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CHAPTER I
TOPOLOGICAL SPACES

Definition 1,1 A set é; of subsets of a set ¥ defines

on E a topological structure (or more briefly, a topology)
if it possesses the following properties (called axioms
of the topological structure):

0,: Every union of sets of é; is a set of é; .

I

0_: Every finite intersection of sets of (9 is a set
of 62 .

The sets of é; are called open sets of the topological
structure defined by é; .

Definition 1.2 A topological space is a set provided

with a topological structure; its elements are then called
points,

When one can exhibit that a set (g'of subsets of E
satisfies Op it is often :convenient to establish separately
that it satisfies the following two axioms, which together
are equivalent to Op.

Oy, t The intersection of two sets of él belongs to AQ .

QIb‘ E belongs to é; .

Examples of topologies: E being any set, the set of

subsets of E consisting of E and @ (the empty set) satisfies
axioms 0I and Opn and defines a topology on E. It is the
same for the set P(E) of all subsets of E. The topology

it defines is called the discrete topology.
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Definition 1.3 In a topological space E, a neigh-

borhood of a subset A of £ is any set which contains an
open set containing A.

The neighborhoods of a subset {x{ reduced to a single
point are also called neighborhoods of the point x,.

Proposition 1.1 In order that a set be a neighbor-

hood of each of its points, it is necessary and sufficient
that it be open.

Consider a set A. If A is open, and a € A, then by
Definition 1.3, A can qualify as the set containing an
open set which contains a,‘ilg:, A C A, Therefore A is
a neighborhood of a,

Now, if A is a neighborhood of every point belonging
to A, then for every a € A there exists an open set B,
such that a ¢ B, C A. Now, A is contained in aki-ja Ba since
every element of A is contained in kfiB“ . However,

{_ B, is contained in A. Therefore A = (B, . By Op s
ach acn
A is open.

Designate by V(x) the set of neighborhoods of x.
v(x) has the following properties:

V; : Every subset of E that contains a set of V(x)
belongs to V(x).

Vgy : Every finite intersection of sets of V(x)
belongs to V(x).

Vi ¢ The element x belongs to every set of V(x).

(These three properties are in effect the immediate con-

sequences of Definition 1.3 and of the axiom Og .)



Vg ¢ IV belongs to V(x), there exists a set W
belonging to V(x) and such that, for every y € W, V belongs
to V(y).

By Definition 1.3, it is seen that Vy is a justifiable
statement., Ogp is the reason that Vg is true. By Defini-
tion 1.3, x must belong to every neighborhood of x. There-
fore, V is verified. By virtue of Proposition 1,1, if
we take for W an open set containing x and contained in V,

we see that V is true. Hence, VI s v

n,vm,vﬂ are

verified,

Definition 1.4 In a topological space E, closed setis

are the complements of the open sets of E.

Examples: Let R be the real line provided with the
usual topology (see exercise 1). Now (0,1)e &, so (0,1)
is open. C[(O,l)] = (¢,0] U [1, =) is closed by
Definition 1.4,

Let R® be the Cartesian plane and let a be the usual
topology for R*. Now the disc (x-Of + (y~0f < 2 is
an element of O . C{(x—o)z + (y—O)z Z 2] = {(x,y)"‘xz + yo2 2}
is closed by Definition 1.4,

For the real line R provided with the usual topology
the set (0,1] is neither open nor closed.

For the Cartesian plane R® the set {g,y\xz + y;'( 2,
or x=1, yzl} is neither open nor closed.

Definition 1.5 In a topological space E, a point x is

interior to a set A if A is a neighborhood of x, The set



of points interior to A is called the interior of A and is
denoted by X.

We note that the interior of a non-~empty set can be
empty; this is the case for a set reduced to a single point
when it is not open, for example in the real line.

Examples: In the plane consider the set A = {z‘lzl < 2}.
Now consider the momotonically decreasing sequence of closed
sets {B‘i such that for eacha , B, dis a closed disc with
center at the origin and each B, C A. This sequence of
closed sets will converge to the closed set which contains
only one point, namely the origin. The interior of a closed
set which contains only one point is empty.

For the discrete topology of the real line, each
single point is considered as an open set; therefore its
interior is a single point,

In the complex plane, consider the set A = {%((z\ <1
and the point z = (0,1)} . A= {z | 1z| < 2} which does not
contain (0,1).

Definition 1.6 In a topological space E, a point x

is adherent to a set A if every neighborhood of x con-
tains at least one point of A, The set of points adherent

to A is called the adherence of A and is denoted by A,
(Note: 1In order that a set be closed, it is necessary

and sufficient that it be identical with its adherence.)

Proposition 1.2 If A is an open set in E, for every

subset B of E, AN B C AN B.



In effect, if x& A is adherent to B, i.e., x£€B, for
every neighborhood V of x, V N4 is still a neighborhood of

x, since A is open., Then V/1 A/ B is not empty, which

shows that x is adherent to A/)B. Therefore x€ A (\ B.

Definition 1.7 In a topological space E, a point x is

called a frontier point of a set A, if it is at the same
time adherent to A and to CA (complement of A).

The frontier of a set A is that set of points which are
interior to neither A nor (JA and is denoted by Fr(A) = Iﬂﬁ.
Examples: Let R*be the entire plane, Obviously, every
point in the plane is interior to R. Therefore Fr(R*) = #.
ixlx( O;. Fr(A) = Kﬂﬁ =[€—,6S n [0,‘—9] = 0 .
iz‘[z\ = l} . Fr(B) =—B-ﬂf-1; = {zllz[ = lg = B.

Definition 1.8 1In a topological space E, a set A is

Let A

Let B

said to be dense with respect to a set B, if every point of
B is adherent to A (that is, if BCA). A set A is said to
be everywhere dense if it is dense with respect to the en-
tire space E (that is, if E = 4).

Examples: Let B = {x‘x = p/q where p and q are integers
and q # 0}. Then B is everywhere dense in the set R of real
numbers, That is, R = B.

In the plane let A = {z( |[z]1¢1 and the point (0,1)}. Let
B = {zl |z|<1}. Here we see that BC A but A¢B. However, B
is dense with respect to A since ACDB and also A is dense
with respect to B since BCA.

