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CHAPTER I
INTRODUCTION

In the numerous problems of matrix algebra, one finds
the problem of determining the eigenvalues and eigenvectors
of a matrix quite frequently. The theory and methods lead-
ing to the solution of the eigenvalue and eigenvector problem
are of considerable interest. The relation between vector
spaces, matrices, eigenvalues, and eigenvectors is to be
considered in this chapter, with particular councentration
directed toward eigenvalues and eigenvectors. Three methods
for determining the eigenvalues and eigenvectors shall be
developed in the following chapters with detailed examples

of the methods.

Unitary Spaces

Definition 1: A set of elements x, y, ..., which shall

be called vectors, satisfying the following properties, is
called a vector space V. |
I. If each of x and y is an element of V, there exists
a unique element x + y in V called the sum of x
and y.
II. If each of x, y, and z is an element of V and
each of a, b is a complex number, there exist
unique vectors ax, bx, and ay in V such that

1



1. alx +y)=ax + ay
2. {ab)x = a(bx)
3. (a +b)x=ax + ab
L. (1)x = x, where (1) is the complex number one.
5. x+ty=y +x
6. x+ (y+z)=(x+y)+z
III. If x is an element of V, there exists an element

© in V such that x + 8 = 8 + x = x; furthermore,
if x is an element of V, there exists an element
-x in V such that x + (-x) equals 8. The expres-
sion x « y shall mean the sum x + (-y). Hence,
one can write 6 = x - x for any x € V.

If, in addition, the vector space satisfies the following

condition,

IV. If each of x and y is an element of V and a is a
complex munber with complex copjugate a, there
exists a uniquely defined complex number (x,y),
called the inner product of x and y, which satis-
fies the following |
1. (x, v) = (y, x)

2. (ax, y) = a(x,y)

3. I(x, x)2 0

he (x, 7 +2)=(x,y)+ (x, )

5. (x, x) =0 if and only if x = 6

then V is called a unitary space U.



(x +y, z2) = (x, z) + (y, z)
(x, ay) = a(x, y)
Proof: By part IV, property 4L, one sees that
(z, x +y) = (z, x) + (z, y)

(x +y, z2) = (x, 2) + (y, z)

(x +y, z) = (x, z) + (y, z)

and by part IV, property 2,
(ay, x) = aly, x)

(ay, x) = aly, x)
(x: ay) = -é'_:(Y) x)
= a(x, y)

Definition 2: An element x, which is an ordered n-tuple

of elements from a field F-(al, sy eeey an), is a vector
with n components aq.

Let x = (al, 85y ses, an), y = (bl"bZ’ ceey bn) be
vectors with complex components 2y bi respectively. Then

define

1. x+y=(a + by, 85 + by, ..o, a, + bn)

2. gx = (gal, 835 cesy gan), where g is complex
3. (x, y) = ﬁ%érb
’ = i1

Le x = Uk = (al, Bpy seey an), where a; =0 fori-=1,

2, sy k"l, k+l, ¢ ey n and ak = lo

5. x=0,=(0,0,0, ..., 0)



6. x =1y if a; =by fori=1,2, ..., n
7. =x = (a1, =85, +u4, -an)
Example 1: The set of ordered n-tuples of complex
numbers is a unitary space Un.
Proof: I. Let each of x = (a3, ap, «+., &),
7 = by, by, e, bn) and z = (e, €n) eovy en) be an
element of U.. By 1 above, one sees that
x+y= (a1 + Dy, a5 + by, oo, a * bn) € V.
Assume x + ¥ = (g1, &y ¢ee) gn) € Uy, then (g;, 52; cees gn)
is equivalent to (a; + by, ay + by, .evy a; + b)) and
g; = a; + by by property 6 above. Therefore, x +y is
unique since aiq+ bi is unique, because the + operation
for complex numbers is unique.
Proof: II. Let each of d, ¢ be a complex number. Then
1. dlx +y) =d(ay + by, ag + by, eeey ay + by)
= (d(a; + b;), dlay + by), .eo, dla, + b))
= (da; + dby, da, + dby, ..., da, + db )
= (day, day, ..., da,) + (dbq, dby, ..., db,)
= d(a], a5, «-0y &) + d(by, by, eee, bn)r
= dx + dy.
2. (de)x = dclay, ap, <oy a,)
= (decaq, dcaz,d..., dea, )
= (d(cal), d(caz), ceey d(can))
= d(cal, Cayy eosy can)
= d(e(ay, ay, ..., an))

= d(cx).



3. (d +c)x = (a + c) ( al) az: seey an)

((d + c)al, (a + c)az, eee, (d + c)an)

= (da; + ca;, da, + cay, ..., da, + ca )

]

(da;, da,, ..., da ) + (ca;, ca,, «.., ca_)

i

dlag, a5 ooy a ) + clay, agy oo, a)

dx + c¢x.

L. {(1)x = (l)(al’ Bny sees an)
= (lal, lag, eees lan)
= (al, 8y oee) an)
= X. ‘

5, x+vy = (a; + by, a, + by, ..o, a, + bn)
= (1|:;1 +a;, by tay, eee, b an)
=yTx

6. xt(ytz) = (al, Bpy eoey an)

+ (by + ey, by * ey euey by +oe)
= (a; + by + g, 8y + by + 65, .o, a, + b, +e,)
= (al + Dy, ay + by, eesy an * bn)

+ (eq, @3y +es, €)
= (x+y) + 3z

Proof: III. Let O = (0, O, ..., 0), then
x + 0, = (a1, as, «.., ay) + (0, 0, ..;, 0)
= (a; +0, a5 + 0, ..., a, +0)
= (a1, 85, eve, ay)
= X



x + (-X) = (al, az, ee ey an) + (-al, -az, o0 0y -&n)

n an)

= (al - al, 32 - az’ LU a
= (O, 0, evey 0)

=Ov

Therefore, x - x = Ov‘

Proof: 1IV.

n
1. (x, y) = a,b
’ £Zi i“i

—

nbn

»

= blal + b2a2 + eeo + bnan

2. (ax, y) = Z[_L’*

3' (x, x) = Eiai



it
[y
o
+
(]

' n
k4. (X’ y + Z) a,

= (x, y) + (x, z)
5. If x=0,
n

n
(x, x) = > 38, = > Ja,|? = 0.
’ féi il i=l’ il

n
Assume x # 0, then :E&Iai]a;> 0; but,
i=

n
zflailz = 0. Hence, this is a contradiction.
i=1

Therefore, x = 0.

Definition 3: Let each of x and y be elements of a

unitary space U. If (x, y) = 0, then x and Yy are orthogonal.
The length of a vector x is x|l = Y(x, x) and is always a non-
negative real number. If (x|l = unitary, then x is normalized.

Definition 4: If S is a sequence of vectors,

Xis Xy
x3, «es, in a unitary space U,.satisfying the property that
(xi, xj) =O0foris#j, (i, §=1, 2, 3, ...), then S is an
orthogonal set. If, in addition, ”xiu_= 1, (i =1, 2, ...),

S is an orthonormal set.



An alternate means of stating the definition of an
orthogonal set S is (xi, xj) = J;j where Jij' the Kronecker
lifi=
Oif i # J
Example 2: The u of page three, number four, are

for Xi, X5 € S,

delta, is defined by J;j = { J

orthogonal.
PI’OOf: ul = (l’ o’ O, L L R A ] O)
u, = (0, 1, 0, «.., O)

V u = (O’ O, O, o090y l)o
Let aip be the pth component of Uy, then

(ui’ Uj) = éiiaipajp = ailajl + aizajz + e + ainajn.

If i =3,
(ui, ui) = ail + a§2 + 00 *+ agi + eee * agn
=O+O+.¢. +l+...’+o
= 1.
If i # 3,
(ug, uy) = agyay) +ajoag, + ...+ 3;3351
eee T aijajj + ees + ainajn
= 0%0 + 0%0 + ... + 1%0 + ... +
O%1 + ... + 0%0

= 0,

Definition 5: Let X1y Xpy eeey X be a set of vectors.

The vectors X1s X3, ese, X, are linearly dependent if



89Xy + a2x2 + ,e0 + anxn= 0

where a, is a complex constant and a, # O for some i = 1, 2,

' ' n
eee, . If éZiaixi = 0 only when a; = 0 for i =1, 2, ...,

n, then the vectors are linearly independent.

Let X1s Xy eeey X be linearly independent. If one
wishes to transform the set of vectors Xys X5y eesy X into
a new set yy, Vo, ooy ¥p having the propertieé

1) (yyq, Vj)'” Jgj and ‘

2) each Y5 is a linear combination of Xy where
‘ n
j=1,2, «.., n; i.e., if each y; = féiajxj for some choice

of aj with each aJ complex, one may do so by the Gram Schmidt
process (3, p. 6).

Let y; = xl/Hle, then [ly;|| = 1. Next, assume that
Y5 = x, = Ny; and determine N, such that (y}, y;) = 0, i.e.,
Ny = (yy, x5). Since x;, x, are linearly independent, y} # O
and one sets y, = yé/Hyé” using Ay = (Yl' xz). In general,
if V1s Yos sees Vi have been constructed, write

Yi+1 = Xg+1 - O0AVL < eer =0%Vk
and determine 07, 63, --., 03 S0 that (Yﬁ+l’ij)‘= 0 for
j=1, 2, ¢e., k, 1.e., choose 63 = (yj, xk+l)’ As before, |
Vi # 0 and v = viyg /vl

Since Yy = Vi /IWWicalls Tieay Wieall) = ¥4y 5 and
since (yé+l, Yj) = 0 was comnstructed,
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.

(U D7y s Yj) = ¥k+1)! (a1 5 Yj) =0,
so that (yy4q, yj) =0fork=1,2, ..., n=1 and j = 1, 2,
-+« k. Therefore, property 1) is satisfied for i # j.
If § = 3,

(75 v3) = iivills v{/izgll) = (LAlyj 1D (34, vi/lyil)
(/v DNy (vd,vy) = (l/HY{Hz)(Y{, i)
(1/ (v, y{))z)(yi, v)

= (1/(y}, v{))N¥{, v{)

i

it

=1

and property 1) is satisfied.

Since ¥, was constructed as a linear combination of X1
Y, was constructed as a linear combination of X, and ¥i»
hence, X, and Xy, and, in general, Yi+1 Was constructed as a
linear combination'of Xk+1s Y1» Yop» e+, and Yie» hence Xy s
Xies Xp_7s »»e, and Xy, each y is a linear combination of xj
and property 2) is satisfied for j =1, 2, ..., n.

Example 3: Let x1'= (1, 5, -1), X, = (0, 2i, 5-i), and
Xy = (-1, 7-i, 6+i) be a set of vectors from Uy where
i =7V-1. Show that X1s X5, and X4 are linearly independent.
Transform X15 X5, and Xq into ¥1» Yo, and y3»by use of the
Gram Schmidt process.

From Definition 5, X1, X, and X3 are linearly inde-

pendent if'fg:aixi = 0 only when a; = 0 for i = 1, 2, 3.
i=1
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Hence, one needs to determine the ay for i =1, 2, 3 to test

for linear independence. It follows that
alxl + 32}(2 + a3x3 = OV = (O, O, O)
al(i, 5, =1) + a2(O, 2i, 5-i) + a3(-l, 7-i, 6+i) = (0, 0, 0)
Now,
5a; * 2a,i + (7-i)a3 =0 .
0

i

-a; + (5-i)a, + (6+i)a3

Using a; = —aBi from the first equation in the second and
third equation and solving simultaneously,‘it can be shown
that a, = -2a,1/(7-61) so that a

these values of ay and a3 in the third equation, one finds

1= -2a2/(7~6i). Using

Ray/(7-61) + (5-1)a, - (6+1)(2a,1)/(7-61) = 0
2a, + (5-1)(7-61)ay - 2(6+1)agt -0
hay, + 29a, - 37a5,1 - l2a i =0
ay(33 - 491) - 0.

Since 33 - 49i # O, a, must be 0. Therefore, a3 = 0 and
a, = 0. Hence, X1, Xp, and X4 are linearly independent.

Using the Gram-Schmidt process,

1= 5/ |l - x/\ll_l 411%131

where a1y is the ith component of Xq . Hence,

y, = x)NIF25%1 = (AN27)(4, 5, -1).
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Next, assume yj} = Xp = Nyy and determine N\ so that
7\1 = (Yl: xz) = (xl/ﬁ?’ Xz) = (l/m)iélaiiaZi
= (L/N27)(101 = 5 + 1) = (=1/427)(5 - 111).

Therefore, :
y2= (0, 21, 5 - 1) + (1/427) (5 - 111)(x,/"27)

= (0, 21, 5 - i) + ((5 - 114)/27)(4, 5, -1)
= (1/27)(11 + 5i, 25 - 4, 130 - 16i)

:3
Vo = Yé/”Yé“ = Yi/.zlbéibéi

where béi is the ith component of ¥5. Then
Y, = 27y}/N(146 + 626 + 17156) = 27y3/17928
= (1/917928)(11 + 5i, 25 - 1, 130 - 161).

One now assumes yé = X3 =03¥] - 0¥, and determineS(Ti and

and

0% so that 03 = (y,, x3) and a3 = (y,, x3).

= /B x) = QN %) = QI 2 e,

Op = ((IAN27)(1 + 35 = 51 = 6 = i) = (1/927)(29 =~ 5i).
3 |

0y = (1/N17928)(-11 + 5i + 176 - 18i + 76L +'2261)

03 = (LN17928)(929 + 213i).

Therefore,

v3=(-1,7-1, 6 +41) - (1/427)(29 - 5iM(1/V27)(1, 5, -1)
- (L/417928) (929 + 2131)(1/7I7928)(11 + 51, 25 - i,
130 - 161)
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y3 = (1/17928)(-30402 - 262441, 5778 - 57241, 2646 + 17821).
so that
y3 = ¥y3/\vjil = 17928y]/N2214235410
= (1/92214235440) (-30402 - 262441, 5778 - 57244,
2646 + 17821).

Checking (y:, v,) = i.ﬁ— by = one finds that
3* ! T 2 PP = Ok

(y1, y9) = (1/27)(1 + 25 + 1) = 1
(v25 ¥) = (1/17928) (121 + 26 + 625 + 1 + 16900 + 256) = 1

(y3> ¥3) = (1/2214235440) (924281604 + 1213627536 +
33385284 + 32764176 + 7001316 + 3175524) = 1
(v1» ¥,) = (1/V27)(1/417928)(-114 + 5 + 125 - 51 - 130 +
16i) = 0
(y1s ¥3) = (1/V27)(1/2215235440) (304021 - 26244 + 28890 -
286201 - 2646 -~ 1782i) = 0
(v2, ¥3) = (1/717928)(1/V2214235040) (~465642 - 1366741 +
150174 - 1373221 + 315468 + 2739961) = 0
so that property 2) of the Gram-Schmidt process is satisfied.
Definition 6: If S is a set of vectors Xys Xps eeey X,
S spans a vector space V if every vector of V is a linear
combination of X2 Xpy eeey X S forms a basis of V if S
spans V and S is linearly independent.

