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CHAPTER I 

FUNDAMENTAL POSTULATES AND THEOREMS 

Let ^ be a set. The purpose of this chapter is to 

develop a form of a "free" Boolean algebra with as a 

base, by imposing the usual Boolean operations on the set 

H and thus generating new elements freely within explicitly 

prescribed restrictions. 

To this end let it be postulated that there exist a 

set P containing Z as a subset, two binary operations 

fl and U , and a unary operation 1, all closed on 21^ 

and a relation < on £1^ subject only to the following 

restrictions: 

Postulate 1.1, If A is an element of then A < A. 

Postulate 1.2. If A, B, and C are elements of ^ 

and if A < B and B < C, then A < C. 

Postulate 1.3. If A and B are elements of ]L^, and if 

A < B and B < A, then A ~ B. 

Postulate 1.4. If A, B, and C are elements of 

then A O ( B U C ) < (A O B) U (A H C). 

Postulate 1.5. If A, B, and C are elements of £ 3 , 

then A < (B D 0) if and only if A < B and A < 0. 

Postulate 1.6. If A, B, and C are elements of 

then ( A U B ) < C if and only if A < C and B < C . 



Postulate 1.7. There exist two unique elements in 

namely 0 and I, such that if A is an element of then 

0 < A and A < I. 

Postulate 1.8. If A and B are elements of P , then 

A < B if and only if B* O A < 0, and A < B if and only if 

1 < A* U B. 

Postulate 1.9. If A and B are elements of and if 

A < B, then B» < A«. 

Postulate 1.1 is the reflexive property, Postulate 1.2 

is the transitive property, and Postulate 1.3 is the anti-

symmetric property. 

For the following theorems assume A, B, and C are 

elements of 2-^. Unless a symbol is defined, its commonly 

accepted meaning is assumed. 

Theorem 1.1. A U A < A. 

Proof: (AAJ B) < C if and only if A < C and B < C by 

Postulate 1.6. Substituting A for B and A for C, (A U A) < A 

if and only if A < A and A <" A. But A < A by Postulate 1.1. 

Therefore, (A U A ) <L A. 
* 

Theorem 1.2. A < A H A , 

Proof; A < B A C if and only if A <1 B and A < C, by 

Postulate 1.5. Substituting A for B and A for C, A < A C\ A 

if and only if A < A and A < A, But A < A by Postulate 1.1. 

Therefore, A < A H A, 



Theorem 1 , 3 . A n A < A. 

Proof: A < A by Postulate 1 . 1 . Subst i tut ing (A f\A) 

f or A, ( A A A ) < ( A H A ) , But (A H A.) < A f \ A i f and only 

i f (A A A) < A and (AHA) < A, by Postulate 1 . 5 . Therefore 

A n A < A. 

Theorem 1 .4 . A < A U A . 

Proof: A < A by Postulate 1 . 1 . Subst i tut ing (A UA) 

for A, A U A < A U A. But A U A < (A U A) i f and only i f 

A < A U A and A <, A U A by Postulate 1 . 6 . Therefore, 

A < A U A . 

Theorem 1 . 5 . A U A - A , 

Proof: A U A < A by Theorem 1 . 1 . A < A U A by Theorem 

1 . 4 . Therefore, by Postulate 1 .3 A U A ~ A . 

Theorem 1 . 6 , A A A - A . 

Proof: A C A D A by Theorem 1 . 2 . A n A < A by Theorem 

1 . 3 . Therefore, by Postulate 1 . 3 , A H A = A , 

Theorem 1 .7 . A A = A U A , 

Proof: A H A ^ A by Theorem 1 . 6 , A (J A - A by Theorem 

1 . 5 . Then by subs t i tu t ion AH A r A U A, 

Theorem 1 . 8 . (A C\ B) < A, 

Proof: A H B < A O B by Postulate 1 . 1 , Therefore 

(A H B) < A by Postulate 1 , 5 . 

Theorem 1 . 9 . ( A H B ) <cB. 

Proof: A O B < A A B by Postulate 1 . 1 . Therefore 

( A O B ) < B by Postulate 1 . 5 . 



Theorem 1.10. A A B < B A A. 

Proof: A Pi B < B by Theorem 1 . 9 . A r> B < A by Theorem 

l . S . Therefore A A B < B A A by Pos tu la te 1 . 5 . 

Theorem 1.11. AO B z B A A, 

Proof: A . A B < B A A by Theorem 1 .10 . Subs t i t u t i ng 

A. f o r B and B f o r A, B A A < A. A B. Therefore by Pos tu la te 

1.3 A A B = B H A. 

Theorem 1.12. A. < A U B , 

Proof: A f j B d A U B by Pos tu la te 1 . 1 . By Pos tu la te 

1 .6 A < A U B. 

Theorem 1.13. B < A U B • 

Proof: A U B < A U B by Pos tu la te 1 . 1 . By Pos tu la te 

1 .6 B < A U B . 

Theorem 1.14. A (J B < B U A. 

Proof: A < B U A by Theorem 1.13. B < B U A by Theorem 

1.12. Therefore A U B < B U A b y Pos tu la te 1 .6 . 

Theorem 1.15. A U B — B U A. 

Proof: A U B < B i j A by Theorem 1.14. Subs t i t u t i ng 

L f o r B and B f o r A,BU K A U B , Therefore by Pos tu la te 

1 .3 A U B - B U A, 

Theorem 1.16. A A B < A U B. 

Proof: A A B C A by Theorem 1 .6 . Also A < A U B by 

Theorem 1.12. Therefore A H B < A U B by Pos tu la te 1 .2 . 

Theorem 1.17. A A ( A U B ) < AU (A A B). 

Proof: A A (B U C) < (A A B) U (A A C) by Pos tu la te 1 .4 . 

Subs t i tu t ing A f o r B and B f o r C, A C\ (A U B) < (A r \ A) U (A A B). 

Therefore by Theorem 1.6 A A (AA^ B ) < A U (A A B ) . 



Theorem 1.13. If (A \j B) < A, then B < A. 

Proof: (A (J B) < A from the Hypothesis. Then by Postu-

late 1.6 A < A and B •< A. Therefore if (A U B ) < A, then B<1 A. 

Theorem 1.19. If A < (A A B), then A «< B. 

Proof: i < ( A A B ) from the Hypothesis. Then by Postu-

late 1.5 A C A and A <CB. Therefore if A < (A A B), then A <£ B. 

Theorem 1.20. A U (A A B) <. A. 

Proof: By Postulate 1.6 A U B < C if and only if A«£l C 

and B < C. Substituting (AH B) for B and A for C, 

A {J (A A B) < A if and only if A-£ A and ( A H B k A. How 

A < A by Postulate 1.1, and ( A O B ) ^ A by Theorem l.S. 

Therefore A U (AH B ) < A, 

Theorem 1.21. A ^ A A ( A U B ) . 

Proof: A < (B H C) if and only if A < B and A < C by 

Postulate 1.5# Substituting A for B and (A U B) for C, 

A < A r\ (A U B) if and only if A < A and A<C (A U B). Now 

A <£ A by Postulate 1.1, and A < ( A U B ) by Theorem 1.12. 

Therefore A < A A (A U B). 

Theorem 1.22. A U (A A B) < A A (A U B). 

Proof: A. U (A A B) < A by Theorem 1.20. A < A A (A U B) 

by Theorem 1.21. Therefore by Postulate 1.2, 

A U (Ar\B) <il A (AUB). 

Theorem 1.23. A < A U ( A A B ) . 

Proof: A - A (B U C ) < (A-Ab) (J (A A C) by Postulate 1.4. 

Substituting A for B and B for C, A. A (A U B) < (A A) U (A H B) 



Then A A (A U B) < A U (A A B) by Theorem 1.6. Also 

A. < A A (A U B) by Theorem 1.21. Therefore by Postulate 1.2 

A. < A U (A A B). 

Theorem 1.24. A f\ (A U B) ̂  A. 

Proof: A O (B U C) (A O B) U (A A C) by Postulate 1.4. 

Substituting A for B and B for C, A A ( A U B ) < (A A A) U (AO B). 

Then A A (A (J B) < A U (A A B) by Theorem 1.6. But 

k-U (AA B)< A. by Theorem 1.20. Therefore A A (AU B) < k 

by Postulate 1.2. 

Theorem 1.25. A U ( A O B ) = A . 

Proof: A U ( A A B ) < A by Theorem 1.20. Also A < A U (AAB) 

by Theorem 1.23. Therefore by Postulate 1.3, A \J (A C\ B ) = A. 

Theorem 1.26. A A (A U B) = A . 

Proof: A < A A (A U B) by Theorem 1.21. Also 

A A (AU B) < A by Theorem 1.24. Therefore by Postulate 1.3, 

A A (A U B) ™ A. 

Theorem 1.27. (A A B) U (A A C) < A A (B U C). 

Proof: A O B < B by Theorem 1.9. And B < B C by 

Theorem 1.12. Then by Postulate 1.2, A A B < B U C . Also, 

A A B < A by Theorem 1.3. Thus by Postulate 1.5, 

( A A B ) < A A (B U C). 

Now to show that (A A C) < A A (B U C): A A C < C by 

Theorem 1.9. And C < B U C by Theorem 1.13. Thus by Postulate 

1.2, A A C < B U C. Also A A C < A by Theorem l.S. Then by 

Postulate 1.5, ( A A C ) < A A ( B U C ) . Therefore by Postulate 

1.6, (Afl B) U (A A C) < A A (B U C). 



Theorem 1.2$. A O ( B U C ) = ( A f l B ) U (AYlC), 

Proof: AO (B U C) < ( A A B ) U (A A C) by Pos tu la te 

1 .4 . Also (A A B) U (AH C) < A A (B U C) by Theorem 1.27. 

Therefore by Pos tu la te 1 .3 , A.A (BUC) = (A. A B ) U ( A A C ) . 

Theorem 1.29. (B U C) A A = (B A A) U (C A A). 

Proof: A A (B U C) = (A A B) U (A A C) by Theorem 1.23. 

Using Theorem 1.11 t h a t AH B ~ B A A, then 

(BU C) A A = ( B A A ) U (CH A). 

Theorem 1.30. A U (B A C) < (A U B) A (A. U C). 

Proof: A U (B A C) < (A U B) Pi {A U C) i s t r u e i f i t 

can be proved t h a t : 

A. U (B A C ) < (A U B) and A. U (B A C) < (A U C). 

Now to prove All (B A C) < (A U B): 

(B A C) < B by Theorem 1 .3 . And B -C. (A U B) by Theorem 

1.13. Then by Pos tu la te 1 .2 , (BA C) < (A \J B). Also, 

A < ( A U B) by Theorem 1 .12 . Therefore by Pos tu la te 1 .6 , 

AU (B A C) < (A U B ) . 

