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CHAPTER I
THE DEVELODUENT OF THE GEUEBRAL GLST

The problem of scattering of particles by a potentlal,
V(r), has been treated, semi-successfully, by a method inown
as the Born approximation,

The scattering probiem leading to the Born approximation
is illustrated in Plgure 1. Located at the origln is an ar-
bitrary, fixed scattering center. A narrow team of particles
is incident upon the scatiering potential, The beam of parti-
cles of reduced mass, AL , lies along the Z-axis,

The problem to be considered is the solutlon of the fol-

lowing Schroedinger equation

?\'J.
["5;; v V(r)]‘m) =EY(). (1)
This equation can be written as
[v*+ 1Y (0= (DY) (2)
where
U = %v(y) ' (3)
and
— MV
k=4 (4)

The solution to equation 2 will have the form
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15'?
P =e vk @,

The quantity,f), is called the ccatitering amplitude of the

provesy. The seattoriny emplitude, (0, Laus tho propoxriy
der
55 =|fe)] (5)

where do/dw is the differential cross section.

It is a well-known result that tae scattering amplitude
is given by (3, p. 147)

BUS. _
for= -2\ Ty ar | (6)

It is in this relation thet the Born approxinatiocan is made,
The Y(r) appearing in tae iantegrand of equation 6 is not ex-
plicitly known; the Born approximatiorn is &n assumption con-
cerning this quantity. The assunmpiioa Ls that, for lncident
particies having sufficlent energy, the Y() in equation 6 is
not appreciadbly distorted from a plane wave, If the incident
particles are described by & plane wave, then, providing the
particles have a large energy, the state of the particles will
still be described by a plane wave after the scattering has

begun. Thus, the Born approximation is
‘.‘I?lg‘-f‘
Yiry=e ", (7)

With this approxzimation, equation 6 beconmes

i (ko"%)'?
fo=—z% e L) de (8)

Letting
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K= k,~Fk (9)
then, if « 1is the angle bsitween K and 7,
KT = K cosx (10)
equation 8 becomes
He):—gf,—nzge*i('r“g“u(r) qr . (11)

Now, for a differential volume Y*sin« dexdfdy

flo)=—2% S S Sen(r O X )Y sinada 4B dr (12)

or

)C(G)-——-—S)j\(r)f drgde §eiKr cosa sinadex (13)

which integrates 1o

f(e)=~-L

7 ) LT sin(Ka) dr (14)

OL/'XS

Usling equation 3, it is seen that

?(G)"-:-%féSV(f)rs'm(Kf)dr‘ (15)

Equation 15 is the result given by the Born approxima-
tion for the scattering of the process described above,

A very lmportant point to be noticed is that the Born
approxiration is valid orly if the energy of the incideant par-
ticles 1s greater ithan or equal to scme lower enargy bound.
Qualitatively, the idea 13 that for low incident energles the
particles are aflected by the potential, V(r), to the extent

that the approximation tuat ¥(r)is a plane wave at scattering
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is not valid. Thus, in order to make the approximation valid
it i1s necessary that the incident energy be greater than some
lower bounding energy corresponding to a momentum transfer Kz,
in important obsexvation about KB is that it 1s not well dew-
fined. It varies from potential to potential and, for a given
potential, it is more an order of magnitude than an explicit
number.

For example, the Born approximation is valid, when the
scattering center is hydrogen or any other light atom, for
bombarding energles greater than about 100 ev., Again this is
an order of magnitude and is used to find the momentum trans-
fer, Por heavier atoms, the bombarding energles must exceed
approximately 1000 ev, For the scattering of protoms by nuclei,
the Born approximation 1s wvalld only for bombarding energles
greater than 150 Mev. (3, p. 143),

Since the scattering amplitude given in equation 15 re-
sults in considerable error when the energy of the incident
particles is below the range of validity, a method of cor-
recting this discrepancy is desirable.

Since the scattering amplitude in the Born approximation,
£(@) » can be evaluated for most important potentials and glves
fairly accurate results, a reasonable approach to the correce
tion problem is to assume a form involving a correctlon factor
should be some function of the energy, since the range of va-
1idity of the Born approximation 1s energy dependent., There=-

fore, the correction factor can be taken to be



A= A(K). (16)

In order to formulate a method for the evaluation of
A(K), an equation must be arrived at that allows for the so-
lution of A{K) 28 an explicit function of X,

The residue theorem on complex integrals provides a
nethod of arriving at the necessary equation, The reslidue
theorem is stated as: '"Let C be a closed curve within and
on which F(Z) is analytic except for a finite number oi singu-

larities Zy, Zg, cee 3 Zn’ inside of C, If K,, X, vev » Kn,

1?72
denote the residues of PF(Z) at those points, then

(F@)dz = 2%L (K+ Kot oor o+ Kp)
C

where the integral is %aken counterclockwise around 6" (1, p. 188).