Linear Operators

Definition 7: A linear operator T on a unitary space U

is a mapping of each vector x of U to a unique vector Tx of
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U so that Tlaux + y) = xTx + Ty for every pair of vectors x,
¥y in U and every complex number <.

Definition 7': An alternate definition would be T{ax +

Ay) = aTx + BTy for each pair of vectors x, y in U and every
complex number « and A.
Proof:
Tlax +By) = T(B(Ex + ¥)), ifts # 0

=Z(T@Ex + y)) by Definition 7
= A($Tx + Ty) by Definition 7
=aTx +8Ty

Therefore, Definition 7 and Definition 7' are equivalent.

Definition 8: Let x be an element of a vector space V.

The linear operator I which maps each vector x to the vector
x itself, Ix = x, is called the identity operator. The zero

operator, ©, is the operator which maps each x to 0, 6x = 0.

Definition 9: If each T and W is a linear operator on
a unitary space U, then T =W, i.e., T and W are called equal
operators if Tx = Wx for each x in U,

Definition 10: If T and W are linear operators on a

vector space V and if « is a complex constant, then (T + W)x
=pTx + Wx and (2T)x = «(Tx).

Theorem 1: If V is a vector space and if V; = (Ty| Ty
is a linear operator on V), then V1 with the operations in

Defiinition 10 is a vector space.
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Proof: I. If each of Ti and Tj is an element of Vl

and x € V, then

Ti(X) + TJ(X) = (Ti +T.)

J

Assume Ti(x) + Tj(x) = Tk(x) € V., then

Now,

1

Ty (x) = (Ty + Tj)(x)

Ty

(Ty + Tj)(ax + y)

=Ti +TJ'.

=T lx +y) +

(x).

Tj(cxx +y)

ix iy zj ij

*==°<(Ti + Tj)x + ('I‘i + Tj)y

so that Ti + T 3 is a unique linear operator.

Proof: II. If each of Ti’ T.and T

J

X is an element of

V; and each of %, 5, is a complex number, then

Lo Ty + 24)(x) = (T (x) + T (x))

2.

3.

zl'o

(dﬁ?)Ti(x)

(°C+/5)Ti(x)

(l)Ti(x)

(Ti + Tj)x

=T, (x) +°<Tj(x)
= )T, (x) + (=(FT, (x)))

(= +A)T, ) (x)

(""T:L ‘*‘ﬂTi)(x)

=Ty (x) +/675 (x)

=

==

(lTi)(x) = T, (x)

Ti(x) + Tj(x)

Tj(x) + Ty (x)
(Ty + Ty )(x)
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]

6. T;(x) + (T (x) + T (x)) = Ty (x) + (T, + T )(x)

= (T, + Tj + T, ) (x)

i

(T; + Tj)(x) + Ty (x)
Proof: III. Let © be the operator of Definition 8
which maps each x in V to ©, then |
(T; + 6)(x) = Ty (x) + 6(x) = T;(x).
Now, Ty (xx + Ay) =«T3(x) + £T5(y).
Letting «= 1, 8= -1, and y = x, then
Ty (x = x) = Ty(x) + (-T;(x))

= 0 = Ti(X) + (-Ti(X))

Definition 11l: If x is an element of a vector space V

and each of T and W is a linear operator, the product TW is
defined by (TW)(x) = T(W(x)). If TW = WT, T commutes with
W; but, in general, TW # WT. In any case, the commutator
{T, W] = TW - WT. Obviously, T commutes with W if and only
ir T, W =o.

Definition 12: Let T be a linear operator on a vector

space V., If there exists a linear operator W on V so that
WT = TW = I, W is called the inverse operator of T. T has
at most one inverse operator; since, if Z is also an inverse
operator of T, Z(TW) = Z(I) = Z = (2ZT) W = IW = W. Therefore,
if T has an inverse, it shall be denoted by W = T=1, There-
fore, T=1T = 77-1 = I,

Although T-1 is defined, T-1 may not exist. If T-1

exists, then 7=l "undoes" what T has done, i.e.,
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=1(P(x)) = (T"1T)(x) = I(x) = X
for every x € Y. .

Definition 13: If T is a linear operator on the vector

space V and T has an inverse T'l, T is nonsingular; otherwise,
T is singular.

Theorem 2: If each of T and W is a nonsingular operator,
the inverse of the product is the product of the inverses in
reverse order, i.e., (Tw)~t = wirt,

Proof:

m(wlr™l) = rw )1l = 71771 = 7771 = I ang
e )W = wirinw = wolw = wolw = 1.

But, (TW)'l is that operator such that (TW)'lTW =] = TW(T&‘)’)"1

and is unique. Therefore, wirt - (TW)-l.

Eigenvalues and Hermitian Operators
For the present discussion the word space shall stand
for unitary space.

Definition 14: Let T be a linear operator on a space

U. If there exists a nonzero vector x € U and a complex
number A such that

Tx = N\x
then the nonzero vector x is called an eigenvector (proper
vector, characteristic vector, latent vector) of the operator
T. For any such x, the number A is called the eigenvalue
{proper root, characteristic value, characteristic root,
proper value, latent root, latent value, latent number) of T

corresponding to the eigenvector x,
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Remark: Intuitively, if there exists a nonzero vector
which, when operated on by T, does not have its direction
changed, then the vector is an eigenvector of T.

Definition 15: Let T be a linear operator. If there

exists a linear operator T* having the property that
(x, Ty) = (T*x, y)
for every pair of vectors x, y in‘U, then T* is called
an adjoint operator of T. |
Theorem 3: There can be at most one adjoint operator !
for T.
Proof: If T* exists and (x, Ty) = (T*x, y) and there ‘
is another operator 2% such that (x, Ty) = (Z*x, y) for
every pair of vectors x, y in U, then
(T*x, y) = (Z*x, y)
Tihx = Z%x
and from Def'inition 9, T* and Z* are equal operators.
Note: If T* exists, then (T%)* exists and (T*)% = T,

Definition 16: Let T be a linear operator on a space

U. T is Hermitian, or self-adjoint, if T* = T, or equiva-
lently, if (x, Ty) = (Tx, y) for every x, y in U,
Theorem 4: Let each of T and W be a linear operator
that possesses an adjoint T* and W* respectively. Then the
adjoint of TW exists and is W*T*
Proof: Let each of x and y be an arbitrary vector of

U, then
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(x, Ty) = (T*x, y)
(x, Wy) = (Wkx, y)
Each of Ty, Wy, T*x, and W¥x is a vector in U so that
(x, TWy) = (x, T(Wy))
= (T*x, Wy)
= (W¥T*x, y)
Therefore, the adjoint of TW exists and is W*T* by definition.
Theorem 5: Let T be a self-adjoint operator and x an
arbitrary vector of U, then (x, Tx) is a real number.
Proof: (x, Tx) = (T*x, x) by Definition 15
= (Tx, x) by Definition 16
= {x, Tx).
Hence, (x, Tx) is real since it equals its complex conjugate.
Theorem 6: The eigenvalues of a Hermitian operator are
real.
Proof: Let H be a Hermitian'operator, x be an eigen-
vector of H, and A be an eigenvalue of ﬁ. If
Hx = Nx,
(x, Hx) = (x, 7x)
= Mx, x).
(x, Hx) is real by Theorem 5 and (x, x) is real by Definition
1, IV, 3. Therefore, N\ is real since if )\ were complex,
(x, Hx) would be complex; but, (x, Hx) is real.
Theorem 7: Let each of x and y be eigenvectors of a
Hermitian operator belonging to distinct eigenvalues?\l,

and ﬂz respectively. Then x and y are orthogonal. In other
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words, given that Hx ='ﬂlx, Hy =;A2y,.%i # 22, and H = H¥,
prove (x, y) = 0.
Proof: Taking the inner products (y, Hx) and (x, Hy),
(v, Bx) = (y, A\jx) = Ay, x)
(x, Hy) = (x, 7by) = 7&(x, v).
Also,
(y,er) = (H*, x) = (Hy, x)
(x, Hy) = (H*x, y) = (Hx, y).

i

Hence,

7\2(x, y) = (Hx, y)
(y, Hx)
= %&(y, x)

= 7&()() y)

fi

and (x, y) = O since 7\1 # 7\2

Definition 17: Let ¥ be a linear operator on U. If X'l

exists, if " exists, and if'X'l = 3*, then ¥ is called a

unitary operator and ¥ ¥* = ¥¥y = I.

Definition 18: Let ¥ be a linear operator on U. If Y
preserves all inner products, i.e., (x, y) = (¥x, ¥y) for
all x, y in U, then ¥ is called an isometric operator or
isometry.

Note: An isometric operator preserves the length of
every vector, since “Ux”2 = (Ux, Ux) = (x, x) = I[x/|%. Thus

an isometry may be thought of as a generalized rotation of

the unitary space U.
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Theorem 8: If ¥ exists, then ¥ is isometric if and
only if it is unitary.
"Proof: If ¥ is unitary and each of x and y is a vector
of U, then
(vx, Y¥y) = (x, ¥v¥vy) = (x, y).
Hence, ¥ is isometric. If ¥ is isometric, then
(¥x, ¥y) = (¥*¥x, y) = (x, y)
for every x, y in U and
((¥*Y - I)x, y) = (¥¥¥x, y) - (Ix, y)
(¥*¥x, y) - (x, y)
= Q.

I

]

Since this is true for every y in U, it is true in particular
for vy = (¥*Y¥ ~ I)x so that
({(¥*¥ - I)x, (¥*¥ - I)x) = 0.

Hence, {¥*Y¥ - I)x = 0. Since x was an arbitrary vector of U,

and similarly, ¥¥* = I, so that ¥ is unitary.

Matrices

Definition 19: Euclidean n-space is the space of

vectors x that satisfy Definition 2 and have the properties
1l through 7 and will be denoted by En‘
Note: The symbol (x)i will be the ith component of x.
Let En be an Euclidean n-space and Em be an Euclidean
m-space and let T be a linear operator which associates with

each x € Em a unique element y € En such that y = Tx. Let
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€13 €55 coes e and f 1’ f2, caey f be a basis of E and E
respectively. The vectors Tej, (i =1, 2, «es, m),are in E

and are a linear combination of the f, , (i=1, 2, «es, n),

i.e., T’ej = igltijfio If X = (oci, O<2, LICIC Y O(m) E Em,

m
X = 210( .e:. Therefore, Tx = }:d 'I‘ej and Tx = Zajéltij T

J=1 J=1
T ﬁ > f,. H (Tx) >ty 1%
Now, Tx = 2 ;Zitijqﬁ 4+ Hence, (Tx); ;Zitij e
Therefore,
(%4
(Tx)l t11% * ty% * t13% et

(Tx)2 = t21°<l + b5 * t230(3 *toaee Ftoal

(Tx)n = tn1°<1 L%t tn30(3 LAETTIL R MW

Definition 20: Consider the numbers tij arranged in a

rectangular array having n rows and m columns,

tll tlz tlB ® 00 000 tlm
tzl t 22t23 > s 0000 tzm

L

L_tnl tnz tn3 cvoene tnm
then this array is called an n X m matrix associated with

the operator T. Since the action of operator T is fully
described if one knows the numbers tij’ (i=1, 2, «o., n;
j=1, 2, «.., m), one uses T to denote the matrix. The

equavion T = (tij), (i =1, 2, ooy, J=1, 2, 000,y m),
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means that T is the matrix which has the number tij in row
i and column J.
Let each of T and W be a linear operator which carries
E. into E, and let (tij), (wij) be the matrix which repre-
sents T, W respectively. If x is a vector of Em, then
(T + W)x = Tx + Wx
((T + W)x), = (Tx), + (Wx),

Definition 21: In view of Definition 20 and the fact

m
that ((T + W)x), = Ezi(tii + wij)af, one sees immediately

that the sum of two operators can be represented by matrix

+ t T+W= + .
(tij wij)’ or the sum of two ma ricesl (tij wij)

In order to define a meaningful préduct of two matrices,
some restrictions must be made in the definition of the
operators T and W above. As it is, TW would be meaningless
since if x is in Ej, Wx is in E, and T is not defined on

the vector Wx. Therefore, let T carry Ej into E,, W carry E

p? P

into E, and note thathT (apt TW) is meaningful and carries

Em into En, i.e., Eﬁ—~%E§——eEn or x—>Tx—>WTx where x € Em’

Tx ¢ Ep and WTx € E . WT should be representable by a matrix

W2 of n rows and m columns.
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If each of T = (tij) and W = (wij) is the matrix repre-
sentation of the operator T and W respectively and x = (dl,
o, eeey Yy) is a vector of Ejy, then

m
(Tx)y = ézitijqa.
Applying W to Tx € E_,
' ((Tx)); = élwik(’l‘x)k
m
PATE
m
= 3éi(églwiktkj)“ﬁ'

Definition 22: In view of Definition 20 and the fact

égiwik

m
that (W(Tx))i== > 5%jwiktkja(j, one sees that the product
=1 k=1

=

operator WT can be represented by a matrix :giwiktkj or
k=
the product of two matrices WT = (k Wiktkj)» (1 =1, 2, <2,

n; j=1, 2, «es, m). Obviously the product of ann X p
mabtrix and @ p X mmatrix is an n X m matrix.

Let T = (tg5), (4 =1,2, .e.o,mj j=1,2, ..., n), be
an m X n matrix. Consider the n X m matrix W = (Wij) where
s = E}i, (1t =1,2, eee, n; =1, 2, eosoy, m), Let x =
(ai, % ...,cgn), y = (ﬁa, By eees Ah) be arbitrary vectors

in Em and En respectively. Then



(x, Ty) =

(Wx, y) =

n m ﬂ
E E £y X
{21 k= KK

(x, Ty)

25

Definition 23: Since, by Definition 15, W has the pro-

perty of the adjoint operator of T, i.e., W = T%, W shall be

called the adjoint matrix of T. Symbolically, (T*)ij = 15731.

The adjoint matrix is sometimes referred to as the conjugate

transpose mabtrix or the Hermitian conjugate matrix.

Definition 24: If T is a square (n X n) matrix, where

T = (tij), and if tij ='€Si, then T is Hermifian.

Definition 25: If T is a n X m matrix, the transpose

T

of T, TF, is given by (TT)ij = (T, (§=1,2, ooy mj & =

l’ 2’ ..., m).

Note: (T*)ij = TT)ij’
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Theorem 9: If T is an n X m matrix and W is an m X k
watrix, the transpose of TW is the product of TT and WT in
reverse order, i.e., (TW)T = wiTT, |

Proof: Let T = (tij) and W = (wjp), (i=1, 2, ..., 1;
i=1,2, eee,m;yp=1, 2, «o., k), then

™ = (Jip)
dip = 31:13 Yip
(rw)? = (c(ip)T
= (dfpi)

TmT _
W'T (7p1)
Now Xbi is the component of the matrix WLTT which is formed.

by multiplying row p of WT by column i of TT or

Tpi = %Wap i
m
= 2%
= dip = €51
(1) = (€,)
wit? = (w)T

Definition 26: If T is a square, n X n, matrix, then

T is symmetric if T = TT.

