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CHAPTER I
AXIONS

Let Rt denote the set of real numbers and N denote the
set of positive integers.,

Axiom 1. (Rl,+,~) is a field ordered by the usual
relation "less than",

Axiom 2, If 8 is a subset of N such that 1 is in 8,
and if k is in 85, then k + 1 is in 8, then 3 = N,

Definition 1.1. If M is a subset of RY, then the
statement that M is bounded above (below) means that there
is a number b, called an upper (lower) bound of M, such that
if a is in M, then a <b (b < a). The statement thaet M is
bounded means that M is bounded above and below.

Axiom 3, If M is a subset of R such that M is bounded
above (below), then there is an upper (lower) bound of M, B,
such that if b is an upper (lower) bound of M, then B < b
(b £B)., B will be called the 1. u. b. (g. 1. b.) of M.

Axiom 4, If ¢ is a number and O < ¢, then there is an
n in N such that 1/n <c.

Axiom 5, If each of a and b is a number and a < b,
then there is a number ¢ such that a < ¢ < b,

Definition 1.2, The statement that [a,b) is an interval

means that each of a and b is a number, a <b, and x belongs
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to [a,b] 4ff x is a number and a £ x < b. The statement that
(a,b) is o segment means that each of a and b is a number,
a < b, and x belongs to (a,b) iff x is a number and a < x < b.

Definition l.3. If each of a and b is a number and

a <b, then (a,b)is the set to which x belongs iff x is a
aumber and a < x <b, [a,b) is the set to which x belongs
iff x is a number and a < x <h,

Definition l.4, If ¢ is a number, then the statement
that U is a neighborhood of ¢ means that there is a positive
number r such that U = (¢ ~ ry¢ + 1),

If A is a finite set and t is a function whose domain
contains A and whose range is a subset of Rl, then

2igeat(a) =2 4 76(ay)
where A = 8y 985900098, o If no eonfl%ct will result, then
> acat(@) will be written 2. t(a).

Definition 1,5, If A =@ and t is a function whose

range i3 a subset of Rl, then Z:aiAt(a) = (),



CHAPTER II
THE CONVERGENCE OF NETS

Directed Sets

Definition 2,1, The statement that the ordered pair
(M,R) is a directed set means that M is a set and R is a
pelation such that (1) if x is in M, then (x,x) is in R,

(2) if (x,y) is in R and (y,z) is in R, then (x,z) is in R,
and (3) if x and y are in M, then there is a 2z in I such
that (x,z) and (y,z) are in R.

If there is a symbol "*" guch that x*y means that (x,y)
is in R, then (M,*) will be equivalent to (M,R).

Obviously (N,<) is a directed set, Other examples will
follow.

Definition 2,2, If[a,b]is an inbterval, then the state-
ment that E is a subdivision of [a,b] means that E is a finite
collection of intervals each of which is a subset of [a,}
such that if each of [py¢) and [ry8] is in E, then [p,q] and [r,s]
have no more than one point in common, and if x is in ENCA
then x is in some element of E.

Definition 2.%, If fa,bl is an interval and E is a sub-
division of [a,b], then the statement that G is a refinement of
E meang that G is a subdivision of [a,b] every element of

which is 2 subset of some element of E.



If [2,4 is an interval, let Ala,b) denotie the set of
ordered pairs to which (E,t) belongs iff E is a subdivision
of [a,b and t is a function whose domain contains E such that
if I is in B, then %(I) is in I. Let R(a,b] denote the set
of ordered pairs to which ((E,t),(G,s)) belongs iff each of
(E,t) and (G,s8) ig in Al,b and G is a refinement of E. Let
(B,t) $ (G,s) denote that ((E,5),(G,s)) is in R(a,b.

Lemms 2.1, If [a,b] is an interval, then (Al,4,$) is
a8 directed set,

Iroof: If (E,t) is in Alz,b, then E is a refinement of
E. Thus (E,t) $ (E,t). Suppose each of (E,t), (E*,t*), and
(E*yt') is in Al,b. If (E,t) $ (E*,t*) and (B*,t*) S (B',t'),
then E* 1s a refinement of E znd E' is s refinement of E*,
Thus if [p,q)is in E', then there is an [r,s] in E* such that
[byq) i5 a subset of [r,sl, Purthermore, there is an fu,v] in E
such that [r,s] is a subset of u,vh It follows that [p,q is a
subset of fu,W, and thus E' is a refinement of E. Therefore
(Ey6) S (E8',%'), Now suppose that each of (E,t) and (G,s)
is in Ala,be Let D be the subdivision of [a,b] such that the
set of end points of the intervals of D is the union of the
set of end points of intervals of E and the set of end
points of the intervals of G. D is & refinement of both E
and G. There is a function ¢ whose domain contains D and
such that (D,c) is in Afa,bl. It follows that (E,t) < (D,c)
and (Gy8) S (Dyc)e Thus (Al,b,S) is a directed set.



5

Definition 2.4, If [a,b) is an interval and E is a sub-
division of [n,h, then|Eis the meximum element of the set
to which x belongs iff for some [p,g]in By, X = q « D

If [a,b)is an interval, then let M[a,b] denote the set
of ordered peirs to which ((E,t),(G,s)) belongs iff esch of
(E,t) and (G,s) is in Ala,bl end[El2|Gl, Let (E,t) S (G,s)
denote that ((E,t),(G,s)) is in M[a,u.