The next step is to determine exactly what the F(Z) should
correspond to in the scattering problem. A reasonable form to
assume for the corrected scattering amplitude is

fl&) = £(6)+ 1 n(8) (17)

or

fo)= (1+14(8). (18)
This form for the corrected scattering amplitude,-?k@) , can
be identified with the I(Z) in the statement of the residue
theoren,

At this point, reconsider the meaning of ﬁg i.e,

-—

A - TR -— ——
K" = (Ry=R)" = kg +k“= 2kk = 2R* (I —cos0)

K* = 4 Rr*sin* g/2



so that

K= 2R sine/2 (19)

From equation 19 1t Ls seen “hat

F{&) = LK)
Thus, in application to the scaittering prodlem, F(Z) in the
residue theorem shoulé comtain as factors Li+ LA(KY], (KD,
and, in addition, a term to insure that a singularity will
exist since it is not in eny way guaranteed that f(K) will
contain the necessary pole. Therefore, it 1s necessary to
incluce a factor of the form, 1/(K-K’). Now the form of

P(Z) has been established as

L+ Xa (K33 (K

Fe) = K— K

(20)

Using equation 20 as the form of F(2) in the residue

theoren,

o dK= 2rizlres.) . (21)

Equation 21 is the basis of the method for ithe evaluation of
A(K) .

It is now necessary to make one imporitant assumpition

g L 2 A00TF(0)
<

about A(K). In order to be able to write down the residues
in equation 21, it is necessary to assune that A(K), itself,
has no singularities. This condition is essenvial since there
is no possible way of anticipating the actual location of any
singularities A(K)might aave in the complex plane.



Another iwportant point is that a method of evaluating
the integral in equation 21 must be devised and can be
achieved by making the contour C enclose all the sirgulari-
tioe dn the upper wely couplax piens and those on thae rasi
axis. PFlgure 2 shows this situatlon, In Pigure 2 the dots
represent the singularities of F{(Z). The contour C encloses
only those singularities which iie on the real axis or in the
upper nalf plane., Notice that the singularity at X has bheen
shown explicitly. Since K is the only singularity explicit=-
ly known, any other singularities walch might arise nmust come
from the scattering amplitude calculated in the Born approxi-
mation,

Now, with the assumptions made about A(K) and with an
explicit form for the Born approximation scattering amplitude,
it is possible to write down ilmmediately the right-hand side
of equation 21, However, the problem of solving an ilntegral
equatlon remains; that 1s, the iantegral on the left-~hand side
of equation 21 must be evaluated by scme other means,

Consider the deformaition of the contour C shown in
Pigure 3., That this deformation is wvalid follows from the
fact that no singularities were crossed 1a the deformation
(1, p. 118),

With the assumptions made about A(K), namely that it
contains no singularities, by placing a restriction on F(K) it

1s possible to arrive at a method of evaluating the integral
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using the contour shown in Pigure 3. The resiriction on £(K)
requires that the integrand in equation 2% tends O zero &s
K—>cc ., This is not & very sirong restriction since most
seatteving supliiudes caloulated inm the Dora apprexination
satisfy this condition,

The integrel in equation 21 can be written as

RGOS W DTG SRR Y
K-y 7 ) (K=K &
C R

(-

K .
. S°[;+—LA<un€ﬂQdK 4_g L1+ dAl) £

(K-X") (K-K) dK
~R e
R
T+ AA KT F(K)
+ ! A
& eI
K'+0

Since the origiral contour C was assumed (o contaln all the
singularities in the upper half plans, tae following limlts
can be taken without crossing any singularitiez, Let R—>®
and ¢—=(0 ; then the contour integrals arcund R and Q@ both
tend to0 zero. The reason for these limits 1s Tthat, in the
case where R—>co, the line integration is purformed at infi-
pite values of K. Due %0 tae previous assumptions about f(K),

the integrand is zero for tiese K-values., Thus,

S[I+i&(%(ﬂ?(%() 4= o.
R

lim
R==0

(K-K)

As ¢—>0o , the patk lengith goes to zero so that (2, pp. 529-530)
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(K-X"

K=e
[s—HA(K\MiK)dK_‘ Ci+ L a3 (K)
(K=K ?»0 (K-K"

R (22)

. (L2 AGOIECO
Q-:}o B K—K’) C%K‘

R0

With the contour integral in this forw, it 1is seen that
(o)
L L AKT S 4y S[wmmzﬂm
&._ (k-kn k=P (r-kn_ dr (23

where the "P'" indicates the Cauchy principal value of the
integral.