Now t o prove A U (B A C) <£ (A U C); 

(BA C) < C by Theorem 1 . 9 . And C •< (A.VJ C) by Theorem 

1.13. Then by Pos tu la te 1 .2 , (B A C) < (A U C). Also, 

A < ( A U C ) by Theorem 1.12. Therefore by Pos tu la te 1 .6 , 

A U (BA C) < ( A U G ) . 

Thus s ince A U (B A C) < (A U B) and A U (B A C) < (A U C), 

by Pos tu la te 1 .5 , then A U ( B H C ) < ( A U B) A ( A U G ) , 
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Theorem 1 .31 . (A U B) U C <'k V (B U C) . 

Proof : (A {J B ) U C < A U ( B U C ) i s t r u e i f and only i f 

(A V B) < A U (B U C) and C < A U ( B U C ) , 

To prove t h a t (A U B) < A U ( B U C ) : 

B < (B U C) by Theorem 1 .12 . And (B U C) -< A V (B U C) by 

Theorem 1 .13 . Thus by P o s t u l a t e 1 . 2 , B < A U ( B U C). Also, 

A < A U (B U C) by Theorem 1 .12 . Therefore by P o s t u l a t e 1 . 6 , 

(A U B) < A U (B U C). 

To prove t h a t C < A U ( B U C): 

C < (B U C) by Theorem 1 .13 . And ( B U C ) < A U ( B U C ) by 

Theorem 1 .13 . Therefore by P o s t u l a t e 1 . 2 , C •< A U ( B U C), 

Nov/ s ince (A \J B) < A U ( B U C ) and C < A U ( B l j C ) , by 

P o s t u l a t e 1 . 6 , (A V B) U C < A U (B U C). 

Theorem 1 .32 . A U ( B U G ) < ( A U B ) U C . 

Proof : A H ( B U C ) < ( A U B ) U C i s t r u e i f and only i f 

A < (A U B) U C and (B U C) < ( A U B) U C. 

To prove t h a t A < ( A U B ) U C: 

A < (A U B) by Theorem 1 .12 . And (A U B) < (A U B) U C by 

Theorem 1 .12 . Therefore by P o s t u l a t e 1 . 2 , A < ( A U B) U C. 

Now t o prove t h a t (B U C) < (A U B) U C: 

B < ( A l ) B ) by Theorem 1 .13 . And (A O B ) < (A U B) U C by 

Theorem 1 . 1 2 . Therefore by P o s t u l a t e 1 . 6 , 

( B U C X ( A U B ) U C. 

Now s ince A C (A U B) U C and (BU C) < ( A U B ) I) C, 

then by P o s t u l a t e 1 . 6 , A U (B C) < ( A U B ) U C . 



Theorem 1 .33 . A U ( B U C ) = ( A U B ) U C . 

Proof : ( A U B ) U C ^ A U ( B U G ) by Theorem 1 .31 . And 

A U (B U C) < (A U B) U C by Theorem 1 . 3 2 . Therefore by 

P o s t u l a t e 1 . 3 , A U (B U C) = (A U B) U C. 

Theorem 1 .34 . A A ( B A C ] < ( A A B ) A C . 

Proof : AH (B A c ) < ( A / l B ) r \ C i s t r u e i f and only i f 

A O ( B A C ) < (A A B) and A f l ( B A l C ) < C , 

To prove t h a t AH ( B H C ) < ( A O B ) : 

A H ( B f l C) < (B AC) by Theorem 1 . 9 . By Theorem 1 . 3 , 

( B r i G ) < B. Then by P o s t u l a t e 1 . 2 , A H (B A C) < B. Also 

A A ( B O C ) < A by Theorem 1 . 3 . Therefore A O ( B H C) < ( A A B ) 

by P o s t u l a t e 1 . 5 . 

To prove t h a t A H (B A C)<C G: 

A A ( B A C ) < ( B AC) by Theorem 1 . 9 . And (B A C) < C by 

Theorem 1 . 9 . Therefore by P o s t u l a t e 1 . 2 , A O ( B f l C) •<. C. 

Now s ince A A (B A C) < (A A B) and A A (B A C) < C, 

then by P o s t u l a t e 1 . 5 , A A (B A C) <C (A A B) A C. 

Theorem 1 .35 . (A A B) f\ C < A A (B A C). 

Proof : (A A B) A C < A A (BA C) i s t r u e i f and only i f 

(A A B) A C < A and (A A B) A C C (B A C). 

To prove t h a t (A A B) A C C A : 

(A A B) A C < (A AB) by Theorem 1 . 3 . And (AA B) < A by 

Theorem 1 . 3 . Then by P o s t u l a t e 1 . 2 , ( A A B ) A C < A . 

To prove t h a t (A A bJ, A C < (B A C): 

(A. A B) A C < (A A B) by Theorem 1 . 3 . And ( A A B ) < B by 
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Theorem 1.9. Then by Postulate 1.2, (A A B) A C < B. Also, 

(A A B) H C < C by Theorem 1.9. Therefore by Postulate 1.5, 

(A A B) A C < (B A c) . 

Now s i n c e (A A B, A C < A and (A C 3) A C < (B A C), 

then by Postulate 1.5, (A A B) A C < A f (B A C). 

Theorem 1.36. A A (B A C) = (A A B) A C. 

Proof: A A (B A C) < (A A B) A C by Theorem 1.34. And 

(A A B) A C < A A (B A G) by Theorem 1.35. Therefore by 

Postulate 1.3, A A (B A C) = (A A B) A C. 

Theorem 1.37. (A U B) A (A U C) < A U (B A C). 

Proof: B A (A U C) < (B A A) U (B A C) by P o s t u l a t e 1.4. 

Now s u b s t i t u t i n g ( A U B) f o r B, 

( A U B ) A (A U C) < QA U B) A k\ U | ( A U B ) A C ] . 

Then [(AU B) A (AU CJ] < (a A (A U B)) U | A U B ) 0 C] 

by Theorem 1.11. Next by Theorem 1.26, 

gA U B) A (A U C)j < [ A ] U [(A U B) A c]. 

And then by Theorem 1.29, 

[(A U B) A ( A U C ) ] < A U [jA A C) U (B A C)J . 

Next by Theorem 1.33, 

[(A U B) A ( A U C j ) < [A U (A A C)] U ( B A C ) . 

Therefore by Theorem 1.25, 

(A U B) A (A U 0) < A U (B A C) . 

Theorem 1.38. A U (B A C) m (A U B) A (A U C). 

Proof: A U (B A C) C (A U B) A (A U C) by Theorem 1.30. 

Also, (A U B) A (A U C) <C A (J (B A C) by Theorem 1.37. Then 

by Postulate 1.3, A. U (B A C) (A U B) A (A U C). " 
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Theorem 1.39. (B A C) U A = (B U A) A (C U A). 

Proof: By Theorem 1.33, A U (B A C) = (A U B) fl(AUC). 

Then according to Theorem 1.15, (B A C) U A = (B U A) fl (C(JA). 

Theorem 1.40. A A A ' < 0 , 

Proof: If A < B then B' A A < 0 by Postulate 1.3. 

Substituting A for B, if A < A then A* A> A C O . But A C A 

by Postulate 1.1. Therefore by Postulate 1.3, A A A ' C O . 

Theorem 1.41. I < A U A » , 

Proof: If A •< B then I < A' U B by Postulate 1.3. Sub-

stituting A for B, if A < A then K A ' U A . But A C A by 

Postulate 1.1. Therefore by Postulate 1.3, I < A UA'. 

Theorem 1.42. A U A' r I. 

Proof: K A ' U A by Theorem 1.41. But A U A ' C I by 

Postulate 1.7. Therefore by Postulate 1.3, A U A ' = I . 

Theorem 1.43. A O A ' = 0. 

Proof: A A A' < 0 by Theorem 1.40. But 0 C A A A' by 

Postulate 1.7. Therefore by Postulate 1.3, A A A' r=0. 

Theorem 1.44. A C A A I . 

Proof: A < 1 by Postulate 1.7. And A C A by Postulate 

1.1. Therefore by Postulate 1.5, A < A A I . 

Theorem 1.45. A U 0 <!A. 

Proof: 0 < A by Postulate 1.7. And A < A by Postulate 1.1. 

Therefore A U 0 < A by Postulate 1.6. 

Theorem 1.46. 0 < A A 0. 

Proof: 0 < A by Postulate 1.7. And 0 C 0 by Postulate 

1.1. Therefore 0 < A 0 0 by Postulate 1.5. 
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Theorem 1.47* I < A U I. 

Proof: B < A U B by Theorem 1.13. Now substituting X 

for B, I < A U I. 

Theorem 1.4&. A U I I. 

Proof: A U I < I by Postulate 1.7. Also I C A U I by 

Theorem 1.47. Thus by Postulate 1.3, A U I ~ I . 

Theorem 1.49. A A I < A. 

Proof: A A B < A by Theorem 1.3. Now substituting I 

for B, A H I < A. 

Theorem 1.50. A A l - A . 

Proof: A < A A I by Theorem 1.44. Also A A I <1 A by 

Theorem 1.49. Therefore A A I — A by Postulate 1.3. 

Theorem, 1.51. A < A U 0. 

Proof: A < A U B by Theorem 1.12. Nov; substituting 0 

for B, A < A U 0. 

Theorem 1.52. A U 0 = A. 

Proof: A U 0 < A by Theorem 1.45. And A < A U 0 by 

Theorem 1.51. Therefore A U 0 - A by Postulate 1.3. 

Theorem 1.53. A A 0 < 0 . 

Proof: A A B < B by Theorem 1.9. Now substituting 0 

for B, A A 0 < 0. 

Theorem 1.54. A H O - O . 

Proof: 0 < A H O by Theorem 1.46. Also A C\ 0 < 0 by 

Theorem 1.53. Therefore by Postulate 1.3, A A O - O . 
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Theorem 1.55. A» U B* < (A A B) *. 

Proof: A A B < A by Theorem 1.3. Then by Postulate 1.9, 

A' < (A AB)'. A C\ B < B by Theorem 1.9. Then by Postulate 

1.9, B* < ( A OB)'. Therefore by Postulate 1.6, A* VJ B' < (AHB) 

Theorem 1.56. (A U B) * < A* A B*. 

