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CHAPTER I
FUNDAMENTAL POSTULATES AND THEOREMS

Let Z be a set. The purpose of this chapter is to
develop a form of a "free"™ Boolean algebra with Z as a
base ,» by imposing the usual Boolean operations on the set
Z 'and thus generating new elements freely within explicitly
prescribed restrictions.

To this end let it be postulated that there exist a
set Zﬁ containing Z as a subset, two binary operations
() and U, and a unary operation ', all closed on >3
and a relation < on Zg subject only to the following
restrictions:

Postulate 1.1, If A is an element of Z‘i’ then A <A,

Postulate 1.2. If A, B, and C are elements of Zg,
and if A< B and B < C, then A <UC,.

Postulate 1.3. If A and B are elements of Zg, and if
A <B and B <A, then A =B.

Postulate 1l.4. If A, B, and C are elements of Zg’
then AN (BUC) <(ANB)YU (ANC).

Postulate 1.5. If A, B, and C are elements of }:3,
then A < (BN C) if and only if A <B and A <C.

Postulate 1.6, If A, B, and C are elements of Zg,
then (A UB) <C if and only if A <C and B <C.




Postulate 1.7. There exist two unique elements in Zﬁ’

namely O and I, such that if A is an element of Zﬂ, then
0< A and A <1I. |

J
Postulate 1.8, If A and B are elements of Z , then

A <B if and only if B'MN A <0, and A < B if and only if
I< AT UB,.
Postulate 1.9, If A and B are elements of , and if
A < B, then B' < At,

Postulate 1.1 is the reflexive property, Postulate 1.2
is the transitive property, and Postulate 1.3 is the anti-
symmetric property.

For the following theorems assume A, B, and C are
elements of 2 3. Unless a symbol is defined, its commonly
accepted meaning is assumed.

Theorem 1.,1. A U A <A,

Proof: (A UB) < C if and only if A< C and B < C by
Postulate ;L.é. Substituting A for B and A i;;)r c, (AUA) <A
if and only if A< A and A <A, But A <A by Postulate 1l.1l.
Therefore, (A UA) <A,

Theorem 1.2, A <A (\A.

Proof: A<BNC if and only if A< B and A < C, by
Postulate l.5. Substituting A for B and A for C, A< ANA
if and only if A< A and A < A, But A<<A by Postulate 1.1,
Therefore, A < A N A,




Theorem 1.3. AN A <A,

Proof: A < A by Postulate 1l.1l. Substituting (A NA)
for A, (ANA)<(ANA}). But (AN A) < ANA if and only
if (ANA) < A and (AN A) < A, by Postulate 1.5. Therefore
ANA<A,

Theorem l.4. A <A UA,

Proof: A < A by Postulate 1l.l. Substituting (A UA)
for A, AUAKAUA, But AUA<(AUA) if and only if
A<<AUA and ASAUA by Postulai;e 1.6. Therefore,

A< AU A,
Theorem 1.5, A UA=A,

Proof: AU A <A by Theorem l.1. A< A UA by Theorem
l.4. Therefore, by Postulate 1.3 AU A=A,
Theorem 1.6, AN A=A,

Proof: A <A MNA by Theorem 1.2. AN A <A by Theorem
1.3. Therefore, by Postulate 1.3, AN A ZA,
Theorem 1.7. ANA=AUA,

Proof: AN A = A by Theorem 1.6. A U A =A by Theorem
1.5. Then by substitution AN A=—AUA,

Theorem 1.8. (AN B) <A,

Proof: AMB <A B by Postulate 1.1. Therefore
(AN B) < A by Postulate 1.5,

Theorem 1.9. (A M B) < B.

Proof: AN B< AN B by Postulate 1.1. Therefore
(AN B) < B by Postulate 1.5.




Theorem 1.10. AN B <BNA,

Proof: AN B< B by Theorem 1.9. AN B < A by Theorem
1.8. Therefore AN B < B N A by Postulate 1.5.
Theorem 1.11. AN B==BMNA,

Proof: ANB<BMNA by Theorem 1.10. Substituting
A for B and B for A, BN A< AN B. Therefore by Postulate
1.3 ANB=BNA.

Theorem 1.12, A< A UB.

Proof: AU B< AU B by Postulate 1l.1. By Postulate
1.6 A<< AU B.
Theorem 1.13. B < A U B,

Proof: AUB<CA UB by Postulate 1.1. By Postulate
1.6 B AUB.
Theorem 1l.14. AU B< BUA,

Proof: A< BU A by Theorem 1.13. B < B U A by Theorem
1.12. Therefore A UB<B UA by Postulate 1.6.
Theorem 1l.15. AU B =B UA,

Proof: A UB<BU A by Theorem 1l.14. Substituting
A for B and B for A/BU A<< AU B, Therefore by Postulate
1.3 AUB=BU A,

Theorem 1.16. AN B<< AU B.

Proof: AN B<<A by Theorem 1.8. 4Also A< AUB by

Theorem 1.12. Therefore AN B<CA\UB by Postulate 1l.2.

Theorem 1.17. AN (AU B)<< AU (AN B).

Proof: AN (BUC) < (ANB)U (ANC) by Postulate l.k.
Substituting A for B and B for C, AM(AUB) < (ANA)U (AN B),
Therefore by Theorem 1.6 AN(AUB)< AU (ANB).




Theorem 1.18. If (A B) <4, then B <A,

Proof: (A UB) <A from the Hypothesis. Then by Postu-
late 1.6 A< A and B<<A, Therefore if (A UB) < A, then B A,
Theorem 1.19. If A<<(A N\ B), then A< B.

Proof: A < (A N\ B) from the Hypothesis. Then by Postu-
late 1.5 A< A and A <B. Therefore if A <(A MB), then A <B.

Theorem 1.20. A U (A N B) <A.

Proof: By Postulate 1.6 A{\UB<C if and only if AL C

and B <C. Substituting (AN B) for B and A for C,

AU (ANB) <A if and only if A<L A and (AN B) <L A, Now
A < A by Postulate 1.1, and (AN B) < A by Theorem 1.8.
Therefore A U(AN B) KL A,

Theorem 1.21, A<AN(AUB),.

Proof: A <(BNC) if and only if A< B and A< C by
Postulate 1.5. Substituting A for B and (A U B) for C,
A<AN(AUB) if and only if AL A and AL (A UB)., Now
AL A by Postulate 1.1, and A << (A U B) by Theorem 1l.12.
Therefore A< A N (4 \UB).

Theorem 1.22. AU (AN B) <AN(AUB).

Proof: A U(ANB)< A by Theorem 1,20, AL AN (AU B)
by Theorem 1,21, Therefore by Postulate 1.2,

AU (ANB)<AN(AUB).

Theorem 1.23. A< AU (ANB).

Proof: AN(BUC)< (AMNB)U (ANC) by Postulate l.k.
Substituting A for B and B for C, AN(AU B) <L (ANA)J (AN B.




Then AN (AU B) <A U (AN B) by Theorem 1.6. Also
A< AN (AUB) by Theorem 1.21. Therefore by Postulate 1.2
A< AU (AN B).

| Theorem 1l.24. A/ (AU B) < A,

Proof: AN(BUC) <L (AN B) U (ANC) by Postulate l.4.
Substituting A for B and B for C, AN (AUB) < (AN A)U (ANB).
Then AN (AU B)< AU (AN B) by Theorem 1.6. But
AU (AN B)K A by Theorem 1.20, Therefore AN (AU B)<< A
by Postulate 1l.Z2.

Theorem 1.25. AU (AN B) = A,

Proof: AU (AN B)< A by Theorem 1.20. Also A< A U (ANB)
by Theorem 1.23. Therefore by Postulate 1.3, A \J (AN B)= A,

Theorem 1.26. A N (A U B) =A.

Proof: A< AN (AUB) by Theorem 1.21. Also
AN (AU B) < A by Theorem 1l.24. Therefore by Postulate 1.3,
AN (AU B)= A,
Theorem 1.,27. (ANB)U (ANC)<AN(BUC).
Proof: A MB<B by Theorem 1.9. And B< BU C by

Theorem 1.12. Then by Postulate 1.2, ANB<BUC, Also,
ANB< A by Theorem 1.8. Thus by Postulate 1.5,
(ANB)<AN (BUC).

Now to show that (ANC)<AN(BUC): ANCKC by
Theorem 1.9. And C< B UC by Theorem 1.13. Thus by Postulate
1.2, ANC<BUC, Also AN C< A by Theorem 1.8, Then by
Postulate 1.5, (ANC)< AN (BUC). Therefore by Postulate
1.6, (ANBU (ANCc)<AN(BUCC).



Theorem 1.28. ANMN(BUC)=(ANB)U (ANCcC).

Proof: AN (BUC)< (ANB)U (ANC) by Postulate
l.4e Also (ANB)U (ANC)< AN(BUC) by Theorem 1.27,
Therefore by Postulate 1.3, AN (BUC)= (AN B)U (ANC).

Theorem 1.29. (BUC)N A= (BN A)V (CNA).

Proof: AN (BU C)= (AN B)U (AN C) by Theorem 1.28,
Using Theorem 1.1l that AN B= BN A, then

(BUC)N A =(BN 4)U (CNA).
Theorem 1.30, AU (BNC) K< (AUB)N (AU C),
Proof: AU (BNC)<(AUB)N (AU C) is true if it

can be proved that:

AU (BNC)<K (AUB) and AV (BN C) < (AVC).