Lemma 2,2, If [a,b)is an interval, then (Ak,H,5) is
a directed set,

Broof: If (E,t) is in Ala,bl, then|E|=[El. Thus
(E t) é’(E,t). Buppose each of (E,t), (E*,t*), and (E',t')
is in Al and (E,8) § (B*,t*) £ (E',%'). Then|E)2|E*|
and [[B*[|2|[E*]ls, It follows that|E[Z|E'|and that (E,5)S(E',tY).
Suppose that each of (E,t) and (G,s) is in Ala,4. ILet D

be the common refinement of E and G as wasg obtalned in Lemma

a“n[lami|](~:v]}2|]:0||.| Furthermore, there is s funection ¢

2.1, |E
vhose domain contains D and such thet (D,c) is in Ala,b
Therefore (E,t) 5 (D,c) and (G,8) % (Dyc)e It follows that
(Afa,bly4) is & directed set.

Nets
Definition 2,5, The statement that the ordered triple
(FyMy*) i5 2 net means that (M,*) is a directed set and F
is a function whose domain contains M.
Definition 2,6, If (¥,M,*) is a net and K is a set,

then the statement that (F,M,*) is in K means that if x is
in M, then F(x) is in K.



Definition 2.7 If (F,M,*) is a net in R', then the
statement that (F,M,*) converges to J means thet J is a num~
ber and if U is a neighborhood of J, then there is an ele-
ment x of M such that if y is in M and x*y, then F(y) is in
Us

Theorem 2.1, If (F,M,*) is a net in R and (F,M,*)
converges to J and to K, then J = K.

Proof: Buppose that J # K. There is an x in M such
that if y is in M and x*y, then|F(y) - J| <(1/3) 10 - Kl
There is a 2z in M such that if w is in M, snd z*w, then
IF(w) - Kl <(1/3) W - K. Furthermore there is an x' in M
such that x*x' and z*x'. Thus [F(x*) - J| < (1/3)|J - Kland
F(x') - K| <(1/3) 9 - K. It follows that

g - Kl

&[0 - F(x')| +IF(x*) - K|

<(2/3)13 - K
This implies that 1 < (2/3), a contradiction. Thus the only
alternative is that J = K.

Definition 2.8, ©Suppose K is a set and R is a relation
such that the union of the domain of R and the range of R
conbaing K. If F is a function whose domain contains K and
whose range is a subset of Rl, then the statement thset F is
non=~decreasing with respect to R on X means that if each of

x and y is in K and (x,y) is in R, then F(x) < F(y). 1If



x*y denotes that (x,y) is in R, then F will be said to be
non-decressing with respect to * on K.

Definition 2.9, If (¥,M,*) is a net in R, then the
statement that (F,M,*) is a non-decreasing net means that F
is non-decresaing with respect to * on M.

Definition 2,10, If M is a set and ¥ is a function
whose domain contains M and whose range is a subset of Rl,
then the statement that F is bounded above (below) on M
means that the set to which y belongs iff for some x in M,
y = F(x), is bounded above (below). The statement that F is
bounded on M means that the above set is bounded.

Theorem 2.2, If (F,M,*) is a non-decreasing net in Rl,
then (F,M,*) converges iff F is bounded above on M.

Proof: Let U be the set to which y belongs iff for
gome x in M, ¥ = F(x), and suppose that P is bounded above
on My Let b denote the 1. u. be. of Us If ¢ is a positive
number, then there is an element y of U such that

b

27

> be=ca
Furthermore, if x' is an element of M such that y = F(x'),
and x'' is an element of M such that x'*x'', then

b ~-c

< F(x')

SF(')

<b.

Thus (¥,M,*) converges to b.
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Conversely, suppose that (F,M,*) converges to a number
J. If P is not bounded above on I, Shen there is an ele~
ment y of U such that J <y. Thus there is a positive
number ¢ such that J + ¢ = y. There is an element x of I
such that y = F(x). There is an element z of ! such that
if w is in M znd z*w, then P(w) is in (J « ¢,J + ¢). There
is an element of M, w', such that x*w' and z*w'. But then

Flw')

<Jd + ¢

= F(x)

S P(u'),

a conbradiction. Thus U is bounded above by J. It follows
that F is bounded above on M.

Consider the proof of Theorem 2.2 I1f there is an
element x of M such that if y is in M, then x*'y, then
"bounded above" can be replaced by "bounded",

Lemma 2,3, If (F,N,<) is a net in R and for each
positive number ¢ there is an n in N such that if k and J
are in Ny n <k, and n < J, then|F(k) - F(j) <c, then
(F,N,S) converges. | '

Proof: There is an element n of N such that if k and
j are in N, n <k, and n < J, then!|F(k) - F(3)| <1l. Thus
if m is in N, and n €< m, then

F(m)| - [F(n)
< IF(m) - F(n)|

< 1.



It follows that [F(m)| €1 +|F(n). Let M be the set such
thet ¥ is in M iff for some i in N, 1 £i < n, x = F(i),
or x = 1 +|F(n)l. Let L denote the maximum element of I,
If i is in N, then |[F(i) <L. Thus F is bounded on M.

Suppose the range of F is finite. There is a y in
the range of ¥ such that if n is in N, then there is an m
in N such that n < m and F(m) = y» If ¢ is a positive
number, then there is a K in N such that if k and J are in
N, K<k, and K £ j, then IF(k) = F(J) <ec. Let K' denote
an element of N such that K < K' and F(K') = y. If i is
in N, and K' < 4, then

IF(K?') - F(i)

=ly - F(1)l

<ce.
Thus (F,N,5) converges to ¥.

Let M be the set to which y belongs iff for some n in
N, ¥y = P(n). Suppose M is infinite. ILet U be the set to
which x belongs iff there is an infinite subset, Ux? of M
guch that if y is in Ux’ then x <y =L is in U, thus U
is not empty. U is bounded above by L. Let p denote the
1, us b. of U, Suppose d is a positive number. If p is
in U, then there is an element of M in (pyp + d), If not,
then there is an infinite subset, U', of M such that if y
is in U', then p + (&/2) < y, & contradiction. If p is not
in U, then there is an element of M in (p ~ d&,p). If not,
then there is no infinite subset, U', of M such that if y
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is in U', then p - (4/2) < y+ Thus p - (4/2) is an upper
bound of U, a contradiction.