Proof: A < A U B by Theorem 1.12. Then by Postulate 1.9, 

(A U B)* < A». Also B < A U B by Theorem 1.13. Then 

(A U B)1 < B * by Postulate 1.9. Therefore (A U B) * <C A» A B* 

by Postulate 1.5. 

Theorem 1.57. A <1 (.A*) *. 

Proof: I < A U A ' by Theorem 1.41. Now substituting 

A» for A, I < A * U(A»)». Then by Postulate 1.$, A <(A') T. 

Theorem 1.53. (A*)* < A. 

Proof: A H A ' < 0 by Theorem 1.40. Now substituting A* 

for A, A* A (A*)* •< 0. Then by Postulate 1.3, (A1)' <CA. 

Theorem 1.59. (A*)* ^ A . 

Proof: A<^(A')T by Theorem 1.57. Also (AT)T by 

Theorem 1.53. Therefore (A *)1 ~ A by Postulate 1.3. 

Theorem 1.60. (A1 U B ' l ^ A H B , 

Proof: (A U B)' < A* 0 B* by Theorem 1.56. Now substitu-

ting A* for A and B' for B, (A* U B*) * < (A*) * A (B«)'. Then 

by Theorem 1.59, (A'U B')' < A A B , 

Theorem 1.61. A U B (A'AB 1)'. 

Proof: A' U B' < ( A H B ) ' by Theorem 1.55. Now substitu-

ting A* for A and B* for B, (A») * (J (B«)1 < (A» C\ B*) *. Then 

by Theorem 1.59, A U B < ( A ' H B')'. 
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Theorem 1.62. (A A B)* < A* U B*. 

Proof: (AT U B')T < (A A B) by Theorem 1.60. Then by 

Postulate 1.8, (A A B) t A (A* UB')1 < 0 . But by Theorem 

1 .10 , (A* U B»)1 H (A r\ B) * < 0 . Therefore (A FLB)' < A ' I J B ' 

by Postulate 1.8. 

Theorem 1.63. (A A B)« s= A* U B*. 

Proof: (A A B) * < A* U B« by Theorem 1 .62 . And 

A* U B* < ( A A B ) ' by Theorem 1.55* Then by Postulate 1.3» 

(A A B) 1 s= A* U B * . 

Theorem 1.64. A'AB' <(AUB)>. 

Proof: A U B < (AT A Bf)' by Theorem 1.61. Then by 

Postulate 1.9, JjC A * Ci BT)J] 1 (A U B)T. Therefore by Theorem 

1.59, A ' H B ' < (A U B)». 

Theorem 1.65. (A UB)' - A' H B', 

Proof: (A U B ) ' < AT A B1 by Theorem 1 . 56 . Also by 

Theorem 1 .64 , A* A B» < (A U B)'. Then (A U B) * At A B» 

by Postulate 1 . 3 . 

Theorem 1.66. I 01. 

Proof: 0 <At by Postulate 1.7. Then by Postulate 1.9 

(At)t<^oT. Also 0 < A by Postulate 1.7. Then by Postulate 

1.9, A« <0t. Then by Postulate 1.6, (A *)' U A' <C0'. J 

Therefore by Theorem 1.42, I <0 T. 

Theorem 1.67. IT«<;0. 

Proof: I«< It by Postulate 1.1. Also I ' ^ I by Postulate 

1.7. Then by Postulate 1.5, Therefore l t < 0 

by Theorem 1.43. 
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Theorem 1.63. 0 — I 1. 

Proof: 0 < 1 * by Postulate 1.7. Also If < 0 by Theorem 

1.67. Then by Postulate 1.3, 0 = 1 * . 

Theorem 1.69. 0T < I. 

Proof: A < I by Postulate 1.7. Substituting 0' for A, 

0* < I. 

Theorem. 1.70. 0 * ̂  I. 

Proof; QT C I by Theorem 1.69. Also I < 0* by Theorem 

1.66. Therefore 0T =•! by Postulate 1.3. 

Theorem, 1.71. (A U B) U (A A C ) - A U B . 

Proof: (A U B) U (A fl C) - (jA U B) U a] A [(A UB ) ( j c J 

by Theorem 1.3& when (A U B) is substituted for A, and A is 

substituted for B. Then 

(A U B) U (A r\ C) = [(A V B) V AJ H [ ( A U B ) U C ] 

S ^ U ( B U A ) | 0 J?A U B ) U CJ 

by Theorem 1.33, 

= (A U (A U B)J H [(AUB)UcJ 

by Theorem 1.15, 

= Q A U A ) U B ] N (jA U B) U CQ 

by Theorem 1.33, 

C [A U B] 0 QA U B) U CJ 

by Theorem 1.5, 

= [A U B ] 

by Theorem 1.26. Therefore the theorem is proved. 

The associative laws, Theorems 1.36 and 1.33, guarantee 

that if A, B, C, and D are elements of then 
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A A B (1 C H D and A U B U G U D are elements just as A B 

and A U B are elements. In other words, elements are formed 

which are the cap or cup of more than two elements at a time. 

If H is a finite set of n elements, denotes this 

set. denotes the set containing £-n as a subset together 

with all elements generated from the operations O , U, and * 

on elements of JLn. 

Example 1.1. To demonstrate the generation of 

suppose Z I , — T h e elements of 21^ are generated as 

follows: 

I A 

| AT 

A H A ' - 0 

| A U A ' i I 

Now to examine the possibility of other elements generated 

from these, all possible cases are considered as follows: 

(A) * = A ' 

(A1)1 ^ A by Theorem 1.59» 

0' ~ I by Theorem 1.70. 

I ' Z O by Theorem 1.6$. 

A O A = A by Theorem 1.6. 

A O AT 5= 0 by Theorem 1.43. 

A A O r O by Theorem 1.54. 

A H I = A by Theorem 1.50. 

A A * zz A1 by Theorem 1.6. 

A* r\ 0=10 by Theorem 1.54. 
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AT r\ I ~ A1 by Theorem 1.50. 

0 A O - O by Theorem 1.6. 

l A O r O by Theorem 1.54. 

1 A I - I by Theorem 1.6. 

A U A - A by Theorem 1.5. 

A U A ' - I by Theorem 1.42. 

A f 0 ~ A by Theorem 1.52. 

A U I 1 by Theorem 1.43. 

A» U A' ~ A * by Theorem 1.5. 

A ' U O s A ' by Theorem 1.52. 

A ' U I 2 1 by Theorem 1.4#. 

O U O - O by Theorem 1.5. 

0 U I ^ I by Theorem 1.4&. 

1 U I = I by Theorem 1.5. 

Thus when the operations are applied to {a, A1, 0, i} the 

same set is generated. Thus is finite; moreover, if 

£,={*}, then E ? = A', 0, i}. 

Example 1.2. Now to demonstrate how the elements of 

are generated for , suppose Z , = {A, B}. The elements 

of are generated thus:. (The elements are numbered to 

facilitate their further generation.) 

1) A. 7) A(VB» 12) A* U B1 

2) B 3) AT H B1 13) (AO B«) U (A»H B) 

3) A' 9) A U B 14) (A/1 B) U (A* N B») 

4) B» 10) A ' U B 15) A N A* = 0 

5) A n B 11) A U B* 16) A U AT = I 

6) A B 
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Now to examine the possibility of other elements gener-

ated from these, four sample will be selected, for to examine 

all combinations of the sixteen elements under the three 

operations would be to: extensive for its illustrative purpose. 

Sample 1: (2) A (2). 

BOB,' 

I 0 by Theorem 1.43. But 0 is element number 15. 

Sample 2: (4) (J (9). 

B' U (A U B) 

( A U B) U B' by Theorem X.X5> 

^ A U ( B U B 1 ) by Theorem 1.33, 

Z A U I by Theorem 1.42, 

r I by Theorem 1.48. But I is element number 16. 

Sample 3: (XX)* O (13) 

( a u b ' J ' H [(ah b') u u » n bj] 

= A* n (BT)f n Qa.AB») U (A«n B)] by Theorem X.65, 

Z A ' f l B n [(A O B « ) U (A* o B)J by Theorem X.59, 

- A ' O B A [ j ( A A B , ) L ' A'} n {(AH B') U b}J by Theorem X.3S, 

~ a « n B n ["{(a ua')/i (b*U am] n { U u b j h (b« u b^] 

by Theorem X.39, 

- A ' O B A [ [ l 0 (B' u a*)} n {(A U B ) f | l}J by Theorem X.42, 

- A' n B n ["{(B* U A ' l / l l ] n {(a U B) A i f ] by Theorem X.XX, 

- A' fl B O Q B t U A-1) n (A U B)J by Theorem X.50, 

= A ' n [ B A ( B ' U At j] H (A U B) by Theorem X.36, 

rr A* n jjBT U At)DB] A (A U B) by Theorem X.XX, 

= [At n (B* U At ) ] n (B N (A U B)] by Theorem X.36, 
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= A* U 

= A' U 
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~ [[a* H ( A » U B ' ) j 0 [ b A ( B U A ) ] by Theorem 1.15 , 

~ A1 f l B by Theorem 1.26# But (A* O B) i s element number 6 . 

Sample 4: (3) U ( 1 4 ) * 

A* U [(A A B) U (A* O B»)j 1 

= A* U {(A n B)' n (A* HB«)»3 by Theorem 1 .65 , 

~ A* u j j A * U B * ) n ((A*) * U (Bt) *[j by Theorem 1 .63 , 

= Jl» U [{A* U B')n ( A U B)] by Theorem 1.59, 

{jC A * {J B ' ) H a ] U {(A.» U B ' ) / 1 b } ] by Theorem 1.2S, 

£(A* fl A) u (B* fl A)} U {(At A B ) u ( B » n B)]^ 

by Theorem 1 .29 , 

rr A» U£{(A, fl At) (J (A A Bt)} U {(At O B) U (B f l B t )£] 

by Theorem 1 .11 , 

~ A' U [ {0 U ( A f l Bt)J U {(At H B ) U o j j by Theorem 1 .43 , 

= At U [ { ( A O Bt) U o} U {(At fl B) U Oj] by Theorem 1 .15 , 

= At U [ ( A 0 B « ) U (At fl B)] by Theorem 1 .52 , 
= A' U jjAt D B) U (A H B f)J by Theorem 1 .15 , 

~ [A1 U (At O B ) ] U (A fl Bt) by Theorem 1 .33 , 

=. At U (A O B t ) by Theorem 1 .25 , 

~ (At U A) 0 (At U Bt) by Theorem 1.3d, 

n: (A (J At) fl (AT UBt ) by Theorem 1 .15 , 

= I O(At (J Bt) by Theorem 1 .42 , 

=, (At U B t ) 0 I b y Theorem 1.11 , 

A' U B' by Theorem 1 .50 . But (At U B ' ) i s element number 12. 