Now to prove AU (BN C) < (AU B):

(BMN C) < B by Theorem 1.8. And B« (A U B) by Theorem
1.13. Then by Postulate 1.2, (BN C) < (AU B). Also,
A< (AU B) by Theorem 1.12. Therefore by Postulate 1.6,
AU (BN C) << (AUB).

Now to prove AU (BN C)<< (AVC):

(BN C) < C by Theorem 1.9. And C< (A \JC) by Theorem
1.13. Then by Postulate 1.2, (BN C) < (A UC). Also,
A< (AUC) by Theorem 1.12, Therefore by Postulate 1.6,
AU (BN C)< (AUC).,

Thus since AU (BN C) <(AUB) and AU (BN C) < (AU C),
by Postulate 1.5, then AU (BN C) << (AUB)N (AUC).



Theorem 1.31. (AUB) UC <KAU (BUC).

Proof: (AUB)UC<AU(BUC) is true if and only if
(AUB)< AU (BUZC) and C< AU (BU C).

To prove that (AU B)< A U(BUC):
B< (BUC) by Theorem 1.12. And (BU C)<< A U(BU C) by

Theorem 1.13. Thus by Postulate 1.2, B< AU (BU C). Also,
A< A U(BU C) by Theorem 1.12., Therefore by Postulate 1.6,
(AUB)KAU(BUC).

To prove that C< A U(BUC):
C <(BUC) by Theorem 1.13. And (BUC)< A U(BUC) by
Theorem 1.13. Therefore by Postulate 1.2, C< A U (BU C).

Now since (AUB)< A U(BUC) and C<A U (BUC), by
Postulate 1.6, (AUB)UC< AU (BUZC).

Theorem 1.32. AU (BUC) < (AUB) UC.

Proof: AU (BUC) < (AUB)U C is true if and only if
A<(AUB)UCand (BUC)<(AUB)U C.

To prove that A< (A UB) U C:
A< (A UB) by Theorem 1.12. 4nd (AU B) < (AU B) U C by

Theorem 1.12. Therefore by Postulate 1.2, A <(A U B) U C.
Now to prove that (BUW C) < (A UB) UC:
B < (AU B) by Theorem 1.13. And (AUB) <(AUB)U C by
Theorem 1.12., Therefore by Postulate 1.6,
(BUC)<<(AUB)U C.
Now since A (AUB)U Cand (BUC) < (AUB)UV C,
then by Postulate 1.6, A U(BU C) < (AU B) U C.



Theorem 1.33. AU (BUWC)= (AU B)UC,

Proof: (AUB)U C< AU (BU C) by Theorem 1.31. And
AU (BUC)< (AUB)U C by Theorem 1.32. Therefore by
Postulate 1.3, AU (BUC) = (AUB) U C,

Theorem 1.34. AN(BNC)< (ANB) NC,

Proof: AN (BNC)< (ANB)MNC is true if and only if
AN(BNC)< (ANB) and AN(BNC)<<C,

To prove that AN (BN C) << (AMNB):
AN (BN C) < (B NC) by Theorem 1.9. By Theorem 1.8,
(BN C)< B. Then by Postulate 1.2, AN (BN C) < B. Also
AN (BN C)<«< A by Theorem 1.8. Therefore AN (BN C) < (A.f\B)
by Postulate l.5.

To prove that AN (BN C)< C:
AN((BNC)< (B NC) by Theorem 1.9. 4And (BN C)<C C by
Theorem 1l.9. Therefore by Postulate 1.2, AN\ (BN C) < C.

Now since AN (BN C) < (ANB) and AN(BNC)<C,
then by Postulate 1.5, AN(BNC)<<(ANB)NcC.

Theorem 1.35. (AMNB)NC<AN((BNC).

Proof: (AN B)N C<K AN (BN C) is true if and only if
(ANB)N C<Aand (ANB)NCL (BNC).

To prove that (AN B) /N C<< A:
(AN B)N C< (ANB) by Theorem 1.8. And (AN B) < A by
Theorem 1.8. Then by Postulate 1.2, (AMB)NC <A,

To prove that (ANBj Nc< (BNC):
(ANB)N C<<(ANB) by Theorem 1.8. And (AN B) < B by
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Theorem 1.9. Then by Postulate 1.2, (AN B) N\ C< B. Also,
(ANB)N C<C by Theorem 1.9. Therefore by Postulate 1.5,
(AnhB)N c<<(BNC).
" Now since (AMB,NC<A and (AC 3)N C< (BNC),
then by Postulate 1.5, (ANB)NC<Ar (BNC).
Theorem 1.36. AN (BN C) =(ANB)NC,
Proof: AN (BNC)< (ANB)N C by Theorem 1.34. And
(ANB)N C<AN (BN C) by Theorem 1.35. Therefore by
Postulate 1.3, AN (BN C) =(AN B) NC.
Theorem 1.37. (AUB)N (AU C)<<AU(BNC).
Proof: BN (AU C) <(BMA)U (BN C) by Postulate l.4.
Now substituting (AU B) for B,
(AUBN (AUc)< [(AUB) N 4] Ulaus)ncl.
Then [(AUB)N (Auc) <@aN(aus) U fausnc
by Theorem l.ll. Next by Theorem 1.26,

[auB N (auc) < AJUf(aus N cl.
And then by Theorem 1.29,

(laumn (auc]<aullancu(ncy.

Next by Theorem 1l.33,

[lausnuuc)<fpuanc)ueno.
Therefore by Theorem 1.25,

(AUB)N (AUC)<<AU(BNC).

Theorem 1.38. AU (BNC)==(AUB)N (AU C).

Proof: AU (BN C)<<(AUB)N (AU C) by Theorem 1.30.
Also, (AUB) N (AUC)< AU (BNC) by Theorem 1.37. Then
by Postulate 1.3, AU (BN C)==(AUB)N(AUC).
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Theorem 1.39. (BN C)U A= (BU AN (C U A).

Proof: By Theorem 1.38, A U(BNC) = (AUB)N(aUC).
Then according to Theorem 1.15, (BN C)U A= (BUA)N (CUA).

Theorem 1.40, AN A' <0,

Proof: If A <B then B' N\ A <0 by Postulate 1.8.
Substituting A for B, if A< A then A' YA <<0., But A<A
by Postulate 1l.1. Therefore by Postulate 1.8, AN A' < 0,

Theorem 1.41, I<< A UA',

Proof: If A< B then I < A'U B by Postulate 1.8, Sub=-
stituting A for B, if A <<A then I<A'U A, But A< A by
Postulate 1.1. Therefore by Postulate 1.8, I <A UA!,

Theorem 1l.42, A{J A' =TI,

Proof: I< A*U A by Theorem 1.41, But A UA' LI by
Postulate 1.7. Therefore by Postulate 1.3, A UA'=1I,

Theorem 1.43. A A'=0.

Proof: A MNA' <O by Theorem 1.40. But 0 <A NA! by
Postulate 1l.7. Therefore by Postulate 1.3, AN At =0,

Theorem l.44. A<<A NI. |

Proof: A <I by Postulate 1.7. And A<{A by Postulate
l1.1. Therefore by Postulate 1.5, A<<A NI.

Theorem l.45. A U 0 <A,

Proof: O < A by Postulate 1.7. 4And A <A by Postulate 1.1,
Therefore AU 0 < A by Postulate 1.6.

Theorem 1.46. 0 <A NO.

Proof: O <A by Postulate 1.7. And 0 << 0 by Postulate
l.1. Therefore 0 <A NO by Postulate 1l.5.
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Theorem 1.47. I < AUI.

Proof: B < A UB by Theorem 1.13. Now substituting I
for B, I<AUI,

Theorem 1l.48. A UI =TI,

Proof: A UI<I by Postulate 1.7. Also I <A UTI by
Theorem 1.47. Thus by Postulate 1.3, A U I—=1I.

Theorem 1.49. ANI<<A,

Proof: A NB<A by Theorem 1.8, Now substituting I
for B, ANI<KA,

Theorem 1.50. ANI =A,
Proof: A< ANTI by Theorem l.4k. Also ANI<A by

Theorem 1.49. Therefore AN I =A by Postulate l.3.
Theorem 1l.51. A <A UO.

Proof: A < A UB by Theorem 1.12. Now substituting O
for B, A<AUO,

Theorem 1,52, A U0 = A,

Proof: AU O <A by Theorem 1l.45. And A<<AU O by

Theorem 1l.51. Therefore AU O = A by Postulate 1l.3.
Theorem 1.53. AN 0 <O,
Proof: AN B < B by Theorem 1.9. Now substituting O

for B, AN 0 <0,

Theorem 1.54, A N0 =0.

Proof: O <<A MO by Theorem 1.46. Also AN 0 <0 by
Theorem 1.53. Therefore by Postulate 1.3, AN 0 =0.
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Theorem 1.55. A'U B' < (ANB)!'.,

Proof: AN B<A by Theorem 1.8, Then by Postulate 1.9,

At < (ANB)'. AN B<B by Theorem 1.9. Then by Postulate

1.9, B' < (A MNB)'. Therefore by Postulate 1.6, A'* U B' << (ANB)?*.
Theorem 1.56., (A UB)' <A N BT,
Proof: AL AUB by Theorem 1.12. Then by Postulate 1.9,

(A UB)' < A', Also B<<A UB by Theorem 1.13. Then

(A UB)' < B' by Postulate 1.9. Therefore (A UB)'<IA'N B!

by Postulate 1.5.

