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CHAPTER I 

TOPOLOGICAL SPACES 

Definition 1.1 A set $ of subsets of a set E defines 

on E a topological structure (or more briefly, a topology) 

if it possesses the following properties (called axioms 

of the topological structure): 

0X s Every union of sets of Q is a set of Q~ . 

OJJ.: Every finite intersection of sets of Is a set 

of Q . 

The sets of are called open sets of the topological 

structure defined by & . 

Definition 1.2 A topological space is a set provided 

with a topological structure; its elements are then called 

points. 

When one can exhibit that a set of subsets of E 

satisfies 0ff it is often convenient to establish separately 

that it satisfies the following two axioms, which together 

are equivalent to Qj. 

: The intersection of two sets of $ belongs to $ . 

0 ^ : E belongs to (9" • 

Examples of topologiest E being any set, the set of 

subsets of E consisting of E and 0 (the empty set) satisfies 

axioms Oj and and defines a topology on E. It is the 

same for the set P(E) of all subsets of E. The topology 

it defines is called the discrete topology. 



Definition 1.3 In a topological space E, a neigh-

borhood of a subset A of E is any set which contains an 

open set containing A. 

The neighborhoods of a subset |x$ reduced to a single 

point are also called neighborhoods of the point x. 

Proposition 1.1 In order that a set be a neighbor-

hood of each of its points, it is necessary and sufficient 

that it be open. 

Consider a set A. If A is open, and a £ A, then by 

Definition 1.3, A can qualify as the set containing an 

open set which contains a, i.e., A C A. Therefore A is 

a neighborhood of a. 

Now, if A is a neighborhood of every point belonging 

to A, then for every a £ A there exists an open set 

such that a £ Ba Ci A. Now, A is contained in KJ Ba since 
«c A 

every element of A is contained in {J BA * However, 
AC A 

Ba is contained in A. Therefore A = {J B . By 0_ , 
ACA 

A is open. 

Designate by V(x) the set of neighborhoods of x. 

v(x) has the following properties: 

Vr : Every subset of E that contains a set of V(x) 

belongs to V(x). 

VJJ s Every finite intersection of sets of V(x) 

belongs to V(x). 

The element x belongs to every set of v(x). 

(These three properties are in effect the immediate con-

sequences of Definition 1.3 and of the axiom .) 



Y m i If V belongs to V(x), there exists a set ¥ 

belonging to V(x) and such that, for every y £. ¥, V belongs 

to V(y). 

By Definition 1.3, it is seen that Vx is a justifiable 

statement. 0^ is the reason that is true. By Defini-

tion 1.3, x must belong to every neighborhood of x. There-

fore, is verified. By virtue of Proposition 1.1, if 

we take for ¥ sin open set containing x and contained in V, 

we see that Y^ is true. Hence, Yx , YK , , Y-gr are 

verified. 

Definition 1.4 In a topological space E, closed sets 

are the complements of the open sets of E. 

F.xampi es t Let R be the real line provided with the 

usual topology (see exercise l). Now (0,l)f & , so (0,l) 

is open. Q = (<- »°] U fl, —» ) is closed by 

Definition 1.4. 

Let R4 be the Cartesian plane and let 0 be the usual 

topology for R l. Now the disc (x-0) + (y-0) < 2 is 

an element of 0 . Q[(x-0)* + (y-0f £ 2] « {(x,y)jxz + y*>2j 

is closed by Definition 1.4. 

For the real line R provided with the usual topology 

the set (0,13 is neither open nor closed. 

For the Cartesian plane R4 the set £x,y|xz + y" <. 2, 

or x=l, y-lj is neither open nor closed. 

Definition 1.5 In a topological space E, a point x is 

interior to a set A if A is a neighborhood of x. The set 



of points interior to A is called the interior of A and is 

denoted by 

We note that the interior of a non-empty set can be 

empty; this is the oase for a set reduced to a single point 

when it is not open, for example in the real line. 

Examples: In the plane consider the set A w (z| ̂  2^ 

Now consider the monotonically decreasing sequence of closed 

sets {B^ such that for each ot , is a closed disc with 

center at the origin and each CZ A. This sequence of 

closed sets will converge to the closed set which contains 

only one point, namely the origin. The interior of a closed 

set which contains only one point is empty. 

For the discrete topology of the real line, each 

single point is considered as an open set; therefore its 

interior is a single point. 

In the complex plane, consider the set A » £z\[z\ < 1 

and the point z « (Otl) j , A = J |z| £ 2] which does not 

contain (0,l). 

Definition 1.6 In a topological space E, a point x 

is adherent to a set A if every neighborhood of x con-

tains at least one point of A. The set of points adherent 

to A is called the adherence of A and is denoted by A, 

(Note: In order that a set be closed, it is necessary 

and sufficient that it be identical with its adherence.) 

Proposition 1.2 If A is an open set in E, for every 

subset B of E, A fl B CZ. Afl B. 



In effect, if x£ A is adherent to B, i.e., x£B, for 

every neighborhood. V of x, V /I A is still a neighborhood of 

x, since A is open. Then V C\ A C\ B is not empty, which 

shows that x is adherent to A C\ B. Therefore xf A f\ B. 

Definition 1.7 In a topological space E, a point x is 

called a frontier point of a set A, if it is at the same 

time adherent to A and to (complement of A) • 

The frontier of a set A is that set of points which are 

interior to neither A nor (JA and is denoted by Fr(A) * A F\ CA. 

Examples: Let Rzbe the entire plane. Obviously, every 

point in the plane is interior to R* Therefore Fr(Rz) « 0. 

Let A = ^x|x<€)j. Fr(A) » X/"lCA A » 0 . 

Let B = [z[ [z\ = lj . Fr(B) = "B flC® = {z [lz| = 1̂  = B. 

Definition 1.8 In a topological space E, a set A is 

said to be dense with respect to a set B, if every point of 

B is adherent to A (that is, if BCA). A set A is said to 

be everywhere dense if it is dense with respect to the en-

tire space E (that is, if E ® A). 

Examples: Let B = £xj x = where p and q are integers 

and q ̂  0̂ . Then B is everywhere dense in the set R of real 

numbers. That is, R = B. 

