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CHAPTER I 

INTRODUCTION 

The purpose of this paper is to study two differential 

equations. A method of approximation by iteration is used 

to define sequences of functions which converge to solutions 

of these equations. Some properties of the solutions are 

proved for general boundary conditions and certain special 

solutions are studied in detail. 

If f is a function whose domain is the set of all real 

numbers, let K(f) * f1 - f. In Chapter II the integral 

x 
equation f(x) = b ^ f(t)dt is studied and it is shown that 

this equation is equivalent to the differential equation 

K{f) = 0 with boundary condition f(a) * b, where 0 is the 

function whose domain is the domain of f such that if x is 

in the domain of f, then (x, 0) £ 0. Suppose y is a function 

whose domain is [0, 1], p is a positive, continuous function 

over tO, 1], and q is a continuous function over CO, 1]. 

Let w£(y) = (p-yf)' - q*y. In Chapter III the integral 

x i x i s 
equation y(x) = b v pTST"8 * i pTsT | q<t)-y(t>dtds i s 

studied. It is shown that this equation is equivalent to 

the differential equation X(y) * 0 with boundary conditions 

y(a) * b and pfaj'y'fa) * m. 

1 



In this study a knowledge of the real number system 

will be assumed. The following definitions and theorems 

which are developed in standard advanced calculus courses, 

such as the one outlined by Pierpont (1), will be assumed 

and used in Chapters II and III. 

Definition 1.1. Suppose a and b are real numbers such 

that a < b. Then, 

(i) the closed interval [a, b] is the set of all real 

numbers x such that a < x < b, and 

(ii) the open interval {a, b) is the set of all real 

numbers x such that a < x <* b. 

Definition 1.2. The statement that the set X is bounded 

means there is a positive number M such that if x belongs to 

X, then Ixi < M. The notation "x € X" will be used to mean 

that x is an element of X. The statement that U is an upper 

bound of X means if x 6 X, then x < U. The statement that L 

is a lower bound of X means if x ^ X, then x > L. 

Definition 1.3. The statement that L is a least upper 

bound of the set X means 

(i) L is an upper bound of X and 

(ii) if u is an upper bound of X, then L < u. 

Definition 1.4* The statement that G is a greatest 

lower bound of X means 

(i) G is a lower bound of X and 

(ii) if q is a lower bound of X, then q < G. 



Definition 1.5. The statement that f is a relation 

means that f is a set of ordered pairs; the statement that f 

is a function means that f is a relation such that no two or-

dered pairs in f have the same first element. The domain of 

f, denoted by D^, is the set of all x such that x is the 

first element of an ordered pair in f; the range of f, denoted 

by R^, is the set of all y such that y is the second element 

of an ordered pair in f. If (x, y) €: f> then y will be 

denoted by f(x). 

Definition 1.6. Suppose each of f and g is a function 

such that there is an element common to their domains. 

(i) The sum of f and g> indicated by f + g, is the 

function h such that D, = D^AD^. and if x 6 Dv,, then 

n f g hT 

h{x) * f(x) + g(x). 

(ii) The product of f and g, indicated by f»g, is the 

function h such that D, = D„AD„ and if x 6 D,, then 

h f g h 

h{x) = f (x)« g(x). 

Definition 1.7. Suppose f is a function such that if 

x £ D^, then f (x) ^ 0. Then the reciprocal of f, indicated 
by iji, is the function h such that D^ = D̂ , and if x € D^» then 

h(x) 
fix)* 

Definition 1.8. The statement that f is a strictly 

increasing function means if x^ € D^, Xg € D^, and x^ < x2» 



then f(x-^) < ftxg); the statement that f is a strictly 

decreasing function means if x^ £ D^, Xg 6 D̂ ., and x^ < X£, 

then > ftxg). 

Definition 1.9* The statement that the function f is 

continuous at (xQ, f(xQ)) means if e is a positive number, 

there is a positive number 6 such that if x 6 and 

lx - xQl < 6, then if (x) - f (x0)l < 

Definition 1.10. The statement that f is continuous 

means if x € D^, then f is continuous at {x, f(x)). 

Definition 1.11. The statement that x Q is a limit point 

of the set M means if e is a positive number, then there is 

an x 6 M such that x £ xQ and lx - xQ\ < s. 

Definition 1.12. The statement that f is differentiable 

at (xQ, f{xQ)) means x Q is a limit point of D f and there 

exists a real number a such that if e is a positive number, 

there is a positive number 6 such that if x £ D^ and 

0 < lx - xQi < 6, then 
f(x) - f(x.) 

a| < e. Denote a by 
x - x Q 

Definition 1.13. The statement that f is differentiable 

over [a, b] means if x £ [a, b], then f is differentiable at 

(x, f(x)). 



Definition 1.14* ^he statement that f is integrable 

over [a, b] means [a, b] is a subset of D^ and there exists 

a number I such that if e is a positive number, there exists 

a positive number 6 such that if a = XQ < x-̂  < . . . < xR = b, 

xp-l - S - V P = X' 2' • • • > n» a n d xi " xi_i < 6» 

n 
| x as Xy 2} • • • i nj s f ( s ) ( ^ • x p - I > - 1 < e. 

b 
Denote I by £ f(t)dt. 

a 

a 
Definition 1.15. If a is a real number, then jjf(t)dt » 0. 

Definition 1.16. If f is integrable over [a, b]» then 

a b 
< f(t)dt = - ( f(t)dt. 

b i 

Definition 1.17. A sequence is a function whose domain 

is the set of positive integers. A real sequence is a 

sequence whose range is a subset of the real numbers. Let 

{aili=l d e n o t e tile sequence ĵ (l, a^)> (2, a2), (3, a^) . . . ̂ . 

Definition 1.1$. The statement that the sequence 

converges means there is a number a such that if e is a 

positive number, there exists a positive integer N such that 

if n > N, then jan - a J < e. 

Definition 1.19. Suppose that for each positive integer 

i, f., is a function and suppose D« « D« , i, j « 1, 2, . . . . 
1 *i 



The statement that ^p}p_i converges uniformly means there 

exists a function f, = D̂ . , such that if £ is a positive 

number, there exists a positive integer N such that if n > N 

and x € D^, then |fn(x) ~ f(x)J < e» 

oo 
Definition 1.20. The statement that the series T" a„ 

Pi P 

converges means that the sequence |a^ + ^ + * * • + anj n =i 

converges. 

Definition 1.21. The statement that a converges 
Jr 

absolutely means the series iapl co n v e rS e s* 

Definition 1.22. The statement that f and g are linearly 

independent functions over Ca, b] means that [a, b] is a sub-

set of D f and [a, b] is a subset of D , and if each of c-, and 
J . O 

Cg is a real number such that c^*f{x) + Cg-gtx) = 0 for all 

x £ [a, b], then c-̂  * Cg = 0. 

Theorem 1.1. Suppose M is a set. If M is bounded below, 

M has a greatest lower bound; if M is bounded above, M has a 

least upper bound. 

Theorem 1.2. If M is a bounded, infinite set, then M 

has a limit point. 

Theorem 1.3. If f is continuous at (xQ, f(xQ)) and g 

is continuous at (x , g(xQ}), then 



(i) f + g is continuous at (xQ, f(xQ)
 + g(xQ)), 

(ii) f«g is continuous at (xQ, f(xQ)»g(xQ)), and 

(iii) if f(xQ) 0, ̂  is continuous at (xQ, j). 

Theorem 1.4« If f is continuous and is closed and 

bounded, then f is bounded, i..e,.> is a bounded set. 

Theorem 1.5* If f is continuous over [a, b] and f is 

differentiable over (a, b), then there is a number c 6 (a, b) 

such that f'{c) « 

Theorem 1.6. If f is continuous over [a, b], f(a) < f(b), 

and 5 is a real number such that f(a) < 5 < f(b), then there 

is a number c € (a» b) such that f(c) * 5. 

Theorem 1.7. Suppose each of f and g is a differentiable 

function. 

(i) If Dr «s D , then f
1 + g' » (f + g) * and 

I g 

(g.f)» = g.f' + g'.f. 

(ii) If R g C Df, then J f(g)] ' = ff(g)-g f . 

Theorem l.d. If f is differentiable over [a, b], then 

f is continuous over [a, b]. 

Theorem 1.9. If f is differentiable over [a, b] and 

fT =0, then f is constant over [a, b]. 