Note: If T.is a square matrix with real elements and T

is symmetric, then T is Hermitian since tij = tij i
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Theorem 10: Let each of T and W be a square Hermitian

matrix. In order that TW be Hermitian it is necessary and
sufficient that T and W commute.

Proof:

3 mT
(T)ij (T )ij = (T )ij

(w)ij

5% — ful
(W )ij = (W )ij

]

If TW is Hermitian,
(Tw)™ = w¥r™ = wr
(Tw)* = Tw.
Therefore, WT = TW, i.e., T and W commute. If T and W

commute,
TW = WT
(TW)™ = (wr)* = 7™ = Tw.

Hence, TW is Hermitian.

Definition 27: If T is an n X n matrix, (tij), (i =1,
2, ..., n), the adjugate of T, (adj T), is the n X n matrix
formed by the cofactor of each element tij of T, i.e., the
element t1J € (adj T) is the number formed by finding the
determinant of T after having deleted the ith row and the jth
column and multiplying by (-1)i*J.
Example 4: Let T be the 3 X 3 matrix
172
T= 1130
94 2



£11

£12

£22

23

£33

= (-1)1*

= (_l)1+2

= (-1)173

== (_1)2"'2

= (-1)%%3

= (-1)3%

2 = (-1)3%2

= (-1)3%3

(adj T) =

-6 =16
-6 =2

-6

-16

59

-2

10

28
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The Laplace expansion of the determinant of a square
matrix T by cofactors has the form
ztiJ = det (T)’ (i = l’ 2’ e 0y n)u
J=1 .
Let i # k and consider'fﬁitijtkj, which is the sum of pro-
jz

ducts of the elements of one row by the cofactors of another
row. One sees immediately that this is the determinant of
the matrix T with the kth row deleted and the ith row sub-
stituted in its place. But this matrix has two rows that

are identical. Hence, det (T) = O.  Symbolically,

}{t =0

=11
if i # k. Therefore,
Sty t5 = ], (aet (7))
[

fori, k=1, 2, ..., n.
If det (T) # 0, one may define the matrix

(T'l)ij = (t31)/get (T)
and
-1, _ & -1
(TT )iJ = ézitik(T )kj
-1, _ & 5k B
(TT7), 5 = ééitik(ta )/ det (T) = d;j
or

-l =
(TT™%)y; = 1
-1



-1
(T? )13 = 0

(1)

i
o

1n
-1

|
O

-] =
(TT )22 1

(TT"1)_ =1
so that
00 ...
lo [ Y By ]

=l =1001...

Os e+ e+ 0 O W

L OO * 00
Definition 28: If I isann X n

0]
0
0
1

30

matrix which has ones

on the diagonal and zeroes in all other positions, then I is

called the n X n unit matrix or the n X n product identity

matrix since if T is p X n,

010... 0
TI =

100 ... O]

é t ® 00 t éoo... l

v

-

tll tlz LR N tln

tzl t22 L 2N tzn

chke o o

LR N 2 t

| pl tp2 pn
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In view of Definition 28, el = 1, With a simple
modification, one can immediately see that p-lp = I so that

=i plays the role of an inverse of T,

Definition 29: In view of the above, if T is a square
matrix and if there exists a matrix -1 such that TT"1 = T
= T‘lT then T -1 is the inverse of T and

71 = (1/det (T))(adj T)T

Example 5: Let T be the matrix of Example 4. Then
172 |
T= <130
942
and
| 6 2 -31
adj (T) = |-6 =16 59
-6 -2 10|.

3y the method of pivotal condensation (2, pp. 121-124),

det (T) = (1/1) : = -42.
-59 -16
Therefore,
6 2 -31|T (6 -6 -6]
T = (1/42) |-6 -16 59| = -(1/42) | 2 =16 -2
-6 -2 10 -31 59 10
and

172 6 -6 -6
Tl = o(1/42) |-1 3 0O 2 =16 -2
9 4 2] [-31 5910
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42 0 0
1l = ~(1/42) | 0 -42 O
0 0 =42
1 0 0
=0 1 0
o o0 1.

6 -6 -6 172
=17 = (1/42) | 2 =16 -2| [-13 0
=31 59 10 9 4

1 0 ©
=10 1 O
o 0 1.

In light of the above discussion and Definition 29, one may
characterize nonsingular matrices as follows.

Theorem 11: If T is a square matrix, it is necessary

and sufficient for the det (T) to be nonzero in order for T
to be nonsingular.
Proof: Remembering that det (AB) = det (A) * det (B)
and I = TT-1, then if det (T) = O and if T~lexists,
1 =det (I) = det (T771)

= det (T) # det (T71)

= (det (T))(0)

= 0.
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Theorem 12: If T+ exists, then 7=l ig unique.

Proof: Assume W is also an inverse of T, then

) = W = I

=ity = 7711
w =71
Ww=r11

Eigenvalues of Matrices
In this and all following sections, all matrices will
be n X n unless otherwise specified, and all vectors will
be column vectors in order to have a meaningful product.
Suppose x is an eigenvector of T corresponding to the

eigenvalue N. Then Tx = Ax or

n
jzltijxj ==7\xi, (i=1, 2, ..., n),

or equivalently,

n ,
jgl(tij “%Jij)x'j = O, (i = l, 2, eeey n).

One sees immediately that this is a system of linear,

algebraic, homogeneous equations with n unknowns

(ty7 = Adxg + ty%p + o + %) = 0

. * .

ToqXy FbpoXxs toee. ¥ (ton -;A)xn = 0,
If x =0y, then %Xy = x5 = ... = x, = 0 is obviously a

trivial solution.
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in order to get a nontrivial solution, it is necessary

that the determinant of the coefficients vanish, i.e.,

tll had 7\ tlz «oe tln

t21  taz =N .e- top
L =O

tnl tnz L tnn - 7\

or det (T - AI) = 0.
Definition 30: The polynomial equation, det (T - ANI)

= 0, is called the characteristic equation of T. The poly=-
nomial #(A) = det (T - NI) is called the characteristic

polynomial of T.

Definition 31: If A is any one of M, My, ..., N,, the
n roots of det (T - AI) = 0, then N\ is an eigenvalue of T

and conversely.

Example 6: Let T be the 3 X 3 matrix

12-1
T=]03 -1
20 5

det (T - AI) = 0 3 =-A-1
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det (T = AI) = 15 - 230+ 9% = 33 = 4 + 2(3 - \)
=17 - 250+ 9% - 3
=1 ~2AMN-4 - 1i)(N =t + 1)
Therefore, N} = 1, Np = 4 + i, N3 =4 - 1. One needs to
determine a vector, x; = (%3, dya, “%33), such that

12-1/1%, A1
Txy = |03 =1 iG] = Nleago| , (=1, 2, 3).
20 5 063_3 %43
%41t 2% - A3 Ni%)
Ix = 3542 = 93 = [ Ni%2
_%41 *+ 5a33 N3l

If i=1, .
1+ 2%y - 3 = %, |
3G =gy =,
291 * 53 = %3

2491 = =43

and x, = (-20(13, (1/2)%13, D(13) where X3g is arbitrary.
If i =2, .
o1 * 2% =3 = (b F i)y
3%2 = %3 = (4 + i)y,

R%21 * 599y = (b + 1i)ayy
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-1 i)y = Xy
26(21 = ("l + i>0<23
and 3 = (((-1 + 1)/2)%5y, ={1/(1 + 1))%,3, ®,3) where e,y

is arbitrary. If i = 3,
%yt 2%p - g3 = (4 - i)y
30(32 - °<33 = (4 - i)°<32

2%37 + Sgq = (b - 1)xgy

2431 = -(l + i)«33
and x5 = ((-(1 + i)/2)°<33, (1/(-1 + i))°<33, o<33) where & 5
is arbitrary. ‘

Definition 32: If T is an n X n matrix, the trace or

spur of T, Tr (T), is the sum of the diagonal elements of T,
n

Tr (T) = thii'
i:

Theorem 13: Let the eigenvalues of a matrix T be Ay,
Rz, ey 7\, then
7&75 ces 7& = det (T)
Mot o+ = Tr (T).

Proof: By expanding the characteristic polynomial Z(N),

g = (-:L)n[7\n = (tgq Tty *oae. * tln)7\’“‘:L + .

+ (-1)%det (T)]
= (1P - A= R - A L (N - A
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Expanding the latter, one finds that
P = (LR - A Ay e + AP (7\17\2 £ AN+
e TR NN NA + ... +7\n_17\n)7\n-
+ el (-l)n7\17b7§ An].

Equating #£'(A) and 2(7R),
7\1‘3‘7\2’*“)\3"’...+7\n=tll+t22+t33+...+ﬁnn

Tr (T)

i

and

7\17\275 7\1'1 = det (T).

Diagonalization of Matrices

Let T be a matrix with eigenvectors Xyy Xoy eeny X

corresponding to eigenvalues 7\1, 7\2, ooy 7\n respectively,

then .X.X 7\x fori=1, 2, ..., n.

Definition 33: Let P be the matrix formed by using the

eigenvectors of T as columns for P, i.e;,

fay %4, .., g

%21 22 ... %2n
P= L2 ’

| %“nl *n2 ... %n

=

where °(ij is the ith component of X5 P is called the polar
matrix of T or the modal matrix of T.

The matrix P shall be denoted by (P) = (x ) (i, § =

1, 2, «v., n}. Furthermore, define a diagonal matrix /\ by
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placing the eigenvalues of T on the main diagonal. Hence,

N0 0...0]

O 7\2 O.ao 0

L0 0 0. ALl

e

The matrix A shall also be denoted by A = diag (ﬂl, ]2, ceey
7\1'1) and (/\)ij = 7\*5

1i-1ij?

(i, =1, 2, ..., n). Now, -

0 n
(Tp)ij = kgltik(P)kj = kzltik(xj)k

and’
n
| (P/\)ij = %(P)ik(/\)k.ﬁ = kgl(xk)fg\kl{kj
= 7\J(XJ)1 = (Tp)ij
s0 that

TP = PA,
IT the eigenvectors are linearly independent, the columns
of P are linearly independent and det (P) # 0 so that P-1
exists and

TPP-1 = pAp-1

T = PAP-1,

Definition 34: If T is a matrix which can be repre-

sented in the form T = PAP“l, finding the matrices P and A

1s called diagonalizing T. A matrix which hes n linearly

independent eigenvectors is said to be diagonalizable.
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Definition 35: Let eacn of T and W be a matrix. T and

W are similar if there exists a nonsingular matrix P such
that T = P=lwp.

Theorem 14: Similar matrices have the same eigenvalues.

Proof: IL T and W are similar matrices, then there
exists a matrix P such that T = P~1WP. If £(2) and ¥(}) are
the characteristic polynomials of T and W respectively, then

#(2) = cet (T - NI) = det (P~IWP - NI)
det (P~iWp - Np~1p)

]

= get (P~1(W -)I)P)
= det (P~1) det (W -AI) det (P)
= det (W - AI)
= ¥N).
The following theorem has been proven.

Theorem 15: An arbitrary diagonalizable matrix T is

similar to a diagonal matrix A.

Consider the real symmetric matrix

7. = ["n tlj
2 =
tyy T2
and let hl and Xy be an associated characteristic root and
characteristic vector where X is normalized. Now form an
orthogunal matrix QZ’ i.e., the columns of Q2 are mutually

orthogonal, with X, as one of its columns and desiginate the

other column as x2. Since

Toxy = /\yxg
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T T (V11 tig] (k)7 (xp)q
QTR = Q3 . l L o ()
21 V22| (X1l X2l

t
t
QT[%ll(xl)l toialxy)y tyg(xg)y + t12("2)2}
2
t

21(x3)3 * toalxg)y tpy(xp)y + to,(x,),

_ otk taalxp)y * epplxg),
M)y talxg)y + taalxz)y

(Xl)l (xl)z 7\1(}(1)1 tll(x.?)l + tlz(xz)z

(xa)y (xp)a| Mlx1)y  ta1(xp)1 + tap(xp)

2 2
Mixp)] + Mixg)5 boy

where byy, by, can be determined and (xz)l(xl)l + (xz)z(xl)z

= 0 since x, and x, are orthogonal and (xl)f + (xl)g = 1 since

Xq is normalized. Hence,

7 |y by
QiT.Q, =
221

Now, A
(@) 7 (@57 = Qlrial)?

]

l’rl
(5704

T T T
= QT30 = QT Q,

so taat QETZQZ is symmetric. Hence, b-; = 0. Since Q, is

orthogoaal, Qng = I so that Qg = le and by Theorem 16,
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bz = My or
Q5T,0; = '21 ;2
where
Ny = [eaalmg)y * t1plxg)y] rp)y + [eanlxg)y + tp5(x5) ) (xp),
=ty (ep)E + vy, (x,05 + 265, (x5) (),

If one proceeds inductively, one assumes that for each
k, {<kx =1, 2, ..., n), one can determine an orthogonal matrix
Q. vhich reduces a real symmetric T) = (tij), (i, =1, 2,

«.e, k), to diagonal form

[~ ]
7\10 LI O
0 7\2 s oo 0
T . .
QkTkQx = | . .
_0' O LI I 7\&

where Ny, N5, ..., N are the characteristic roots of Tj.

One now neecs to show the reduction for a matrix Tn+1 = (¢t

ij)’
(i, =1, 2, eve, n + 1).

Proceeding as in the two-dimensional case, form an
orthogonal matrix Q ., whose first colummn is x;, the aisoci-
ated characteristic vector of characteristic root'hl, and

whose other columns are designated Xis Koy eeey xn+l’ so that

T T
U Tne1nrr = (93)7 (8 5) (g 5)

ere qg5 = (xj)i, (i, j=1, 2, ..., n+1). Letting t;

denote the row of T witna til’ tiZ’ ceey Lo

i.p41 OBe finds
2



T -
UriTniabne -

Since Tp.-x; =

T
U1 Tyl =

Let (yj)i = (ti, X

m

T
Un+1Tn+1Qn+r =

Mxg, x1)

7i(x2, xl)

Al(xn+l’

P(tlg Xl)
1) (B xp)
(qls) .

_(tn+l, Xl)
1%1

7\1(’{1)1
(o )t Ayl )y
qij .
7l\l(xl)n+l
J.), (i =1, 2,
nt+l

:Z-(xl)i(YZ)i

i=1
n+l

2 6); (vy);

n+l

Using the fact that Q. ;7 is orthogonal and Q

(tl, X2) oo

(Chegs xp) woe (pags xp4q)]-

(tl, X2) o e
(tz, Xz) ces

(tn__}_l’ Xz) ¢ e

eesy, ntl), then

-

n+l '
2 (x3)ilypa1)y
i=1

n+l

n+l
tec ;zi(xn+l)i(yn+l)i

(tl’ Xn+l)

Xn+l)

(tl’ Xn+l)

(t25 %449

(tn+l’ xn+ll :

.