In the plane let A = jz\<l and the point (0,l)j. Let 

B = |z|<lj. Here we see that BCA but A^B. However, B 

is dense with respect to A since ACB and also A is dense 

with respect to B since BCA. 

Exercise 1.1 Let R represent the real line. The usual 

topology for R is defined as follows. Let B be the set of 



all open intervals of R. Let $ be the collection of all 

arbitrary unions of open intervals of R, 

B - = <•*«•%>)] 

© - {u|c =(A,, I B ? 
JQ °i£a 

Show w satisfies 0X and 0^ . 

Consider any \JU<* where A is an arbitrary index set and 
<xcn 

U, £ <9 for every <* e A. = [ _ J ( ) . Now there exists 
otcft ocen ftc'v-

an index set AC/ba such that {J (\Jj a ) s ( J i Y c <9 • There-
of V&A * frcpuiL 

fore 0j is satisfied. 

Now, if U, and are elements of © , U,fl Ux = 

i k + n u i * - u ( ^ n i j ) c <9 . Therefore 0^- is satisfied. 

(Note: If la = I4 , then** = £ .) 

Evidently the union of the collection of all open 

intervals contains R. Therefore 0.^ is satisfied. 

Therefore, 0 defines a topology on R. 

Exercise 1.2 Let R* be the Cartesian plane. 

R2" * |(x,y)|x£R any ycnj. Let B be the collection of all 

open discs in R . Let ® be the set of all arbitrary 

unions of sets of B. 

B = ^D^D,, « |(x,y) \ (x-h* )*"+ (y-k^ ft. 

& » ju|u =(Jd^, C B] 
1 1 CCA ' 

Show that & satisfies 0X and 0 V , 

Consider any Iju^. \J = {J(U®0 ) which can he 

D„ which is an element of & . Therefore 
JeAUa" 

Ojr is satisfied. 



How consider any U, £" <9 and U, C u. A u, =(Jd. Hud. 
X of (ft * tl»P 

which can be written as [_J (d̂  /I ) , Therefore °ar„ 

is satisfied. 
Clearly the union of the collection of all contains 

RZ , so Onb is satisfied. (Here again, if , oL = 0 ) . 

Therefore ^ defines a topology on R*• 

Exercise 1.3 Let E be a set. Let (3 be a collection 

of subsets of E [i% C P(E)] so that the following conditions 

are satisfied: 

P, : If B, and B,, are elements of & , then there is 

an element B^C Q> so that C_ B, 

Pt : 0 €<& 

P5 : E f ® 

Show how to use (0 to generate a topology on E. De-

fine from $ a collection Q of subsets of E which will 

satisfy 0,. and 0tt . 

Let & =fu d eJu =Ub^ , £ &>] 

Consider any Then Uv.= {J( L/BA) which is 
<«fl 84 ot£A * x *c» A/ 

L/ B. and (J By C (9 . 0, is satisfied. 
Vef*uo VcAv/̂  

Let <9 and Uac €> . U, f\ U. = (Jb^/1 l^B-but this is 
arc 

L/ (B„ f\ By) which is an element of Q » Hence 0̂ . 
Ĉ V̂ caxc " 

is satisfied. 

Since from P5 f E t. <£> , 9 defines a topology on E. 

(If B* = B, , oi = ̂  ) . 

Exercise l*h If E is a set ordered by a relation of 

order that one writes x ̂ .y, one designates by S^(x) the 



8 

set of all y such that y ^ x, by (x) the set of all y 

such that x y. 

a) Show that the set of all subsets of E containing 

S^(x) is the set of neighborhoods of x in a topology which 

is called the left topology. 

If S^(x) C then U is a neighborhood of x. Let 

M • ® = 

Consider L/U^ where A C E. For each ®< £ A, 
DEN 

TT, = Uvt & for some x £ E, since AC. E. Now [J = U c 
* OCEFI m 

for some z € E. SQ(Z) D IL . Therefore [J C 0 , so 
9 * <*£« 

0r is satisfied. 

Now consider two elements of & , say U„ and . It 

is necessary to show that Ux /~\ Uy € (9 (x / y) . Either 

x < y or y x since E is an ordered set and x ^ y. If 

y, S«j (x) <C S^(y) and therefore, since (x) CZ. U* 

and (y) d. Uy , U,, D TJy / 0. In either case f\ = Uz 

where z « min(x,y). Now Uz 3 (x) if x <: y and U2 ZD
 s«j (y) 

if y < x. Therefore XJg C & and 0 ^ is satisfied. 

If x £ E, then S^(X) C. E so E C. ©* and thus E £ ^ . 

Therefore is satisfied and @ defines a topology on E. 

b) For the left topology, show every intersection of 

open sets is open and every union of closed sets is closed. 

Show U. is open if each is open. 

Consider the case where F \ £ 0. Then UU = V 
kcA «<Cfl 

and V (2 E. Choose any x C V. Then S^(x) (Z. V. Therefore 

V £ & . Therefore V is open. 



How, it Is necessary to show that is closed if 
otePi 

each is closed. 

Let A be a subset of E so that A is not of the form 

j!l or |X|x ) a| or £K(X > a J or E, Suppose A is closed. 

Assume A / 0 and A ^ E. Either A is bounded below or A 

is not bounded below. 

Case X; A is not bounded below. 

¥e know A is not bounded above (unless E is bounded above) 

so if A is not bounded below, A = E, a contradiction. 

Case II: A is bounded below. 

Let a be the lower bound of A. Either A contains a or A 

does not contain a. In either case A « ^x(x > a J or 

A a jxjx > aj, a contradiction. 

Therefore we see that the only closed sets are of the 

form £xjx > a^ or £xjx > aj . It is obvious that if we take 

an arbitrary union of sets of this type we will get a set 

of the form > aj or jx[x £ a^; in either case it is 

closed. 

c) For the left topology, show the closure of the 

set £x^ is Sj(x). 