Theorem 1.10. If f is continuous over [a, b], then f 

is integrable over [a, b]. 
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Theorem 1.11. Suppose each of f and g is integrable 

over [a, b], then 

(i) f + g is integrable over [a, b] and 

b b b 
f Cf(t) + g(t)]dt = ( f(t)dt + ( g(t)dt; 
a a a 

(i) if k is a real number, then k*f is integrable over 

b b 
[a, b] and J k*f(t)dt * k«) f{t)dt. 

a a 

Theorem 1.12. If f is integrable over [a, b] and c is 

a number such that a < c < b, then f is integrable over 

Ca, b], f is integrable over [c, b], and 

b C' b 
£ f(t}dt = [ f (t)dt + J f(t)dt. 
a a c 

Theorem 1.13. If f is integrable over [a, b], then If! 

b b . . 
is integrable over [a, b] and £ f(t)dt < J lf(t)ldt. 

a a 

Theorem 1.14* If f and g are integrable over [a, b] and 

h, br 
for each x € [a, b], f(x) g(x), then J f(t)dt < £ g(t)dt. 

Theorem 1.15. If f is continuous over [a, b], f(x) > 0 

for all x € [a, b}, and f{x) > 0 for at least one x 6 [a, b], 

b 
then I" f (t)dt > 0. 

a 

Theorem 1.16. If gf is integrable over [a, b], then 

b 
J g1(t)dt = g(b) - g(a). 
a 



Theorem 1.17. Suppose g is an integrable function whose 

domain is the set of all real numbers, a is a real number, 

x 
and f(x) « b + g(t)dt for all x. Then if g is continuous 

at (xQ, g(x0)), f is differentiable at (xQ, f(xQ)) and 

f'(xQ) = g(xQ). 

Theorem 1.1&. If f is integrable over [a, b], then f 

is bounded over [a, b]. 

Theorem 1.19* If f is integrable over [a, b] and con-

tinuous over (a, b), then there is a c 6 (a, b) such that 

b 
J f(t)dt = f(c)*(b - a). 
a 

Theorem 1.20. If (a ] converges to a and fa 1 converges 
r J r 

to b, then a = b. 

Theorem 1.21. The following two statements are equiv-

alent : 

(i) (a ] converges. 
P' 

(ii) If e is a positive number, there exists a positive 

integer N such that if n > N and m < N, then jan - am | < e. 

Theorem 1.22. Suppose that for each positive integer i, 

f^ is a continuous function whose domain is [a, b]. If 

{fpl p=l converges uniformly to f, then f is a continuous 

function. 
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Theorem 1.23. The following two statements are equiv-

alent : 

(i) X.ap converges. 

{ii) If e is a positive number, there exists a positive 

integer N such that if m > n > N, then | a
n
 + • • * + ara|

 < e* 

Theorem 1.24. If there exist a number v and a positive 

13 . t 

~ — J < 1 - v for all 

n > N, then lHap[ converges. 

Theorem 1.25. Suppose £a p and £ b p are series such 

that if i is a positive integer, then a^ > 0 and b^ > 0, and 

there exists a positive integer N such that if n > N, then 

b > a . Then, if T h ~ converges, T a^ converges, 
n - n p *— P 

Theorem 1.26. If £ a p converges absolutely and k is a 

number, then k*ap converges absolutely. 



CHAPTER BIBLIOGRAPHY 

1. Pierpont, James, The Theory of Functions of Real Variables. 
I, II, New York, Dover Publications, Inc., 1905• 

11 



CHAPTER II 

SOLUTION OF A CERTAIN FIRST ORDER 

DIFFERENTIAL EQUATION 

Suppose f is a differentiable function whose domain is 

the set of all real numbers. Let K(f) = f - ff. The purpose 

of this chapter is to prove the existence of solutions to 

K(f) = 0 that satisfy certain boundary conditions and to 

study properties of these solutions. 

Theorem 2.1. Suppose f is a differentiable function 

whose domain is the set of all real numbers. If K(f) = 0 

x 
and a is a real number, then f(x) = f(a) + ^ f(t)dt for all 

a 

real numbers x. 

Proof. Suppose K(f) = 0 and a is a real number. By 

Theorem 1.8, f is continuous; therefore by Theorem 1.10, f 

is integrable. If x is a real number and x ^ a, then f is 

integrable over [a, x], or [x, a], and { ff(t)dt = J f(t)dt. 
a a 

x 
Therefore by Theorem 1.16, f(x) = f(a) + J f(t)dt. 

a 

12 
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Theorem 2.2. Suppose f is continuous and 

x 
f(x) » b + f f(t)dt for all x, then K{f) = 0 and f(a) = b. 

a 
Proof. Since f(a) = b + ^ f{t)dt, by Definition 1.15 

a 

f(a) = b. If x is a real number, by Theorem 1.17 

f M x ) = f(x). This completes the proof of Theorem 2.2. 

Hence by Theorems 2.1 and 2.2 the differential equation 

K(f) = 0, together with the boundary condition f(a) = b, is 

x 
equivalent to the integral equation f(x) = b + f f(t)dt. 

a 

Suppose a and [J are real numbers such that a < p . Let 

yQ be a continuous function over (a, p). Suppose a € (a, p). 
By Definition 1.10 and Theorems 1.10, 1.17, and 1.8 it is 

possible to define a sequence {yn]n_.0 such that if x & [a, p] 

-rt. 
and n is a positive integer, then Yn(x) = b

 + | yn ^(t)dt. 

It is noted that for each positive integer n, yn is a 

continuous, differentiable, and integrable function whose 

domain is [a, p] and yn(a) = b. 

Consider the absolute values of the differences of 

successive terms in the sequence {yn]n_0*
 By Definitions 1.6 

and 1.2 and Theorems 1.3 and 1.4 there is a positive number M 

such that if t € t«» p]» then Iy2(t) - Yi(t)| < M. Then by 
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Theorems 1.11, 1.13, and 1.14, if x € [a, p], (y3(x) - y2(x)\ 

I [y2(t) - yi{t)]<Jtj < ]/ |y2(t) - yi(t)|dtj < jMdtj = 

Mix - a{ . By induction it can be proved that if n > 3 and 

x € [a, p], then |yn<x) - yn-1(x)| < 14{* " glj" 

Next, consider the series T~~ ^ "*,g^. Let v be a 
p^o P* 

number such that 0 <• v < 1 . There is a positive integer N 

such that N + 1 > | S u p p o s e n > N. Then n + 1 > f - f — . 

Therefore 

(p a jn
+l 

jn + 1 

(P mm a r 
n i • 

= |n~^~x| ^ " v* Hence by 

Theorem 1.24, I " t
g ^ 1 converges. By Theorem 1.26 if 

p=o ' p* ' p=o 

M is a number, P C l - ^ p T °^ I converges. These consider-

ations lead to the following theorem. 

Theorem 2.3. Suppose yQ is a function continuous over 

x 
[a, p] and yn(x) = b

 + £ y j(t)dt for n > 0 and x C [a, p] . 
A 

X 

i a 

Then (y n] n = 0 converges uniformly over [a, p] to a continuous 

function y. Furthermore, for each x f (a, p], 

x 
y(x) = b + J y(t)dt. 

a 
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Proof. Let e be a positive number. By the work prior 

to the statement of this theorem, there is a positive number 

M such that if n is a positive integer and x € ta, , then 
\ 

l i \ / \i ^ Mix - aln*"^ 
K ( x J - yn-i(x)l ^rr~2TT~* 

Since YL " g ̂  converges, by Theorem 1.23 there is a 
p=o ^ * 

positive integer N such that if m > n > N, then 

P & I 

Suppose m > n > N + 2 and x & [a, p] . Then 

K ( x ) - yn
(x)l s K+i{x) - yn

(x)! + 

) y ^ 2 ( x ) - yn+l(x}| + • • • + l ym ( x ) - ym-l(x)i < 

Mix - al n ~ 1 ^ 4. Mix - alra ^ W2- M(p - o)p.„ c 

(n - 1)1 • ' * SI ^ p ^ + 1 p.' 

Therefore {yn(
x)}nl0 converges to a number, call it y(x). 

