APPROVED:

THE LAPLACE TRANSFORMATION

THESIS

Presented to the Graduate Council of the North Texas State University in Partial Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

By

Russell Floyd, B. S.
Denton, Texas
August, 1965

TABLE OF CONTENTS
Chapter Page
I. FUNCTIONS AND CONTINUITY 1
II. INTEGRALS 6
III. THE LAPLACE TRANSFORMATION 23

CHAPTER I

FUNCTIONS AND CONTINUI'TY

Definition 2-1: A function, lenoted f, is a set of ordered p*irs of real numbers, the first element of which is conoted by ' \because, and the second element of which is denoted by $f(t)$. The set or ail t is called the domain of the function and is denoted by $D(f)$; the set of all $f(t)$ is called the range of the function and is denoted by $R(f)$. Frequently, a function will be referred to as $f(t)$.

Definition 1-2: $f(t)$ is said to be contiruous at a point a if and only if $f(a)$ exists, and for each positive real number ε, there is a positive neal number δ such that if $|t-a|<\delta$ and $f(t)$ exists, then $|f(t)-f(a)|<\varepsilon$.

Definition l-3: If $f(t)$ is not continuous at a point a, it is said to be discontinuous at the point a. I. is seen that $f(t)$ is discontinuous at a point a if and only if $f(a)$ does not exist or $f(a)$ exists and there is a positive reai number ε, so that if δ is a pritive real number, there is a number t so that $|t-a|<\delta, f(t)$ exists and $|f(t)-f(a)| \geq \varepsilon$.

Example: If for all real numbers $t, f(t)=t$, and a is a real number, then $f(a)=a$. Let $\varepsilon>0$ and choose $\delta=\varepsilon$. If t is any real number so that $|t-a|<\delta$ and $f(t)$ exists, then $f(t)=t$ and $|f(t)-f(a)|=|t-a|<\delta=\varepsilon$. Hence, $f(t)$ is continuous at any real number a.

In order to investigate the continuity of some functions, the following Lemmas will be proved.
Lemma: If k is a rational number and i is an irrational number, then $i+k$ is an irrational number.

Proof: Let k be a rational number and i be an irrational number. Assume $i+k$ is a rational number, say s. Since k is a rational number, it is expressible as p / q where each of p and q is an integer and $q \neq 0$. Since s is a rational number, it is expressible as m / n where each of m and n is an integer and $n \neq 0 . \quad i+k=s$ becomes $i+p / q=m / n$ and $i=$ $m / n-p / q=\frac{m \cdot q-p \cdot n}{n \cdot q}$. The integers are closed with respect to addition and multiplication; hence $m \cdot q-p \cdot n$ is an integer and $\mathrm{n} \cdot \mathrm{q}$ is an integer. Thus i is expressible as the quotient of two integers, but this implies i is a rational number, a contradiction. Therefore, the sum of a rational number and an irrational number is an irrational number.

Lemma: If $k \neq 0$ is a rational number and i is an irrational number, then $i \cdot k$ is an irrational number.

Proof: Let $k \neq 0$ be a rational number and i be an irrational number. Assume $i \cdot k$ is a rational number, say s. Let $k=\frac{p}{q}$ and $s=\frac{m}{n}$, where each of p, q, m, and n are integers and
$p \neq 0, q \neq 0$, and $n \neq 0$. This can be done jecause k ana s are rational numbers. Now, $i \cdot k=s$ implies $i \cdot \frac{p}{q}=\frac{m}{r}$ and $m \neq 0$, for if so then $i \cdot k=0$ and either $i=0$, a contradiction, or $k=0$, a contradiotion. Since $i \cdot \frac{p}{q}=\frac{m}{n}$, $i=\frac{m \cdot q}{n \cdot p}$. Again because of closure, $m \cdot q$ and $n \cdot p$ are integers and hence i is rational, a contradiction. Thus, the product of a non-zero rational number and an irrational number is an irrational number. Example: Define $f(t)=0$ if t is an irrational number and $\mathcal{E}()^{\prime}=1$ if t is a rational number. If a is a rational number let $\varepsilon=\frac{3}{4}>0$ and 0 be a positive real number. δ is either a rational or an irrational number.

Case I: If δ is a rationa? number, $\frac{\delta}{4}$ is a rational number and $\frac{\pi}{4} \cdot \mathrm{o}$ is an irrational number. Now, $\left|\frac{\pi}{4} \delta\right|<\delta$ and $\left|a-\frac{\pi}{4} \delta-a\right|$ $<\delta$. Let t be the irraticial number $a-\frac{\pi}{4} \delta$, then $|t-a|<\delta$, and $f(t)=0 .|f(t)-f(a)|=|0-1|=1 \neq \frac{3}{4}=\varepsilon$. Case II: If δ is any irrational number, $\frac{3}{4} \delta$ is an irrational number. Now, $\left|\frac{3}{4} \delta\right|<\delta$ ar $\left|a-\frac{3}{4} \delta-4\right|<\delta$. Let t be the Irraionai number $a-\frac{3}{4} \delta$, then $|t-a|<\delta$ and $\because(t)=0$. $|f(t)-f(a)|=|0-1|=1 \neq \frac{3}{4}=\varepsilon$. Thus, $f(t)$ is not continuous at any rational number a.

Definition 1-4: $f(t)$ is said to be continuous on a set if and only if $f(t)$ is continuous at each point 0 . the set. Defin: ion 1-5: $f(\pi)$ is sail to be discontinuous on a set if it is not conti uous on tise set.

Remark: In the first example, $f(t)$ was defined on the set of all real numbers and was found to be continuous at any real number. Hence, $f(t)=t$ is continuous on the set of all real numbers. In the second example, $f(t)$ was defined on the set of all real numbers and was found to be discontinuous at all rational numbers. Hence, $f(t)$ is discontinuous on the set of all real numbers.

Example: Let a function f be defined in the following manner. If t is an irrational number, $f(t)=0$. If t is a rational number, $t=\frac{p}{q}$ where p is zero or a positive integer, q is a positive integer and p and q are relatively prime, then $f(t)=$ $\frac{1}{q}$. If $a \geq 1$, then there is a positive integer p and a number 1. so that $0 \leq b<1$ and $a=p+b$. Now, $f(a)=f(p+b)=f(b)$. Hence, if f is continuous for $0<t<1$ and p is a positive integer, then f is continuous at $p+t$. Also, if f is not continuous at $0 \leq t<1$, and p is a positive integer, then f is not continuous at $p+t$. Therefore, the investigation of the continuity of f will be limited to zero and numbers in the segment $(0,1)$. Let $0 \leq t<1$ be rational, $t=\frac{p}{q}, f(t)=$ $\frac{1}{q}$. Now, $0<q<q+1$, so $\frac{1}{q}>\frac{1}{q+1}>0$ and $\left(\frac{1}{q}-\frac{1}{q+1}\right)>0$. Suppose $f(t)$ is continuous, then for the positive real number $\varepsilon=\left(\frac{1}{q}-\frac{1}{q+1}\right)$, there is a δ^{*} so that if a is a real number so that $|a-t|<\delta$ and $f(a)$ exists, then $|f(a)-f(t)|<\varepsilon$. Let a be an irrational number so that $|a-t|<\delta$ and $f(a)$ exists. Since in any interval there is at least one rational
number and at least one irrational number, there is at least one such a. Now, $f(a)=0$ and $|f(a)-f(t)|=\left|0-\frac{1}{q}\right|=\frac{1}{q} x$ $\left(\frac{l}{q}-\frac{l}{q+1}\right)=\varepsilon$. Hence, $f(t)$ is discontinuous at all rational numbers. Let $0 \leq t<1$ be an irrational number, then $f(t)=0$. Let $\varepsilon>0$ and choose a positive integer N so that $N \geq 2$ and $\frac{l}{N}<\varepsilon$. Consider the set $S=\{x \mid x \varepsilon[0,1], x$ is rational, $x=\frac{p}{q}$ where each of p and q is a positive integer, $0 \leq p<q$, p and q are relatively prime, and $q \leq N\}$. There are $N-1$ positive integers which are less than N. There are $1+$ $\frac{(N-2)(N-1)}{2}$ rational expressions of the form $\frac{p}{q}$ where $0<q<N$ and $0 \leq p<q$. Let y be an element of a set M if and only if y is one of these expressions or $y=1$. Let z belong to the set K if and only if there is an element x in M so that $z=|t-x|$. K is a finite set of positive numbers, and hence has a smallest element d. Let $\delta=\frac{1}{2} d$. If $|a-t|<\delta$ and $f(a)$ exists then $0<a<I$, also a is not an element of M. If a is irrational, $f(a)=0$ and $|f(a)-f(t)|=|0-0|=0<\varepsilon$. If a is a rational number, $a=\frac{p}{q}, q \geq N, f(a)=\frac{1}{q} \leq \frac{1}{N}<\varepsilon$, and $|f(a)-f(t)|=\left|\frac{1}{q}-0\right|<\varepsilon$. Therefore, $f(t)$ is discontinuous at each rational number and continuous at each irrational number.

CHAPTER II

INTEGRALS

Definition 2-1: If each of a and b is a real number and $a<b$, then $\{x \mid a \leq x \leq b\}$ is called an interval and is denoted by $[a, b]$. Also, $\{x \mid a<x<b\}$ is called a segment and is denoted by (a, b). The length of $[a, b]$ and (a, b) denoted by $\ell[a, b]$ and $\ell(a, b)$ respectively is $\ell[a, b]=\ell(a, b)=$ b-a.

Definition 2-2: If $[a, b]$ is an interval, each of $x_{0}, x_{1}, x_{2}, \ldots$ x_{n} is a real number, and $a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b$, then if $\sigma=\left\{x_{0}, x_{1}, \cdots x_{n}\right\}, \sigma$ is called a subdivision of [a,b]. The length of the i th subinterval is ($\left.x_{i}-x_{i-1}\right)$. Definition 2-3: If σ is a subdivision of the interval $[a, b]$, then the norm of σ is the $\max \left\{\left(x_{1}-x_{0}\right),\left(x_{2}-x_{1}\right), \ldots\right.$ $\left.\left(x_{n}-x_{n-1}\right)\right\}$.
Definition 2-4: If σ is a subdivision of $[a, b]$ and each of $c_{1}, c_{2}, c_{3}, \cdots c_{n}$ is a real number so that $x_{0} \leq c_{1} \leq x_{1}$, $x_{1} \leq c_{2} \leq x_{2}, \cdots x_{n-1} \leq c_{n} \leq x_{n}$, then the ordered set $x_{0}, x_{1}, x_{2} \ldots x_{n}$ together with $c_{1}, c_{2}, c_{3}, \cdots c_{n}$ is called an augmented subdivision of [a,b].

Definition 2-5: If σ is an augmented subdivision of $[a, b]$, and for each positive integer $p,\left(c_{p}, f\left(c_{p}\right)\right.$) is a pair in f, then define $S_{0}=f\left(c_{1}\right)\left(x_{1}-x_{0}\right)+f\left(c_{2}\right)\left(x_{2}-x_{1}\right)+\cdots+f\left(c_{n}\right)\left(x_{n}-x_{n-1}\right)$.

Definition 2-6: A function $f(x)$ has an integral on the interval $[a, b]$ if and only if $f(x)$ is defined on $[a, b]$, and if $\sigma_{1},{ }_{2}, \cdots$ is a sequence of augmented subdivisions of [a,b] with norms $\rho_{1}, \rho_{2}, \cdots$ respectively so that $\left\{\rho_{n}\right\}$ converges to 0 , then $S_{\sigma_{1}}, S_{\sigma_{2}}, \ldots$ has a limit. Definition 2-7: If K is a limit of one such sequence $S_{\sigma_{1}}$, $S_{\sigma_{2}}, \cdots$ then K will be called an integral of $f(x)$ on $[a, b]$. Theorem: If $f(x)$ has an integral on $[a, b]$, then $f(x)$ is bounded on $[a, b]$.

Proof: Let $f(x)$ be a function defined on [a,b], such that $f(x)$ is not bounded on $[a, b]$. Suppose $f(x)$ is not bounded above on $[a, b]$, then there is a number $\zeta \varepsilon[a, b]$, such that if I is any segment and $\zeta \varepsilon I, f(x)$ is not bounded on $I \cap$ [a,b]. Either $\zeta=a, \zeta=b$, or $a<\zeta<b$.

