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CHAPTER I 

INTRODUCTION 

This paper is an introductory, algebraic study of 

semigroups. The primary function of this chapter is to 

establish, and orient the ideas which are essential to the 

basic format of the paper. 

The content of the paper is briefly described as 

follows: Left and right zero elements, zero elements, 

left and right zero semigroups, zero semigroups, identity 

elements, and cancellative semigroups are considered in 

Chapter Two. Chapter Three deals with a partial ordering 

of idempotents, nowhere commutative semigroups, bands, 

dominators, rectangular semigroups, regular elements and 

semigroups, inverses, and inverse semigroups. Chapter Pour 

concerns a particular collection of semigroups. Each semi-

group in this collection is formed by defining a binary 

operation on the collection of all transformations of a 

given set. 

Attention in Chapter One will now be focused upon the 

ideas which are basic to the paper. The ideas include 

undefined terms, definitions, notations, and examples. 

The undefined terms are set, element, and ordered pair. 



Intuitively, a set will "be thought of as a collection, of 

one or more objects called elements. Capital letters will 

"be used to denote sets while lower-case letters will be 

used to denote elements. 

Definition 1.1. Let each of A and B be a set. The 

statement that A is a subset of B, denoted by AisB, means 

every element of A is an element of B. 

Definition 1.2. Let each of A and B be a set. The 

statement that A and B are equal, denoted by A = B, means 

A ^ b and B = A . 

Definition 1.5. Let each of A and B be a set. The 

statement that A is a proper subset of B, denoted by A C B , 

means A ̂  B and A / B. 

Definition 1.4. Let A be a set. Then a £ A means 

a is an element of A. 

Definition 1.5. Let A be a set and let a, b € A. 

The statement that a equals b, denoted by a = b, means 

a is b. Obviously, if a = b, then b = a. 

Definition 1.6. Let A be a set. Then (x j x £ A] is 

an example of the set builder notation that will be used. 

It denotes the set of all elements x such that x is an 

element of A. 

Definition 1.7. Let each of A and B be a set. The 

union of A and Bis denoted by A U B and defined by the 

following., A U B = £ x | x £ A o r x £ B } . It is clear that 

A U B is a set if each of A and B is a set. 



Definition 1.8. Let each, of A and. B be a set. The 

intersection of A and B is denoted by A A B and defined 

by the following. If there exists at least one element 

of A which is also an element of B, then A A B is defined 

by: A H B = [x | x £ A and x C B] , If no such element 

exists, then A and B are said to be mutually exclusive and 

A A B has no meaning. 

Definition 1.9. An ordered pair of elements, a and b, 

is denoted by (a,b). 

Definition 1.10. The statement that R is a.relation 

means E is a set of ordered pairs. 

Definition 1.11. The inverse of a relation R is de-

noted by R""̂  and is defined by the following. 

R""1 = {(x,y) [ (y,x) £. R } . 

Definition 1.12. Let R be a relation. The domain 

of R is denoted by D(R) and is defined by: 

D(R) = ̂ x J (x,y) € R for some y} . The range of R is 

denoted by R(R) and R(R) = DCR"1). 

Definition 1.15. The statement that F is a function 

means F is a relation in which no two ordered pairs have 

the same first element. It will be convenient to use the 

notation y = F(x) to mean that (x,y) £ F. 

Definition 1.14. The statement that F is a reversible 

function means both F and F~"̂  are functions. 

Definition 1.15. Let each of A and B be a set. Then 

AXB ~ {(a,b) | a € A and b £ B} . 



Definition 1.16. Let S be a set. The statement that 

0 is a "binary operation defined on S means 0 is a function 

whose domain is SXS and whose range is a subset of S. 

Definition 1.17. Let 0 be a binary operation defined 

on a set S. The statement that 0 is associative means if 

a € S, b<£ S, c C S, ((a,b) ,x) € 0, ((x,c),y) €. 0, 

((b,c),z) £ 0, and ((a,z),w) €. 0, then y = w. 

Definition 1.18. Let 0 be an associative binary 

operation defined on a set S. The following notation will 

be used. If ((a,b),x) €. 0, then x will be denoted by ab. 

It follows that 0 is associative means if a £ S , b €~ S, 

and c £ S, then (ab)c = a(bc). 

Definition 1.19. The statement that S is a semigroup 

means S is a set on which there is defined an associative 

binary operation. 

Definition 1.20. The statement that a semigroup S is 

of finite order means there exists a positive integer n 

which corresponds to the number of elements in the set S. 

Also, S is said to be of order n. If no such positive 

integer exists, then S is said to be of infinite order. 

Definition 1.21. The statement that a semigroup S 

is degenerate means S is of order 1. The statement that 

S is non-degenerate means there are at least two elements 

in the set S. 

Definition 1.22. Let each of S and S' be a semigroup. 

The statement that S is isomorphic with S*, denoted by 



S £ S', means there exists a reversible function 3? whose 

domain is S and whose range is S1 and such that if 

(x,x')£F and (y,y')CF, then (xy,x'y')€F. 

Definition 1.23. Let S be a semigroup and let e £ S. 

The statement that e is an idempotent element means e = ee. 

Also, the statement that e is idempotent will be used. 

Definition 1.24. Let S be a semigroup and let S ' S S. 

The statement that S1 is a subsemigroup of S means if 

a,b £ S* , then ab C S1. 

Definition 1.25. Let S be a semigroup, i £ S , and 

x £. S. The sets xA and Ax are defined as follows. 

xA = {xa | a £ A ] and Ax = £ax | a £ A^ . 

Definition 1.26. Let S be a semigroup, A C S , and 

B S. The set AB is defined by AB = £ab } a £ A and b€ B J 

Definition 1.27. Let S be a semigroup and A SS. 

The statement that A is a left (right) ideal of S means if 

x £ S, then xA A (Ax £ A), The statement that A is an 

ideal of S means A is both a left and right ideal of S. 

Definition 1.28. The statement that a semigroup S 

is left simple (right simple) means if A is a left (right) 

ideal of S, then A = S. The statement that A is simple 

means if A is an ideal of S, then A = S. 

Definition 1.29. Let each of a and b be an element 

of a semigroup S. The statement that the elements a and 

b commute with each other means ab = ba. The statement 

that a is commutative means that a commutes with each 



element of S. The statement that S is commutative means 

if each of a and b is in S, then ab = ba. 

Theorem 1.1. If S is a semigroup of finite order, 

then S contains an idempotent element. 

Proof. The semigroup S is of finite order implies 

there exists a positive integer j which corresponds to 

the number of elements in S. ( Now let a C S and let 

A = {a, a2, a^,..., a0', a^+1] . It is clear a Q s since 

a S and S is a semigroup. Now there are o+l representa-

tions for the elements in A and since A S s and S contains 

only j elements, it follows that there exist positive 
J D . 1 C 

integers n and k where n<k<£j+l and such that a = a . 

Now n<k implies there exists a positive integer p such 

that k = n+p. Thus a11 = ak and k = n+p imply a11 = an+I>. 

The statement that a11 = an+m]? where m is a positive integer 

will be proved by mathematical induction. The statement 

is true for m = 1 since a11 = arL+^ implies a11 = aI1+^. 

Now assume a11 » an+tp is true for the positive integer 

t and show a11 = a
n+(t+l)p ̂ s true. Clearly a11 = & n + ^ 

implies a11 = (an)(a^). Now a11 = (an)(a^) and a11 = an+^ 

imply a11 = (an+-^)(a^) which implies a11 = an+-^+^ which 

implies a11 = an+(t+l)p^ Tiru.s &n = an+mp ig ^rue f o r eacll 

positive integer m and, in particular, a11 « an+I1-̂ . If 

p = 1, then a11 = a
n+nP arL£ p = 1 imply a

11 = an+n which 

implies a11 = a211. If p>-l, then a11 = a
n+11P and. 

anp-n = &np-n an(anP~n) = a
n+nP(a

nP~n) which implies 



an+np-n _ an+np+np-n w h i o h i m p l i e s &np . a2(np)< H e n o e ) 

in either case, a11-̂  is an idempotent element of S. Thus 

the theorem is proved. 