Hence by Definition 1.19> [yn)n=0 converges uniformly over 

[a, p] to the function y. By Theorem 1.22, y is a 

continuous function over [a, p]. It will next be shown that 

x 
if x € £a, p], then y(x) = b + £ y(t)dt. 

a 

Suppose there is an x Q 6 [a, p] such that 

x (• i«o 
y(xQ) ^ b

 + ^ y(t)dt. Then n = 0 does not converge to 
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x 
b + ^ y(t)dt. Thus there is a positive number £o such that 

if N is a positive integer, then there is an n > N such that 

ly (x ) - b - 9 0 y(t,)dt| > £o. Since fyn]n°!0 converges uni-
I a 

forraly to y there is a positive integer Nq such that if n > NQ 

and t [a, p], then |yn(t) - y(t}| < _ a J + 3. Let o 

a 

uc 
n > Nq + 1 and |y nU Q) - b - f

0 y{t)dt| > eo. Then by defi-

nition of y and Theorems 1.11, 1.13, and 1.14, 
*n 

e° « |yn^xo^ " b ~ S° y(t)dt| = 

b + ?° y n-i
( t ) d t - b - 9° y(t)dt| = |j° Cyn.i<t) - y(t)]dt 

a a ' »a 

*° \ r n . i M - y(t)|at| < |jr° J 7 5 - ^ _ n ^ d t 

£°lxo - a l „• eo 
= 3 | x 0 - a ( + ^ - 7 " 

The assumption that there exists xQ 6 t
a> P] such that 

x eQ 
y(x ) £ b + £ y(t)dt leads to the contradiction that £o < — 

0 a 

x 
Hence y(x ) = b + $ y(t)dt. Therefore if x € [o,p], then 

a 

y{x) = b + ^ y(t)dt. This completes the proof of Theorem 2.3 
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By Theorem 2.2 the function y in Theorem 2.3 has the 

properties that K(y) = 0 and y(a) = b. This shows that the 

differential equation K(f) = 0 together with the boundary 

condition f(a) = b has a solution over [a, p]. 

Theorem 2.4» Suppose y is a continuous function over 

[a, p] such that y(x) = b * ̂  y(t)dt for all x €• [a, p] . If 
a 

x . 
z(x) = b + ^ z(t)dt for all x £ !<*, p]» then z = y. 

a 

x 
Proof. Suppose z(x) = b + z(t)dt for all x 6 [a, fs] . 

a 

Let e be a positive number. By Theorem 1.18, 55 is bounded 

over [a, p]. By Theorem 1.4> y is bounded over [a, pj. 

Hence by Definition 1.6 there is a positive number K such 

that if t € [a, p], then Jz(t) - y(t)i < K. By the work 

prior to the statement of Theorem 2.3, if M is a real 

rM(B — a)P 

? i converges. Hence by a variation 
p=o p* 

of Theorem 1.23 there is a positive integer N such that if 

n > N, then Q ^ < e. Let n > N. Suppose x fr [o, p] . 

n • 

Either x « a, or x / a. If x = a, by Definition 1.15> 

z(x) = y(x). Suppose x ^ a. Then by Theorems 1.11, 1.13, • 
and 1.14, Jz(x) - y(x)/ = 

f J z(t) - y(t)| dt 

x 
( C z{t) - y (t) ] dt 
a 

{ Kdt = K |x - a! . 
a i 
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Since lz{x) - y(x)| < Kjx - a|, by Theorems 1.11, 1.13, and 

* 1X " 
1.14, I z(x) - y(x)| = K £z(t) - y(t)]dt < 1 J | z(t) - y(t)| dt 

x 

h 
a 

f Kit - a(dtj = K1 x
27

 al2. 

After n repetitions of this procedure, 

, a 

< 

| z ( x ) . y ( x )| < tlx - a)" < K(p - a)" < e< 
II • XJt • 

Hence z{x) = y(x). Therefore z = y over [a, p]. Thus the 

solution of K{f) = 0 that contains the ordered pair (a, b) 

is unique. This completes the proof of Theorem 2.4» 

Since in Theorems 2.1 - 2.4 the only restriction on the 

interval [a, p] was that it contained the number a, then in 

light of Theorem 2.4 it is clear that there exists one and 

only one function y such that D is the set of all real 
J 

x 
numbers, y(a) * b, and for each x <r D , y(x) « b + £ y(t)dt. 

y a 

Theorem 2.5* Suppose y is the continuous function such 

x 
that y(x) * b * £ y(t)dt for all real x and b » f{a)# Then 

a 

if x is a real number, y(x) = ^ • 
p=o 

Proof. In Theorem 2.3, take yQ * 0. Then if x is a real 

x x 
number, y^lx) « b + J Odt = b; y2(ac) « b + f y1(t)dt » 

a a 
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x 
b + ^ bdt = b + b(x - a). Suppose there is a positive integer 

a 

k-1 . # _ %p 
k such that if x is a rec,l number, then y^x) = ^ - 7 — • 

p=o ^ * 

Ttos V l ( x ) = b - f k £ b ( t ;,a)Pdt = a' p. 
a p=o H p=o K 

Hence if n is a positive integer and x is a real number, then 

n-1 
m-s. • 

pi 
yn(x) = ~pt^ ' S i n c e {yn(

x)}n=o
 c o n v e r S e s t 0 /(*)» 

'n-1 , I \P] 0 0 

• y ' L t converges to y(x). Therefore y(x) has 
(pTo p* J*1"1 

_ a )P 
the series representation I — 

p=o p* 

Theorem 2.6. Suppose y is the continuous function such 

x 
that y(a) = b and y(x) = b + £ y(t)dt for all real numbers x« 

a 

Then, if b is positive, y is a strictly increasing, positive 

function; if b is negative, y is a strictly decreasing, 

negative function; and if b = 0, y is the x-axis. 

Proof. Suppose b = 0. By Theorem 2.5, 
OO * . p 

y(x} = T ~ 7 for &11 Hence y(x) = 0 for all x. 
pZ0 P' 

Suppose b is positive and x is a real number. Either 

x = a, x > a, or a > x. If x = a, then y(x) = y{a) = b. 
I 

Thus y(x) is positive. Suppose x > a. Suppose y(x) < 0. 

If y(x) < 0, then by Theorem 1.6 there is a p 6 (a, x) such 
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that y(p) =0. Let M = |c j y(c) = 0 and c & (a, x)^. Since 

M is bounded, by Theorem 1.1, M has a greatest lower bound, 

call it cQ, and by continuity cQ £ M. By "heorem 1.5 there 

y(c ) - y(a) 
is a q t (a, c ) such that yf(q) = — — — r Thus 

o ~ 

y(q) < 0. Hence by Theorem 1.6 there is a q^ 6 (a, q) such 

that y{q^) = 0. Thus q-̂  € M, but q-L < cQ and this is a 

contradiction. Therefore y(x) ̂ 0 . Suppose x < a. Suppose 

y(x) < 0. If y(x) < 0, then by Theorem 1.6 there is a 

p £ (x, a) such that y(p) = 0. Let 

M = { c | y(c) = 0 and c £ (x, a)"}. Since M is bounded, by 

Theorem 1.1, M has a greatest lower bound, call it cQ, and 

by continuity c Q6 M. By Theorem 1.5 there is a q 6 (x, cQ) 

y(c ) - y£x) 
such that y1 (q) = — - > 0. Thus y{q) > 0. Hence 

CQ - X 

by Theorem 1.6 there is a q-̂  € (x, q) such that y(q^) = 0. 

Thus q-j_ 6 M, but q^ < cQ and this is a contradiction. Hence 

y(x) £ 0. Therefore if b is positive, then y is a positive 

function. Suppose y is not a strictly increasing function. 

Then there are real numbers x^ and x2 such that x^ < X2 
and y(x^) > y(x2). By Theorems 1.5 and 2.2 there exists a 

y(x2) - yU-^) 
number c 6 (x̂ » x2) such that y(c) = — - — 0 . 
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ihis contradicts the fact that y is a positive function. 

Hence yix^) ¥ y(x2). Therefore if b is positive, then y is 

a positive, strictly increasing function. 

&y a similar proof if b is negative, then y is a 

negative, strictly decreasing function. 

Theorem 2.7. Suppose y is the function such that 

x 
y(a) = b and yU) = b + ^ y(t)dt for all real numbers x. 

Then, if b is positive, y is unbounded above and if b is 

negative, y is unbounded below. 