Exercise l.,1 Let R represent the real line. The usual

topology for R is defined as follows. Let B be the set of



all open intervals of R, Let 8 be the collection of all
arbitrary unions of open intervals of R.
B {ZI,‘,I“C,R and I, = (x,,%)§
8 = {vlv =L, 1.¢ B}
AEA

Show & satisfies O; and Of .

Consider any b‘;U,«. where A is an arbitrary index set and
€

u,e ® for every ac A. u U, = U( UIﬂ ). Now there exists

A Aucs,
an index set AUBA such thatU(UI =UI1{€ & . There-

fore O; is satisfied.

Now, if U, and U, are elements of @ ’ U,ﬂ U, =
Uz, MUz, U(I N1ig)e @ . Therefore Oy, is satisfied.
A€R 43 ) J):Ax
(Note: If I, = Iz, thend=§.)

Evidently the union of the collection of all open
intervals contains R. Therefore 0:lrb is satisfied.

Therefore, 8 defines a topology on R.

Exercise 1.2 Let R be the Cartesian plane.

{(x,y)\xCR any yCR}. Let B be the collection of all
open discs in R*. Let @ be the set of all arbitrary
unions of sets of B,

B = (0D, = {(x9) | (=-nu)s (k. J2 r.,;ii
6 - {ulo =Un,, n, ¢ B}
Show that & satisfies Oy and Oy,

Comsider any |Ju,. \Ju, = U(UDg ) which can be
ACR SR oltﬁ .l
expressed as LZD, which is an element o:f.‘ (9 « Therefore
3l\
Oy is satisfied.



Now comsider any U,e @ anavu,e8. u N 1:;,_=',(L‘!JRD,k (\‘UD,,
8

wvhich can be written as U(D,ﬂ Ds ) . Therefore Oy
g eArd

is satisfied.

Clearly the union of the collection of all D contains
R*, so Oy, is satisfied. (Here again, if D, = D,,x =4 ).
Therefore e defines a topology on R:.

Exercise 1.3 Let E be a set. Let (8 be a collection

of subsets of E [8 < P(E)} so that the following conditions
are satisfied:

P,: If B, and B, are elements of ® , then there is
an element B ¢ @ so that B,C B, /| B,.

P,: PEB

P,: E£Q®

Show how to use @ to generate a topology on E. De-
fine from @ a collection 9 of subsets of E which will
satisfy O, and Og ..

Let & =fv ¢ =lv =B, , B¢ @$

Consider anyd&_;{ Ue '1‘1::.311‘,&(‘4\'(5.,l = (J( BszbB s) which is

o« A

( Byanda (JB,e8 . 0, is satisfied.
Yepus YcAvp

Let Uye @ and U, ® . U N Ulzﬁ%B“na@t/cB,but this is
U(B, N BT) which is an element of © ., Hence Oy,

(*¥ecayc
is satisfied,

Since from P, , E e® , 9 defines a topology on E.

Exercise 1.4 If E is a set ordered by a relation of

order that one writes x £y, one designates by Sq(x) the



set of all y such that y £ x, by Sg(x) the set of all y
such that x £ y.

a) Show that the set of all subsets of E containing
S’(x) is the set of neighborhoods of x in a topology which
is called the left topology.

If Sg(x) C U, then U is a neighborhood of x. Let
8,:{11,{39(::) < v, 3. B = xttjs@x.
Consider ch/qu‘ where A C E., For each o & A,
U, =U,e & for some x £€ E, since A C E. Now d% U, = Uz€@€
for some z € E. Sg(z) <€ U,. Therefore “g U,e®@d , so
O, is satisfied.
Now consider two elements of 9 , say U, and U., . It
is necessary to show that U, /) U, € 8 (x # v). Either
x{yory<x since E is an ordered set and x # y. If
X< ¥, Sq (x) < s4(y) and therefore, since S, (x) < u
and S4(y) < Uy » Uy N U, # g#. In either case U, [\ U o=
where z = min(x,y). Now U; D S, (x) if x < y and U, D S‘)(Y)
if y < x. Therefore U; £ 9 and Ox, is satisfied.
If x € E, thens‘,(x)CEsoEC &, and thus £ & &
Therefore Ox, is satisfied and e defines a topology on E,
b) For the left topology, show every intersection of
open sets is open and every union of closed sets is closed,.
Showﬁon U, is open if each U, is open.
Consider the case where “f‘} Uy, # §. Then .(:\HUA =V
and V C E. Choose any x £ V. Then S,,J(x) C V. Therefore

velB « Therefore V is open.



Now, it is necessary to show that L)‘W* is closed if
each V, is closed. A

Let A be a subset of E so that A is not of the form
g or {x[x >'a% or {x[x b a} or E, Suppose A is closed.
Assume A £ @ and A # E, Either A is bounded below or A
is not bounded below.

Case I: A is not bounded below.

We know A is not bounded above (unless £ is bounded above)
80 if A is not bounded below, A = E, a contradiction,

Case TT: A is bounded below,

Let a be the lower bound of A. Either A contains a or A
does not contain a. In either case A = {x[x 7'a} or
A= fx!x 2 a}, a contradiction.

Therefore we sese that the only closed sets are of the
form {x]x}>a} or {x{x > a} . It is obvious that if we take
an arblitrary union of sets of this type we will get a set
of the form {x\x > a} or {xlx > ag; in either case it is
closed.

c) For the left topology, show the closure of the
set {xg is s4(x).

To show that S;(x) is the closure of fx} we need to
show that if y € S4(x), then every neighborhood of y
contains x. Now the left topology is the set e =g§z
where é% = {Uz[sg(z)c: ‘U,E. Evidently if v >x there
is alU,t 693 for some z £ E such that y € U,. How-

ever x £ U,. Indeed, by the very way the left topology is
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defined, every neighborhood of y contains x, since every
neighborhood of y contains Sq(x) and X £ Sq (x). Therefore
the closure of {xi is Sy(x). (x<y implies xes.,)(x) <

sq(y) C Uy)

Exercise 1.5 TFor every subset A of a topological space

o —
E, we let o¢(A) = A, and £(a) =A.
a) Show that if A is open, one has A C ot(4) and
that if A is closed one has A DZ(4).

o — o ——
If A is open, A = A, Also A C A., Now A = A C A,

Therefore A C «(4).