L2

3

T .
n+1Tn+1%+1 is

symmetric, one can verify that the elements of the first row

and column are zero with the exception of the diagonal ele-

ment, which will be 7&. Also the n X n matrix formed by

] BN 2 v T : .
deleting the first row and column of Qn+lTn+lQn+l is symmetric

and can be denoted by Sn'

Therefore,
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'y 0 0 ... O]
0
QT Qoyy =] O s
n+lint+l ntl n
L.O _"

Since the characteristic equation of Q§+1Tn+lQn+l is
17\1 ‘-7\1 \Sn -7\Il = 0

and using Theorem 14, one finds the eigenvalues of Sp are

the remaining eigenvalues of T, which will be dencted by

R N N

Let Qn be an orthogonal matrix which reduces Sn to diag-

cnal form. Form the {n + 1) dimensional matrix

1
0

Mpp=| 0 G
0

waich is aleo orthogonal. It is readily verified that

TT ‘ = diag
Wn+1{Qn+lTn+lQn+l)wh+l diag (hl’ )5’ 75’ "”‘mn+l)'
Since WI{QTTQ)W = (QW)TT(QW), one sees that (Qn+l£n+l) is the
required diagonalizing orthogonal matrix for Tn+l’ Thus the

fcllowing theorem has been proven (1, pp. 50-54).
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lTr
e

heorem 16: If T is a real symmetric matrix, then T

may be transformed into diagonal form by an orthogonal trans-

-

formation, i.e., there is an orthogonal matrix Q such that
ITi
-

O

TQ = diag (M., N, N y eeey A_) where A. is a character-
1 2 3 n 1
istic root of T.
If one changes the matrices Ti to Hermitian matrices
and used the conjugate transpose of Qi instead of the trans-

pose, i.e., Q%TiQi instead of QTT.Q

;74945 and parallels the

procedure used in proving Theorem 16, one proves the follow-

ing theorem. (1, p. 59).

Theorem 17: If H is a Hermitian matrix, there exists a

unitary matrix U such that H = UAUF,

The Companion Matrix
In Theorem 13, it was shown that the characteristic
equation of a given matrix was a polynomial of degree n
where n was the order of the matrix. Now, éuppose that

z) = z0 + a_g0~1 + ,,, + a z + a
;é/() 1 n-1 n

is a polynomial of degree n. Is there an n X n matrix whose
characteristic polynomial is‘%(z)? If so, it is not unique
since if T is such a matrix, P-L1TP is another for any non-
singular matrix P. However, there does not exist one.

iy

Theorem 18: Every polynomial of degree n is the char-

acteristic polynomial of an n X n matrix.
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Proof: Consider the matrix

Lo

1
0]

*

*

0

0
1

0]

°al -az -aB PR -an_l -2
-0

0

0

bel
LI O O
LI O O
o e 0 1 o__o

The characteristic polynomial of T is

det (DI - T) =

e

[él TN 8y a3 ... @y g 2]

-1
0

0

N0 ...0 0
"17\ ...O O

00 ...-1 M|.

By multiplying column one by A and adding to column two,

multiplying column two by N and adding to column three, and

centinuing until column n - 1 has been multiplied by A and

added to column n, one is able to evaluate the det (AT - 7T)

handily.

det (AL - T) =

W,

-1

O ¢ v« O

2 . 3 . -
2-1 3-1i
a +7\ Za"7\ Za' * e %(7‘)
1 {=o % Pl
0 0 e 0
-1 0 voo 0
0 0 0

wnere ag = 1. Expanding by row one,
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0+ 0+ 0+ ...+ (-1)2F(n)(-1)n-1
= (-1;%%4(N) = 2(N.
Letting A= z, det (zI ~ T) = #(z) so that #(z) is the char-

det (NI - T)

]

acteristic polynomial of T.

Dzfinition 36: The companion matrix of a polynomial

%(z) is the matrix of the form of T in Theorem 18.

Bordering Matrices

Difinition 37: The process of building an (n+l) X (nt+l)

,
e

v from an n X n matrix T is called bordering if

~ T u
T = |—
vI o«

where each of u and v is a column vector and < is a complex

matrix

number ( real if T is Hermitian).

~S
Thoorem 19: If T is Hermitian, then T is Hermitian if

ané only if u = v.

Proof: If u= v,

tij = tji’ (i, J

1, 2, ..., n)

since T is Hermitian.

al,j = Sy, U

i

t 1, 2, ..., n)

since Wy = t.4q : = Vs and X = X since o(is real. Thcrefore
J n+l, J J

is Hermitian.

~
L5y}

~JS
If T is Hermitian,

PR

~S ~J
_ ti3=%5, (4,3 =1, 2, .00, n)
NOV:, v - (Unl, nz, e ey tnn) and u (tln, Czn, e o sy tnn)o
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Due to the result of Theorem 19, one sees that

/’\f T u
= s
® ul OC

if T is Hermitian. It is of particular interest to discover
what happens to the eigenvalues and elgenvectors of a matrix
when it is bordered.

Let v be an n component vector, let £ be a complex num=-
ber, and let x = (y, B) be the (n+l) component vector whose
first n components are the n components of y and whose (n+1)

. nt
component is ©. Suppose x is an eigenvector of T, then

-l

so that Ty +A8u =Ny and

(V) (y)y + (Mlaly), + oun + (W) (y), + o= DA

or (v, y} + x8= 768, Suppose T has diagonal form T = PAP-1
wnere P is the polar matrix of T. Let y = Pw and one finds

TPw + Su = NPw

PAw + Bu = NPw.
Multiplying the latter equation by P"l,
Aw + BP=lu = Nw
or
w= AN - A)=tp-1u

which gives the eigenvector if the eigenvalue is known. Also
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(v, Pu) = (N~ )/

(v, P(OI = A)1p~1u) = (D= «),
This is an algebraic egquation from which the eigenvalues of
T can be determined.
Consider the expression P(AI -~ A)™1P~L yhere P is the
polar matrix of T(Xj)i’ (i, 3=1,2, ..., n). The diagonal
natrix (AT - A)-1 is formed by subtracting each eigenvalue of

m

T from A and taking the inverse so that

/(h-7) o 7
o1 - L = 0 /(A=) ... 0
0 0 1/(7\-7\n)J.

-1

Denoting the elements of P~ by (xj);l, (1 =1, 2, ..., n),

P(NT - A)~ip=l = (?km) where

ﬁ X )k(dc 1

= _i=1

gkm A - )m

for k, m=1, 2, ..., n. Substituting into the equation
(v, P(AT = A)=2p=du) = N = «

ong IJinds that

o n g -1
E(v)k (X )k(xk) (u)m

=1 o= A= Ny
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IZ 7 is Hermitian, P is a unitary matrix, v = u, and the

above eguation simplifies to

9 ?(u, xk)\z

= A-d.

k=1 A= My

By plotting the left and right sides of this equation as a

~J
function Of-ﬂ, it 1s easy to see that an eigenvalue of T lies

between each pair of eigenvalues of T. One eigenvalue lies

to the right of all of them and one lies to the left of all

of them. If T has a multiple eigenvalue N repeated p times,

thenlﬁ has the eigenvalue repeated p - 1 times (3, p. 27).
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CHAPTER II
THE ESCALATOR METHOD

The escalator method (2; 1, pp. 265-272) is a method
for determining the eigenvalues and eigenvectors of a matrix

410 of order k + 1, by using the eigenvalues and eigen-

abe
<

. - ¥ 4
veccors of the matrices Tk and T, where T,

X . is the principal

submatrix of order k obtained from Tk+l by deleting the

(k + 1)th row and column. The matrix T, 1s bordered so as
to obtain Tk+l' It is then possible to set up an equation
to determine the eigenvalues of T, ., and to compute by
simple formulas the components of the eigenvectors for Tk+l
and T§+l‘ Application of the method is begun by finding
the eigenvectors of a secon¢ order matrix.

The great value of the method is the existence of a pow-
erful control which makes it possible for the computations to
be verified at each step in terms of their own calculations
and without loss of significance.

The method is based on the use of orthogonality proper-

A

ties for the eigenvectors of the matrix T and its conjugate

T onte
PaS

transpose T .

)
3

Consider the matrix T, = (ty:), (1, 3=1, 2, ..., kiu

s

e s o s — { > —
“he conjugate transpose Ty = \tji). Let 7\ki and 7\ki’ (i =1,

2, ..., k), be the eigenvalues of Ty and T£ respectively.

51
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Farthermore, let .y and

X4 be the eigenvectors correspond-

. . *
ing to'hki and /s, {i=1, 2, ..., k), for T, and Ty.

. T . .
Note: The vector (in) is not necessarily eguivalent

T , T . X .
to x,4. The x4 notation is used simply to denote the ith

s

eigeavector of T = Tg. Now, Xy = ((xki)l’ (xki)z, ceey

- I T , T T
(g i) and g = ((xpegdys (xqdns ey (g )

i3 o d ;:z - »
The eigenvectors of the matrices Tk and Tk are rectified

if the following condition is satisfied.

(i )y (ki) eee (g D) [(rg)y (xppdy -ee Grgdy

-

T 7 T
° = k,

oY
4

T T
L(ka)l (ka)z ceoe (ka)k (xkl)k (sz)k cs e (ka)k—

or
% :
(2"1) (xgi)m(}(kj)m = Ji.j’ (i, j = l’ 2, oo oy k)o
=
Let
T = -+
2y = (5 a2y + (gp)yZoy + e + (1 )y7
22 = Uy loly * lngplaZa + ee + a2y
T _
Zi = Lo By + lgepdilp + e * lagc 2y
o
T k
(-2} - = > (xkj)mzj, (m=1, 2, «.., k),

S|
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wiera the (x, i), are the components of the rectified eigen-

J
voeters of Lk and the Zj are any quantities whatever. After

]

ey
o om s gh L .
wultiplying each Z_ by (xkl)m’ m=1, 2, ..., k), adding,

and using the properties of (2-1), one can immediately verify
thel

;T T Ty T T, T

(1 0323 + ()25 + e + (3 W2y = 2y,

Similarly, using (ij)m as multiplier, (j =2, 3, ..., k),

one obtains

P»“' 3

T ™ T T
(og)y21 * Gep)gZy + -n *+ Up) 2 = 2,

° *

T T T T T _
(i3 )123 + (x5 )2y + eee # G 2y = Zys

woich can be condensed to

(2-3) El(xéa Loy (3=1, 2, ..., k).

Substituting for ZJ from (2-3) into (2-2), one finds that

;z£(kk3 1:E£(LKJ ”“

——

~ % T T
(2-L) g;i ;gi(xk (ij)m 2y

Hence it follows from (2-4) that

~ 8
tE]

<2‘5} p {ijgi(XQj)m = im? (i’ m = l’ 2’ soey k)
J=1

fie

: m
ince when i = m, EZ(X"3'<X£j)

2 (sl = 1, and when i # m,
J-"—.—-

m
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(X%*)*(ng)m = 0 in order for {2-4) to be valid. Thus one
l s S R ot

e

can rectily the elgenvectors. of a matrix by satisfying either

4

equation (2-1) or (2-5).

[x2)

Let T, .
4+l k

by bordering and let Xyt be the eigenvector corresponding to

be the (k + 1l)th order matrix obtained from T

tha eigenvalue‘hk+l. One has, letting p = k + 1,

Ap(k )l ll(xp) + tlz(}cp)2+ -o.‘+ tlp(x.p)p
Ap(x?)z = tzl(xp)l + tzz(xp)2 + .. tzp(xp)p
(2-6) ’

Aaliglp =t )y + Sppli)y * oo+ )y

Similarly for T

N tely T T el B

= ,. T — T - T . T

7\23(}:?)2 tlz(le)l + t22(XP)2 + <o L tpz(xp)p
(2-7) . |

T
If cne multiplies the first k equations of (2-6) by (x4 )9,

(Xkl’2’ ...,(x ) respectively and adds, then

k T
(2-8) %pjalkxki)j(xp)j = 2[2 tgm(xk:\. ](Xp)m

mi Z tjm(xkl)d(xp)m.

I
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T * .
Since Xii is an eigenvector of Tk, (2-8) can be written as

My ZL?>ﬂ%5=ﬁgmghuyl+ﬁgmibmwz+“.

=7 . 7 7
 Nyes Greq D (g )y [tlp(‘{ki)l T U {xys )y

+ Le. * tkp(xii)kj(xp)p

- k7 e L
(2-9) = Mg 2 Gy )50 5 +[j=1t:ip(xki)3](xp)z>‘

J=1

Conseqguently,

]

Letting

(211) PT—-kt(T)

- pi = 2 taptaly

{2-10) can be written as

(2-12) MNpes = D) k‘(xT.)-( )= = P (x.) .
, Vit T ! 4 M pi‘*p’p

I£ one multiplies the first k equations of (2-7; by

(%5 075 (in)z’ ceny (in)k respectively, and adds, then

[Y{ _;J (Xkl);\ (Xp

% ______._] T
i;l ;}_tmj(xkl)J (X‘p)m’

6§

H]

X P
. . = T
{2=13} Apjzl(xp)j(xki )J

Since x,; is an eigenvector of Ty, {2-13) can be written as

7\ Z bﬁ ) kal 3 7\1«:1 Z (Xx{l) (""'p 3 [Z th(}‘kl)j](xp"p

w“"f
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Conscguentl
- ,

k 5

k

>t sxys )
£17p3 Mkd !y
equation (2-15) can be written as

(2-17) )zlm Sleg) g = - Py (o).

Ta view of the orthogonality properties of (2-1),

o Xk [k —5
{2-13) %ZiPpitgzg(xki)j(xp)%l/= P
whare
i<
(2-19) P = %‘cpj(xp)j = =(tpp - 7\p)(xp)p.

Now {(2-18) becomes

X [k
s . B T _
(2-20) > Py jzzl(xki)j(xp)j} = =(ty, = Al

}: o k m
‘2-21) 2 Po.| 2> (xg) -(xki)% = =ty - 7\p)<x§>p-
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;.,
oy
o]
53

k
e multiplies (2-20) by 77’(Akt - ﬂp), one obtains
=1

{2-22) 'jjg(Akt - Ap)ééippi Lé;(xgi)j(xp)%] "7

where

X
D= - I (g = Agdlepg = D))y

Substituting appropriately from (2-12) into (2-22)

k T
-0 = QQ;(Akﬁ = 7\p)Pjplppl(xp)p

?

K T
+ (7\1\:1 - 7\P)t7_;73(7\k'0 - Ap)Pp?.Pp2(xp)p t ...

i-1 k 7
* ﬂl(hkt " %p)tzzi_l(hkt - Ap)PpiPpi(Xp)p“l‘ oo

g1 P Pk pkTpp
0;’!
< i-l k
ST
(2-23 - - N JP_.P . = -D.
(2-23) =1 u--—-lmkt %?)tjgal(hkt 7p1Pps7ps

Equation (2-23) shall be called the escalator equation.

