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CHAPTER I 

THE D£VSXL0P;.IE13T OZ 2 H 3 GBilBIiAIs OAS2 

The problem of scattering of particles by a potential, 

V(r), has been treated, semi-successfully, by a method Imown 

as the Born approximation. 

The scattering problem leading to the Born approximation 

is Illustrated in Figure 1. Located at the origin is an ar-

bitrary, fixed scattering center. A narrow ceam of particles 

is incident upon the scattering potential. The beam of parti-

cles of reduced mass, JUL , lies along the Z-axis. 

The problem to be considered is the solution of the fol-

lowing Schroedinger equation 

[ - H v2- + V(r)]v(r) = EV(r). (1 J 

This equation can be written as 

[v*+ie]¥(r)= U(r)V(r). (2) 

where 

U ( r > = ^ v ( r ) ( 3 ) 

and 

n 

The solution to equation 2 will have the form 



i I I \ i&Z ! iter r / 
^(r) = e + Y e t(Q) . 

The quantity,ffe), is called the scattering amplitude of the 

prooaoc. Tao ooa-b-fcorln̂  amplitudes* f(O) , i*aj tlio property 

a & = l « « l 1 5 1 

where do-/du> is the differential cross section. 

It is a well-known result that the scattering amplitude 

is given by (3, p. 147) 

f (©) = - e~^' r
 U(r) ( r) ^ ( 6 ) 

It is in this relation that the Born approximation is made. 

Tha ¥(r) appearing in the integrand of equation 6 is not ex-

plicitly known; the Born approximation is an assumption con-

cerning this quantity. The assumption is that, for incident 

particles having sufficient energy, the *3?(r) in equation 6 is 

not appreciably distorted from a plane wave. If the incident 

particles are described by a plane wave, then, providing the 

particles have a large energy, the state of the particles will 

still be described by a plane wave after the scattering has 

begun. Thus, the Born approximation is 

Y(r>= e r , v 5 (7) 

With this approximation, equation 6 becomes 

{(&) = - — ^ e
xi~ko ^ r u U ) a r ^ (8) 

Letting 



K = i&-k (9) 

then, if « is the angle between K and ?, 

K* r = Kr cos &• (̂  o) 

equation 8 "becomes 

= Je i R' r" s"aCr)<lr. (11) 

Now, for a differential volume r3"sinoc d<x d r 

f(e)=-^j; ̂ ^^"''"utrirtii^cUxciedr (12) 

or 

f < e ) = - ^ W : f ) r ' < i r i d S f e i K r C ° S < X s i n « d o . (13) 
O 

which Integrates to 

00 

f(0) = - - i - ^ U ( r ) r sin(Kr) dr . (14) 
o 

Using equation 3> it is seen that 

f (G> = - J V(r) r sin (Kr) dr . (15) 
O 

Equation 15 is the result given by the Born approxima-

tion for the scattering of the process described above. 

A very important point to be noticed is that the Born 

approximation is valid only if the energy of the incident par-

ticles is greater than or equal to seme lower energy bound. 

Qualitatively, the idea is that for low incident energies the 

particles are affected by the potential, V(r), to the extent 

that the approximation that 4?(r) is a plane wave at scattering 



is not valid. Thus, in order to make the approximation valid 

it is necessary that the incident energy be greater than some 

lower bounding energy corresponding to a momentum transfer Kg. 

An important observation about Kg is that it is not well de-

fined. It varies from potential to potential and, for a given 

potential, it is more an order of magnitude than an explicit 

number. 

For example, the Born approximation is valid, when the 

scattering center is hydrogen or any other light atom, for 

bombarding energies greater than about 100 ev. Again this is 

an order of magnitude and is used to find the momentum trans-

fer. For heavier atoms, the bombarding energies must exceed 

approximately 1000 ev. For the scattering of protons by nuclei, 

the Born approximation is valid only for bombarding energies 

greater than 150 Mev. (3, p. 143). 

Since the scattering amplitude given in equation 15 re-

sults in considerable error when the energy of the incident 

particles is below the range of validity, a method of cor-

recting this discrepancy is desirable. 

Since the scattering amplitude in the Born approximation, 

f(0) , can be evaluated for most important potentials and gives 

fairly accurate results, a reasonable approach to the correc-

tion problem is to assume a form involving a correction factor 

should be some function of the energy, since the range of va-

lidity of the Born approximation is energy dependent. There-

fore, the correction factor oan be taken to be 



& = A ( K) . <16> 

In order to formulate a method for the evaluation of 

A(K) , an equation must be arrived at that allows for the so-

lution of A(K) as an explicit function of K, 

The residue theorem on complex integrals provides a 

method of arriving at the necessary equation. The residue 

theorem is stated as: "Let 0 be a closed curve within and 

on which P(Z) is analytic except for a finite number of singu-

larities Z1, Z2, ... , Zn, inside of C. If , K , ... , K^, 

denote the residues of P(Z) at those points, then 

( F (Z) dZ = 2TT-L ( K» -5" + * • • + Kn) 

•x 

where the integral is taken counterclockwise around 0" (1, p. 188) 

The next step is to determine exactly what the F(Z) should 

correspond to in the scattering problem. A reasonable form to 

assume for the corrected scattering amplitude is 

f(e) = f(e) + A A f ( e ) 0 7 ) 

or 

m = (l + iA)f(8). 0 8 ) 

This form for the corrected scattering amplitude, f'(8) » can 

be identified with the F(Z) in the statement of the residue 

theorem. 
tern 

At this point, reconsider the meaning of K, i.e. 