Equation 23 is the second method of evaluating the in-
tegral in equation 21 maeking i1t possible to solve equation 21

for A(K) . Using equations 23 and 21 gives

P \MER Il g = 2 il (res), (24)

Equation 24 then yields the solution whickh gives the
form of the correctiion facitor A(K). Thus, a corrected form
for the Born approximaition scattering ampliitude bas been
chosen and & method for evaluating the correction factor

has been developed.
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CHAPTER II

TWED COULSIE RONEUTILLG

(F)
" 6

LPPLICATION 70

The method of correcting the Born approximation scuttering
amplitude, developed in Chapter I, saculd &apply to any scat-
tering amplitude calculated in the Born approximation., As an
example of this method of correction, conslder the screened

Coulomb potential,

W)= =55 (25)

Using tkils potential. in equation 17 gilves

'2, Ooi ,)2 n-a'x*.
TR =— K \ " JY sinKydry
[¥]
or
r(,,}_zze’:ﬂ.( K )__ 27 el
1 NG — {ﬁZ‘_K a2+rr ﬂﬁ({,\}"‘i‘ KZ) o (26)

Equation 26 gives the Born-approximatlion scattering ampli-
tude for the screened Coulonb potential.

Now,

Lot (¥
so that, arising from the ZBorn-approximaticn scattering ampli-
tude, there are singularities at K=z zia in the complex plane,

Then for the special case of the screened Coulomb
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potential the situvation in Figure 3 becomes the situation
shown in Figure 4.

Por this case, equation 24 is

? EJF i -':}»(Eu) -~ R -
PB (e K= 2L L (resy
-0

Wrliting out the residues on the right gives
[e™)

|+ LAWK ol LEAAG) ’l
(@+KK-KY "7 ] et
~=&<o

r . -
+‘231§ }f ﬁA(xa;
(La-KY(2iw)

Rationalizing the last term on the right gives
[s0)

+ LA(K) 1+ LACK)
P ’ D I Ul 11 8.9 R
S (@ + KoKy 9K = T Za e |
had & &7

_ ‘[ b+ LA | !' K'—i-é_a]

(K= () | | K+ia

oxr
O
L AAK) s mes | THAAKY ] L+ AAUAN (K1)
= P |—==2 ) —
2 T Lau K% | WL a (K*+a2) ’

Expanding the resldues on the right side gives
<o

PS e A e R TAK) K
(@ K (K=K (@K (@K alad+ KD

et ¢ o]

Tada)a YiKAGia) A
a (a4 K2) a(ar+ K4) a(a*+ () 7
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or
(¥} o ; ,
5 i+ 4 oK) dK = —TA TAK) WK
L2 (K a) (K=K 70 7 (i (a k™) afadek™)
(a7)
WAGL) | _WKAGR)
(a%+K=) A a2+ K2) (A K™)

In general the most unrestricted assumption to make

about the quantity, A(i1), 1s to assume that it is some com~

plex number, Take

A(hA) =V + 1w

where V and W are two real numbers 1o be evaluated., Since

A(4i0) 1s a constant, it follows that V and W will both be

constants, Then equatlon 27 can be rewritten as

[e,9]
Pg 1 AAK) L Wk _WAK) _ WK
2 (@ k3K K) (@) (@K% ala®+K2)
(28)
TV riw  ariK'V TK'W i

(a%+ K*2) (@+K") QA (P4 K'?) A (a4 K?) T (a*+K"%)’

The problem now 1is to evaluate the Cauchy principal value on

the left side of equation 28, The integral can be written

<O o,
i+ 1 A(K) dK
Pf (a*+ K)(K-K') dk = Yfi (@+K*)(K-K")

-0

(29)

CiA(K) dK
- P_i, {a*+ KY(K-K)

The first integral on the right is evaluated by the
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method of parvial Iractions,

oo
pldi |
- (N K-KT P> (- RE{K- K)dk
than,
| — A BR+C
(T = K-k T Tase (30)
| = A(@®+K) + (BK+CHK-X)
[ = A (0% +BK(K-K) + € (K-K) . (31)
Now, for K=K’, equation 3i becomes
= A{a*+K"?)
so that
i
A= —mom (32)
Also, for K=0, eguation 3! beconcs
- SV
| = —f— — K
or
—~K'
C= 0}_‘_“("2. . (33)

Then, for K=i, equatlon 31 1s

Z
= Ly - KUz
=g TBUSO - S
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_ Sy A2 gy m a2 — K =K+ K2 (1=K
B{1-K) = a* + K% T oo*4 K2
— A
8= =T - (34)

Now, using equations 32, 33 and 34 in equation 30 gives
the integral

O dx _ dK
%iﬂﬁ+WXKﬂO B PJ'{K+& K-W)

(35)
o ( Kdk\_ X dK
P+ K%\ ok K* ) G* 4 K'*<a2+ K‘)
or
e K sk A ‘dK
; d — — KdkK __ _K
?é(a* Y ?) K=K a+ K2 a‘+t<1}. (26)

Equation 36 gilves a Zfoxm of the integral in equation 29
which can be evaluated by using the definiticn of the Couchy
principal wvalue.