—

0 —
If A is closed AC A, Then X C A. But since A is

closed A = A. Therefore B (A)c A.

b) Show that for every subset A of E, one has

A= (A)) = (A) and B(B(a)) = B(a).

= A

2l =l P‘

2.
A C
=
A C
2.
o
A A

Thus A { % (4)) < A(A)

But AC A
A< A=X
2 =
AcC A
-2 =
A<C A
o =
A <A
o =
A<= A

Thus (A) < o (¢ (A))

Therefore ot < (A)) = o<(A)



o] Pos o

Therefore

B( £ (1)

B( B (n) < B (4),
B A (1) = £ (a)

¢) Give an example of a set A such that the seven

— —

a — 2 "o o %
Sets A, J"‘., A, A’ A, A’ A are distinct‘

Let A = {xlx € (0,1), x € (1,2), x is a rational

number between 2 and 3,

mole=lel o o] | o

Exercise 1.6 Show

example where A is open

or x = hg

(0,1) U (1,2)
[0,3] U {4}
[o,2]

(0,3)

= {0,3]

= (092)

———— — m—
that A N B < A () B; give an

and where the three sets A () B,

AN B and'z'(\-ﬁ'are distinct.

A

. A and B B

11
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Let B = {xixe (1,2) ana x{(s/z,h)}.

ANTSB = ixlxé‘[s/z,?:)}
andxf?f% = fXP!C‘;éﬁﬂ}
and A 1B = {x‘xc{s'/z,:)] and x = 2}

all are distinct.

Give an example where A is not open and where A n—l-?;

is not contained in A{\ B.
Let A = {x|x ¢ [2,3)
B = {x|xe(1,2) ana xe (5,008
ANT = {x[x = 2 or x€[52,3)}
ANB = 2x]x€ ]\ 52.3]i
ANBE A\ B since 2 is not an element of A() B,

On the same set E, it is possible (if it has more than
one element) to define different topological structures by
means of different sets of subsets of E satisfying axioms
()I and Oy. The topological spaces thus defined are consi-

dered different.

Definition 1.9 Being given two topologies 75 , ‘éi
defined on the same set E by means of two sets of subsets
9, ’ 91 (of which the elements are the respective open
sets of the topologies % and 4232), %%, is finer than "g;
(or "5:_13 coarser than %% ) if §,< O,; moreover, if
8 # £, one says that 7%, is strictly finer than ’Zfz .

Example: The set of topologies on any set E is ordered
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4

by the relation Qg:is coarser than ‘Zf ; the topology of
vwhich the open sets are E and @ is coarser than any of the
others, and is called the smallest element of the set of
topologies; the discrete topology is finer than all the
others, and is called the largest element of the set of
topologies.

Proposition 1.3 Being given two topologies ”ﬁ ’ ag,,

on a set £, the following statements are equivalent:

a) %, is finer than %, .

b) Whenever x £ E, every neighborhood of x for %:_
is a neighborhood of x for fé, .

It will be shown first that (a) implies (b). If V
is a neighborhood of x for the topology 46‘1_ s there exists
an open set A for %, such that x € A  V; since A is
also open for ‘b’i y V is a neighborhood of x for "5, .

Conversely, (b) implies (a): because if A is an open

set for it is a neighborhood of each of its points

2 ?
for "Z'Ji , and also forxr "b" s Which shows A is open for ’zf, .
Letx& be any set of subsets of any set E and con-
sider the topologies on E for which all the sets on& are
open. There exist such topologies; for example, the dis-
crete topology.
The set 8 of the open sets for the topology B
generated by & can be defined in the following fashion:
9 must contain, by virtue of Op , the set é' of the

finite intersections of sets of e& (which contains E, the
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intersection of the empty set of & )3 in view of Oy » &
)
mist also contain Qéf”, any arbitrary union of sets of él N

Definition 1.10 TIf it can be shown that every set of

,é” is a union of sets ofﬁ y one says thatz& is a base
for the topology it generates.

Exercise 1.7 On an ordered set E, the right topology

has for a base the set of subsets Sy (x); the left topology
has for a base the set of subsets Sq(x).

For the left topology, O = xLE)E@x where & = {Ux ISe(x)CUKI,

If it can be shown that every set of 9 is a union of
sets of{Sa(x)i . then{Sq (x)} is a base for & .

It is necessary to show that if Ue & , U =xktjasg(x)

Let V be the union of all Sgq(x) where Sq4(x) < U.
Suppose y €U, Then there is a Sq(x) such that y £ S,(x)c U.
Therefore yeV., Hence UC V. But VC U by the very way
V is defined.

Therefore, since we have UC V and VC U, V = U,

The proof would be the same for the right topology.

Exercise 1.8 On an ordered set E, the upper bound

of the right topology and the left topology is the dis-
crete topology.
&1=8lesg(x) C ng i Se(x) = {yly £ x}
On={ty |50 (3) € Wy}s su(3) = {x)x > v}
Define by 8 the set of open sets for the topology
generated by &c U (9’,,_ . Let x be any point in E. Now

{xz is also in & , since Sﬁ(x) /) S4(x) ={x§, and
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Sq(x)ﬁ 91_ and S, (x)e é, . Therefore we see that {xi,
where x € E, is contained in (9’ e« Therefore ‘91 u 9)&
generates the discrete topology on the ordered set E.

Exercise 1.9 Being given a topological space E, con-

sider the following properties:

D, : The topology of E possesses a denumerable base,

D,: There exists a denumerable subset of E everywhere
dense.

Dy: Every subset of E where all the points are

isolated is denumerable.,

D,: Every set of non-empty open sets of E, two by
two without a2 point in common, is denumerable.

Show that D, implies D, and Dy, and that each of D,

and Dy implies D,.