K * = (5.-R)* = + = 2.1^(1-CMS) 

or 
7 7 ^ A K = 4 k s\nx 



so that 

K = sin e/a-. (19) 

From equation 19 it is seen *';hat 

f { 3 ) — - f (K) 

Thus, in application to the scattering problem, ]?(Z) in the 

residue theorem should contain as factors [1-5- JLA(K)], -f ( K), 

and, in addition, a term to insure that a singularity will 

exist since it is not in any way guaranteed that f(K) will 

contain the necessary pole. Therefore, it is necessary to 

include a factor of the form, 1/(K-K'). low the form of 

F(Z) has been established as 

r-/«*\ [S+XA(K)3f(K) _ 
K z ) j<f^7 * (2°) 

Using equation 20 as the form of 3?( Z) in the residue 

theorem, 

tl+xAOOlftK) _ Z Y i Z ( r e s . ) . (21) 

Equation 21 is the basis of the method for the evaluation of 

a(K). 

It is now necessary to make one important assumption 

about A( K) • la order to be able to write down the residues 

in equation 21, it is necessary to assume that A( K) , itself, 

has no singularities. This condition is essential since there 

is no possible way of anticipating the actual location of any 

singularities A(K) might have in the complex plane. 



Another Important point is that a method of evaluating 

the integral in equation 21 must be devised and can be 

achieved by making the contour 0 enclose all the singulari-

ties in t&a upper Vusif oouipias; pl«=»» those on th« ra&l 

axis. Figure 2 shows this situation. In Figure 2 the dots 

represent the singularities of F(Z). The contour 0 encloses 

only those singularities which lie on the real axis or in the 

upper half plane. Notice that the singularity at K has been 

shown explicitly. Since K is the only singularity explicit-

ly known, any other singularities which might arise must come 

from the scattering amplitude calculated in the Born approxi-

mation. 

Now, with the assumptions made about «&0<) and with an 

explicit form for the Born approximation scattering amplitude, 

it is possible to write down immediately the right-hand side 

of equation 21. However, the problem of solving an integral 

equation remains; that is, the Integral on the left-hand side 

of equation 21 must be evaluated by some other means. 

Consider the deformation of the contour 0 shown in 

Figure 3. That this deformation is valid follows from the 

fact that no singularities were crossed in the deformation 

(1, P. 118). 

With the assumptions made about Zk(K)s> namely that it 

contains no singularities, by placing a restriction on f ( K ) it 

is possible to arrive at a method of evaluating the integral 



( K - n 

[ 1 +- J. A( 10] f ( K) 

8 

using the contour shown in Figure 3. The restriction on-f(K) 

requires that the integrand in equation 2*» tends to zero as 

|^_>00 # This is not a very strong restriction since most 

Doatto^lng &uplitudc« calculated xa. tlic Bora approximation 

satisfy this condition. 

The integral in equation 21 can be written as 

r. I-V XACK)]f(K) , _ f r. i -4- i AC K)3 f(K) 

(K — lO q K 

[1 + iAClOlfCK) 

(K-KO (K-K') 

R 
[ ) + iACK)]f(K) 

(K-K') a K* 
K'+P 

Since the original contour 0 was assumed to contain all the 

singularities in the upper half plane, the following limits 

can be taken without crossing any singularities. Let R-^-oo 

and ^ —>- 0 » then the contour integrals around R and <? both 

tend to zero. The reason for these limits is that, in the 

case where the line integration is performed at infi-

nite values of K. Due to the previous assumptions about f ( K), 

the integrand is zero for these K-values. Thus, 

Ira ( - L l ± ^ P 1 £ 1 c 1 K = 0 . 

As >>o * the path length goes to zero so that (2, pp. 529-530) 



t ! + X A (103 f (K) n/ _ ^ 
«'!?„ \ (Fi?j d K _ ° -

I t follows that 
Kr? 

f [ 1 + XA ( K)]f(K) Cn-i-XA(K)]f(K) 

\ (K-K') q K 1 ^ 3 r (K-K') 
9 » 

4- in-n \ 11 + AA(K)]ffiO ... 
JJZ* ) (K-K') d K 

(22 ) 

* ~ > c o 

I 
With the contour integral in this fork, it is seen that 

U±iA(K)lf(K) _ o f L!+aA(K)] f ( K ) ... . . 
(K-K') ( K - K ' ) d K ( 2 3 ) 

-oo 

where the "P" indicates the Cauchy principal value of the 

integral. 