Theorem 1.57. A< (At)?®,

Proof: I <A UA' by Theorem l.41. Now substituting
At for A, T <<A' U (A?")', Then by Postulate 1.8, A <(A")T",
" Theorem 1.58. (A')r' <A,

Proof: A NA' <O by Theorem 1.40., Now substituting A?
for A, At "\ (A')* < 0. Then by Postulate 1.8, (A')' <A,

Theorem 1.59. (A}t A,

Proof: A < (A')! by Theorem 1.57. Also (A')? <A by
Theorem 1.58. Therefore (A')' == A by Postulate 1l.3.

Theorem 1.60, (A'U B')'<CA NB. |

Proof: (A UB)!' < A' N\ B' by Theorem 1.56. Now substitu-
ting A' for A and B' for B, (ATUB*')r < (A")" N\ (B')'. Then
by Theorem 1.59, (A'U B')' < ANB,

Theorem 1.61. A UB K (A'M\B1)1,

Proof: A'U B'< (AN B) 1 by Theorem 1.55. Now substitu-
ting A! for A and B' for B, (A')' U (B')' < (A* N\ B')', Then
by Theorem 1.59, AU B < (AT N Br)*,
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Theorem 1.62. (A NB)' << At U B,

M (A* UBr)t < (A NB) by Theorem 1.60. Then by
Postulate 1.8, (AN B)* N (A* UB1)t <0, But by Theorem
1.10, (A*UB")* N (ANB)!' < 0. Therefore (ANB)t < A' U B!
by Postulate 1l.8.

Theorem 1.63. (4 NB)!' =A' U Br,

Proof: (A B)' < A' U B! by Theorem 1.62. And
At U Bt < (AN B)!' by Theorem 1.55. Then by Postulate 1.3,
(ANB)! = At U BT,

Theorem 1.64L. A' N B < (A U B)?',

Proof: AU B (A' (N B*)* by Theorem 1.61. Then by
Postulate 1.9, BA'(\ B')ﬂ ' L (A UB)'. Therefore by Theorenm
1.59, A* N B'< (AUB)'. -

Theorem 1.65. (A UB)! =At' () B',

Proof: (A UB)! <A' N\ B! by Theorem 1.56. Also by
Theorem 1.64, A' (\ B' < (AUB)*. Then (A UB)'=At/\ B!

by Postulate 1.3.
Theorem 1,66, I < 07,

Proof: 0O < A' by Postulate 1.7. Then by Postulate 1.9
(At)r1 L 01, Also O < A by Postulate 1.7. Then by Postulate
1.9, A1 £ 0'. Then by Postulate 1.6, (At)r U At <L o0t
Therefore by Theorem 1.42, I <OT.

Theorem 1,67. I'< 0.

Proof: It'< I' by Postulate 1l.l. Also I'< I by Postulate
1.7. Then by Postulate 1.5, I' < I'fY I. Therefore I'< 0

by Theorem 1l..43.
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Theorem 1,68, 0 =1It,

Proof: O <1I' by Postulate 1.7. Also I'< O by Theorem
1.67. Then by Postulate 1.3, 0 =1It,
Theorem 1,69. 0'< I,

Proof: A< I by Postulate 1.,7. Substituting O' for A,
or<I.
Theorem 1,70, 0' =1,

Proof: O'< I by Theorem 1.69, Also I < O' by Theorem
1.66. Therefore O' = I by Postulate 1.3.

Theorem 1.71. (AU B) U(ANC) =AUB.

Proof: (AUB)U (ANC)=[(AUB U AN [(aUB) UC]
by Theorem 1.38 when (A U B) is substituted for A, and A is

substituted for B. Then
(AUB) U (anc) = lavB va] N[(AUB) UC]
=huveua]nausuc
by Theorem 1.33,
=hu@aus) N {avs v
by Theorem 1.15,
=favn vl nlaus v
by Theorem 1.33,
=[avs] Nfavm vc]
by Theorem 1.5,
= ug]
by Theorem 1.26. Therefore the theorem is proved.
The associative laws, Theorems 1.36 and 1.33, guarantee

that if A, B, C, and D are elements of Z‘], then
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ANBNCNADand AUBU CUD are elements just as AN B
and A U B are elements. In other words, elements are formed
which are the cap or cup of more than two elements at a time.

If Z is a finite set of n elements, anenotes this
set. Z,? denotes the set containing Zn as a subset together
with all elements generated from the operations ), U, and !
on elements of J_p.

Example 1.1. To demonstrate the generation of Zg,

.suppose Z‘ :{A}. The elements of Z?, are generated as
follows:
A
At
AN A'= 0
AUAT=TI
Now to examine the possibility of other elements generated
from these, all possible cases are considered as follows:
(A)r = At
(Av)" == A by Theorem 1.59.
0! =1 by Theorem 1.70,
I'=0 by Theorem 1,68,
AN A = A by Theorem 1.6.
AN A'= 0 by Theorem l1l.43.
AN 0 =0 by Theorem 1l.54.
ANI = A by Theorem 1.50,
At AY = A' by Theorem 1.6.
A'M 0 = 0 by Theorem 1.54.
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AN I A' by Theorem 1.50,

0 M 0=0 by Theoren 1.6.

IMN 0 =0 by Theorem l.54.

INI=1 by Theorem 1l.6.

AU A=A by Theorem 1.5,

A UA'==1 by Theorem 1l.42.

A U0 = A by Theorem 1.52.

A UI =1 by Theorem 1.48.

A' U AY = A" by Theorem 1.5,

At U O = A' by Theorem 1.52.

A'U I =1 by Theorem 1.48.

0U 0 =0 by Theorem 1l.5.

OUI=1I by Theorem 1.48.

IUI=1I by Theorem 1l.5.

Thus when the operations are applied to {A, Av, O, I} the
same set is generated. Thus Z?\ is finite; moreover, if
L={a}, then IY=f, ar, 0, 1}.

Example 1.2. Now to demonstrate how the elements of

are ge;uarated for Za: suppose Z,_ = {A, B}. The elements
of Z; are generated thus:. (The elements are numbered to

facilitate their further generation.)

1) A 7) AN:B! 12) AtU B!

2) B g8) A' B 13) (AN BY)U (AN B)
3) Al 9) AUB 14) (AN B)U (AN BY)
L) B! 10) A'U B 15) ANAT'=0

5) AN B 11) AU B! 16) AU A =

6) A'N B



18

Now to examine the possibility of other elements gener-
ated from these, four sample will be selected, for to examine
all combinations of the sixteen elements under the three
operations would be to: extensive for its illustrative purpose.

Sample 1: (2) N (2).

BN B!
= O by Theorem 1l.43. But O is element number 15,
Sample 2: (&) U (9). '
B'U (AU B)
= (AU B) U B' by Theorem 1.15,
= AU (BU B') by Theorem 1;33,
= AU I by Theorem 1l.42,
= ‘I by Theorem 1.48. But I is element number 16.
Sample 3: (11)' N (13)
(AUBY)*N [(AN B U (41N B)]
= AN (BY' N [(A.h B') U (A'N B)] by Theorem 1.65,
=ZanNBNANBYU@KN B)] by Theorem 1.59,
= AN BN [{(A N B')U A'} N {(A N B') U B}] by Theorem 1.38,
=mnsn[{avann Brua} N {aUus N (U B}
by Theorem 1.39,
Z A'N B /\[-{I N (B U A')} N {(A UBIN I}] by Theorem 1.42,
= A nBA[{(BUAN NI} N {AUB) N I}] by Theorem 1.11,
=arOBN[BUAHNN (& UBJ] by Theorem 1.50,
=4t N BN (B UAI N (LU B) by Theorem 1.36,
= &' N {(B* U A")NB] N (A UB) by Theorem 1.11,
= [arn (81U 41)] N (BN (& UB)] by Theoren 1.36,
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= [arn (U] N[BN(BUA] by Theoren 1.15,
= A* N\ B by Theorem 1.26. But (A*"\ B) is element number 6.
Sample L: (3) U (14)?
A U(AN B) U (A N B
Av U E(A N B)' N (A* N BY) '] by Theorem 1.65,
A* U [(A*U BY) A ((A1) 1 U (B")1)] by Theorem 1.63,
4t U ({47 U B') N (AU B)] by Theorem 1.59,
AT U [{(A.r UBN NA U {arusnn B}] by Theorem 1.28,
=wu{wnmuena} v{ane uen ey
by Theorem 1.29,
=av{ananuane} Ufarn s uensg]
by Theorem 1.1l1,
=4t U[fo uanB} U {(ar N B) U 0}] by Theorem 1.13,
= At UE{(A N Bt) U O} U {(A' N B) U O}J by Theorem 1.15,
= ar U{(ANB") U (41N B)] by Theorem 1.52,
= ar U[(AtN B) U (A N B")] by Theorem 1.15,
=[av@n Bﬂ U (A NB') by Theorem 1.33,
— A* U (A M B') by Theorem 1.25,
= (At U A) N (A* U B') by Theorem 1.38,
= (AU A") N (A'UB') by Theorem 1.15,
= I N(A* U B') by Theorem l.42,
— (A* UB') N I by Theorem 1.11,
= A* U B! by Theorem 1,50, But (A' UB') is element number 12.

i

i

i

N

If the operations were performed on all possible combina-

tions of the sixteen elements, the elements generated would
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be found to be the same as the above sixteen. Thus these
3
sixteen elements comprise 2:;.
These two examples illustrate a structure which will be

developed in the following two chapters.