Using this definition,

©o LR
(__dK | "(F 1 Ky (KK _
Pcé: (KX KK C{ +K* {cgi-i;ﬂcg L ( Ki‘ K’) a®y K‘) aq. K‘)]

- o0

(37)

+ b [ (50~ () (30T},

K've
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Integrating the factors in equation 37 gives

il K€

| dK LT N1 .
Pg (Kl'i-' a).)( K~ KI) - Gl K2 ii‘::aol— lﬂ (K‘K).- "7: in (CKZ‘FK ) ““tﬂﬂ (%C ]
-

-0

(38)
+iw¢ﬁn‘-K§_Lih(a 2) NK -1k °e
€0 (K z IR d) = & tan (’a)]K’-f- .

Equation 38 can ve rewritten as
[e.87

C“\ — ' ( K_Kl) _ _K: a0 K y
PS (63 &) (K-K') a+a<*{¢!-?3:[)n (a2t K a tan ('E)]

& - 00

K—=K) i
sl [ 8 o]
&E20 (CL \1)/}"' a ta“ (l) K'E‘C
At this point it is necessary t0 evaluate the limits given
equation 39 by first inserting the integration limits and
tiaen takling the 1imlt as € approaches zero, Equation 39 is

then written

GhY —_ | (\ C)"‘i\ _ i(-' -1y K-e
Pl o = ol b i e & i )

o i=K7K) VK
_‘}-1 E: : _ (a/K)l} )/2’ C\ t(lﬂ ( )

K~ —co

(40)

T, G=K/x) e
™ _““ L= (W17 a tax ‘(-‘é—)}

K-—-—>OO

i i (K{Ti’.)“"?".l K’ 7K e N
b | In e & tor (G5 )-} ,
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Now,
__- (1-«/x) K A-a_g-]’ _ _E_’ .
!.]n[;— (a/)*] 7 o tan (a) K»-co- x tan (~o0)
and
(i-X/K) Ko 1<] .K_
i — — tai —— = L _
DY\ 1= (ax)}7s & an ((A) K 00 an ( o) ,
so that
" di A T -e K’ | Kee
PS-<az+Kz)("’\“W) a‘+}<"{i—'—‘>ﬂc[‘ﬂ [kcaral% @ tan ( a il

t 'tcut (c0)~ “ﬂ == ; lfan(me)]
i) T b M T T @ -

The two arctangent terms can be taken as

)ty = = (5) %
and

i)tan"(OO) = - (%:I') j%

so0 that equation 41 becomes

' dK 3
PS (BrRKY | Kl {i‘ EL L(x’ ec)‘+ at]% tm ‘(L&ﬂ

(42)

- € K, - K{ke]_!_(_"ni
‘c—‘—y;"o[‘W[(ix’+‘e)"+az}"l o taw ( &)=y

¢ 8

Now, since

sed

< A/ K-e\| _ _ K K’
- )
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and

X

B g sy o K K
!’:“30[ —CT t{lﬂ. 3\ fed —i'—' A ta“ (CL) 3

4 ip uoen thot these Permse oanocl. Then equetlon 42 beoomes

(S o]

aK - | ' K’T [ - ]
Pg (0+ Y-k~ R s<’2{ % T In [(K-eY+ at]"

-l

(43)
| I €
W l'“ E(Kﬁré)ﬁ—al]‘"]} .
The two remaining limits can be evaluated by notlcling that
{iﬂ - Y7 ‘Y\ £ 2 2V
t(;( ) a*l L{KyeP+a*]
( ~¢ (44)
= lim ln»i[(K'—e)%a‘]Vl
T ewo &
T (Krey+ w17

Since A(K) , itself, 4is a real guantity, the following cholce

of signs on the radicals is made:
-
res Y i ! 2 l/').
o =L(K-e) v el K+e) '+ o]
him $ |n ( e) — I LC

&0 +[(K{i-&‘)z+ C}\l]v‘ - L‘inc [(K'_. E)’L+ 0\2_] Va

or

5 [(Kig—e‘)’mﬂ%}_ _
LT:“ )LM [(k-eY+ar]™) ™ In (1) =

Pirnally, the integral is

(45)