I f the operations were performed on a l l poss ib le combina-

t i o n s of the s ix teen elements, the elements generated would 
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be found to be the same as the above sixteen. Thus these 

sixteen elements comprise Z l 

These two examples illustrate a structure which will be 

developed in the following two chapters. 



CHAPTER II 

BOOLEAN POLYNOMIALS 

Chapter One set forth some simple yet fundamental pro-

perties of the elements of F under the three operations. 

Most of the commonly accepted Boolean postulates^ were proved 

in Chapter One as theorems. These principle postulates are 

as follows: 

1. Reflexive under A < A«-'-Theorem 1.16. 

2. Anti-symmetric under < . If A < B and B < A, then 

A = B.— Postulate 1.3. 

3. Transitive under <• If A < B and B < C, then A < C.— 

Postulate 1.2. 

4. Idempotent. A. O A zz A.—Theorem 1.6.. 

A U A ~ A. —Theorem 1.5. 

5. Commutative. A Pi B 3 B O A.—Theorem 1.11. 

A U B = B U A.—Theorem 1.15. 

6. Associative. Jin (BO C ) zz (A.H B) D C.—Theorem 1.36. 

A U (B U C) = (A U B) U C.— Theorem 1.33. 

7. Distributive. A/1(BUC) = (AnB)U (A.A C).— 

Theorem 1.2S. 

A U (B O C) = (A U B) n (AUG) 

Theorem 1.3&. 

Barrett Birkhoff and Saunders MacLane, A Survey of 
Modern Algebra (New York, 1962), pp. 336-342."" 
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&. Universal Bounds. „ There exist two unique elements, 

0 and I, such that 0 < A and A < I for all A . — P o s t u l a t e 1.7. 

9. Intersection. AfiOcO,—Thsoi'om 1.54. 

A H I m A.— Jhe rem 1.50. 

10. Union. A C Q A.--Theorem 1.52. 

A U I —Theorem 1.43. 

11. Complementarity. A n A ' n 0.—Theorem 1.43. 

A U A1 ~ I.—Theorem 1.42. 

12. Dualization or DeMorganfs Theorem. 

(Afl B)' ̂ A ' (J B*.—Theorem 1.63. 

(A lj B)' ̂  A' H Bl.—Theorem 1.65. 

13. Involution. (A *)* =: A.—Theorem 1.59. 

14# Absorption. A H (AU B ) r A.—Theorem 1.26. 

A U (A A B) = A.—Theorem 1.25. 

All of the above properties were proved in Chapter One 

with the exception of numbers one, two, three, and eight, 

which were postulated. 

Definition 2.1. In any Boolean algebra, the opera-

tions of O , U, and 1 will be called primary functions. 

Definition 2.2. Suppose k is a positive integer. The 

statement that F is a polynomial in k variables means that 

there exists a finite composition of primary functions such 

that F maps each ordered k-tuple of elements of XI ̂  onto the 

element determined by that composition. 

Example 2.1. F(x) — (x fl x') U [x* D (x u x)j where 

the replacement set for x is any element in Z 3 . 
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F(x,y) cz (x» U y)1 A x1 where the replacement set for 

x,y is any ordered pair (x,y) in 

F(x,y,z) r x' O (z VJyT) where x, y, and z is any ordered 

triple in 

Definition 2.3* The statement that F*5 is a primary poly-

nomial means that F^ is a polynomial in one variable such that 

FP maps each element of onto that same element. In other 

words, F*5 is the identity polynomial. 

Example 2.2. F^(x) = x, where x is any element in 21^. 

D ' 

Definition 2.4* ' The statement that F^ is a primary 

prime polynomial means that F^' is a polynomial in one variable 

such that F^ maps each element of onto its prime. 

Example 2.3* FP!(x) — xT, where x is any element of Z 3 . 

Definition 2.5, The symbol "F0" will denote, in each 

occurence, either the primary polynomial or the primary prime 

polynomial. 

Example 2.4, f£ is either F^ or F*5*, and F^ is also 

F or F^ independently of which one F° is. 

Definition 2.6. Suppose n is a positive integer. The 

statement that Fs is a simple polynomial in n variables 

means that there exist polynomials, F^, F^,..., F®, such that 
s 

F maps each ordered n-tuple, {x-pxg,...,xn) onto the element 
F°(Xl)n F°(X2)n ...nF°(xn), 

Example 2.5, The simple pdlynomials in three variables 

are: 
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F®(x,y,z 

F|(x,y,z 

F|(x,y,z 

F®(x,y,z 

^(x,y,z 

F^(x,y,z 

Fy(x,y,z 

F§(x,y,z 

zz x r\ y n z 

— x* n y O z 

n x n y' r\ 2 

- x / l y H z ' 

~ x* H y' H z 

~ X* n y A z ' 

- x A y ' n z' 

z: x* n y* n z* 

Theorem 2»1„ Let Sn be the set of simple polynomials 

in n variables. There are exactly 2n simple polynomials in Sn# 

Proof by induction: Let n — 1. The simple polynomials 

are: 

Fj(x) =F®(X) =pP(x) ~ x 

F|(x} n Fg(x) = Fpt (x) ~ x*, 

two of them, or 2 1 = 2 . 

Now assume the theorem holds for n ~ k. Then 

Ks(x1,x2,...)xk) =IF°(Xl) /Of°(x2) n ... riFfclxk). 

There are 2^ simple polynomials in S^. 

:) =Z x1f\ x 2 D . r\ 

ck) r x ^ n x 2 n 

s 
Fl(Xi>X2,...,XkJ— Xj^l X g H ... n Xĵ  

F2<xl>x2 » • • • » • 

^k-KL^X1'X2' * * * * ~ ~ X11 ^ X2 * ̂  • • • 0 

F2k { xl» x2»"-' x
k
) = i X l ^ ^ *kf 
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Now let the number of variables be k-+-l. The simple poly-

nomials in k 4-1 variables are determined in the following 

manner. 

Fl(xl>x2>•* *>xk,xk+l^ Fl^xx,x2' * * * ,xk^ ^ F^ xk+1^ 

c x n x2n ... n x, n x. 
k+1* 

x2>' * * »xk,xk+l^ — fi(xi>x
2> • • • O (xk+/]_) 

= - x ± n x 2 n ...n 

F3(xl>x2» * • • ,xk,xk+l^ F2^X1,X2' * *" ,xk^ ^ F*^xk+1^ 

— Xj.' (~^
 x 2 ̂  ... A x ^ A ^+1* 

F4^xl,x2''**,xk,xk-KL^ = F2^xl,x2,*** , x k ^ F ? ^xk+l^ - * 
x-ĵ ' n x 2 n ... n x k n

 x
k + 1'. 

F2k+l^xi»x2» * * * ,xk,xk+l^ ~ Fk+l^ Xl , x2 , * * * ,xk^ ̂  F^ Xk+l^ 

= x 1
f n x 2 » n . . . n x k n x k + 1 . 

F2k+2^xi>x2» • • * »xk,xk+l^ Fk+l^xl,x2si * * * ,Xk^ ^ ^ 

— x ^ n x2» n . . . n x ^ n • 

F2»2n-l^xl,x2,#**,xk,xk+l^ :-::F
2k{

x
1>

x2>*,*»x
k) ̂

F P^*k+i^ 

^ r r x ^ H x2* f\ ... A x k « A x k + 1 # 

F2.2n(xl'x2'-*-'xk»Xk+l) 

- x i ' n V n • • • n x k t n xk+i'- • 

Thus two simple polynomials of k + 1 variables are determined 

from each polynomial F® of k variables. 

F2i-l^xl,x2,**'»xk,xk+l^ ^ Fi^ xl , x2 ,*** , xk^ ^ F?+l^xk+l^ * a n d 

F2i^xl»x2» * * * ,xk,xk+l^ ^Fk^-l^xk+l^* 
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Therefore if there are 2 simple polynomials in k variables, 
k 

then there are 2 *2 simple polynomials in k4-1 variables. 

But 2k«2 ̂  2k.21 ~ 2k+1. 

Now since the theorem holds for n=l, and whenever it 

holds for n zz k it also holds for n =rk4-l, then the theorem 

is proved. 

Example 2»6 (a). The simple polynomials in one variable 

are: 

F®(x) 

P|(x) 

X 

X* 

two of them; 2 - 2 , 

Example 2.6 (b). The simple polynomials in two variables 

are: 

F®(x,y) rz x O y 

F^(x,y) =r x* H y 

F®(x,y) n x Ay' 

Ff (x,y) rz; x» A yT, 
2 

four of them; 2 = 4. 

Example 2.6 (c). The simple polynomials in three 

variables are: 

Ff(x,y,z 

F®(x,y,z 

F®(x,y,z 

F®(x,y,z 

F®(x,y,z 

F®(x,y,z 

r x O y H z 

r x' O y H z 

- x f l y ' / l z 

zz x c\y n z1 

— x* A y* H z 

=: x* H y A z« 
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Fy(x,y,z) — x n yf n z* 

F§(x,y,z) r x T l y T l z ' , 

eight of them; 2̂  ~ 

Definition 2.7. Suppose n is a positive integer. The 

statement that is a minimal polynomial in n variables 

means that there exists a finite collection of simple poly-

nomials in n variables, F^, F^,..., F^, such that maps 

each ordered n-tuple, (x-^Xg,•.•,xn), onto the element 

^i^xi»x2> * * * >xn^ * * * »xn^ LJ • * * CJ (x^>X2*' * *' • 
Example 2.7. Some minimal polynomials in three variables 

are: 

F^(x,y,z) -(xPly'n z) U (xT O y1 H z) 

F2(x,y,z) = (x* H y Hz1) U f x A y A z ) U (xTH y1 Hz 1) 

F?(x,y,z) = (x Hy' O z) 

F^(x,y,z) r (xHy 1 Hz 1) U (x'Ay Oz'). 

Definition 2.8. Suppose k and n are positive integers, 

k < n, F is a polynomial in n variables, and G is a polynomial 

in k variables. The statement that G is a reduction of F 

means that for each ordered n-tuple, (x^xg,... * * * ,xn^ * 

F(x̂ ,x2» • • •»xĵ »xki-l> • • • — G(x-ĵ ,X£, • • • »xjj) • 

The statement that F is reducible means there exists a 

polynomial, G, which is a reduction of F. 