Proof. Suppose b is positive. Suppose y is bounded 

above. By Theorem 1.1 there is a least upper bound of y, 

call it L. Since b is positive and by Theorem 2.6, y is 

strictly increasing, then there is an x > a such that 

0 

o 

b 
< L - y(x0) < y. Hence if x > xQ, then 0 < L - y(x) < 

Let x = xQ
 + By Theorem 1.5 there is a c £ (xQ, x) such 

y(x) - y(x ) 

that y»(c) = x - 2[y(x) - y(xQ)3. Thus 

y(c) = 2[y{x) - y(xQ)]. Therefore 

0 < y(c) - y(xQ) < 

0 < y{x) - y(xQ) < and 

0 < y(x) - y{c) < 
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Addition of these inequalities shows that 2['y(x) - y(x
0)3 ^ 

therefore y(c) < b. However since c > a by Theorem 2.6, then 

y(c) > y(a) = b. Hence the assumption that y is bounded 

above leads to a contradiction. Thus y is unbounded above. 

If b is negative, then a similar proof shows that y is 

unbounded below. 

Theorem 2.S. Suppose y is the function such that 

x 
y(a) = b and y(x) = b ^ y(t)dt for all real numbers x. 

a 

Then, if e is a positive number, there is a real number x 

such that ly(x){ < e. 

Proof. Clearly the theorem is true if b = 0. Suppose 

b / 0. Suppose there is a positive number e such that if x 

is a real number, then ly(x)| > e. 

Suppose b is positive. Since y is positive, then y(x) > e 

for all x. By Theorem 1.1 there is a greatest lower bound of 

y, call it £o. Since by Theorem 2.6, y is strictly increasing, 

then there is a number xQ such that < y(xQ) < ^ £o. Let 

x^ = xQ - 1. By Theorem 2.6 and the assumption that £o is a 

greatest lower bound of y, then y(xQ) > y(^) > £o. Hence 

0 < y{xQ) - y{x1) < By Theorem 1.5 there is a t) t (x̂ » x2) 

y(*Q) - y(x-,) 
such that y'(rj) = X q „ = y(xQ) - y(Xl) <•£§.• Thus 

p ̂  
y(rj) < —g. Hence the assumption that y is bounded below by 



23 

so leads to the contradiction that y(rj) < £o. Thus if b is 

positive, then y is not bounded below by a positive number. 

Therefore if b is positive and v is a positive number, then 

there is a real number x such that jy{x)t < v. 

If b is negative the proof of the theorem is similar. 

Hence if e is a positive number, then there is a real number 

x such that |y(x)| < e. This completes the proof of 

Theorem 2.8. 

Now the solution of K(f) = 0 that contains the point 

(0, 1) will be studied in detail. 

Definition 2.1. Let E denote the function such that 

/ * x 

E(Q) = 1 and if x is a real number, then E(x) = 1 + £ E(t)dt. 

0 

Theorem 2.9. If each of x and c is a real number, then 

E(x) E(c) = E(x + c). 

Proof. Suppose each of x and c is a real number. Then 

x c 
by Definition 2.1, E(x)*E(c) = [1 + f E(t)dtHl + ) E(t)dt] 

0 0 

c 
and E(x + c) = 1 + f E(t)dt. By Theorems 1.7 and 2.2, 

d E(* + c) = d E(x + c) d(x + c) _ d E(x * c) , _ . 
dx d {X n ) riv H (v "I* «i ^ — E(x c) • dx ~ d(x * cj dx = d(x c) 

By Theorems 1.7 and 2.2, d = E(c)* d = E(c)-E(x) 

Note that d E(x + C)1 = E{0 + c) = E(c), and 
dx ix=0 

d E(x) E(c)1 „/ s „, . 
dx Jx=0 * = E(c). Hence by Theorem 2.2, 
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K[E(x)-E(c)3 =0, K[E{x + c)] = 0, [ E(0)*E(c)] » = E{c), and 

[E(0 + c)]' = E(c). Therefore by Theorem 2.4» 

E{x)'E{c) = E(x + c). 

Theorem 2.10. If x is a real number, then 

E(-x) . 

Proof. Suppose x is a real number. Since -x is a real 

number, by Theorem 2.9, E(x)*E(-x) = E(x - x) = E{0) = 1. 

Since E(x) 4- 0, E(-x) = 

Definition 2.2. Suppose each of a and b is a real 

number. Let I , be a relation such that if p is a real a, b 

number and there is a real number x such that 

x 
p = b + J" y(t)dt, then (p, x) €• Ia>b« 

Theorem 2.11. Suppose is the relation defined in 

Definition 2.2. Then, if b / 0, I . is a function. 
ct j D 

Proof. To show that I vis a function, prove that no 
ci f C 

two ordered pairs in Ia ^ have the same first element. 

Suppose (p^, x1) £ Ia b» (P2»
 x2^ ^ajb' a n d P1 ~ p2' b u t 

x-̂  ̂  x2* Since p^ = p2» by Definition 2.2, 
t 

X1 X2 
^ y(t)dt = £ y(t)dt. By Definition 1.16 and Theorem 1.12, 
a a 
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0 = j J1 y(t)dt - C 2 y(t)dtj = | ̂  y(t)dtL Since x-̂  ̂  x2, 
I Q. a I f *2 / 

either y is zero over [x-̂ , x2] or over [x2, x^], or y is 

positive for some numbers in the integrable interval and 

negative for others. Since by Theorem 2.6 neither case is 

possible, then p^ ^ p2; therefore Ia ^ is a function. 

Theorem 2.12. The function I K of Theorem 2.11 is 

a, b 

unbounded. 

Proof. Suppose I , is a bounded function. By 
GLf D 

Definition 1.2 there is a positive number Q such that if 

p 6 Dj ' , then |la^(p)J < Q. There is a real number x such 
a,b 

that Ixf > Q. ^ince RT ' is the set of all real numbers, 
a, b 

then there is a number q such that q fc D, ' and I , (q) = x. 
a,b a' 

Then Jla^(q)J <• Q. However |la b(q)| = |x| > Q. Since the 

assumption that is bounded by Q leads to the contra-

diction that |la>k(q)| ^ Q> then Ia ^ is not bounded. 

Theorem 2.13. Suppose ^a is the function of 

Theorem 2.11 and (p, c) c IQ K. Then, if q 6 DT • , 
a , D ' a,b 

c + 1 £ d t -
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Proof. Suppose q €; DT ' . Suppose p < q. Note that' if 
a, b 

p > q, then the proof is similar. Since 0 y UT ' » by 
Aa,b 

q -j 
Definition 1.7 and theorems 1.3 and 1.10, < r-dt exists. Let 

P t 

e be a positive number. There is a positive number C such 

that if p = SQ < s-̂  < . . . <• sn = q and < 6 

and s^-^ < < s^, i = 1, 2, . . . , n, then 

1n 1 <1 i I 

T~~ {s. - s^_^) - £ ̂ dt I < e. It is necessary to prove 

q i . . 
that £ —at = Ia ^(q) - c. Suppose p = Sq < . . . < sn = q and 

P ' 

si - si_1 < 5, i = 1, 2, . . . , n. Suppose *a t,(sQ)
 = xo* 

Ia ^(s^) = xx, . . . , Ia fc(sn) = xR. By Definitions 2.2 and 

x. 
1.16 and Theorem 1.12 if 1 < i <, n, then ŝ^ - si_i = ^ y(t)dt< 

*i-l 

By Theorem 1.19 there is a number c in the interval of inte-

$4 — —1 
gration such that y(c) = ~ . By Theorem 2.6 

i " i-1 

y(c) 6 ( > Sj_). Therefore if 1 < i < n, let 

- S*i - I h e n - si-i' - Ia,b(«) * <= 

n x. - x. n 

s ", s -(si - si-lJ - Xa b W + c 

i=l si ~ si-i 1 1 1 a»b 



27 

|xn " x0 ~ la b(q} + °| ~ 0 < e. Therefore 

Theorem 2.14. The function I u of Theorem 2.11 is 

a» o 

continuous. 