The preceding theorem was valuable in the search for 

examples of semigroups of finite order. This fact will be 

illustrated by outlining the procedure used in determining 

all semigroups of order two. In order for the set S = {a,b} 

to be a semigroup, it was necessary to determine an asso-

ciative binary operation on S. To do this it was convenient 

to define a binary operation 0 on S by means of an operation 

table such as 

a b 

a 

b 

a b 

a a 

where, in this case, 

0 > {((a,a),a), ((a,b),b), ((b,a),a), ((b,b),a)] . Then 

associativity was checked by a method developed by F.W. Light, 

In the above case, 0 is not associative since (bb)b = ab = b 

and b(bb) = ba «= a. Theorem 1.1 was useful in determining 

al}. semigroups of order two in that it decreased the number 

of possible operation tables by restricting the element a 

to be idempotent in each case. 
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The following examples of semigroups will serve to 

illustrate various concepts throughout the paper. 

Example 1.1. SI = {a} with 

a 

Example 1.2. S2 = {a,b} with a b 

a a a 

b a a 

Example 1.3. S3 » {a,b} with a b 

a a a 

b a b 

Example 1.4-. S4- = (a,b) with a b 

a a a 

/ 

b b b 

Example 1.5. S5 « {a,b} with a b 

a a b 

b a b 

Example 1.6. S6 = {a,b] with a b 

a a b 

b b a 



Exam-pie 1.7. S7 = {a,"b,cj with. 

Exam-pie 1.8. S8 = {a,b,c} with 

Example 1.9. S9 = with 

Example 1.10. S10 = {a,b,c] with 

Exam-pie 1.11. Sll =£a,"btĉ  with 

a b c 

a a a a 

b a a a 

c a a a 

a b c 

a a a a 

ID a a a 

c a a b 

a b C 

a a b c 

"b a b c 

c a b c 

a b c 

a a b a 

b a b a 

c a b a 

a b c 

a a b b 

b b a a 

c b a a 
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Example 1.12. S12 « with a b c 

a a b c 

b b c a 

c c a b 

Example 1.13. S13 = Ja,b,c} with a b c 

a a a a 

b a b b 

c a b b 

Example 1.14. S14 - {a,TD,c3 with a 

* 

b C ' 

a a b a 

b b a b 

' c a b a 

Example 1.15. SI5 = {a,"b,c} with. a b c 

a a a a 

b b b b 

c a a a 

Example 1.16. S16 - {a,b,c3 with a b c 

a a b c 

b b b c 

c c b c 
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Example 1 .17 . SI 7 =» {&»b,c} with a b o 

a a a a 

b a b c 

c a c a 

Example 1 ,18 . S18 » { a t b , c } with a b c 

a a b c 

b b b b 

c c c c 

Example 1 .19 . S19 » £&*b,c»d^ with 

1 

a b e d 

a a b e d 

b b b d d 

c c b a d 

d d b b d 

Example 1 .20 . S20 = ^ a , b , c , d , e ] w i t h a b o d e 

a a d a d . e 

b e b c e e 

c c b c b e 

d e d a e e 

e e e e e e 
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Example 1.21. The set of positive integers with, the 

"binary operation of ordinary addition is a semigroup. 

Example 1.22. The set of positive integers with the 

binary operation of ordinary multiplication is a semigroup. 

Example 1.25. The set of integers with the "binary 

operation of ordinary addition is a semigroup. 

Example 1.24. The set of integers with the binary 

operation of ordinary multiplication is a semigroup. 

Example 1.25. The set of positive integers with the 

binary operation 0 = {((a,b),a) J (atb) €L SXS] is a semigroup. 

Example 1.26. The set of positive integers with the 

binary operation 0 « {((a,b),b) { (a,b) £. SXS] is a semigroup. 



CHAPTER II 

ZEROES AND CANCELLATIVE SEMIGROUPS 

Definition 2.1. An element z of a semigroup S is 

called a left zero element (right zero element) if for 

each x in S, zx = z (xz = z). The element z is called 

a zero element of S if it is "both a left and right zero 
e 

element of S. 

Definition 2.2. The statement that a semigroup S 

is a left zero semigroup (right zero semigroup) means every 

element of S is a left (right)- zero element of S. 

Definition 2.5. The statement that a semigroup S 

is a zero semigroup means there exists an element 0 in S 

such that if a,b C S, then ab = 0. 

Definition 2.4-. An element e of a semigroup S is 

called a left identity element (right identity element) if 

for each a in S, ea = a (ae = a). The element e is called 

an identity element of S if it is "both a left and right 

identity element of S.• 

Definition 2.5. Let S he a semigroup. Then S"*" is 

defined to be S if S contains an identity element and is 

defined to be S U{1} where 1 is an identity element for 

sulx) if S contains no identity element. 

13 
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Definition 2.6. The statement that a semigroup S 

is left cancellative (right cancellative) means that if 

a,x,y <£! S such that ax = ay (xa = ya) , then x = y. The 

statement that S is cancellative means S is both left and 

right cancellative. 

Theorem 2.1. If a semigroup S contains a left zero 

element a and a right zero element b, then a = b and S 

contains a unique zero element. 

Proof. The element "b is in S and a is a left zero of 

S imply ab = a. The element a is in S and b is a right 

zero of S imply ab = b. Thus a = b. Now a is a zero ele-

ment of S since it is both a left and right zero element. 

It follows that a is unique since if S contains a zero 

element it is a right zero element. Hence it is a by the 

previous argument. 

Theorem 2.2. A zero semigroup S is a left (right) 

zero semigroup if, and only if, it is degenerate. 

Proof. Suppose S is a zero semigroup which contains 

exactly one element and show S is a left zero semigroup. 

Let a,b € S. Since S contains only one element, a = b 

and aa = a. Thus ab = a and S is a left zero semigroup. 

Suppose S is both a zero and a left zero semigroup and 

show S contains exactly one element. Since S is a zero 

semigroup there exists an element 0 in S such that if 

x,y£ S, then xy = 0. Now let a G S. The element a is in 

S and 0 £ S and S is a zero semigroup imply aO = 0. Then 
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a,0 C S and S is a left zero semigroup imply aO = a. Now 

aO = 0 and aO = a imply a = 0. Hence S contains only one 

element and is degenerate. This completes the proof of the 

theorem. 

The semigroup S2 is an example of a zero semigroup which 

is not a left zero semigroup. The semigroup S4 is an example 

of a left zero semigroup which is not a zero semigroup. 

Theorem 2.3. A left zero semigroup S is a right zero 

semigroup if, and only if, it is degenerate. 

The proof of this theorem is very similar to that of 

the preceding theorem and will not be given. 

Theorem 2.4. If e is an idempotent element of a left 

(right) cancellative semigroup S, then e is a left (right) 

identity element of S. 

Proof. Let a G S. Show ea = a. The element ea = (ee)a 

since e is an idempotent element. Then ea = e(ea) since the 

"binary operation defined on S is associative. Now ea = e(ea) 

and S is a left cancellative semigroup imply a = ea. Hence 

e is a left identity element of S. Similarly, e is a right 

identity element of S if S is a right cancellative semi-

group . 

Corollary 2.1. If e is an idempotent element of a 

cancellative semigroup S, then e is an identity element of S. 

The proof is a direct consequence of Theorem 2.4. 

Theorem 2.5. A cancellative semigroup can contain at 

most one idempotent element, namely an identity element. 
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Proof. Let S be a cancellative semigroup. If S 

contains no idempotent element, then it is clear that the 

theorem is true. (Thus let S contain an idempotent element 

e and show S contains no other such element. Let f be an 

idempotent element of S and show f « e. Since e is an 

idempotent element of a cancellative semigroup S and f € S, 

it follows from Corollary 2.1 that ef = f. Then ef = f and 

f is idempotent imply ef = ff. Now ef = ff and S is a can-

cellative semigroup imply e = f. It also follows from 

Corollary 2.1 that e is an identity element. Thus the 

theorem is proved. 