Thug if ¢ is a positive number, and if n is in N, then
there is an m in N such that n é-m, F(m) is in the segment
(p = (e/2),p + (e/2)), and F(m) # p. There is an element K
of N such that if J and k ave in ¥, K < §, and K £ k, then
IP(x) - F(3) < (¢/2). There is a K' in N such that K < K*
and

0

<IF(K') - pl

<(e/2).

If 1 is in W and XK' £ 1, then|F(1) -~ ¥(E') < (c/2). Thus
|F(1) - pl

<IP(KY) - pl +|F(1) - F(K*)I

<cC,

It follows that (¥,N,<) converges t0 pe

Theorem 2.3, If (F,M,*) is a net in R, then (F,M,*)
converges iff for each positive number ¢ there is an x in
M such that if y is in M and x*y, then|F(x) -~ F(y)l < c.

Procf: Let £ be a function whose domain is N and
whosse range is a subset of M such that £(1) is an elenment
in M with the property that if y is in M and £(1)*y, then
IF(£(1)) - F(y) <(1/2), and such that if n is in N and
1 <n, then £f(n) is in M, f(n -~ 1)*f(n), and if y is in M
and f£(a)*y, then [F(£(n)) - F(y) < (1/2n). Let (G,N,S)
be the net such that if m is in N, then G(m) = F(£(m)).
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Suppose 4 is a positive number. There is an element K of
N such that (1/K)<de If each of J and k is an element of
Ny K< j, and K < &, then |P(£(X)) - F(£(k))| < (1/2K), and
[F(E(R)) = F(£(3)) < (1/2K). This implies that

[P(£Cx)) = F2(3))]

= [G(k) - G

< (/K)

<d.

Thus (G,N,<) converges. Let J denote the number to which
(G,N,%) converges.

Suppose ¢ is a positive number. There is a K in N
such that (1/K) < ¢ and such that B(£(K)) - Jl <(1/2)ec. 1If
y is in ¥ and £(X)*y, then

IF(£(K)) - F(y)

< (1/2K)

<(1/2)c.

Thus it follows that |F(y) - Jl <c, and that (F,M,*) con-
verges to J.

Conversely, if (F,M,*) converges to J, then there is
an element x of M such that if y is in M and x*y, then
P(y) - 31 < (1/2)c. Thus

F(x) - F(y)l
<IF(x) - Jl+ 0 - F(y)
Lo



CHAPTER IIX
AN EXAMPLE OF A NON~-DECREASING NET

Suppose [a,b] is an intervel. Then X([a,b)) is the set
to which g belongs 1ff g is a function whose domain con=-
tains [a,b) and whose range is a subset of rt,

If £ is in X([a,b]), then let B, denote the function
whose domain contains Ala,b) and whose range is & subset of
Rl such that if (E,t) is in Al,b), then

Bp(E,t)

= @),q,]EE‘f(Q‘) - £(p)I

= Lglag|,

Note that if each of (E,%) and (E,t') is in AR,b , then
Bp(E,$) = Bo(E,t'),

If [a,b is an interval, E is a subdivision of [a,b) , and
each of r and s is a number such that r < 8 and for some Eu,v]
in E, r = u, and for some [p,q]in E, 8 = q, then E(r,s] is
the subset of E which is a subdivision of [r,d .

Theorem 3,1, Iffa,b)is an interval and £ is in X([a,b)),
then (Bf,A[a,b] +$) is a non~decreasing net.

Proof. Suppose each of (E,t) and (E*,t*) is in Af,b)
Suppose (E,t) < (E*,t*), [pyalis in E, and thet F is a re-
finement of E[p,q]. If F has one more element than E[p,q],
then there is an x in(p,q) such that [p,x) and (x,q] are the
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only elements of I’y and
2 plE(s) - £(x)

= |£(x) - £{pN +1£(q) ~ £{x)|

21£(q) - £(pl

= Ly, €(e) - £k

Now, suppose that if F has k more intervals than E(p,q),
then ZElf(S) - £{)| ¢ ZF 1£(s) « £(r)le If G is a refinement
of E[p,q]with k + 1 more intervals than E[p,d then there is
an x and a y in (p,qa) such that [x,q) and(y,x)are in Elp,qs
Let G* = (G —{[y,yﬂ. [x,q]})u{[y.q]}. Thus
Lgle(s) = ()
(Lge'£(8) = £()1) ~1£(Q) ~ 2@ +12(x) - £(3)
+1£(q) - £(x)\
(2gel2(8) = £(2)1) =12(a) = £(y)) +1£(q) = £(z)!
ZG*\f(a) - £{r)|

2 Yppp,gf(s) - £,
It follows from the above argument that ZFlf(ﬂ) - £(r)!

i

v

#

ZE [p,q]“‘ﬂ' Let E*[p,q]be the subset of E* which is a

refinement of E(p,d. ZE,[p’q]mf( 2 Yg i, » thus it
follows that
. 1
Lp,geslapp,gts!
= zE\Af\
& ZEAAf\

= Lip,q)t B-E* [p,q) A T
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Thus B,(E,t) £ Bo(E*,t*), and it follows that (B,,Ala,bl%)
i8 a non~decressing net.