(@ @)

_ | {__ K'wr}
+K)\K—K) N Qa

uO
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or
pad 1
Pf i kKW
V@ —  alkreed) - (46)
-&o
Using equation 46 La squation 29 glves
o
VN I .
P (a?+ KR)(K-KYy a {02+ K"?)
* (47)

Pf ia(K)
J (@ KK=K)
v

Now, returning to equation 28 and substituting equation 47

for the integral on the left,

O

KW S ALY g = Tk _1walk)
alai+ k) (63 + K%K (6 (@+K)
-0
(48)
UK aiw o _wiky Tk i

" oo K'Y ™ {63+ K9 a (wek?)  a(@+Ky  (a'+K?)
Since the only way itwo complex numbers can be equal is
for the real parts of the numbers to be equal and the imagil-

nary parts to be equal, two equatlions can be obtained from

equation 48. Equating the real parts of equation 48 gives

_ Tk IR vA¢ S W4 4
a(aC+K'?) (a%+ K'?4) alat+ KY)
(49)
iV T K'w

4 , .
(at+ K%) a(at+ k%)
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Equation 49 glves

*—g-, = —a(K) ———-—?—{-&-V-&%"‘—’
or
' I
AKy= V + (50)
The Born approximation gives a scattering amplitude that
ig valid providing the incident energies of thc Lonparding
particles are sufficiecntly higi. As the incldent energy of
the bombarding particles 1s lncreased to'the range where the
scattering amplitude calculated in the Born approximation 1s
valid, 1t is reasonzble to expect the correction factor given
in equation 50 to approach zero as the energy approaches the
sufficlently high Boran energy. Letting Ky represent the
nomentum transfer associated with the lowest energy for a
given scattering ceniter to which the Born approximation will
give a valid scattering amplitude,
A(Kp)=0 .
Using this idea as a boundary condition in equatlon 50 gives

,'-—o- — —-lié;._—w—
so that
Ks W
V= - 22—, (51)

Thus, one of the two unknown quantitles, V and W, has been
evaluated, Using equation 51 in equation 50
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L {
A (Kl) - - k\;i\/ + Kaw
or
A(K) = (K-Kp)Z . (52)

The unknown W can be evaluated by means of the relatlon

obtained by eguating the imaginary parts of equatiaﬁ 48;

I LA (K A
Pl e = e
(53)
_wiw WKy i
(a+K") alat+ksd  (@¥4K?) -

The Cauchy principal value on the left can be evaluated by
substituting equation 52 into the integral, glving

o oG /W
A(K) oo (K- Kg)&
Fig { dK = ;-)-g dX

a*+ K (K=K (& +k*)(K-KH

©O
or

o0 (ew)
i AK) W Kk
Pﬁi(a‘w‘)(K—x‘) df= & P_i (a%+ KD)(k-K")

(54)

CKiw o[ K
A P{ (@243 (K=-K"

-0

In this equation, the second principal value on the right-
hand side 1s exactly the same as that previously calculated
except for the coefficlient; thus
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_ Js_é'_wpg Ak mKeW {__ ar .}: XKW
a (@ K )(K-K) Qa a (K%a') a2 (K*+a?) (35)
~co

The £irst integral on the right side of equation 54 is
again evaluated by the method of partial fractiouns, The inte-
grand of this integral can then be rewritten

K - _A BK+ C
e = ®} T T ane (56)
or
K= A(d+K)+BK(K=K) +c(K =K. (57)
For K:K', equation 57 becomes
K'= A(a*+K"%
or K/
For K=0, equation 57 1s
K'a*
0= Y& ~ K
or
d?.
C= —myar * (59)
Por K=1, equation 57 gives
_ K@ o a2 (1-K")
b= 02+ K'z +B(1 -KY+ S @
or
i
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Then

L

ij‘f’“’ KdX  w
.

_2, (@ IK=xD T a(K4+o?) P”L{ K-K

_ KK a*
wrk OLZ—rK‘}dK‘

Using the definition of the Cauchy principal value,

K-¢

g K'dk _ K'KdK a’dK

K=K ~ @tR: | O K

fvim

lﬁ EP KdK
A (A4 i 2)(K-K ) €0
-5 -0

(61)

oo..— 4 { z
N g KdK _ KkdK ad\«]} ‘
* v L K-K @+ K? a2 +k=d Ja(ad+K") ©
K+e

Integrating equation 61 gives

w -€
g (651—\2‘;2:5-& ’) "CL((HK‘){-G—)o [K (kK" 7 \vx(aﬂ(‘)”'“t““ ‘i]oo
- , co
+ \e‘—% [K n(K-K = § 1 (K40 + o tan %)]‘ }
o K+e
W o KdK = W (K-X) LK ke
E_Fj(CL‘-)-K"XK-K') A 0&+-K') e—w[l"((a‘ K‘)V‘) & tan (&)lb
(62)

s [ (250 + o )] )