Proof: D) dmplies Dg,

Let ® ={B‘;IL= 1,2,3,...{ be a denumerable base for E.
Define A = {x;_lxi E B, A= 1,2,3,...5. It is necessary to
show A = E.

Choose x € E so that x # x;, for any L. Let U be
a neighborhood of x. Now there exists a B; such that
x€ B, € U. Now x; € B, C U and x ¢ x,;. Therefore
every neighborhood U of x contains a point of A distinct
from x; hence x € A.

Therefore E (— A, and since A C E, A £ E = E; thus
A is a denumerable subset of E everywhere dense.

D) impiies Ds

Let ® ={B,;(L. = 1,2,3,...3. Let A be any subset of



E so that all the points are isolated; i.e., for every
point x of A there exists a meighborhood U of x so that if
v #x and y € U, then y ¢ A. Let Uj be a neighborhood of
x so that U; & B, for some 4L, and U4 contains no element
of A other than x, Now if x € A, x £ B, for somedi . If
X,y € A and x # v, it is possible to find U; and Uj so
that U,‘. and U:fz have no points in common.

Consider P = {Uj} where each Uj is a neighborhood of
a point of A, and no two elements of P have a point in
conmon, Clearly P is denumerable. Hence A is denumerable.

Da implies D,

Let V = {U‘ e E[U,c is open and nonempty and if
xe U, , x& Uy, then «« = 3}. Let P ={x°\\ one and only
one x, is chosen from each q,‘§ o Clearly, P is a set which
contains only isolated points, since for any X4 € P there
is a neighborhood of x; that contains no other points of
P, namely the U, from which x, was chosen. Therefore P
is denumerable., If P 1s denumerable, certainly V is de-
numerable.

Dz dimplies Da

D, states that there exists a denumerable subset A
of E such that A =E, It is necessary to show that this
implies that every set of nonempty open sets of E, two by
two without a point in common, is denumerable.

Let V = {Uj‘ - EIU_.,' is open and nonempty and if y € U,,

Y £ Uy, the m = n} « Define P = {yjfyj £ U',j'= 1,2,3,...},

16
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We recall from the proof of D, implies D; that A = {xilxi € B,
L o= 1,2,3,...} « Now let W be a mapping of P onto A where
x; —* ¥j, when A= j + Since this is a one to one mapping,

P is denumerable. Since P is denumerable, certainly V

is denumerable,

Definition 1.11 A topology induced on A by the

topology of E is the topology where the open sets are the
traces on A of the open sets of E, The set A, provided
with this topology, is called a subspace of E,.

Proposition 1.4 If A and B are two subsets of a

topological space E such that B A, the adherence of B
with respect to the subspace A is the trace on A of the
adherence of B with respect to E.

In effect, if x € A, every neighborhood of x with
respect to A is of the form V() A, where V is a neighbor-
hood of x in E. Or, V(1B = (Vv (\ A)/\ B; then, in order
that x be adherent to B with respect to A, it is necessary
and sufficient that it be adherent to B with respect to E.

Exercise 1,10 If A and B are two subsets of a topo-

logical space E such that B ¢ A, show that:

(a) the interior of B with respect to £ is centained
in the interior of B with respect to the subspace A. Give
an example where these two sets are distinct.

It is necessary to show ]%E < ﬁn . Let x¢ és and
show x & f’h « Now, x ¢ ﬁe implies there exists a neighbor-

(24
hood U of x such that U C B;. Then U/[)A is a neighborhood
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Q
of x in A. Since x€ U ﬂ A C B, then xebﬂ.
Example: Let E be the real line with the usual topology.

X o Xy
Let A = [x,y}. Let B = (_;_'.)L’ Y]. Now B, = ( FAN Y)y but

]ga = (_X_;-T\{_, y] . Therefore éEC_ ﬁn’
(b) the frontier of B with respect to A is contained
in the trace on A of the frontier of B with respect to E,
Give an example where these two sets are distinct.
Fr(B;) =‘i;’-s n C;z
Fe(B,) = B, /1 CB,
It is necessary to show'ﬁ; N C;AC —g‘_ﬂ -C—]:%E ﬂ A,
Tt is known that 5; =—§; N a by Proposition 1.4, Now
(B N a) N C_lgn < (BN aA) N E—Bs since E—ﬁac é—g; .
Therefore (B, (\ A) N [TE“ < Be N é_l;EnA or Fr(B,) <
Fr(B;) N a.
Example: Let A = [0,1] and B = (%r,l]
Fr(B,) = {3}
Fr(Be) = {4,
Therefore Fr(B,) C Fr(B.)/N A.

Exercise 1.1l Let A and B be any two subsets of E.

(a) Show that the trace on A of the interior of B with
respect to E is contained in the interior of Bfl A with res-
pect to A. Give an example where these two sets are dis-
tinct. (Assume B ) A # &.)

Let x € ﬁe»ﬂ A, Now A is open with respect to the
subspace A. Since x £ 2°B€, x is not aofrontier point of B

———

with respect to E. Therefore x £ (3 N A)E . However,
[-4 k-] Q

—— TN —— —
(B N A}EC (B/VA), + Therefore x¢ (BNA), . Hence l%EnAC(BnA)Av
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Example: Let A = [O,i]. Let B = EO,%); ﬁz = (0,%),
so B, /) A= (0,3)/) [o,l} = (0,%). But (m% = [0,3).
Therefore 1‘5: N aC (B/?hl)A .

(v) sShow that the trace on A of the closure of B with
respect to E contains the closure of B/ A with respect to
A. Give an example.

Since A is closed with respect to itself, (E-F\_A)A =
—ﬁnn A. Now certainlyﬁ;c B,. Therefore (m)n =
B, N A< B, N A.

Example: Let A = [0,1}), B = (1,2). Now Bg/) A = 1,
but (BN A), = 4.

Exercise 1.12 If each point of a subset A of a topo-

logical space E is isolated, the topology induced on A by
that of E is discrete, and conversely.

If x € A there exists a neighborhood U of x such that
U does not contain any point of A other that x. Now UC E
and U contains an open set U'C E so that u'(\ A= x.
Hence we see that the topology induced on A 1s discrete.