CHAPTER II
ECCLEAN POLYNOMIALS

Chapter One set forth some simple yet fundamental pro-
perties of the elements.of Z‘J under the three operations.
Most of the commonly accepted Doolean postulatesl were proved
in Chapter One as theorems., These principle postulates are
as follows:
1. Reflexive under <. A < Ar=Theorem 1.16.
2. Anti—symmefric under <, If A <B and B< A, then
A = B.,--Postulate 1.3.
3. Transitive under <., If A<B and BKC, then A L C, -~
Postulate 1.2,
4. Idempotent. A N A = A.--Theorem 1.6,.
AU A =A,--Theorem 1.5.
5. Commutative. AN B =B N A,-=Theorem 1.11.
AU B=BU A,-=Theorem 1l.15.
6. Associative. AN (BN C) = (AN B) N C.--Theorem 1.36.
AU(BUC) = (AUB) U C,--Theorem 1,33.
7. Distributive. A N(BUC) =(ANB)U (AN C).--
Theorem 1.28.
AU (BN GC) =(AUBIN (AUC).--
Theorem 1.38.

lgarrett Birkhoff and Saunders MacLane, A Survey of
Modern Algebra (New York, 1962), pp. 336-342.
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8. Universal Bounds. . There exist two unique elements,
0 and I, such that O <A and A < I for all A,--Postulate 1.7.
9. Intersection. A N0 =0.--Thec.aom 1l.54,
ANI=A.- he rem 1,50,
10, Union. AU O =A,--Theorem l1l.52.
AUI=1I,--Theorem 1l.48.
11, Complementarity. A N A' = O,--Theorem l.43.
' AU A' = I,--Theorem 1l.42.
12. Dualization or DeMorgan's Theoren,
(AN B)!==A' U B!.~-~Theorem 1.63.
(AUB)t= A' () B'.~-Theorea 1.65.
13. Involution. (A')'= A,--Theorem 1.59.
14. Absorption. AN (AU B) = A.~~Theorem 1.26,
AU (AN B) = A.-~Theorem 1.25.
All of the above properties were proved in Chapter One
- with the exception of numbers one, two, three, and eight,
which were postulated.

Definition 2.1, In any Boolean algebra, Zi, the operé-

tions of 1, U, and ' will be called primary functions.

Definition 2.2. Suppose k is a positive integer. The

statement that F is a polynomial in k variables means that
there exists a finite composition of primary functions such
that F maps each ordered k-tuple of elements of Zg onto the
element determined by that composition.

Example 2.1. F(x) = (x N x') U [x' N (xyu xﬂ where

the replacement set for x is any element in Zﬁ.
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F(x,y) = (i'LJ y) '\ x' where the replacement set for
X,y is any ordered pair (x,v) in 9

F(x,y,2) = x'N (2 Uy’) where x, y, and z is any ordered
triple in Zﬁ.

Definition 2.3. The statement that FP is a primary poly-

nomial means that FP is a polynomial in one variable such that
FP maps each element of Z:S onto that same element. In other
words, FP is the identity polynomial.

Example 2.2. FP(x)= X, where x is any element in 2:3.

1
Definition 2.4. ' The statement that F¥ is a primary

prime polynomial means that FP' is a polynomial in one variable
. 1
such that FP maps each element of 2:3 onto its prime,

Exanple 2.3, Fp'(x):: x', where x is any element of Z:i.

Definition 2.5, The symbol "FO" will denote, in each

occurence, either the primary polynomial or the primary prime
polynomial,
. . P p' O .
Example 2.4, Fi is either F¥ or F¥ , and F2 is also

?
FP or FP' independently of which one FS is.

Definition 2.6, Suppose n is a positive integer. The

statement that F° is a simple polynomial in n variables

means that there exist polynomials, Fi, F%,..., Fg, such that
Fs‘maps each ordered n~tuple, (xl,xz,...,xn) onto the element
o o , :

Fl(xl)ﬂ Fz(XZ)n ...n Flo'j,(xn).

Example 2.5. The simple pélynomials in three variables

are.:
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Fi(x,y,z) =xNyNaz

Fg(x,y,z) =—x'NyNz

Fg(x,y,z) ZxNy'N 3

FZ(x,y,z) =xMNy Nz

F?(x,y,z) =xNy'N
Fg(x,y,z) =xtNyNat

Fg(x,y,z) =xNyt Nzt

Fg(x,y,z) =xtN yrt N 2

Theorem 2.1, Let S, be the set of simple polynomials

in n variables. There are exactly 2 simple polynomials in Spe

Proof by induction: Let n = 1. The simple polynomials

are:
Fy(x) = F)(x) = FP(x) = x
Fa(x) = Fy(x) =FP'(x) = xt,

two of them, or 2'.L =2.

Now assume the theorem holds for n = k. Then
o)
Pl pag, e es) SF(xy) NEF(x,) N o N Fplx)
There are 2k simple polynomials in Sk'
F]S_(xl,xz,...,xk) =x N xzﬂ e X
s
FZ(Xl,Xz,cao’Xk) : Xl'n in ooon xk
s L)
— b {
Fk+l(x1,x2,aoo’35<) —-Xl'nxz n ooonxk

s . —
sz(xl,xz,...,xk) =x* N x," N ...N x '
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Now let the number of variables be k-+1. The simple poly-
nomials in k+1 variables are determined in the following
manner.

Fi(xl,xz,...,xk,xk+l) — FJS_(xl,xz,...,xk) M Fp(xk+l)

=% N %N e N xkﬂxk+l.
Fg(xl,xz,...,xk,xk+l) = Fi(xl,xz,...,xk) M Fp'(xkd)

=x; N S YA S % M Jﬁ{_*_l'.
F;’(xl,xz,...,xk,xk+l ::Fg’(xl,xz,...,xk) M Fp(xk+l)

=%tV x, Neee N xkf\ X1
Fz(xl,xz,...,xk,xk+l) = Fz(x'l,xz,...,xk) N Fp'(xk+l)
. =x'NxN ... ﬂxkﬂ X

(]
L]
[ ]
[ ]

s — S P
F2k+l(xl,x2,°°0)xk,xk+l) -—Fk+l(xl’x2,ooo,)ck) n F (Xk+l)
=x"Nx' N .. Nx, N x el
p!
F2k+2(xl)x2,ooo,xk Jck+l k+l(xl,x2,ooo’>ﬁc r.\ F (xk l
— 1 1
. xl_ﬂx ﬂ...ﬂxkﬂxk_kl.
s —_— S P
F2‘2n_l(X1,X2,...,Xk,Xk+l) —sz(xl,xz,..o,xk) nF (J:l{+l)
P ! 1 !
. ...Xlﬂxzf\...ﬂx f\xkl N
— S
FaoanlXpsXaseees X ) ZFk(x) 3, 0000 ) N FY (x )
=x "N x," N ...ﬂxk AETE
Thus two simple polynomials of k+1 variables are determined
from each polynomial Fi of k variables.,
s — S
AFZi_l(xl,xz,...,xk,xk_‘_l) __Fi(xl,xz,...,xk) ﬂFf;ﬂ(xkﬂ), and
S s 1
F2i(X1,X2,...,Xk,Xk+l) :Fi(xl,xz,ooo,lck) n F£+l(xk+l).
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Therefore if there are Zk simple polynomials in k variables,
then there are 2k~2 simple polynomials in k+1 variables.
But 2X.2 = 2k.pl = 2k+1,

Now since the theorem holds for n=1, and whenever it
holds for n =k it élso holds for n == k<1, then the theorem
is proved.,

Example 2.6 (a). The simple polynomials in one variable

are:
S —
Fl(x) = x

Fg(x) =x!,

two of them; 21‘:: 2,

Example 2,6 (b). The simple polynomials in two variables

are:
F]s_(x,y) =xNy
Fz(x,y) =x'\y
Fg(x,y) —=x Ny
FZ(x,y) =x'Ny',
four of them; 22 = 4.

Example 2,6 (c). The simple polynomials in three

variables are:

F]S_(x,y,z) =xNyNz
Fg(x,y,z):‘: x*NyNz
F;(x,y,z) =Z=xNy'Nz
FZ(x,y,z) =xNyN z!
F;(x,y,z) =xt0N\y'\ z

Fz(x,y,z) =x'NyNaz
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F,?(x,y,z) =xNy'N\ z?

Fa(x,y,2) = x* N y' N 2,
eight of them; 2°= 8.

Definition 2.7. Suppose n is a positive integer. The

statement that FM is a minimal polynomial in n variables
means that there exists a finite collection of simple poly-
nomials in n variables, FJS_, Fg,..., Ff{, such that A maps

each ordered n-tuple, (xl,xz,...,xn), onto the element

s
Fi(xl,xz,...,xn) UFZ(xl,xz,...,xn) Uees UFk(xl,xz,...,xn).

Example 2.7. Some minimal polynomials in three variables

are:
Fi(x,y,2) = (x N y' N 2) U (x' N y* N 2)
Flg(x,y,z) =(x*NyNz)U(xNnyNz)U(xrN y' Nz
FM(x,y,z) =(xNyr' N z)
F)(x,y,2) = (xNy' Nz U (x* Ny Nazt).

Definition 2.8. Suppose k and n are positive integers,

k <n, Fis a polynomial in n variables, and G is a polynomial
in k variables. The statement that G is a reduction of F
means that for each ordered n-tuple, (Xl’XZ’”"xk’xk-x—l""’xn)’
F(X] %5500 09X s Xy o0 e esXy) = G(xy,%5,000 y %) .

The statement that F is reducible means there exists a
polynomial, G, which is a reduction of F,

Example 2.8 (a). F(x,y) = x U (y N\ x) is a reducible

polynomial., Using Theorems 1.1l and 1.25, x U (y N x) = x.
Therefore G(x) = x. Also, F(x,y) = G(x).