It is interesting to note that the set of positive 

integers with the binary operation of ordinary addition 

is a cancellative semigroup which contains no idempotent 

element. 

Theorem 2.6. If S is a cancellative semigroup, then 

is a cancellative semigroup. 

Proof. By definition S"1" = S if S has an identity 

element and = SU[l] where 1 is an identity element 

of SU (l) if S has no identity element. If S"*" = S, then 

it is clear Q̂~ is a cancellative semigroup. If S"*" = SJj{l], 

then it remains to show SU£l} is a semigroup and SVJ^l} is 

cancellative. To show S u[i3 is a semigroup, let each 

of a, b, and c be an arbitrary element of SU^l) show 

(ab)c « a(bc). Now either all of a, b, and c are elements 

of S or there is one or more of a, b, and c which is not 



1? 

an element of S. If all of a, b, and c are elements of S, 

then (ab)c = a(bc) since S is a semigroup. If one or more 

of a, b, and c is not an element of S then, without loss 

of generality, let one of these be a. Hence a = 1. Thus 

(ab)c = (lb)c = be « l(bc) » a(bc). Thus SU£l} is a semi-

group . 

To show SUil} left cancellative let each of a, b, 

and c be an arbitrary element of SU{1} such that ab = ac 

and show b « c. Since a £ SU{1} * then either a = 1 or 

a / 1, If a » 1, then ab = ac and a = 1 imply lb = lc which 

implies b = c since 1 is an identity element for SU{l] . 

If a / 1, then b = 1 or b / 1, If b = 1, then ab » ac 

implies a = ac. Now suppose by way of contradiction c ^ 1. 

The element a = ac implies ac = a(cc). Each of a, c, and 

cc is an element of S, ac = a(cc), and S is cancellative 

imply c = cc. Now c is an idempotent of a cancellative semi-

group. Thus it follows by Corollary 2.1 that c is an identity 

element of S. This is a contradiction siLnce S contains no 

identity element in this case. Thus c = 1 and it follows 

that b = c since b » 1 in this case. If b / 1, then either 

c = 1 or o / 1. If c = 1, then b 4 1 and c = 1 lead to a 

contradiction similar to the preceding one. If c / 1, then 

it follows that b » c since ab = ac where a,b,c S and S 

is a cancellative semigroup. Now it has been shown that 

SU{l) is a left cancellative semigroup and by a similar 

argument it can be shown that S U(i) is a right cancellative 
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semigroup. Thus it follows that S(j{l} is a cancellative 

semigroup. Hence S"̂  is a cancellative semigroup and the 

theorem is proved. 

Theorem 2.7. If S is a non-degenerate left zero 

semigroup, then S is right cancellative and S"*" is not. 

Proof. To show S is right cancellative let each of 

a, b, and c be an element of S such that ba = ca and show 

b «= c. It follows that ba = b and ca = c since S is a left 

zero semigroup. Thus b = ba = ca = c and S is right 

cancellative. 

By definition S1 = S or S1 - SU U ) . If,S1 = S, then 

the desired conclusion would not be satisfied. Thus it is 

necessary to show S1 / S. To show S1 4 S it is necessary 

to show S contains no identity elements. Now suppose, by 

way of contradiction, that S does contain,, an identity 

element e. Now let a £ S. Then e,a €. S and S is a left 

zero semigroup imply ea » e. Also ea = a since e is an 

identity element for S. Thus ea » e and ea => a imply 

e = a which implies that S contains exactly one element, 

namely e. But S contains exactly one element implies S is 

degenerate which contradicts the hypothesis. Thus S 

contains no identity element. Hence Ŝ" » SU{l} . Now 

to show S is not right cancellative it will suffice to 

exhibit the existence of elements a, b, and c in S"1" such 

that ba » ca and b ^ c. Let a C S. Thus, since S is a 

left zero semigroup, aa = a. The element 1 is an identity 
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for S and. a € S imply la » a. Now aa = a and la = a imply 

aa = la. Thus aa = la and a / 1 since a S and S contains 

no identity element. If a « 1, then a would be an identity 

element for S and this would "be a contradiction. Thus S"1" 

is not right cancellative. This completes the proof of the 

theorem. 

Theorem 2.8. If a is an element of a semigroup S and 

A a | x £ S j axa = aj is a set, then Aa is a left zero sub-

semigroup of S and aA is a right zero subsemigroup of S. 

Proof. To show Aa is a left zero subsemigroup of S let 

x,y Aa and show xy C Aa and xy = x. The element x is in 

Aa implies there exists an element b in A such that x = ba. 

The element y is in Aa implies there exists an element c in 

A such that y = ca. Now x = ba and y = ca imply xy = baca. 

The element c is in A implies aca « a. Thus xy » b(aca) = 

ba » x. Hence xy = x and xy £ Aa. Thus Aa is a left zero 

subsemigroup of S. By a similar argument it can be shown 

that aA is a right zero subsemigroup of S. This completes 

the proof of the theorem. 

Theorem 2.9. If S is a left zero semigroup, then S is 

left simple and each element of S forms a right ideal of S. 

Proof. To show S is left simple let A be a left ideal 

of S and show A = S. By the definition of a left ideal it 

is clear that A Q S , Thus, to show A » S, it remains to 

show S Q A, Let x £ S and. show x A. Let a € A, Now a, 

x £ S and S is a left zero semigroup imply xa = x. Then 
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a £ A, x £ S and A is a left ideal of S imply xa £ A. Hence 

x £ A. Thus S £ A and A « S. Hence S is left simple. 

To show each, element of S forms a right ideal of S let 

y £ S and show £yj is a right ideal of S. Let "b £ S. It 

is clear that y,b £ S and S is a left zero semigroup imply 

yb « y. Hence {yj is a right ideal of S. This completes 

the proof. 

Theorem 2.10. Let S "be a semigroup such that if 

a"b = cd (a,b,c,d £ S) then either a = c or b = d. Then S 

is either a left zero semigroup or a right zero semigroup. 

Proof. To facilitate the proof it will be shown that 

each element of S is an idempotent element. Let e £ S. 

Clearly ee £ S since e £ S. Since ee £ S, let ee » x. 

Now ee = x implies e(ee) » ex which implies (ee)e « ex. 

This implies ee = e or e = x. Hence ee = e. It also 

follows that S is a band. 

If S is a semigroup containing only one element, then 

it is clear that the hypothesis and conclusion are satisfied. 

Thus suppose S is a semigroup containing more than one ele-

ment and let a,b £ S such that a / b. The element ab is in 

S since a,b £ S. Let ab « c. Now c £ S and S is a band 

imply cc = c. Now ab » c and c = cc imply ab = cc and this 

implies a=*corb = c. 

Suppose a = c and show S is a left zero semigroup. 

Now a • c implies ab » a, a fact that will be used later. 

To show S is a left zero semigroup let x,y £ S and show 
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xy - x. Again, if x = y, then xy = x since xx = x; thus, 

consider x 4 y. Now x,y £ S imply xy£S. Let xy - w. 

Now w £ S since xy £ S. The element w is in S and S is a 

band imply w = ww. Then xy • w and w = ww imply xy • ww. 