Now if the topology induced on A is discrete, we know
that if x <€ A, then x¢ 9 where & is the set of traces
on A by open sets of E. That is, there exists an open set
in E, say U, such that Un A = X. By definition, x is

isolated.



CHAPTER II

FILTERS

Definition 2,1 A filter on a set E is a set of sub-

sets of E which possesses the following properties:
Fr 1 Every set containing a set ofJ belongs to F .

E;r: Every finite intersection of sets of F belongs
to F .

E;: The empty subset of E does not belong to F .
Axiom F; is equivalent to the following two axioms:
Frro ®

to&’.

Fg,: E belongs to F .

The intersection of any two sets of ¥ belongs

Definition 2.2 Being given two filters F and J on

the same set L, 3/':15 finer than J , or.F is coarser than

¥, it Fo J'. 18 F # 3)”3-”15 strictly finer than
JF » orJF is strictly coarser than g’.

Theorem 2.1 In order that there exist a filter con-

taining a setgf of subsets of E, it is necessary and suf-
ficient that none of the finite intersections of sets of
‘g be empty.

If such a filter exists it must contain, according to
Ftr , the set gb’ of finite intersections of sets of& .
If such a filter exists, it is necessary that the empty set

4
does not beloxng to ,& « Now show this condition is sufficient.

20



4
Every filter containing é (if one exists) contains
also, according to ]5‘1_, the set J" of subsets of E which
/ "
contain a set of zﬂ . Or, & satisfies F, . It satisfies
r4 "
Fy according to the definition of 47 « Finally, gﬁ sat-

isfies R

Tt since the empty set of E does not belong to

,{b' . ,é” is then a filter containing J& s and every
filter containing 69 is finer than é”. One says that
J" is generated by 59 . |

" Corollary: Let JF be a filter on E and A be a sub-
set of E. In order that there exist a filter J’ finer
than 3/ and such that A € QH y it is necessary and suf-
ficient that A intersect every set of J .

Let 3/ < g’" and A CQ’}/I . We know the intersec-
tion of A and any other set of gﬂ is not empty. Now since
Q-/ < 3/1 sy evidently A intersects every set of g .

Now, assume A intersects every set of;}/ o Then, by
Theorem 2,1, there exists a filter g/’such that 3/ C QJI .

Proposition 2,1 Let 8 be a set of subsets of E.

In order that the set of subsets of E containing a set of
@ be a filter, it is necessary and sufficient that @
possess the following two properties:

B The intersection of two sets of (, contains

I:
a set of ® .

Byt @ is not empty, and the empty set of E does
not belong to @ .

These properties are evidently necessary from the

definition of a filter. It is necessary to show they are
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sufficient., If such a set OF exists, we see immediately
that this set satisfies Fr. It is clear that every element
of ® is an element of ¢ . Therefore the intersec-
tion of any two elements of é?f is an element of é?y .
Hence Fy, is satisfied., Evidently E € F s so Ebb is
satisfied. Since the empty set does not belong to 65 ’
neither does it belong to gf . Therefore é?/ 1s a filter.

Definition 2.3 A set of subsets of a set E which

satisfies axioms By and By is a base of the filter that it
generates. Two bases of a filter are called equivalent
if they generate the same filter,

Proposition 2.2 1In order that a subset 65 of a filter

éf’ be a base of that filter, it is necessary and suf-
ficient that every set of é?' contain a set of‘ﬁ5 .

The condition is evidently necessary; it is sufficient,
because if it is fulfilled, the set of subsets of E con-
taining a set of GB is identical to ‘3# y in view of E;.

Proposition 2.3 In order that a filter J  of base

551 be finer than a filter 59/ of base 43 s it is neces-
sary and sufficient that every set of 65 contain a set ofdy .

This resulté immediately from Definition 2,2 and

Definition 2.3.

Definition 2.4 Every base of the filter of the neigh-

borhoods of a point (or a subset) of a topological space
is called the fundamental system of neighborhoods of that

point (subset).



Proposition 2.4 In order that a finite set @ of

filters on E have an upper bound, it is necessary and suf-
ficient that, when one takes arbitrarily a set in each
filter of @ , the intersection of these sets is never
empty.

In order that any set @ of filters on E have an up-
per hound, it is necessary and sufficient that every finite
subset of @ have an upper bound,

Proof of second statement:

Let J = gF,FC 9, for some F, ¢ i} . Comsider

any finite subset of tﬁ y say{F, , F

2’ E,,ooo, Fﬂ}' Con~

sider ﬁ F, » Assume (j F; = #. We know that every finite
subset of Q has an upper bound; therefore if QF‘; = @
the subset of §from which {Fl_g:, was taken would not have
an upper bound., This is obvious because for some filter
3/ to be an upper bound of {z g from which {F,.:f‘:,

was taken, it must be that for eachg':- s every set ofé\é
mast belong to 3‘/ » Apparently this cannot be so, for then
J would not be a filter if J contained {Fyg + Hence
*K:\ F, # #, and by Theorem 2,1, there exists a filter
containing é y and hence containing every filter in (E .
Therefore @ has an upper bound.

Definition 2.5 An ultrafilter on a set E is a filter

such that there does not exist another filter strictly
finer than it., (In other words, it is a maximum element

of the ordered set of filters on E.)
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The following theorem will be accepted without proof,

Theorem 2.2 If JF is a filter on a set E, there

exists an ultrafilter finer than $/ .

Proposition 2.5 Let FF be an ultrafilter om a set E,

If A and B are two subsets of E such that AU B ¢ &F ,
then A€ EF orBe F .
Suppose that A ¢ J  ,BZF , and AU Be F .

Qﬁ is the set of subsets X C E such that AU X € Q—’ .
One verifies immediately that £/ is a filter on E.

2@ is strictly finer than Q/because B € _& « But this
contradicts the hypothesis that 3/15 an ultrafilter,

Proposition 2.6 Letzg be a system of generators of

a filter on a set E; if for every X C E, X C,éf or CX C,g,

thengb is an ultrafilter on E.
In effect, every filter containingJ (it exists by
h)rpothesis) is identical togﬁ ;3 because, if X € 3/ R

CX L4 3/ s 80O CX ifxg which implies X & _,47 .