Equation 23 is the second method of evaluating the in-

tegral in equation 21 making it possible to solve equation 21 

for A(K) • Using equations 23 and 21 gives 

p T t K i A W 3 f f K ) d K _ z T r l L ( r e s ) . (24) 

- CO 

Equation 24 then yields the solution which gives the 

ford of the correction factor A(K) . Thus, a corrected form 

for the Born approximation scattering amplitude has been 

chosen and a method for evaluating the correction factor 

has been developed. 
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CHAPTER II 

APPLICATION TO SCA3ENED COULOMB POTENTIAL 

The method of correcting the Born approximation scattering 

amplitude, developed in Chapter I, should apply to any scat-

tering amplitude calculated in the Born approximation. As an 

example of this method of correction, consider the screened 

Coulomb potential, 

- ~ a r 

V(r) = ^ r ^ (25) 
i 

Using this potential in equation 17 gives 

00 = - \ ") r sin Kr d r 
z -«•* 

o 

or 

K \ _ ? . z e V 
i (is J h z K * (26) 

Equation 26 gives the Born-approximation scattering ampli-

tude for the screened Coulomb potential. 

How, 

f ( K ) ^ (a*l K») 

so that, arising from tho Born-approximation scattering ampli-

tude, there are singularities at K= ±ia in the complex plane. 

Then for the special case of the screened Coulomb 



12 

potential the situation in figure 3 becomes the situation 

shown in Figure 4. 

for this case, equation 24 is 

P ) (of* r)(K-K') di( = ^Trj-ZKres.) ' 
-co 

Writing out the residues on the right gives 

CO 
1 + JLA(K) 

-co 
(aV^XK-K') 

+ ZWx. 

7T~ ciK = Tfi 
H-aACK') 
az -r K'1 

r 
I s Hr h A (la) 

[ ( Xa-K') ( Zia.) 

Rationalizing the last terra on the right gives 
CD 

I + i AC K) 
(ax + KzX K-K') 

X ciK = Ha 

— GO 

It 
1 + 1A (io*) "1 
(K'-ia )(a) 

I 1 AC K) 
a z+^ L 

K V ia ~ 

A~1 

K'-Ha 

or 
CO 

•f. I + A A(K) 
J (o^+K^XK-K') 

- dK = iri 

-co 

M-iACK')] 
a l+ K'z 

•IT 
(i-t- iA(ia))(K/-}-Xd) 

a ( K V a * ) 

Expanding the residues on the right side gives 
CO 
,f l-t-XA(K) 
J (aVK^)(K~K/) 
P dK: 

TTjL TA(K') tr K' 
(az+ Ka) (flN- K'-1) a ( K ' a ) 

1r Auo.) a 
a(a*4-K'A) 

"Tri K'a (ia) 
<x(az-jr K'-1) 

-r 
irxa 

&("*+ K'a) 
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or 

CO 
P f ^ A A ( K ) K __ 'Hi __ fTA(K') ___ 7r f<' 

-OC ( K z + a 1) ( K - K') d (a 2+ K-) ( a 4 + ^ a ( a V K ' ^ 

(2?) 

4. ^rrA Tia) _ TiK Afia) , i r i 
(a*4-K~) Ck{a}+ K'a) (a'4- K'^) 

In general the most unrestricted assumption to make 

about the quantity,Afia), is to assume that It is some com-

plex number. Take 

A ( i a ) r=V + i w 

where V and W are two real numbers to be evaluated. Since 

A a a ) is a constant, it follows that V and W will both be 

constants. Then equation 27 can be rewritten as 
CO 

p( '-t-ia(k) ,, _ iri tta(k') _ tt k/ ' 

(a*-t Ki)CK-K/) (aVi^) faVK'4) a(a^-v-K^) 
-co 

-j- ~JLl 1_ T r ^ tt-^kV T t k V . tri 
» / ^ V 1 X . ? i . — A M _ l" . ~P * U'" 

(28) 

(a*+ *'*> ~ a («'+ k'1) <*(«'+K.'*) + (a'+K'J)' 

The problem now is to evaluate the Cauchy principal value on 

the left side of equation 28. The integral can be written 

5° oc , 
p f i Hr A A ( K) IK _ o f clK 
J (a«+Kl)(K-K')a _ F 3 (a'+^XK-K') 

**"UL/ CO 
(29) 

p ( - - J ^ l X L i K . 
1 ( a ^ K ^ K - K ' ) (aS- K4)(K-K') 

The first integral on the right is evaluated by the 
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method of partial fractions, 

c ° C O 

P \ dK Q ( ! ii/ » 
.£, (a'+K'XK-K') ~ (aVK2)(K-K') * 

than, 

- - ^ - r - + - S ^ r C3o) 
(az-h K^XK-K') ~~ K - K' (Xz-t K 

I = A(a z + Kz) -+- C B K + C)(K-K') 

I == A (a*+tf) + BK(K-K')+ C (K-K#) . (31) 

Now, for £=£', equation 31 becomes 

l =. A ( a 1+K' i) 

so that 

A cf+K'3- ' ( 3 2 ) 