Now xy a ww implies x = wory=*w. If x = w, then xy => x 

since xy = w. Thus xy = x if y / w. To show y 4 w suppose, 

by way of contradiction, y = w. Thus xy » y. This implies 

(xy)a - ya which implies x(ya) = ya. Then x(ya) - ya 

implies x - y or ya - a. Thus it follows that ya = a since 

x 4 y. Now ya = a and a = ab imply ya » ab. This implies 

y = a or a = b. Now y a a or a = b implies y = a since 

a 4 b. Hence xy « y and y = a imply xy « a. Then xy • a 

and a = ab imply xy = ab which implies x «= a or y = b which 

is a contradiction since if x = a then x = y and if y = b 

then a = b. Thus y / w. Hence x = w and xy = x. Thus, 

if a • c, then S is a left zero semigroup. It can be shown 

by a similar argument that S is a right zero semigroup if 

b = c. This concludes the proof. 

Theorem 2.11. If S is a semigroup having a right zero 

element, then the set K of all right zero elements of S is a 

right zero subsemigroup of S and is an ideal of S contained 

in every ideal of S. 

Proof. To show K is a right zero subsemigroup of S 

it is necessary to show K is a subsemigroup of S and K is 

a right zero semigroup. 

To show K is a subsemigroup of S let a,b£. K and show 

ab £ K. Now ab € K if ab is a right zero element of S; 
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thus, let x £ S and show x(ab) =» ab. The element x is in 

S and. a is a right zero element of S imply xa = a. Clearly 

xa = a implies x(ab) = ah. Hence K is a subsemigroup of S. 

It is clear that K is a right zero semigroup since if 

a,b £ K, then ab » "b since b is a right zero of S and 

a £ S , Thus K is a right zero subsemigroup of S. 

To show K is an ideal of S let x £ S and show x K £ K 

and KxSK, TO show xK-O. K let xk CxK where K £ K and 

show xk £ K. The element x is in S and k is a right zero 

element of 'S imply xk = k. Now xk £ K since xk =? k and 

k £ K. Thus xK^ K. To show K x ^ K let hx € Kx where h£K 

and show hx £ K. To show hx £ K let c £ S and show c(hx) « 

hx. The element c is in S and h is a right zero element of 

S imply ch = h which implies (ch)x = hx. This implies 

c(hx) = hx. Thus Kx £ K and K is an ideal of S. 

To show K is contained in each ideal of S let A be an 

ideal of S and show K A. Let k £ K and show k £ A. Let 

y £ A. Now A is an ideal of S implies A k £ A; thus, yk£A 

since y £ A. Now y £ S and k is a right zero element of 

S imply yk = k; hence, it follows k £ A since k • yk and 

yk £ A. Thus K ^ A . This concludes the proof of the 

theorem. 



CHAPTER III 

RECTANGULAR SEMIGROUPS, BAUDS, DOMINATORS, 

REGULAR ELEMENTS, AND INVERSES 

Definition 3*1. The statement that S is a band means 

S is a semigroup in which, every element is idempotent. 

Definition 3.2. A semigroup S is said to be nowhere 

commutative provided the following condition is satisfied: 

If a,b £ S such that ab = ba, then a » b. 

Definition 3.3. Let X be a set and let P be a relation 

whose domain is X and whose range is a subset of X. Then 

P is called a partial ordering of X provided the following 

are true: 

(1) If a £. X, then (a,a)£ P. 

(2) If a,b £ X, (a,b)G P, and (b,a)£ P, then a - b. 

(3) If a,b,c£X, (a,b) P, and (b,c)£lP, then 

(a,c)£P. 

Definition 3.4-. Let S be a semigroup which contains 

at least one idempotent and let E be the set of all idem-

potents of S. Define the relation 

E* » {(e,f) | e,f £ E and ef = fe « e} . 

23 
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Theorem 5.1. If S is a semigroup containing an idem-

potent and E is the set of all idempotents of S, then the 

relation E* is a partial ordering of E. 

Proof. By definition, E* - £(e,f) | e,f € E and 

ef « fe « e j . Let e £ E and show (e,e) € E*. It is clear 

(e,e) £. E* since e £ E and e is an idempotent implies 

@0 ss 00 a 6 • 

Let (e,f) €. E* and (f ,e) £ E* and show e • f. Now 

(e,f) £ E* implies ef - fe - e. Similarly (f,e) 6 E * 

implies fe ® ef «* f. Hence fe » e and fe » f imply e « f. 

Let (e,f) £ E* and (f ,g) €• E* and show (e,g) £. E*. 

Now (e,f ) £. E* implies ef = fe « e and (f,g) £ E* implies 

fg = gf « f. Thus eg = (ef)g » e(fg) = ef » e and 

ge » g(fe) • (gf)e = fe » e. Hence eg • ge » e and (e,g)£E* 

This concludes the proof of the theorem. 

Corollary 5.1. If S is a band, then E* is a partial 

ordering of S. 

Proof* Since S is a "band every element of S is idem-

potent; hence, S - E. By the preceding theorem E* is a 

partial ordering of E and it follows that E* is a partial 

ordering of S since S = E. 

Definition 5.5. An idempotent element e of a semi-

group S is said to be primitive if the following are 

satisfied whenever (x,e) is in E*: 

(1) e is not a zero element of S. 

(2) x • e if S contains no zero element. 

(3) x » e or x « 0 if 0 is a zero element of S. 
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Theorem 3.2. A non-degenerate semigroup S is nowhere 

commutative if, and only if, it is a band without zero in 

which every element is primitive. 

Proof* Suppose S is nowhere commutative and show S 

is a band without zero in which every element is primitive. 

Let a £ S . Let aa » x and it is clear x £.S since a £=•. S 

and S is a semigroup. Now ax = a(aa) = (aa)a = xa. Thus, 

since S is nowhere commutative, it follows that x = a. 

Hence aa - a and S is a band. Suppose, by way of contradic-

tion, 0 is a zero element of S. Since S is non-.degenerate 

let b S and b ^ 0. Then b S and 0 is a zero element 

of S imply Ob » bO « 0. Now Ob = bO and S is nowhere 

commutative imply 0 = b which is a contradiction. Hence 

S contains no zero element. To show every element of S is 

primitive let e C S , The element e is in S and S is a band 

imply e is an idempotent element. Let (y,e) £. E*. It has 

already been shown that e is not a zero element of S since 

S contains no zero element. Thus it remains to show y = e. 

Now (y,e) £•=! E* implies by definition of E* that ye « ey » y. 

Then ye « ey and S is nowhere commutative imply y = e. 

Hence every element of S is primitive. 

Suppose S is a band without zero in which every element 

is primitive and show S is nowhere commutative. Let a,b Q. S 

such that ab » ba and show a *» b. It is clear that 

(ab)b = (ba)b » b(ab) since ab « ba. Also (ab)b = a(bb) =» 

ab since S is a band. Now (ab)b « b(ab) » ab and ab 

and b are idempotents imply (ab,b) £ E* which implies 
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ab » b since every element of S is primitive and S contains 

no zero element. Similarly ab =* a. Hence a » b and S is 

nowhere commutative. Thus the theorem is proved. 

Definition 5.6. The statement that a semigroup S is 

rectangular means if x,y £ S, then xyx = x. 

Theorem 5.5. A semigroup S is nowhere commutative if, 

and only if, it is a rectangular band. 

Proof. Suppose S is a rectangular band and show S is 

nowhere commutative. Let a,b £ S such that ab » ba and 

show a » b. Now a,b ̂  S and S is a rectangular band imply 

aba » a and bab » b. Also aaa,b e. S and S is a rectangular 

band imply b(aaa)b = b. Now a » aba » ababa » (ab)a(ba) » 

(ba)a(ab) • b(aaa)b = b. Thus S is nowhere commutative. 

Suppose S is nowhere commutative and show S is a 

rectangular band. Let a,b €. S and show aba » a. It has 

been shown in Theorem 3*2 that S is nowhere commutative 

implies S is a band. Since S is a band it is clear that 

a(aba) = (aba)a. Now S is nowhere commutative and a(aba) = 

(aba)a imply a = aba. Thus S is a rectangular band. Hence 

the theorem is proved. 

Definition 5.7. The statement that an element d of 

a semigroup S is a dominator means if a £ S, then dad = d. 