Case I: $\zeta=a$. If n is a positive integer and $n>1$, let $\sigma_{n}=\left\{x_{0}, x_{1}, \cdots x_{n}\right\}$ so that for each positive integer i, $i \leq n, x_{i}=a+\frac{i(b-a)}{n}$. If $2 \leq i \leq n$, let $c_{i}=a+\frac{i(b-a)}{n}$. Since f is not bounded on $\left[x_{0}, x_{1}\right]$, there is a c_{1} so that $x_{0} \leq c_{1} \leq x_{1}$, and $f\left(c_{1}\right)>-\sum_{p=2}^{n} f\left(c_{p}\right)+\frac{n^{2}}{b-a}$. Since $x_{i}-x_{i-1}=\frac{b-a}{n}$ then $S_{\sigma_{n}}=\sum_{p=1}^{n} f\left(c_{p}\right)\left(x_{p}-x_{p-1}\right)>n$. Also $\rho_{n}=\frac{b-a}{n}$, hence the sequence $\left\{\rho_{i}\right\}$ converges to 0 , but $\left\{S_{\sigma_{i}}\right\}$ does not have a limit.

Case II: $\zeta=b$. A similar argument, choosing c_{n} so that $f\left(c_{n}\right)>$
$-\sum_{p=1}^{n-1} f\left(c_{p}\right)+\frac{n^{2}}{b-a}$ will show that f does not have an integral on $[a, b]$.

Case III: $a<\zeta<b$. If n is a positive integer greater than 1 , let $z_{i}=a+\frac{i(\zeta-a)}{n}$ and $u_{i}=\zeta+\frac{i(b-\zeta)}{n}, i=0,1$, $2, \cdots n$. Let $\sigma_{n}=\left\{x_{0}, x_{1}, \cdots x_{2 n-1}\right\}$ so that if $0 \leq i \leq n-1$, $x_{i}=z_{i}$ and if $n \leq i \leq 2 n-1, x_{i}=u_{i-n+1} \cdot \rho_{n}=x_{n}-x_{n-1}=\frac{b-a}{n}$ If $1 \leq i \leq n-1$, let $c_{i}=x_{i}$. If $n+1 \leq i \leq 2 n-1$, let $c_{i}=x_{i}$. Since f is not bounded on $\left[x_{n-1}, x_{n}\right]$, there is a number c_{n} so that $x_{n-1} \leq c_{n} \leq x_{n}$ and

$$
\left.f\left(c_{n}\right)>-\frac{n}{b-a} \sum_{p=1}^{n-1} f\left(c_{p}\right)\left(x_{p}-x_{p-1}\right)+\sum_{p=n+1}^{2 n-1} f\left(c_{p}\right)\left(x_{p}-x_{p-1}\right)-n\right] .
$$

Now $S_{\sigma_{n}}=\sum_{p=1}^{2 n-1} f\left(c_{p}\right)\left(x_{p}-x_{p-1}\right)>n .\left\{\rho_{n}\right\}$ has a limit 0 but $\left\{S_{\sigma_{n}}\right\}$ does not converge so f does not have an integral on $[a, b]$. Therefore, if f has an integral on $[a, b], f$ is bounded on $[a, b]$.

Theorem: If $f(x)$ has an integral on $[a, b]$ and $a<c<b$, then $f(x)$ has an integral on $[a, c]$ and on $[c, b]$. Furthermore, if A is an integral of $f(x)$ on $[a, c]$ and B is an integral of $f(x)$ on $[c, b]$, then $A+B$ is an integral of $f(x)$ on $[a, b]$. Proof: Let $f(x)$ have an integral on $[a, b]$ and $a<c<b$. Since $f(x)$ has an integral on $[a, b]$, it is bounded on [a,b], hence $f(x)$ is bounded on $[c, b]$. Let J and j be the upper and lower bounds respectively of $f(x)$ on $[c, b]$. Then, if $5 \varepsilon[c, b]$, $j \leq f(\zeta) \leq J$. If n is a positive integer, let $\sigma_{n} "=$ $\left\{x_{0}, x_{1}, \cdots x_{n}\right\}$ be a subdivision of $[c, b]$ so that the length of
each subinterval of $\sigma_{n} "$ is $\frac{b-c}{n^{+}}$If $\sigma_{n} "$ is augmented, then for $1 \leq i \leq n, j \leq f\left(c_{i}{ }^{\prime \prime}\right) \leq J$. Nownj$\leq f\left(c_{1}{ }^{\prime \prime}\right)+f\left(c_{2}{ }^{\prime \prime}\right)+\cdots+$ $f\left(c_{n} "\right) \leq n J$ and $j(b-c) \leq\left[f\left(c_{1} "\right)+f\left(c_{2} "\right)+\cdots+f\left(c_{n} "\right)\right] \frac{b-c}{n} \leq$ $J(b-c)$. Hence $j(b-c) \leq S_{\sigma_{n}}{ }^{\prime \prime} \leq J(b-c)$. Thus, $\left\{S_{\sigma_{n}}{ }^{\prime \prime}\right\}$ is a bounded sequence and by a previous theorem $\left\{S_{\sigma_{n}} "\right\}$ must contain a convergent subsequence $\left\{S_{\sigma_{n_{p}}} "\right\}$. Let $\sigma_{1}{ }^{*}=\sigma_{n_{1}} " ; \sigma_{2}^{*}=\sigma_{n_{2}}$; Now 0 . $\leq \rho_{n}^{*} \leq \rho_{n}^{\prime \prime}=\frac{b-c}{n}$ and so $\left\{\rho_{n}^{*}\right\}$ converges to 0 . Thus, $\left\{\sigma_{n}{ }^{*}\right\}$ is a sequence of augmented subdivisions of $[c, b]$ with norms $\rho_{1} *, \rho_{2}{ }^{*}$, ...such that $\left\{\rho_{n}{ }^{*}\right.$ converges to 0 , and $\left\{S_{\sigma_{n}}{ }^{*}\right\}$ converges. Let $\left\{S_{\sigma_{n}}{ }^{*}\right\}$ converge to B. Let $\sigma_{1}{ }^{\prime}, \sigma_{2}{ }^{\prime}, \ldots$ be a sequence of augmented subdivisions of $[a, c]$ with norms $\rho_{1}{ }^{\prime}, \rho_{2}{ }^{\prime}, \cdots$ such that $\left\{\rho_{n}{ }^{\prime}\right\}$ converges to 0 . Let σ_{n} be the union of σ_{n}, and $\sigma_{n}{ }^{*}$ with x_{o}^{*} deleted. Now $\rho_{n}=\max \left(\rho_{n}{ }^{\prime}, \rho_{n}{ }^{*}\right)$ and since both $\left\{\rho_{n}{ }^{\prime}\right\}$ and $\left\{\rho_{n}{ }^{*}\right\}$ converge to $0,\left\{\rho_{n}\right\}$ converges to 0 . Hence $\left\{\sigma_{n}\right\}$ is a sequence of augmented subdivisions of $[a, b]$ with norms $\rho_{1}, \rho_{2}, \cdots$ so that $\left\{\rho_{n}\right\}$ converges to 0 , and since $f(x)$ has an integral on $[a, b],\left\{S_{\sigma_{n}}\right\}$ converges. Denote the limit of $\left\{S_{\sigma_{n}}\right\}$ by K. Now, for each positive integer $s, S_{\sigma_{s}}=S_{\sigma_{s}}{ }^{n}+S_{\sigma_{s}} *$ so that $S_{\sigma_{s}}=S_{\sigma_{s}^{\prime}}^{\prime}-S_{\sigma_{s}}$ *, but $\left\{S_{\sigma_{n}}\right\}$ converges to K and $\left\{S_{\sigma_{n}}{ }^{*}\right\}$ converges to B, hence $\left\{S_{\sigma_{n}}-S_{\sigma_{n}}{ }^{*}\right\}$ converges to $(K-B)$, and $\left\{S_{\sigma_{n}}{ }^{\prime}\right\}$ converges. Therefore, $f(x)$ has an integral on $[a, c]$. Similarly, $f(x)$ has an integral on $[c, b]$.

Furthermore, if $\left\{S_{\sigma_{n}}{ }^{\prime}\right\}$ converges to A and $\left\{S_{\sigma_{n}} "\right\}$ converges to B, then $\left\{S_{\sigma_{n}}{ }^{\prime}+S_{\sigma_{n}} "\right\}$ converges to $(A+B)$. But, for each positive integer $m, S_{\sigma_{m}}=S_{\sigma_{m}}{ }^{\prime}+S_{\sigma_{m}}{ }^{\prime \prime}$, hence $\left\{S_{\sigma_{m}}\right\}$ converges to $(A+B)$.
Definition 2-8: $\quad \int_{a}^{a} f(x) d x=0$.
Definition 2-9: If $f(x)$ has an integral on [a,b] define a function ϕ so that $(t, K) \varepsilon \phi$ if and only if $t \varepsilon[a, b]$ and K is the integral of $f(x)$ on $[a, t]$.
Theorem: ϕ of definition 2-9 is continuous at each point of $[a, b]$.

Proof: Let $f(x)$ have an integral on $[a, b]$. Then if $c \in[a, b]$, $f(x)$ has an integral on $[a, c]$, denote the integral of $f(x)$ on $[a, c]$ by K, then $\phi(c)=K$ and $(c, K) \varepsilon \phi$. Since $f(x)$ has an integral on $[a, b], f(x)$ is bounded on $[a, b]$. Let m and M by the lower and upper bounds of $f(x)$ on $[a, b]$. If $a \leq x \leq b$, then $m \leq f(x)^{\circ} \leq M$ and $|f(x)| \leq \max . \quad(|m|,|M|)$. Let $h=\max .(|m|,|M|)$. If $\varepsilon>0$, let $\delta=\frac{\varepsilon}{h+1}$. If $|x-c|<\delta$ and $\phi(x)$ exists, then $a \leq x \leq b$. If $x=c$, then $|\phi(x)-\phi(c)|=$ $|K-K|<\varepsilon . \quad$ If $x \neq c$, then either $x>c$ or $x<c$. If $x>c$, then $|\phi(x)-\phi(c)|=\left|\int_{a}^{x} f(x) d x-\int_{a}^{c} f(x) d x\right|=\left|\int_{c}^{x} f(x) d x\right|$. If σ is an augmented subdivision of $[c, x]$, then $m(x-c)=$ $\sum_{p=1}^{n} m\left(x_{p}-x_{p-1}\right) \leq \sum_{p=1}^{n} f\left(c_{p}\right)\left(x_{p}-x_{p-1}\right)=S_{\sigma} \leq$ $\sum_{p=1}^{n} M\left(x_{p}-x_{p-1}\right)=M(x-c)$. Hence, $\left|S_{\sigma}\right| \leq h(x-c)$ and $\left|c_{c}^{x}(x) d x\right| \leq h(x-c)<h \delta=h\left(\frac{\varepsilon}{h+1}\right)<\varepsilon$. If $x<c$, a similar
argument will show that $|\phi(x)-\phi(c)|=\left|-\int_{x}^{c} f(x) d x\right|<\varepsilon$. Therefore, ϕ is continuous at each point of $[a, b]$.
Lemma: If $f(x)$ is continuous on $[a, b]$ and $f_{a} f(x) d x$ exists, then there is a number ζ so that $\zeta \varepsilon[a, b]$ and $\int_{a} f(x) d x=f(\zeta) \cdot(b-a)$.
Proof: Let $f(x)$ be continuous on $[a, b]$ and $\int_{a}^{b} f(x) d x$ exist. Since $f_{a} f(x) d x$ exists, $f(x)$ is bounded on $[a, b]$. Let m and M denote the greatest lower bound and least upper bound respectively of $f(x)$ on $[a, b]$. Since $f(x)$ is continuous there exists $c \varepsilon[a, b]$ and $d \varepsilon[a, b]$ such that $f(c)=m$ and $f(d)=M$. Furthermore, if $m \leq W \leq M$ there is a number y so that y is between c and d and $f(y)=W$. Let σ be an augmented subdivision of $[a, b]$, then $m(b-a)=\sum_{p=1}^{n} m\left(x_{p}-x_{p-1}\right) \leq \sum_{p=1}^{n} f\left(c_{p}\right)\left(x_{p}-x_{p-1}\right)=S_{\sigma} \leq$
$\sum_{p=1}^{n} M\left(x_{p}-x_{p-1}\right)=M(b-a)$ and $m(b-a) \leq \int_{b}^{b_{j} \leq M(b-a)}$ so that
$m(b-a) \leq \int_{a} f(x) d x \leq M(b-a)$ and $m \leq \frac{\int_{a}(x) d x}{b-a} \leq M$. Let $z=\frac{\int_{a} f(x) d x}{b-a}$ then $m \leq z \leq M$ and there is a number 5 between c and d so that $f(\zeta)=z$. Hence, there is a number ζ so that $\zeta \varepsilon[a, b]$ and $f(\zeta) \cdot(b-a)=\int_{a} f(x) d x$. Definition 2-10: $f(x)$ has a derivative at a point a if and only if there is a number K and a segment I containing a so that if $x \in I, f(x)$ exists and if $\varepsilon>0$ there is a $\delta>0$ so that if $0<|x-a|<\delta$ and $f(x)$ exists, then $\left|\frac{f(x)-f(a)}{x-a}-K\right|$ < ε. K will be denoted by $f^{\prime \prime}(a)$.