Also, for K=0, equation 31 becomes 

'= le+W ~CK' 
or 

- K * 

ax-t- K'3-

Then, for K=1, equation 31 is 

I = I" B (1 - K') K'° !</) 

(33) 

(£• + K'a 
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ft fi-k'} — a* -n - a z -k'- - k 7 + k'* _ fi-iO 
K } a?~ •+ k'3- ~ a*+ K'* 

® a* + K'* * ^4) 

Now, using equations 32, 33 and 34 in equation 30 gives 

the integral 

CO CO 

P i (C^+K'XK-fO = P I "( K V a z (R-'K') 
-CO -CO 

(35) 

or 
Oy 

» / K4K \_ K' / dK \\ 

a1-*- k'a I a1-*- Kxj a2rb k'a \ a*+ K7 3 

p ( _ _ 1 Q { L i K KcJK k'cIK ^ 
rJ (a^+K^CK-K') \<J-±a3-r) \ K-K' a'+ic* \ . (36) 
~"CD —DO 

Equation 36 gives a form of the integral in equation 29 

which can be evaluated by using the definition of the Oouchy 

principal value. 

Using this definition, 

- jfc felt (*%H*» - «• feSWJ 
-co 

(37) 
CO 

+ taH ( . 
K've 
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Integrating the factors in equation 37 gives 

i ^ W X K - K ' ) = ^ tan'(|)]^ 

(58) 
i f ! CO 

+ U [ ln(K- K">-i U(KVa*) - £tan"' (&)] 
K';tC 

Equation 38 can be rewritten as 
OO 

P ( — = — — •{ i..vi f |n —H_L 
) (<xl+ *.')(K-K') c W U - » > L ' (a'+K4)^ 

-co 

„ i ri ck-K) 
+ lim U — — r r -

w o L (a2-}- k )' 

(K-K') K . • 
;/x a *-an "'(4)] 

11**-'(!)] 

oo 

K.-C 

oo 

(39) 

K + £ 

At this point it is necessary to evaluate the limits given 

equation 39 by first inserting the integration limits and 

then taking the limit as e approaches zero. Equation 39 is 

then written 

r f 4K 1 r, r, (k'-O-K' _ K' >'•{, 

" K^+a^iTol- 4 ® " l l ) 

_ "i O-K'/K) _ K.' -wJixl 
J n [ |_(a/Kf] i-'2. a t < m 

I ( l~ K'/i-O _ _i/K\" 
"l" [In [I- (tt/j/f]'/! 0. tin- \~a' 

K—J--oo 

K—*00 

(40) 

• jrn? 
<c->D 

m 
(K#-K>-K' 

J L , -wj&lL 
a tan \ a -) 
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How, 

I O-fc'/tO _JLi. -V*. 
L Ci- (a/iOT'1 a t a n ^ Kr>-co 

and 

In 
(I-K'/K) . 

L l - (̂ /K)2"]'̂  a 
* tan"'(-§•) 

so that 
GO 

P \ (cl*+k*)(k-k') " aVK^Ie^c Jn [(K-€)+alJ'A a ' ( a. ) 

1<-> 00 

-<E 

K \ -V \ 
ran. (-oo) 

k' -»/ -i 
-§; tan (-co) , 

K.' .,/ K-€ 

- cc 
(41) 

K % /K-t̂  
a tavt'(-cjo) atari (oo) a ̂ an( a 

The two arctangent terms can he taken as 

k' 
(~cf) tatC'C-oc) 

/J<1\ _2L 
loJ x. 

and 

( -£- ) tan"' (oo) T > 

so that equation 41 becomes 

CO 

^ \ (C^HOCK-KT ~ l<'Haz [(x-e)'* a1] 1/4 a-*** ( <* ) 
-00 N 

(42) 

6-*o 

€ 

[(K'+OHa4!^ & 
K-Tfi 
a. 

Now, since 

Ism 
£-">0 

X' , -» f K - 6 
a t a " V ~ j tuvC4 (""£") 
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and 

i r k' , -1(k'+ 6\\_ j<^, -i/j<i\ 
- Iiffl tan \ a"/ ~~ a * a n j 

t ->0 L J 

It Id s o w tk&t xh.oso 'Uruj ouuool. Tiioa equation 42 beoom«8 

CO 
1 | j f%̂Tif I $: | 

P ) (aN- ) &1-*-K'a \ a t->oL [(K-eV1-*-

(43) 

!yl [(KVeV+a^-j^. 