If S is a semigroup containing a dominator, then the set 

D of all dominators of S is called the dominator of S. 

Theorem 5.4-. A semigroup S contains a dominator if, 

and only if, it contains an ideal A which is a rectangular 

band. Also, A is the dominator of S. 
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Proof. Suppose S contains a dominator and show S 

contains an ideal which is a rectangular band. Since S 

contains a dominator, let D "be the dominator of S and show 

D is an ideal which is a rectangular "band. To show D is 

an ideal of S let x € S and show xD S D and Dx4£D. Let 

x d £ x D where d £ D . Let a 61 S. Now a x £ S and d £ D 

imply daxd = d which implies xdaxd =• xd. Then xdaxd = xd 

implies xd(a)xd = xd which implies xd is a dominator of 

S. Hence x d £ D and xDSssD. NOW let dx(£ Dx where d £ D 

and show d x ^ D. Let b G S, Then xb 0 S and d€D D imply 

dxbd = d. This implies dxbdx = dx. Now dxbdx =» dx implies 

dx(b)dx = dx and it follows that dx is a dominator of S. 

Hence dx£! D and DxSsD. Thus D is an ideal of S. It 

remains to show that the ideal D is a rectangular band. 

First, it is necessary to show D is a subsemigroup of S. 

Let d,t £ D and show dt 0 D. Let a<0 S. Now ta £ S and 

d D imply dtad = d. This implies dtadt = dt which implies 

dt£l D. Hence D is a semigroup. To show D is a rectangu-

lar band it will first.be shown that D is a band. Let 

d €. D and show dd = d. The element d is in S and d €1 D 

imply ddd « d. Then d d d S and d ̂  D imply dddd = d. 

Thus d = dddd = d(ddd) = dd. Clearly D is rectangular since 

if d, t C D, then dtd = d since t £ S and d € D . Thus D is 

a rectangular band. 

Suppose S contains an ideal A which is a rectangular 

band and show S contains a dominator D and D » A. To show 
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S contains a dominator, let d £ A and let a £ S. The 

element da is in A since A is an ideal of S. Now da,d £ A 

and A. is. a rectangular "band imply d(da)d = d which, implies 

dad = d since dd = d. Thus d is a dominator of S. Let 

D "be the dominator of S and it follows from the above 

that A=sD. In order to show A = D it remains to show 

d £ a , Let d €1 D and let a ̂  A. The element d is a domi-

nator of S and a £ S imply dad = d. This implies d £ A , 

since a £) A implies da €, A which implies dad £ A. The 

preceding follows from the fact that A is an ideal of S. 

Thus d £ A and D 2 A. Hence S contains a dominator D = A 

and the theorem is proved. 

Theorem 5.5. A semigroup S contains a unique dominator 

if, and only if, it contains a zero element. 

Proof. Suppose S contains a unique dominator d and 

show S contains a zero element. The element d is a unique 

dominator of S implies that the dominator of S is the set 

D a [d] . By Theorem 3.4 it follows that D is an ideal 

of S which implies that if x € S, then xflS D and Dx§D, 

Thus it follows that xd = d and dx » d for every x in S. 

This implies d is a zero element of S. 

Suppose S contains a zero element z and show z is 

a unique dominator of S. Let a S. It is clear that 

zaz = z since z is a zero element of S. Thus z is also 

a dominator of S. To show z is unique let d be a domina-

tor of S and show d » z. Now z G. S and d is a dominator 
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of S imply dzd « d. It follows that dzd = z since z is 

a zero element of S. Hence d = z and z is the unique 

dominator of S. 

Theorem 3.6. An element x of a semigroup S is a 

commutative dominator of S if, and only if, it is a zero 

element of S. Hence, x is a commutative dominator of S 

if, and only if, it is a unique dominator of S. 

Proof. Suppose x is a zero element of S and show 

x is a commutative dominator of S. By Theorem 3.5 this 

is equivalent to supposing x is a unique dominator of S 

and showing x is a commutative dominator of S. Thus it 

only remains to show x is commutative. Let a C-S. Since 

x is a zero element of S, it follows that xa « x and 

ax = x. Thus xa = ax. 

Suppose x € S is a commutative dominator of S and 

show x is a zero element of S. Also show x is a unique 

dominator of S. By Theorem 3 .5 it will suffice to show 

x is unique. Let d be a dominator of S and show d = x. 

Now x G S and d is a dominator of S imply dxd » d. Then 

d € S and x is a dominator of S imply xdx = x. Now 

xd = dx since d is a commutative element. Thus it follows 

that d = dxd =» ddx = dx = dxx = xdx = x. Therefore the 

theorem is true.. 

Theorem 5.7* A simple semigroup S is rectangular 

if, and only if, it contains a dominator and in both 

cases S is the dominator of S. 
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Proof. Suppose S contains a dominator d and show 

S is rectangular. Since d is a dominator of S, let D be 

the dominator of S. By Theorem 3.4-, D is an ideal of S. 

Thus D = S since D is an ideal of S and S is simple. It 

is clear that S is rectangular since if x,y £ S, then 

x,y€ D and this implies xyx = x. Conversely it is clear 

that each element of S is a dominator of S if S is rec-

tangular. Thus if D is the dominator of S it follows that 

D » S. Thus the theorem is proved. 

Theorem 5.8. If d is a dominator of a semigroup S, 

then the set of all elements of S which commute with d 

is a subsemigroup with a zero element. 

Proof. Let Z be the set of all elements of S which 

commute with d. Clearly Z has meaning since dd = dd 

implies d £ Z, To show Z is a subsemigroup of S, let 

x,y€L Z and show xy € Z. To show xy Z it is necessary 

to show xy commutes with d. Now it follows that (xy)d = 

x(yd) = x(dy) = (xd)y = (dx)y = d(xy). This implies 

xy £ Z. Thus Z is a subsemigroup of S. To show d is a 

zero element of Z let a €1 Z and show ad = d and da » d. 

The element a is in Z implies ad = da. The element a is 

in S and d is a dominator of S imply dad = d. It is clear 

that d = dd since d is a dominator. Now ad » add » dad = d 

and da ® dda « dad » d. Hence d is a zero element of S and 

the theorem is proved. 
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Definition 5.8. The statement that an element a of 

a semigroup S is regular means there exists an element x in 

S such that a = axa. The statement that S is regular means 

each element of S is regular. 

Definition 5.9. Let a "be an element of a semigroup 

S. Then SaU{aj is called the principal left ideal of 

S generated by a and aSU{aJ is called the principal right 

ideal of S generated "by a. The left ideal SaU£aJwill be de-

noted by L(a) and the right ideal aSV^{aj will be denoted 

by B(a). 

Definition 3.10. The statement that the elements a 

and b of a semigroup S are inverses of each other means 

aba » a and bab = b. 

Definition 3.11. The statement that a semigroup S 

is an inverse semigroup means each element of S has a 

unique inverse in S. 

Theorem 5.9. A semigroup S is regular if, and only if, 

each element of S has an inverse in S. 

Proof. It is clear from the definition of inverses 

that S is regular if each element of S has an inverse in S. 

Suppose S is regular and show each element of S has 

an inverse in S. Let a € S, There exists an element x in 

S such that a = axa since S is regular and a £ S. Clearly 

a = axa implies axa. = axaxa. Thus a = a(xax)a. To show 

a and xax are inverses of each other it remains to show 

xax = xax(a)xax. Clearly a = axa implies xax = xaxax » 

xaxaxax. Thus xax = xax(a)xax. Hence a and xax axe 
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inverses of each, other. This completes the proof of the 

theorem. 

Theorem 3.10. A semigroup S is regular if, and only 

if, AAB = AB for every right ideal A and every left ideal 

B of S. 

Proof. Suppose S is regular. Let A be a right ideal 

of S and let B "be a left ideal of S. Show AAB » AB. Let 

ab € AB where a C A and b £ B and show ab £ AAB. The 

element ab is in A since a € A and A is a right ideal of S. 