Example 2.8 (a). F(x,y) = x (J (y C\ x) is a reducible 

polynomial. Using Theorems 1.11 and 1.25, x IJ (y O x) m x. 

Therefore G(x) ~ x. Also, F(x,y) — G(x)• 
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Example 2.& (b). F(x }yz) = (x U 7) U (xf \ 2) is reduc-

ible. Theorem 1.71 states (x U y) U (x C\ z) zz x U y. In this 

case G(x,y) ~ x U y, and F(x,y,z) r=: G(x,y). 

Definition 2.9* An irreducible polynomial is a polynomial 

which is not reducible. 

Lemma 2.1. If n is a positive integer, i is a positive 

integer, i ̂  n, then there are exactly 2n"^ simple polynomials 

in n variables such that 

F {xx,X£,...,x±,x^^_^ t • • • > 

= F 0 ( X x ) n F ° i x 2 ) n ...n ^(x.) n F ° ( X i + 1 ) n . . . d f 0 ^ ) . 

Proof: There are 2 n simple polynomials in n variables, 

and each F° is one of two distinct polynomials, F^ or FP1. 

Thus if only one of these polynomials, F^, is used for a 

specific x.̂, in determining simple polynomials in n variables, 

there will be 2n/2 = 2n/2"̂ " — 2 n ^ simple polynomials of this 

type. 

Theorem 2.2. Let i, n be positive integers such that 

i < n. Furthermore, let f^(x1,x2,... ,xi,xi+_1,... ,x ) 

3 

— Fl ̂  »"̂ 2' * * *' Xi' Xj > • • • > x ^ ^ ^2 ̂  X1' x2 * * * *' xi * xi-^-i''''' xn^ ̂  

• •. LJ F^n-l(^2. >x2' * * *' xi' Xi-v*l»* * * > Xj^ 

where each F^ is a simple polynomial such that F^(x^)~ F^(x^). 

In other words, 

^j ̂ ^1'X2>' *'f x^ *xi4-l »• • •»Xjĵ  

=p°(x1)nf°(x2)n ...nfp(Xi)r\f°(x1+1)r\...r\F°un). 
There exists a reduction of F^, such that if G is that reduction, 

•n M 
then G (x^) » F (x^ $ Xg j • • • j x^ ̂  x^ ̂  ̂  }«• • ̂  x^) * 
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Proof by induction: Let n = 1. Then x±= xx and 

F^(x^) — F^(x^) since there is only one variable. Now 
s 

FiCxi) = x 1 since the hypothesis specifies that F^(x^) must 

contain x^ only, and not . But there exists a primary 

polynomial, G?, such that G^x-^ = *1# Also, F ^ x ^ is the 

cup of one simple polynomial; 2n~1 z=. 21"1 = 2 ° rr 1. 

Now assume the theorem is true for n rr k. 

F (x1,x2,... j ^ j X ^ , ... ,xk) 

^ ^2 ̂  X1 * x2' * * * * xi' xi+i * * *' * ^ 

• • • O F^k-1 ( , x2,. •., x±, ,. •., xk). 

Then there exists a such that 

G (x±) F^(x^,x2, * • . ,x̂ ,x̂ _̂ i,.. . • 

Thus 

F^(x^,x2, • •. • • • jXjj) U F^tx^jX^,... ,x_̂ , 
il s 

*i+l» • • •) • • • l_J -1? 2k-»l( »X2' " * ,Xj[ ,xi-+l'' " > * 

Then 

sp(Xi) = [f°(Xi)n f V 2 ) n ... n pptxĵ ) n F°(xi+1in 

...riF0(xk)] u [F0(Xi)n F°(x2)n ... nFP( X i) 

n F°(xi+1> n . . . n u . . . u [fo(Xi)n f°< X 2)a 

... n fP(X±) n F°(Xi+1) n . . . n f
0;^)] , 

which is 

x± =: (xx o x 2 n ..,/ix.n x i + 1 n ... n^) u (x1« n x2 a 

. . . D x . n x ± + 1 n . . . n x k ) u . . . u ( x x ' n x2« A ...n 

^ 1 0 • • * f \ 1) • 

And Lemma 2.1 guarantees that there are 2̂ ""̂  simple polynomials 

such that in each polynomial 



30 

Next prove the theorem is true for n « k + l , Using 

theorems from Chapter Gne, 

xi n jjx1 A x2 A ... flx.H x i + 1 A ... A x^ U (x1l A x 2A 

... A xi A x^ ̂  A ... A x^) (J ... U (x1
t A x2

1 0 ... /I xi 

A A ... A xk* j] A i 

by Theorem 1.50, 

zr fix, A x A ... A x. A x. A ... A x ) U(x.. 1 f\ x A 
2 i i+l k 1 2 

... f \ xi A x i + 1 A ... A 3^) U... (J (x̂ * r\ X 2
t A • • • Ax. 

a xi+1< n.. . n xk« i] n u xk+i-) 
by Theorem 1.42, 

= [(XLN X 2 A . . . A x ± r \ XI+L N . . . N ^ A ( *K + IU W D 
U [(x1

t A x2 A ..• A A x_^^ A ... A x
k ) 

^ {xk^i ̂ 0 ^ u B x i ' A *2
f A ... Ax. 

nxi+1<n... DxkM r n ^ u x ^ ) ] 

by Theorem 1.29 extended, 

z: jjx1 A x 2 A ... A \ A xi+1 A ••• A x ^ A x k +J U (7^ 

A x2 A . *. A x± A x i + 1 /A ... Ax k) A xk+1'J (j [jx-j/ 

A x2 A ... A x± A x ^ A... Ax k) A xk+1J u Q v A x2f\ 

... A x± A x i + i A ... Ax k) n U .•. U(t^ 1 A V A 

... A xi A x1+1« A ... A xk*) A x k + 13 L/Qx^ A *2
T f\ 

. . . f)x± A A ••• A x
k
T ) A xk+1'J 

by Theorem 1.2$ extended, 

H jxx A A ... A x . A X i + 1 A ... A x k A x k + J 

U[ xi A x 2 A... A x . A x i + 1 A ... Ax kA
xk+-i^ 

U A X 2 ^ ...A x ± A A ... A xk A x k + 1] 

U [ V A x2 A ... A xx A x . + I n ... A x k A x ^ J U 
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. . . u ( x ^ n x 2 * n » . r i x i n x i + 1 » n . . . n y n 

u [X-l* n v n . . . n ^ n x i + 1 * n . . . r i ^ n x
k + i O 

by Theorem 1.11, which i s a cup of simple polynomials in k + 1 

va r i ab le s of the type in Lemma 2 .1 . Now from each simple 

polynomial i n k v a r i a b l e s , two simple polynomials in k-4-1 

va r i ab le s are formed. Then F^( x^, x 2 , « . . . , x ^ , j , . . • , x^, 

i s a cup of 2 k ~ 1 .2 = 2k"*1 .21 = 2 k = 2 ^ k + 1 ^ " 1 simple polynomials 

of the type under cons idera t ion . Then 

G^(xi) — F^(X2>,X2». • • ,x^ ,x^ + -^ , . . . • 

Now since the theorem holds f o r n — 1 v a r i a b l e s , and 

whenever i t i s t r u e f o r k v a r i a b l e s , i t i s a l so t r u e f o r 

k-f-l v a r i a b l e s , the theorem i s proved. 

Example 2 .9 . To show an example of Theorem 2 .2 , l e t 
* 

F^(x,y,z) = (x D y f l z) U ( x f l y A z ' l U ( x O y T l z ) 

U ( x f l y 1 H z ' ) . 

Notice t h a t i s the cup of 4 — 2^ 2^""^ simple polynomials 

such t h a t i n each simple polynomial F°(x) ~ F ^ ( x ) . 

( x D y O z J U ( x H y D z ' J U ( x f l y 1 ^ z | U ( x f l y 1 H z ' ) 

~ j jx f l y i n (z U z ' ) J U jjx f l y ' i n (z U z M ] by Theorem 1.2&, 

~ Qx O y) n l ] U [(x n y») n l ] by Theorem 1.42, 

rz [x Pi y j U jx H y^j by Theorem 1.50, 

- x H ( y U y ' ) by Theorem 1.23, 

— x Pi I by Theorem 1.42, 

~ x by Theorem 1.50. 

But the re e x i s t s a G^ such t h a t G ^ ( x ) x . Therefore 

G?(x) r : ^ ( x , y , z ) . 
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Lemma 2.2. If n is a positive integer, i is a positive 

Ti 1 

integer, i < n, then there are exactly 2 simple polynomials 

in n variables such that 

Fs(xi,X2, ... • • • ,*n) 
= p ° ( x 1 ) n F°(X2) n ... n f * 1 ^ ) n F°(xi^1) n ... n F°(xn). 

Proof: There are 2n simple polynomials in n variables, 

and each F° is one of two distinct polynomials, F*3 or F^', 

Thus if only one of these polynomials, F^*, is used for a 

specific x^ in determining simple polynomials in n variables, 

there will be 2n/2 — 2n/2^* — 2n"*^ simple polynomials of this 

type. 

Theorem 2.3. Let i, n be positive integers such that 

i <; n. Furthermore, let 

F^(x^,x£i ... ~~* ̂ l^xl,x2' * *" ,xi 5Xi+l* * * * ,Xn^ 

^ ^,2^"X1,X2> * * * ,xi?xi+l* * * * ,Xn^ ̂  *** ̂  ^,21*"~^X1,X2, 

... ,x̂ ,x̂ _̂ ,... >xn) 

where each f| is a simple polynomial such that F^(x^) =r F^^x^). 

In other words, 

F®(xi,x2,...,xi,x.+1,...,xn) 

= F°(X1) n F°(X 2)n ... n F
P , ( X . ) n n ••• NF°(XN). 

There exists a reduction of F^, such that if G is that reduc-

tion, then Gpt(xi) = F^(x1,x2,...,xi,xi+1,...,xn). 

Proof: The proof of this theorem is similar to that of 

Theorem 2.2, with the exceptions that instead of the reduction 

being G^(x^), it is G^T(x^); and instead of each 
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( x l > x 2 5 * * * >x-* , x i + i s •" * ,3Cn^ 

^z?°u1)n F°(X2) A . . . n F p ( x . ) r \ ^ i + i ) n . . . n F ° ( x n ) 

as i n Theorem 2 . 2 , i n Theorem 2 . 3 , 

F j <xl>x2> • * • > x i > x i + l x
n ' 

= F ° U > o F°(X j n . . . n F p , ( x ) r i F ° ( X i + 1 ) n . . . O F ° ( x j . 
rs t 

In o the r words, i n each F^, F° (x^)— F p (x^)• Also, i n s t e a d 

of Lemma 2 . 1 , Lemma 2 .2 must be used . 