The two remaining limits can be evaluated by noticing that 

Sim 
fc->o _ 

(44) 

l i m I |H * [ ( K ^ W 3 » 

^tdc'+ty+a*]''1 J 
Cr->0 ' ^ 

Since A(K) , itself, is a real quantity, the following choice 

of signs on the radicals is made: 

- [ ( M V a q V i ) _ , f, [(K'-*ef+o?3,A\ 
i-Cl j l« e f ~ I'm j I" r ( u'_ * \*+ ?il vz f 

( + [ ( M V < r t ' W * - 0 l 1 1 , 1 e l t 4 J ) 
or 

l - o 1 [ ( K ' - O ' + a ' l * } = l w ( 0 = O . (45) 

finally, the integral is 

oo 
~f dK 

) («*+ k'Xk-k '1 a1 

— CD 
M-K'11 » J 
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or 
CO 

dK K'Tr 
P a ( K ' H f t ' ) • ( 4 6 ) 

-00 

Usias equation 46 la equation 29 gives 

CO 
r i + J l M K ) _ K'TT 

P ) (a2+K.1)(K-lc') aCaJ+K'») 
•CO 

00 
(47) 

- o r _ i A U S l _ ik 
3 Cax+Kl)(K-K') J (fl1+K1)tK-K) 

-00 

Now, returning to equation 28 and substituting equation 47 

for the integral on the left, 

GO 
-k'tt , p f iA(K) .» __ tri IT A(K') 

aCft^K'4) ) (^4-K'XK-K') (a'+K'O (a'+K'*) 
~OD 

(48) 

~Tn<' , TTiW _ TTI K'v , TtkW ^ TrX , 
a(a^K'1) (tf+K1*) a (a.W) «(al+K'') UVk'*) 

Since the only way two complex numbers can be equal is 

for the real parts of the numbers to be equal and the imagi-

nary parts to be equal, two equations can be obtained from 

equation 48. Equating the real parts of equation 48 gives 

__ ITK' = _ ta( K') IT k' 
a(az+ k'*> U 4 + k'4) a(a*+ k*1) 

(49) 

j- "77" V « TTK'W 
(aS- a ( a W l ) 
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Equation 49 gives 

or 

A ( K ' ) = v + • (50) 

The Bora approximation gives a scattering amplitude that 

is valid providing the incident energies of the ivsiuar&lng 

particles are sufficiently high. As the incident energy of 

the bombarding particles is increased to the range where the 

scattering amplitude calculated in the Born approximation is 

valid, it is reasonable to expect the correction factor given 

in equation 50 to approach zero as the energy approaches the 

sufficiently high Born energy. Letting KB represent the 

momentum transfer associated with the lowest energy for a 

given scattering center to which the Born approximation will 

give a valid scattering amplitude, 

A( Kg) — O . 

Using this idea as a boundary condition in equation 50 gives 

a(K;-) = O = V + - ^ , 

so that 

v = - ^ . ( 5 „ 

Thus, one of the two unknown quantities, V and W, has been 

evaluated. Using equation 51 in equation 50 
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A (K ' ) = -

or 

A(K') = ( K ' - K ' o ) x • (52) 

The unknown W can be evaluated, by means of the relation 

obtained by equating the imaginary parts of equation 48; 

CO ; a ( K ) u, Ti o ( > AlK) ,w 
V ) ( K V ^ X K - K ' > ( a*-* K'>) 

-"OQ 

(53) 

IT xvJ __ TTakV . Tt-l 
(a^K^) U*-VK'*) * 

The Cauchy principal value on the left can be evaluated by 

substituting equation 52 into the integral, giving 

CO CO / v w 

D f A ( l O « _ „ ( ( K — K s ) - g ,1/ 
) ( K ' X K - K ' ) ^ ) (a2-hKa)(K~K/) 

"CO —CO 

or 

CO 
^ ( A(iO ... _ W _ D ( KdK 
P J ( aV^HK-K ' ) d ~ a ( ^+K l ) (K -K ' ) 
-co 

, CO 
Kb w p f oiK 
a H (a'+KJ)(K-i?T ' 

—CO 

(54) 

In this equation, the second principal value on the right-

hand side is exactly the same as that previously calculated 

except for the coefficient; thus 
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_ i2& D ( rlK _ KsW f K^r )_ TKVftW . . > 
a F ) (a^K'^XK-K') & c a(K\al)J CLHK'Va4) 

-co 

The first Integral on the right side of equation 54 Is 

again evaluated by the method of partial fractions. The inte-

grand of this integral can then be rewritten 

H =s — - j — B K -f C (56) 
(aV^XK-K') ~ K~K' Kl 

or 

K = A (a*+K8) + BK(K-K') +C( K-K') . (57) 

For K=K', equation 57 becomes 

K' = A (a1 + K'2) 

or 

= S ' 

For K=0, equation 57 is 

^ tfN-K/jL ' 

K'a* 
o = l ? ^ p r - C K 

or 
a7 

(59) 
^ K'M-a.2- * 

For K=1, equation 57 gives 

\ _ K (Cl*+ 1 ̂  t n C I _ l/'\ A f l ^ ) 
' "" 0?+ K'a- ' a l+K* 

\ 

or 

6 = ~ ft" + K'1 • ( 6 0 ) 
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CO 
W K cl K W 
a * j (az+K2)lK-K') aCKSa 1) 

-CO 

co , 

' I { - A 
- C O 

0-K K 
r ] J* . 

Using the de f in i t i on of the Cauchy pr incipal value, 
CO K—<i 

w 
a. 