To show that Sj(x) is the closure of fx} we need to 

show that if y £ Sj(x), then every neighborhood of y 

contains x. Now the left topology is the set 

where | S(j {z) C. Uz ̂  . Evidently if y>x there 

is a € &z f"01* some z £. E such that y C Ue. How-

ever x c UJJ. Indeed, by the very way the left topology is 
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defined, every neighborhood of y contains x» since every 

neighborhood of y contains S,j(x) and x£S^(x). Therefore 

the closure of |x^ is Sj (x) . (x^.y implies x£S^(x) <C 

s9(y)C Uy) 

Exercise 1.5 For every subset A of a topological space 
O TT 

E, we let qL(a) m A, and £{&) =A. 

a) Show that if A is open, one has A CZ ©^(a) and 

that if A is closed one has A Z)0 (a) . 
o — Q ° 

If A is open, A = A. Also A CZ A* Wow A = A C_ A. 

Therefore Ad**(A). 

If A is closed A <C a. Then R C A. But since A is 

closed A = A. Therefore ^ ( A ) C A. 

b) Show that for every subset A of E, one has 

<*(©<(a)) o oi (a) and ft (/$(&)) « 0 (a) . O 
A C A 
"Q~ , 
.A. JtL ® Jk 
-£L _ -2. 
A A 

Thus o<( o< (a)) d o*.(a) 

But A C A 

A *~~~ A z: A 

& O 
A C-~A 
o o 
A ^ A 
O JS-
A A 

, •—» -A ^ A 

ThuS(S (A) £L o* ( (A)) 

Therefore <*( ®< (a) ) as c< (a) 
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O o 
A A 
O &L. 
O O _ ® 
A a A_f- A 

0 
°
 9 

A A 

Thus (a) <==• ^ @ (A)) 

A C- A 

"o* - ^ "5" 

A A = A 

Thus $( 0 (A)) CL /2(A), 

Therefore ^ (a)) = ^ (a) 

c) Give an example of a set A such that the seven 
o — -2. o JL "S" 

sets A, A, A, A, A, A, A are distinct# 

Let A as fx|x € (0,l), x £ (l,2), x is a rational 

number between 2 and 3» or x « 
A « (0,l) U (1,2) 

A = [0,3] ^ M 

A x [0,2] 
o 
A « (0,3) 

A = [0,3] 
O 
*5" / x 
A « (0,2) 

Exercise 1.6 Show that A f\ B d. A C\ B; give an 

example where A is open and where the three sets A C\ B, 

A r\ B and A fl B are distinct. 

A <Z.~A and B CZ ~B 

A f\ B d. ~A n B 

A T T B A n B s i n B" 

so A A B£- A 0 B 

Let A = |x|x £ (2,3)^. 



12 

Let B « |x|x£ (1,2) ami X C (^2»'t)} • 

[%,3)} 
%,-})} 

A O B = £xjx € 

and A /I B a { xl x 

and IflB s £x|x C ̂ 3 J and x * 2^ 

all are distinct. 

Give an example where A is not open and where A f \ B 

is not contained in Afl B. 

Let A « [x|x£ [2,3)} 

B = £x|x£(l,2) and i£ (5
2,»)} 

A OB" * |xjx = 2 or X € [\» 3)j" 

m = ^x|xe[5
2,3]J 

AAB<jt a O b since 2 is not an element of A 0 B. 

On the same set Ef it is possible (if it has more than 

one element) to define different topological structures by 

means of different sets of subsets of E satisfying axioms 

Oj and Oĵ . The topological spaces thus defined are consi-

dered different. 

Definition 1.9 Being given two topologies 

defined on the same set E by means of two sets of subsets 

ft . ft (of which the elements are the respective open 

sets of the topologies ^ and is finer than 

(or is coarser than •*.) if ; moreover, if 

B, * & one says that is strictly finer than * • 

Example; The set of topologies on any set E is ordered 
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by the relation is coarser than ; the topology of* 

which the open sets are E and 0 is coarser than any of the 

others, and is called the smallest element of" the set of 

topologies; the discrete topology is finer than all the 

others, and is called the largest element of the set of 

topologies. 

Proposition 1.3 Being given two topologies 

on a set Ef the following statements are equivalent: 

a) is finer than . 

b) Whenever x £ E, every neighborhood of x for 

is a neighborhood of x for . 

It will be shown first that (a) implies (b). If V 

is a neighborhood of x for the topology , there exists 

an open set A for such that x C A C— V; since A is 

also open for , V is a neighborhood of x for • 

Conversely, (b) implies (a)s because if A is an open 

set for , it is a neighborhood of each of its points 

for , and also for , which shows A is open for . 

L e t ^ be any set of subsets of any set E and con-

sider the topologies on E for which all the sets of are 

open. There exist such topologies; for example, the dis-

crete topology. 

The set ^ of the open sets for the topology 

generated by can be defined in the following fashion: 

& must contain, by virtue of Qtt , the set of the 

finite intersections of sets of ̂  (which contains E, the 
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intersection of* the empty set of ); in view of 0 , 

must also contain ̂ 1", any arbitrary union of sets of* Jj' . 

Definition 1.10 If it can be shown that every set of 

3$ n is a union of sets of ̂  » one says that ̂  is a base 

for the topology it generates. 

Exercise 1.7 On an ordered set E, the right topology 

has for a base the set of subsets Sj(x); the left topology 

has for a base the set of subsets Sg(x). 

For the left topology, S = where $ = /u, |s3(x)cu^. 

If it can be shown that every set of & is a union of 

sets of^S^(x)| , th@n£s«,(x)j is a base for & . 

It is necessary to show that if U£ Q , U ssO'Sa(x) 
*ca 3 

Let V be the union of all Sg(x) where S^(x) C. U. 

Suppose yfU. Then there is a S5(x) such that y g S^(x)dV, 

Therefore y£¥. Hence U C V. But V C_ V by the very way 

V is defined. 

Theref or e^since we have V CL V and V d U, V = TJ. 

The proof would be the same for the right topology. 

Exercise 1.8 On an ordered set E, the upper bound 

of the right topology and the left topology is the dis-

crete topology. 

<Sf-fa«|s9(x) C ; S,(x) » {y|y^ x} 

|sj(y) C Sj(y) =|x|x^ y} 

Define by B the set of open sets for the topology 

generated by dA (J l9A . Let x be any point in E. Now 

|x} is also in 3 , since (x) D Sj(x) and 
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s,(x)e ft and S4, (x) £ <9/t • Therefore we see that £x|, 

whex*e x £ E* is conlbaineci in & # Therefore 9 t u e h 

generates the discrete topology on the ordered set E. 