Definition 2.6 If the trace, on a nonempty subset

A of a set E, of a filter Q'/ on E, is a filter on A, one

says that this filter is induced by «F on A.

Definition 2.7 Let {xﬂgnew be an infinite sequence
of elements of a set E. The elementary filter associated
with the sequence {'X”S is the filter gemnerated by the image
of the filter of Frechet by the mapping n —x, of N into E,

That is to say, the elementary filter associated with

the sequence {xns is the set of X C_ E such that x, € X
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except for a finite number of values of n. If S, designates
the set of the x, such that p 2 n, the sets S, form a base
of the elementary fllter associated with the sequence {xn't .

Proposition 2.7 If a filter&’ possesses a denumerable

base, there exists an elementary filter finer thang‘ , and
3/ is the filter intersection of all the elementary fil-
ters finer than J .

In effect, arrange the denumerable base of‘{fl in a
sequence {A,& o If one places B, = Pf:\AP, the B,'s form a

base of (F , and one has B,,, < B Let a, be any point

nO
of B,. 3/ is coarser than the filter associated with the
sequence {a,,} .

Exercise 2.1 If the intersection of all the sets of

a filter 3/ on a set E is empty, show that J is finer
than the filter of the complements of the finite subsets
of E,

Evidently the sets ofj must be infinite; otherwise
J/ could not be a filter. Therefore E must be an infinite
set., Since the complements of the finite subsets of E form
a filter, say Q/' s let us show that if CAE\:JY’ ’ CACJ,
where A is finite.

Assume CA d g’ s that is, CA does not contain any
set of \’}/ « If CA does not belong to(}/ s then no subset
of CA belongs to (}’/ « Therefore, every set of3j must
have at least one point of A in common, for if they (the

sets of 3'/) did not, there would exist sets U and V of\;(
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such that U1 v CA, which implies that CA € Gj ’
contrary to our assumption. However, if there is a point
of A common to every set ofj y the intersection of all
the sets of’gj would not be empty, a contradiction to our

hypothesis, Therefore CAC 3 « Hence QJIC. 3) .

Exercise 2.2 The intersection filter of two filters

F end G on a set E is identical with the set of sub-
sets of the form AU/ B, where A is an arbitrary set ofﬁ,/
and B is an arbitrary set of Q; o

Let ' =F N F. . Then F< F adFcT,.
Now let J =faUBlac S, amaBe FH} . Letced.
Then C€ 5, andC e J;, . Certainlyc=cUc €’ .

Therefore J < F ' .

Let D€ .F’ . Then D = AU B, where A¢ ¥, and

BeJ, . Since AC AUB and BC AU B, we know from the
definition of a filter that D = A(/B € F, andD = aU Bc F,.
Therefore D & 3/ and we have that j’c 3/ + Hence

F = F.

Exercise 2.3 Show that on an infinite set E, the fil-

ter of the complements of the finite subsets is the filter
intersection of the elementary filters associated with the
infinite sequence of elements of E of which the terms are
all distinct,

Let&'/ be the filter of the complements of the finite
subsets of E. Then J has for a base the set 6 ={CA]AC E

and A is finite}. Therefore, for each A, there are at



most n elements of A where n is a positive integer. Let
{Axg:ﬂ denote the finite subsets of E; i.e., Ay is finite
for each x. Then {x;, A. = 1,2,35ecs9n}x; € Ay where Ay
is finite and Ay C E} must be denumerable; becanse if
it were not there would be at least one Ay for which Ay
would not be finite, a comntradiction.

n
Now if {Axg is denumerable, certainly {CA,%X—_'is

n
=t
denumerable. Hence @ is denumerable.

Then, by Proposition 2.7, there exists an elementary

filter finer than <F , and by Proposition 2.7, .7 is the

intersection of all the elementary filters finer than it.

Exercise 2.4 If two filters J, and 3: on a set E

have an upper bound in the set of filters on E, show that
this upper bound is identical with the set of subsets of
the form A[) B, where A is an arbitrary set ofé/ and B

is an arbitrary set of J, .

Let J ={aN B|acF, andBt‘-Q-;} .

Choose any C €F, . Let B =E ¢ 3; . Then
cNE=cée F . Therefore JF <€ F.

Choose any D 63/9_ « Let A =F £Jf e Then
DNE=D¢eF . Therefore Fq C F .

Now assume there exists an F such that F ¢ F

and such that F <& 3" and F < 3/1 . Then there

exists a V € F such that V & 3’” . However, V = A B
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where AEQ‘,J and B 53;_ . Since QTC 3/’ a-ndﬁic‘_?/ls

then A € 57 eand BE€ §° ., Then by the definition of a



filter A/]B =V & Q" » a contradiction to our assump-

tion, Therefore there does not exist a v 53/ such that

vV ¢4 ‘3-/1 , 80 OF is indeed the upper bound of 3,’ and 3‘: .

Exercise 2,5 In a topological space E, the intersec-

tion filter of the filters of neighborhoods of all the points
of a subset A of E is the filter of the neighborhoods of A,

Letg-/ = -(e-)a 3:( whereJ: is the filter of neighbor-
hoods of A . Let U be a mneighborhood of A. Choose arbi-
trarily o € A, Then U 53: since U is certainly a
neighborhood of oA . Therefore U ¢ 3:, for every X € A.
Then U & J} .

If V is not a neighborhood of A, then there is at
least one oA € A such that V is not a neighborhood of « ,
which implies V § 3, . Then V d S5 . Therefore QJ
is the filter of mneighborhoods of A.

Exercise 2,6 Show that every filter J’j is the inter-

section of the ultrafilters which are finer than J .