Theorem 3.2, If [a,bl is an interval and £ is in X(a,b],
then (Bp,Ala,bl4) converges 1ff B, is bounded on/la,bl
Furthermore, if B, is bounded, then (Bf.A[a,‘tﬂ,é) converges
to the number J iff J is the l. u. bs of the set b0 which y
belongs iff for some (E,t) inAll,b), y = Bf(E,t)a

Eroofs The first part is a direct application of
Theorem 2.,2. I% was shown in the proof of Theorem 2.2 that
(Bp,Alaybh%) converges to the 1. u. b. of the set to which
¥y belongs iff for some (E,t) inAla,bl y = #(EyE).

Suppose (Bf,A[a,bhi) converges o J. If J' is the
1. u. be of the set to which y belongs iff for some (B,t)
inllabl, v = Bp(E,5), then (By,/\a,b,%) converges to J'
by the above argument, Thus by Theorem 2,1, J = J*,

Definition 3.1, Suppose [a,blis an interval and F is a
function such thet if [r,s] is a subinterval of[a,l, then the
domain of P contains/Alr,sl Then the statement that F is
additive on Ala,bl means that if (E,t) is in/a,h and E is
a refinement of a subdivision G of la,bl then

F(E,) = ) F(Elp,qt)

Theorem %.3. Suppose [a,b) is an interval and ¥ is a
functlon such that if [r,s] is a subinterval of [a,Y, then the
domain of F contains Alr,sh Then if F is additive onAla,H,
lu,vlis a subset of [a,b), and (¥,Alr,b,<) converges, then
(FyAL1,v, 4 converges.,



Proof: Suppose ¢ is a positive number andlu,vlis a
subset of la,bl . There isan(E,¢t) in Ala,b) such that E con-
tains a subset which is a subdivislon of lu,vl and such that
if (G,8) is in Ala,bland (By6) $ (G,8), then\F(E,t) - F(G,s))
< 6o Buppose (E',t') iz in Alu,viand (Etu,vi,t) $ (EY,tY).
Let B* = (E - E[u,v])U E'., Let t* be a function whose do-
main contains E* such that if I is in E', then $*(I) = £*(I),
and if I is in E - Elu,v] y,then t*(I) = t(I). It follows
that (E*,t*) is inA@,bland (E,t) $ (E*,6*). Thus

\F(E,t) - F(E*,5*)|

= F(Ela,dVE,vIVEV,b] ,t) - F(Ela,ulvE'V Elv,b] 46*))

= |F(Elu,v] ,t) -~ F(E*,t)|

< ¢
It follows that (¥, Nu,v],S) converges,

Corollary 3.3, Ifla,blis an interval, £ is in X({a,bl),
(wyvlis a subset of(a,b), and (Bp,Ala,b] ,4) converges, then
(Bf.,A[u +V] %) converges.

Proof: If(r,s8)is a subinterval of la,bl , then the do-
nain of Bf contains Alrys]. Furthermore, it is obvious
that B, is additive on Ala,bl s Thus it follows immediately
from Theorem 3.3 that (B,,Al,v1,%) converges,

Theorem 3.4, Ifa,blis an interval, F iz a function
such that if [ryslis a subinterval ofla,b] then the domain
of F containsA\r,s]l , F is additive onQAa,bl, 8 ¢ u < v < w
$b, (F,Qm,v] 44) converges to J(lu,vl), and (F, v, ,4%)
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converges to J(Tvywl ), then (F,Mu.wl ,5) converges to
T(mevl) + J(vgwids

Exgof: Ifaltu<v < w <l band ¢ is a positive
aumber, then there is nan (H,6) in A, such that if (E,%?')
13 in Au,vl , asd (5,8) & (E%,6%), then\J(luyzl) « F(E',t1)!
< (e/2), Also thare is an (G,8) inlv,wl such that if (G',.8*)
ig InN,wland (G, 8) S (GV,3"), than|J{(lvewl) ~ F{G?,5"))
{{ef2)s If B* » BEUG and 1f t* is a funcetion whose domain
sconteins ©* such that if I is in E, then ¢*(I) = $(X), and
if I is in G, then +*(I) = 3(1l), then (E*,t*) ia in Au,w .
If (H,h) is in Duyd and (5*,%%) 5 (H,h), then

W) + J(Iv,wl) - P(Hh)|

el J{la,v1) + J{Wwywl) = FP(Hu,vIVHr W Jh)l

ClI(tuyvl ) = PO,V 0 +1J3(Tv,ui) - F(HIvwl ,h)\ ‘

But (%,6) 5 (Hlu,vl,h) and (G.3) S (Hlvywd,h), thus
IT(Luyvi) + J(Lvyml) - FIH,R) ¢ ¢ 1% follows that
(FyNuyvl 45) converges Yo J(Iu,vl) + J(Ivywl).

Corollary 3,4, Ifla,blis o inbevval, I is a function
such that 1f(r.8] is a subintervol of la,b)y then the domain
of I vontains Alr,g, F i8 additive on Ala,bly E i a sud-
divisior of In,bl such thot 4 p,q is in E, then (F, Alp,gys)
converges to J(ip,ql ), then (¥, Ala,bl, ) converges to
2 (Lpaal )s

Jroef: Let o be the set $0 which n belongs 1ff n ie

in ¥ pond A7 G is o subdivision of (g ,bl containing n elements
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such that if[p,qlis in G, then (¥,Alp,qs) converges to
J(Ipsal), then (¥,Aa,bls) converges o ZG J(lp,yal ).