Theorem: If $f(x)$ is continuous on $[a, b]$, then $\phi(x)$ defined by definition 2-9 has a derivative on (a,b). Furthermore, if $c \varepsilon(a, b)$, then $\phi^{\prime}(c)=f(c)$.

Proof: Let $f(x)$ be continuous on $[a, b]$, then $\phi(x)$ is defined for $a l l \mathrm{x} \varepsilon[\mathrm{a}, \mathrm{b}]$, hence if $\mathrm{c} \varepsilon(\mathrm{a}, \mathrm{b})$, there is a segment containing c which is a subset of $D(\phi)$. If $\varepsilon>0$, then since $f(x)$ is continuous there exists a $\delta>0$ so that if $|x-c|<\delta$ and $a<x<b$, then $f(x)$ exists and $|f(x)-f(c)|<\varepsilon$. If $0<|x-c|<\delta$. and $\phi(x)$ exists, then $a<x<b \dot{x}$ If $x>c$, then $\frac{\phi(x)-\phi(c)}{x-c}=\frac{\int_{a}^{x} f(x) d x-\int_{a}^{c} f(x) d x}{x-c}=\frac{\int_{c}^{x_{f}} f(x) d x}{x-c}$.
However, there is a number h such that $c<h<x$ and $f(h)(x-c)=\int_{c}^{x} f(x) d x$. Now $|h-c|<\delta$ and $\left|\frac{\phi(x)-\phi(c)}{x-c}-f(c)\right|$ $=|f(h)-f(c)|<E . \quad$ If $x<c$, a similar argument will show that $\left|\frac{\phi(x)-\phi(c)}{x-c}-f(c)\right|<\varepsilon$. Hence, $\phi^{-}(c)=f(c)$. Definition 2-11: If $f(x)$ is defined and bounded on $[a, b]$ and σ_{n} is a subdivision of $[a, b]$, then define $S_{\sigma_{n}}=\sum_{\sigma_{n}} M_{i}\left(x_{i}-x_{i-1}\right)$ where M_{i} is the least upper bound of $f(x)$ on $\left[x_{i-1}, x_{i}\right]$. Also, define $S_{\sigma_{n}}=\sigma_{\sigma_{n}}^{\sum} m_{i}\left(x_{i}-x_{i-1}\right)$, where m_{i} is the greatest lower bound of $f(x)$ on $\left[x_{i-1}, x_{i}\right]$.
Lemma: Let $f(x)$ be defined and bounded on $[a, b]$ and let σ be a subdivision of $[a, b]$, then for each positive integer i such that there is $x_{i} \varepsilon \sigma, f(x)$ must be bounded on $\left[x_{i-1}, x_{i}\right]$ because $f(x)$ is bounded on $[a, b]$. Let $M_{i} n d m_{i}$ denote the least upper and greatest lower bounds respectively of $f(x)$ on $\left[x_{i-1}, x_{i}\right]$. Then $m_{i} \leq M_{i}$, for if not then $m_{i}>M_{i}$ and $f(x)$ is a function
whose greatest lower bound is larger than its least upper bound, a contradiction. Now $\left(x_{i}-x_{i-1}\right)>0$ so $m_{i}\left(x_{i}-x_{i-1}\right) \leq$ $M_{i}\left(x_{i}-x_{i-1}\right)$. Hence, $\sum_{\sigma} M_{i}\left(x_{i}-x_{i-1}\right) \geq \sum_{\sigma} m_{i}\left(x_{i}-x_{i-1}\right)$ and $S_{\bar{\sigma}} \geq S_{\underline{\sigma}}$.

Lemma: If $f(x)$ is def inced and bounded on $[a, b], \sigma$ and σ * are subdivisions of $[a, b]$, and $\sigma \subset \sigma^{*}$, then $S_{\sigma}{ }^{*} \leq S \bar{\sigma}^{-}$, also $S_{\underline{\sigma}} \leq S_{\underline{\sigma}}{ }^{*}$.
Proof: Let $f(x)$ be defined and bounded on $[a, b], \sigma$ and σ * be two subdivisions of $[a, b]$, and $\sigma \subset \sigma \%$; If $\sigma=\sigma^{*}$ then $S_{\bar{\sigma}}=S_{\sigma}^{*}$. If $\sigma \neq \sigma^{*}$, then there is a positive integer j so that σ^{*} contains j elements not in σ. If $j=I$, then there is a positive integer i such that $x_{p}=x_{p}^{*}, p=0,1,2, \ldots$, $i-1, x_{i}^{*} \notin \sigma$, and $x_{p}=x_{p+1}^{*}, p=i, i+1, \cdots, n$. Now,

$$
S_{\bar{\sigma}}=\sum_{p=1}^{i-1} M_{p}\left(x_{p}-x_{p-1}\right)+M_{i}\left(x_{i}-x_{i-1}\right)+\sum_{p=i+1}^{n} M_{p}\left(x_{p}-x_{p-1}\right)=
$$

$$
\sum_{p=1}^{i-1} M_{p}^{*}\left(x_{p}^{*}-x_{p-1}^{*}\right)+M_{i}\left(x_{i+1} *-x_{i-1} *\right)+\sum_{p=i+2}^{n+1} M_{p}^{*}\left(x_{p}^{*}-x_{p-1}^{*}\right)=
$$

$$
\sum_{p=1}^{i-1} M_{p} *\left(x_{p}^{*} * x_{p-1}^{*}\right)+M_{i}\left(x_{i}^{*}-x_{i-1} i^{*}+M_{i}\left(x_{i+1} *-x_{i} *\right)+\sum_{p=i+2}^{n+1} M_{p} *\left(x_{p} *-x_{p-1} *\right)\right.
$$

$$
\geq \sum_{p=1}^{i-1} M_{p} *\left(x_{p} *-x_{p-1} *\right)+M_{i} *\left(x_{i} *-x_{i-1} *\right)+M_{i+1} *\left(x_{i+1} *-x_{i} *\right)+
$$

$\mathrm{n}+1$
$\sum_{p=i+2} M_{p} *\left(x_{p} *-x_{p-1} *\right)=S-*$. Assume that for $\sigma \subset \sigma^{*}$ and σ^{*} having exactly k elements not in σ, then $S_{\sigma} \geq S_{\sigma} \mathcal{F}^{*}$. Let $\sigma \subset \sigma^{*}$ and σ \% have exactly $k+1$ elements not in σ. There is a positive
integer i such that $x_{i}^{*} \nless \sigma$. Let σ^{\prime} be σ^{*} with x_{i}^{*} deleted. Now $\sigma \sigma^{\prime}$ and σ^{\prime} has exactly k elements not in σ. Therefore $S_{\bar{\sigma}} \geq S_{\bar{\sigma}}$. Also $\sigma^{\circ} G^{*} \sigma^{*}$ and $\sigma *$ has exactly one element not in σ^{\prime}. Therefore $S_{\bar{\sigma}} \geq S_{\bar{\sigma}} *$ and $S_{\bar{\sigma}} \geq S_{\sigma} *$. By mathematical induction it follows that if $\sigma \subset \sigma^{*}$ then $S_{\bar{\sigma}} \geq S_{\bar{\sigma}}^{*}$. Also by a similar argument $\mathrm{S}_{\underline{\sigma}} \leq \mathrm{S}_{\underline{\sigma}}{ }^{*}$.

Lemma: If $f(x)$ is defined and bounded on $[a, b]$, and σ and $\sigma \%$ are two subdivisions of $[a, b]$, then $S_{\bar{\sigma}} \geq \underline{S}_{\underline{\sigma}} *$.
Proof: Let $f(x)$ be defined and bounded on $[a, b]$ and σ and $\sigma *$ be tw subdivisions of $[a, b]$, then if $\sigma^{\prime}=\sigma U \sigma *$ by the previous lemma $S_{\bar{\sigma}} \geq S_{\bar{\sigma}}$. Also by the same lemma $S_{\underline{\sigma}}{ }^{-} \geq S_{\underline{\sigma}}{ }^{*}$. And by a previous lemma $S_{\bar{\sigma}}, \geq S_{\underline{\sigma}}$, so that $S_{\bar{\sigma}} \geq S_{\bar{\sigma}}$, \geq $S_{\underline{\sigma}}{ }^{\prime} \geq S_{\underline{\sigma}}{ }^{*}$. Hence $S_{\bar{\sigma}} \geq S_{\underline{\sigma}}{ }^{*}$.
Theorem: A function $f(x)$ defined on an interval $[a, b]$ has an internal on $[a, b]$ if the following are true: $f(x)$ is bounded on $[a, b]$. Also if $\sigma_{1}, \sigma_{2}, \cdots$ is a sequence of subdivisions with norms $\rho_{1}, \rho_{2}, \cdots$ such that $\left\{\rho_{n}\right\}$ converges to 0 and $\varepsilon>0$, there is a positive integer N;o that if $n>N$, then $\left|S_{\bar{\sigma}_{n}}-S_{\sigma_{n}}\right|<\varepsilon$.

Proof: Let $f(x)$ be defined on $[a, b], f(x)$ be bounded on $[a, b]$ and if $\sigma_{1}, \sigma_{2}, \cdots$ is a sequence of subdivisions with norms $\rho_{1}, \rho_{2}, \cdots$ such that $\left\{\rho_{n}\right\}$ converges to 0 and $\varepsilon>0$, there is a positive integer N so that if $n>N$, then $\left|S_{\overline{\sigma_{n}}}-S_{\sigma_{n}}\right|<\varepsilon$.

Let $\sigma_{1}, \sigma_{2}, \cdots$ be a sequence of subdivisions of $[a, b]$ with norms $\rho_{1}, \rho_{2}, \cdots$ such that $\left\{\rho_{n}\right\}$ converges to 0 . Since $f(x)$ is bounded on $[a, b]$ it is bounded in each subinterval of $[a, b]$. Let M_{i} and m_{i} denote the least upper bound and greatest lower bound respectively of $f(x)$ on $\left[x_{i-1}, x_{i}\right]$: Let M and m denote the least upper and greatest lower bounds respectively of $f(x)$ on $[a, b]$. There is a set J such that $j \varepsilon J$ if and only if there is a subdivision σ_{i} such that $S_{\bar{\sigma}_{i}}=j$. This set is non-empty, for one such element is $M(b-a)$. Also there is a set K such that $k \in K$ if and only if there is a subdivision σ_{i} such that $S_{\underline{\sigma}_{i}}=k$. Again this set is non-empty, for one such element is $m(b-a)$. Now if $j \varepsilon J$, then $j=S_{\bar{\sigma}_{n}}=$ $\sum_{\sigma_{n}} M_{i}\left(x_{i}-x_{i-1}\right) \geq \sum_{\sigma_{n}}^{\sum m_{i}}\left(x_{i}-x_{i-1}\right) \geq m(b-a)$, so that J is bounded below. Similarly, K is bounded above. Hence there are real numbers A and B such that A is the greatest lower bound of J and B is the least upper bound of K. Suppose $A<B$. Since A is the greatest lower bound of J, there is $j \varepsilon J$ so that $A \leq j<B$. If there is not, then all elements of J are greater than or equal to B or one element of J is less than A. This contradicts the fact that A is the greatest lower bound of J. Hence there is an $S_{\sigma_{i}}$ such that $A \leq S_{\bar{\sigma}_{i}}<B$. For each positive integer n, $S_{\sigma_{n}} \leq S_{\sigma_{i}}<B$. Hence, B is not the least upper bound of K.