= !

i 7 %b, then (2-23) can be written

{2-24] ;iifppini/(hki - ) = (tpp - AP)

and one can cetermine tae eigenvalues of TP = Tk+l from (2-24)

if the eigenvalues of Tp are distinct from those of T,. The

shall e considered later in the chapter.
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I one multiplies equation (2-12) by (x,.)., (i =1, 2,
kil
3, +.., kJ, one obtains
£ P (x, ) (3,4)
<Xkl)l ZZ(XQI)-(XP)- = o Pl PP k1’1
: ‘=1 J J N
’ M = A
T
< Poo(x ) (xy0)
(n)e S (x2) (k). = - —P2 %0 p Xk21
x2/1 2 (%e2) 5ixp) 5
= Me2 = Ny
. — T
T P (X ) (X“k)l
(X’ ) i(xl ).(X ). = pk "9 p ik
kk lj=l kk‘j* " p’J .Akk _ ?b
Adding the previcus equations,
T
< 3 T PR (g )p (g )y
> gy )y (s )y (x ) = - > PLTPPUKL
i L = RN

where N\

"t ool
PR

# Ag} Considering the orthogonality properties of

{2-1), one finds
. ol
L o T
(x,) PANY N T ‘
J‘p ) i=1 "ki D

Similerly, if (2-12) is multiplied by (in)j’ (i=1, 2, ...,

kj, and the equations are added for j =1, 2, ..., k, the
Tollowlirng is true considering the orthogonality properties

of {(2-1).

T
() k FPoilaglp

(Xp)p ) _;§£'7&i ‘7¥

(2-25) )
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'k ’i Ppi(xki)k

{xp)p -i=l 7\ki - 7§

L) - "T
Xolyl o & Ppilag)y

»(xg) =LA, -

D P
P T
(XE)Z _ k Ppi(in)Z
T 2 7\ . -
x) i=1 ki
b( PP 7\p
(2-26] .

T T
o _ & Pyl

T T Nys -
(Ap)p i=1 "%i %b

if 7\3& o 7\p Thus by finding the eigenvalues 7\p from (2-24)

b3 .
one can determine the eigenvectors of Tk+l and Tk+l’ which

Q

orrespond ta'hp and )?’ accurate within a numerical factor.

To continue the process one must rectify the eigenvectors in
the scuse of (2-1).

Ia order to keep the notatioﬁ standard, it is convenient
to replace p in equations (2-24), (2-25), and (2-26) witi pr

vhere p =k +landr=1, 2, ..., p. This notation allows

cne to distinguish between tne eigenvalues and eigenvectors
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Cousidering (2-1), {2-25), and (2-26), one can immedi-

ately verifly thot

/ 7) z (x D?‘)J(Ap; ) z Ppipgi
\2"2 = ’
g 2
(x?r)p(xpﬁ) 151 Ny - 7\pzr')

r

(Xér) (xpy)

(r=1,2, ..., p). Adding P_ %o both sides of

pr Jp xprdp
(2-27), onc sees that
n
S (=) Az, ). pT,
3:1 j J pl" J - l + i Pplel

'_f'j:l
LL

= 2
e Gy =1 Ny - M)

(r =1, 2, «.., P}. Considering the orthogonality propaerties
of {2-1), the rectification conditions are satisfied for
3z}

1 L

Ppifpi )
lzl (7\}’1 7\pr)2

(x; q.)p(kpr)p

Let

Pl

;(7\p3.) = -ty T 7\pr + 2T 7\pr

(r =1, 2, ..., D), then

&

- . T
pr -
- i
-e..;»f,.—_ -
X -~
( PT)P( P?)P
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- o . T
Without loss of generality, one can let éxpr)p = f(xpr)p,
\ . . . s 2 . ‘.
cacosing the sign so thas l/(xpr)p = ff'i7yr) is positive.
Theralore,
= 7 1
(pply = IAET ()
14 ~
{(2-28)

= (1/%)‘)

’0}40-3
H
e

1

(sepp )y = AT (D)

(LA=ET ()

+3
i

The valuable control quantities can be determined using

(2-1} and (2-11) for the t; and (2-1) and (2-16) for the t

P
gé{hpi = £§itii = Tp (Tp)

Jee T 3
gzippi(xki)l = tpy

pi

T -
;g:Ppi(xkl)Z tp2
(2-29)
. ] 7 :
o= pi't¥xilk = Tpk
X
T
P (X1 ') =3
fz P17kl 1 ip
1
>~ T
Ppilagsla = top



62

M
0
3
B
)
2N
wv
i
ct
L)
e

. -

kT
Zp Kes e T Yo

It is necessary here to consider what happens when one

or more eigenvalues of T, are not distinct from the eigen-

P
vaiues of Tk'

If Apr = A for some i and some r, (1 =1, 2, ..., k;

r=11, 2, ..., p), say 1 = a and r = b, then.?\pb = %ka’
Since x

(x

xa is the eigenvector assoclated with;\ka, the vector

0} will be an eigenvector of T_ associated with Apb if

ka? P

T %
Ppa = 0. Similarly, (xia, 0) will be an eigenvector of Tp
O N T _
associated with )?b it Ppa = 0.

- 3 . T T
Iz 7Eb “‘%ka’ then each of Ppa(pr)p and Ppa(pr)p
P

by (2-12) and (2-17). In this case, Ppa = 0 or (pr)p = 0 or
e _ T _ T
both; and Ppa 0 or (pr)p 0 or both. If Ppa 0, it will
be peraissible for xy = (xyu, 0). If Pyy =0, it will be

peraissible for xgy = (x5, O).
T
If either qu or Poé is zero, it is convenient to elimi-
[>3 M -
nate them from the escalator equation. In order to remove

Pma onie should consider (2-20) in the following form:

&
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(2-30) 1% Poi 1’:2 (xq{l) -(xp)J

. =a+lppl[%<%)ju )} = =l = Ny )y ),

Using {2-23) and elininating the Ppa term,
g=1 i-1 k 7
(2-31) ( ) ( JP_.P
= Mee = o t//jl Mt = T pitpl

a i-1 k
T _
"2 L e - Mo ) T Oue = Pog )P BT, = o

=1

|
% |

One can see that Ppa has been eliminated from the escalator
equation. In a similar manner, Pga can be eliminated from’
(2-21) and (2-31) will result. Equation (2-31) will'also be
called the escalator equation,

Assuming that the remaining eigenvalues of T are dis-

tinct from the eigenvalues of :p’ the escalator equation may

be written

T
+ n__zlppippi/mki - 7\pi) = (tpp - 7\pp).

i=a+
Eas]

.t OT Pgi is zero for some other i, then either

-

bl
-
o
e
o
b
@
<
©
iF
rd

O
Y
&

0 both must be eliminated from the éscalator equation in

¢ L
(e [Srovaic] sﬁ&nner.
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The cigenvectors corresponding to the eigenvalues of

aquation (2-32) are determined in a similar manner to (2-25)

L

ernd {2-26) and they are, accurate within & numerical factor,

T
(2-33) (xgw)i _ t Poslagg)s
o (Akl Nor)

kPl
i=1 (A, - 7¥r)

(3=1,2, «ee, X5 7 =1, 2, cuu, b-1, D1, ..., p).

(2-3%)

Considering (2-1), {2-33), and (2-34) one can verify

E%(XPP 3*pr) s Z; Fpi pl :

- 2
(x pr)p( prlp 1= (Mg = Do)

{xzm) (o )p

4dding to both sides of (2-35) one sees that

2t

T
(Zopdp(Xpplp

L TTm
LY

(X‘.").('ﬂ’ )' e - To

oy PrIoURT -1+ ﬁi Pplei
.:= - - ?

xpr)p(xpr 5 1 (Myg = A

{(r =1, 2, ves, b1, b+, ..., p). Considering the orthog-
onality properties of (2-1), the rectification conditions are

satisiicd for
T

1 X PpiPpi
e =1 + .
) ggi (Aki - )br)z

Gaprp (i)
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LU
Yy v“
£op) = ~tyy + Ny + ;Si 5
. ki \pr
then
£1 (M) = - -
(xpr)p(xpr)p

{r=1,2, ..., b-1, b+l, ..., pl. Without loss of general-

+, T
-

ity, ore can let (x ) = (xér)p where the sign is chosen so

br'p
that l/(Apm g = if'(%pr) is positive. Therefore,

(xpn)y = l/Vf'(hpr)
(1/4f'(hpr))

(2-36)

I

T
(xpr)p
if f'(A@”) > 0, and

(x50 )5 l/v-f'(hpr)
Gop)p = QAT (D)

if £y Ab 1< 0, (r= 1, 2, .., -1, b+1, cees D).

i

One now rneeds to deteraine ng if Ppa = 0 or pr if

'"u ;~3

= 0. Using the last equation of (2-7), one can determine

5".;

(Kpb)p in terms of (pr)j and using the last equation of (2-6)

I an determine i.e.
one can deter:n (Xpb)p’ i.e.,

h

J
and
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k
Loy gk - 5 - . . - .
(2-38) (e )y L=ltpl(:3’bq/(tpp Mop)
Ia ordor to determine (x;b)j or (pr)j’ (i=1,2, ..., k),

one nmust satisfy the rectilfication conditions of (2-1) or

(2-5). Considering (2-5),

(2-39) pACMNE RN

(i, m=1, 2, ..., p), and one seces immediately that

T .
> Gopy) o)y = 1

Ui

L
ke

)
s
(-.‘L

T
case, every element is known except (pr)j or (pr)j,

¢ that the element can be determined for j=1, 2, ..., k.

]

Using ({2-37) or (2-38) appropriately, (x:gb)p or (pr)p can be

computed. Thus the eigenvalues and eigenvectors of Tp and Tp

can be determined if Ppi = 0 for some i, or Pgi = 0 for some

i, d.e., 1f Ny ==%%r. If both Py pi ;
it is sufficient to say that Xop = (xka, 0) and xgb = (xia, 0)

m
and P_, = O for some i,

with the remaining eigenvectors being determined from (2-33),
(Z"Bh)z an (2-36)0
Ie A,

" =.%br for more than one i and r, then P

pis if it

T P ..
ero, or P if it is zero, must be eliminated from the

pi’
escalator equation and all other pertinent equations used in

S o
whe WD &

o

detersining the cigenvectors. The same method usced in elimi-
& &

nating P_. and i

" B;i for one i is applicable. Hence it is
b i

eft to the reader. The control quantities of (2-29) are

e T e TS Y
geidis appiicable.
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L matyix Th wherse
i -1 0 O
0O l-i i ©
Th =
0 0 2 0
1 -2i O 1+i]
i 0 0 1|
« |=1 1+ti 0 2i
Tl}-—
0O =i 2 O
0 0 0 1-i].
Cousidering the 2 X 2 matrix T, formed by deleting the last

two rows and columns of Th’ one finds that

i -1

0 1l-1ij.

3

ne cherccteristic equation of T, is det (T, - NI) and

i-A -1

i
| o

det (Tp = NI) -1 -1-N)

O 1l-i-

[ 9]
f)
oF
v
+

o
(%3

51 =1 and Ny, = 1 - i are the eigenvalues of T,.
e (1) = 1= Ty + Ny - 2
so that the first equation of (2-29) is satisfied.

7o find the eigenvectors associated with'hzl and:A22 one

cutisly the equations xzle 7blx21uud A2x22 7%2“22‘
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=

-
i -1 (X21)1 iile)il
O 1-i| |{x57), i(x21)4

1{3{21)1 - (3{21)2 = i(le)l

(l - i)(}:gl)g = i(:{2l)2

(XZI)Z = 0
(x21)1 = (x1);.
from the second equation,

0 1-i (x22)2 (1 - i)(xzz)

{1 - i)(x22)2 = (1 - i)(x22)2
(xp5)5 = (x50,
(Xzz)l = (1/(21 - l))(xzz)z

% . .
Since the eigenvalues of T2 are the complex conjugates of

those of T,, i.e.,.7bl = -i and 7&2 = 1 + i, one sees that

{'“‘i 0 (xgl)l‘] ‘i(X2l)1

, =

L-l 1+i [}Xgl)’j "l(le)2
-i(x5); = -ilay )y

T
2 212




Now to rectily Xp1s oo, xgl, and xgz, one must satisfy (2-1)

r‘““““—‘*; O

(Xél)l = (XZl)l

(x31)p = ((1 - 20)/5)(:5,),
3 T
%o T A 2X22
10| (o) |+ 1) (kD))
R T B . T
-1 1+ (x22)2 (1 + 1)(x22)2
~i{x5,) = (1 + 1)(xL.)
. 22°1 2272

~(xgp)y + (L 1)xfy), = (1 + 1)(xL,),

(xz2)y = ©

‘Xzz)z (Xzz)z'

-_.__.

1)1 &(lﬁ¢13/5}(521) (25703 =((1+21)/5)(x,,),

——

T
Xn
’U

0 (x35) 0 (x50),

(g1 )1 (g )y + ((L + 22)/5) (k)1 (0) = 1

- 20)/5)6 ), (), + (1L + 20)/5) (D)

171'%22

(x35) 205005 = 1

)

2::
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(2511 {xp0)p = ¢

whacre ¢ is arbitrary, say 1 and

é )o(x50)5 =
Let {le}l = 1, then (xél)l =1, (ng)g = 1 and (x£2)2 = 1

Henee Xpy = (1, 0}, X, = (-(1 + 21)/5, 1), xgz = (0, 1), and

xZy = {1, {1 - 21}/5) arc the rectified eigenvalues of T, and

2

From {2-11) and (2-16},
(Jo{x; + (0)(0) =

SRR CS RS PACTARE

i

Py = tyqlxagly T tg5(xp0)0 (0)(-(1+21)/5) + (0)(1) =

Pgl - t13<le31 * t23<x§1>2 = (03{(1) + (1)((1+21)/5)
= (-2 + 1)/5

R T ' )

Pip = Biglngyly + tp3lapy), = (0)(0) + (1)(1) =

For coatrol, using the equations of (2-29),

i

¢ _w_.L + [ rT =1 = ’
PBliazl)l T PBZ{kzz)l tBl O (O)(l) + (0)(0)

i

0= (0){1+21i)/5 + (C)(1)

O= ({~2+1)/9M1) + (1)(-1-21)/5

1

N

P3yligyly + Papliggly = By = 1= ({-2+1)/5(0) + (1)(1).