Exercise 1*9 Being given a topological space E, con-

sider the following properties: 

D, : The topology of E possesses a denumerable base. 

Dt t There exists a denumerable subset of E everywhere 

dense. 

D3: Every subset of E where all the points are 

isolated is denumerable. 

D4 : Every set of non-empty open sets of E , two by 

two without a point in common, is denumerable. 

Show that Dt implies Bz and , and that each of Dz 

and D3 implies D^. 

Proof; Di implies D«.. 

Let (2> = ji = 1,2,31 he a denumerable base for E. 

Define A a^x^jx^ € B^ , i « 1,2,3, . . .J . It is necessary to 

show A as E. 

Choose x € E so that x j4 *£ , for any L . Let U be 

a neighborhood of x. Now there exists a B^ such that 

x £ Bi C. U. Now xt g B̂  C U and x / x^. Therefore 

every neighborhood TJ of x contains a point of A distinct 

from x; hence x £ A. 

Therefore E C- A, and since A d E, A C. E » E; thus 

A is a denumerable subset of E everywhere dense. 

Di implies D* 

Let 8 = | i. = 1, 2,3 j • . • Let A be any subset of 
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E so that all the points are isolated; i.e., for every 

point x of A there exists a neighborhood U of x so that if 

y }£ x and y £ TJ, then y ^ A. Let Uj be a neighborhood of 

x so that Uj* C- for some i., and U-j contains no element 

of A other than x. Now if x £ A, x £ Bi for some i . If 

x,y £ A and x ^ y, it is possible to find TĴ  and XĴ  so 

that TĴ  and Uj2 have no points in common. 

Consider P = {^} where each TJj is a neighborhood of 

a point of A, and no two elements of P have a point in 

common. Clearly P is denumerable. Hence A is denumerable. 

D> implies D*. 

Let V =s CL is open and nonempty and if 

x £ U* , x £ TJj , then <*. * . Let P * ̂  x^ [ one and only 

one x^ is chosen from each T£< ̂  . Clearly, P is a set which 

contains only isolated points, since for any x^ £ P there 

is a neighborhood of x^ that contains no other points of 

p, namely the from which x^ was chosen. Therefore P 

is denumerable. If P is denumerable, certainly V is de-

numerable. 

D». implies DA 

D 2 states that there exists a denumerable subset A 

of E such that A =E. It is necessary to show that this 

implies that every set of nonempty open sets of E, two by 

two without a point in common, is denumerable. 

Let V • fa c e|u.J is open and nonempty and if y f » 

y £ tĴ,, the m ss nj . Define P « £ Uj , j 83 1»2,3, • • 
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We recall from the proof of D, implies D3 that A m £x^|xx e , 

X. a 1,2,3,...] • Now let ¥ be a mapping of P onto A where 

—> yj} when k « » Since this is a one to one mapping, 

P is denumerable. Since P is denumerable, certainly V 

is denumerable. 

Definition 1.11 A topology induced on A by the 

topology of E is the topology where the open sets are the 

traces on A of the open sets of E. The set A, provided 

with this topology, is called a subspace of E. 

Proposition 1.4 Xf A and B are two subsets of a 

topological space E such that B <d A, the adherence of B 

with respect to the subspace A is the trace on A of the 

adherence of B with respect to E. 

In effect, if x £ A, every neighborhood of x with 

respect to A is of the form V H A, where V is a neighbor-

hood of x in E. Or, v H b ® (V a ) O b ; then, in order 

that x be adherent to B with respect to A, it is necessary 

and sufficient that it be adherent to B with respect to E. 

Exercise 1.10 If A and B are two subsets of a topo-

logical space E such that B d. A, show that: 

(a) the interior of B with respect to E is contained 

in the interior of B with respect to the subspace A. Give 

an example where these two sets are distinct. 

It is necessary to show Be C. Bfl . Let x £ Be and 
O O 

show x c . How, x £ B£ implies there exists a neighbor-
o 

hood U of x such that U C Be. Then U M A is a neighborhood 
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of x in A. Since x£U 0 A C- B, then x f B r 

Example; Let E be the real line with the usual topology. 

Let A a [x,y] . Let B = y] . Now Be • y) , but 

Ba = (̂ 3̂ "» yj • Therefore Be C- Bft. 

(b) the frontier of B with respect to A is contained 

in the trace on A of the frontier of B with respect to E, 

Give an example where tb.ese two sets are distinct# 

Fr(BE) = Bc A Cb£ 

Fr(B„) = B ^ n CBp ___ 

It is necessary to show Bfl A C. BE f\ C
B
E H A. 

It is known that Bft = Be C\ A by proposition 1 . 4 . Now 

(i"E A A) A CiA d (Bt f\ A) 0 Cb£ since Q Bft C. Qs t . 

Therefore (Be f\ A) A Cba Bt A Qb bAa or Fr(Bft) d 

Fr(Bc ) (\ A. 

Example: Let A « {̂ 0,3̂  and B » (i»l] 

Fr(Bft) = {§} 

Fr(BE) = £§»l} 

Therefore Fr(Bfl ) O Fr(Bc ) A A. 

Exercise 1.11 Let A and B be any two subsets of E. 

(a) Show that the trace on A of the interior of B with 

respect to E is contained in the interior of B/1 A with res-

pect to A. Give an example where these two sets are dis-

tinct. (Assume B C\ A ^ 0 . ) 

Let x £ BE /I A.. How A is open with respect to the 
O 

subspaoe A. Since x £ Bc, x is not aofrontier point of B 

with respect to E. Therefore x £ (B A A)f . However, 
(B f) a)££ (bAa) a . Therefore xf (bAa)a, Hence BfiAAC(Bf|A)^ 
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Example: Let A = • L©t ® ss \P*i)* ®c 88 » 

so Be f~\ A = (0,-|-) [0, s (0, 2") • But (B n A)ft = ^0»i)» 

Therefore Bc
 A CZ (B f\ A)fl . 