Example 2 .10 . To show an example of Theorem 2 . 3 , l e t 

F^(w,x ,y ,z) ~ ( w f l x 1 H y H z ) U ( w f l x 1 H y O z f ) 

U (w HxT D y* n z) (J (wflx1 Oy' Hz') U(w'A xT 

/l y Az) (J (wT OxTl y n zT) U (w* f i x ' A y ' f l z ) 
U (w1 n X'D y' f l z ' ) . 

Notice t h a t F^ i s the cup of 3 — 23 r r 2^""^ simple polynomials 
„ | 

i n each of which F ° ( x ) ~ F p ( x ) . 

F^(w,x,y,z) ~ [(w Ox' O y A z) U (wOx1 Hy Hz')] 
( j f(w n x ' n yf n 2) u (w n x» n y* n z*)] 

( j [(w1 n x1 n y n z) u (wr n x» n y n z»)] 

U [(W» n x> n y« n z) u ( w n x» n y» n z«)] 

by Theorem 1 .33 , 
z z [(w 0 X1 n y) n ( z U z 1 ) ] U [ ( w H x ' O y ' ) n (z U z ' l ] 

U [(w«n x*n y) n (zuz»)] u [(w«n x» n y * ) n (z uz*)] 

by Theorem 1.2&, 

zz jj[w n x?
 n y) n i j u [(w n x» n y*) n 

! j [(w1 n x ' O y) (I i j U [("w* f i x ' O y ' l H i j 

by Theorem 1 .42 , 
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(V Dx f D yj U [w f\ x* f) y*J U (_wT A x® yj U [w* f\ xTf\y|J 

by Theorem 1,50, 

- |[w Ox' /l y] U jw H x ' n y^jj U Hx« O fj 

U (w* n x ' O y']|j 

by Theorem 1.33, 

zz. £(w nx') n (y Uy')} U j(w1 Ci x») r\ (y (J yT)| 

by Theorem 1.23, 

- [(w n xf) n ij u |(w x1) c\ ij 

by Theorem 1.42, 

IT jw D x*j U £w* 0 x»j 

by Theorem 1.50, 

zn (w Uw') n xf 

by Theorem 1.29, 

- i A x1 

by Theorem 1.42, 

=. x« D i 

by Theorem 1.11, 

x* 

by Theorem 1.50. 

But there exists a G^* such that G^f(x) m x1. Therefore 
f M 

Gp (x) ~ F (w,x,y,z). 

Theorem 2.4. If (x, jX̂ ,,... ,x ) is an ordered n-tuple, 

and if F1 is a minimal polynomial in n variables such that 

F^^Flf U f| U ... UF^ n (in other words F^ is the cup of 
2 M 

all simple polynomials in n variables), then F (x ,x ,•••»xri)—I' 
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Proof: Let i be a positive integer, n be a positive 

integer, i S 11, Let F ^ 1 be a minimal polynomial such that 

^ » X 2 ' * * * ,Xi,Xi-i-i' * * * , Xn^ ^ * 1 ^ * X 2 » * * * » ' * * * , Xn^ 
I i ® 
u F 2 ( x 1 , x 2 , . . . , x i , x i + 1 " 5 . f t . , x n ) u 

• • • ^ F^ji—l (x^, x 2 , • • •, x i , y . . . , X ) | 

where each 

F ® ( x 1 > x 2 > . . . , x i , x 1 + 1 , . . . , x n ) 

= f ° ( x i ) n F°^X ) n . . . n F p ( X . ) n F°(X. ) r \ . . . a F°(X ). 

Mi* 2 1 1 + 1 n 

Let F be a minimal polynomial such that 

Mi ' . —_ TtS/ 

F (x-^,x2,. • . , x ± , > • • • » 2 . jL,x2> * * * ,Xi,Xi•4-l, * * * , X n 

U F 2 ( x 1 , X 2 

?•••# ̂  j "^i+l1 # * # 1 x
n 

) U 

... LJ * * * * * * * ,x
n̂ ' 

where each 
F ^ ( x i , X 2 , . . . , x i , x i + 1 , . . . , x n ) 

ZZF°(X1) af°(x 2) N ... n F ° ( x
i + 1 ) n . . . n F°(x n). 

Then 

M , 
F ( x ^ x g , . . . ^ ) 

—' (xx,X2,...,x^,-^i_j_]_»... U F 1 * (x1,x2,...,x^,xjL_^> • * 

But Theorem 2.2 states that there exists a G p such that 

(x ±) — F^ * ( x x , x 2 s . . . , x ± , x i + l x n ) , 

and Theorem 2.3 states that there exists a G p t such that 

G ( x ^ —. F ^ ( x 1 , x 2 , . . . , x ± , * 

Then F I 4(x 1,x 2,...,x n) n G p ( x ± ) U G
p ' ( x . ) 

3 Z x ^ U x ^ t by Definitions 2.3 and 2.4, 

~ I b y Theorem 1.42. 
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M 
Theorem 2.5. Let n be a positive integer, and Pn be 

the set of all minimal polynomials in n variables. There 
2n M 

are exactly 2 -1 minimal polynomials in Pn« 

Proof; There are 2n distinct simple polynomials in n 

variables by Theorem 2.1. Let k ~ 2n, and let r be any 

positive integer, r < k. From Definition 2.7, the set of 

all minimal polynomials in n variables, P^, is the set of 

all F^ where is the cup of r simple polynomials. The 

order in which the simple polynomials appear in any one mini-

mal polynomial is immaterial, by Theorem 1.15. 

Let the symbol (~) denote the number of combinations 

of k things taken r at a time. From the binomial expansion, 

(a -t-b)k = (£)akb° + (£)ak"1b1 +(|)ak"2b2 +(k)ak_3b3 + 

— + <k-3>a3bk"3 + ik-2>
a2bk"2 + t k > V ' 1 + I ^ V , 

where (A) is defined to be 1."*" 

Now let a — b =: 1. The expansion becomes 

(1 + l)k =: (Q) 1^1° ~i~ (k) -]-(|)lk"2l2 - H k ) l k ~ V + 

... 4-(k
k
3)i

3ik""3 + (k
k
2)i

2ik"2 ( k
k
x)l

1^" 1 ~i~(k)i
0ik, 

which is 

2k = (q) -f (£) ~h (£) -h (k)~h •••+ (^3) ~f"~ ̂ -2'*+" (k-lJ ^ • 

Now (Q) is the number of k things taken none at a time, and 

is defined to be 1, therefore, 

2 k-i=(|) + (|) -4-(k)-h ... + ( k
k
3 ) + ( k

k
2) +<£>• 

Richard E. Johnson, Lona Lee Lendsey, WilliamE. Slesnick, 
Grace E. Bates. Modern Algebra, Second Course (Reading, Massa-
chusetts, 1962;, p. 409. 



37 

The right side of the last equation is the sum of all possible 

combinations of k things, in this theorem simple polynomials, 

taken one at a time, two at a time, and so on to k at a time; 

and this sun is 2^-1. Therefore there are 2^-1, or 2^ -1 
on 

distinct minimal polynomials in n variables, or 2 -1 minimal 
M 

polynomials in Pn« 

Example 2,11. To show an example of Theorem 2.5, suppose 

(x,y) is an ordered pair such that F^(x,y) is a minimal poly-

nomial. Notice that n ~ 2. The minimal polynomials in 2 

variables are: 

1) x n y 

2) x* H y 

3) x H y» 

4) x» H y» 

5) (x n y) U (x* n y) 

6) (x H y) U (xHy'l 

7) (x H y) U (x* D y') 

$) (x1 n y) U (xfly1) 

9) (x* D y) (J (x* D y«) 

10) (x D y») (J (x' D y') 

11) (x n y) (J (x» A y) U (xny'l 

12) (xH y) U (x* fl y)U (x1 n yT) 

13) (xfly) U (x n y1) U (*' D y1) 

14) (x* n y) U(xOy') U (xT D yf) 

15) (x H y) U (x* H y) U (xAy')U (x1 f) yl) = I \ (f) = 1 
-9 4 

;16-1 =15 minimal polynomials, 

(ip 

(3) 

2 n 

There are 2 -1 = 2 -1 24-l 



CHAPTER III 

THE SET L n 

In this chapter the properties developed in Chapter One 

and the development of simple polynomials in Chapter Two will 

be used to investigate the structure of IZn» 

Definition 3.1» Let n be a positive integer and Fp a 

primary polynomial. The statement that x is a primary element 

of n means that x is the element onto which F^(x) maps 

any element of XIn. Thus F^(x) maps each element of H o onto 

itself. 

The order of H n is n. * If FP(A) € H N then F?' (A) 

The set o'f primary element^ ZIn» n o^ closed under the 

three primary functions A , U , and ' . Z I N
 a Proper subset 

of Zl 
Definition 3.2. Let n be a positive integer and FP* a 

primary prime polynomial. The set which consists of all 

F^1(x), where x is any element of is denoted by Hrf* 

Elements of H n' are called primary prime elements. 

If F P 1 ( A ) € TLrf then F P ' ( A ) / H N . In other words, Z Z N 

and Hn'are mutually exclusive sets. Hr/ is a proper subset 

of Zl 
Example 3.1. Suppose — { A , B , C , D J . Then the set 

is |FP(X) |x s= A,B,C,orDj or simply [ A , B , C , D } . 

33 
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Also, the set TLj ~ (Fp' (x)|x ~ A,B,C,orD} or simply 

YL+* — {a* JB1 ,C» ,D'}. Furthermore, ]L 4C 1L\ and ZL^'C H * • 

Definition 3.3. If A e than the set which consists 

of the two elements, A and A*s is denoted by A#, and is called 

the "pair set of A". Thus if one element of A* is in H n , 

namely A, then the other element of A* is in ZLn', namely A*. 

Example 3.2„ Suppose — [A,B,C,D,E}. Then 

A* =z {A,A*} 

B* ~{B,B*} 

C* = {c,c*} 

D* ={D M 

E* = [E,ESJ 

Definition 3.4. Let n be a positive integer. The set 

which is the union of all pair sets of ^—n is denoted by 

Thus if .f\ — J • • • then ,^,2t»* * * 

and therefore has exactly 2n elements. 

If A,B G Hn*> t h e n ( A ^ B) ̂  -Hn*> a n d ( A ( J 

Thus is a proper subset of H h . 