Tae escalator equation, determined from (2-31), is

0= (g1 = N31)(Mgp = Myp)legs = 7g5)
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0= -0 -2 - Aoz - D)

so taat tae cizenvaliues of T} are 31 = i, ABZ =1 - 1, and
AﬁB = 2. Using the first equation of (2-29) as a check,
,”"’ =1 4+ 1 -~ 1 + = = + +7\,
(Gl =3=isi-ar2=3=Ny Nyl

Remeibering that (xka, 0) is an eigenvector of T. associated

L

4

P
wivh Apb if Ppa = 0, one can verify that Xgp = (x515 O) and
Xyn = (xzz, 0), i.c.,
x5, = (1, 0, 0}
Xgy = (-{1 +21)/5, 1, 0),

From {2-33) and (2-34) with P33 = 0 and Py, = O,
;::'_3:})}1 (("2 + i)/5)(l) (i)("l/5)(l -+ 21)

=), ;- 2 - 1-1-2
(KBJ)J (i )
= . _4 331
3
10
(2557, ((-2 +1)/5)(0)  1{1) i 1+1
e ). - 2 T lei-2 1+i1i 0 2
{ jB)J (i ) i i
5373 \
ixga}
PV = O.

. T
sing ecuetion (2~36), one sces that (XBB)B and (x33)3 =1

Hence 3t.., = {(={1+31)/10, (1+i)/2, 1) and x§3 = (0, 0, 1).
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Jrom equation (2-39),

:;’ wr Y T = < T ' {' 4 T =
\“Blfl{le)l + (A32)1(532)1 - kx33)l€x33)1 1

e ) o) ). 4 T .
U1 )plisy ) * (mypalaaa)y + () (a30) = 0

T

(33)y + (=1 + 20)/5)(xD ), = 1

ot -
{432)1 = Q

e T T
so that <X32)l = 0 and {xBl)l = 1. Also,

— ——

€K31}1(X§1)2 + (sz)l(x§2)2 + (XBB)I(X§3)2 = Q0

——

Wy T i T T _
{n31/2(X31)2 + (k32)2(X32)2 + (x33)2(x33)2 = 1

(xgl)z + (‘(l + 21)/5)(X§2)2 = 0

T
(X32)2 =1

» =1 and (xgl)g = (1 - 21)/5. Using (2-37),

(531), = - [(0)(xdy )y + <-i;(x’§l>2]/(z + 1)
= [1{1 - 21)/ﬂ//(2 +1i) =1/5
(505 = =[(0)(x,), + <-i)<x§2)2}/<2 -1 - 1)

=i/{1 - i) = {-1 + 1)/2.

17 - - o
aGiCl,

ACR I

= {1, (1 - 2i)/5, 1/5)

| ¥
L&}

i

x35 = (0, 1, {-1 + i)/2)

X:B = (O, O, l}

S k]
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= (1, 0, O)

{(-{1 + 2i}/5, 1, O)

i

i

w3q = (=(1 +31)/10, (1 + i)/2, 1).

Onc cen verify the properties of (2-1) with little difficulty

means of checking.
Eguations (2-11) and (2-16) yield

Py = 81 (kgy)y T Eplxgy )y Ht Slxg )y

= {1){1) + (-21)(0) + {0)(C)
=1

Pra T buplxgp)y T e b0, T k),

= {1){-(1 + 21)/5) + (-2i)(1) + (0)(0)
= {1 + 12i)/5
2p3 = thl(x33)l + taz(xss)z + t43("33)3
= (1)(-(1 + 31)/10) + (-2i)(1 + 1)/2) + (0)(1)
= (9 - 131)/10

. T T ‘T
p1 = Ty lEgnly + gy x5y ) By, (x5, )5

= (0){1) + (O)(L + 21)/5 + (0)(1/5)
=0

2 U (xX )., + 5. (

IS VAL T 1S 2b 3272 7 V34 )

Xaz 3

i . - - T T
by = Py lEgz)y * vglagsly + by, (agg)s



Th

Using couation (2-29) as a check, one can verify that

: -g"r'x T T _ _
Pi}iik‘iBl)l * PZ‘,Z(KBZ)]_ + PZZ‘B (3‘-33)1 = 1 = tlpl

P "T " T k= =
Pralisyly * PRlealy T Bislagsly = 0 =ty

£
i% F i(XBi)J = O
= T -
SLice uj}v O and Pz{‘i O fOI‘ J = l, 2’ 30

From {2-31), the cscalator equation of T, is

0 = (7\31 - 7\41)(7\32 - 7\2,12)(7\33 - 7\43)\‘1“,44 - 7\44)
(i - ﬂbl)(l -1 =N M2 - 7L3)(1 +i- AN )

L2 L
so that the cigenvalues ?f Th are )%1 = i, 722 =1 -1,
= .“i = -)—'.
7}‘,_}3 2,:3.*1(7\4&4 1 i
Tr(T4)=l++i=i+l-i+2+l+i
=}_i_-rl

13
- EA . . . s
Since {Kka’ 0) is an eigenvector of Tp assocliated with

S m
A, if P* = 0, it is immediately obvious that x

T _ T
b & L1 (x 0),

31°

m
- —

;. T T .

x = (1, (- 21)/5, 1/5, ©0)
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xzz = {0, 1, (-1 + i}/2, 0
KEB = {0, 0, 1, G).
ith P?g =0, {1 =1, 2, 3}, ecuation (2-33) gives (x
it

€x£1}2 = 0, and (KAA)B = 0., Fron equation - (2-34),

)1 = 0

Fom 1

txy, )y (LN1) (-(2+124)/5)(0)  ((9-131)/10)(0)
—i = - - - =1
(x40 1-1-1 1-i-1-1 2-1-1

r - “

(=), 0, (1100+21)/5  (-(1+121)/5)(1)  ((9-131)/10)(0)
GEO L e IR 2-1-1i

LT wd L ,

=-{2 -1)/2
G5 HI/S) (c2t)s)(caet)) e ((9-131)/10)(1)

1 -2i 1-i

= (-1 + 31)/4

cnd using {2-36), (x44)4 = 1 and (Xia)é = 1. Hence,

xz, = (1, ~{2+1)/2, -(1 + 31)/1, 1)
“
x,, = {0, 0, 0, 1).

b=t

L oraer o determine the remaining eigenvectors of Th one

Lust sovlely equation (2-39), i.e.,

L.
T e
izl(ﬂli'i)j(kzi‘i )m - ij’

J,m=1, 2, 3). Substituting appropriately into (2-39),
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(xlpl)l(l) = ]
L 1')1(1 + 2-1»1/5 i \54211(1 =
- 3, {1/5) 4 (%, 50, (-1 - i)/2 + (x,,),{1) = 0
{xhl)l = 1
(x,,); = =(1 + 21)/5
(x,3)7 = =(1 + 31)/10.
Also
(XQI} (1 + 2i)/5 + (342)2(1) =1

(x,,),(1/5) + () ), (-1-= 1)/2 + (%,5),(1) = 0

(x42)2 = 0
(x42)2 = 1
(K43)2 =(1+1i)/2 .
and

(x&lﬁs(l} = 0
(x,1)5(2 + 21)/5 + (x,5)5(1) =0
{xk1}3(l/53 T lxy ) (-1 - 1)/2 4 (x,,),(1) =1

{Xkl}B = 0

<x$2)3 =0

(x43)3 = 1,
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dow o determine the fourth component using (2-38),
yp0, = =TINL) + (<20)(0) + (0)(0)] /(2+i-i) = -1
- h i
ppiy = = (1= (14223/5) + (~20)(3) + (0)(0)] /(1+i-1+1)
L27i

by = =[{1)(=(2+31)/10) + (-21)(1+1)/2 + (0)(1]] /(1+i-2)

= {22 - 4i)/z0.

4
I

(1, G, 0, -1)
X0 = ({1 +21)/5, 1, 0, (12 - 1)/10)
x4 = (-1 +31)/10, (L + i)/2, 1, {22 - 4i)/20)

x,, = {0, 0, 0, 1)

Xiz = {1, (L - 21)/5, 1/5, 0)
I L |
%, =140, 1, (-1 +1)/2, 0)

Xy~ = {0, 0, 1, 0)

wy = (1, =2 + 1)/2, {1 + 31)/4, 2).

Hence the elgenvalues and eigenvectors of T& have been found.

£lthough the escalator method is voluminous when done by

aand, 1t can be adapted to a computer without a great deal of



s a Ty e
e e

on would

e

5y 3 g Iw
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be simplified. One will note that the

atly simplified if the matrix is real and

syamebric, since each element with a T would be equivalent to
the element without the T (1, p. 268).

The form of the escalator equation for a real matrix

- - N " "
SLL0W3 ¢ene TO us

;e Newbon's approximation method for finding

a¢ roots of a polynomial. It is, if employed, the only
approximation in the escalator method.
Txcmple 2: Find the eigenvalues and eigenvectors of
T, where
2 -
TL -7 3
TB =11 2 5
-1 2 -1]
and
T, 1 -1
Ty = -7 2 2
3 5 -1

Considering the 2 X 2 matrix T, formed by deleting the last

one finds that

-71

row and column of T3,

4

P
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2 m

ol T_,. Using (2-29) as a check,

lon ”h = A = " -+ 712 = .
- (*4) © 41 2 6

T,.x = A

221 T Mar*ea
fé =7 (le)il i 113 + V5 1) {x 211
Ll 2] (x50, i 3 + B i) (x ),
blxy )y = Tlxyy ), = (3 + W idxy )y
(ry)y + 200,00, = (3 + B 4)ixy),

(x50 34 2 ngi)\x21 2

Toxoa = 7&2‘
[b=7| fogpda] 5= B30 (x)4
!} 2] [(xgp) b3 - 1/7‘57’“(}‘22)2

i

J e - 2 o - - e ° %
b\ngg)l 7\02232 {3 VZ’1;<x22)l

% oL fen = { - VA N S
50y + 2l ), = (3 -6 1)x,,),

s = {7 - s ,

‘“22)1 (1 - 6 1)(h22)2.

a . *
Sinca TQ end T, are cowmplex conjugates, the eigenvalues cof T2

~

cre the complex conjuzatos of those of T2’ ise.,

>/
™
o
]
e
4
o~
=



:-«.re

2, e,

CU MJU&&V‘A—V\;

F00 = 1

I sy - 5

j L _Li [“21]1 B 3 - A5 )(le);]
i... 1 T 3w VB 1l

] 7 ki (Kzliz} (3 Vgﬁ*}(kzijz

;. ;ﬂ;:j y ;”-’T

syl v bgylp = B - BTGy

“7(:;:::1)1 + 2\4‘-21}2 = ‘(3 - v\/‘ﬂl){XZI)z

gy = (=1 - BT1)/7) ),

22°1 22°1
-7 2 Lxgz)z (3 + B'1) ),
Bag,)y + (G, = (34 \/Eimx’g‘z)l

T .
010 Foos ¥oys and %55y ODE finds

(xél}2€x21)z = {6 +6'1)/12

i’xgz)z(xzz}z = {6 - &1)/12.
syl = 64 V8'1}/12 end (2,50, = (6 - v6'i)/12,
aat {lgl)g = 1 and (xgz)z = 1 so that the remaining

ol The elgenvectors can be d@termined, i.e.,
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I

(i, = (1 = A8 1)(6 - 6 1)/12 = {~77871)/12

-1 - AB'i)/7

i

{

= {1 +51)/7.

Xpy = (76 1/12, (6 + B i)/12)

Xpp = (-7v6"1/12, (6 - V&'1i}/12)
xgl = (-(12 - VB 1i}/7, 1)
in, = (=(1 + ¥8'1)/7, 1),

o oam T e T e 1 we Lo -~ *
Ll LTaese are oh Sl T,. .

2 V4

(0]

rectified eigenvectors of T
From (2-11) and (2~.6),

e o= {=L{7\E 1/12) + (2){6 +E'1i)/12 = (12 - 5V6'1i)/12

vy
¥

Po= {=2¥{=7B7i/12) + (2)(6 - VB'i)/12 = {12 + 5V6'i)/12

i
i

Piy o= 31+ 81)/7) + (53{1) = (32 - 3¥671)/7

P
Y
3
if

.
LV
g

H
Py
{2

]
4
H-
S
S~
\}
N

+
Py
uwh
LN
P
.
Rt

f

= (32 + 3/&71)/7.
The escalator equation, determined from (2-24), is
T ST
P,.P P.,P
31731 . 32 32 = (% __7\3}
Now = N Doy - %3 33
21 3 2

f2 - 3y8'4] 32 - 364 Fz -

5w@’i][?2 + 398 3
2 L 7 . 12 7. M,
3 +3V3 4 -] 3 -1 -
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T T = 05+ 5NE - 9py - 15
% -5 S+ 27y +8=0

)

=
~

- h%(hB - 2){A3 +1) =0

L€
O
Ci
&
3
<
c‘-

one eigenvalues of T. ar =
genvalues of Ty are hBl = 4, 752 = 2, and

AB‘ = -1, The Tr (T3) =L +2-1=5= %Bl + N

5
{stan )s 32 - Vﬁﬁiug *10 i] B2 + BVE’i]% -\B' 1
R = i 7 L ) 12 ) 2.
(23705 -1 + 47’1 0 1 -3i1 0 7
ey 3
N ff%sfﬁﬂ[zﬂ%’ﬂ 12 + 5V8 [ 1 -8 i
AL AL H S 2 | ]_[ 1z ﬂ;‘ #gﬂ o
Eﬁ§1§3£ -1 +6 1 -1 - V83
- m 5 A 4 e
o) g Lz = Sye i 12 + 54574
L‘._.Jg.:__‘ﬂ‘ - 12 12
j;l,X[}: } - l ) i - 7 = lo |
: 12 - TV 1 -1 -Vo i

| b oh7 = 98B i . 147 + 98VB' 4
31 L2(-1 + V& 1)2%  42(-1 - v&'1)2

=1+ (1/62) {481 + 78403 1 + 441 - 78487 1}/49

=1 + 21/49
= 70/49

= 10/7.
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delng countion (2-2€), oue Fiads that (XBI) = v7/10 and
gﬂil}j = J7/16. Hence
= (-{29/747/10, {(3/7){7/10,7710)
;1 = (0, ~7/10, 7/10].
Similar .2.:[ Jor 7\,, , &and 7\
32 33
{504
(xnw) T
3273
(3532)2 -1
{wr
)3
. ’—(,‘,T \J
L322
e T 7
ﬁk32}§
(32, )
22’z 3
ot 7
)y
) 3 6
1'0%2) =-5
‘X32)3 =y7/6
oo Laal
XSZ = {‘51"7/‘\/5, 'VWEp \17/6}
52 = (=2N7/7N5, -3\N7/7VE, -7/6)

s g
[e



%gq = (~2422/15, -V22/15, J22/15)

AN = ((5/22)\22/15, -(3/22)V22/15,422/13).

[ayd

fhus the eizemvalues and cigenveetors of TB have been deter-

mined. 18 @ check, one can verify that éhese eigenvalues and
ciguaveciors satisfy the control equations.

Zermie 3: Find the eigenvalues and eigonvectors of the

vy o 3

B e ooy o ] [ T iy e

WAESILN L ;, Woere
5

-3
O =3

0 -

.