(b) Show that the trace on A of the closure of B with 

respect to E contains the closure of BflA with respect to 

A. Give an example. 

Since A is closed with respect to itself, (B/^| A)ft « 

B̂ fi A. Now certainly Bfl d BE • Therefore (B/"\A)fl « 

B̂  f\ A C B*€ A A. 

Example; Let A = [̂ 0,lj , B ® (1,2)• Now BE f) A = 1, 

but (B r\ A)ft ® 0. 

Exercise 1.12 If each point of a subset A of a topo-

logical space E is isolated, the topology induced on A by 

that of E is discrete, and conversely. 

If x £ A there exists a neighborhood U of s such that 

U does not contain any point of A other that x. Now U C. E 

and U contains an open set u'<C E so that u'O A = x. 

Hence we see that the topology induced on A is discrete. 

Now if the topology induced on A is discrete, we know 

that if x £ A, then x £ ^ where <9 is the set of traces 

on A by open sets of E. That is, there exists an open set 

in E, say U, such that U A A * X. By definition, x is 

isolated. 



CHAPTER II 

FILTERS 

Definition 2.1 A filter on a set E is a set of sub-

sets of E which possesses the following properties: 

Ep : Every set containing a set o f ^ belongs to ̂  . 

F : Every finite intersection of sets of ̂  belongs 

to . 

F^i The empty subset of E does not belong to ̂  . 

Axiom Ftt is equivalent to the following two axioms: 

: The intersection of any two sets of belongs 

to . 

Fntl : E belongs to . 

Definition 2.2 Being given two filters and on 

the same set E, is finer than ^ t or is coarser than 

Qf' , if yjjf C_ . If & £ strictly finer than 

, or ̂  is strictly coarser than Qf". 

Theorem 2.1 In order that there exist a filter con-

taining a set £ of subsets of E, it is necessary and suf-

ficient that none of the finite intersections of sets of 

Jt) b e empty. 

If such a filter exists it must contain, according to 

Ftf » the set J) of finite intersections of sets of * 

If such a filter exists, it is necessary that the empty set 

does not belong to Jt)' . Now show this condition is sufficient, 

20 
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Every filter containing (if one exists) contains 

also, according to F̂ ., the set of subsets of E which 

contain a set of Jt) . Or, satisfies Px . It satisfies 

FJJ- according to the definition of . Finally, " sat-

isfies , since the empty set of E does not belong to 

is then a filter containing , and every 

filter containing j is finer than " . One says that 

jjf" is generated by . 

Corollary: Let be a filter on E and A be a sub-

set of E. In order that there exist a filter,^"" finer 

than and such that A £ , it is necessary and suf-

ficient that A intersect every set of ̂  . 

Let CZ. and A € . We know the intersec-

tion of A and any other set of ̂ ' is not empty. Now since 

o r ' , evidently A intersects every set of . 

Now, assume A intersects every set of . Then, by 

Theorem 2.1, there exists a filter such that ^ d ^ ' . 

Proposition 2.1 Let @ be a set of subsets of E. 

In order that the set of subsets of E containing a set of 

LB be a filter, it is necessary and sufficient that Q) 

possess the following two properties: 

Br: The intersection of two sets of contains 

a set of @ • 

is not empty, and the empty set of E does 

not belong to & . 

These properties are evidently necessary from the 

definition of a filter. It is necessary to show they are 
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sufficient. If sucJbi a set ̂  exists, we see immediately 

that this set satisfies Fr . It is clear that every element 

of (£> is an element of « Therefore the intersec-

tion of any two elements of is an element of . 

Hence is satisfied# Evidently E £ ^ » so is 

satisfied. Since the empty set does not belong to (£> , 

neither does it belong to . Therefore & is a filter. 

Definition 2.3 A set of subsets of a set E which 

satisfies axioms Br and is a base of the filter that it 

generates. Two bases of a filter are called equivalent 

if they generate the same filter. 

Proposition 2.2 In order that a subset (& of a filter 

be a base of that filter, it is necessary and suf-

ficient that every set of ^ contain a set of Q> • 

The condition is evidently necessary; it is sufficient, 

because if it is fulfilled, the set of subsets of E con-

taining a set of (0 is identical to , in view of Ft. 

Proposition 2.3 In order that a filter of base 

Gb' be finer than a filter ^ of base (Q , it is neces-

sary and sufficient that every set of (2) contain a set of Qy . 

This results immediately from Definition 2.2 and 

Definition 2.3. 

Definition 2.4 Every base of the filter of the neigh-

borhoods of a point (or a subset) of a topological space 

is called the fundamental system of neighborhoods of that 

point (subset). 



23 

Proposition 2.4 In order that a finite set of 

filters on E have an upper bound, it is necessary and suf-

ficient that, when one takes arbitrarily a set in each 

filter of , the intersection of these sets is never 

empty. 

In order that any set (j) of filters on E have an up-

per bound, it is necessary and sufficient that every finite 

subset of <§ have an upper bound. 

Proof of second statement: 

Let Jf a ^ f | f £ for some c <j) ^ . Consider 

any finite subset of ̂  , say^F, , F^ , Fa , . .. , F„j. Con-

sider £ Fj_ . Assume (S = 0. We know that every finite 

subset of $ has an upper bound; therefore if /flF; = 0 
/A *** 

the subset of <$from which ^F^. ( was taken would not have 

an upper bound. This is obvious because for some filter 

& to be an upper bound of £3^ \ from which 

was taken, it must be that for each , every set of 

must belong to , Apparently this cannot be so, for then 

would not be a filter if ̂  contained /Pc ̂  . Hence 

Fi / 0, and by Theorem 2.1, there exists a filter 
/> -1 

containing , and hence containing every filter in $ . 

Therefore (J has an upper bound. 

Definition 2.5 An ultrafilter on a set E is a filter 

such that there does not exist another filter strictly 

finer than it. (in other words, it is a maximum element 

of the ordered set of filters on IS.) 
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The following theorem will be accepted without proof. 

Theorem 2.2 If is a filter on a set E, there 

exists an ultrafilter finer than . 

Proposition 2.5 Let & be an ultrafilter on a set E. 

If A and B are two subsets of E such that A B c , 

then A C or B c. & . 