Now inserting the integratlon limits in equation 62 gives



Kdk (K-e) = K’ )*" (<]
@ mew KK-K) a(a+s<*>{é’-ﬂ[ (t(k'—e)z,,aqu T4 tan ( Y )

— ! K' -
- LM (Ei(-‘ (,L}://,i((}i}‘/z) + a tan™ (ZK") s — oo
(63)
- (__Kl/ ) K -
+ Lln (,[ :_ &z/:zjr/:.) + atan”’ (_g___)] -

~ [in<[((%<;-ic€§;§;%)’i a tavf-‘( K‘;—e)]} .

€0

Then,

4

(=0 N ()] | = o
i [ - a/x]% a aQ = —dTan (-c0),

o0
and T

i

-,‘,g((l"K'/K) ):_ o tan” (_E_j
"

= O ta\’\-‘<°°) o

[1-a?/k2]" a;
It 1s also seen that ®
i rf”(t(:: Zfﬁ/y ===
and T
h ([“s“gj:%wy‘ = |n(1) =0.
4 oo |

The remaining arctangent terms in equation 63 cancel each

other, since
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g, {0t (555 = a o™ ()

and

bm {—g Jccm'l(

[

KZE)} = - q 'Ean_.<°%i).

Using these results in equation 63 gives for the Cauchy

principal value

<o
W p KdX - W
a (at+ K*XK-KY — a*+x2 ° (64)
-
Finally, equation 54 becomes, by the use of equations 55 and 64,
W ‘
(K—=Ke)wdk _ _ _Tw KK W P
2 (@t k) (K-KD ekt T @ - (65)

Substituting equation 65 in equation 53 gives

__mw o K Ks W _ L)
(0F+ ') at(aty K*) (a%+ K"?)
(66)
Two K'Y T
(@+x?)  a(@®+K?) (a4 K')
or
K'Kg W K'v
— W + pe = | + W—="g +I. (67)

Using the value found for V in equation 51 gives

_ K'kg W K'K'
--w-.--ﬁ—‘é%——z 2+ W+ SR
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or
W = —1. (68)
Now that W has been evaluated, equation 52 can be write
ten &8
AK) = (Kp- KD . (69)
Bquation 69 gives the correction factor for the screened
Coulomb potential in terms of known quantities, The factor
k' corresponds to the inclident energy of the bombarding par-
ticles, The factor Ké corresponds to the lower energy at
which the Born approximation ceases to give a vallid expres-
sion for the scattering amplitude., The quantity, &, 1s deter-
mined by equation 25,
The corrected scattering amplitude was assumed to have
the fornm,
£(K) = [+ 2a)] £, (70)
The scattering amplitude calculated in the Born approximatlon
1s given in equation 26, so that

{(Kp:[\+i&ﬁd]{§ﬁ§{}4}_ (71)

Using equation 69 in equation 71 gives, for the corrected
scattering amplitude,

(Ke-K)
zzen il
F)y= Tk } (72)

where the primed notation has been dropped. Equation T2 is
the relation which has been sought.
The differential cross section is calculated from equa=-

tion 72 by taking



Then,

ci 3

dw {(K)§*(K),

the differentisl crogs mecticon is

. Ka= K%
do _ uztetut (+ [ REK]
dw — h* (K™

1.

(73)

27



CHAPTER III
DISCUSSIONS AND CONCLUSIONS

The expression for the differential cross section of a
scereened Coulomb scatterling center, given in equation 73, is

seen to be

do .
(3;5 Cafﬂ.ﬁov + (correction factor), (74)

The correction factor in equation T4 is

Ke=K7? (_d_o:_
a dew Bovn

is the differential cross section calculated in

Born

where (£Z)

the Born approximation,
Recalling that
K= 2k sine/2 (75)
it 1s necessary to exanine closely the meaning of Ky in order
to see the significance of the factor (Kz-K), First of all,
XK and KB are actually momentum transfers; KB is a constant
monentum transfer, characteristic of the scattering problem
under consideration,
The constent Ky 1s deflned as
Kg = 2Ry (76)
where KB is the order of magnitude of the incldent energy of
the bombarding particles at which the Born approximation fails

to give satisfactory results, Since kB is not an explicit
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number, but rather a range of energy, the choice of kB, and
thus Kz, 1s to a limited extent arbitrary, The reason for
the cholce of KB in equation 76 stems from the fact that the
Born approximation's failure is a funciion of incident energy.
The quantity arising in the calculatlions, most closely cor-
responding to the lncident energy, is the momentum vector, k.
The subscript, B, has been used to indicate quantities refer-
ring to thls "Born energy" and following this reasoning the
momentum vector corresponding to this energy is denoted by kg.

