Therefore, £'(a) existz and

in other words,

Fl (asf(a))

r'(‘) B cmmmmme———— o

Fo(a,f(a))
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3.22. Theorem. If f is defined on C((a,b); §4), and if
f is differentiable at (a,b), then sach of the following
statements is true: -
1) for each « such that 0 ¢ <27 , D(fs(a,b); )
exists and D(f;(a,b); ) = £, (a,b) cos < +,(a,b) sin =}
11) Af E = {P(<) = £;(a,b) cosx +f,(a,b) sinx|0za:21f

and not both of fy(a,b) end f,(a,b) are 0, then there exists
s unique x; such that 0 <%« 27 and F(oky) is the least
upper bound of E, and there exists & unique <, sugh that
0O¢tx,<27 and P(X,) is the greatest lower bound of E, and

D(fi(‘:b)ﬁ"(l) = ‘V-;lz(‘sb}“‘fzz(ﬁ'b)

D(f5(a,b)s = 5) = = Vy2(a,b)4r,%(a,b);

111) for each « guch thet 0 <= <27,
D(f3(a,b)je ) = ~D(f3(a,D)sx+7).
Proof of (1). Choose « such that 0< ¥ <27, Choose
€ 50. Since  is differentiable at (a,b), by 3.8, fi(a,’o)
and fz(a,h) exist, and t’l(a,b) = A, and fz(a,b) = Brg there-
fore, there exists & § ¥ 0, § = J,, 80 that whenever ax and
A y are chosen such that

0« Vn2x+ A% < §,

then

f({a+ px,b+py)-f(a,d) fl(n.h) Ax-b-fz(a.b) Ay j c
’ ' - . " s »

V Azx"' lszy v Azxé» Azy
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Choose Ag such that 0 ¢cas < $§, and let A4xX = Ag 608 <
and Ay = Ag 2inX. Then

0<cAg = \/A2x+A2y< 5.

Therefore,

l f{a+ DX, b+ Ay )=Ff(a,b) fi(u,b)A::Mz(a,b)Ay‘

\ Bx+ oy N 2x+ A2y

f(at a8 008 X ,b+ a8 sin X )=L(a,d)

-4

AS
fy(8,0) b8 cosx +f,(a,b) A8 sin< l

nS

f{a+ Aa cos % ,b+ A8 sin x)=f(a,b)

AS
-[t‘lta,b) 008 X +f,({a,b) sin *} ‘ <€,
Thus, D{(f;(a,b); <) exists and

D(f3(a,b)3X ) = f1(a,b) sos~ +f,(a,b) sin = .

Proof of (1i). It was assumed in the hypothesis that
not both of fy(a,b) snd fz(a,b) were zZero, for if they were,
then F{ x ) would be zero for each « guch that 0 ¢t x£2 7,
and thie would have been a trivial result.

If F is defined for all angles X , then it is clear from
trigonometry that F is of period 27. Certainly, F is a con-
tinuous function of X. By 2.3,

E = {F(=) = £,(a,b) cosx+f,(a,b) sin<|xe[p,27]§
hag a unique least upper bound K and a unique greatest lower
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bound k, and there exists an = ,€ [0,27] such that
F(O‘I) = K
and there exists an « ,¢ [0,27] such that F(X,) = k.
Clearly, F'{X ) exists and
FI(X) = «f4(a,b) sinx +f2(a.b) cos X

for each ~ such that 0 €% <27. By 2.4, F'(X,) = F'(°<2) = 0.

Consider

F'(x) = =f;(a,b) 8in~ 4f,(a,b) cos x = 0.
It follows that therz arsc but two mlutﬁoaq B 4 and @ 5 of
this equation, 0 < B,, B,<27 , determined by the equations

8in § 4 = = rzca,p)
B Vflz(a.b)+r2!€a,b)
and
fy(a,b)
s By - Ve12(a,b)4f,2(a,b)
and
fo(a,b)
sin ¥, = - Vt12(a,5)+2,2(ayb)
and

fi(ﬁob)
bl ¥
Vry2(a,b)+,%(a,b)
regpectively; it follows that

cos 82n

D(fs (0:1”)881) = Vtiz(ltb)*fzz(‘tb)

D(f3(as0)3 8 ) = = \£1%(a,b)+r,%(a,D).
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Therefore, Xy = 31, °<2 = 82, and hensce, « 4 and X , are
unique.,

Proof of (iii). S8ince .

F(<) = £, (asb) 008 +f,(a,b) stn< ,
it follows from trigonometry that
r{(a,b) cos X 4f,(a,b) &in x
= -f1(a,b) cos(x + u)u-tz(a.b) sin{x+17T),

i.e. D(f3(a,b)3 X) = «D(f3(a,b)g 2+ ¥).

3.23. Example. Consider the funotion f of 3.11. For
each < such that 0 € % <27, D(r3{0,0)3X) exists and

gin 2

D(L3(0,0)3x ) =

But in 3.11 it was pointed out that f was not differentiable
at (0,0).

3.24, The directional derivative could have been
defined for a function of one real variable. Clearly, a
funoction of one real variable could have at most two direcw-
tional derivatives, and if these two directional derivatives
differ only in sign, then the function is necessarily
differentiable.
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