5
0

5l 0 10 o
0 2]
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U

L e e
N W T
[ESS iy

w

ince Ti;, is symmetric, the escalator method is

m

sizplidied for T = T) so that any term with a T will be the
L L

!

o L A P F g
erm without the

T.
L 7
T, =
ya 7 2
(

cr

- ey e ‘“ e o
Sl I8 ULe

L-N 7
cet (T, = NI} = 7J=(4-7\)(-2-7\)—49=
7 -2=
S0 thav 7\21 = 1 + 58 and 7\22 = 1 -{58 are the eigenvalues of
T,. From (2-29) cne can immediately verify that
Tr(T,) = 2= N,y = 7\22 = 2.
Toigy = Nyytny

!—l}' 7-1 (-’7‘:21)1~r ﬂ-z + 1[_‘7) (le)

I? -2 (x21)2 [(l + \/’57?)(:';:21)2

. U U L U fF
Lixpgdy + Tlxgy ), = (14 @)(le)l

T{xgy )y = 20, = (1 + 1[5?“3{21)2

(3{2 ) == i(B + -\)’DT:}/7 (-{r)l 2 (x2l)l
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o T
7 R R S A ; £ &
PR UTIUNIRN SN S PR, P = KA i &L U i =
“ S r i W - E‘Aagl}? i ..2.{-}2 uﬂ\i [} -~ (X22)2, one
5
B . S - SO T SO oo
rwnds oy wootifying vhe cigeavectors of T, and Tz that
e
r * = \2 Y 2
s o L EES it ) - - 1 i -
E_'i,) oS )//fi T 4 (4{21/2 = 1

- f 3 - =
=laigy dplagaly + {xp1)plxg,), = 0

~~

! op e - 4 =
~{xgp)plsgg )y + (ppinlxyy), = 0

'.,_,l

[(3 - BB/7)% + 1] (x,,)2 =

i

T

(357 )4 Z(58) . (x57 )1

(ogly 5(58] = (x55)5

!'?,” ‘l = =
From {2-16),

. >
&

]

]
O

]

e

32

The escalator couation of T3 is
=2 n2
e ”‘“—7\30 = t33 = /%
By ] \’h 3 -
P01 =13 ez -/
9{58 + 3+F3) 1915 3

;De
s
+
@(
(?E,‘z‘m‘T
&
i
ol
|
-
(&
!

Q r -~ - ! poe o~ 3 2
e Thae 1a232 = 1360 = (30 = M)A - 20, - 57)
o )0} b 4



7\'))
¥

’\/\'"
2

-

T e e -

b ba e N 7\r‘:~'
354

- 40y

;:‘rik
Mz

R T A IR oo
eigenvelues of Y.

{2-25)

i

b B4

s \-J.-.a-—u

>

87

5 - 86Ny + 472 =
- 41345{?5 - L +~.34) = O.

nd A

33

-~ 13k are the

eigenvectors Ior TB can be determined.

Fgpdy
{KBZ;B
__ .7 |58+ 358 , 58 = 3.8
2(587L -3 oo -3 =58
+ V38 278-3@\(98-?58
Ggyig Y ’8f§ 2(58) 2{5¢)
(g7 g 1 +458 - 4
w56 2N58 58 F 2458
B 8N J £(55)
1 - 458 - L
B 10
o 2 BB - R S 258 + 358
| 13+ V58) 2 s (3 - ¥58)9 fof
Ry 7\ e G i 8 2O - 2(58
PR R A VA - T v '
>t (2 + 458 - )% (1 - 58 - 4)?
= 1 + 85/49 = 13L/L9
éx;1}3 = 1/NI3L/L9 = TN134/13k {x31)3
ta, ). = =(6/TTTIBE/13k) = - 3Vi3L/67
Db o




R T L YO PR,
b e N W e 5

15
P
Nonn®

)

+

&8

PN

;;;;2 = « 7\13L/134,

(34135787, ~WNI3L/134, WI " 30) = ¥

—_— ——
Dol e e 3
(3 + JEEn 28 = 058 3 + (B8 [58 — 3758
_ 22 T VOO 71 Z(58)
:L T 58 hd Zf - 0134’

)
PN
On
H
jt
Ll
Jo
A
e
-3

oy
.{
8]
&
o ]
G
)
b
Gl
5l
,\Jz
o>
!
N’
]

, 2 [58 - 3y 2 B
3+ BORPEZHE " (5 4 J552[EE L BT 2
o f Py : — + 5‘
(1 + 58 - 4 - JI35)% (1 - 38 - 4 - {13,)2
998571 ~ 78792V13%

268(85 - 6NI3L /2101,

L
li

1/4268(85 - 613%,)/2401

= L9/{2{67(65 - 6v1i34) )
N67(85 + 6134 )/134
(67 + 34134 )/13L,

i

i



&9

= ~{6 + V13L}/7.

2158 - 3488 < N— g + 2
Gant, (3% TEE)R L (3 - V531328258
#5375 -3 + Y58 + V13% -3 - V58 + {134

= {865 + 64135 )/kL9.

[ca o <128
(3 - V58122852328

_3 + 58 + J13L)% (-3 + 58 + 134)?

(x33)5 = 1//268{85 + 64154 )/2401

45/ 12-67(65 + 6°13L) )

il

= N67(65 - 6VI3L)/134
= {67 - 3V134}/134.
(Xqadq = =7VI3L/134

(x..), = {67 + 3V13L) /134,
3372
ogess 52-:_621

1

\ T

o = ST P S R s + % X = 0 P
P = oy lgyly ¥ v lngy )y T g{xgy 0y 41
. T

2 = G, Hanir T Xanls F T, a{Xan)y =0 =P
indd ui,ﬁ' 3271 tx'.;f..(J 322 1,3( )2)) L2
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Feem (2-31), the escalator equation of T, is

0= {4 - A-ils + V134 -7\@27(5 - @——:— - 7\43 -

o~ e

[N o) .,
SC L8 The T "’Gl;\f&

,._l
o
[
o]
L)
£
L]
(¢
>/
(=
I
I~
>/
i
=~
4
lé)

=0, 1 =1, 2, 3, it is sufficient for

: = {3~ 0} =
.};.lf‘l = (“\')’l? o) <41

o
I
=~
3

o that x X X
YR 10 Ruar Fy3e
Bopr Kigs Eios X 3 end xf are rectified. In order to do this

1t ls sullicilert to satiss y {2-39). One can sece without much

difficuivy that it will be suificient for x,, = {0, 0, 0, 1)
~
[2y]
and x7, = (0, 0, 0, 1) in order that {2-39) be satisfied.
L

T
vy = -3NIBE/37, -7AE3E/134, 7NISL/13L, G) = %,

o = (TNI3L/154, (67 - 3NI3E)/134, (67 + 3vI3L)/134, O) = xl,
oy = STZBa/13L, (67 + 34I3L)/134, (67 - 3VI3L/134, 0) = X7

x,, = 0, 0, C, 1} = x
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TED METHOD OF ORTHOGONALIZATION
& SUCCESSIVE ITLRATIONS

thod of orthogonalization of successive iterations

(1, wp. R77-266) is aimed toward finding a linezr combination
(o o secouence of dteratvicons of an erbitrary real vector for
& real diazomalizeble matrix T of order n) which is equal to
nero,.  Lin this methed, the orthcogonalization process sheall

Starting with a real non~zero vector Xy construct its

L~ - TR e M P T, i 53 KRS T TV 2 - ] 1
Lterublen Tx, and orthegonalize it with X - This is done by

t
0]
]

ise

319%; such that (x, x5) = 0.

PO SO S o= - - PR 34 Y LN
COUusUIUCULILE & Veluor X, = Lxl i ~
ke

— . M. 3 -+ . o _ s
ks Txpd ¥ g, gy
M i, '-qr =, 3
= laegy D) F gyl 1)
2o thad
fx» [ I Y 7 %
s 'LA'-T; J \;}Cl, Xj J
o . E .. e T e e .
Q—Ll - .k ! +
Ky oy K Xy Xl'
ir {xlg xia ) = 1, vaen tae above process is equi-
e

Y- g oy

e T e ap e . PPN SR g .
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e o 2 -
STy Zo. = -1 ; XK =1+1; k< n,

aannde .

Bys = o; ;o &£ =1+2,41+3, ..., .

»et X be the n X n matrix formed by using x. as its col-
v

e e e 7 e LN ‘K - e S, b - * ) cad » 3
Langy 1= 1, 2, ..., nj. Let G be the a X o rmatrix with gij,
o = 1,2, wol, 1), as its elements defined by {3-5). Now

@ » - % (3 b . e 2 4 .
ccnsidering (3-4), one can write the matrix equation

X+ XG = 0.

CI T L A . hY g .
Algo, TX = - XG. Since ¥ is nonsingular,
o PR Y [ T, bt et "l

L o=0) L = « XGX .

—?_: o & o o
S1ll iz 13 Ut “1l,n=1 "ln—[
e R g oy .8
22 <23 "7 *z2 . n-1 °on
{(2-7] G=10 -1 g ....z g,
H 33 3,2~1 T3n
] C -1 o .
. te o‘{}'g.’l"'l g',“:‘
£ . & - - !
o - - - 9
L3 [ & - L]
O C O o v e "'l ::,n,
{om add s |
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811 %12 813
\ 811 812 T 3;
ST - alﬁillf, - H] - !" 1 522 é;‘:;, s ees 5 = G
REE Lo _ 1 |
] - Lo
L g3y

-

<2 one cedines @i {A) as the characteristic polynomial of the

0y

SEORS 34 P B SR e o o Y o om ~ oy 3 T
v order matrix of (3-&), thea one can verify that

~ N
A =N

r v .
8y (N g MM+ g 00 + %12] *
o 4 o s
Sai, N+ 8110 + oy,

< },‘. grne oy P .

end i guseral, by expancling the characteristic determinant

BN

On e mpurix of corder 1 by the last row, cue can determine the

-y n ety e e L

-
R T e E " T s
SECATSLC ERA VRISV SO FY S

PN = N+ gy 0 0 - ey 48

[

=Y,

17i-2
R , ¢
. b i
”:~/,1¢&~)‘ / see T 815 F (M)
. PRGN . > , . . -
waere PN = Loand o= 1, 2, +ees . This is indicuted by

-

! : * o o Ld - -« o
@ N Shove.  Onz will note tn&ESj:{A} is the characteriscic

N . . < X-
e e v T =S e m — -
L RLOLON L LU ginece P o= - .“.G, .
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y(n - 284/533(n - 2) - 3] -
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T o b KRN — . b - < " o~ P U, T
Les v be btuz elzonvector of G corvespoanding to ~A .

< L
AN . w.; Yy LT I4 \) o 1 o 3 = = 7 =
Juw o ek ) Taon ‘:\}Ti ,3 SooLnd 7\1 }4«3 7\2 2, /\3 "l; Qe

~{y- 3y = ={L34/53 + 43{217/53) + 1989/53%
= -8427/53% = 1>9/5> = -3.

lnerelors, yo = {3, 217/53, 1}. Using the first eguaticn of

{3-117 && & wucans of checiing,
w217 )y = 3{yaip + (3337530 yy)q = -kiyy)
R 1ip 3 11
2{37 - 3(217/53} + 333/53 = 0.
Llso

2
Henco, ve = (-3, 111/53, 1). Checking,

(w2 o 23lygiz = 3lyglp + (333/53) o)y = -333/53 + 333/53 = O.
Nowy
~{yyip = =(5/53 - 17 = L&/53
~{yyiy = ={-264/53 - 1)(-48/53] + 1989/53%
= -E427/53% = -3,
Thns v {3, =L&/53, 1i. Checking,
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n —
1 o o o o_z i
H
! &~ O O (& (32
— e~ ~
i O
N
[ 9.~ (@] (@] '
1 i
T S S = TR
1
ot
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L J
O
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1
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{ 0w O O O
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— O — 1_*
N ™ ~ O ©O. 0
A ™ ~
1 !
I ~ 0 O O
il i N O [}
o LN R
o~ 2 S S e
b i _ 4
ii i
o )
= =

8py = - 7050/96 = - 147/2

= - 336/8L = - 4

M
(%)

23
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[_336] o] [-g] T o]
-588 1 0 ~294
x), = + 0+ 294 |- & -
-588 2 0 0
o 1] |o | | 294
w7 7 ol o7 [-7(294]]
7 =2 0 0]l-294 2(294)
Tx, = =
Y 7 0 10 oll o 0
0 0 0 -2|| =204 |-2(294)
g142'0/3=o
g24~-0/96=20

gy, = (=7)(294)(-8L)/8L% = - 294/12 = -49/2
(2)(=294)(294) + (-2)(294)(294) =2

&L, C T 2(294)(29L)
[~7 (294 )] -8, ] o] [o]
2(294) 0 ~-294 0
X5 T, | TOoFOo-twA ez T
-2(294) | | 0 | 294 [0
2 -32 0 0 |
-1 -6 -147/2 0
T o -1 -4 =49/2
0 0 -1 2 |
From equation (3-9),
Fo(n) = 1
PNy =N-2

(M) = (N = 2)(N - 6) - 32
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]

ZoA) = (A= 2)(n-6) - 32] (A= &) = (LL7/2) (A= 2) + O

B0 = LUn- 20N - 6) - 32](A - &) - (L47/2)(A - 2} (A + 2)
- (49/2) [(n - 2)(N=-6) - 32] + 0 + O.
Now

i

9 (N = p - 100 - 11022 + 300\ + 944 = 0

= (A= YN+ 20 (N =4 = J135) (N - 4 +V134)
=0

Hence, N =4, N, = -2, )5 = L + Y134, and A, = b - NI3%.

Lot vs be the eigenvector of G corresponding to "Ai'

Using (3-11) with (yi)4 =1and M =4, 7& = -2, )B = 4 +{134,
7h = L - 134, one finds

“lyy)y + 2yy), = - 4lyy),

(y)); = 6(1) =6 |
~(yy)y - Alyy )y - W9/2)My ), = - k(yy), |

(v)), = -(49/2)(1) = -49/2 |
~Llyy)y - 6lyq)y - (147/2)(y )5 + 0 = -4lyy),

(y1); = -2(-49/2) - (147/2)(6)

(y1)y = -392.