. r KtlK _ f , r r K'clK K'KdK . q*dK 1 
P ) Ca'+K'XK-K') _ U^> ) L K-K' a«+K* a'+K lJ 
-co 

CO 
+ U r _ KlKdJl 

<r-»o; L K-K' aHK2 al+K* 
K'44 

]}<HaH-K'')' 

(61) 

Integrat ing equation 61 gives 

CO -
w ( KdK W fj l r V J 
a ; (c^+k^Ck-k') <x( a+ k'*) 1 e->o 

-oo 

A — _K 1 ^v4-« 
K-C 

K'ln (K-K')- 7 iw(aW)+4ta* 
—oo 

or 

w 
"a 

+ Uw [k'IuCK-k'j--|'i„(KVaJ) + a i a n - ' ( 4 ) ] "I 
K'+€ ' 

00 ^ JV I K-T 

P i C a ' S ( K - K ' ) = a 5 & F ) fel 1 « ( + * t m ~ ' ( » 0 
-co -oo 

H [ l n ( § & ? * ) + a w ' ® ] K V t } • 

(62) 

Now inser t ing the in tegra t ion l i m i t s in equation 62 gives 
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KdK 
— p f " 
a rJ (a*-* Kl)(K-K') 

w 
a(a2+K'4) i f a t " ( t S t e a « ) ' ' * 

W * 0 Q 

(63) 

K->oo 

• ^ [ ' " ( r o S ^ ) + a t a , f , ( J ^ ) ] } . 

Then, 

and 

•= — d.tran'^-oo) , 

*»CO 

a. tavT'Coo) . 

00 

It is also seen that 

In 
0 - k W ) 

X 1 - aVKA],/a 

and 

~|„ / U - k ' / K ) \K'l 

_ln U l - O L V K * ^ ) J 

-oo 

oo 

In (I) = 0 , 

I n C O = O. 

The remaining arctangent terms in equation 63 cancel each 

other, since 
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ilvYi 
£-fO 

£atan"4 - a W 1 (§) 

and 

i1 ™ 0 {"
 a ian"' (ror)} - *" a t(m~' Br) 

Using these results In equation 63 gives for the Oauchy 

principal value 
CO 

W. p f KdK T W 
a K ) (a^v^XK-K') ~ al+K'a. • <64> 

- C O 

Finally, equation 54 becomes, by the use of equations 55 and 64, 

p ( (K —Ka)7T clK _ _ 7TW , TrK'KatV . 
J (<xzi- k1)(K-K') al+K'1 a^a'+K14)* *'5) 

-OD 

Substituting equation 65 in equation 53 gives 

IrW Tf K' Kb W __ "0" 
(afc+ l) a1 (as K'a>) (a*+ K'1) 

, TTW ITK'V . 1T 
(aS-K'*) a(a.2+ K'O (al+K'1) 

(66) 

or 

_ W + _ K ^ = J + w _ j g L + | . ( 6 7 ) 

& ^ 

Using the value found for V in equation 51 gives 

_ W ^ J ^ M = 2 + w + k ^ W 
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or 

W =• — 1. (68) 

How that W has "been evaluated, equation 52 can be writ-

A(K') = ( K ' d - K ' ) ~ . (69) 

Equation 69 gives the correction factor for the screened 

Coulomb potential in terms of known quantities. The factor 

&' corresponds to the incident energy of the bombarding par-

ticles. The factor K33 corresponds to the lower energy at 

which the Born approximation ceases to give a valid expres-

sion for the scattering amplitude. The quantity, a, is deter-

mined by equation 25. 

The corrected scattering amplitude was assumed to have 

the form, 

f U ' ) = [ 1+ iA(K')] fB(K'). (70) 

The scattering amplitude calculated in the Born approximation 

is given in equation 26, so that 

f(K')= [ I -t- -i.A ( K') ] { . (71) 

Using equation 69 in equation 71 gives, for the correoted 

scattering amplitude, 

(K8-KV ( 

, (72) 

where the primed notation has been dropped. Equation 72 is 

the relation which has been sought. 

The differential cross section is calculated from equa-

tion 72 by taking 

„ _ x ^ . . r (Kg-K)i , 
r (<s\ — g. J 1 
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& = K i O F W . 

Then, the d i f f e r e n t i a l cross section Is 

do- _ P-x f I + [ K°p.K] "1 
clto - -K1 I ( t f + K 1 ) 1 I - ( 7 5 > 



CHAPTER III 

DIS0U3SI0N3 AM) COKOLUSIONS 

The expression for the differential cross section of a 

screened Coulomb scattering center, given in equation 73 > is 

seen to be 

'cl(T _ 

Born 

The correction factor in equation 74 is 

( f e ) — + ( c o r r e c t i o n f a c t o r ) . (74) 

rks~k~I / ̂ . \ 
L a J \ d w / B o r A 

where ( ~ ) is the differential cross section calculated in 
K aW/Born 

the Born approximation. 

Recalling that 

K = 2.k sin e/z (75) 

it is necessary to examine closely the meaning of % in order 

to see the significance of the factor (Kg-K). Pirst of all, 

K and Kg are actually momentum transfers; Kg is a constant 

momentum transfer, characteristic of the scattering problem 

under consideration. 