Thus, $A \not \& B$. Suppose $A>B$, then $A-B>0$ and by hypothesis there is : positive int:ger N so that if n : N then
$\left|S_{\sigma_{n}}-S_{\underline{\sigma}}\right|<\varepsilon$. But $f j^{\prime}=S_{\bar{\sigma}_{n}}$ and $k^{\prime}=S_{g_{n}}$ then $\left|j^{-}-k^{\prime}\right|$, B and by previous lemma $j^{\prime}=k^{\prime}$ so $j^{\prime}-k^{\prime}$ ≥ 0 and $0 \leq j^{-}-k^{-} A-B$. Now $A \leq j^{\prime}$ because A is the greatest lower bound of J and $k^{\prime} \leq B$ because B is the least upper bound of K. Thus $A \leq j^{\prime}$ and $-B \leq-k^{\prime}$ and $A-B \leq j^{\prime}-k^{\prime}$, a contradiction of $j^{\prime}-k^{\prime}<A-B$. Therefore $A=B$. Let $\varepsilon>0$, if $\sigma_{1}, \sigma_{2}, \ldots$ is a sequence of augmented subdivisions of $[\mathrm{a}, \mathrm{b}]$ with norms $\rho_{1}, \rho_{2}, \cdots$ such that $\left\{\rho_{\mathrm{n}}\right\}$ converges to 0 , then there is a positiv integer N_{1} so that if $n_{1}>N_{1}$ then $A-\varepsilon=S_{\sigma_{n_{l}}}$ if not then A is not the least upper bound of K. Also, there is a positive integer N_{2} so that if $\mathrm{n}_{2}>\mathrm{N}_{2}$ then $\mathrm{S}_{\bar{\sigma}_{\mathrm{n}_{2}}}<\mathrm{A}+\varepsilon$. If not then A is not the greatest lower bound of J. Let $N=\max \left(N_{1}, N_{2}\right)$, then if $n>N, A-\varepsilon<$ $S_{\sigma_{n}}$ and $S_{\bar{\sigma}_{n}}<A+\varepsilon$. But $S_{\sigma_{n}} \leq S_{\sigma_{n}} \leq S_{\sigma_{n}}$ so that $A-\varepsilon<S_{\sigma_{n}} \leq S_{\sigma_{n}} \leq S_{\sigma_{n}}<A+\varepsilon$ and $A-\varepsilon<S_{\sigma_{n}}<A+\varepsilon$, hence $\left|S_{\sigma_{n}}-A\right|<\varepsilon$, and $f(x)$ has an integral on [a,b].
Corollary: If $f(x)$ has in integral on $[a, b]$ and if $\left\{\sigma_{n}\right\}$ is a sequence of subdivisions of $[a, b]$ with norms $\rho_{1}, \rho_{2}, \cdots$ such that $\left\{\rho_{n}\right\}$ converges to 0 , then for each $\varepsilon>0$ there is a positive integer N so that if $n>N,\left|S_{\sigma_{n}}-S_{\sigma_{n}}\right|<\varepsilon$.
Proof: Let $f(x)$ have an integral K on $[a, b]$, and let $\left\{\sigma_{n}\right\}$ be
a sequence of subdivisions of $[a, b]$ with norms $\rho_{1}, \rho_{2}, \cdots$ such
that $\left\{\rho_{n}\right\}$ converges to 0 . Let $\varepsilon>0$ then $\frac{\varepsilon}{4(b-a)}>0$. If $\sigma_{k} \in\left\{\sigma_{n}\right\}$ and σ_{k} has h suk ivisions then let $c_{i}, i=1,2, \ldots$ $\cdot h$, be number so that $\left.c_{i} \varepsilon x_{i-1}, x_{i}\right]$ and $f\left(c_{i}\right)>$ $M_{i}-\frac{\varepsilon}{4(b-a)}$ et $z_{k}=\left\{c_{i} \quad i=1,2, \cdots h\right\}$. This is possible bec M_{i} is the least upper bound of $f(x)$ on $\left[x_{i-1}, x_{i}\right]$ and since $\left.\frac{\varepsilon}{4(b} \bar{a}\right)>0$ there must be at least one number $\zeta \varepsilon\left[x_{i-1}, x_{i}\right]$ so tha $f(\zeta)>M_{i}-\frac{\varepsilon}{4(b-a)}$. Let σ_{k} ' be σ_{k} aupinented with z_{k}. Then $\left\{\sigma_{n}{ }^{\prime}\right\}$ is a sequence of augmented subdivisions of $[a, b]$ with norms $\left\{\rho_{n}{ }^{\prime}\right\}=\left\{\rho_{n}\right\}$ which converges to 0 and hence $\left\{S_{\sigma_{n}}{ }^{\prime}\right\}$ converges to K. Thus, there is a positive integer P so that if $p>P$ then $\left|S_{\sigma_{p}},-K\right|<\frac{\varepsilon}{4}$. If $\sigma_{k} \varepsilon\left\{\sigma_{n}\right\}$ and σ_{k} has h subdivisions then let $d_{i}, i=1,2, \cdots h$ be numbers so that $d_{i} \varepsilon\left[x_{i-1}, x_{i}\right]$ and $f\left(d_{i}\right)<m_{i}+\frac{\varepsilon}{4(b-a)}$. Let $z_{k}{ }^{\prime}=\left\{d_{i} \mid i=1,2, \cdots h\right\}$. This is possible because m_{i} is the greatest lower bound of $f(x)$ on $\left[x_{i-1}, x_{i}\right]$ and since $\frac{\varepsilon}{4(b-a)}>0$ there must be at least one number $\zeta \varepsilon\left[x_{i-1}, x_{i}\right]$ so that $f(\zeta)<m_{i}-\frac{\varepsilon}{4(b-a)}$. Let σ_{k} " be σ_{k} augmented with $z_{k}{ }^{\prime}$, then $\left\{\sigma_{n} "\right\}$ is a sequence of augmented subdivisions of $[a, b]$ with norms $\left\{\rho_{n}{ }^{\prime \prime}\right\}=\left\{\rho_{n}\right\}$ which converges to 0 , and hence $\left\{S_{\sigma_{n}} "\right\}$ converges to K. Thus, there is a positive integer Q so that if $q>Q$ then $\left|S_{\sigma}{ }_{q} "-K\right|<\frac{\varepsilon}{4}$. Now, $f\left(c_{i}\right)>M_{i}-\frac{\varepsilon}{4(b-a)}$ so that $M_{i}-f\left(c_{i}\right)<\frac{\varepsilon}{4(b-a)}$ and $\sum_{r=1}^{m}\left[M_{r}-f\left(c_{r}\right)\right]\left[x_{r}-x_{r-i}\right]<$
$\sum_{p=1}^{m} \frac{\varepsilon}{4(b-a)}\left[x_{p}-x_{p-1}\right]=\frac{\varepsilon}{4}$. Hence, $\left|S_{\sigma_{k}}-S_{\sigma_{k}}\right|<\frac{\varepsilon}{4}$.
Also, $f\left(d_{i}\right)<m_{i}+\frac{\varepsilon}{4(b-a)}$ so that $f\left(d_{i}\right)-m_{i}<\frac{\varepsilon}{4(b-a)}$ and $\left[f\left(d_{i}\right)-m_{i}\right]\left[x_{i}-x_{i-1}\right]<\frac{\varepsilon}{4(b-a)}\left(x_{i}-x_{i-1}\right)$ so that
$\sum_{r=1}^{m}\left[f\left(d_{r}\right)-m_{r}\right]\left[x_{r}-x_{r-1}\right]<\sum_{r=1}^{m} \frac{\varepsilon}{4(b-a)}\left(x_{r}-x_{r-1}\right)=\frac{\varepsilon}{4}$. Hence $\left|S_{\sigma_{k}}\right|-S_{\sigma_{k}} \left\lvert\,<\frac{\varepsilon}{4}\right.$. Thus, if $N=\max (P, Q)$ and $n>N$, $\left|S_{\sigma_{n}}-S_{\sigma_{n}}-\left|<\frac{\varepsilon}{4},\left|S_{\sigma_{n}}^{\prime \prime}-S_{\sigma_{n}}\right|<\frac{\varepsilon}{4},\left|S_{\sigma_{n}}-K\right|<\frac{\varepsilon}{4}\right.\right.$ and $\left|S_{\sigma_{n}} \prime \prime-K\right|<\frac{\varepsilon}{4}$, and $\left|S_{\bar{\sigma}_{n}}-S_{\sigma_{n}}\right| \leq\left|S_{\bar{\sigma}_{n}}-K\right|+$
$\left|K-s_{\sigma_{n}}\right| \leq\left|s_{\sigma_{n}}-s_{\sigma_{n}}-\left|+\left|s_{\sigma_{n}}-k\right|+\left|K-s_{\sigma_{n}}\right|+\right.\right.$ $\left|S_{\sigma_{n}} \prime \prime-S_{\sigma_{n}}\right|<\varepsilon$.