Proof. Suppose q £ DT . Consider an interval [s, t] 

a,b 

such that q 6 (s» t). Since 0 ̂  [ s, t] by Definitions 1.7 

and 1.2 and Theorems 1.3 and 1.4 there is a positive number T 
such that if x 6 [s, t]> then j~j < T. Let e be a positive 

number. Let 6 = minimum (q-s), (t — q) "̂  . Suppose 

q, 6 Dj such that jq-̂  - q| <6. Then by Definition 1.16 
a, b 

and Theorems 1.12, 1.13> 1.14> and 2.13, 

|Ia>b
{ql) " I a » b = 

3l i 
r ? ' - ! r * 
p p 

5IU«at 

T Iq - q^| < T-6 < e. Hence ^ is continuous at 

(q, I& ^(q)}. Therefore Ifl ̂  is a continuous function. 

Definition 2.3. Denote IQ ^ by L. Note that D^ is the 

set of all positive numbers. 

Theorem 2.15. If s and t are positive numbers, then 

L(s't) = L(s) L{t}. 

Proof. Suppose s and t are positive numbers. Then 

s £ DL and t €: D^. Suppose L(s) = and L(t) = then 
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s = E(x^) and t = £(*2^. By Theorem 2.9 and Definition 2.2, 

L ( s t ) = L [ E ( X 1 ) - E ( X 2 ) ] = LLE;'X1 + x 2 ) ] « X X + x 2 . = 

L[E(x 1)] + L[E(X 2)] = L(s) + Lit). 

Theorem 2.16. Suppose p 6 D^. If k is a real number, 

then L[ (p)k] = k-L(p). 

Proof. Suppose p € and L(p) = x. Suppose k is a 

positive integer. Then by Definition 2.2 and Theorem 2.9» 

L[(p)K3 = L{[E(x)] k} = L([E(X)]' [ E(x)]' . . [E(x)]| = 

L{E{x x + + x)] = LEE(k-x)] = k*x = k«L(p). Hence 

if k is a positive integer, then L[(p)k] = k*L(p). 

Suppose k is a negative integer. Then -k is a positive 

integer. By Definition 2.2 and Theorems 2.9 and 2.10, 

L[ <p)k] = L{[EU)] k} = L ^ ^ - k j = X.(ETrhrr] "
 L t E ' k - x " -

k-x = k«L(p). Hence if k is a negative integer, then 

L[ (p)k] = k-L(p). 

Suppose k is a positive rational number. There are 

positive integers s and q such that k = ~. Thus 

L[(p)k] = L Hp)**}* By previous work q• L [{p)^J = L L C ) . 

1*1 (p)s] = s •L(p). Thus ^»L(p) = L £(p)^J• Hence if k is a 

positive rational number, then L[(p)k] » k*L(p). 
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Suppose k is a negative rational number. There are 

positive integers s and q such that k = z ~ . Thus 
H 

L[(p)k] = L^(p) By previous work, 

q• L I(p} qj = L I Hp) q] j = L[{p)"s] = -S'L(p). Thus •L [in •'] = "•] 

• i L H . — *L{p) = L {(p) 4J « Hence if k is a negative rational number, 
H 

then L[(p)k] = k-L(p). 

Suppose k is a real number. Let e be a positive number. 

By continuity of L there is a positive number 6^ such that if 

q £ D l and |q - (p)k | <• 6-̂ , then j L[ (p)k] - L(q)j < j. By a 

property of the real number system there is a positive number 

such that if r is a rational number and |r - kS <• 62»
 t h e n 

j(p)r~k - l| < 61-{p)~
k. Let 6 = minimum / 2 |x^ * 1*

 621* 

Suppose r is a rational number such that |r - k| < 6, then 

|(p)r"k - l| < 6-L' (p)~K. Hence |(p)r - (p)k| < ^ and 

| L C (p)k] - Lt ( p ) R 3 \ < By previous work, j L[ (p)k] - k'L(p)[ 

= |LI (p)k] - r-x + r-x - k-x| < (l[ (p)k] - L[ (p)r][ + | xll k - rI 

<•-•*• 6 { x| = e* Therefore if k is a real number, 

then L[ (p)k] = k-L(p). 



. CHAPTER III 

SOLUTION OF A STURM-LIOUVILLE TYPE 

SECOND ORDER DIFFERENTIAL EQUATION 

In this chapter a second order differential equation of 

the Sturm-Liouville type with certain boundary conditions 

will be studied. Suppose p is a positive, continuous 

function over [ 0, 1] and q is a continuous function over 

[0, 1]. If y is a function such that y is differentiable 

over [0, 1] and {p*yT) is differentiable over [0, 1], let 

<t(y) = (p-y')' - q-y and D^ = [0, 1]. The purpose of this 

chapter is to prove the existence of solutions to £(y) = 0 

that satisfy certain boundary conditions and to study 

properties of these solutions. 

Theorem 3.1. Suppose y is a function such that y is 

differentiable and (p-y1) is differentiable over [0, 1]. If 

X(y) = 0 and a £ [0, 1], then 

3C x s 
y(x) = y(a) + p{a)» yf (a) $ ̂ ryds + ) J q(t)- y(t)dtds 

ol QL ol 

for all x € [0, 1] . 

Proof. Suppose «t(y) = 0 and a 6 [0, 1]. By Theorem 1.8, 

y is continuous over [0, 1]; therefore by Theorem 1.3, q-y is 

continuous over [0, 1]. By Theorem 1.10, q*y is integrable 

over [0, 1]. By Theorem 1.16 if s 6 [0, 1], then 

30 
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s 
> [ p(t). y1 (t)3 Tdt = p(s)- y'(s) - p(a)-yf(a) = J q(t)-y(t)dt. 
a a 

Since p is positive over [0, 1], 

g 

y'(s) = p(a)-yf (a)-^^y + { q(t )• y{t )dt. Clearly y'(s) 
SL 

is integrable over [0, 1]. Then by Theorem 1.11 if x fe CO, 1], 

DC X! s 
$ y' {s)ds = p(a)•y'(a) ( ̂ jjyds + ? f q(t)•y(t)dtds. 
& 3. ci 3. 

Thus by Theorem 1.16, 

DC X s 
y U ) = y(a) + p(a) • yT (a) | ^ j d s + f f q(t) *y(t )dtds 

for all x 6 [0, 1] . 

Theorem 3.2. Suppose y is continuous and 

DC DC S 

y(x) = b + m j pIsT*25 + j j q(t) • y(t)dtds for all 

ct ci 3. 

x € [0, 1], then X(y) = 0 , b = y{a), and m = p(a)- yf(a). 

Proof. By Definition 1.15* y(a) = b. By Theorems 1.7 

DC 
and 1.17, y1 (x) = ( q(t)• y(t)dt. Therefore by 

ci 

Definition 1.15, yT (a) = m'p^y> or p(a) -y' (a) = m. Since 

x 
p(x)- y1(x) = m + £ q{t)*y(t)dt, by Theorem 1.17, 

a 

[ p(x)-y'(x)]' = q(x)•y(x). Therefore £(y) = 0 . This 

completes the proof of Theorem 3.2. 
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By Theorems 3.1 and 3.2 the differential equation 

A(y) = 0 together with the boundary conditions y(a) = b and 

p(a}* y' (a) = m is equivalent to the integral equation 

X X s 
y U ) = b + m { ̂ j d s + J J q(t)• y(t)dtds. 

cl cl 

A sequence of functions that will be used to prove the 
# 

existence of a solution of £(y) = 0 which satisfies certain 

boundary conditions is defined as follows. Suppose a € [0, 1]. 

Let f be a continuous function over [ 0, 1]. By Definitions 

1.6 and 1.7 and Theorems 1.3> 1.10, 1.17» and 1.11 a sequence 

f^iii=o ^ u n c t i o n s over [0, 1] exists such that if 

x € [0, 1] and n is a positive integer, then 

"2C X S 

fn(x) = b + m I f 5 f qltj-f^ftjdtds where b 
ci Q. SL 

and m are real numbers. It is noted that for each positive 

integer n, fn is a continuous, differentiable, and integrable 

function whose domain is [0, 1], fR(a) = b, and p(a)•fn'(a) = m, 

Consider the absolute value of the differences of 

successive terms of [^n]n=Q• % Definitions 1.6 and 1.2 and 

Theorems 1.3 and 1.4 there is a positive number M such that 

if t £ [ 0, 1], then jf^(t) - fQ{t)) < M. Since q and p are 

continuous and p is positive over [0, 1], by Definitions 1.7 

and 1.2 and Theorems 1.3 and 1.4 there are positive numbers 
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^ and Q such that if t & [0, 1], then |̂ j£"y\ < ]5 and 

\q{t)| < Q. Therefore by Theorems 1.11, 1.13, and 1.14 if 

x & [0, 1], then |f2(x) - ̂ (x)) = 

I pliT ( q(t)- [fx(t) - fQ(t)]dtdsj < 
zi 3. • 

5 1 pTst! f l q ( t ) B fl ( t ) " f o ^ | dtds J < f J | Q-MdtdsJ = 
a * SL l 3. a. I 

<X» S I 
^ { dtdsj = (x - a)^. By induction it can be shown filM 

P 

j x n s 

l i i W l 

?x 

a ' r 1 a 

x s 
f f 
a a 

that if n > 2 and x € [0» 1], then 

i I nn-X m J J 2 (n*"X) 
If U ) - f Ax)\ < Q i " a> . 
In Pn 1 [ 2 (n - 1)].' 