(If A ¢ F but intersects every set of F , notice that

Ca ¢ F and that (A intersects every set of 3/ .)
Let F be a filter. Let {Fuf. ., be such that for

each « , Q'J,k is an ultrafilter and F < F e . This

implies F & ﬂ Qﬁ = 3/1 + It is necessary to show

that if 3/4.:‘{?35' is assumed, a contradiction occurs.
Assume \}/ & 3// . Then there is at least one AE T

such that A 435 . Ac ‘3; for every ot . (It is neces-

sary to show that there is an ultrafilter 3; which con-



tains F and such that A § J5 .) Note that if A ¢ F
A must intersect every set of F , since F <& 3/’ .
Therefore CAﬂg s but CA intersects every set ofg'\‘/ .
Therefore, there is an ultrafiltergﬂ/ which contains
3/ and such that A ¢‘3; . This ultrafilter 373 is generated
by the collection B = {x{xa F orx = CA}. Note that
Ad ‘3’/4 and JC 3’2 ; hence a contradiction that ‘9/’
contains a set A € ,9/ . ‘Therefore ,3/ is not a proper sub~

set of;,. Thenj:: 3/'.

Exercise 2.7 Show that every ultrafilter finer than

the intersection of a fimite number of filters is finer
than at least one of them.

Consider {jg:, whereﬁf is a filter on E for each 4.
Let n 3 3 Obviouslyj is a filter on E, and chi

1
-for each L. Let 3'/C_ 3'/ where \3/' is an ultrafilter

on E,.

Assume for each L, % ¢ Q// e Thus for each 4:,
there exists at least one A; € 3F. such that A, & 3/1
However qA £ \3/ for each +. Therefore UA,, € Q/

Now UA- is an element of every \?J s where ¢= 1,2,3,...k,
and L_{“A,L is an element of every J = k¢il,.eoyn, SO
u A'] U L_ - ] :T'/ C J . Therefore, by Proposi-

/
tion 2.5, either UA,, or UA,, is an element of 3/

-1 42

L <

Since the A 's are finite, it is easily seen that if this
process is continued we will finally arrive at the union

of two of the A_'s of which one of them must be an element
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of 3/' y a contradiction to our assumption.

Therefore there does exist an 31 , for some ¢ s such
that F, < F'

(p) Give an example of an ultrafilter finer than the
intersection of an infinite family of ultrafilters, but
which is not identical to any of the ultrafilters of that
family.

Let E = [0,11. Considerd([)% » Where 3,: is generated
by A for eachd| € [-1», ] . Obviously ﬂ;}ﬁ = {o, 1] = E.

The ultrafilter generated by {0} :i.s finer than“qu'/

but is not contained in&j , ‘,(C[%-,l] .

Exercise 2,8 Show that the intersection of the sets

of an ultrafilier contains at most one point, and that, if
it is a single point, the ultrafilter is formed from the
sets containing that point.

Let J be an ultrafilter and let {A‘,‘} be the sets
of the ultrafilter 9/

Let QA,‘ = A and assume A is not empty and not a
single point.

Now if Ag‘ g-/ » A does not contain any set in 3:'
but every set in 3/ contains A, However, if A is not in 3/
then there exists a filter which contains A and also 3/ N
namely JI= 3'/ U fAS, which contradicts the fact that
3 is an ultrafilter, .

Therefore A 63 « Then there must be distinct sub-

sets U and V of E such that U UV = A, and Proposition 2.5



says that either U or V must be an element of\?/ o« There-
forenA,, # A where A is not a single point and not empty.

el

HencenAd = {x} where x is a single point, or (4, = #.

arl €T
The filter formed by taking every set which contains x is
[

an ultrafilter, since there is not a filteré]ﬂ such that 32'-3)

Exercise 2,9 Show that, if a subset A of a set E

does not belong to an ultrafilter "b( on E, the trace of ‘u_
on A is the set of all the subsets of A.

If Ad‘u, then there must be at least onme We¥{ such that
vNa =g,

Let veq, where VA £ 8. v = (aNN\v) J ((a NV).

Now A nV 4’ﬂ, 80 CA ﬂvf‘u by Proposition 2.5. However,
CaNv) Na=g. et LaNv =7,

Consider this Y. Let X be any subset of A, Let W =
{xGCY or xe‘X}. Obviously WeQ since Y € W. Now YNA = X.
Hence it is possible to get any subset of A desired. There-
fore the trace ofﬂ on A is the set of all subsets of A.

Exercise 2.10 On an infinite set, show that an ele-

mentary filter associated with a sequence whose terms are
all distinct is not an ultrafilter.

Let {x"} be an infinite sequence of distinct elements
in an infinite set E. Assume the elementary filter as—'
sociated with {x,.}is an ultrafilterj , wheregj = {)([x

contains all but a finite number of the x,'s]., Now

E = {x‘ ’ xs, xs,,coo SUC{X. s X, xs—.onu}o Now according
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to Proposition 2.5, either {x,, X3 xs,...xzn_‘ ,...}or

C{x, + X33 Xggeooey > J ,...} mast be an element of\? o
Obviously neither of them is, since neither contains all but
a finite number of the x,'s. Therefore J is not an
ultrafilter.

Exercise 2,11 Let @ be a totally ordered denumerable
set of elementary filters, Show that there exists an element-
ary filter finer than all the filters of o . (Show that
the union of all the filters of @ has a denumerable base.,)

Let z’xn‘g be the sequence associated with \?;\ s Where
3:‘ € Q . Now the base of Q: is {Shg where S, = {xpl p?_n}.
Certainly {S,& is denumerable, since {x,& is denumerable,
Therefore every elementary filter in § has a denumerable
base,

c:onsidernkc}“J,/,, =F . NowlF is a filter andJ has
as a base n% Sy e (3/ is a filter, since @ is a totally
ordered set of filters and the upper bound of §> is the
union of all the filters in § .) Certainly a denumerable
union of denumerable sets is denumerable. Therefore, by
Proposition 2.7, there exists an elementary filter finer

than F .

Exercise 2.12 VWe have the definition for a filter

base @ on E as follows:
(1) & C p(r)
(2) 8 4@

(3a) if U, VE (® , there exists a W& (B such that



vC u/Nv.

If E is finite show the following is an equivalent
definition for a filter base:

(1) & < P(2), @ ={B,» Byy Byyeers BY

(2) 4@

(3p) Q Bp = B, for some r= 1,2,3,..., k.