The element ab is in B since b € B and B is a left ideal 

of S. Thus ab C A and ab £ B imply ab C AAB. Thus 

AB AAB. From the above it is clear that AD B is meaning-

ful. Let x €1 AAB and show x G AB. Now x £ AAB implies 

x £ A and x £ B. The element x is in S and S is regular 

imply there exists an element y in S such that xyx = x. 

Now y x £ B since x £ B and B is a left ideal of S. Thus it 

follows that X£AB since x « x(yx) where x £ A and yx € B. 

Thus AAB£sAB and it follows that AA B = AB. 

To show the converse let a € S and show a is regular. 

Consider R(a) and L(a). By hypothesis R(a)AL(a) » R(a)L(a). 

It is clear that a £ R(a)AL(a) since a £ R(a) and a £ L(a). 

Thus a £ R(a)L(a). This implies there exist an element x 

in R(a) and an element y in L(a) such that a = xy. Now 

x G R(a) implies x = a or there exists an element x' in S 

such, that x = ax*. The element y is in L(a) implies y » a 

or there exists an element y1 in S such that y » y'a. If 
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x = a and y = a, then a = aa and. this implies a = aaa. 

If x = a and y = y'a, then it follows that a = ay'a. 

If x = ax' and y = a, then it follows that a = ax1a. 

If x = ax' and y = y'a, then it follows that a = a(x'y')a. 

Thus a is regular. This completes the proof of the theorem. 

Theorem 5.11. If a is a regular element of a semigroup 

S, then L(a) = Sa and R(a) = aS. 

Proof. By definition, L(a) = SaU{&}; thus, it will 

suffice to show a € Sa. Since a is a regular element of S 

there exists an element x in S such that a = axa* Thus 

a = axa implies a £ Sa since (ax)a£ Sa. Similarly 

R(a) a aS. This concludes the proof. 

Theorem 3.12. If e, f, ef, and fe are idempotent 

elements of a semigroup S, then ef and fe are inverses 

of each other. 

Proof. The element ef is idempotent implies 

ef = (ef)(ef). Then ef = (ef)(ef) implies ef » e(ff)(ee)f 

since f and e are idempotent elements. Now ef = e(ff)(ee)f 

implies ef • (ef)(fe)(ef). Similarly fe « (fe)(ef)(fe). 

Hence ef and fe are inverses of each other and the theorem 

is proved. 

Theorem 5.15. An element a of a semigroup S is 

regular if, and only if, there exists an idempotent ele-

ment e in S such that L(a) = L(e). 

Proof. Suppose a is regular and show there exists an 

idempotent e in S such that L(a) - L(e). The element a is 
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regular implies there exists an element x in S such that 

a = axa. Then a « axa implies xa = (xa)(xa). Thus xa is 

idempotent. Now it remains to show L(a) = L(xa). To show 

L(a)j=s L(xa), let y £ L(a) and show y £ L(xa). Now y<^ L(a) 

implies y = a or y £ Sa. If y = a, then y = axa since 

a = axa. Thus y = axa implies y £ Sxa since a(xa) £ Sxa. 

If y £ Sa, then there exists an element y' in S such that 

y « y'a. Then y = y'a and a = axa imply y = (y'a)xa which 

implies y £ Sxa. Now y d Sxa implies y£"L(xa). Thus 

L(a) L(xa). To show I(xa)£ 1(a), let z £ L(xa) and 

show z £ L(a). Now z £ L(xa) implies z = xa or z £ Sxa. 

If z = xa, then z £ Sa. If z £ Sxa, then there exists an 

element z' in S such that z = z'za. This implies z £ Sa 

since (z'z)a£ Sa. Then z £ Sa implies z £ L(a) which im-

plies . L(xa) L(a). Hence L(a) = L(xa) and xa is idempotent, 

Suppose there exists an idempotent element e in S 

such that L(a) = L(e) and show a is regular. The element 

a is in L(a) and L(a) = L(e) imply a = e or a£. Se. If 

a a e, then a = aaa since e is idempotent implies e = eee. 

If a £ Se then there exists an element a' in S such that 

a = a'e. Then a = a'e and e is idempotent imply a = ae. 

Now e £ L(e) and L(e) = L(a) imply e = a or e £ Sa. If 

e = a, then a » aaa since e is idempotent. If e £ Sa, then 

there exists an element e' in S such that e = e'a. Thus 

a = ae and e = e'a imply a = ae'a. Therefore a is regular 

and the theorem is proved. 
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Theorem 5.14-. The following conditions on a semigroup 

S are equivalent: 

(1) S' is regular and any two idempotents commute 

with each other. 

(2) If a £ S , then there exist unique idempotent 

elements e and f in S such that L(a) = L(e) 

and R(a) = R(f). 

(3) S is an inverse semigroup. 

Proof. To prove the equivalence of the three state-

ments it will suffice to show (1) implies (3)» (3) implies 

(2), and (2) implies (1). 

Suppose (1) is true and show (3) is true. Suppose S 

is regular and any two idempotents of S commute.with each 

other and show S is an inverse semigroup. To show S is 

an inverse semigroup it is necessary to show each element 

of S has a unique inverse in S. Let a € S. The element 

a is in S and S is regular imply by Theorem 3.9 there 

exists an element b in S such that a and b are inverses 

of each other. Hence aba « a and bab = b. Thus it re-

mains to show b is unique with respect to a. Suppose a 

and c are inverses of each other and show b « c. Now a 

and c are inverses of each other implies aca = a and 

cac = c. Clearly aba = a and aca = a imply ab, ba, ac, 

and ca are idempotent elements. It follows from the 

hypothesis that any two of these idempotents commute with 

each other. This fact and the above equations are used 
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t o show b «« c . Now b = bab = b(aca)b = (ba)c (ab) ® 

(ba)cac (ab) = ( b a ) ( c a ) ( c a b ) » ( c a ) ( b a ) ( c a b ) « 

(caca)(ba)(cab) = (cac)(aba)(cab) <= (c)(a)(cab) « 

c(ac)(ab) = c(ab)(ac) « c(aba)c » cac => c. Thus b is unique 

and (3) is true. 

Suppose (3) is true and show (2) is true. Let a £ S 

and show there exists a unique idempotent e in S such that 

L(a) = L(e). Now S is an inverse semigroup implies there 

exists a unique element b in S such that a = aba and 

b = bab. Now a = aba implies a is regular and it follows 

from Theorem 3.13 that there exists an idempotent element 

e = ba such that L(a) = L(e). It remains to show e is 

unique. Suppose f is an idempotent such that L(a) = L(f) 

and show f = e. Each of a, ba, and f is a regular element 

implies by Theorem 3.11 that L(a) = Sa, L(ba) = Sba, and 

L(f) » Sf. Clearly L(a) = L(ba) and L(a) = L(f) imply 

Sba = Sf. Then ba £ Sba since ba £ S and ba is idempotent. 

Now ba O Sba and Sba = Sf imply there exists an element 

x in S such that ba = xf. It is clear that ba = xf and 

f is idempotent imply ba = baf. Clearly f £ Sf since 

f £ S and f is idempotent. Now f € Sf and Sf = Sba imply 

there exists an element y in S such that f = yba. The 

element ba is its own inverse since ba is idempotent. To 

show f = ba it will suffice to show that f and ba are 

inverses of each other since S is an inverse semigroup. 

To show f and ba are inverses of each other it is necessary 
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to show "ba - ba(f)ba. and f » f(ba)f. The equalities 

ba = baf, f = yba, and. baba = ba are used to show this. 

Clearly ba = (ba)(ba) = (baf)(ba) = ba(f)ba. Clearly 

f = yba o y(ba) = y(ba)(ba) = (yba)(ba) = f(ba) = f(baf) « 

f(ba)f. Hence f and ba are inverses of each other and 

f = ba. Thus e = ba = f. By a similar argument it can 

be shown that there exists a unique idempotent element 

g such that R(a) - R(g). Thus (2) is true. 