0n~^ M 
Consider the series 2 ' T' • Let v be a 

n=l P11""1 [2{n - 1)] I 

number such that 0 < v <1. There is a positive integer N 

such that if n > N, then ̂  < 2n{2n - 1)(1 - v). Hence 

I 0n M 

!Ll2"'' • Uzn(2n - 1)1 < 1 " V" b e f o r e by 
0u""a M 

Pn_1 [2(n - 1)] ! 

• .22. nn-l M 
Theorem 1.24, ~TTt converges. If x € [0, 1] 

^ 1 P n _ 1 [2{n - l)]l 

and k is a positive integer, then 0 < (x - a)^^ < 1. Therefore 

for any positive integer i, 
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0 < Q1'1 M(x - a)2'1'1' < , Q1'1 M _ H e n o e i f 

P1"1 [ 2 (i - 1)3 I " P C 2 (i - 1)].T 

nn-l M/y \2(n—1) 
x 6 [0, 13, then by Theorem 1.25, L * p n - l \ ^ n , 1 } ] | 

converges. These considerations lead to the following 

theorem. 

Theorem 3.3. Suppose f is a continuous function over 

y Q 

[0, 1] and fn(x) = b + m ( ̂ j d s + f ̂  f qltl-f^ltldtds 

for n > 0 and x € [0, X] . T h e n ^ * 0 converges uniformly 

over [0, 13 to a continuous function f. Furthermore for each 

x -> x s 
x € [0, 1], f(x) = b m f ̂ iTds + ( f q(t)• f(t)dtds. 

Proof. Let e be a positive number. By the work prior 

to the statement of this theorem there are positive numbers 

Q, M, and P such that if n > 2 and x 6 [0, 13, then 

If fx) - * (x)! < o"'1 Ml* - a)2'1"1' 
' n *n-l I p"-l [ 2(n - 1)]J 

C--4P n*"! 
Since } lr-̂  converges, by Theorem 1.23 there 

n=l Pn~ [ 2(n - 1)3 I 

is a positive integer N such that if m > n > N» then 

m ^i-1 
. M Qx"x < e#i. 

i«n+l P 1 _ X t 2(i - 1)] i 

Suppose ra > n 2> N and x 6 [0, 13 • Then 
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" fn ( x )l 5 l f m W " V l ( x ) l + 

S f
m-l

( x ) " fm-2(x)l + • • • ̂  | V l ( x ) ' fn(x)l 

< ^ M(x - a) 2' 1' 1' < g S q1'1, M < £ -

i=n+l P 1" 1 [ 2(i - 1)] ! i=n+l P 1" 1 [2(i - 1)].' 

Therefore jfn(x)j converges to a number, call it f(x). 

Hence by Definition 1.19> converges uniformly over 

[0, 1] to the function f. By Theorem 1.22, f is a continuous 

function. It will next be shown that if x £ CO, 1], then 

f(x) = b •*- m C ̂ y d s + J ] q(t}• f(t)dtds. 
ct 3. GL 

Suppose there is an x Q £ [0, 1] such that 

f(x0) i b * m \° ^ i l
d s + j° I q(t). f(t)dtds. Then 

ci ci cl 

f *% cO 

^fn(xo) n = 0 does not converge to 

JC 2C s 
b * ffl 5° pTs7ds * S° 1 q(t)• f {t)dtds. Clearly x q ^ a, 

ci cl cL 
* 

Hence there is a positive number eo such that if N is a 

positive integer, then there is an n > N such that 

- m f° - <;0 f q(t) -f(t)dtds J > e0. 
I cL cl cl I 

By work prior to the statement of this theorem, there are 

positive numbers Q and P such that if t €, [0, 1], then 

jq(t)j <- Q and I ip Since n"| converges 
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uniformly to f there is a positive integer N q such that if 

n > N and t £ [0, 1], then If (t) - f(t)| < e°'P . 
° in i 3(xq - a) ' Q 

Let n > Nq 1 and 

|fn(x ) - b - m 9° ir-jds - 1 f q(t). f (t)dtdsj > eo. 
• a a pIsT a i 

Then by definition of fn and Theorems 1.11, 1.13, and 1.14, 

x i x„ , s eQ <-- J-P \ u „ oo l _ r\o l ? I W - b - » 9° - 9° <j q(t)- f (t)dtds 

+ ° f ° pTST18 + |° ptsT J q(t)' fn-l ( t ! d t d s " b " m f ° pra-ds 

" |° 5XS7 f q(t)-f(t)dtdsj = (° j q<t)[fn_]L(t} - f(t)]dtda 

- I !q(t)Hfn-l(t) - f(t)jdtds 

[90 -p f Q'e°'p dtds| = 1 , J° f eodtdsl - -̂ 2. 

Ii * k 3tx0 - a)
2 Q | 3(x0 - a)

2 \ l I | 3 

The assumption that there exists an xQ 6 [0, 1] such that 

X ^ 3 
f{xQ) / b

 + a C° pjsjds * p(s)' $ q(t) -f (t)dtds leads to the 
3. 3. 3. 

contradiction that £o <- Hence 

3C X 3 
f (xQ) = b + m f° —~i—cis

 + C° —J.-Vds ? q(t)• f (t)dtds. Therefore 
a P (s) a P * s) a 
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.f x £ I 0, 1] , then 

x i ' / I s 

4 ^ » 1 p r - . a 
f (x) = b + a ( j ( q{t) • f (t )dtds. This completes 

the proof of Theorem 3.3. 

By Theorem 3.2 the function f in Theorem 3.3 has the 

properties that $(f) = 0, f(a) = b, and p(a)'ff(a) = m. This 

shows that the differential equation «C(y) = 0 together with 

the boundary conditions y(a) = b and p(a)-y'(a) = m has a 

solution over 10, 1]. 

Theorem 3.4* Suppose f is a continuous function over 

X X s 
10, i] such that f(x) = b + m f je ids

 + f p)s) f q(t)•f(t)dtds 
a p V w' apv ' a 

for all x € [0, 1] . If for all x € [0, 1] 

X •, X s 
g(x) = b + m ( - 7-yds + f —r~r ( q(t)• z(t)dtds, then g = f. 

a ' a ' a 

X X s 
x G [0, 1], z(x) = b + m \ -TT—rds + { ( q(t) • z (t Jdtds. 

q P \ ° A F \ ° / < s 

Proof. Let e be a positive number. Suppose for all 

X , X , s 

1 pfs7ds * £ plil I 

By Theorems 3.2 and 1.3, g is continuous over [0, 1]. By 

Theorems ,1.3 and 1.4 there is a positive number M1 such that 

if t € [0, 1], then jf(t) - g(t)j <M*. Since the series 

^ used in Theorem 3.3 converges, by 
n=i Pn [2(n - 1)]I 

Theorem 1.26, rr- 5\ • • • <f r— converges. Further-
M n=l P11"1 [2(n - 1)1 J 

more since jx - aj < 1 for all x £ [0, 1}, 
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; ^ Qn-1 M f ( _ )2(n-l) 
then by Theorem 1.25> ^ r~i— :—~— converges for 

n=l P11"1 [ 2(n - 1)]! 

all x S [0, 1]. By a variation of Theorem 1.23 there is a 

positive integer N such that if n > N, then 

MT 0n~^"(y - a \ 2 (n-1) 
< e. Let n > N. Suppose x & [0» 1] . 