L]
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Example 2.8 (b)., Fix,7v,z) = (xUy)U (xN z) is reduc~
ible. Theorem 1.7l states (xU y} U (xMNz) =xUy. In this

case G(x,y) =x Uy, and F(x,y,2) = G(x,y).

Definition 2.9. An irreducible polynomial is a polynomial

which is not reducible.

Lemma 2.1, If n is a positive integer, i is a positive

integer, i < n, then there are exactly 2?"1 simple polynomials

in n variables such that

S
F (Xl,XZ,ooo,Xi,xi+l,o.-,Xn)

=Fle) NV FG) N e N FP(x) NP0y ) O e NFO(x)
Proof: There are 20 simple polynomials id n variables,
and each F° is one of two distinct polynomials, FP or FP',
Thus if only one of these polynomials, Fp, is used for a
specific Xs in determining simple polynomials in n variables,
there will be 2%/2 = 2%/2% = 2°L simple polynomials of this
type.

Theorem 2.2, Let i, n be positive integers such that

i =< n. Furthermore, let FM(xl,xz,...,xi,xi+l,...,xn)

_— S s

o— Fl(xl,xz’ LR N ’Xi’xi+l’...’xn) U Fz(xl’xz"..’xi’xi+l’ L BN ) ’}crl)u
cee L)an_l(xl,xz,...,xi,xi+l

where each F? is a simple polynomial such that Fg(xi)Z: FP(xi).

,...,xn)

In other words,

n

o] o
=F () M Fle) N e NV FPLe ) N F(x )N L OV F ().

There exists a reduction of FM, such that if G is that reduction,

s
Fj(xl’XZ’""Xi’xi+l""’x )

_ M
then Gp(xi)—— F (xl,xz,...,xi,x ,...,xn).

i+l



29

Prcof by induction: Let n= 1. Then X5 = Xy and
FM(xl)ilei(xl) since thers is only one variable. Now
Fi(xl)===xl since the hypothesis specifies that Fi(xl) must
contain X1 only, and not xl’. But there exists a primary

polynomial, GP, such that Gp(xl)::nc
n-1

Also, FM(xl) is the
1203,

10

cup of one simple polynomial; 2 =2

Now assume the theorem is true for n — k.
— S
FM(Xl’Xz’ooo,xigxi_'-l,ooo’xk) mFl(xl’Xz’oo.,xi’xi“-l,ooo’xlq)
s
L)Fz(xl,xz,...,xi,xi+l,...,xk)LJ
S
LN N ) Usz—l(xl’xz’...’Xi’xi+l’...’xk)'
Then there exists a GP such that
Gp(xi) = Pl(x ,xé,...,xi,xi+l,...,xk).
Thus
Gp(x ) ”‘Fs(x X X. ,X ) UFS(x.,x x
i - 1 l, 2"") i’ i+l’°°"xk 2 l’ 2""’ i,
-8
‘ Xi+l’oo.,xk) U .00 Urzk-l(xl,xz’ono,Xi,xi+l’ooo’xk).
Then
P — [0 o p o
6Plxg) = [F2(x) N Fo(x,) N oo N FPGx ) N FOx, )N
cee NP )] U [P0 N Pl N L N FP(xy)
o) o o) o
N Flxgg) N e NFI] U ee U [P N Fx,) N
P/ (o] (o]
e e PP ) MF () N e N F ()],
which is
X; = (xlﬂxzﬂ ceol) xiﬂ xi+lﬂ ﬂxk) ) (xl' ﬂxzf\
s e ﬂxiﬂxi+lno.oﬂxk) U eec e U(Xl'm X2'n o-onxi
N SN AT f\xk').
And Lemma 2,1 guarantees that there are 2k-1 simple polynomials

such that in each polynomial Fg(xi):::Fg(xi).
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Next prove the theorem is true for n =k 4+ 1, Using
theorems from Chapter One,
X, = [(xlf\xzf\...f\xi/\ % 1 N ...f\xk)U(xl'ﬂxzf\
.N xif\xi+lﬂ .../\xk) v ... U(xl’f\xz’f\ ...ﬂxi
Nx 'N ...f\xk')]f\l

by Theorem 1.50,

= [(xlf\xzﬂ e xiﬂ xi+l/\ cos ﬂxk) Uz ' N x, N
ees Nixg N Xi«:-ln A x,) U... Ut Nixpt N e ﬂxi
ﬂxi+l'ﬂ...nxk')]f\ (xk+1ka+l')

by Theorem 1l.42,

=l Nx N N Nx N D) Ny U 1)
U[(xl'ﬂxzﬂ...f\xiﬂxiﬂm...(\xk)

N (Xk+luxk+l'ﬂ ... U[:(xl' ﬂxz' N .. /\xi
Nxpa'Noeee Nx) Nx ka+1'ﬂ

Theorem 1.29 extended,

Bxlﬂxzﬂ e NX Nz N oo Nixy) ﬂxk+1] UExl
Ny N oo Nxg Nz N s Nx) N U [y
Nx, N oo NV x, N Xi—ﬁ-l“"' f\xk)f\xk_‘_l]UBxl'/\ %, ()
...ﬂxiﬂ X, 1 N oo /\xk) ﬂxk+l'J U eee UBxl'ﬂ %N
...ﬂxiﬂxi+lfﬂ ...ﬂxkf)/'\xk+l] Ul:(xl’.ﬂ xz'ﬂ
...ﬂxiﬂigﬂ_'ﬂ...ﬂxk')f\xk.,_l'_]

by Theorem 1.28 extended,

= [xlﬂxzﬂ .o f\xif\ xi+l[\ /\xkf\xk-a—l]

U[xiﬂxz{'\.../\xi/\ xi+l/\.../.\35c/\xk+l’]
UGy NxpN e Nxy Nz g M ee N Nz, ]
U[xl'f\ xzﬂ.../\xl/\xi+l[\...ﬂlcl{n xk-rl']U

It &
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U [xl' n XZ' n LI N ) nXi n:{i+l’ n oo nxk' n Xk‘{"l']
by Theorem 1l.11, which is a cup of simple polynomials in k+1
variables of the type in Lemma 2.l. Now from each simple
polynomial in k variables, two simple polynomials in k+1
variables are formed. Then F‘M(xl, XpyeeesXgyXs 1""’xk’xk+l)
is a cup of ok=l,o — k=151 Zk::Z(k""l) -1 simple polynomials
of the type under consideration. Then

GP(Xi) :I'J,I(Xl,xZ,ooo,xi’xi*’l,ooo,Xk,xk+l)o

Now since the theorem holds for n = 1 variables, and
whenever it is true for k variables, it is also true for
k+1 variables, the theorem is proved.

Example 2.9, To show an example of Theorem 2.2, let
F'M(x,y, xﬂyﬂz)U(xﬂy(\z')U(xﬂy'ﬂz)

UlxNyrtMNaz).

. FM . — 52— 53=1 _. .

Notice that is the cup of L =27 =2 simple polynomials

such that in each simple polynomial FO(x) — FP(x).
(xNyN2U (xNyNz)U (xNyrNz)U (xNy' MNat)
= [(xﬂy) N (z Uz')_? U [(x Ny)N (z Uz‘)] by Theorem 1.28,
= [(xNy)N I} U [(xNy')N I] by Theorem 1.42,

= [_xﬂ y] U Ecﬂyﬂ by Theorem 1.50,

=xN{(y Uy') by Theorem 1.28,

= x 1 I by Theorem l.42,

= x by Theorem 1.50,

But there exists a GP such that GP(x) = x. Therefore
GP(x) = F'M(x,y,z) .
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Lemma 2.2, If n is a positive integer, i is a positive

2n"'1

integer, i = n, then there are exactly simple polynomials

in n variables such that
FS(Xl’XZ’""xi’xi+l""’xn)
=FO(x)) ) FOlay) (Voo s MVFP () O POy ) OV et N FO (),
Proof: There are 2B simple polynomials in n variables,
and each F° is one of two distinct polynomials, FP or‘Fp’.
Thus if only one of these polynomials, Fp', is used for a
specific x; in determining simple polynomials in n variables,

i
n-1

there will be 27/2 = 27/21 = 2™ sinple polynomials of this

type.

Theorem 2.3. Let i, n be positive integers such that

i =n. Furthermore, let
- p—— S ’
FM(xl,xz,...,xi,xi+1,...,xn)._.Fl(xl,xz,...,xi,xi+i,...,xn)

S s
UFz(X}_)xz,°°°,xiaxi+l"'-’xn) U ... Uan-l(xl’XZ:
ooo,xi,xi+l,ooo’xn)

where each F? is a simple polynomial such that Fz(xi):: Fp'(xi).
In other words,
s
Fj(Xl,Xz, & 00 ’Xi’xi+l’ * o s ,Xn)
— 0 o] p! o] o]
=F (xl)(W Fo(x,) M .e MF (%) F (xi+i) MNeee MF (xn).
There exists a reduction of FM, such that if G is that reduc-
. ' —
tion, then GP (Xi)"'FM(Xl’XZ""’Xi’xi+l”"’xn)’
Proof: The proof of this theorem is similar to that of
Theorem 2,2, with the exceptions that instead of the reduction

being Gp(xi), it is Gp'(xi); and instead of each
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5
Fj(xl’xz’""X:’.’Xi-kl"”’xn)
=50 (V FO) Nl e NFPEe )N FOx, o) O ees NFO(x)

as in Theorem 2.2, in Theorem 2.3,
S

Fj(xl’XZ’”"xi’xi—i—l""’xn)
=FOx)) OV FLx,) O e MVFP () VFOLg ) Nl NFO(x).