Certainly 1 is in 8. Suppose G is a subdivision of
l2,bl containing only two elements, (a,x] and [x,b], such thet
(F,Al,xh5) converges to J([(a,x)) and (F,Qfx,4,5) converges
to J((x,b] )e It follows from Theorem 3.4 that (¥, Ma,b),%)
converges to J(la,x1) + J({x,bl )s Thus 2 is in S,

Suppose k is in £ and that G is a subdivision ofla,b]
containing k + 1 elements such that if (p,qlis in G, then
(P, A\p,qys) converges to J(lp,ql )s There are two numbers
x and y, each in (z,bl, such that each of {a,x] &nd (x,y] is in
G. (F,Qa,%,5) converges to J([a,x]) and (F,Nx,5,5) con=-
verges to J(ix,yl), thus by Theorem 3.4, (¥, lg,y,5) con~
verges to J(La,x1) + J((x,y1)e Tet J(la,y1) = J(la,x1)
4+ J(IxX,71)e If G* = (G - {{&,x] Lx,y]})u{{a,;yj}, then G* is
a subdivision of [a,b] conbaining k elements such thet 1£(p,q)
is in G6*, then (F,Ap,qd,5) converges to J(ip,ql). Thus
(FyAlzyH,5) converges to ZG*J([p,q_]}. But

25+ 7(Tpyal)

= (ZQJ(EP,Q{])) - J(@,x]) ~ J(x,71) + J(la,y1)

= ZG J(lpsal).
Therefore (¥,Alz,bl,%) converges bo ZG J({tpygl)s Thus k + 1
is in 8. It follows thot 8 = N and that the theorem is true.

Theorem 5.5, Ifla,blis an interval and £ is in
X([a,bl), then (Bf,A[a,b].é) converges iff there are functions
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£y and £, each in X(({a,b)) such that f = £, - £, and each
of £y and f, is non~decreasing with respect to < onfla,b.

Proof: BSuppose there are functions fy and £, in X(La,bl)
such that f = £, - f, and such that each of fl end f, is
non-decreasing with respect to < onfa,b.

If i is 1 or 2 and (E,t) is in{a,bl, then for each
(pyaiin E, fi(q) - fi(p) 2 O, Therefore

0
£ Bfi(E,‘b)
= L g\af,l

- ZE ALy

8

fi(b) - fi(ﬂ)-

Thus

B,(E,t)

Y glAL

2gi3(a) = £5(@) = (£3() = £5(p))!

< Y plf(a) = £ e L pig,(a) - £,5(p))

E&fl(E,t) + Bfa(E,t)

£,(0) - £,(a) + £5(b) ~ £5(a).

Thus B, is bounded on/Np,bl and it follows from Theorem 3.2

8

B

]

that (B, Me,bly$) converges.,

If (BpyMa,bl,3) converges, then for each subinterval
Ir,sl of (a4, (Bf,Afr.s],ﬁ) converges. Thus if each of x
and y is inla,bl and x < y, then let J(Ix,y]l) denote the
number to which (Bf,A[x,:;ﬂ,é) converges, Let JTx,x1) = 0.
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If z is inla,b, let fl(z) = (1/2)3(la,z1) + (1/2)8(z).
If a < x <y < b, then
£,(y) = £,(x)
(1/2)(3(Ta,zl) = J(La,x3)) + (1/2)(£(y) -~ £(x))

= (1/2)(I(uxy71)) + (1/2)(£(y) - £(x)).
If £(y) 2 £(x), then £;(y) - £;(x) 2 0. If £(y) < £(x),
then

£,G) - £,(x)
= (1/2)3([x,51) = (1/2)2(y) = £(x)|
2 0.

#

It follows that fl is non~decreasing with respect to { on
fa,bl
If z is infa,bl, let 2'2(2) = (1/2)3(1a,z]) « (1/2)£(z).
If a £ x ¢y £b, then
£5(y) = £,5(x)
= (1/2)(J(La,y1) - J(Ta,x1)) + (L/2)(£(x) ~ £(y))
= (1/2)3(tx 1) + (L/2)(2(x) - £(3)).
Ir £(x) 2 £(y), then £,(y) - £,(x) 2 0. If £(x)<¢ £(y),
then
£,(y) - £5(x)
= (1/2)3(tx,y1) - (1/2)e(x) - £(y)
0.

1\

It follows that :f2 is non~decreasing with respect to < on

Definition 3.2. Supposef{a,blis an interval and f is
in X([a,bl). If x is in (a,bland (£, @,x),4) converges,
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then let f({x~) denote the number to which (f,la,b),%) con-
verges., If x is inf{a,b) and (f,(x,Y,2) converges, then let
£(x+) denote the number to which (f,(x,d,2) converges.
Purthermore, let f{a=) = f£(a) and £(b+) = £(b).

The statement that £ is in Xi(fa,bj) means that if x
is infla,b), then both f(x+) and f£(x~-) exist.

Lemma 3,1. Ifla,blis an interval, £ is in X([a,bl),
and f is non-decreasing with respect to { onia,bl, then £ is
in Xl([a,bl).

Proof: Suppose a ¢ x S b. Let M be the set such that
z is in M iff for some x' such that a2 & x' < x, z = £(x'),
M is bounded above by £(x). Let m denote the 1. u. b. of M.