P n _ 1 [ 2(n - I)]1 

Then by Theorems 1.11, 1.13, and 1.14» j g(x) - f(x)| = 

b + m I irlr13 + 5 ptIt 5 q(t)-g(t)dtds - b - m ( ̂ y d s -

? J q(t).f(t)dtdsj « J( 7 v { q(t}• [g(t) - f(t)]dtds 
a pv ' a a pv J a 

f d t d s ! ,a a 5 if J ^ T s t ! | - f (t) | dtds 

= §~p- - a)^. Kence 'jg(x) - f(x)j < ^ p' (x - a)2. Thus 

by Theorems 1.11, 1.13, and 1.14, jg£x) - f(x)j = 

j f \ q(t) •[ g(t) - f (t)]dtdsj < -p J ( J Q M' ̂2"""p 9^ dtds 

02 1A1 (x - a)^ 
= ^ — — • After n repetitions of this procedure, 

4.' P 

ig(x) - f(x)| ^ T
n
Qi 1 ( x " a ) 2 ( n 1 ) < e. Hence g(x) = f(x). 

1 Pn~x [2(n - 1)31 

Therefore g = f over [0, 13. Thus the solution of £(y) = 0 

that contains the point (a, b) and has a slope of m 1 at 
p(a) 

a is unique. 
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Theorem 3.5 • Let u and v be any two solutions of 

4(y) = 0. There exists a real number V such that if 

x C- [ C, 1], then p(x)« [ u(x) • v' (x) - u' (x) -v(x)] = V. 

Proof. Denote p•(u «vT - u1»v) by g. Since <£(v) = 0 

and el(u) = 0, then (p-v') ' = q.v and (p«uf) * = q«u. 

Therefore by Theorem 1.7> 

g' = (p'VT)'*u (p'V'l-u' - (p-u'J'-v - (p-u')*vT = 

q.v«u + p*vT«uf - q*u -v - p-u'•vf = 0. Hence by Theorem 1.9 

there is a real number y such that g = v over [0, 1]. To 

determine v, evaluate g at a. Therefore, 

g(a) = p(a) • [ u(a)-v' (a) - uf (a). v(a)] = y. Thus if x 6 to, 1], 

then p(x)' [ u(x)' vT (x) - u'(x)*v(x)] = v. 

Theorem 3.6. Suppose £ and r) are the solutions of 

U(y) = 0 such that £{0) = 1, r)(0) = 0, p(0) * Cf (0) = 0, and 

p{0)-T)'(O) = 1. If x £ £0, 1], then 

p(x)' [ 5 (x) ' T) ' (x) - (x)-T}(x)] = 1. 

Proof. By Theorem 3.5 there is a real number v such 

that if x G [ 0, 1], then p(x) •[ ?(x) - r,' (x) - (x) • 7}(x)] = v. 

Since 0 S [0, 1], v = p(0) • [ £(0) • r),T (0) - (0)• r) (0} ] = 1. 

Therefore if x €: [ 0, 1], then 

p{x)' [ £(x) • r)f (x) - £T (x) • t)(x)] = 1. 

Theorem 3.7. Suppose f is the solution of c2 (f) = 0 

such that 0 < a < 1, f(a) = b, and p(a)*ft(a) = m. Then, if 

x £ [0, 1], f{x) = [b.p(a) .r)T (a) - m • rj (a) 3 • £(x) -

[ b- p{a)* £' (a) - m -5(a)]* rj(x) where 5 and r) are the solutions 

of ̂ l(f) = 0 described in Theorem 3.6. 
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Proof. Let g denote [ b» p(a)« r)' (a) - m • r) (a) ] *5 -

[b.p(a) - 5' (a) - m*5(a)]» t). If g(a) = b, p(a)>g'(a) = m, and 

I'Ag) = 0, then by Theorems 3.2 and 3.4» g = f over [0, 1]. 

First by Theorem 3.6, 

g(a) = E f (a)'p(a) • t]'(a) - p(aj-f} (a) * rj(a)]- 5(a) -

[ f (a)- p(a}> V (a) - p(a) -f' (a) -5(a)] • t)(a) = 

f (a)-p(a) • [ 5(a) • rj® (a) - 5'{a)«r}(a)] = f (a) • 1 = b. Therefore 

g{a) = b. Next by Theorems 1.7 and 3.6, p(a)-g'(a) = 

p{a) *[ f (a)-p(a)-r)f (a) - p(a)-f1 (a) • r)(a)] • 5T (a) -

p(a)* [ f (a)-p{a) • 5' (a) - p(a) -f' (a) '5(a)] • rjT (a) = 

[ p(a)] 2-f (a) • TI1 (a) • (a) - [ p(a)] 2-f' (a)' r)(a)-5T (a) -

[ p(a)] 2« f (a) •§1 (a) *r)'(a) + [ p(a)]2- f1 (a)- r)' (a)-5(a) = 

p{a)* f1 (a)-|p(a) [5(a) V (a) - S1 (a) r)(a)]"̂  = p(a) -fT (a)-1. 

Therefore p{a)*g'(a) = m. Finally since each of f, 5, and r\ 

is a solution of «£(y) = 0 by Theorems 1.7 and 3.5> (p g')' = 

«fp«[b *p(a)' rj1 (a) - m*T)(a)] • 5' - p*[b.p(a) *5' (a) - m -5(a)] • V*) ' 
4» * 

= q*t b .p(a) • rj * (a) - m.rj(a)]*5 - q*I b • p(a) • 5f (a) - m .5(a)] • r) 

= q-g. Therefore &(g) = (p«gT)' - q-g = 0. Hence g = f 

over [0, 1]. Thus if x ̂  [0, 1], then f(x) = 

[ b. p(a) • r)' (a) - m'-n(a)] • 5(x) - [b• p(a) • 5' (a) - m-5(a)] -rj(x). 
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Theorem 3.S. Suppose ̂ (u) = 0, <̂ (v) = 0, and u and v 

are linearly independent functions over [0, 1], 

Part A. The graph of neither u nor v is tangent to the 

x-axis. 

Part B. Each of the functions, u and v, has at most a 

finite number of roots in [0, 1]. 

Part C. The functions u and v have no common root in 

[0, 1] . 

Part D. The derivatives uT and v1 of the functions u and 

v have no common root in [0, 1]. 

Proof of Part A. Suppose one of the functions, say u, 

is tangent to the x-axis. Then there is an xQ 6 [0, 1] 

such that u(xQ) = u
f(xQ) =0. By Theorem 3.7 if x 6 [0, 1], 

then u(x) = [u(xQ) -pU0) * r)' (Xq) - p(xQ) -u' (xQ) • r)(xQ)] -£(x) -

E u(xQ) • p(x0) • V ixQ) - p{xQ) • u' (XQ) • C(Xq)3- t)(x) = 0. Thus if 

c^ = 0 and C2 is a real number, not zero, then 

c-̂» v * C2' u = 0 over [0, 1] . By Definition 1.22, C2 would 

have to be zero. Since the assumption that u is tangent to 

the x-axis leads to a contradiction of the fact that u and 

are linearly independent functions over [0, 1], then neither 

function is tangent to the x-axis. 

Proof of Part 3. Suppose one of the functions, say u, 

has infinitely many roots in [0, 1]. Let 

M = |x | u i x ) = 0 and x & [ 0, 1]^. Since M is an infinite, 
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bounded set by Theorem 1.2 it has a limit point, call it xQ. 

Thus u(xQ) = 0 since u is continuous at (xQ> u(xQ)). Let £ 

be a positive number. There is a positive number 6 such 

that if x 6 [ 0, 1] and 0 <|x - xQ! < 6, then 

ju(x) - u(x ) 1 
' — - u'(x )I < s. By Definition 1.11 there is an 
! x - xQ o i 

x & M such that 0 < \x - x j < 6. Therefore, 

iu(x) - U(X ) . 
2- _ u*(xjl = 

X - x^ o 
i O I 

U'(x } < e. Thus u'(x0) ~ 0. 

Hence u is tangent to the x-axis at xQ; but by Part A of 

Theorem 3.3, this is not possible. Therefore u has at most 

a finite number of roots in [ 0, 1]. 

Proof of Part C. Suppose u and v have a common root, x. 