Therefore, y; = (-392, -49/2, 6, 1). Using the first equation
of (3-11) as a means of checking,

(-2)(~392) - 32(-49/2) + 0 + 0 + 4(-392) = O.
Similarly,
(196, -49/2, 0, 1)

Yo
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[-504,]
-588
588

[ -8L(6 + 134)

-588
-12(85 + 6 134)
0

[ -84(6 - 134)
588
-12(85 - 6 134)

vy = ( bk + 244I3%, 219/2 + 64I3%, 6 + V3%, 1)
v, = ( 14k - 24134, 219/2 - 64134, 6 - 4134, 1),
From equation (3-10),
"0 0 -8, o0 ][ -392]
1 -4 0 =294 |-49/2
T 8 o0 o 6
L1 -4 0 204 | 1]
[0 0 -8, o] 196]
1 -4 O  -294| |~49/2
2700 8 o 0 0
L1 -4 0 294 | 1]
0 0 -8, o |[12(12 + 2 134)]
1 -4 0 =294 (219/2 + 6 134
-1 -8 0 0 6 + 134
1 -k 0 294 | 1 i
0 0 -8, 0 [12(12 - 2 134)]
1 =4 0 -294)219/2 - 6 134
-1 -8 0 0 6 - 134
L1 -4 0 294 1 i}

0

b

Normalizing Z1s Zgp, z3, and Zh’ one finds

|lza]] =+ 95504 = Y67(2) (84)2 = e1i13s

2] = 52

[[25]] = 24167(85 + 6413%) = 24(67 + 3T3%)

2] = 24967(85 - 6VI34) = 24,(67 - 3413%)

-

wad

—
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(- 34134/67, - 7N134/134, 74134/134, 0)

(O, o, 0, 1)

(~7134/134, -(67 - 3v134)/134, -(67 + 34{134)/134, 0)
( 7134/13k, -(67 + 34135)/134, -(67 - 34135)/134, O).
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CHAPTER IV

TRANSFORMATION OF SYMMETRIC MATRICES TO
TRIDIAGONAL FORM BY MEANS OF ROTATION

Many methods have been developed to compute the eigen-
values and eigenvectors of a symmetric matrix. In this
chapter the symmetric matrix shall be tridiagonalized by a
series of rotations on the matrix and from this tridiagonal
matrix 'the eigenvalues and eigenvectors shall be determined.

A rotation means a transformation of coordinates with

the elementary matrix of rotation

-‘1 O0'0.‘......l.......ll...‘lt. 07
o l.0‘0..0.--..‘00...00!l.o.n.oo

L l‘....‘..'.‘....‘.......

"0.0‘00

0
O......O-S/O oob I'OWi

C
. .1 :
R(1,J) = |, ) 1 : :
: . 1. :
:.......0 8§ 0 vevees O ¢ 0.. 0| row 3
: . .1 0
0 vevnrnee O vevvnrnennes 0 vevnn 1
col i col J

forc2+sz=landj>i>l,

109
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The matrix R(i,j) may also be characterized as follows:

1, ifk=1#1d ork=1#j

¢, if k=1=41ork=1=j
(4-1)  (R{i,3)), = {0, if k Fl#iork#1#J

s, ifk=jand 1 =1

=5, if k=1 and 1 = j

where (R(1i,j)),; is the element of R(i,j) appearing in the
kth row and the 1lth column.

A rotation may be interpreted geometrically as a change
in the basis vectors e; and €y by a certain angle, carried

out in the plane spanned by the vectors e; and e (1, p. 280).

Since the columns of R(i,j) are mutually orthogonal normal
vectors, the matrix R(i,j) is orthogonal.

Let T = (tij) be a real symmetric matrix. Let A(i,j) =
TR(i,3) and B(i,j) = R(i,3)TA(i,3); then one can verify that

(L-2) —tll eoe Ctli+stlj tl,i‘f‘l ese —Stli"'ctlj tl,j’*‘l "'tll']

t21 LI Ct21+st2j t2,i+l e 00 -Stzi+ctzj t2,j+l oootzn

A(i,3) = tiq +eo Cby,tst

- +
i ij ti,i+l coe Stii cti.

j ti,j‘*‘l '“tin

.- oo '+ : e 0 e - -+ . s s o0 o
i1 v CPpaTSYyy than St517% 55 ta,94 0¥

.

*

Pnl o8 Ctni+3tnj tn,i+l LIRS -Stni+Ctnj tn,j+l .o .tnn
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One sees immediately that the elements a1 of A(i,j) are the

same as tyq with the exception of column 1 and J where

By = CTpy F STy
(4=3)

akj = -s‘cki + Ctk;}
and k=1, 2, ..., n.
Since B(1,3) = R(1,3)TA(1,3), the elements by, of B(i,J)
are the same as a,q with the exception of the rows i and J

where

bil = Cail + Sajl

(4=4)

and 1 =1, 2, ..., n. Now, A(i,j) = TR(i,j) so that
(4-5) B(1,J) = R(1,3)TTR(4, 4).

Since T is symmetric, B(i,j) is symmetric for

B(1,1)T = (R(1,3)TTR(4,3))T

I

(TR(1,§) FR(1,1)T)T

= R(1,3)TTR(4, J)

= B(4,3).
Therefore, bk1 = blk' Hence as soon as matrix A(i,j) has
been computed, matrix B(i,j) can be computed by finding only
the elements by, bij’ bji’ and bjj’ (bij = bji)’ for the
remaining elements of row i and row j of B(i,j) correspond to
the elements of column i and column j of matrix A(i,j) and
all other elements of B(i,j).are the same as the correspond-

ing elements of A(i,j).
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Since the ultimate goal is to rotate T to a tridiagonai

matrix, the element bi—l,j =0 = bj,i-l must be true for i =

2, eseey n=l; j=1i+l, ..., n. This implies that the ro-
tation matrix must be used with 1 = 2, ..., n-1; j = i+1,
ees, N, in which case the matrix T will be replaced by B(i,j)
when 1 = 2 and J = 3 where B(i,j) is the matrix obtained in

(4=4) from the preceeding step, i.e.,

T
B(2,3) = R(2,3)TTR(2,3)
B(2,4) = R(2,4)TB(2,3)R(2,4)
B(2,n) = R(2,n)TB(2,n-1)R(2,n)
(4-6) B(3,4) = R(3,4)TB(2,n)R(3,4)
B(3,5) = R(3,5)TB(3,4)R(3,5)

*

B(3,a) = R(3,n)TB(3,n-1)R(3,n)

L

B(nll,n)

it

R(n—l,n?é(n-l,n-l)R(n-l,n)

so that | |

B(n-1,n) = R(n-1,nf...R(2,4)TR(2,3)TTR(2,3)R(2,4). . .R(n-1,n).
One now needs to determine ¢ and s so that bi-l,j = 0.

Now

b + ¢t 0

i-1,35 = %-1,35 7 "S53 1-1,5 = ;

=8%3.1,1 T <C%i.1,
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£2 . .
(4-7) ¢ = t|—p—izdad
| 82 4 + 65

2
(4-8) _ 4 Bi-1,4 ®i.1,3
ti g 62 + 2
i-1,iy"i-1,1 i-1,]

[ 7]

.

Remembering that for each rotation R(i,j) the element

b is zero for i = 2, 3, «ue., n-1; j = i+l, ..., n, then

i-1,]
the ;iements of the first row beginning with the third ele-~
ment are annihilated by R(2,3), ..., R(2,n); the elements of
the second row beginning with the fourth element are annihi-
lated by R(3,4), ..., R(3,n); etc. It is clear that if an
elemént is annihilated by a rotation, it will remain zero

throughout the entire process. JSince B(i,j) is symmetric, a

tridiagonal matrix is obtained by the R(n-1,n) rotation.
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Hence
by by, O ... o . 0
boy byp Doy .. 0 0
(4=9) B(n-1,n) = s =| O b3z P33 ... 0 0
°© 0 0 bn-l,n-l bn-l,n
..O © 0. bn,n-l bn,n*_J.

As in Chapter III, one needs to consider the matrices

g 811 %12 O
11 712
(lp"lO) : (sll), : ’ 821 322 523 3 seey S,
Soy S
21 “22 0 s s
32 733
where Si4 = bij and define ﬂ&(h) as the characteristic poly-
nomial so that

AN =M= sy
BN = (A= 8110 (N= 5,5) = 5,5, 1
= (N = 81) (A= spy) - 2,
(4-11) B = [N = 81700 = s) = s3] (N = 555) -
s53 (N - sy |

[ 4

: 2
PN = (V= s )B4 (N = 823 i o (N

where $5(7\) = 1, and where ¢n(h) = (-1)"#(7), the character-
istic polynomial of S. Now one needs to determine the latent

roots of S from the polynomial ¢L(ﬂ).
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The eigenvectors for the matrix S can be computed just
as in Chapter III by solving the corresponding triangular

system
‘ (537 = M )lyydy *+ spp(yy)p =0
Slz(yi)l + (522 - hi)(yi)z + 323(yi)3 =0
(4"‘12) 823(3’5_)2 + (333 - 7\&)(}71)3 + th(yi)h— =0
Sn_l,n(yi);_l + (Snn - Ai)(yi)n = Q

for the components (y;)y, (y3)p, «.., (y3), of the eigenvec-

n ©
tor v of S corresponding to Ai‘ It is convenient here to
choose the first component rather than the last, as in Chapter
III, and then to compute the second, third, etc.
To determine the eigenvectors of T, one must consider S
in the form
S = (R(2,3)...R(n-1,0)) T(x(2,3)...R(n-1,n)).

Now
Sy; = My
(R(2,3)...R(n-1,n))TT(R(2,3)...R(n-1,n))y; = Ny;
T(R(2,3)...R(n-1,n))y; = A;(R(2,3)...R(n-1,n))y;
and let z; = (R(2,3)...R(n-1,n))y;, one finds that
Tzy = hizi
so that z. is the eigenvector of T associated with 7&. Hence

1

as soon as y; is determined, z; can be determined by a series

of multiplications of the rotation matrices R(j,k). For each
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separate multiplication, only two components of the preceed-
ing vector will be changed-~the jth and kth. This can be
formulized as follows:
1
(

Zi) = C(Zi)j - S(Zi)k

J
1
= +
(z,), S(Zi)j clz; ),
1
where (zi)j and (z;)k are the components obtained after a
multiplication R(j,k) and where (Zi)j and (z4)) are the com-
ponents of the preceeding vector and ¢ and s are the values

used in the rotation matrix R(j,k).

Example l: Find the eigenvalues and eigenvectors of T

where
L 7 7 0
7 =2 0 0
T =
7 0 10 0
_p O O °2J .
From (4~7)
2
— ti‘lgi
¢ = 22 T t2
i-1,1 i-1,3 .

Letting’i =2 and j = 3,
¢ =+49/(49 + 49) =41/2 .~

From (4-8)

. 2
ti”l,j ti-l’i

°" 3 < + £
1-1,1i\*4-1,1 ¥ ®i-1,;

and with 1 =2, j =3, s = 1/2.
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Now from (4-1),

Using (4-3),
212
892 %
ahz =
aiB =

so that

Hence,

From (4=4),

so that

1 0 0 ©

0 1/2 -1/2 0
R(2’3) =

0 1/2 - 1/2 ©

0 © o 1].

ctyp *+ sty = VL/2(7) + J1/2(7) = 1d1/2
Ct22 + St23 = 4175(‘2) +JE7E(O) = “ZJI7§
cty, + Sty = N1/2(0) + J1/2(10) = 101/2

= Cthz + St43 = '\Eﬁ(O) + Jl/Z(O) =0

ay3 = =J1/2(7) +{1/2(7) = 0
a5y = -V1/2(-2) +V1/2(0) = 2+1/2
agy = -41/2(0) +41/2(10) = 10fi/2
a,; = -11/2(0) + Y1/2(0) = o.

4 14 1/2 o 0]
A(2,3) = 7 -21/2 21/2 0

7 10 1/2 101/2 0O
L_O O 0 "2 .

Doy = Cay; *osagy
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by, = V1/2(7) +V1/2(7) = 141/2

by, = V1/2(-211/2) + 11/2(1011/2) = 4
boy = V1/2(241/2) + Y1/2(1041/2) = 6
by, = V1/2(0) + V1/2(0) = 0

and
b3i = =S8, + caBi
s0 that
byy = -11/2(7) + \1/2(7) = 0
by, = -V1/2(-2+1/2) + 41/2(1041/2) = 6
by = ~11/2(211/2) + 1/2(101172) = 4
by, = -11/2(0) + 1/2(0) = o,
Therefore,
L 1W1/2 o 0]
1441/2 L 6 0
8(2:3) = ’
0 6 4L O
.0 0O 0 -2].

Since B(2,3) is a tridiagonal symmetric matrix, the fotations
R(2,4) and R(3,4) are unnecessary so that B(2,3) = S. One

now proceeds to determine ¢n(h) from (4-11).
BN = n- 4
(N = (D= BIN= &) - 98
fy (1)

i

(A= 4)(N = 4) - 98 (A= 1) -
36(N =~ 4)
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BN = {[{n= 1) (A= 1) - 98](N- 4) -
36(N - &) (A+ 2) - 0.

Thus

¢4(7\) = 0= - 10% - 1263 + 300N + 944

(A= LI+ 2)(N = 4 - NI3R)(N = 4 + 13L) = 0O
so that N = 4, A, = -2, Ny = 4 + 134, and 7% = 4 - V134,

Using (4~12), one can determine the eigenvectors corres-

ponding to hi. Letting (y;){ = -1, then
(4 = 4)(-1) + 21/2(y;)5 = ©
(yp)p =0
1491/2(-1) + (4 = 4)(0) + 6(yy)5 = O
(yy)5 = (7/61E
O(-(7/6N2) + (-2 = 4)(yq), =0
(y1), = 0.

Letting (y2)l = 0, then

H
(@]

(4 + 2)(0) + 141/2(y,), =
(y,), =0

(14V1/2)(0) + (4 + 2)(0) + 6(y2) 0

3 =
(y2)3 =0
(0)(0) + (-2 + 2)(y2)h = 0

(y2)4 is arbitrary, say 1.
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Letting (y3) -1, then

-
(b = b = J134)(-1) + 144I/2(y,), = O
(y3)p = =V134/1431/2 = -{67/7

14V1/2(-1) + (4 - 4 - 413u)(-J67/7) + 6(yg)3 =0

'(y3)3 = -3V2/7 |
(O)(y3)3 + (=2 = 4 - m)(yB)h =0

(YB)A = 0,

Letting (yh) = 1, then

1
(4 - &4 + J134)(1) + 14v172(yh)2 = 0

(v,), = -J67/7
U1/2(1) + (4 - & +V134)(-V67/7) + 6(y,)y = 0

(v,)5 = 312/7

(m0ﬁ7ﬂ4-u2-4+dnuhmu=o
(Yh)h = 0,
Now .
1 o 0 Ool[-1 1 (a1 ]
(2.3) 04V1/2 -¥1/2 0 0 -7/6
z, = R(2,3 = =
ol 17 172 vi/2 o |792/6 7/6
o o o 1j| o | o |.
Similarly, z; = R(2,3)yi so that z, = (0, 0, 0, 1), zg = (-1,

(6 - V134)/1k, -(6 +V134)/14, O) and z;, = (1, ~(6 + VI3B/14,
(6 - V134)/14, 0).
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If one normalizes the vectors Z1s 23y 23, and Z) then

llzq]] = V1 + 49/36 + 49/36 =134/36
= (-3V134/67, -7V134/134, 7V134/134, O)

|22l =1

2, = (0, 0, 0, 1)

2y

[25]|= V234/7
. = F,zjzz; _ 67 = 3V13L _ 67 + 3413k é]‘
3 134 ° 34 3L
Iz,)| = VI34/7
- 1 67 + 3J13L . 67 - 3413k
24”[13%" 134 134 ’O]‘
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