In other words, in each F?, F?_(xi) = rP (x;). Also, instead

of Lemma 2.1, Lemma 2.2 must be used.

Example 2.10. To show an example of Theorem 2.3, let
FM(w,x,y,z) ={(wNxtNyNz)UwnNx*NynNaz')
UwNxNytNaza)U (wNxtNy Nazt) U (w xt
NyNza)UJwNxtNyNz ) UwNxrNyt N z)
UwrNxrN yr Nzt

Notice that F' is the cup of 8§ =23 = k-1 simple polynomials

in each of which FO(x) = Fp'(x).
F‘M(w,x,y,z') = [(w NxtNyNz UlwnNnxtNyN z')]
U [{w NxNyrNz)Uwixr Ny ﬂz');)
U {(w'nx'nymz)u<wvnx:nynzr)]
U[(w'ﬂ Nyt z) U (w M xt ﬂy'ﬂz')]
by Theorem 1.33,
= [(wﬂx'ﬂ y) N (ZUz'ﬂ U [(w NxtNyt)N (z Uz')]
U [(w'ﬂ xtN y) N (zUz')] U [(W'ﬂ xtMNy) M (z Uz')]
by Theorem 1.28,
et [(w N xt N y)ﬂl} U [(wﬂx’ Ny N I]
U[(w'ﬂ xtN y)N IJ U {(w' NxtrNy )N IJ
by Theorem 1.42,
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=N nJulrne nyjJunxeny]ulnxny]

by Theorem 1,50,

:{UQX”MJU@fWWWtBU wWMﬂﬂﬂ
Ulmrnxn Y]}

by Theorem 1.33,

={wnx) Ny Uy} U fwnann Uy

by Theorem 1.28,

={wnng Ufnanneg

by Theorem 1l.42,

:{w/\x' U swt N x'}

by Theorem 1,50,

= (w Uw) N x?

by Theorem 1.29,

—10x

by Theorem l.42,

— xt()1I

by Theorem 1.11,

= x!

by Theorem 1.50.

But there exists a GP' such that GP (x) = x'. Therefore

aP' (%) ‘::FM(w,x,y,z) .

Theorem 2.4, If (x,, XpyeserX, ) is an ordered n-tuple,

and if JE‘8 is a minimal polynomial in n variables such that
FM—--FlU Fz U.eo UFS n (in other words M i the cup of

all simple polynomials in n variables), then F (xl,xz,... 2 X, )=1I.
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Proof: Let i be a positive intege:, n be a positive
integer, 1 =< n. Let pid be a minimal polynomial such that
. s |
EMl(xl’XZ’...’Xi’xi+l’.."xn) I‘"Fl(xl,xz,ooo,Xi’xi+l,ooo’xn)
U S -
F (Xl’X2’°°"x1’ Xy qoeeesX YU
¢ U an"l(xl,xz,ooo,x ’xl+llvooo,xn)’
where each
S
Fj( l,xz,...,xl,x 1""’xn)

=Fx1) N Fle) N e NP ) N PO, ) Vi N P )

Let FN be a m1n1ma1 polynomial such that
Mi —_
F (xl,xz,...,xl,xlﬂ,...,xn)-Fi(xl,xz,...,xi,xi+l,...,xn)
U Fg(xl,xz,...,xi,xi+l,...,xn)L)
S

| coe L)an"l(xl’XZ’""xi’xi+1"’°’xn)’
where each

s

::F (x,) /\FO (2,0 OV eee NFP () N FO(x, ) Noee ) FOx)
1 2 i i+l °e B

Then

M
Fox),%p,eee,%)
11t

::ITIVI'j‘(xl,ch,...,Jci,xi_‘hl,...,xn)UFP

(xl,xz,...,xi,xi+
But Theorem 2.2 states that there exists a GP such that
P i
GP(x,) = (xy,%, i+l,ae.,xh),

t
and Theorem 2.3 states that there exists a GP such that

l, . u,xn) .
geeesXysX

' 51
Gp (X ) MFM (xl’x2’°"’xi’xi+l"'°"xn)'
t
Then Fl(xi, 2,...,xn) :ZGp(xi) L)Gp‘(xi)
::xi.L)xi' by Definitions 2.3 and 2.4,
=I by Theorem l.42.
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Theorem 2,5, Let n be a positive integer, and Pﬁ be
the set of all minimal polynomials in n variables. There
are exactly 22n-l minimal polynomials in Pﬁ.

Proof: There are 2% distinct simple polynomials in n
variables by Theorem 2.1, Let k ::2n, and let r be any
positive integer, r <k. From Definition 2.7, the set of
all minimal polynomials in n variables, Pﬁ, is the set of
all FM where FM is the cup of r simple polynomials. The
order in which the simple polynomials appear in any one mini-
mal polynomial is immaterial, by Theorem 1.15.

Let the symbol (?) denote the number of combinations
of k things taken r at a time. From the binomial expansion,
(2 + ) = (£)2" + (fak-Tol +(§)ak-2% + (52" +

coe T (55230872 4 (K a%E - ( Ky alek - (1%,
where (%) is defined to be 1.t

Now let a = b == 1. The expansion becomes
(1+ 0¥ = (2% + it + (122 PP+

coe H (E) 22050 (Fpaake? (R ahiRt ()10,
which is
K=+ EFE+E+ o Y E G+
Now (g) is the number of k things taken none at a time, and

is defined to be 1, therefore,

o=+ G+ T )+ ) ) .

lRichard E. Johnson, Lona Lee Lendsey, William E. Slesnick,
Grace E. Bates, Modern Algebra, Second Course (Reading, Massa-
chusetts, 1962), p. L09.
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The right side of the last equation is the sum of all possible
combinations of k things, in this theorem simple polynomials,
taken one at a time, two at a time, and so on to k at a time;
and this sun is 2k-—l., Therefore there are Zk-l, or 22n-—l
distinct minimal polynomials in n variables, or 22n-l minimal

polynomials in PI;II.

Example 2.11, To show an example of Theorem 2.5, suppose

(x,y) is an ordered pair such that FM(x,y) is a minimal poly-
nomial, Notice that n = 2, The minimal polynomials in 2
variables are:

1) xNy . A
x*N y

N

3) xNy?

Fo

5) xNy) U (xtNy) b

6) (xNy)U (xNyr)

7) (xNy) U (x* N yr)

8) (x*N y) U (xNy")

9) (x*N y) U (x* N yY)

10) (x Ny U (x* N y*) | )

1) (xNy) U (xrNy)U (xNyt)

) (xNy)U (x*N y) U (x* N yY) L
) 3
)
)

)
)
)
) x' N y? y
)
)
)

Hooe

(3) =4
3) (xNy) UxNy) U (x* N yr)
L) (x*Ny) UlxnNyyU (xr N yr)
(xNy) Ux'Ny)UxNy)U (x*Ny)=I) (Z)::l

5
, o Ly N .
There are 27 -1 =27 -1 —27-1 =16-1 — 15 minimal polynomials.

L



CHAPTER III
THE SET 5_°

In this chapter the properties developed in Chapter One
and the development of simple polynomials in Chapter Two will
be used to investigate the structure of Z::.

Definition 3.l. Let n be a positive integer and FP a

primary polynomial. The statement that x is a primary element
of J_! means that x is the element onto which FP(x) maps
any element of Z:n. Thus Fp(x) maps each element of Z:n onto
itself,
The order of L, is n. If FP(A)€L_, then PPl g ).
The set of primary elements Z:n: is not closed under the
three primary functions N, U, and ', Z:r\is a proper subset

of Z::.

Definition 3.2. Let n be a positive integer and FP' a

primary prime polynomial, The set which consists of all
Fp'(x),where X is ahy element of'Z;” is denoted by Z:ﬁ.
Elements of Z:n'are called primary prime elemants.

1r pr(A)E 2/ then FP' (A) £ Zn- In other words, 2 n
and Z:n’are mutually exclusive sets. Z:n’is a proper subset
of Z:Z.

Example 3.1. Suppose Z:g,::{A,B,C,Q}. Then the set Z:+
is {Fp(x)[x ::A,B,C{orq} or simply 2:4::{A,B,C,§§.

38
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Also, the set ZQ' = {Fp'(x) [x = A,B,C,orD} or simply
f, I
Z‘}/ = {A',B',C',D’}. Furthermore, Z4C_ Z$ and Zq-/C .

Definition 3.3, If A € Zm then the set which consists

of the two elements, A and A', is denoted by A%, and is called
the "pair set of A", Thus if one element of A% is in Zn,

namely A, then the other element of A* is in Zn’, namely Af,

Example 3.2. Suppose s = {£,B,C,D,Ef. Then
we = fa,A1)
B* = {B,BY

E+ = {E,EY

Definition 3.4. Let n be a positive _nteger. The set

which is the union of all pair sets of Zn is denoted by Zn*.
Thus if 2_p = {AI,AZ,...,Ang then 2,k = jA7,A1,A5,4," ,...,An,An'}
and therefore has exactly 2n elements.

If A8 € L, then (ANB) & 2 p+, and (AU B) & L
Thus }_—_m is a proper subset of Zi .

Definition 3.5, Let (Al,Az,...,An) be an ordered n-tuple
of distinct elements from Zn, and F° be any simple polynomial
in n variables. Then F®(A,A,,...,A ) will be called a
"minterm™, The set of all minterms of 2:3 is denoted by Z: .
Example 3.3. Let 2—, = {A,B}. Then

Y7 =f{anB, A" B, ANBT, AN B!},
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Keeping the sane Zz = {A,B} s, it is clearly seen that
AN A' is not a minterm. A similar argument could be proposed

™M g — M
for any n. Not only Zn C Zn , butb 2-—n is a proper subset

of Z:.