Suppose that A e/r , B £ Q? , and A U B C . 

tjf is the set of subsets X C. E such that A U X C 

One verifies immediately that is a filter on E. 

^ is strictly finer than because B C . But this 

contradicts the hypothesis that ^ is an ultrafilter. 

Proposition 2.6 Let i $ be a system of generators of 

a filter on a set Ej if for every X C E( X C o r 

then is an ultrafilter on E. 

In effect, every filter containing(it exists by 

hypothesis) is identical to ; because, if X £ , 

f so ^ X 4 w h i c h implies X ^ 

Definition 2.6 If the trace, on a nonempty subset 

A of a set E, of a filter & on E, is a filter on A, one 

says that this filter is induced by on A. 

Definition 2.7 Let ke an infinite sequence 

of elements of a set E. The elementary filter associated 

with the sequence i s t*16 filter generated by the image 

of the filter of Frechet by the mapping n—»x„ of N into E. 

That is to say, the elementary filter associated with 

the sequence [x^ is the set of X C. B such that x nC X 
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except for a finite number of values of n. If Sn designates 

the set of the xp such that p > n, the sets Sn form a base 

of the elementary filter associated with the sequence {x^ • 

Proposition 2*7 If a filter ̂  possesses a denumerable 

base, there exists an elementary filter finer than , and 

is the filter intersection of all the elementary fil-

ters finer than . 

In effect, arrange the denumerable base in a 

sequence • If one places Bn = *ke ®n's form a 

base of , and one has B m i CZ Bn. Let an be any point 

of Bn • is coarser than the filter associated with the 

sequence |an̂  • 

Exercise 2.1 If the intersection of all the sets of 

a filter ^ on a set E is empty, show that is finer 

than the filter of the complements of the finite subsets 

of E. 

Evidently the sets must be infinite; otherwise 

could not be a filter. Therefore E must be an infinite 

set. Since the complements of the finite subsets of E form 

a filter, say •$" , let us show that if 0 A t , Q A , 

where A is finite. 

Assume C a 4 » that is, (j A does not contain any 

set of . If CA does not belong to*3~ .then no subset 

of C A belongs to . Therefore, every set of ̂  must 

have at least one point of A in common, for if they (the 

sets of -3" ) did not there would exist sets U and V of ̂  
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such that U A V CZ. C A, which implies that Q A £ , 

contrary to our assumption. However, if there is a point 

of A common to every set of ̂  , the intersection of all 

the sets of would not be empty, a contradiction to our 

hypothesis. Therefore ^ A f . Hence ' <̂ L . 

Exercise 2.2 The intersection filter of two filters 

and ^ on a set E is identical with the set of sub— 

sets of the form aU B, where A is an arbitrary set of 

and B is an arbitrary set of • 

Let ^ ^ /H . Then ^ C. ̂  and ^ . 

Now let ^' S|AI1 BJA C ^fx and B C . Let C 6 $ • 

Then C e ̂  and C £ . Certainly C «= C U C € ̂ ' . 

Therefore *3*C. . 

Let D e >3*' . Then D = A U B, where A £ and 

B £ • Since A CZ. AL/B and B CZ A U B, we know from the 

definition of a filter that D = A (J B C and D » A {J B € . 

Therefore D € ^ and we have that C ^ , Hence 

Exercise 2.3 Show that on sun infinite set E, the fil-

ter of the complements of the finite subsets is the filter 

intersection of the elementary filters associated with the 

infinite sequence of elements of E of which the terms are 

all distinct. 

Let be the filter of the complements of the finite 

subsets of E. Then has for a base the set & = { C A | A C E 

and A is finiteJ. Therefore, for each A, there are at 
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most n elements of A where n is a positive integer. Let 

denote the finite subsets of E; i.e., Ax is finite 

for each x. Then ^xi, *- = 1,2,3». * . *nj x^ £ A% where A* 

is finite and Ax C must be denumerable; because if 

it were not there would be at least one A^ for which A* 

would not be finite, a contradiction. 

Now if is denuiseir&foie« ce art a inly 

denumerable. Hence (2> is denumerable. 

Then, by Proposition 2.7» there exists an elementary-

filter finer than ^ , and by Proposition 2.7» the 

intersection of all the elementary filters finer than it. 

Exercise Z,k If two filters and on a set E 

have an upper bound in the set of filters on E, show that 

this upper bound is identical with the set of subsets of 

the form A/l Bf where A is an arbitrary set of and B 

is an arbitrary set of -̂ 3̂  » 

Let = |̂ A 0 B J A £-3̂  and B c ^ . 

Choose any C £ >3^ . Let B = E c • Then 

C (I® = C £ . Therefore >̂ r . 

Choose any D . Let A = E £>3^ . Then 

D H E = D £ . Therefore . 

Now assume there exists an >3^' such that 

and such that S\ ' and d Qf" . Then there 

exists a V £ ̂ jr such that V 4 ^ " . However, V = A/1 B 

where A £ -3^ and B C . Since -3^C- ^ ' and^^C ̂  , 

then A C ̂ " and B € ^ " . Then by the definition of a 
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filter A /I B = V £ , a contradiction to our assump-

tion. Therefore there does not exist a V £ ̂  such that 

, so is indeed the upper bound of and . 

Exercise 2.5 In a topological space E, the intersec-

tion filter of the filters of neighborhoods of all the points 

of a subset A of E is the filter of the neighborhoods of A. 

Let = C~\ where ̂ 1* is the filter of neighbor-
tfl 

hoods of o*. . Let U be a neighborhood of A. Choose arbi-

trarily ai C A, Then U since U is certainly a 

neighborhood of «?( , Therefore U £ for every ok C A. 

Then U £ & . 

If V is not a neighborhood of A» then there is at 

least one cA £ A such that V is not a neighborhood of ©£ , 

which implies V 4 >3C. * Then V 4 ^ . Therefore ^ 

is the filter of neighborhoods of A. 

Exercise 2.6 Show that every filter ̂  is the inter-

section of the ultrafilters whioh are finer than . 

(if A 4 ^ but intersects every set o f , notice that 

C A 4 Or and that £)a intersects every set of ^ .) 