Suppose (2) is true and show (l) is true. To do 

this it is convenient to show first that (3) is true. 

Let a £ S, By hypothesis there exist unique idempotent 

elements e and f in S such that L(a) = L(e) and R(a) = R(f). 

By Theorem 3.13 it follows that each element of S is regular. 

This implies by Theorem 3»H that L(a) = Sa, L(e) = 

Se, R(a) = aS, and R(f) = fS. Thus Sa = Se and aS » fS. 

Now S is regular also implies by Theorem 3.9 that each 

element of S has an inverse in S. Thus let b be an inverse 

of a and by the definition of inverses it follows that 

a a aba and bab = b. To show b is unique with respect 

to a let c be an element of S such that a = aca and 

cac = c and show b = c. Clearly Sa = Sba and ba is 

idempotent. Hence e = ba. Clearly Sa = Sea and ca is 

idempotent# Hence e = ca and it follows that ba = ca. 

Similarly it can be shown that ab = ac. Now b = bab = 

cab = cac « c. Thus each element of S has a unique inverse 

in S. Thus (3) is true. To show (1) is true let g and h 
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"be idempotent elements of S and show gh = hg. The element 

gh is in S and S is an inverse semigroup imply there exists 

a unique element x in S such that gh = ghxgh and xghx = x. 

Clearly gh(hx)gh = gh and hx(gh)hx » hxghx = hx. Thus 

x = hx since x and hx are both inverses of gh. Similarly 

it can be shown that x = xg. Now xx = xghx = x(gh)x = x 

which implies x is idempotent. The element x is idempotent 

implies x is its own inverse. Thus it follows that x = gh 

since both x and gh are inverses of x. Thus gh is idempotent. 

Similarly it can be shown that hg is idempotent., Now since 

g, h, gh, and hg are idempotent elements, then, by Theorem 

3.12, gh and hg are inverses of each other. Thus gh is its 

own inverse since gh is idempotent. Thus gh = hg and (1) 

is true. Therefore the theorem is true. 

Theorem 3.15. If e and f are idempotent elements of 

an inverse semigroup, then SeASf = Sef and Sef = Sfe. 

Proof. Let &.Q Sef and show a € SeOSf. The element 

a is in Sef implies there exists an element b in S such that 

a = bef. It follows from Theorem 3*14- that ef = fe since 

e and f are idempotent elements of an inverse semigroup. 

Thus a = bfe. Now it is clear that a C Se and a £ Sf since 

a = bfe and a = bef. Thus a C SeHsf. Hence Sef QSe/^Sf. 

Prom the preceding part of the proof it is clear that 

SeASf is meaningful. Thus let a €1 SeASf and show a Sef. 

Then a G Se and a €1 Sf. The element a is in Se implies 

there exists an element x in S such that a = xe. Clearly 
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a = xe and. e is idempotent imply a » ae. The element a is 

in Sf implies there exists an element y in S such that 

a = yf. Now a = yf and f is idempotent imply a = af. Then 

a « af and a = ae imply a = aef. Clearly a £ Sef since 

a = aef. Thus Sen Sf is Sef. Hence Sef\Sf = Sef. It is 

clear that Sef = Sfe since ef = fe. This completes the 

proof of the theorem. 

Theorem 3.16. A non-degenerate right zero semigroup 

S has the following properties: 

(1) If a £ S, then there exists a unique idempotent 

element e in S such that L(a) » L(e). 

(2) S in not an inverse semigroup. 

Proof. The element a is in S and S is a right zero 

semigroup imply aa = a. Let e = a and it follows that 

L(a) a L(e) where e is an idempotent element. To show 

e a is unique, let f "be an idempotent element of S such 

that L(a) = L(f) and show f = a. Clearly a and f are 

idempotent elements and L(a) » L(f) imply Sa = Sf. Now 

a C Sa since a is idempotent. Thus a £ Sa and Sa *= Sf 

imply there exists an element x in S such that a = xf. 

It follows that xf = f since S is a right zero semigroup. 

Hence f = a = e and e is unique. 

To show (2) suppose, by .way of contradiction, that 

S is an inverse semigroup. Let a € S. Now a S and S 

is an inverse semigroup imply there exists a unique ele-

ment x in S such that axa = a and xax = x. Since S is 
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non-degenerate, let y £ S such that y ^ x. Now ay,a€ S 

and a is a right zero semigroup imply aya = a. Similarly 

yay » y. Thus y and a are inverses of each other and x 

and a are inverses of each other. This implies x » y 

since an element of an inverse semigroup has a unique 

inverse. But x = y is a contradiction. Thus it follows 

that S is not an inverse semigroup. Hence the theorem 

is proved. 



CHAPTEE IV 

TRANSFORMATION SEMIGROUPS 

Definition 4.1. Let I be a set. The statement that 

F is a transformation of X means F is a function whose 

domain is X and whose range is a subset of X. 

Definition 4.2. Let X be a set. Then !7x is defined 
i 

to be the collection of all transformations of X. 

Definition 4.5. Let X be a set and let each of F 

and G be an element of . The product of F and G is 

denoted by FG and is defined by FG = {(x,G(F(x))) ( x x} . 

Definition 4.4. Let X be a set. The statement that 

F is a constant transformation means F and the range 

of F is a set consisting of a single element. 

Theorem 4.1. Let X be a set. If F and G £ 

then FG€S& . 

Proof. By definition FG = {(x,G(F(x))) J x £. XJ . To 

show FG is a function, let (x,G(F(x)))FG and 

(y,G(F(y))) € FG where x = y and show G(F(x)) « G(F(y)). 

Clearly x,yC X, x = y, and F is a function whose domain 

is X imply F(x) = F(y). Now F(x), F(y)£. X since the range 

of F is a subset of X. Thus F(x) = F(y), F(x), F(y)£ X 

and G is a function whose domain is X imply G(F(x)) = G(F(y)) 

41 
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Hence FG is a function. It is clear from the above defini-

tion that the domain of FG is X. Also it is clear that the 
0 

range of FG is a subset of X since each element G(F(x)) in 

the range of FG is an element of X. FG is a function whose 

domain is X and whose range is a subset of X implies FG is 

a transformation of X. Hence FG£S7x . This concludes the 

proof. 

Theorem 4.2. Let X be a set. Then is a semigroup. 

Proof. By Theorem 4.1 it follows that the product 
» 

relation is a binary operation defined on S?j!r ; thus, it re-

mains to show that this binary operation is associative. 

Let F,G,H£2x and show (FG)H - F(GH). By definition (FG)H-

{(x,H(FG(x))) | x € X ] and F(GH) « {(x,GH(F(x))) | x £ x ] . 

To show these two sets are equal it will suffice to show 

H(FG(x)) « GH(F(x)). By definition H(FG(x)) = H(G(F(x))). 

Also, by definition, GH(F(x)) = H(G(F(x))); hence, the two 

are equal and (FG)H = F(GH). Therefore is a semigroup. 

Theorem 4.3. Let X be a set. An element F of Sx is 

idempotent if, and only if, y = F(y) for each y in R(F). 

Proof. By definition F =» £(x,F(x)) | x £ X } and 

FF = £(X,F(F(X))) ( x £ x ] . Suppose y = F(y) for each 

y in R(F) and show F = FF. To do this it will suffice to 

show F(x) = F(F(x)) for each x in X. Now for each x in X, 

F(x) E R W . F(x)£ R(F) and y = F(y) for each y in R(F) 

imply F(x) » F(F(x)). Hence F «• FF and F is idempotent. 

Now to show the only if part suppose F » FF and show 
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y ° jPCy) for each, y in R(F). The above definitions of 

5* and FF clearly imply F(x) = F(F(x)) since F « FF and 

both F and FF are functions. (Thus y = F(y) for each y 

in R(F). Therefore the theorem is proved. 