Theorem 3.l. Let Zn = {Al’Az“"’Ar—}' There are 25

elements in }:',f,.

Proof: Let the ordered n-tuple (XI’XZ""’Xn) of the
simple polynom. als in n variables be the set Z:n such that
xlel; XZ:A25 P xn:— An. Then
PR %500 e %) TFP(xy) O FP () N oo N FP(x )

TANANLL.NA L
PR3y, %y, 00 e5%y) FP () 1V FPO,) () wu (VFP(x )
=ATO AN NAL

2

anle,xz,...,xn) = FP’(xl) N Fp'(x2) N eee N Fp'(xn)
=AM AN LN )
Now by Theorem 2,1, there are exactly 2 simple polynomials
in n variables. And since each Xi is the exact element Aiézn,
then there are 2" minterms of Z,«? , or 2" elements in Z: o
When restricting the variables of the simple polynomials
in the manner prescribed in Theorem 3.1, an interesting feature
is evolved. The minterms of Z;j may be illustrated by Venn
diagrams. If each element of Zn is represented by a circle
or ellipse, the prime of each element Aie Zn represented

as the area not in the area A;, and the primary function ("
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is interpreted in the sense of the class algebra connective,
then each minterm is represented as a distinct area in the
figure, and no two minterm areas overlap.

Illustration 3.1, Suppose -4 = {A,B,C,DJ. Then the

2
elements of 4 are:

1) ANBNCND 9) ANBTNC'ND
2) AA\NBNCND 16, ANB'NC N D
3) ANB'NC ND 11) ANB NC* N DY
L) ANBNC*ND 12) A*\NB'N C'N D
5) ANB NG ND 13) At B*N\ C N D
6) ATA BTN CND " 1) AT BACTA D
7) AN BNAC'NAD 15) ANB*NAC'N DY
)

8) At BNCND? 16) A*N\ B N Cr ND1,
Now suppose each element of Z;;_ is represented as an ellipse
in & Venn diagram. Then the small sixteen areas represent

the sixteen minterms of Zg .
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Definition 3.6. Let (Al’AZ"“’An) be an ordered n-tuple
of distinct elements from }:n , and FM be any minimal polynomial
in n variables. Then elements FI (Aq,4 2,...,A ) and the element
0 are called polyterms. The set of all polyterms of ans

denoted by &,j .

Example 3.4, Suppose Zz = {A,B}. Then
Zi’ ={(0), BnsB], rnB], [An Bt], [Arn B7],

(aaByvarns], lans U (ans],

[(anB U (arnBn], [(Aan B U (a1 N BY)],

[(asn B) U (ANB], [(ArnB) U (AT N B,

[(AnB) U (ANB) U (a1N B)],

(AN B)U (A* N B) U (41 N B,

(ANB)U(ANBNU (arNBY],

[(arn B) U (A NBY UGB,

[(a N5 UGN B) U (A NBY) U (arnen]).

Not only Z‘: C fo , but Z is a proper subset of Z .

Clearly Z.L: C Zi , but the question "Is Zn a proper
subset of Z.?, ?" is yet unanswered. The solution to this
query is one of the basic concepts in establishing the structure
of Z_g .

Theorem 3.2, If A € J_,, thenA € 2 9

Proof: Let 2., ::{Al,Az,...,Ai,Ai+l,...,An}. For the

n-tuple (Xl,xz, LI A ] ,xxl) H

v
F (xl,xz,...,xn) = Fl(x:t_,;\cz,...,x:L i+1,...,xn) U Fg(xl,xz,

c..,Xi,Xi_*_l,...,Xn) U oo Uan_l(xl,xz’o..,xi,xi+l,o.o,xn)’
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where each

Fs.x KoygoeenyXs yX P 4
3( 1s700 10 4t ’ n)

D= ) ML) N e NP MF (g ) O e NF(x ).
Then by Theorem 2.2, there exists a ¢® such that
Gp(Ai) = FM(Al,Az,‘...,Ai,Ai+l,...,An) ::Fi(Al,Az,...,Ai,
Aiyqs-eesh) UFg(Al,Az,...,Ai,Ai+l,...,An)U
- Uan-l(Al,Az,...,Ai,Ai+l,...,An). 3
But F (Al,Az,...,Ai,Ai l""’An) is a polyterm of Zn , in
other words, an element of Zﬁ , by Definition 3.6. And GP(Ai)
is an element of Zn , by Definition 3.1l. Therefore, if
AiEZ,,, then A, € 5.
Example 3.5. Suppose Zz o {A,B}. — (AN B) U (ANBY).
Obviously from Theorem 3.%Z, ch Z:. |

J
Theorem 3.3. If A € J ., then At € 2 L.

Proof: The same procedure is used in proving this
theorem that was employed in the proof of Theorem 3.2, except
this theorem follows as a result of Theorem 2.3
Example 3.6, Suppose ZZ:{A,B}. Bt — (A NB') U (ATNBY).
From Theorem 3.3 it is seen that Zn'C ,{\_'_L,{. . Also,
it follows that ZMC 2 S
Theorem 3.4, The cup of all minterms of ZZ is 1.

Proof: Let Zn = {Al,Az,...,An}. For the ordered

n-tuple (X7,X5,e.. ,xn) y
S
FM(xl,xz, coeyX ) = Fy(x %5000 ,xn) U Fg(xl,xz, ces ,xn)u

S
oo Uan(xlgxz,ooo, n)o
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Then
FM(AJ_,Az,...,An)::.Fi(Al,Az,..., )UF (A, 2,...,An)U
ces L)an(Al,Az,...,An).
Then by Theorem 2.4,
FM(A:L,AZ,“.,A ) = I.
But FS(AL, A, eenshy) UFS(A by seeesh ) U cos UFgn(A 58 k)
is the cup of all minterms of Z:n . Therefore the theorem
is proved.
Again referring to the analogy in a Venn diagram, with
the class algebra interpretation of U , the element I is

represented as the total area in the illustration--the union

of all minterm areas,

Illustration 3.2. Suppose 2:2 = {A,B}. Then
I=(ANBNC)URTNBNC)U(ANBNAC)U (ANBNACT)

U (A'tN BTN C)U (At 3 Ncen)U (AN BTN CY)

U (At BFMY CY).
Also it is shown that
A=(ANB'NCU (ANBNACHU (AN BN CIU (AN BTN C1).
A= (A'N BN CHU (A'NBNCHU (AN BN CIU(A'NBINC).
It is noted that A and A' are both the union of gn-l _ 3-1
= 22_-.4 minterms; Aezj, Al EZU.
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AtnB*NC!t

[AnB'NCt,

A'NB'NC

el
7

n —
Theorem 3.5. There are 22 elements in Z_:\).

Proof: Let Z":{ADAZ’“"An?’ Pl\rri be the set of all

minimal polynomials in n variables, and let r be any positive
n
integer, r £2 . FOﬁ the ordered n-tuple (xl,xz,...,xn),
M L
P, consists of al1 F such that for each Fl\;,
1 — S ' 8 :
Flg‘(xl,xz,...,xn) __Fl(xl,xz,...,xn) U Fz(xl,xz,...,a%)u
S
LI UFr(Xl,Xz,ooo,xn) on Iq
By Theorem 2.5, there are 2° -1 elements of Pn' But by Defini-

1 U
tion 3.6, each Fl;(Al,Az,...,An) is an element of Zn. Now
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Vv M
Z_,, consists of all FA;;(‘AJ.’AZ’”"An) together with the element
n n
0. Thus there are (2% -1y +1= 2%" elements in Z:.

‘ n 2
Example 3,7. Suppose Z;a = {A,B}. There are 22 = 22

= 2% =16 elements in Z:, nanely
1) ©
2) ANB
3) A'N B
L ANBT
5) A*N Bt
6) (AN B) U(A*N B)
7) (AN B) U (A NBY)
8) (ANB)U (A N BY)
9) (A*/ B) U (AN BT

10) (A'Q B) U (A*N BY)

11) (A NB') U (A* N BY)

12) (ANB)U{A*NB) VU (ANBT)

13) (AN BYYU (A*N B) U (AT M BY)

14) (AN B)U (ANB') U (A 1 BY)

15) (A'N B)U (ANB') U (AtN BY)

16) (ANB)YU (AN B)U (ANB) U (ArN BY) =1,

Theorems 1.28, 1.29, 1.38, and 1.39 may be extended to
apply to the cap or cup of any number of elements,
Likewise,

AN (B, U B, U ... UBn) = (AmBl)u (AnBz)u ..U (AN By,
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Theorems 1.53 and 1.65 may also be extended to apply to
the cap or cup of any nuwber of elements.

(Alﬂ Lp M eee {\An)' ::.Al? VAU ... VAT,
ard

(AU A U ees WA DT AT (VAT e (VA T,
The process of showing this extension is the same for any n.
To illustrate, suppose 4,B,C,D € Zz. Then
(AUBULCUD)'= {_{gAu- B) U G] U D}' by Theorem 1.33,

= [(aU B)U ¢J* N D! by Theorem 1.65,
= (A UB)'( C* N\ D* by Theorem 1.65,
= A'MN B! N C!' N\ D' by Theorem 1.65.
A similar procedure is used in showing
(AMBACND*=ATUBtUC'U D,

Considering that the cup of all minterms of ZZ is I,
it is an interesting procedure to show that 1'= O. In demon-
strating this, assune Z—z :{A,B}. Thus
I=(ANB U (ArNB)U (AN BN U (A'N Bt) by Theorem 3.4.
Then |
1= [(ANB) U (AN B U (ANBNU (AN B
(ANB)'N (A'N BJ*N (ANBYTN (AN Bt)! by Theorem 1.65,
(At UB') N (& UB') N (A1U B) N (A UB) by Theorens 1.59,63,
{arueyn@au B')} N {(A1UB) N (AU B)} by Theorem 1.36,
{(arn )Y U B} O {(41\ 4) U B} by Theoren 1.39,
(A1 A) U (B'N B) by Theorem 1.38,
(A (VA') U (B N B') by Theorem 1.11,

o

I
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== 0 U 0 by Theorem 1l.43,
== 0 by Theorem 1.5.