Buppoze ¢ is a positive number, If m is in M, then
there 1s a y such that af y< xand m = £{y). If y < w < x,
then £(y) = f{w) = ms« It follows that m - L£(w) = 0 < ¢.
Thus f(x-) exists and equals m. Suppose m ig not in M. If
there is no y such that a £ y < x and m -« £(y) < ¢, then
m~ ¢ 13 an upper bound of M. Furthermore, m - ¢ < m, a
contradiction, Thus there is a y such that a £ y < x and
0Sm=~f(y)< 6s If as y< w< x, then £(y) ¢ £(w), and
then -f(w) ¢ ~-f(y). It follows that m - £(w) £ m = £(y) < c.
Thus £(x-) exists and is m. A similar srgument will show
that f£(x+) exists if a< x < b, 4lso f(a=) = f£(a) and
£(b+) = £(b). Thus f iz in X,(Ca,bl).
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Theorem 2,6, If[2,b i3 an interval and f is in
X([a,b] ), 2nd (Bf,Zk@qué) converges, then £ is in Xl(ta,b]).
Proof: The proof follows immediately from the results

of Theorem 3.5 and lLemma 5.1,



CHAPTER IV
A COMP4LRISCH OF FOUR SIMILAR NETS

Suppose that each of £ and g is in X(Ta,bl ). Rf,g will
denote the Ffunction whose domain contains NNa,bl and whose
range is a subset of RY such that if (E,%) is inla,b), then
Rp o(Bet) = 2y £((4a1))(8(a) - &(p))-

The proper choice of g will insure the convergence of
the net (Rf,g,ll@qbké). For example, if [a,b] is an interval,
£ is in ¥((s,bl ), end g i3 an element of X(la,bl) such that
if x is in[a,bl, then g(x) = 4, where d is in Rl, then
Y g £(5(I)) Ag = O for all (E,t) inla,bl Thus if ¢ is &
positive number, E uﬁa,ﬁﬁ, t(la,bl) = a, (E',t) is in
Ala,bl, and (E,t) £ (E',t'), ‘bhenfﬁf’g(E',t') - 0\ £ e,

Thus (R, _,Ae,bl$) couverges to O.

T

Exgéilg 4,1, Suppose f is an element of X([0,2] ) such
that if x is inl0,(1/2)), then f(x) = 1, and if x is in
(1/2),2], then £(x) = 2; snd suppose g is in X({0,2]) such
that if x is 1nl0,1), then g(x) = O, snd if x is in[1,2],
then g(x) = 1. Now suppose that (E,t) is in 2A0,2] such
that E ={10,(1/2)], (1/2)1, [1,(3/2)], (3/2),2}and 12 0p,q]
is in E, then t(lp,ql) = p. Thus

Rf’g(E,t)
= Lgt(6(I))Ag

22
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= £(5¢[(1/2),1 D (e(1) - g(1/2))

= 2.

If (B',%*) is in 20,2 and (E,$) 5 (B',t'), then there is
alp,glin BE' such that (1/2) 4 p < 1 & q. Thus
Rf'g(E',t')

= Yge £GE(INAE

= £(t'{p,q1))(g(q) - g(p))

= 2,

Thus if ¢ is a positive number, then
0

=1Rp {Zyt) = Ry (E',t0)}

< co
It follows from Theorem 2.3 that (Rf'g,éﬂg,ﬁké) converges.,

Definition 4.1, If({a,blis an interval and f is in
X(ta,bl )4 then Ce(la,bl) is the set to which x belongs iff
x is inla,bl, £f(x+) exists, f£(x~) exiots, and each of f(x+)
and f(x-) is equal to £(x). Denotela,bl - Cf([a,bl) by
Dp(la,bl).

Theorem 4,1, Iffa,blis an interval, each of f and g
is in X({a,bl), and (Rf'g,éﬂa,ﬁhé) converges, then D,(T(a,b] )
and Dg([a,b]) have no point in common.

Proof: Suppose x is in Dg(ta,bj). If g(x+) exists,
X £ b, and g(x+) = g(x), then there is a positive number c¢'
such that if d is a positive number, then there is a y in
(x = dyx)nla,b] such that lg(y) - g(x)| > e'. Let T, be the

set of all such y. Furthermore there is a positive number
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d' such that if z is in (x,x + 4'), thenig(z) ~ g(x)<e'/2.
Thus if y is in {fd., then

le(y) - gzl
2 18Cy) - g(x)| - lg(x) - gz
> G'/eo

If ¢ is & positive number, then there is an (E,t) in Ala,b
such that (1) iflp,qlis in E, then p is not x and g is not
xy (2) ifrys8lis in E and x is inlr,s], then s - r £ 4' and
r is in Tg,, and (3) if (E',%') is in OMa,b] and (E,t) & (E',41),
then]Rf'g(E,t) - Rf’g(E‘,t')H ec'/4, Suppose (E,tl) is in
Oaybl such that 4f I is in E - {ir,d), then %,(I) = t(I), and
tl(tr,s}) = X, If yis in (r,s), then there is an (E,tg)
in Ala,b) such that if I is in E - {ir,8)}, 65(I) = £(I), and
t(iry8l) = yo  (Byt) & (Byty) end (E,8) & (E,t,), thus it
follows thatlﬂf’g(ﬁ,t) - Rf,g(E’tl)\ L ee'/4 and that
]Rf’g(E,t) - Rf,g(E'ta)\ {ce'/4. Thus
lRf’g(Egtl) - Rf,g(E.‘tg)(
= [(£(x) ~ £(y))(g(s8) ~ g(r))l
= |2(x) - £(y)lig(s) -~ g(xr)
{ ecet/2,
But
0
{ et/2
< le(s) =~ glrl,
therefore
0
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£1/\g(8) - g(r)\

L 2fet
Thus |

{£(x) - £(yNigls) - glr)|)/1g(s) ~ glr)l

w\f(x) - £(y)!

< {ee'/2)(2/c")

= C.

It follows Shat x iz not in Ef(m.b]).

If g(x=) exists, x ¥ a, and g(x~) = z(x), thea a sim~
ilar argument will show that x is not in D,(Ta,bl).