By combining the last theorem and corollary, it is seen that a necessary and sufficient condition to insure the existence of an integral for $f(x)$ on $[a, b]$ is that for each sequence $\left\{\sigma_{n}\right\}$ of subdivisions of $[a, b]$ with norms $\rho_{1}, \rho_{2}, \ldots$ such that $\left\{\rho_{n}\right\}$ converges to 0 , and for each $\varepsilon>0$, there is a positive integer N so that if $n>\underset{b}{N}$ then $\left|S_{\sigma_{n}}-S_{\sigma_{n}}\right|<\varepsilon$. Theorem: If $\int_{a} f(x) d x$ exists, then $f_{a}|f(x)| d x$ exists. Proof: Let $\int_{a}^{b} f(x) d x$ exist, then by a previous theorem $f(x)$ is bounded on $[a, b]$. Thus $|f(x)|$ is bounded on $[a, b]$. Let $\left\{\sigma_{n}\right\}$ be a sequence of subdivisions of $[a, b]$ with norms $\rho_{1}, \rho_{2}, \cdots$ such that $\left\{\rho_{n}\right\}$ converges to 0 . Let M_{i} and \bar{M}_{i}
denote the least upper bound of $f(x)$ and $|f(x)|$ respectively on $\left[x_{i-1}, x_{i}\right]$, also let m_{i} and \bar{m}_{i} denote the greatest lower bound of $f(x)$ and $|f(x)|$ respectively on $\left[x_{i-1} x_{i}\right]$. For any subinterval $\left[x_{i-1}, x_{i}\right] e_{1}$ sher;
(i) $f(x) \geq 0$ for all $x \in\left[x_{i-1}, x_{i}\right]$. Then, $M_{i}=\bar{M}_{i}$ and $\underline{m}_{i}=m_{i}$ and $\bar{M}_{i}\left(x_{i}-x_{i-1}\right)-m_{i}\left(x_{i}-x_{i-1}\right)=M_{i}\left(x_{i}-x_{i-1}\right)$
$-m_{i}\left(x_{i}-x_{i-1}\right)$.
(ii) $f(x) \leq 0$ for all $x \in\left[x_{i-1}, x_{i}\right]$. Then, $\bar{M}_{i}=-m_{i}$,
$\underline{m}_{i}=-M_{i}$, and $\bar{M}_{i}\left(x_{i}-x_{i-1}\right)-\underline{m}_{i}\left(x_{i}-x_{i-1}\right)=$
$-m_{i}\left(x_{i}-x_{i-1}\right)+M_{i}\left(x_{i}-x_{i-1}\right)$ so that $\bar{M}_{i}\left(x_{i}-x_{i-1}\right)-$
$m_{i}\left(x_{i}-x_{i-1}\right)=M_{i}\left(x_{i}-x_{i-1}\right)-m_{i}\left(x_{i}-x_{i-1}\right), \quad$ or
(iii) $f(x)>0$ for some $x \varepsilon\left[x_{i-1}, x_{i}\right]$ and $f(x)<0$ for some $x \in\left[x_{i-1}, x_{i}\right]$. Then $M_{i}>0$ and $m_{i}<0, \bar{M}_{i}$ is either M_{i} or $-m_{i}$, and $m_{i} \geq 0$. If $\bar{M}_{i}=M_{i}$, then $\bar{M}_{i}-\underline{m}_{i} \leq \bar{M}_{i}=M_{i}<M_{i}-m_{i}$ so that $\bar{M}_{i}-\frac{m_{i}}{}<M_{i}$ m_{i} and $\bar{M}_{i}\left(x_{i}-x_{i-1}\right)-m_{i}\left(x_{i}-x_{i-1}\right) \leqslant M_{i}\left(x_{i}-x_{i-1}\right)-$ $m_{i}\left(x_{i}-x_{i-1}\right)$. If $\bar{M}_{i}=-m_{i}$, then $\bar{M}_{i}-m_{i} \leq \bar{M}_{i}=-m_{i}<$ $M_{i}-m_{i}$ and $\bar{M}_{i}\left(x_{i}-x_{i-1}\right)-m_{i}\left(x_{i}-x_{i-1}\right) \leq M_{i}\left(x_{i}-x_{i-1}\right)$ $-m_{i}\left(x_{i}-x_{i-1}\right)$. Hence, by combining all three cases, $0 \leq \bar{M}_{i}\left(x_{i}-x_{i-1}\right)-\underline{m}_{i}\left(x_{i}-x_{i-1}\right) \leq M_{i}\left(x_{i}-x_{i-1}\right)-$ $m_{i}\left(x_{i}-x_{i-1}\right)$. If $S_{\left|\bar{\sigma}_{n}\right|}$ and $\left.S\right|_{\sigma_{n}} \mid$ denote the upper and lower sums respectively of $|f(x)|$ on $[a, b]$ for the subdivision σ_{n}, then $0 \leq S\left|\bar{\sigma}_{n}\right|-S\left|\sigma_{n}\right| \leq$
$S_{\bar{\sigma}_{n}}-S_{\sigma_{n}}$. Let $\varepsilon>0$ and choose N a positive integer so that if $n>-N$ then $\left|S_{\sigma_{n}}-S_{\sigma_{n}}\right|<\varepsilon$. This can be
b
done because $f_{a} f(x) d x$ exists. But, $0 \leq S^{s}\left|\bar{\sigma}_{n}\right|-$ ${ }^{3}\left|\underline{u n}_{n}\right| \leq S_{\bar{\sigma}_{n}}-S_{\underline{\sigma}_{n}}<\varepsilon$, so that $\left|s_{\left|\bar{\sigma}_{n}\right|}-S_{\mid \underline{\sigma}_{n}}\right|^{k \varepsilon}$. Hence, $s_{a}^{b} \mid f(x) d x$ exists.
Theorem: If $\int_{a}^{b} f(x) d x$ and $\int_{a}^{b} g(x) d x$ exist, and $f(x) \geq 0$ and $g(x) \geq 0$ for all $x \in[a, b]$, then $\int_{a}^{b} f(x) \cdot g(x) d x$ exists. Proof: Let $\int_{a} f(x) d x$ and $\int_{a} g(x) d x$ exist, and $f(x) \geq 0$ and $g(x) \geq 0$ for all $x \in[a, b]$, then there are positive real numbers P and Q such that if $x \varepsilon[a, b] \quad|f(x)| \leq P$ and $|g(x)| \leq Q$. Let $\varepsilon>0$, then $\frac{\varepsilon}{2 P}>0$ and $\frac{\varepsilon}{2 Q}>0$. If $\left\{\sigma_{n}\right\}$ is a sequence of subdivisions with norms $\rho_{1}, \rho_{2}, \ldots$ such that $\left\{\rho_{n}\right\}$ converges to 0 , then since $\int_{a} f(x) d x$ exists, there is a positive integer. N_{1} so that if $r>N_{1}$, $\left|S_{\sigma_{r}} f-S_{\sigma_{r}} f\right|<\frac{\varepsilon}{2 P}$, and there is a positive integer N_{2} so that if $t>N_{2}$, then $\left|S_{\bar{\sigma}_{t}} g-S_{\underline{\sigma}_{t}} g\right|<\frac{\varepsilon}{2 Q}$: Let $N=$ $\max .\left(N_{1}, N_{2}\right)$ then if $n>N,\left|S_{\bar{\sigma}_{n}} f-S_{\sigma_{n}} f\right|<\frac{\varepsilon}{2 P}$ and $\left|S_{\sigma_{n}} g-s_{\sigma_{n}} g\right|<\frac{\varepsilon}{2 Q}$. Since $f(x) \geq 0$ and $g(x) \geq 0$ for all $x \varepsilon \in[a, b], M_{i}^{f} \cdot g \leq M_{i}^{f} \cdot M_{i}^{g}$ and $m_{i}^{f} \cdot g \geq m_{i}^{f} \cdot m_{i}^{g}$ for each i. Hence, $M_{i}^{f} \cdot g-m_{i}^{f} \cdot g \leq M_{i}^{f} \cdot M_{i}^{g}-m_{i}^{f} \cdot m_{i}^{g}$ and since $M_{i}^{f} \cdot g-m_{i}^{f} \cdot g \geq 0$, and $\left.\left(x_{i}-x_{i-1}\right)>0, \mid M_{i}^{f} \cdot g\left(x_{i}-x_{i-1}\right)-m_{i}^{f} \cdot g_{\left(x_{i}-x_{i-1}\right.}\right) \mid \leq$ $\left|\left(M_{i}^{f} \cdot M_{i}^{g}-m_{i}^{f} \cdot m_{i}^{g}\right)\left(x_{i}-x_{i-1}\right)\right|=\mid\left(M_{i}^{f} M_{i}^{g}-m_{i}^{f} M_{i}^{g}+m_{i}^{f} M_{i}^{g}-\right.$ $\left.m_{i}^{f} m_{i}^{g}\right)\left(x_{i}-x_{i-1}\right)|=| M_{i}^{g}\left(M_{i}^{f}-m_{i}^{f}\right)\left(x_{i}-x_{i-1}\right)+m_{i}^{f}\left(M_{i}^{g}-m_{i}^{g}\right)$ $\left(x_{i}-x_{i-1}\right)\left|\leq\left|M_{i}^{g}\right| \cdot\right| M_{i}^{f}\left(x_{i}-x_{i-1}\right)-m_{i}^{f}\left(x_{i}-x_{i-1}\right)\left|+\left|m_{i}^{f}\right| \cdot\right.$
$\left|M_{i}^{g}\left(x_{i}-x_{i-1}\right)-m_{i}^{g}\left(x_{i}-x_{i-1}\right)\right| \leq P \cdot\left|M_{i}^{f}\left(x_{i}-x_{i-1}\right)\right|-$
$m_{i}^{f}\left(x_{i}-x_{i-1}\right)|+Q \cdot| M_{i}^{g}\left(x_{i}-x_{i-1}\right)-m_{i}^{g}\left(x_{i}-x_{i} \cdot l\right) \mid$ for each i.
Therefore if $n>N, S_{\sigma_{n}} f \cdot g-S_{\sigma_{n}} f \cdot g \mid \leq P$.
$\left|S_{\sigma_{n}} f-S_{\sigma_{-} n_{b}} f\right|+Q\left|S_{\sigma_{n}} g-S_{b} \underline{\sigma}_{n} g\right|<P\left(\frac{\varepsilon}{2 P}\right)+Q\left(\frac{\varepsilon}{2 Q}\right)=\varepsilon$.
Hence, if $\int_{a} f(x) d x$ and $f_{a} g(x) d x$ exist, and $f(x) \geq 0$ and $g(x) \geq 0$ for $a l l x \in[a, b]$, then $\int_{a} f(x) g(x) d x$ exists. Corollary: If $\int_{a}^{b} f(x) d x$ and $\int_{a}^{b} g(x) d x$ exist, then $\int_{a} f(x), g(x) d x$ exists.
Proof: Let $f_{a} f(x) d x$ and $\int_{a} g(x) d x$ exist, then $f(x)$ and $g(x)$ are bounded on $[a, b]$ and there exists real numbers W and K so that $f(x)-\underset{b}{W} \geq 0$ and $g(x)-\underset{b}{K} \geq 0$ for all $x \varepsilon[a, b]$. Since $\int_{a} f(x) d x$ and $\int_{a} g(x) d x$ exist, $\int_{a} K f(x) d x$ and $\int_{a}^{b} W g(x) d x$ exist, also, $\int_{a_{b}}^{b}-K W d x, \int_{a}^{b} f(x)-W$, and $\int_{a} g(x)-K$ exist. Hence, $f_{a}(K f(x)+W g(x)-K W) d x$ exists. Now, since $f(x)-W \geq 0$ and $g(x)-K \geq 0$ for all $x \varepsilon[a, b]$, $\int_{a}(f(x)-W)(g(x)-W) d x$ exists. Thus, $f_{a}^{b}[(f(x)-W)$ $(g(x)-K)+(K f(x)+W g(x)-K W)] d x$ exists and $\int_{a}[(f(x)-W)(g(x)-K)+(K f(x)+W g(x)-K W)] d x=$ $\int_{a}^{b} f(x) g(x) d x$. Hence $f_{a}^{b} f(x) g(x) d x$ exists.
Theorem: If $g(x)>0$ for $a l l x \in[a, b], \int_{a}^{b} g(x) d x$ exists, and $\delta_{a} f(x) d x$ exists, then there is a number H such that if $m<\frac{b}{b} f(x) \leq M$ for $a l l x \in[a, b], m \leq H \leq M$ and $\int_{a}^{b} f(x) g(x) d x$ $=H \int_{a} g(x) d x$.

Proof: Let $g(x)>0$ for all $x \varepsilon[a, b], f_{a}^{b} g(x) d x$ and $\int_{a}^{b} f(x) d x$ exist. Then $\int_{a}^{b} f(x) g(x) d x$ exists, also $f(x)$ is bounded on $[a, b]$, so that there exists real numbers m and M such that if $x \varepsilon[a, b], m \leq f(x) \leq M$. Since $g(x)>0$ for all $x \in[a, b], \operatorname{mg}(x) \leq f(x) g(x) \leq M g(x)$. So that $\int_{a}^{b} m g(x) d x \leq \int_{a}^{b} f(x) g(x) d x \leq \int_{a}^{b} M g(x) d x$,
$m \int_{a}^{b} g(x) d x \leq \int_{a}^{b} f(x) g(x) d x \leq M \int_{a}^{b} g(x) d x$. Now, $g(x)>0$ for all $x \in[a, b]$, hence $f_{a} g(x) d x>0$ so $m<\frac{\int_{a}^{b} f(x) g(x) d x}{\int_{a}^{b} g(x) d x}<M$. If $H=\frac{\int_{a}^{b} f(x) g(x) d x}{\int_{a}^{b} g(x) d x}$ then
$\int_{a}^{b} f(x) g(x) d x=H \int_{a}^{b} g(x) d x$ where $m \leq H \leq M$.
Furthermore, if $f(x)$ is continuous, there is a number $\zeta \varepsilon[a, b]$ so that $f(\zeta)=H$ and $\int_{a}^{b} f(x) g(x) d x=f(\zeta) \int_{a}^{b} g(x) d x$.

THE LAPLACE TRANSFORMATION

Definition 3-1: Let $\left\{u_{n}\right\}$ be a sequence of posi:ive real numbers such that if H is a real number, there is a positive integer N such that if n is a positive integer and $n>N$, then $u_{n}>H$. The sequence $\left\{u_{n}\right\}$ will be called an increasing unbounded sequence.