Definition 3.5. Let (A1SA2,...,A ) be an ordered n-tuple 

of distinct elements from ZIn , and F
s be any simple polynomial 

in n variables. Then FS(A1,A2,...,AN) will be called a 

"minterm". The set of all minterms of TLn i s denoted by £In . 

Example 3.3. Let H-z --- {a,b}» Then 

— [A n B, AT n B, A r\ B« , A* n B»] . 
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Keeping the same H z ~ { a , b | , it is clearly seen that 

A/1 A1 is not a minterm. A similar argument could be proposed 

for any n. Not only d C L I , but *L n is a proper subset 

of H * . 

Theorem 3.1. Let £1 n — {a^,A2, ... ,ArJ. There are 2 n 

elements in . 

Proof: Let the ordered n-tuple (x^,x2,...,xn) of the 

simple polynom als in n variables be the set TZn such that 

X1 = A1 > x2 = : A2' * *'' xn ̂  An* T h e n 

F^(xi,x2,...,xn) = F
p ( x 1 ) H F P ( x 2 ) H . . . n F

p(xn) 

=ta 1 n a 2 n ... n a . 

F|(X1,X2,...,X^) = F p ' ( x 1 ) A Fp(x2) n ...ftFP(xn) 

I- = a * n a 0 n ... n a » 
1 2 n 

F^n^n ,x9,... ,x ) ~ F p (xj H F p (x9) f] ... H F p (x ) 
2 1 * n l ^ n 

c i j f i A ' A ... H a *. 
J- 2 n 

n 
Now by Theorem 2.1, there are exactly 2 simple polynomials 

in n variables. And since each x^ is the exact element A 

n ?— c; M 

then there are 2 minterms of , or 2 elements in • 

When restricting the variables of the simple polynomials 

in the manner prescribed in Theorem 3.1, an interesting feature 

is evolved. The minterms of ZZr, may be illustrated by Venn 

diagrams. If each element of 2Z n is represented by a circle 

or ellipse, the prime of each element A^€ ZZn represented 

as the area not in the area A^, and the primary function C\ 
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is interpreted in the sense of the class algebra connective, 

then each mintera is represented as a distinct area in the 

figure, and no two minterm areas overlap. 

Illustration 3«1« Suppose — ( A , B , C , D J . Then the 

ZM 
4 are: 

1 ) A A B A C H D 

2) A' A B A C /ID 

3 ) A A B ' A C A D 

4 ) A A B A C « A D 

5 ) A A B A C F \ D ' 

6 ) A ' A B ' A C A D 

7 ) A ' A B H C ' A D 

G) A 1 A B A C A D ' 

9 ) A A B ' A C A D 

1 0 , A A B ' A C A D ' 

1 1 ) A A B A C* A D ' 

1 2 ) A» C \ B ' A C* A D 

1 3 ) A ' A B ' A C A D ' 

1 4 ) A* A B A C* A D* 

1 5 ) A A B ' A C ' A D ' 

1 6 ) A* A B ' A C ' C\ D ' . 

Now suppose each element of H 4 is represented as an ellipse 

in a Venn diagram. Then the small sixteen areas represent 

the sixteen minterms of • 

© w 

© © 

© 
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Definition 3*6* Let (A1,A2,...,An) be an ordered n-tuple 

of distinct elements from , and F^ be any minimal polynomial 

in n variables. Then elements ) and the element 
5-9 

0 are called polyterms. The set of all polyterms of L-n is 
sru 

denoted by L_n • 

Example 3«4« Suppose zz [a,b]. Then 

Vf = {Cq], CAn b3> CA« A B], [A A B«j, [A* n B*], 

[(A n B) U (A» n 3)] , [(AHB)U (AAB')], 

[ ( A n B) U (At n BM], [(a A B') U (At r\Bt)] , 

[(At n B) U (A nB'fj , [(At n B) U (At n B')], 

[(A AB) U (AAB'l U (A*n B)J, 

[(A 0 B) U (At n B) U (At n B»)] , 

[(an b) u (a riB») u (At n bo], 
[(A«n B) U (A OB') U (At AB«)] , 
[(A n B) u(Atn b) u (A n B*) u (At n B»)J]. 

r-iw sr~U ST"M 
Not only 2_n C Z_n , but is a proper subset of . 

Clearly Hn C H i » but the question "Is r ^ a proper 

subset of L I ?" is yet unanswered. The solution to this 

query is one of the basic concepts in establishing the structure 

of L I . 

Theorem 3*2* If A £ X— n » then A • 

Proof; Let IE— ̂  —1^1*^2® * * * '̂ i'̂ i-t-l' * * * ®̂ n̂  * For the 

n-tuple (x^JX^J...,3^), 

(x^jx^,.. • >x
n) F̂ (x-̂ ,x2,«.. ,x^ jX^^,... ,x^) U F2(x-pX£, 

•.. * * * ®Xn^ ̂  ^ ^2n-l^xi»x2» * * * ,xi,xi-+-l' * * * ,Xn^' 
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where each 

fi(x1'x2 xi>Xi+l
,-*MXn) „ 0 

= p°(x,> r> f°(x,) n ... o f p u ) n f u > n ... n f (*n). 
-L X P 

Then by Theorem 2.2, there exists a G such that 

GP(A±) = FM(A1>A2, ... • • • > V ^ Fi(A1»A2» * ,Ai* 

Ai+1, - • • s
A
n) U F|(A1,

a
2,. .. »

Ai>Ai+i» • • • >
A n ^ 

... UF2n-l(Ai>A2'"*,Ai,Ai+l,,**,Ar^ # ^ 

But FM(A1,A2,...,Ai,Ai
 i S a p o l y t e r m ° f n ' ± n 

other words, an element of ZLn j by Definition 3.6. And G^A^) 

is an element of H n , by Definition 3.1. Therefore, if 

Aĵ  ̂  ^ ^ , then A^ £ ^ i • 

Example 3.5. Suppose 2I2 n {a,b}. B^(A/1B) U (AflB') 

Obviously from Theorem 3.2, 

Theorem 3<»3. If A C » then At C X-r* • 

Proof: The same procedure is used in proving this 

theorem that was employed in the proof of Theorem 3.2, except 

this theorem follows as a result of Theorem 2.3. 

Example 3.6. Suppose 7Lz=z {A, B}. B! - (A/IB') U (A'AB*). 

From Theorem 3.3 it is seen that ^—nr n • Also, 

it follows that Z n » C ZI n . 

Theorem 3.4. The cup of all minterms of 2—n is 3* • 

Proof: Let I „ - { a ^ a J . For the ordered 

n-tuple (xi>x2>••• 
,xn), 

FM(xi,x2>...,xn) =:F^(x1,x2,...,xn) U F|(x]l,X2, ... ,3^) (J 
• •• * # * * 
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Then 

P ^ 3 ̂ * • • • ^ ^^1*^2® * * * 

• • • O' ̂2** (^"1^2' * * * * 

Then by Theorem 2.4, 

F (A-j ,A^, • • •, A-ĵ) — I • 

But F^A^jA^, • •. ,An) C F2(A^,A2,... t A ^ ) U ••• LJ ^2Tl^lf^2*"'*^'n) 

is the cup of all minterms of H i . Therefore the theorem 

is proved. 

Again referring to the analogy in a Venn diagram, with 

the class algebra interpretation of U , the element I is 

represented as the total area in the illustration—the union 

of all mintera areas. 

Illustration 3*2. Suppose ̂ —2. •— [a,B^. Then 

I rr (A A B n C) U ( A ' H B A C ) U (A A B* A C) U (A A B A CM 

(J (A'A BT A C) U (A* A 3 A C*) U (A A B ' O C ) 

U (A' A B ' f l CO . 

Also it is shown that 

A — (A A B' A C) U (A A B A CM U (A A B A C) U (A A B* A C«). 

A* ~ (A* A B* A C*)U (A' A B A CM U (A* D B A C)U (A'HB'AC) 
xi**! 3~1 

It is noted that A and A 1 are both the union of 2 i 2 " 
2 %—D ST ̂  

2 = 4 minterms; A £ , A' C Z__j • 
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A»nB*nc» 

AAB !riC t/AnBnc i\A tnBnG t 

AABAC 

A'ABOC AfSB'HC 

A*n B* nc 

c 

2n . r u 
Theorem 3.5. There are 2 elements in £_n. 

Proof: Let =: fA^,A2,... , ? n *>
e t^ie s e t a ^ 

minimal polynomials in n variables, and let r be any positive 

integerj r f̂ -2 • For the ordered, n—tuple (x-̂ jx̂ j • • • jX^) > 
M ^ tM 

consists of all F such that for each F\, 

^^xl,ac2» * * * ,xn^ F^^X1,X2, * * * ,Xn^ ̂  ^(x^jXg,... ,^) U 

L-/ » X0 » * • * > Xn^ * 
on M 

By Theorem 2.5, there are 2 -1 elements of Pn« But by Defini-

tion 3.6, each % A1,A2,...,An) is an element of Z-n* Now 
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consists of all F^A^Ag,. .. ,An) together with the element 

0. Thus there are (2^-1) +• 1 == 22 elements in • 
0X1 **5 

Example 3.7. Suppose —{A,Bj. There are 2 =-2 

— 2̂ " m l 6 elements in namely 

1) 0 

2 ) A n B 

3) A*N B 

4) A N B« . 

5) A*N BT . 

6) ( A n B ) u ( A f n B) 

7) (AA B) U (A. ABM 

G) (AH B) U (A» N B») 

9) (A* n B) U .(A n B») 

10) (A» Q B ) U (At A B») 

11) (A OB') U (A' n B») 

12) ( A H B ) U (A*n B) U (A HB«) 

13) (AAB)(J (A1 O B) U (At H Bt) 

14) ( A R I B ) U ( A A B ' ) U (AT O BT) 

15) ( A t n B ) U (A n B t ) U ( A t n B t ) 

16) (AAB) U (A*A B) U ( A H B ' ) U (AT H Bt) — I . 

Theorems 1.23, 1.29, 1.3$, and 1.39 may be extended to 

apply to the cap or cup of any number of elements. 

A (J (BXN B2 N . . . A BN) = ( A U B ^ N (AUB 2 )H . . . N (A UB K ) . 

Likewise, 
A n (BXU B 2 U . . . UBN) =2 (AN B1) U (AN B2) U . . . U U N BH). 
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Theorems 1.63 and 1.65 may also be extended to apply to 

the cap or cup of any number of elements. 

(A 1 N A 2 N . . . O A N ) « U A 2 « U ... U Y , 

and 

(A-^U A2 U ... U Aq)
T =: A^1 C\ A2

f O ... ̂  A
n* • 

The process of showing this extension is the same for any n. 