The constant Kg is defined as 

= (76) 

where kg is the order of magnitude of the incident energy of 

the bombarding particles at which the Born approximation fails 

to give satisfactory results. Since kg is not an explicit 
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number, but rather a range of energy, the choice of kg, and 

thus Kg, is to a limited extent arbitrary. The reason for 

the choice of Kg in equation 76 stems'from the fact that the 

Born approximation's failure is a function of incident energy. 

The quantity arising in the calculations, most closely cor-

responding to the incident energy, is the momentum vector, 2c. 

The subscript, B, has been used to Indicate quantities refer-

ring to this "Born energy" and following this reasoning the 

momentum vector corresponding to this energy is denoted by leB. 

Since 

K = K 0 - k , (77) 

it follows that the magnitude of the K vector varies with the 

energies involved and with the "impact parameter" involved. 

Obviously, as the calculations have been made with no refer-

ence to an impact parameter, it is Impossible to relate Kg to 

the Born energy through an impact parameter. Thus, a ohoice 

must be made such that no impact parameter is involved. The 

most obvious way to bypass the problem of the Impaot para-

meter is to consider a "head-on" collision, so that the ef-

fects of the Impact parameter will be zero. 

For a given kg the choices for Kg, in view of the fore-

going restrictions, must lie in the range 

O < K q < . (78) 

In this range, only two explicitly known relations exist; i.e. 

K b = 0 or Kb — 2-b . 

The first choice corresponds to zero momentum transfer, that 
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is, no scattering. The second corresponds to a maximum 

momentum transfer of 2 T h e first choice is obviously not 

desirable, leaving the second for the defining relation of Kg. 

low that has been defined as given by equation 76, the 

factor (K-g-K) can be examined. It is very important that the 

correction apply only in the case where 

O ^ K < K B . 

Thus, the quantity {KB—K) will always be greater than or equal 

to zero. It is then seen that the factor will be large in two 

cases. First, the factor will be large when the momentum vec-

tor, k, is small, corresponding to low Incident energies. This 

idea is in agreement with experimental results. The magnitude 

of the error in using the Born approximation to calculate dif-

ferential cross sections increases as incident energies are 

taken lower and lower. 

Second, the correction factor is large when the scatter-

ing angle is small, also in agreement with experimental results. 

Thus, the correction factor in equation 74 accomplishes the 

desired results. That is, the corrective effect of the fac-

tor upon the differential cross section calculated in the Born 

approximation is greatest where the error in the original is 

greatest. 

Figure 5 shows the scattering of electrons from hydrogen 

atoms for bombarding energies of 30 ev. The experimental data 

in Figures 5 and 6 were taken from an article by Webb (4, p. 386). 

The figure illustrates the effect of the correction factor upon 

the differential cross section calculated in the Born approximation. 
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For angles greater than approximately 30° the "corrected" 

curve gives a good fit to the experimental points. However, 

at angles close to 0° scattering, the correction, though larg-

est in this region, is still emailor than the experimental 

values. Over all, in the range 0° to 180°, the corrected dif-

ferential cross section is an improvement over the Born dif-

ferential cross section. 

As an illustration of the situation which occurs when 

the bombarding energies are equal to the assumed "Born" energy, 

Figure 6 shows the differential cross sections for bombarding 

energies of 100 ev. Figure 6 shows that there is an overcor-

rection resulting from the application of the correction factor. 

An important point to notice is that the correction factor is 

zero at a scattering angle of 180°, which is consistent with 

the definition of Kg. That is, even though the incident energy 

is 100 ev., equal to the assumed Born energy, the correction 

factor is zero only when The fact that the correction 

factor is zero only when 3£=& and 0=180°, explains the over-

corrective effect for scattering angles less than 180°. 

Thus the corrected scattering amplitude gives better re-

sults than the Born scattering amplitude, in the energy range 

up to 100 ev. At energies of 100 ev. the overcorrection is 

to be expected since, for hydrogen, 100 ev. was assumed to 

be the lowest energy at which the Born approximation gave ac-

ceptable results. Thus making a correction for 100 ev. bom-

barding energies would be expected to alter an already correct 

re suit. 
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Figure 7 shows the differential cross section for electron 

scattering by helium atoms for an incident energy of 100 ev. 

The experimental data in this figure are from a book by Mott 

emd Maosey (3» p. 122). Figure 7 eervoe to Illustrate that 

the "Born energy" is a range of energy rather than an explicit 

number. For purposes of calculating the corrected differential 

cross section in this figure a Born energy of 110 ev. was as-

sumed. The figure illustrates that the choice of the Born 

energy was too low since the corrected differential cross sec-

tion fell below the experimental points at all angles. The 

Born energy should be chosen to give the best fit when this 

energy is not well defined. 

Now referring to equation 72 and equation 26, an impor-

tant and basic difference between the Born scattering amplitude 

and the corrected scattering amplitude is seen. The Born scat-

tering amplitude is a real quantity, whereas the corrected 

scattering amplitude is a complex quantity. The significant 

difference between the two becomes apparent when the "optical 

theorem" is applied (2, p. 144). According to this theorem 

<3 = (79) 

where Q is the total cross section and Imf(o) is the imaginary 
part of the forward scattering amplitude. 