Definition 3-2: Let $f(t)$ be a function such that if $w>0$, $\int_{0}^{W} f(t)$ exists. If for each increasing unbounded sequence $\left\{u_{n}\right\}$, the sequence $\left\{\int_{0}^{u_{n}} f(t) d t\right\}$ has a limit, then $\int_{0}^{\infty} f(t) d t$ is the limit.
Definition 3-3: If there is a function and a real number k such that $\int_{0}^{\infty} f(t) e^{-k t} d t$ exists, then L will be the set of all ordered triplets so that $(x, y, z) \varepsilon$ Lif and only if x is a function, $f(t) ; y$ is a real number; $z=\int_{0}^{\infty} f(t) e^{-y t} d t$. z will be denoted by $L[x, y]$, and z is called the Laplace Transformation of x and y.
u_{n}
Consider $f(t)=e^{a t}$, then $L[f(t), k]=L\left[e^{a t}, k\right]=\operatorname{Lim}_{n \rightarrow \infty}\left\{\int_{0}^{a t} \cdot e^{-k t} d t\right\}$
$\left.=\lim _{n \rightarrow \infty} \int_{0}^{u_{n}} e^{-(k-a) t} d t\right\}$. Suppose $k>a$ then $k-a>0$ and
$\operatorname{Lim}_{n \rightarrow \infty}\left\{\int_{0}^{u_{n}} e^{-(k-a) t} d t\right\}=\lim _{n \rightarrow \infty}\left[\frac{-1}{k-a}\left(e^{-(k-a) t}\right){ }_{0}^{u_{n}}\right]=$
$\frac{-1}{k-a} \operatorname{Lim}_{n \rightarrow \infty}\left(e^{-(k-a) u_{n}}-1\right)=\frac{-1}{k-a}\left[\operatorname{Lim}_{n \rightarrow \infty} \frac{1}{\left.e^{(k-a) u_{n}}-1\right]}=\right.$
$\frac{-1}{(k-a)}[0-1]=\frac{1}{(k-a)}$. Thus, $L\left[e^{a t}, k\right]$ exists for $k>a$. Theorem: If $L[f(t), k]$ exists, for some $t_{o} \geq 0 f(t) e^{-k t}$ is bounded for all $t>t_{0}$, and $h>0$, then $L[f(t), k+h]$ exists. Proof: Since $f(t) e^{-k t}$ is bounded for all $t>t_{0} \geq 0$, there exist real numbers m and M so that if $t>t_{o}, m \leq f(t) e^{-k t}$ $\leq M$. Let $H=\max \cdot(|m|,|M|)$, then $H \geq 0$ and $-H \leq f(t) e^{-k t} \leq H$ for all $t>t_{0}$. Since $h>0, \int_{0}^{\infty} e^{-h t} d t$ exists. Let $\varepsilon>0$, $\frac{\varepsilon}{\mathrm{H}+1}>0$ and if $\left\{u_{n}\right\}$ is an increasing unbounded sequence, there is a positive integer N_{1} so that if $p, q>N_{1}$ then $\left|\delta_{u_{q}}^{u_{p}} e^{-h t} d t\right|<\frac{\varepsilon}{H+1}$. Let N_{2} denote the smallest positive integer such that if $i>N_{2}$, then $u_{i}>t_{0}$. Let $N=\max \cdot\left(N_{1}, N_{2}\right)$ then if $m, n>N,\left|\int_{u_{n}}^{u_{m}} e^{-h t} d t\right|<\frac{\varepsilon}{H+1}$, and $-H \leq f(t) e^{-k t} \leq H$ for all $t>t_{o}$, also $\left|f(t) e^{-h t}\right| \leq H$ for all t between u_{n} and u_{m}. Now, $L[f(t), k]$ exists so that $\int_{u_{n}}^{u_{m}} f(t) e^{-k t} d t$ exists and hence, $f_{u_{n}}^{u_{m}} f(t) e^{-k t}\left(e^{-h t}\right) d t$ exists. Furthermore, since $e^{-h t}>0$ for all $t \geq 0$, by a previous theorem, there is a real number $K_{u_{m}}^{K}$ so that $|K|<H$ and $\left|\delta_{u_{n}}^{u_{m}} f(t) e^{-k t}\left(e^{-h t}\right) d t\right|=$ $|K| \cdot\left|\delta_{u_{n}}^{m} e^{-h t} d t\right|<H . \quad \int_{u_{n}}^{u_{m}} e^{-h t} d t \left\lvert\,<H\left(\frac{\varepsilon}{H+1}\right)<\varepsilon\right.$.

Thus, $\left|\int_{u_{n}}^{u_{m}} f(t) e^{-(k+h) t} d t\right|<\varepsilon \quad$ and $L[f(t), k+h]$ exists. Theorem: If $L[f(t), k]$ woes not exist, $h>0$, and $f(t) e^{-(k-h) t}$ is bounded for all $t>0 \geq 0$, then $L[f(t, 1 h]$ does not exist. Proof: Le $L[f(t), k],+$ exist, $h>0$, and $f(t) e^{-(k-h) t}$ be bounded for all $t>t_{o} \geq$ Suppose $L[f(t), k-h]$ exists. Then since $h>0$ and $f(t) \quad-(k-h) t$ is bounded for all $t>t_{0}$, by the previous theorem, $L[f(t),(k-h)+h]=L[f(t), k]$ exists which contr edicts the hypothesis. Hence, $L[f(t), k-h]$ does not exist.

Theorem: There is a function so that if $k \geq 0, L[f(t), k]$ exists, but $L[|f(t)|, 0]$ does not exist.
Proof: Consider the following example.
For all $t \geq 0$, define:
$f(t)=\left\{\begin{array}{l}(-1)^{N}\left(-\frac{4}{N} t+\frac{4(N-1)}{N}\right) \text { for }(N-1) \leq t \leq\left(N-\frac{1}{2}\right), \\ (-1)^{N}\left(\frac{4}{N} t-4\right)\end{array}\right.$

$$
\int_{0}^{\infty} f(t) e^{-0 t} d t=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots(-1)^{n-1} \frac{1}{n}+\cdots
$$

which converges. Hence, $L[f(t), 0]$ exists. Since $f(t) e^{-0 t}$
is bounded for all $t \geq 0$, then by a previous theorem, if $k>0, L[f(t), k]$ exists. Now,

$$
|f(t)| e^{-0 t}= \begin{cases}\left|-\frac{4}{N} t+\frac{4(N-1)}{N}\right| & \text { for }(N-1) \leq t \leq\left(N-\frac{1}{2}\right) \\ \left|\frac{4}{N} t-4\right| \text { for }\left(N-\frac{1}{2}\right) \leq t<N .\end{cases}
$$

$$
|f(t)| e^{-0 t}
$$

$s_{0}^{\infty}|f(t)| e^{-0 t}=1+\frac{1}{2}+\frac{1}{3}+\cdots \cdots+\frac{1}{n}+\cdots \cdots$ which is the divergent harmonic series. Hence, $L[|f(t)|, 0]$ does not exist.

Similarly, if $F(t)=f(t) e^{h t}$, then $L[F(t), k]$ exists for $k \geq h$, and $L[|f(t)|, h]$ does not exist.

Theorem: There is a function so that if $k>0, L[|f(t)|, k]$ exists, but $L[f(t), k]$ does not exist.

Proof: Consider the following example. Let $k>0$, then for all $t \geq 0$, define;

$$
f(t) \quad=\left\{\begin{array}{r}
1 \text { if } t \text { is rational } \\
-1 \text { if } t \text { is irrational }
\end{array}\right.
$$

Then, $|f(t)|=1$ for all $t \geq 0$. Now $L[|f(t)|, k]=$ $\int_{0}^{\infty}|f(t)| e^{-k t} d t=\int_{0}^{\infty} e^{-k t} d t$ which exists since $k>0$. Hence, $L[|f(t)|, k]$ exists. Between any $t w$ numbers $0 \leq t_{1} . t_{2}$ there is at least one rational and one irrational number. Hence, if $0 \leq a<b$ and σ is any subdivision of $[a, b], \quad S_{\bar{\sigma}}=b-a$ and $S_{\underline{\sigma}}=-(b-a)$ so that $S_{\bar{\sigma}}-S_{\underline{\sigma}}=$ $2(b-a)$ and $f(t)$ does not have an integral on $[a, b] \cdot \frac{1}{e^{-k t}}$ has an integral on $[a, b]$, suppose $f(t) e^{-k t}$ has an integral on $[a, b]$, then $\left[f(t) e^{-k t}\left(\frac{l}{e^{-k t}}\right)\right]$ has an integral on $[a, b]$ and $\int_{a}^{b} f(t) e^{-k t}\left(\frac{1}{e^{-k t}}\right) d t$ exists. Hence $\int_{a}^{b} f(t) d t$ exists. This is a contradiction. Thus, $\int_{a}^{b} f(t) e^{-k t} d t$ does not exist. Hence, $L[f(t), k]$ does not exist. Thus, there is a function so that if $k>0, \underline{L[f(t) \mid, k] \text { exists and }}$ $L[f(t), k]$ does not exist.
Theorem: If $L[f(t), k]$ exists and K is a real number, then $L[K f(t), k]$ exists and $K \cdot L[f(t), k]=L[K \cdot f(t), k]$.
Proof: Let $L[f(t), k]$ exist, $K \neq 0$ be a real number and $\varepsilon>0 . \quad \frac{\varepsilon}{|K|}>u_{m}$ and there $i s$ a positive integer N so that if $m, n>N,\left|\delta_{u_{n}}^{m} f(t) e^{-k t} d t\right|<\frac{\varepsilon}{|k|}$. So that $|k|$. $\left|\int_{u_{n}}^{u_{m}} f(t) e^{-k t} d t\right|<\varepsilon$. Now $\left|\delta_{u_{n}}^{u_{m}} K f(t) e^{-k t} d t\right|<\varepsilon$. Thus, for $K \neq 0, L[K f(t), k]$ exists. If $L[f(t), k]$ exists and $K=0$, then $K f(t)=0$ and for any two positive integers $s, t,\left|\int_{u_{s}}^{u_{t}} K f(t) e^{-k t} d t\right|=0<\varepsilon$. Hence if $\operatorname{L}[f(t), k]$ exists and K is a real number, $L[K \cdot f(t), k]$ exists.

Furthermore, $L[K \cdot f(t), k]=\int_{0}^{\infty} K \cdot f(t) e^{-k t} d t=$ $K \int_{0}^{\infty} f(t) e^{-k t} d t=K \cdot L[f(t), k]$. Therefore, $L[K \cdot f(t), k]$ exists and $L[k \cdot f(t), k]=K \cdot L[f(t), k]$.
Theorem: If $L[f(t), k]$ exists, and there is a number z and a number M so that if $t \geq z$, then $\left|f(t) e^{-k t}\right|<M$, then if $j>0, L[|f(t)|, k+j]$ exists.
Proof: Let $L[f(t), k]$ exist and let $f(t) e^{-k t}$ be such that there are real numbers M and z so that if $t>z,\left|f(t) e^{-k t}\right|<$ M. Since $L[f(t), k]$ exists, if $a>0, \int_{0}^{a} f(t) e^{-k t} d t$ exists and $\int_{0}^{a}|f(t)| e^{-k t} d t$ exists. Furthermore, let $j>0$, then $s_{0}^{a} e^{-j t} d t$ exists also $\int_{0}^{a} e^{-j t} d t>0$ and $\int_{0}^{a}\left(|f(t)| e^{-k t}\right)$ ($e^{-j t}$) dit exists. Let $\left\{u_{n}\right\}$ be an increasing unbounded sequence and $\varepsilon>0$. There is a positive number W so that if $h \geq W$, then $e^{-h}<\frac{\varepsilon}{M}$. There is a positive integer N so that if $n>N$, then $u_{n}>\max .\left(\frac{W}{j}, z\right)$ which implies $u_{n}>\frac{W}{j}$ and $j u_{n}>W$ and $e^{-j u_{n}}<e^{-W}$ also $\left|f\left(u_{n}\right) e^{-k u_{n}}\right|<M$. If $m>n>N$, let $p=\min .\left(u_{n}, u_{m}\right)$ and $q=\max .\left(u_{n}, u_{m}\right)$ then $\left|\delta_{0}^{u_{m}}\right| f(t)\left|e^{-(k+j) t} d t-\int_{0}^{u_{n}}\right| f(t)\left|e^{-(k+j) t_{d t}}\right|=$ $\left|\int_{p}^{q}\right| f(t)\left|e^{-(k+j) t} d t\right|=\int_{p}^{q}|f(t)| e^{-(k+j) t} d t$. If $p=q$ $\int_{p}^{q}|f(t)| e^{-(k+j) t} d t=0<\varepsilon$. If $p \neq q$, then there is a real number H so that $0 \leq H \leq M$ and $0 \leq \int_{p}^{q}|f(t)| e^{-(k+j) t} d t=$
$\int_{p}^{q}\left(|f(t)| e^{-k t}\right) \cdot\left(e^{-j t}\right) d t=H \cdot s_{p}^{q} e^{-j t} d t=$ $H\left(e^{-j p}-e^{-j q}\right) \leq H \cdot e^{-j p} \leq M e^{-j p}$. Since $p>\frac{W}{j}$, $j p>W$ and $e^{-j p}<\frac{\varepsilon}{M}$ so that $M e^{-j p}<M\left(\frac{\varepsilon}{M}\right)=\varepsilon$. Therefore, $L[j f(t) \mid, k+j]$ exists.