Since u(x) = v(x) = 0, by Theorem 3.5> p•(u-vf - uf-v) = 0 

over [0, 1]. Since p is positive u-vT - u'*v = 0 over 

[0, 1]. By Part A of Theorem 3.3 neither function is tangent 

to the x-axis. Thus for each x [0, 1], u(x) = 0 if and 

only if v(x) = 0. Let x^ < x^ < . • . < x n be the common 

roots of u and v in [0, 1]. By Definitions 1.6 and 1.7 if 

v ^ 0, then ~ is a function. Consider ~ over the open 

intervals x^), i = 1, 2, . . . , n+l, XQ = 0, and 

= 1. Since uT*v - u-vT = 0 by Theorem 1.7, 

(H) 1 „v ~ u 'v T ~ o over the open intervals (x̂  x^). 
v v-



43 

Therefore by Theorem 1.9 there is a sequence of real numbers 

(c-•]?-! s u c h t h a t u(x> = Vv{x) for x 6 (x^, xj_). Note 

that if 0 or 1 is a common root there will be a slight 

adjustment in the notation. Let £ be a positive number. 

Since v is differentiable at (x1, v(x1)) there is a positive 

number § such that if s 6 [0» 1] and 0 <(s - x̂ l < 6, then 

" v ( X l ) - v' (x-, ) I < . fvi-
 T h e r e is an s 6 TO, 1] 

I s - x± 1 I jcl 2j 

such that s < x1 and 0 < |s - x1j < 6. Therefore 

lu(s) - u(xi} _ c .v,(v )] = i
Cl'V(s) " Cl'V(Xl) - C . v M x J 

cl'v ul;j s - x1 1 1 

< fc„ — £ 3—^- < e. Therefore by Definition 1.12, 
1 11 i°r «2T 1 

u'{x^) - c7• v' (x^). There is a t t [0, 1] such that t > x^ 

S u{t) u(x,) j 
and 0 < \t - xxl < 6. Therefore | t . ̂

 c2'T'(xX>) 

| Co-v(t) - c9> v(x1 ) e 

i 2 t . ' L - C2"'l xr < M ic. e,| • 1 • lcr c2i 

Therefore by Definition 1.12, = c^v'fx^. Since by 

Part A of Theorem 3.8, v' (x-̂ ) 4- 0> then c^ = ^2 • ^ c a n 

proved by a similar method that for i and j such that 

0 < i < n 1 and 0 j ̂  n + 1, ci = c .. Hence 

u(x) = c1-v(x) for x £ [0, 1], and u and v are not linearly 
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independent over [ 0, 1]. rowever u and v are linearly-

independent over [0, 1]; .1 srefore u and v h?;. e no common 

root in [0, 1] . 

Proof of Part D. Suppose there is a». xQ [ 0, 1] such 

that v1 ixQ) = u
,(xQ) = 0. Then by Theore.n 3.5 and the fact 

that p is positive over [0, 1], uf,v - u*v' = 0 over [0, 1] . 

Suppose one of the functions, say u» has a root at 

x^ £ [ 0, 1]. Since by Part A of Theorem 3.&, u is not 

tangent to the x-axis, then u'(x^) ̂  0; hence xQ r 

Since us (x-̂)* v(x^) - u(x^) • vT (x-̂ ) = 0, then v(x^) = 0. But 

u and v have no common root by Part C of Theorem 3.S; 

therefore v(x^) •£ 0 and u(x^) f- 0. Hence either the 

derivatives of u and v do not have a common root at x^, or 

o 

neither u nor v has a root in [0, 1]. Suppose neither u nor 

v has a root in [0, 1]. Since u'*v - u-v' = 0 over [0, 1]» 

by Definitions 1.6 and 1.7 and Theorem 1.7, 
j = U| 'V 2 U'V" " = Q. over [0, 1] . By Theorem 1.9 there is 

v 

a real number c such that ̂  = c over [0, 1]. Hence u and v 

are linearly dependent. But u and v are linearly 

independent. Therefore the derivatives of u and v have no 

common root. This completes the proof of Theorem 3.S. 
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Suppose p has continuous first and second 

derivatives over [0, 1]. 

Theorem 3.9. The substitution y = transforms the 

differential equation &(y) = 0 into M(z) = z,T + Q*z = 0» 

where Q is a continuous function of x over [0, 1]. 

Proof. Substitute for y in ^(y) = 0. 'i'hen 

•j / Z 

j j = <1"0' Since p and y are differentiable, z is 

differentiable; therefore by Theorem 1.7> 
r z > , f i > - 2 - z - b - p ' l ' fP. L 
P . — £ E mi' • 

.»—• + 2 T » O 1 2 '• Z'P" + Z- P' _ 
2 *Up 2'fp' ~ 2 - f p " 2 - f p ' 2 . p . f p -

g p . r z . - i- . f l i l l l . H e n c e V p f z " + - f ^ - ] = q . J . 

L 4* p 2' p J [ 4*P
 2'p J V P 

T h u s z" * z • j p •> - •§— - § 1 = 0 . D e n o t e p ' , - - 3 b y 

[4.p2
 2 ' p PJ ~ 4* P 2' p p 

Q. Note that. Q is a continuous function of x over [0, 1]. 

Let M{z) = 2 " + Q< z. Then M(z) = 0 . 
Theorem 3.10. Let M-^(z) = z 1 1 + Q̂ » z and 

Mg(z) = z " T ^2* 2 w^ e r e a nd Q2 are continuous over [0, 1] . 

Furthermore suppose that Q£(x) > Q1(x) for all x fc [0, 1] and 

there is at least one x in each subinterval of [ 0, 1] such 

that Q2(x) > Q1{x). Suppose z± and z 2 are solutions of 

M-^iz) = 0 and (z) = 0 , respectively, and neither z^ nor z2 
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is identically equal to zero. Then there is at least one 

root of z2 between any two roots of z^. 

Proof. . Suppose = 0, 142^2) = 0, &nd neither z-̂  

nor %2 is identically zero over [0, 1}. Theorem 3.3 can be 

used to prove that any non-trivial solution of X(f) = 0 has 

at most a finite number of roots in [0, 1]. Since p has no 

root in [0, 1]» ŷ  has at most a finite number of roots in 

10, 1], and z-, = ifp • y^, then z^ has at most a finite number 

of roots in [ 0, 1]. Suppose s and t are consecutive roots 

of 2-. . Since for any non-zero real number c, M^(cz^) = 0 

and there is a non-zero real number c such that c • z^ > 0 

over (s, t), it suffices to assume that z^ > 0 over (s, t). 

Suppose z2 has no root in (s, t). Since for any non-zero 

real number c, (c-z2) = 0 and there is a non-zero real 

number c such that c* z2 > 0 over (s, t), it suffices to 

assume that z2 > 0 over (s, t). Consider 

g = z-̂ '* z2 - z1« z2
 f. By definition of and 1^, gf exists 

and by Theorem 1.7, g' = z1
,,.z2 - z-̂- z2

1 '. Since 

21 = Z1' ' a n d 2̂* Z2 = z2<1' ^hen Sr = Z2'^2*Z1 ~ zl'^l'z2 

over [0, 1]. Since z^ and z2 are continuous g' is continuous 

over (s, t) by Theorem 1.3.. By Theorem 1.10, g' is 

integrable over [s, t]; therefore 
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t tf 
I" gf(r)dr = ( z-^r) • z 2 (r) • [ Q 2 (r) - Q 1(r)

1dr. By 
s s 

t 
Theorem 1.16, J gf(r-\.r =. g(t) - g(s) = 

3 

Z1' ^' a2 ̂  ^ ~ z2 T ^' zi^ t ̂  ~ ^i'(s)- z 2 (s) z 2
t (s)- zt(s) = 

T {t) • z 2 (t) - z^' (s)» z 2 {s). Since z^'(s) > 0 and z 2 (s) > 0, 

then - z-^'(s)*z2(s) <• 0. And since z-^'(t) < 0 and z 2 (t) > 0, 

then z-j * (t) • z 2(t) < 0 . Therefore \ gT(r)dr <- 0# However 
s 

since z^ > 0 and z 2 > 0 over (s, t), and for each subinterval 

of {s, t), there is a number x such that Q 2(x) - Q-^(x) > 0, 

t 
then by Theorem 1.15> ( z^ {r)« z 2 (r) * [ Q 2 (r) - Q-^(r)]dr > 0. 

t t 
Therefore, f gf(r)dr ^ f z^(r)•z2(r)• [ Q2(r) - Q1(r)]dr. 

s s J" 

Hence z 2 has a root between s and t. Therefore z 2 has a 

root between any two roots of z^. 
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