Theorem 4.4. Let X be a set. Then F is a right zero 

element of if, and only if, F is a constant transforma-

tion. Also, there are no left zero elements in 0X if X 

is non-degenerate. 

Proof. Let F be a constant transformation of X and 

show F is a right zero element of Vx . Let GGtJx an< -̂ show 

GF = F. Now F is a constant transformation of X implies 

there exists an element a in S such that F = £(x,a) | x £ X^, 

By the definition of the product of two transformations, 

GF AS £(X,F(G(X))) | x ^3 * N o w G(x) £! X for every x in 

X. Hence F(G(x)) = a and it is clear that GF = F. Thus 

F is a right zero element of . 

Let F be a right zero element of and show F is a 

constant transformation of X. To show F is a constant 

transformation of X it is necessary to show that the range 

of F is a set consisting of a single element. Let b £ S 

and consider G = £(x,b) | x £. X J . It is clear that 

G £ *7x since G is a function whose domain is X and whose 

range is fbl^X. Now G C ^ and F is a right zero element 

of imply GF = F. By definition, 

GF = £(X,F(G(X))) | x £ x} and since G(x) • b for every 

x £ X , it follows that GF « £(x,F(b)) I x x} • Now 
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GF = F implies F = {(x,F(b)) | x £ Xj which implies that the 

range of F consists entirely of the single element F(b) of 

X. Thus F is a constant transformation. 

Let X be a non-degenerate set. Now suppose, by way 

of contradiction, that F is a left zero element ot tfa • 

Since X is non-degenerate, let a and b be distinct elements 

of X. It is clear that G = {(x,a) | x £ x ] and H = 

((x,b) | x € x j are both elements of . It is also clear 

that G 4 H since a ^ b. Thus one of G and H is not F so, 

without loss of generality, let G ^ F. Now g£??x and F 

is a left zero element of Vx imply FG » F. By definition 

FG » £(x, G(F(x))) | x £ x } . Now F(x) £ X for each x in 

X and G(x) » a for each x in S. Thus G(F(x)) = a for each 

x £ X and it follows that FG = {(x,a) | x £ X J . Thus 

FG = G. Now FG - F and FG = G imply F = G. But F - G 

contradicts the assumption that F and G are distinct. 

Hence F is not a left zero element of and si contains 

no left zero element. This concludes the proof. 

Theorem 4.5. Let S be a semigroup with a right zero 

element and let K be the set of all right zero elements 

of S. Then S = 5k if the following are satisfied: 

(1) If a,b £ S such that ka = kb for all k in K, 

then a = b. 

(2) If F€.^7k, then there exists an element a in 

S such that F = ^(k,ka) j k £ KJ . 

Also, if S , then (1) is true. 
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Proof. Suppose (1) and. (2) are true and show S % PK . 

Consider <j) = £(x,F) | a £ S and IT » £(k,ka) | k £, k} J • To 

show |) is a function, let (a,F) €. (j) and (b,H) €1 such that 

a = b and show F = H. Clearly (a,F) C! $ implies 

F = £(k,ka) j k £ kJ and (b,H) £1 ([> implies H • £(k,kb) J k£Kj. 

It is clear that F = H since a = "b. Hence f is a function. 

To show (j) is a reversible function, let (a,F) £ (j) and 

(b,H) (J) such that F = H and show a = b. Now (a,F) £L (j) 

implies F = {(k,ka) | k £ K ] and (b,H) C (j) implies 

H - £(k,kb) | k £ KJ . Now F = H implies ka = kb .for all 

k in K. But ka - kb for all k in K implies by (1) that 

a = b. Hence § is a reversible function. It is clear from 

the definition of (J) that the domain of f) is S, It remains 

to show that the range of § is and if a,b £ S, then 

(j)(ab) = <|>(a)(j)(b). To show that R((j)) = 7k it is necessary 

to show RCcjOSTk and RC^). Let F £ R((|) and show 

F £ 57k . To show F £1 7k it is necessary to show F is a 

function whose domain is K and whose range is a subset of K. 

Let (k,ka) £ F and (h,ha) £ F such that k = h and it is clear 

that this implies ka = ha. Thus F is a function. By (2) it 

is clear that the domain of F is K. Thus it remains to show 

that E ( F ) S L Let ka £ R(F) and show ka £ K. Let x £ S. 

Now k is a right zero element of S since k £ K. Then x £ S 

and k is a right zero element of S imply xk = k. This 

implies x(ka) = ka which implies ka£K. Thus F £ and 

R ( < J 0 S £ 7 K . T O show T K Q R ( ^ ) let F £ 7k and- show 3? £ R(<J>). 
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Now F£7k implies "by (2) that there exists an element a 

in S such that F = £(k,ka) J k £ k] . Since a £ S, it follows 

from the definition of (j) that (a,F') € (j> where F* - {(k,ka)| 

k £ K ] . Hence F = F1 and F £ R($). Now to show S sr ̂  

it remains to show the following. If a,b £ S, then ((>(ab) » 

(J)(a)<j)("b) • Now "by construction of ({>, ̂ (ah) =» F where 

F = {(k,k(ab)) | k £ K } , (J)(a) - F' where F* - £(k,ka)| 

k £ K j , and $(b) = F" where FM - {(k,kb) | k £ Kj . By 

the definition of product, (|>(a)({)(b) = F'F" = J ( k , F " ( F ' ( k ) ) ) J 

k £ k] . Now to show (j)(ab) = $(a)<|)(b) it remains to show 

F"(F'(k)) • k(ab). Now F'^F'Ck)) = F"(ka) by definition 

of F'. It has already been shown that if k C K and a £ S , 

then k a £ K. Thus k a ^ K implies F"(ka) is meaningful and 

by definition F"(ka) » (ka)b = k(ab). Hence (|>(ab) • 

(j)(a)(j)(b) and S s 7k . 

Suppose S = 7k and show (1) is true. Since S = 7kt 

there exists a reversible function (J) whose domain is S and 

whose range is 3k and such that if (a,F) £ (|> and (b,G) £ (|), 

then (ab,FG) £ (j). To show (1) is true, suppose, by way of 

contradiction, that there exist elements a and b in S such 

that ka = kb for all k in K and a ^ b. The domain of (j) is 

S and a,b £ S imply there exist transformations F and G in 

%. such that (a,F) £ (j) and (b,G) £ Now a ^ b implies 

F / G since f is a reversible function. Thus, since F 4 G 

it follows that there exists an element y in K such that 

F(y) 4 G(y). Now consider H = £(k,y) J k £ K ] . It is clear 



4-7 

that HC^'Tk since H is a function whose domain is K and 

whose range is a subset of K. Now H€l and |) is a re-

versible function whose domain is S and whose range is c7k 

imply there exists an element h in S such that (h,H) £ (j). 

It will be necessary to show that h £ K , By Theorem 4.4 

it follows that H is a right zero element of 7k since H 

is a constant transformation. To show h £ K, let a £ S 

and show ah = h. Since a ^ S , it is clear that there 

exists an element T in 7k such that (a,T)C (j>. Now 

(a,T) G. (j) and (h,H) €1 (|) imply (ah,TH)C (j). But TH = H 

since H is a right zero element of eJk . Thus (ah,H) C <|). 

Hence it follows that ah = h since (h,H) , (ah,H) § and (j) 

is a reversible function. Thus h £ i , Now (h,H) C (j) and 

(a,F)£ <|) imply (ha,HF) C (j). Similarly (hb,HG) £ <|). Now 

ha = hb since h££ K. Hence HF = HG since $ is a function. 

By the definition of the product of transformations, it 

follows that HF = {(k,F(H(k))).J k G. k] and HG = 

{(k,G(H(k))) | k £ k] . Thus F(H(k)) = G(H(k)) for all. k in 

K. But H(k) = y for all k in K implies I?(y) = G(y) and this 

is' a contradiction. Therefore a = b and (1) is true. 
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