Theorem: If $L[f(t), k]$ exists and $L[g(t), k]$ exists, then $L[f(t)+g(t), k]$ exists. Furthermore, $L[f(t), k]+L[g(t), k]$ $=L[f(t)+g(t), k]$.

Proof: Let $L[f(t), k]$ exist and $L[g(t), k]$ exist; then if $a>0, \int_{0}^{a} f(t) e^{-k t} d t$ and $\int_{0}^{a} g(t) e^{-k t} d t$ exist, so that $\int_{0}^{a}[f(t)+g(t)] e^{-k t} d t$ exists and $\int_{0}^{a}[f(t)+g(t)] e^{-k t} d t$ $=\int_{0}^{a} f(t) e^{-k t} d t+\int_{0}^{a} g(t) e^{-k t} d t$. Let $\varepsilon>0$ and $\left\{u_{n}\right\}$ be an increasing unbounded sequence then for $\frac{\varepsilon}{u_{s}}>0$ there is a positive integer S so that if $s>s, \mid \int_{0} f(t) e^{-k t}$ $L[f(t), k] \left\lvert\,<\frac{\varepsilon}{2}\right.$, and there is a positive integer V so that if $v>v,\left|\int_{0}^{u} g(t) e^{-k t} d t-L[g(t), k]\right|<\frac{\varepsilon}{2}$. Let $N=$ $\max .(S, V)$ then if $n>N,\left|\int_{0}^{u_{n}} f(t) e^{-k t} d t-L[f(t), k]\right|<\frac{\varepsilon}{2}$ and $\left|\int_{0}^{u_{n}} g(t) e^{-k t} d t-L[g(t), k]\right|<\frac{\varepsilon}{2}$. Consider, $\left|\int_{0}^{u_{n}}[f(t)+g(t)] e^{-k t} d t-\{L[f(t), k]+L[g(t), k]\}\right|=$ $\left|\int_{0}^{u_{n}} f(t) e^{-k t} d t-L[f(t), k]+\int_{0}^{u_{n}} g(t) e^{-k t} d t-L[g(t), k]\right| \leq$
$\left|s_{0}^{u_{n}} f(t) e^{-k t} d t-L[f(t), k]\right|+\left|s_{0}^{u_{n}} g(t) e^{-k t} d t-L[g(t), k]\right|<$ $\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$. Thus, $\mid \int_{0}^{u_{n}}[f(t)+g(t)] e^{-k t}-\{L[f(t), k]+$ $L[g(t), k]\} \mid<\varepsilon$. Therefore, $L[f(t)+g(t), k]$ exists.
Furthermore, since $\left\{\int_{0}^{u_{n}}[f(t)+g(t)] e^{-k t} d t\right\}$ converges to $L[f(t), k]+L[g(t), k]$ and to $L[f(t)+g(t), k]$ it is seen $L[f(t), k]+L[g(t), k]=L[f(t)+g(t), k]$.
Theorem: If $f(t)>0$ for all $t \geq 0, k>0$, $a>0$, and $L[f(t), k]$ exists, then $L[f(t), k+a]<L[f(t), k]$.

Proof: Let $f(t)>0$ for all $t \geq 0, k>0, a>0$, and $L[f(t), k]$ exist. Clearly, $L[f(t), k+a]$ exists. Also since $k>0$, and $a>0, k+a>k$ so that $0<e^{-(k+a)}<e^{-k}$ and since $f(t)>0,0<f(t) e^{-(k+a) t}<f(t) e^{-k t}$ for all $t>0$ and $0<f(t) e^{-(k+a) t} \leq f(t) e^{-k t}$ for all $t \geq 0$. If $h>0$ and $0<\delta<h, \int_{\delta}^{h} f(t) e^{-(k+a) t} d t<\int_{\delta}^{h} f(t) e^{-k t} d t$ and $\int_{0}^{h} f(t) e^{-(k+a) t} d t \leq \int_{0}^{h} f(t) e^{-k t} d t$ thus, $\int_{\delta}^{h} f(t) e^{-k t} d t-$ $\int_{\delta}^{h} f(t) e^{-(k+a) t} d t>0$ and $\int_{0}^{h} f(t) e^{-k t} d t-\int_{0}^{h} f(t) e^{-(k+a) t} d t$ ≥ 0. Hence, $f_{\delta}^{h} f(t) e^{-k t}\left[1-e^{-a t}\right] d t>0$ and $f_{0} f(t) e^{-k t}\left[1-e^{-a t}\right] d t \geq$ 0 . Furthermore, if $h>2$ and $0<\delta<1$, from the above equations $\int_{0}^{h} f(t) e^{-k t}\left[1-e^{-a t}\right] d t=\int_{0}^{\delta} f(t) e^{-k t}\left[1-e^{-a t}\right] d t+$ $\therefore \int_{\delta}^{1} f(t) e^{-k t}\left[1-e^{-a t}\right] d t+\delta_{1}^{2} f(t) e^{-k t}\left[1-e^{-a t}\right] d t+$
$\int_{2}^{h} f(t) e^{-k t}\left[1-e^{-a t}\right] d t$, where $\int_{0}^{\delta} f(t) e^{-k t}\left[1-e^{-a t}\right] d t \geq 0$, $\delta_{\delta}^{1} f(t) e^{-k t}\left[1-e^{-a t}\right] d t>0, \delta_{1}^{2} f(t) e^{-k t}\left[1-e^{-a t}\right] d t>0$,
and $f_{2}^{h} f(t) e^{-k t}\left[1-e^{-a t}\right] d t>0$. Hence, $f_{0}^{h} f(t) e^{-k t}\left[1-e^{-a t}\right] d t>$ $\int_{1}^{2} f(t) e^{-k t}\left[1-e^{-a t}\right] d t . \operatorname{Let} \int_{1}^{2} f(t) e^{-k t}\left[1-e^{-a t}\right] d t=k$, and $\left\{u_{n}\right\}$ be an increasing unbounded sequence. Choose N so that if $n>N, u_{n}>2$, then $\int_{0}^{u_{n}} f(t) e^{-k t}\left[I-e^{-a t}\right] d t>$ $s_{1}^{2} f(t) e^{-k t}\left[1-e^{-a t}\right] d t=k$. Hence, $\int_{0}^{u_{n}} f(t) e^{-k t} d t \quad-$ $\int_{0}^{u_{n}} f(t) e^{-(k+a) t} d t>k$ and $\int_{0}^{u_{n}} f(t) e^{-k t} d t>\int_{0}^{u_{n}} f(t) e^{-(k+a) t} d t$ $+K$. Thus, except for at most u_{n} a finite number of positive integers $\left\{\int_{0}^{u_{n}} f(t) e^{-k t} d t\right\}$ and $\left\{\int_{0}^{u_{n}} f(t) e^{-(k+a) t} d t\right\}$ differ term by term by at least K. Thus, $\operatorname{Lim}\left\{\int_{0}^{u_{n}} f(t) e^{-k t} d t\right\} \neq$ $\operatorname{Lim}\left\{\int_{0}^{n} f(t) e^{-(k+a) t} d t\right\}$. Furthermore, since $\left\{\int_{0}^{u_{n}} f(t) e^{-k t} d t\right\}$ is term by term greater than $\left\{\int_{0}^{u_{n}} f(t) e^{-(k+a) t} d t+K\right\}$, hence $L[f(t), k] \geq L[f(t), k+a]+K$.

Theorem: If $f(t)<0$ for all $t \geq 0, k>0, a>0$, and $L[f(t), k]$ exists, then $L[f(t), k]<L[f(t), k+a]$.

Proof: Let $f(t)<0$ for all $t \geq 0, k>0, a>0$, and $L[f(t), k]$ exist. Clearly, $L[f(t), k+a]$ exists. Also since $k>0$ and $a>0, k+a>k$ and $0<e^{-(k+a)}<e^{-k}$ and since $f(t)<0$, $0>f(t) e^{-(k+a) t}>f(t) e^{-k t}$ for all $t>0$ and $0>f(t) e^{-(k+a) t} \geq$ $f(t) e^{-k t}$ for all $t \geq 0$. If $h>0$ and $0 \geqslant \delta>h, f_{\delta} f(t) e^{-(k+a) t} d t^{>}$ $\int_{\delta}^{h} f(t) e^{-k t} d t$ and $\int_{0}^{h} f(t) e^{-(k+a) t} d t \geq \delta_{0}^{h} f(t) e^{-k t} d t$ so that $\delta_{\delta}^{h} f(t) e^{-(k+a)} d t-\int_{\delta}^{h} f(t) e^{-k t} d t>0$ and $\int_{0}^{h} f(t) e^{-(k+a) t} d t$ -
$\int_{0}^{h} f(t) e^{-k t} d t \geq 0$, hence $\int_{\delta}^{h} f(t) e^{-k t}\left[e^{-a t}-1\right] d t>0$ and
$\int_{0}^{h} f(t) e^{-k t}\left[e^{-a t}-1\right] d t \geq 0 ._{h}$ Furthermore, if $h>2$ and $0<\delta<1$, from the above equation $\int_{0} f(t) e^{-k t}\left[e^{-a t}-1\right] d t=$
$\delta_{0}^{\delta} f(t) e^{-k t}\left[e^{-a t}-1\right] d t+\delta_{\delta}^{1} f(t) e^{-k t}\left[e^{-a t}-1\right] d t+\delta_{1}^{2} f(t) e^{-k t}\left[e^{-a t}-1\right] d t+$ h
$\int_{2} f(t) e^{-k t}\left[e^{-a t}-1\right] d t$, where $\delta_{0}^{\delta} f(t) e^{-k t}\left[e^{-a t}-1\right] d t \geq 0$, $\int_{0}^{1} f(t) e^{-k t}\left[e^{-a t}-1\right] d t>0, \delta_{1}^{2} f(t) e^{-k t}\left[e^{-a t}-1\right] d t>0, \delta_{2}^{h} f(t) e^{-k t}$
$\left[e^{-a t}-1\right] d t>0$. Hence, $\int_{0}^{h} f(t) e^{-k t}\left[e^{-a t}-1\right] d t>\delta_{1}^{2} f(t) e^{-k t}\left[e^{-a t}-1\right] d t$. Let $\delta_{1}^{2} f(t) e^{-k t}\left[e^{-a t}-1\right] d t=K$, and $\left\{u_{n}\right\}$ be an increasing unbounded sequence. Choose N so that if $n>N, u_{n}>2$, then $\int_{0}^{u_{n}} f(t) e^{-k t}\left[e^{-a t}-1\right] d t>\int_{1}^{2} f(t) e^{-k t}\left[e^{-a t}-1\right] d t=k$. Thus, $\int_{0}^{u_{n}} f(t) e^{-(k+a) t} d t-\int_{0}^{u_{n}} f(t) e^{-k t} d t>k$, and $\delta_{0}^{u_{n}} f(t) e^{-(k+a) t} d t>$ $\int_{0}^{u_{n}} f(t) e^{-k t} d t+K$. Thus, except for at most a finite number of positive integers $\left\{\int_{0}^{u_{n}} f(t) e^{-(k+a) t} d t\right\}$ and $\left\{\int_{0}^{u_{n}} f(t) e^{-k t} d t\right\}$ differ term by term by at least K, hence $\operatorname{Lim}\left\{\int_{0}^{u_{n}} f(t) e^{-(k+a) t} d t\right\} \neq$ $\operatorname{Lim}\left\{\int_{0}^{u_{n}} f(t) e^{-k t} d t\right\}$. Furthermore, since $\left\{\int_{0}^{u_{n}} f(t) e^{-(k+a) t} d t\right\}$ is term by term greater than $\left\{s_{0}^{u} n^{n}(t) e^{-k t} d t+K\right\}, L[f(t), k+a] \geq$ $L[f(t), k]+K$.

Example: The following is an example of a continuous, unbounded function which has a laplace transformation. Define,for $k>0$;

$$
f(t)= \begin{cases}2^{3 n}\left[t-n+\frac{1}{2^{2 n}}\right] e^{k t} & \text { for } n-\frac{1}{2^{2 n} \leq t \leq n} \\ -2^{3 n}\left[t-n-\frac{1}{2^{2 n}}\right] e^{k t} & \text { for } n<t \leq n+\frac{1}{2^{2 n}} \\ 0 \text { elsewhere }\end{cases}
$$

Consider the following graph of $f(t)$

It is seen that $f(t)$ is unbounded. Now consider the graph of $f(t) e^{-k t}$:

From the graph $\int_{0}^{\infty} f(t) e^{-k t} d t=\frac{1}{2}\left(\frac{2}{4}\right)(2)+\frac{1}{2}\left(\frac{2}{16}\right)(4)+$ $\frac{1}{2}\left(\frac{2}{64}\right)(8)+\cdots=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots=1$.