. . j
Lerma 3.1, If M; and Mg are two minterms of Z.,,, then

. . i N N .
either My NMJ =0, or M N1 = = .

Proof: Assume MI=1J. Then in ) =} =1 follows
immediately by Theorem 1.6,

Now assume MIJ; :;EMS;. Let zn:{Al,Az,...,Ani . Then each
minterm is FS(Al,Az,...,An) , where
FS(Al,Az,...,An) =F(4) O FO(A) N wes NFO(A ).
Now since these two minterms are not the same, there exists
at least one A; such that Fi(Ai) = Fp(Ai) in one of the min-
. terms, while FS(4,)= FP'(Ai) in the other minterm., Thus
I\fﬁ;ﬂMg is the cap of certain elements, S, of Znt—, two of
which are the two elements of Ai*. But Ay N Ai' = 0 by
Theorem 1.43, and BN 0 =0 by Theorem 1l.54 where B is the
element in Z: generated by the caps of the rest 6f the

elements of S, Therefore, if M;;ﬁ M%, then M; N Mfl:: 0.

E.lxample 3,8, Suppose Zn:{A,B,C}, M%:: An BrNce,
and My =AN BN C'. Then
M;‘(\Mg =(ANB'ACN (ANB NCT)
—(ANA) N (BNBY)YN (C*'N C') by Theorems 1.36 and 1.11,
=AN(BNB') NC' by Theorem 1,6,
ZANONCt by Theorem 1.43,
= AN C'MN 0 by Theorem 1.11,
= (AN C')N O by Theorem 1.36,

= 0 by Theorem 1,54,
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(O
Theorem 3.0. Z:,,ls closed under (1 .

Proof: Let k and p be two positive integers, q be a
non-negative integer such that k, (p 4+ q) are less then or
equal 2%, Also, let NUl M‘-’:J be two polyterms of Z: such
that

Ix@;f%::miumiu e UM,
W =P U UL U,
where each Mﬁ is a minterm of 2:2. Then
AMUJ—~(M UMnU...UM) N P Yy Uees UME'D)
= [(Mn UMnU L)Mn) ﬂMp] U {og UM U...UM“)(\MP“‘:L]U
Ut Ui UL U NaEte ]
by Theorem 1.28 extended,
= ['_(M}l N U (Min M9) U el U (MiﬂMg)] U BM;& mmg*'l)
v (Mﬁ N U LU (Min ] U L. UG NMEYY)
2 MR U ... U N

by Theorem 1.29 extended. Now by Lemma 3.1, the cap of any

p+l

two minterms MX MY of Z:n is either O or M (Mﬁ:::Mi). Then
the right side of the abovs equation is the cup of elements
(Mn(W Mn , each of which is either O or a minterm.
Case I: If each Mn'f\Mn} is a minterm, then M (\ZMUJ

is the cup of minterms. Then by Definition 3.6, (Mglf\MSJ) Z::.

~ Case II: If there exists at least ome (Mﬁ(ﬁlﬁg) such
that MX n M =0, and one (X N MY) such chat ME MY %0,
then Mn. f\MFu is the cup of O and a polyterm, Mia. But by
Theorem 1.52, 12 U0 =M%, Tmus O NMJ0) € L.
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Case III: If every (M;,fﬂ Mg) = 0, then M:ilﬂ ME‘J is the
cup of O's. Then by Theorem 1.5, Mo* N M =0. But by Defini-
‘tion 3.6, 0 € L. s (N B € O

e T T

Since for all possible cases (M =M M] 3y € 2,

is closed under /) .

U
Theorem 3.7, Zn is closed under U,

U
Proof: By Definition 3.6, each element of Zn is either
0 or the cup of one or more minterms of Zi . Let Mnui and
M;;J be two polyterms of Za
Case I: If MU' =0 and w3 £ 0, then ML U MUJ ”‘M:J
by Theorem 1.52., But M“J € Zn. Therefore (MU:"UMU‘—j EZ,\.
. vl _ ud —
Case II: If M~ =0 and M *=0, then Mn UMn =0 by
v ; i
Theorem 1l.5. But O € Zn. Therefore (Mr“l’l UMIEIJJ) € Z;J
TT » vl ‘Uj vl Uj .
Case ITI: If M, #£ 0 and My # 0, then MY UM is the

vl

MY1 op M “. But the

cup of all minterms which are either in
cup of minterms of Zi is a polyterm of Zi « Thus
(M;iUng) e 2.

Now since (MﬁiUM;l’j) € Z:‘) for all possible cases, then
Z:is closed under U,

Lemma 3.2, If Mi e 2_, then (Mi)1 e 2 ..

Proof: Let Zn: {Al,Az,...,An}. Then there exists a

minimal polynomial, FSi, such that FSi(Al,Az,..;,An) :‘:M%.
Now
si —
P75 (Ag,Ah500054) ~F°(Al) N FO(A) N ee MFO(A)
where each FO(AJ-) is either FP(AJ.) or Fp?(Aj). Therefore
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(Mi)' ::[F°(Al) NFO(A,) N ... ﬂFO(An)]'
={Fem] U [Fem,)) U.. U]

by Theorem 1,63 extended, Now since FO(Aj) is either Aj or

. fe) . . m i s
Aj', then [_F (Aj)] ' is either Ajy' or Aj. Thus (M;)' is the

cup of elements of Zn#. But by Theorems 3.2 and 3.3, Aj'
and Aj are polyterms. Then (M%)‘ is the cup of polyterms of
g g
Zn . But by Theorem 3.7, the cup of polyterms of Zn is an
U : )
element of Zn . Therefore, (M}l)' &« Zn .

Theorem 3.8, Z,‘;’ is closed under '.

ui ZU P
Proof: Let Mn be an element of n « Then by Definition

3.6, M;i is either O or the cup of one or more minterms of
9

Y} L g
Case I: Suppose :.}’11 = 0. Then
(Mnl) 11— 0!
=1
, . U
by Theorem 1,70. But I € Zn by Theorem 3.4, Therefore
: ¥)
e 2, .
Case II1: Suppose I”"‘l:f_- 0. Let k be a positive integer,
k <2, Then
vi 51 2 U k
MLf I\/I UM oo e U I‘qn
where each Mg is a minterm of ZE o Then
(i) = (e UMZ UL U
= ad) N2 T .00
by Theorem 1.65 extended. But each (M%)' is a polyterm by

Lemma 3.2. Thus (Mﬁi)' is the cap of polyterms. Now by
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Theorem 3.6, the cap of polyterms of ZZ is an element of Z,L\).
Therefore (Mgi)' ey,

Now since (Mgi) t GZ(;: for all possible cases, then
Z: is closed under ¥,

Iheorem 3.9. Fundamentzal Theorem of the Algebra of Zi .
=R}

Proof: Basic in the concept of the Boo:lean algebra

developed is the establishment that Zi is the set generated
by the three primary functions on the elements of Zn. Now
it has been shown, by Theorem 3.2, that each element of Z:m
is an element of Z,ﬂ’. So to inspect 23 further, it is neces-
sary to examine the elements generated under the three primary
functions on the elements of Z;) .

1) Theorem 3.6 states Z;j is closed under [\ .

2) Theorem 3.7 states Z},: is closed under U .,

3) Theorem 3.8 states 2% is closed under ',
0 and I are in Zt‘i ; O GZ,L\) by Definition 3.6, and I € Z:
by Theorenm 3.4. Therefore, Z,Lf: Z,z.

n 3
Corollary 3.,1. There are 22 elements in Zn.

20 Nl

Proof: By Theorem 3.5, there are 2 elements in n e

U n

Then since Z,\ = Z,?, there are 22 elements in Zi.

Illustration 3.3. In showing how the set ZL,)\ may be

applied to Venn diagrams, let Z,_ ::{A,B}. Example 3.4 lists
v
the elements of Z,, « As in illustration 3.2, each small area

n 2
is a minterm of 2, . Each of the 2% = 22" = 16 different
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elements of 2:& is illustrated as the striped portion in
a separate square.

It is easily seen that the very same set of squares
represents Z:z. Notice that element number six is B, and
that element number seven is A. Each of the elements generated
under the primary functions on A and B is represented by one

of the sixteen squares.

1) ANA'=BNB'=0 2) ANB
—
A B A B
3) A'N B | L) A BY
A B A B




5) L1 N BT 6) (AN B) U (A' (N B)

7) (AN B) U (AN B) g) (AN B)U (AN Bf)

.

9) (A'N B)U (AN BY) 10) (A* N B) U (AT BY)

SN

[
o
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12) ‘(An B)U (AN B) U (AQB*)

13) (ANB)U (AN BYU {(ANBY  14) (ANB)U (ANEBT)U (AN BY)

2///

7

(ANB)U (AN B)
15) (A'NB)U (ANBtYU (ANBY) 16) U(ANBT)U{AN B!)=T,

A Y

S X

N

L
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