If neither of the above cases ls true and x is in
(a,b), then there is a positive aumber ¢! such that if d
is a positive number, then there is a y in (x - d,x)NTa,b]
and a z in (xyx + d)N{a,bl such that |g(y) - glx)\ > ¢! and
lg(z) -~ g(x) > e'. ILet £y denots the set of all such y ,
and ﬁa denote the set of gll suach z« If ¢ is a positive
number, then bhere is an (E,t) in Ala,bl such that (1) for
some (pydldn E, x is p or x is g, (2) for some positive num-
ber ¢ if [ryx}is in E, thern r is in Tqe and if (x8l is in E,
then s is in 3, and (3) if (E',%') is in Ala,b) and if
(%) 5 (5'48'), thenlRy (5,8) - Bp (E',6')|Lce/2, If
w is in (r,x], then there is an (E,%;) in Als,b] such thet
if I 48 in £ - {Iryxdfy then $,(I) = t(I), and &,((r,x1) = w.
There 1s also an (E,t,) in Ola,b] such that if I 4s 4in
E = {ryx, then 6,(I) = £(I) and t,(Tr,x]) = x. Thus 1%
follows that | E:f’g(;%?,t) - Eif'g(ﬁ,tl)\ 4L ee'/2 and that
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1Be g(Bs8) = By (Byt5)\ ( cc'/2. This implies that
lRf’g(E,tg) - Rf’g(E.tl)\
=12(x) - £(willg(x) - g(r)|
< eect.
But
0
{ e!
<lglx) - glxdl,
thus
Ui£(x) - £Gdig(x) - g2l )/ 1g(x) - gle)l
=|£(x) - £(w)\
< ce'/e!
= Co
If w is inlx,s) a similar argument will show that x is notk
in Df([a,ﬁl)¢ 4Also a similar argument will hold for x = a
and x = b,
Thus Df(ta,b]) and Dg([a.b)) have no point in common.
Exagnmple 4,2, Let £ be the element of X(10,2]1) such
that if x is inl0,1), then £(x) = 1, and if x ia int1,2],
then £(x) = 2, Let g be the element of Z(L0,21) sueh that
if x is in{0,1], g(x) = O, and if x is in (1,21, then g(x) = 1.
It follows from Theorem 4,1 that (Rf'g.éﬂﬁ,d,é) does not
converge.
If {a,bl is an interval and each of f and g is in X([a,bl),
then it is obvious that Re o 1s additive onlVa,u),
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Example 4.3, Let each of f and g be defined as in
Example 4.2, Consider the nﬁt(ﬁf’gglﬂb.éLS). If (E,t) is
in 20,1, then By (E,t) = L £(4(I))Ag = O, thus
(Rf'g,éﬂb,ﬂ,é? converges to 0. If (E,t) is in A1,2], then
Rp g (Est) = Ly £(6(I))Ag = 2. Thus (Rp +00,1,4) con-
verges to 2. It follows from Theorem 3.3 that (Rf'g,lﬂb.aké)
converges to 2.

Theorem 4,2, If(a,blis an interval, each of f and g
is in X(1a,b1), and (Rp _,Ala,bh4) converges to J, then
(Rr‘g.lﬁkwﬁké) converges to J.

Eroofs If U is a neighborhood of J, then there is an
(Eyt) in/lNa,b) such that if (E',t') i1s in Ala,b and
(E,6) § (E',t'), then Rf’g(}éi'.t') is in U, If G is a sub-
division of [a,b] and G' is a refinement of G, then IG* <G|,
Thus if (G,8) is in Alg,bl and (G',s') is in Oa,b) such that
(Gys) 5 (G',8'), then (G,s) $ (G',8'). It follows that if
(E*yt*) is in Aa,b such that (E,t) & (E*,t*), then
(E,t) £ (E*,%*) and thus Rf’g(E*,t*) is in U, Thus
(Rf’g,lﬁﬂ,ﬁké) converges to J.

The results of Example 4.2 and Example 4.3 show that
the converse of Theorem 4.2 is not true.

In Theorem 4.2, Rf‘g
function whose domain contains Ala,bl and whose range is a
subset of R*.

Example 4,4, Let £ be the element of X([0,21) such
that if x is in (0,1}, then £(x) = 1, and if x is in (1,2,

could have been replaced with any
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then £(x)= 2. Let g be the element of x(10,2) sueh that
if % is in[0,1, g(x) = O, and if x is in (1,3, then g(x) = 1.
Suppose there is an (E,t) in AD,2] sueh that if (E',t')
is in 0,2 and (E,&) £ (E',t'), then
\Rfig('ﬁ};‘i;) - Rf’g(E’,‘b')\
£ /2
There is an (G,s) in 2N0O,2] such that for somelp,glin G, p
iz 1, such that if 1,q}is in G, then 8({1,ql) = 1, and such
that (E,t) & (G,8). Also there is an (G ,81) in2D,2| such
that for some Ip,qlin G', p is 1, such that irfl,qlis in G',
then s'(Ql,ql) = q, and such that (E,t) { (Gtys')., It fol-
lows that
Ry, o (Bst) = By o(G,8))
<1/2
and
lRf.g(E,t) - Rf'g(G'.s')\
< 1/2.
Thus
1l
P Rp o(648) = Rp (G'y8 ')
=11 - 2]
- 1,
a contradiction., Thus it follows that (Rf‘ S,13-[(),2],6) does
not converge.
Suppose [a,b] is an interval, and each of f and g is in

X(Ta,bl )« Sf'g will denote the function whose domain
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contains QNa,bl and whose range is a subset of R such that
if (E,%) is in Aa,bl, then
Sp,g(Est)

= L p(1/2)(8(Q) + £(p))(e(a) - g(@))

= 2 (1/2)(2(a) + £(p))ag.

Example 4,5, Let f and g be the functions of Example
4.4, If (E,t) is in AD,2), then

Sp g(Est)

= 2 (1/2)(£(a) + £2(p))Ag

= (1/2)(1+2)(1~0)

= 3/2.