Since

K= ko= kK (77)

it follows that the magnitude of the K vector varies with the
energles involved and with the "impact parameter" involved.
Obviously, as the calculations have been made with no refer-
ence to an impact parameter, it is impossible to relate KB to
the Born energy through an impact parameter, Thus, & cholce
- must be made such that no impact parameter is involved. The
most obvious way to bypass the problem of the impact para=-
meter 1s to consider a "head-on" collision, so that the ef-
fects of the impact parameter will be zero,

Por a given kp the choices for Kgy in view of the fore-

going restrictions, must lie in the range

O< Kg = 2k - (78)
In this range, only two explicitly known relations exlst; 1.6,
KB = Q0 or KB =2-k3 .

The first choice corresponds to zero momentum transfer, that
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is, no scattering. The second corresponds to a maximum
momentum transfer of 2kB. The first choice 1s obviously not

desirable, leaving the second for the defining relation of KB'

Now that KB has been defined as given by equation 76, the
factor (KB-K) can be examined., It is very important that the
correction apply only in the case where

O = K = Ky
Thus, the quantity (Kzg-K) will always be greater than or equal
to zero, It 1s then seen that the factor will be large in two
cases, Pirst, the factor will be large when the momentum vec-
tor, Xk, 1s small, corresponding to low incident energies. This
idea is 1n agreement with experimental results, The magnitude
¢f the error in using the Born approximetion to calculate dif-
ferential cross sectlons increases as incident energles are
taken lower and lower,

Second, the correction factor is large when the scatter-
ing angle 1s small, also in agreement with experimental results.,
Thus, the correction factor in equation 74 accomplishes the
deslired results. That 1s, the corrective effect of the fac=
tor upon the differential cross section calculated in the Born
approximation 1is greatest where the error in the original 1is
greatest.

Figure 5 shows the scattering of electrons from hydrogen
atoms for bombarding energies of 30 ev. The experimental data
in Plgures 5 and 6 were taken from an article by Webd (4, p. 386).
The figure lllustrates the effect of the correction factor upon

the differential cross sectlon calculated in the Born approximation.



31

For angles greater than approximately 30° the "corrected"
curve gives a good f£it 1o the experimental points, However,
at angles close to 0° scattering, the correction, though larg-
est in thles reglon, 1s still cmaller thon the exporimental
values. Over all, in the range 0° to 180°, the corrected dif-
ferential cross section ls an improvement over the Born dif=-
ferential cross sectlon,

As an 1llustration of the situation which occurs when
the bombarding energies are equal to the assumed "Born" energy,
Pigure 6 shows the differential cross sections for bombarding
energies of 100 ev, Pigure 6 shows that there 1s an overcor-
rection resulting from the application of the correction factor.
An important point to notice is that the correction factor 1is
zero at a scattering angle of 180°, which is consistent with
the definition of K,, That 1s, even though the incident energy
is 100 ev,, equal to the assumed Born energy, the correctlion
factor is zero only when K:KB. The fact that the correction

factor is zero only when k=k and & =180°, explains the over-

B
corrective effect for scattering angles less than 180°.

Thus the corrected scattering amplitude gives hetter re-
sults than the Born scattering amplitude, in the energy range
up to 100 ev, At energles of 100 ev, the overcorrection is
to be expected since, for hydrogen, 100 ev. was assumed to
be the lowest energy at which the Born approximation gave ace
ceptable results, Thus making a correction for 100 ev, bom-

barding energies would be expected to alter an already correct

result,
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Filgure 7 shows the differential cross section for electron
scattering by helium atoms for an incildent energy of 100 ev,
The experimental data in this figure are from a book by Mott
and Maosey (3, p. 122), Figure 7 serves to illustrate that
thie "Born energy" 1s a range of energy rather than an explicit
number, For purposes of calculating the corrected differential
cross section in this flgure a Born energy of 110 ev, was asge-
sumed. The figure illustrates that the choice of the Born
energy was too low since the corrected differential cross sece
tion fell below the exXperimental points at all angles. The
Born energy should be chosen to give the best fit when this
energy 1s not well defined.

Now referring to equation 72 and equation 26, an impor-
tant and basic difference between the Born scattering amplitude
and the corrected scattering amplitude 1s seen, The Born scate
tering amplitude is a real quantity, whereas the corrected
scattering amplitude is a complex quantlity. The significant
difference between the two becomes apparent when the "optical
theoren" is applied (2, p. 144). According to this theorem

Q= % 1mf(0) (79)
where Q is the {otal cross section and Dnﬂ&ﬂ ls the imaginary
part of the forward scatiering amplitude.