Let ̂  b e a filter. Let {>^J0{£A be such that for 

each e< , is an ultrafilter and ^ C . . This 

implies ̂ C . /") » Qf" • It is necessary to show 

that if <£ Of? is assumed, a contradiction occurs. 

Assume ^ ^ ' . Then there is at least one 

such that A 4 ̂  . A C ^ for every <* . (it is neces-

sary to show that there is an ultrafilter which con-
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tains and such that A $ *) Note that if A t & ' 

A must intersect every set of ̂  , since . 

Therefore Ca £ , but Ca intersects every set of ̂  . 

Therefore, there is an ultrafilter,^^ which contains 

^ and such that A 4 ^ . This ultrafilter ̂  is generated 

by the collection (£> » Jxjxt ^ or X s C A^. Note that 

a n d -34 ' h6nt:e a contradiction that g " 

contains a set A 4 3^ • Therefore ̂  is not a proper sub-

set of . Then 

Exercise 2.7 Show that every ultrafilter finer than 

the intersection of a finite number of filters is finer 

than at least one of them. 
Yk 

Consider /H where is a filter on E for each JL • 
v\ ^ , s , 

Let (!\ 0?2 = 3f • Obviously^ is a filter on E, and 

for each i , Let -3^C. 3^' where \3^' is an ultrafilter 

on E. 
Assume for each •31 <tsr" . Thus for each a. , 

there exists at least one A^ £ i, such that A^ $ . 

However (J.Jai £ 1 for each L . Therefore A J, £ • 
*s| x=i 

Now c is an element of every , where im l,2,3,..,k, 
4 5 I 

and O A i is an element of every ̂  , * = k+1,..,, n, so 
* = *V» 

[ & A'l u L Q . 4 6 ^ ° ^ . Therefore, by Proposi-

tion 2.5» either Al or CVax is an element of 3^' • 
A-1 * = * + > 

Since the A^'s are finite, it is easily seen that if this 

process is continued we will finally arrive at the union 

of two of the A^'s of which one of them must be an element 
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of 3" , a contradiction to our assumption. 

Therefore there does exist an , for some i , such 

that c 3 > " • 

(b) Give an example of an ultrafliter finer than the 

intersection of an infinite family of ultrafilters, but 

which is not identical to any of the ultrafilters of that 

family. 

Let E = r0, ll . Consider , where is generated 

byo< for eacho( e [^,1| . Obviously f \ = TO-ll » E. 
o< ff'SjlJ! 

The ultrafilter generated by |o] is finer than 

^ r 1 ctefi>lll 
but is not contained in.^^^ , . 

Exercise 2.8 Show that the intersection of the sets 

of an ultrafilter contains at most one point, and that, if 

it is a single point, the ultrafilter is formed from the 

sets containing that point. 

Let ^ be an ultrafilter and let be the sets 
I M£ r 

of the ultrafilter . 

Let H a , = A and assume A is not empty and not a 
ovC J 

single point. 

Now if A ^ , A does not contain any set in ^ , 

but every set in ̂  contains A. However, if A is not in 3^ 

then there exists a filter which contains A and also 3 ^ , 

namely = •S' LJ j A^, which contradicts the fact that 

& is an ultrafilter. . 

Therefore A € ̂  . Then there must be distinct sub-

sets U and V of E such that U U V = A, and Proposition 2.5 
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says that either U or V must be an element of . There-

fore /Oa* £ A where A is not a single point and not empty. 

Hence O A. = /x| where x is a single point. orfiAj » 0. 
* 1 > a>CI 

The filter formed by taking every set which contains x is 

an ultrafilter, since there is not a filter^-" such that 

Exercise 2.9 Show that, if a subset A of a set E 

does not belong to an ultrafilter <U on E, the trace of u 

on A is the set of all the subsets of A. 

If A ̂  , then there must be at least one W£ u such that 

V n A « 0. 

Let Veil, where V f\A ̂  0. V « (aAv) {J (Ca Hv). 

Now A H v f SO Ca H v c U by Proposition 2.5* However, 

(Ca H V) D A = 0. Let Ca H V = Y. 

Consider this Y. Let X be any subset of A. Let ¥ « 

|x|xC Y or xcxj. Obviously ¥C*U> since Y C ¥. Now Y/1a « X. 

Hence it is possible to get any subset of A desired. There-

fore the trace of on A is the set of all subsets of A. 

Exercise 2.10 On an infinite set, show that an ele-

mentary filter associated with a sequence whose terms are 

all distinct is not an ultrafilter. 

Let ^xnjbe an infinite sequence of distinct elements 

in an infinite set E. Assume the elementary filter as-

sociated with ^x„|is an ultrafilter , where ̂  * (XIX 

contains all but a finite number of the *„•«,). Nov 
E £k, , x3, xyt... £ |x, , x^# x^.,...|. Now according 
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to proposition 2.5. either ̂ x,, x3 , x£,.. ,,..|or 

» x3, x^,..., xar,_, must be an element of ̂  . 

Obviously neither of them is, since neither contains all but 

a finite number of the x^s. Therefore ̂  is not an 

ultrafilter. 

Exercise 2.11 Let ^ be a totally ordered denumerable 

set of elementary filters. Show that there exists an element-

ary filter finer than all the filters of £ . (Show that 

the union of all the filters of $ has a denumerable base.) 

Let be the sequence associated with » where 

C ^ . Now the base of is |sn^ where Sn « |xp | p>n|< 

Certainly fsA^ is denumerable, since is denumerable. 

Therefore every elementary filter in has a denumerable 

base. 

Consider V-3L -3'. Now^^ is a filter andv9^ has 
ntM 

as a base U S, . ( ^ 1 . . filter, since $ is a totally 

ordered set of filters and the upper bound of $ is the 

union of all the filters in .) Certainly a denumerable 

union of denumerable sets is denumerable. Therefore, by 

Proposition 2.7* there exists an elementary filter finer 

than >3^ . 

Exercise 2.12 We have the definition for a filter 

base 0 on E as follows: 

(1) (B C P(E) 

(2) 0 4 (S 

(3a) if U» V £ (E> t there exists a ¥ f such that 
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w c tjH V. 