Thus, $L[f(t), k]$ exists.
Furthermore, the above example can easily be made to be differentiable everywhere.

Theorem: If $L[f(t), k]$ exists, $f(t) e^{-k t}$ is bounded for all $t>t_{0} \geq 0$, and $a>0$, then $L\left[e^{-a t} f(t), k\right]$ exists and $L\left[e^{-a t} f(t), k\right]=L[f(t), k+a]$.
Proof: Let $\varepsilon>0$ and $\left\{u_{n}\right\}$ be an increasing unbounded sequence. Since $a>0$ and $L[f(t), k]$ exists, $L[f(t), k+a]$ exists. Hence, there is a positive integer N so that if $m, n>N$,

$$
\begin{aligned}
& \left|\int_{u_{n}}^{u_{m}} f(t) e^{-(k+a) t} d t\right|<\varepsilon . \text { And }\left|\delta_{u_{n}}^{u_{m}}\left(e^{-a t} f(t)\right) e^{-k t} d t\right| \\
& \left.\left|\delta_{u_{n}}^{m} f(t) e^{-(k+a) t} d t\right|<\varepsilon . \text { Thus, L[} e^{-a t} f(t), k\right] \text { exists. }
\end{aligned}
$$

Also $L\left[e^{-a t} f(t), k\right]=\int_{0}^{\infty} e^{-a t} f(t) e^{-k t} d t=\int_{0}^{\infty} f(t) e^{-(k+a)} d t=$ $L[f(t), k+a]$. Therefore, $L\left[e^{-a t} f(t), k\right]$ exists and $L\left[e^{-a t} f(t), k\right]=$ $L[f(t), k+a]$.

Notation: $f_{(t)}^{(n)}$ denotes the $n^{\text {th }}$ derivative of $f(t)$. If $n=0$, $f(0)=f(t)$.

Notation: $f_{(0+)}^{(n)}=\operatorname{Lim}_{t \rightarrow 0^{+}} f_{(t)}^{(n)}$.
Theorem: Let $f(t)$ be defined for all $t \geq 0, f_{(}^{(n)}$ exists for all $t>0, k>0, L[f(t), k]$ exists, $L\left[f_{(}^{(n)}, k\right]$ exists, and $\operatorname{Lim}_{t \rightarrow \infty}$ $f(t) e^{-k t}=\operatorname{Lim}_{t \rightarrow \infty} f^{(1)}(t) e^{-k t}=\cdots=\operatorname{Lim}_{t \rightarrow \infty} f^{(n-1)}(t)=0$,
then $L\left[f_{(t)}^{(n)}, k\right]=-\sum_{p=1}^{n} k^{p-1} f\left(\begin{array}{l}(n-p) \\ (0+)\end{array}+k^{n} L[f(t), k]\right.$.

Proof: Let $\varepsilon>0$ and $\left\{u_{n}\right\}$ be an increasing unbounded sequence. Since $\operatorname{Lim}_{t \rightarrow \infty} f(t) e^{-k t}=0$, there is a positive integer N_{1} such that if $n_{1}>N_{1},\left|f\left(u_{n_{1}}\right) e^{-k u_{n_{1}}}\right|<\frac{\varepsilon}{2}$. Also, since $L[f(t), k]$ exists, for $\frac{\varepsilon}{2 k} \gg 0$, there is a positive integer N_{2} such that if $n_{2}>N_{2}, \mid \int_{0}^{u_{n_{2}}} f(t) e^{-k t} d t$ $L[f(t), k] \left\lvert\,<\frac{\varepsilon}{2 k} . \quad\right.$ Choose $N=\max \cdot\left(N_{1}, N_{2}\right)$, then if $n>N$, $\left|f\left(u_{n}\right) e^{-k u_{n}}\right|<\frac{\varepsilon}{2}$ and $\left|s_{0}^{u_{n}} f(t) e^{-k t} d t-L[f(t), k]\right|<\frac{\varepsilon}{2 k}$. Since $L[f(t), k]$ exists, integration by parts is applied and $\left|\delta_{0}^{u_{n}} f(t) e^{-k t} d t-L[f(t), k]\right|=\left\lvert\,\left[-\frac{1}{k} f(t) e^{-k t}+\frac{1}{k} \rho f_{(t)}^{(1)} e^{-k t} d t\right]_{0}^{u_{n}}\right.$ $-L[f(t), k] \left\lvert\,<\frac{\varepsilon}{2 k}\right.$ so $\frac{I}{k} \left\lvert\,-f\left(u_{n}\right) e^{-k u_{n}}+f(0+)+\int_{0}^{u_{n}} f^{(1)}(t) e^{-k t} d t \cdot \frac{1}{2}\right.$ $k \cdot L[f(t), k] \left\lvert\,<\frac{\varepsilon}{2 k}\right.$, so that $\mid \int_{0}^{u_{n}} f(1)(t) e^{-k t} d t-(-f(0+)+$ $k L[f(t), k])\left|<\frac{\varepsilon}{2},\left|f\left(u_{n}\right) e^{-k u_{n}}\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon\right.$. Thus, $L\left[f^{\prime}(t), k\right]=-f(0+)+k L[f(t), k]$. Assume for $l \leq m<n, L\left[f^{(m)}(t), k\right]=-\underset{p=1}{m} \sum_{k}^{p-l_{f}}(m-P(0+)+$ $k^{m} L[f(t), k]$. Then, since $\operatorname{Lim}_{t \rightarrow \infty} f^{(m)}(t) e^{-k t}=0$, there is a positive integer N_{1} such that if $n_{1}>N_{1},\left|f\left(u_{n_{1}}\right) e^{-k u_{n_{1}}}\right|<\frac{\varepsilon}{2}$. Also, since $L\left[f^{(m)}(t), \bar{k}\right]$ exists, for $\frac{\varepsilon}{2 k}>0$, there is a positive integer N_{2} so that if $n_{2}>N_{2},\left|\int_{0}^{u} n_{2} f^{(m)}(t) e^{-k t} d t-L\left[f^{(m)}(t), k\right]\right|$
$\leqslant \frac{\varepsilon}{2 k} \cdot$ Choose $N=\max \cdot\left(N_{1}, N_{2}\right)$, then if $n>N,\left|f\left(u_{n}\right) e^{-k u_{n}}\right|$ $<\frac{\varepsilon}{2}$ and $\left|\int_{0}^{u_{n}} f^{(m)}(t) e^{-k t} d t-L\left[f^{(m)}(t), k\right]\right|<\frac{\varepsilon}{2 k}$. Since $m+1 \leq n, L\left[f^{(m)}(t), k\right]$ exists and integration by parts is applied so that $\left|s_{0}^{u_{n}} f^{(m)}(t) e^{-k t} d t-L\left[f^{(m)}(t), k\right]\right|=$ $\left|\left[-\frac{1}{k} f^{(m)}(t) e^{-k t}+\frac{1}{k} s_{f}(m+1)(t) e^{-k t} d t\right]_{0}^{u_{n}}-L[f(t), k]\right|<$ $\frac{\varepsilon}{2 k}$. So $\frac{1}{k} \cdot \iint_{0}^{u_{n}} f^{(m+1)}(t) e^{-k t} d t-\left(-f^{(m)}(0+)+k L\left[f^{(m)}(t), k\right]\right)-$ $f\left(u_{n}\right) e^{-k u_{n}} \left\lvert\,<\frac{\varepsilon}{2 k}\right.$. So $\mid \int_{0}^{u_{n}} f(m+1)(t) e^{-k t} d t-\left(-f^{(m)}(0+)+\right.$.
 $L\left[f^{(m)}(t), k\right]=-f^{(m)}(0+)+k L\left[f^{(m)}(t), k\right] . \quad B u t, . L\left[f^{(m)}(t), k\right]=$ $-\sum_{p=1}^{m} k^{p-l_{f}}(m-p)(0+)+k^{m} L[f(t), k]$. Hence, $L\left[f^{(m+1)}(t), k\right]=$ $-f^{(m)}(0+)-k \sum_{p=1}^{m} k^{p-I_{f}(m-p)}(0+)+k^{m+1} L[f(t), k]=-f^{(m)}(0+)-$ $\sum_{p=1}^{m} k^{P_{f}(m-p)}(0+)+k^{m+1} L[f(t), k]=-f^{(m)}(0+)-\sum_{p=2}^{m+1} k^{p-1}$ $p=1 \quad p=2$ $f^{(m-(p-1))}(0+)+k^{m+1} L[f(t), k]=-\left[k^{1-1} f^{m}(0+)+\sum_{p=2}^{m+1} k^{p-1}\right.$
 $\left.\sum_{p=2}^{m+1} k^{p-l_{f}((m+1)-p)}(0+)\right]+k^{m+1} L[f(t), k]=-\sum_{p=1}^{m+1} k^{p-I_{f}}((m+1)-p(0+)+$ $k^{m+1} L[f(t), k]$. Hence, $L\left[f^{(m+1}(t), k\right]=-\sum_{p=1}^{m+1} k^{p-l_{f}((m+1)-p)}(0+)+$ $k^{m+1} L[f(t), k]$.

Ex a - li es: Define $H(t)=\left\{\begin{array}{l}0 \text { if } t<0 \\ 1 \text { if } t \geq 0\end{array}\right\}$
It $k>0, L[H(t), k]=\int_{0}^{\infty} H(t) e^{-k t} d t=\int_{0}^{\infty} e^{-k t} d t=\frac{1}{k}$. Thus, $L[H(t), k] \frac{1}{k}$.
Now, define $K(t)=H(t)+H(t-1)+H(t-2)+\cdots$; and $J(t)=$ $H(t-1)+H(t-3)+H(t-5)+\cdots$.

$K(t)$ and $J(t)$ are c lied staircase functions. If $k>0$, $L[K(t), k]=\int_{0}^{\infty} K(t) e^{-k t} d t=\int_{0}^{1} e^{-k t} d t+2 s_{1}^{2} e^{-k t} d t+3 \int_{2}^{3} e^{-k t} d t+$ $\cdots=\frac{1}{k}\left(1+e^{-k}+e^{-2 k}+e^{-3 k}+\cdots\right)=\frac{1}{k\left(1-e^{-k}\right)}$.
Similarly, $\underset{5}{ }[J(t), k]=\int_{0}^{\infty} J(t) e^{-k t} d t=\int_{1}^{3} e^{-k t} d t+$ $2 S_{3}^{5} e^{-k t} d t+3 S_{5}^{7} e^{-k t} d t+\cdots \cdot=\frac{1}{k}\left(e^{-k t}+e^{-3 k}+e^{-E k}+\cdots \cdot\right)=$
$\frac{e^{-k t}}{k}\left[1+e^{-2 k}+e^{-4 k}+e^{-6 k}+\cdots\right]=\frac{e^{-k}}{k\left(1-e^{-2 k}\right)}$. Thus,
$L[K(t), k]$ and $L[J(t), k]$ exist, and $L[K(t), k]=\frac{1}{k\left(1-e^{-k}\right)}$ and $L[J(t), k]=\frac{e^{-k}}{k\left(1-e^{-2 k}\right)}$.
Now, define $M(t)=K(t)-2 J(t) . M(t)$ is called the meander function.

$L[M(t), k]=L[K(t), k]-2 L[J(t), k]=\frac{1}{k\left(1-e^{-k}\right)}-\frac{2 e^{-k}}{k\left(1-e^{-2 k}\right)} \cdot$
Hence, $L[M(t), k]=\frac{\cdots 1}{k\left(1+e^{-k}\right)}$.
Define, $S(t)=2 M(t)-H(t) . S(t)$ is called the square-wave function.

$L[S(t), k]=2 M(t)-H(t)=\frac{2}{k\left(1+e^{-k}\right)}-\frac{1}{k}$. Hence,
$L[S(t), k]$ exists, and $L[S(t), k]=\frac{1-e^{-k}}{k\left(1+e^{-k}\right)}$.