It follows that (Sf’g,éﬂbgéké) converges to 3/2.

Ifla,blis an interval and each of £ and g is in
X(la,bl), then the convergence of (Sf’g,lﬂa,ﬂ,§) does not
necessarily imply that (Hf'g,lﬁh,bLﬁ) converges as is shown
by Example 4.4 and Example 4.5. Likewise, the convergence
of (Rf’g,ZMﬁ.ﬁLS) does not imply that (ﬁf¥g,éﬂh,5ké) con=
verges. Consider the following example.

Exanple 4,6, Let each of f and g be defined as in
Example 4.2, It was shown in Example 4.3 that (Rf,g,lﬂb,éké)
converges. Now suppose there is an (E,t) in 2NO,2] such
that if (E',t') is in A2l and (E,5) § (E',4'), then

IS g(Est) = Sf’g(E’,t’)\

{ 1/4,

There are elements (G,s) and (G',s') of 20,2] such thatl,q]

is in G for some g, 1 < q £ 2, such that for some(r,slin
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G' r < 1 < 8, and such that (E,t)$ (G,8) and (E,t) 4 (G",8').
Thus
lsf’g((},s) - Sf,g((‘z*,s’)\
= 1/2
$18p g(Eat) = 8p (Gy8)| +18, (G'48') = By  (E,8))
< 1/2,
a contradiction. I% follows that (:Bf,g.A[O.Q].é) does not
converge.
But it is true that the convergence of (Rf' g,A[a,b], )
implies that (Sf’g,ll[a,‘b],&) converges.
Theorem 4,3, Ifla,bl is an interval and each of f and
g is in X(la,b) ), and (Rf*g.AYa.b],é) converges to J, then
(Sf’g,ﬂ[a,b],é) converges o J.
Procf: Suppose ¢ is a positive number. There is an
(E,t) in Ola,Y such that if (E',t*) is in Aa,b and
(Eyt) £ (E',6'), then !Rf‘g(E',t’) - Jl<ecs Thus if (G,m)
is in O@,blsuch that (E,t) 45 (Gym), and for eachip,qlin
@, s(lp,q31) = p and s'(tp,q1) = q, then each of (G,s) and
(Gys') is in QNa,bl, (E,t) § (G,5) and (E,t) § (G,s').
Thus
\Rf’g((%,s_) + Rf,g(ﬁ,s') - 27|
< \Rf’g(G,s) - J\+lﬁf’g(a,s') - J)
{ 2¢.
It follows that
lﬁf'g({},m) - J
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w\(l/a){if'%(G.B) + Rf’g(G.S')) ~ J\

{ e,
Thus (Sf’g,ika{m,é) converges to J.

Fxomple 4.7. Lot each of £ and g be defined as in
Exemple 444. It waz showr in Exemple 4.5 that (Sf’ﬁ,éﬁﬂgﬁ,Q)
converges, However, Df(lo,al)r\Bg(EO,E]) is not empty;

thus by Theorem 4.1, (R, Ao,d,4) does not converge.

’

It follows that the convéise of Theorem 4.3 is not true.
Suppose [a,% is an interval and each of f and g is in

X(ta,b1 ). Consider the net (Sf’g,ZXa,ELS). The conver-
gence of any of the nets discussed in this chapter implies
the convergence of this net. Thus for each ordered pair
of functions (f,g) described in Example 4.1 through Example
4,7, (Sf’g,éﬂb,ﬁ,é) converges. These statements will be
verified in Chapter V.,

Theorem 4,4, Ifla,b is an interval and each of £ and

g is in X(la,bl ), and any one of the following is true,
(1) (Rf'g,éﬂa,ﬁké) converges to the number J,

(2> (Sf’gi
(3) (Rf’g,éﬂa;mgé) converges to the number J,

Daybly§) converges to the number J,

then (ﬂf’g,lﬁﬂ‘ﬁéD converges to the number J.

Froof: The proof of part (2) is similar to the proof
of Theorem 4.2. Part (1) follows from part (2), and the
proof of part (3) is similar to the proof of Theorem 4.3.



CHAFLER ¥V

SOME THEOREMS CONCERNING THE CONVERGENCE
oF (Sf,g WAz, <)

liscellanecus Convergence Theorems

Suppoce [a,b) is an interval. L(a,b] will denote a set
of ordered pairs to which (f,g) belongs iff each of f and
g iz a function whouse domzin conteins [a,bl and whose range
is 2 subset of R and (Sf,g,A[a,tﬂ,é) converges,

Theorem 5.1, Ifla,blis an interval and (f,g) is
in Lla,bly, then (g,f) is in Lla,th Furthermore, if
(Sf’g.&[a,‘b],‘;) converges to J, then (Sg’f,dté,b],é) con~
verges to f£(b)g(b) -~ £f(a)g(a) - J.

Proof: Suppose (k,t) is inAla,d.
285 ,(L4%)
ZE(f(q) + £(p))E(a) - &(p))
- ZE tlQelp) + ZE £(a)glq) - ZE £(p)g(p)
+ ) g 2(0)s(a)
-2 2(a)g(®) + Q5 £(0)e(e)) - £(a)gla) + £(b)g(b)
- (Zﬁf(q}g(q)} - £(a)g(a) + £(b)g(b) + ZE £(ple(q)
2£(0)g(b) - 22(adg(a) ~ 2 5 g(p) €(a) - £(p))
- )5 el@) @(a) ~ 2(p))
2£(0)g(e) - 2f(z)s(a) - 2 plgla) + s(@)(ECQ) = £(p))
2f(b)g(b) - 2£(a)g(a) - ;}.’Sg’f(;ﬁ‘,t).
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