To illustrate, suppose A,B,C,D € H N « Then 

(A U B U 0 U D) * = {\iku- B) U c] U d} 1 by Theorem 1.33, 

— [(AU B) U Cjf H D1 by Theorem 1.65, 

z(A UB)'A C'AC 1 by Theorem 1.65, 

= A'A B' A C' A D' by Theorem 1.65. 

A similar procedure is used in showing 

(AH B A C OD) ' : = A ' U B« U C« U D«. 

Considering that the cup of all minterms of Z_n is I, 

it is an interesting procedure to show that IT — 0. In demon-

strating this, assume £L2 — {
A,Bj • T h u s 

I ~ (AH B) U (ATV B) U (AAB')U (A»N B*) by Theorem 3.4. 

Then 

IT — J J A n B ) U ( A « A B ) u ( A H B ! ) u (A* N B* jjT 

— (AHBl'A (A «n B)'A (AAB'l'H (A' fl B»)' by Theorem 1.65, 

—- (j B» ) A (AUB'l 0 ( A , 0 B) A (A UB) by Theorems 1.59,63, 

n {(A' U B ' i n ( A U B * ) J N {(A* U B ) A ( A U B)} by Theorem 1.36, 

— |(A» n A) U B1} N {(A' n A) U B } by Theorem 1.39, 

s= (A*n A) U (B* n B) by Theorem 1.3$, 

== (A AA'} U (BHB') by Theorem 1.11, 
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— Q U O by Theorem 1.43 , 

t: 0 by Theorem 1.5. 
V ^ 

Lemma 3.1. If and are two minterms of cL„ , then 

either 0, or ̂ A m J = m J = m J . 
* * • * « • • 

Proof: Assume . Then M1 fl ~ follows 
n n n n n n 

immediately by Theorem 1.6. 

Now assume Let H^zzlk^k^,... ,Â | . Then each 
s 

minterm is F (A^,A£,...,An), where 

Fs(A1,A2 An) =F°(A1) n P°(A2) r> ... OF°(An). 
Now since these two minterms are not the same, there exists 

at least one such that F^(A^)~ F^(A^) in one of the min-

terms, while F°(A.)=: FP*(A.) in the other minterm. Thus 
& X 1 

M ^ n is the cap of certain elements, S, of H n*, two of 

which are the two elements of A^*. But A^H =. 0 by 

Theorem 1.43, and B O 0 = 0 by Theorem 1.54 where B is the 

element in generated by the caps of the rest of the 
* • Jj 

elements of S. Therefore, if M n , then D M n ~ 0 . 

Example 3.2. Suppose A,B,cj, zz k f) BT fl CT, 

and ~ An B D C*. Then 

M* C\ - (AO B1 D O H (AH B HC«) 

- (AHA) n (B n B«) O (C«n c») by Theorems 1.36 and 1.11, 

- A (1 (B OB' ) n C» by Theorem 1.6, 

- A O O n c by Theorem 1.43, 

r: A O C fl 0 by Theorem 1.11, 

~ (A H C')O 0 by Theorem 1.36, 

- 0 by Theorem 1.54. 



49 

Theorem 3.6. is closed under H . 

Proof: Let k and p be two positive integers, q be a 

non-negative integer such that k, (p +• q) are less then or 

equal 2n. Also, let M^1, be two polyterras of such 

that 

= u ... u i 

= M p U M£ + 1 U ... U M^+q, 
«• n n. n 

where each is a mint era of 21 n . Then 

= (M* U M ^ u ... U *£> n (MP u m P + 1 U - . . U M P + q ) 

- [»£ U m J u ... U M ^ ) n MP] (J [(»£ U M n U ... U l ^ ) n M j ^ J U 

... u ( M J ; U . . . U \ ) r i M P + q J 

by Theorem 1.28 extended, 

= B 1 ^ n mp> u (m* n mP) u ... u < n mP)] u ^ n Mn + 1 ) 

u ^ n i f l i u ...U(M^ni<p + 1>] u ... u ( < n ^ ) 

u ( M ^ n M P + 1 ) U . . . U I M * n M g + q 0 

by Theorem 1.29 extended. Now by Lemma 3.1, the cap of any 

two minteras M*, M? of E 5
n is either 0 or M* (Il£ = m £ ) . Then 

the right side of the above equation is the cup of elements 

(M^n M^), each of which is either 0 or a minterm. 

Case I: If each (m£ C\ MJ) is a minterm, then M ^ A M ^ 3 

is the cup of minterms. Then by Definition 3»6> ( M n V l M ^ ) 

Case II: If there exists at least one (M* D I#) such 

that n :r 0, and one (M* f\ M^) such that C\ 9^0, 

then fi is the cup of 0 and a polyterm, M n . But by 

Theorem 1.52, < a U 0 =J<£a. Thus S . 
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Case III: If every (M^ H M^) — 0, then fl ̂  is the 

cup of O's. Then by Theorem 1.5, K^1 P> M̂ J" ~ 0. But by Defini-

tion 3.6, 0 € H n . Thus M^) € 
> • • (J % ^ 

Since for all possible cases (M^ H M^J) € 2_ Z~, 

is closed under H • 
Theorem 3.7. n is closed under U . 

y~u 

Proof: By Definition 3.6, each element of £~n is either 

0 or the cup of one or more minterms of . Let and 

be two polyterms of ]L^ . 

Case I: If rz 0 and =£0, then M^1 U M*5 — M ^ 

by Theorem 1.52. But e ZT^. Therefore (M^UM^0*) e2_ n. 

Case II: If mJJ1 ~ 0 and ^ 0 , then M^1 U M ^ = : 0 by 

Theorem 1.5. But 0 C 11^. Therefore (M^1 U M ^ ) €. 2Z„. 

Case III: If 0 and 96 0, then MJJ1 UM^° is the 

cup of all minterms which are either in or . But the 

cup of minterms of Zln is a polyterm of £IA • Thus 

How since 21 ̂ for all possible cases, then 
<r— U 

C~ n is closed under U • 

Lemma 3.2. If € H " , then (M*) * £ . 

Proof: Let Z„=: {A1,A2,...,Anj . Then there exists a 
* ** "5 * 

minimal polynomial, FS1, such that F (A^,A2,. ..^A^) — 

Now 

Fsi(A1,A2,...,An) =F°(A1) f\ F°(A2) fl ... HF°(An) 

where each F°(Ai) is either F
P(A.) or Fpt(A.). Therefore 

j •# 3 v 
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(K^) • = LF°'Al' ̂ f°'A2* ̂  ••• ' 

= [f0(AiD ' U [F°(A2)J ' U... U [F°(An)] • 

by Theorem 1.63 extended. Now since F°(Aj) is either or 
• 

A..', then [f° (A^)] « is either Aj« or Ay Thus (m£)1 is the 

cup of elements of /Ln** But by Theorems 3.2 and 3*3, Â .' 

and AJ are polyterms. Then (M̂ )* is the cup of polyterms of 

. But by Theorem 3.7, the cup of polyterms of A—n is an 
» \ * (J 

element of Z_n • Therefore, (Mj) * € . 

Theorem 3.8* is closed under '. 

Proof: Let Mu^ be an element of T—n . Then by Definition 
n 

3.6, is either 0 or the cup of one or more minterms of 

5""S 
L~~ri • 

Case I: Suppose =• 0. Then 

(11^-) 0' 

= X 

by Theorem 1.70. But I £ ZZ.r> by Theorem 3*4* Therefore 

(M^1) • € Zln . 

Case 11: Suppose 0. Let k be a positive integer, 

k < 2n. Then 

Mjj1 = U M ^ U ... U 

where each is a minterm of • Then 

(Mjj1)1 m (M^ U M ^ U ... UM£) ' 
- (Mj)«n (Mg)in ... n (m£j« 

by Theorem 1.65 extended. But each (M§)* i s a polyterm by 

Lemma 3.2. Thus (Mjf)* is the cap of polyterms. Now by 
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Theorem 3.6, the cap of polyterms of T-n is an element of 

Therefore (M^) * € ZL^ . 
j» tr-— 

Now since (Mul)* € Z_0 for all possible cases, then 
r u n 

L_n is closed under
 T. 

Theorem 3.9* Fundamental Theorem of the Algebra of H • 

T° - V 
L — I—n • 

Proof: Basic in the concept of the Boolean algebra 

developed is the establishment that ZZ* is the set generated 

by the three primary functions on the elements of ZLn• Now 
it has been shown, by Theorem 3.2, that each element of E r~> 

is an element of . So to inspect ZI^ further, it is neces-

sary to examine the elements generated under the three primary 
,C~*L) 

functions on the elements of • 
1) Theorem 3.6 states ZZ^ is closed under C\ . 

2) Theorem 3.7 states 2—^ is closed under U . 

3) Theorem 3.3 states i~„ is closed under x, 

£U c~(J U 

n ; 0 £ L.n by Definition 3.6, and I € L-n 
by Theorem 3.4. Therefore, Z^—- • 

?n y- 5 
Corollary 3.1« There are 2 elements in • 

?n 

Proof: By Theorem 3.5, there are 2^ elements in L-rt . 

Then since <sLA ~ Z[„, there are 2^ elements in E l . 

Illustration 3«3. In showing how the set ZL^ may be 

applied to Venn diagrams, let ZI a ^[A,B]. Example 3.4 lists 

the elements of ZZn . As in illustration 3.2, each small area 

is a minterm of ZZ? • Each of the 2 ^ ~ 2^ =: 16 different 
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elements of d is illustrated as the striped portion in 

a separate square. 

It is easily seen that the very same set of squares 

represents ^—2• Notice that element number six xs Bj and 

that element number seven is A. Each of the elements generated 

under the primary functions on A and B is represented by one 

of the sixteen squares. 

1) A H A ' = B n B* 2) a n b 

3) At n b 4) A O B ' 
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A ' r\ B* 6 ) (A r\ B) U ( A » N B) 

7 ) (A N B) U ( A H B » ) a) (A n B ) u ( A « n B O 

9 ) ( A ' n B) U ( A D B * ) 1 0 ) (A* F L B ) U ( A ' O B 1 ) 
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11) {A nB') U (A* O BM 12) (AnB)U(A»nB)U(AHBM 

13) (AflB)U (ASH B)U (A'fiB1) 14) (AflB)U (AOB*)U (A'O B») 

z M f P * 

(ADB)U (A'H B) 
15) (A'AB)U (AnB*)U (AY1B1) 16) U (AH B*) U (A'fl B») =1, 
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