First assume C‘? B = B, for some r= 1,2,3,..., k. Then
B.€ (® . This means that if B, By &¢ & , B,(\ B, D B,.
This implies condition (3a).

Now assume that if B,, and B, & @ ’ th“en B, ﬂ B, 20 B,
for some ' = 1,2,3,..., ke Obviously then QBP > B,

K
for some I =1,2,3,¢..5 k. Assume n B, = WQB‘. for some

p=1
f = 1,2,35¢0+9 k. Then there is a subset AL W such that
A¢ Br , and A C @ for every r, which is impossible
if A ¢ B, for somef . Therefore B, = W. Then (3a) im-
plies (3b).

Now consider the arbitrary case n By = B; » where
Bgt B . mee

This cannot be the case, Consider the set £ = (0,1).
Define @ as follows: (B = {(o,“.'.';)foc'ﬁ'( 1}. Obviously
(3a) does not hold since an =@ 4 @ . Hence (3b)
does not hold either. ol

Exercise 2,13 Let n — f(n) be a mapping of N onto
itself such that f"(n) is finite for each m € N, Show that

for every sequence of elements {x,\} of E, if one places

Yn = By o the elementary filters associated with {x% and
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{yn} are identical.
Let 3/ = {Xlxn € X for all but a finite number of x“'s}

and 3/’ = {Y}x_;m € Y for all but a finite number of xm,‘s.}
Let X 8,? « It is mnecessary to show X = Y C’J' for
some Y, Consider CX = {x,\‘ v X, 9 ooy xnj} « Now for each
n & N, there is an m € N such that n = f(m); £ (m) ={nf s,
...,n'P} which is a finite set. This means then that

£(n, >:=. = m for a finite number of n € N. Then {x,\‘ 1 Xn, s

s ’x"ag = {(xﬂm.) * X fm,) ’x-&tm,)’ °* "xﬂm)) ’ (x-ﬂm,,.)"' "xﬂm._s))'
...,(xxm’_‘) ...xﬂmip))%where Xp, = (x-f(m,)’ iy Xmy? ** * 1 X fm ) ),
and so on for each Xn; £ CX. Obviously (xff'".l 2Kyt 00
IV Yeoo ;is a finite set, since each element of the set

is finite and there is only a finite number of them. Then

{(x’t(”‘" P Xffmy ? * 9 X fm, ) (xﬂmt-\ ? Xfmyy) ? 7 * * Zlma Voo } -
GonrsomeYCJ' . Then, CX=CY9 so X = Y,

Now, let Y 83’1 and show Y = X € F for some X.
Consider CY = {x“'".) ,x«m‘J ,...,me')} . Now, for each m&N,
there is an n & N such that f(m) = n, Then (JY can be
written as fxn'xn, ,...,xn% which is CX for some X¢ J .

' I

Hence Y =X €. F .

Therefore J = J' .



CHAPTER IIX

NETS

Definition 3.1 A set A is directed by a relation >

if > is a binary relation on A with the properties:

(1) 4if a,b, and c are elements of A such that a > b
and b » ¢, then a ‘» c.

(2) 4if a and b are elements of A, there exists an
element ¢ of A such that ¢ »a and ¢ » b.

Definition 3.2 If f is a function which assigns to

each element a of a directed set A a functional value f{a)
in a set M, we shall call the function a "net" of elements
of M,

Definition 3.3 Let f(a), a in A, be a net of real

numbers, and let k be a real number. Then 1:i.m‘_“.‘A ,:t_f'(a) = k
means that for every positive € there is an element a of
A such that|f(a) - k|< ¢ whenever a » a .

Definition 3.4 A filter base () is ultimately in a

subset E of X if E contains some set from 8 » If X is a
topological space, 6 converges to an x, &€ X if it is ul-
timately in every neighborhood of x,

Definition 3.5 If -9 and B® are two filter bases,

we say that H is a refinement of ® if every set in &

contains some set inqg.

Definition 3.6 If E is a subset of X, the net & is
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ultimately in E if there is some index &, (depending on E)
such that if A > A, then x, € E., If X is a topological
space, the netx converges to an element x, 6 € X if & is

ultimately in every neighborhood of x,.

Definition 3.7 Suppose we have a net X = {xdgdcn .
A neth = {y’};tb is said to be a subnet of{( in case there
is a mapping TT: B —> A with the properties:

(1) ¥ = xppfor all B € B;

(ii) egiven any o, € A, there is a B, € B such that
if 8 > 8, » then TW(B) > ot,.

Proposition 3.1 (a) Ifr & = {decA is a net in an

abstract set X, and if B(& ) = {x,‘l)\ z«} , then the col-
lection B(X ) = {E( & )} is a filter base in X, called
the filter base associated with the net c'r .
(b) If the net & is ultimately in some set £, then
B(& ) is ultimately in E.

(¢) I£M = iyﬂ}ltﬁ is a subnet of & and if @ (1)
is the filter base associated with Yt , then (Y2 ) is
a refinement of ®R( ¥ ).

Let E(RA,) and E(%;) be arbitrary sets in @ (& ).
Since A = {o(j is a directed set, there is an X3 such that
ol ¢ o4y and ok, £ %, , Now E(o,) = Bx}l,\ > 0<5§; B(et,) =
{x,‘\)\ Eo(,g s E(ohy) = -5::;“2*;; .

Obviously §x)l)‘ > 0435651:)\] A2 %‘3[] { x)‘l N Eol;i,
or, B(%,)C E(4 ) [) E(#,). Therefore E(ct) is a filter

base, and (a) is proved.
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To prove (b), we note that there exists an & such that
if > ot, then x, € E. Consequently E(o%) = {x,.[)s Yo ,t CE,
and B (& ) is ultimately in E.

To prove (c), let E(x, )E B (& ). By condition
(ii) in the definition of a subnet, there exists a 4, such
that if 42 4 , then T4 > oX, . Since rMH,) = {yllgg’goiz
{xﬂptﬂz Bﬂ% we conclude that F(4, ) C E(c4,). This shows

that ’B (N ) 1s a refinement of HF (A ) and (c) is

proved.
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