If E is finite show the following is an equivalent 

definition for a filter base: 

(1) (& 1̂1 P(E) , (fy ®3 * • • • » 

(2) 0 4& 

(3b) A Bp = Br for some r = 1,2,3»• • •» k. 
P»l n 

First assume f~) B« = Br for some f = 1,2,3,«• •» k. Then 
pn r ' 

Br C (£> . This means that if B^, B̂ , £. (£> » B m D Br. 

This implies condition (3a). 

Now assume that if Bn and B w t (2> , then Bn B^ ZD Br 
* 

for some r « 1,2,3,..., k. Obviously then Q BP => Br 
K 

for some r =1,2,3* k. Assume f̂ \ Bp « ¥ Q B_ for some 
ps I r ' 

P ss 1,2,3»»**» k. Then there is a subset A <Z ¥ such that 

B r , and A C. (2> for every r, which is impossible 

if A ̂  Br for some r . Therefore Br = ¥. Then (3a) im-

plies (3b). 

Now consider the arbitrary case >s B- , where 
cxf®, 

V/i e 6 
This cannot be the case. Consider the set E » (0,l). 

Define (2) as follows: (3 - f(0>~r\ )| 0 < IT <£ 1 J. Obviously 

(3a) does not hold since (~) = 0 d (R • Hence (3b) 
=<cfo,i) ^ 

does not hold either. 

Exercise 2.13 Let n —> f(n) be a mapping of N onto 

itself such that f*(n) is finite for each m £ N. Show that 

for every sequence of elements fxnj of E, if one places 

yn - x ^ , the elementary filters associated with jxn^ and 
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^yrt| are identical. 

Let * ̂ xjxn C X for all but a finite number of 

and st -^yJx^ C Y for all but a finite number of x^Js.J 

Let X £ ̂  . It is necessary to show X = Y € ' for 

some Y. Consider C x = » *nx » •••> x^j • Now for each 

n C N, there is an i £ N such that n = f(ra) ; f~'(m) - ^n[ ,n̂  , 

which is a finite set. This means then that 

f(nP \z, ~ 111 f o r a finite number of n C N. Then |xn 

. . . ,x^ = |(^m, » x ^ # x^,... ), 

""( xH^ y ) " tXj(mh))\
where x", = » xffô » ***»x-f(m«0 )» 

and so on for each xA. t fix. Obviously ,x^,..., 

x4fm.) )••• ̂  a finite set, since each element of the set 

is finite and there is only a finite number of them. Then 

, x f K i » • * *' XfC*tj ^ ) »xKwu.) ' * * 'X+("ri | = 

(J Y for some Y € . Then, Qx *= Q Y, so X = Y. 

Now, let Y C^Tt and show Y » X C ^ for some X. 

Consider Cy = | x ^ »x*MO '
4 * * * X-K*p)} *

 Now» f o r e a c h m £ N» 

there is an n C N such that f(m) = n. Then 0 Y can be 

written as jxn ,x^ ,... ,xn^ which is (}x for some XC 

Hence Y =X 

Therefore • 



CHAPTER III 

NETS 

Definition 3*1 A set A is directed by a relation 

if >- is a binary relation on A with the properties: 

(1) if a,b, and c are elements of A such that a y b 

and b y c, then a > c. 

(2) if a and b are elements of A, there exists an 

element c of A such that c >- a and c >• b. 

Definition 3.2 If f is a function which assigns to 

each element a of a directed set A a functional value f(a) 

in a set Mf we shall call the function a "net" of elements 

of M. 

Definition 3«3 Let f(a), a in A, be a net of real 

numbers, and let k be a real number. Then lira f(a) = k 

means that for every positive € there is an element a£ of 

A such thatjf(a) - kj<£ whenever a >- a£ . 

Definition 3.4 A filter base is ultimately in a 

subset E of X if E contains some set from (B • If X is a 

topological space, (B converges to an x0 £ X if it is ul-

timately in every neighborhood of xo. 

Definition 3.5 If $ and £8 are two filter bases, 

we say that JB is a refinement of (8 if every set in (2> 

contains some set injt). 

Definition 3>6 If E is a subset of X, the net is 

35 
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ultimately in E if* there is some index (depending on E) 

such that if cA "> then x^ £ E. If X is a topological 

space, the net converges to an element x( £ X if is 

ultimately in every neighborhood of xa. 

Definition 3.7 Suppose we have a net $ « * 

A net 3-s said to "be a subnet of in case there 

is a mapping JT i B —> A with the properties: 

(i) Yj • xTT^)f,°1, all $ C B; 

(ii) given any U0 C A, there is a £ B such that 

i f $ >/£, » then IT (£ ) > o<0 . 

Proposition 3.1 (a) If < f m is a net in an 

abstract set X, and if E (c* ) = ^ » then the col-

lection 6(<r ) - |e( < )} is a filter base in X, called 

the filter base associated with the net (£ . 

(b) If the net £ is ultimately in some set E, then 

(B (<*" > is ultimately in E. 

(c) If Y) - "*"s a suknet & and if & (ft ) 

is the filter base associated with Vfr » then < a m ) is 

a refinement of ( ?C ) , 

Let E(c*,) and E(̂ 1jl) be arbitrary sets in {&(<£*)• 

Since A = is a directed set, there is an °f3 such that 

ĉ , < <*3 and cLx < <*5 . Now e(c*3) = jx^| \ > E(o<,) = 

>oi,l 5 E(c*a) = . 

Obviously jxAJ> > c^3J<r|xK) A > *1 ][) f x > | ̂  

or, e(o<^) CI E(c \ ) f ) E( fSg,) . Therefore E(c?< ) is a filter 

base, and (a) is proved. 
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To prove (b), we note that there exists an ©<0 such that 

if c*>then C E. Consequently E(«X0) = f
x>.|^ CE, 

and & ( x ) is ultimately in E, 

To prove (c), let E( «*«, ) L (B ( 3C ) . By condition 

(ii) in the definition of a subnet, there exists a /30 such 

that if A? (Z, > tllen 2 °<e • Since ?($,) = 

we conclude that F( $ 0 ) d. E(°0. This shows 

that ft (^| ) is a refinement of ft { ) and (c) is 

proved. 
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