In the case of the scattering amplitude calculated in the
Born approximation there is no imaginary part so that

Im f(0)=0 (80)
in the Born approximation. Thus
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QBorn = 0

according to the optical theorem.
In the corrected scatiering amplitude, however, there

is an imaginary part, namely

Im f(6) = ;:?(Ez_xz)[(}(a;}()] . (81)

Using equation 75 in equation 81 gives

_ 2z e? u Kg—2ksin®/27 |
Im£0) = 3Tk sin o2 Vr a } (82)
Thus
2 2 x Kg
T f(0) = =S5 - (83)

Now the total cross sectlion is seen to be

. 2Ze*uw Kg4Tr
Q = " a3k (84)

Using equation 76 in equation 84 gives

16 Tze?u (h{n) _ (85)

Q= A k
Now, although application of the optical theorem to the
scattering amplitude calculated in the first Born approxima-
tion yields zero for the total cross section, a method known
as second Born approximation glves a scattering amplitude
which does not yleld zero when the optical theorem is applied.
The scattering amplitude calculated in second Born approxi-

mation is given by (2, p. 156)
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(zmze’-)x
2 - A2
'G (9) Kl,\,a?.
(86)
2

( MZL Fan (Rasm@/Z) i ‘n(A+2Rﬂme/z )}

ZRAsmelz an A A—2R*ine/2
Wwhere

AQ' = a4 4a*R*+ 4kt sin*e/2 .

Application of the optical theorem to the scattering

amplitude in equation 86 gives
zVNxH, 4
aw (%

and Born = 4RY a* + ' (87)

Comparing equations 85 and 86, it is seen that

l 1
@correctcd X K X v

whereas

1
@md Born 0 R b

N
v
Therefore, the total cross sectlion calculated from the
corrected scattering amplitude leads to a different velocity
dependence from that calculated in the second Born approximation.
There are two limitations to the method described in
Chapter I, The first limitation can be seen from equation 24.
If the method of Chapter I is to be of value, it is necessary
that A(K) can be solved for as an explicit function of X,
The preceding condition requires that the f(K) in equation 24,
the scattering amplitude calculated in the first Born
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approximatiorn, be such that the left side of equation 24 can
be explicltly integrated. IFor this reason numerical integra-
tions of the left side of equation 24 are of no value,

The second limitation of the method described in Chapter I
is that the scattering amplitude calculated in the Born ap-
proximation cannot contalin poles of order greater than one,

To understand this restriction it is necessary to recall the
method for writing the residue of a pole of order greater than
one,

If a function £(Z) has a pole of order m at Z=Z , then
the function

()= (z-2)" £2) (88)
has a removable singularity at Z . The residue at Z2 is given
by (1, p. 121)

{(wm-t)
res (2) = 22 (89)

Where ¢““”%zg is the (m-i)thderivative of the function given

in equation 88 evaluated at Z=Z,. Referring to equation 83,

1t 1s seen that in order to write the resldues in equation 24

it is necessary to take at least one derlvative of A(K) for a
second=order pole. Writing the residues requires a knowledge

of the explicit form of a(K) before &CKK) 1s actually evaluated, 4n
example of a potential which leads to this kind of difficulty is

ar
V(r) = Uee (90)
Applying equation 17 to this potentlal yields a scattering

amplitude which has a second-order pole at K== iaq,
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£(x) dm
Thus the method deseribed in Chapter I does not apply to the
potential in equation 90,

There 1s no apparent means of predicting which potentials
will lead to second-order (or higher) poles without performing
the integration indicated in equation 17.

In concluslion, the correction factor succeeds in lowering
the "Born energy" for the case of the screened COoulombd poten=-
tial., The method described in Chapter I should provide a
solution for A(K) for any potential which leads %o an analytic
integrand in equation 24 and which leads to a Born scattering
amplitude containing no poles of order greater than one., The
correction factor found in Chapter I should then lower the
Born energy for any potential satisfying the preceding con-
ditions, Thus the method should extend the energy range

where the Born approximation is valild.
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Fig. 2--Arbitrary contour and poles in the complex plane
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Pig. 4--Deformed contour and poles for applicatlon to
the screened Coulomb potential.
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Pig. 5--Electron scattering by hydrogen for incldent
energles of 30 ev (assumed Born energy 100 ev).
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Fig. 6--Electron scattering hylhydrogen for incident
energies of 100 ev (assumed Born energy 100 ev).
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Flg. T--Electron scattering by helium for incident energles

of 100 ev (assumed Born enerzy 110 ev).
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