In the case of the scattering amplitude calculated in the 

Born approximation there is no imaginary part so that 

Im f(o) = O (80) 
in the Born approximation. Thus 



33 

Q Born 

according to the optical theorem. 

In the corrected scattering amplitude, however, there 

is an imaginary part, namely 

-r r/a) - £2e*M r ( Kb~K) -i 
Im 1(8) — â.()<a-+a2.) L a J ' (81) 

Using equation 75 in equation 81 gives 

r/~s _ r K b s i n e / 2 . 7 _ t 

^tCz.ksiweAf+a^l a J C82> 

Thus 

Im f(0) = " (83) 

How the total cross section is seen to be 

^ _ 2.2 e*xl. K B H TT 
^ fa* <x3 K * (84) 

Using equation 76 in equation 84 gives 

_ 16 7rze».u / 
Q ~ * » a3 \ k ) • ( 8 5 ) 

Now, although application of the optical theorem to the 

scattering amplitude calculated in the first Born approxima-

tion yields zero for the total cross section, a method known 

as second Born approximation gives a scattering amplitude 

which does not yield zero when the optical theorem is applied, 

The scattering amplitude calculated in second Born approxi-

mation is given by (2, p. 156) 
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( Zmzex\^ 
t2(e) = 

Kl + al 

(86) 

( ) 5", -if kasine/2\ . i , /A + Z^suhQ/z \ l 
ZfLAsme/zV1™ I A r 5 l n l A - i k W / J ) 

where 

+ ** * 4K4?inxe/2. . 

Application of the optical theorem to the scattering 

amplitude in equation 86 gives 

ZVYlHtd*^ 
(87) 

/ Z w s e v 
^ . _ 4-SU t^a ) 
°<2.nd Bovn — "~7TT77 1 

4 k/a.3- + ' 
Comparing equations 85 and 86, it is seen that 

Q covvectecl ^ U 

whereas 

®%n4 Bom ** ~tx ** U* * 

Therefore, the total cross section calculated from the 

corrected scattering amplitude leads to a different velocity 

dependence from that calculated in the second Born approximation. 

There are two limitations to the method described in 

Chapter I. The first limitation can be seen from equation 24. 

If the method of Chapter I is to be of value, it is necessary 

that A(K) can be solved for as an explicit function of K. 

The preceding condition requires that the f(K) in equation 24, 

the scattering amplitude calculated in the first B o m 
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approximation, be such that the left side of equation 24 can 

be explicitly integrated. 3?or this reason numerical integra-

tions of the left side of equation 24 are of no value. 

The second limitation of the method described in Chapter I 

is that the scattering amplitude calculated in the Born ap-

proximation cannot contain poles of order greater than one. 

To understand this restriction it is necessary to recall the 

method for writing the residue of a pole of order greater than 

one. 

If a function f(z) has a pole of order m at Z=Z , then 

the function 

4>(z)= (z-sffU) t88) 

has a removable singularity at Z . The residue at Z is given 

by (1, p. 121) 

xCvn-i). . 

- - i s # -

where is the (m-i)th derivative of the function given 

in equation 88 evaluated at Z=Z0. Referring to equation 83, 

it is seen that in order to write the residues in equation 24 

it is necessary to take at least one derivative of A(K) for a 

second-order pole. Writing the residues requires a knowledge 

of the explicit form of &(K) before A(K) is actually evaluated. An 

example of a potential which leads to this kind of difficulty is 
- ar 

V(Y) = U 8 e (90) 

Applying equation 17 to this potential yields a scattering 

amplitude which has a second-order pole atK^sfcia, 
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f(K) cx axy 

Thus the method described in Chapter I does not apply to the 

potential in equation 90. 

There is no apparent means of predicting which potentials 

will lead to second-order (or higher) poles without performing 

the integration indicated in equation 17. 

In conclusion, the correction factor succeeds in lowering 

the "Born energy" for the case of the screened Coulomb poten-

tial. The method described in Chapter I should provide a 

solution for A ( K ) for any potential which leads to an analytio 

Integrand in equation 24 and which leads to a Born scattering 

amplitude containing no poles of order greater than one. The 

correction factor found in Chapter I should then lower the 

Born energy for any potential satisfying the preceding con-

ditions. Thus the method should extend the energy range 

where the Born approximation is valid. 
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Fig. 1—Illustration of the scattering problem 
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Pig. 2—Arbitrary contour and poles in the complex plane 
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Pig. 4 Deformed contour and poles for application to 
the screened Coulomb potential. 
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Pig, 5 Electron scattering by hydrogen for incident 
energies of 30 ev (assumed Born energy 100 ev). 
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Pig. 6—Electron scattering by hydrogen for incident 
energies of 100 ev (assumed Born energy 100 ev). 
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Fig. 7—Electron scattering by helium for incident energies 
of 100 ev (assiimed Born energy 110 ev). 
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