

SOME PROPERTTES OF RINGS AND IDEALS

THESIS

Presented to the Graduate Council of the North Texas State University in Partial. Fulfillment of the Requirement:s

For the Degree of

MASTER OF SCIENCE

By

Jere B. Higgins, B. A.

Denton, Texas
August, 1964

TABLE OF CONTENTS
Chapter Page
I. RINGS 1
II. IDEAZS 23
III. NOETHERIAN RINGS 37
APPENDIX 61
BIBLIOGRAPHY 64

GHAPTER I

RINGS

The purpose of this paper will be to investigate certain properties of algebraic systems known as rings. The proofs, in most cases, are based on definitions and theorems in this paper. A basic knowledge of the algebra of sets is assumed.

Definition 1-1. A set R will be called a ring if R satisfies the following properties:

PI. R is closed with respect to the binaxy operations (4) and *. These operations will be called "addition" and "multiplication."

PII. If a, b, c $\in R$, then the following properties are true:
(1) $a \oplus(b \oplus c)=(a \oplus b) \oplus c$
(2) $a *(b * c)=(a * b) * c$
(3) a $a b=b \oplus a$
(4) $a *(b \oplus c)=a * b \oplus a * c$
(5) $(b \oplus c) * a=b * a \oplus c * a$

PIII. There exists an element $0 \in R$ such that $0 \in a=a$ for avery a $\in R$.

PIV. Given $a \in R$, there is an $x \in R$ such that $x \oplus a=0$. Note that the $o \in R$ is not necessarily the real number zero.

The following systems are examples of rings.
Example 1-1. Let V denote the set consisting of the totality of ordered n-tuples of real numbers. Let

$$
\begin{aligned}
& \alpha=\left\{\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}\right\} \text { and } B=\left\{B_{1}, B_{2}, \ldots B_{n}\right\} \text { be elements of } V \text {. } \\
& \alpha \notin B=\left\{\alpha_{1}+B_{1}, \alpha_{2}+B_{2} * \ldots \alpha_{n}+B_{n}\right\} \\
& \alpha *_{B}=\left\{\alpha_{1}^{B_{1}}, \alpha_{2}^{B_{2}}, \ldots \alpha_{n} B_{n}\right\}
\end{aligned}
$$

V is closed under the operations of \oplus and $*$ since the real number system is closed with respect to addition and multiplication. Therefore, PI is satisfied. Due to the corresponding properties of real numbers, PII is satisfied. For PIII Let $0=\left\{0_{1}, 0_{2}, \ldots O_{n}\right\}$ where o_{1} is the real number zero. Therefore $0 \oplus \alpha=\alpha$. In order to matisfy PIV, let $x=\left\{-\alpha_{1},-\alpha_{2}, \ldots-\alpha_{n}\right\}$.
Then x ($\oplus \alpha=\left\{\alpha_{1}-\alpha_{1}, \alpha_{2}-\alpha_{2}, \ldots \alpha_{n}-\alpha_{n}\right\}=\left\{o_{1}, o_{2} \ldots\right\}=0$. Therefore V is a ring with respect to \oplus and *.

Example 1-2. Suppose C is the class of all functions $f(x)$ of the real variable x defined and continuous on the closed interval $[0,1]$. If $f, g \in C, \operatorname{let}(f \oplus g)(x)=f(x)+g(x)$ and $(f \star g)(x)=f(x), g(x)$. Since $f(x)$ and $g(x)$ are defined and continuous on $[0,1], f(x)+g(x)$ and $f(x) \cdot g(x)$ are also defined and continuous on $[0,1]$. Therefore, $(f \oplus g)(x)$ and ($f * g$) (x) $\in C$ and $P I$ is satisfied. Again PII is satisfied due to the corresponding properties of real numbers.

Let $e(x) \equiv 0$ for $x \in[0,1]$. Since $e(x)$ is defined and continuous on $[0,1], e(x) \in C$.

$$
\begin{aligned}
(e \oplus f)(x) & =e(x)+f(x) \\
& =0+f(x) \\
& =f(x) .
\end{aligned}
$$

Hence PIII is satisfied. Finally if $f(x) \in C,-f(x)$ also belongs to C and PIV follows since $(f \oplus-f)(x)=f(x)-f(x)=0$. Therefore C is a ring.

Example 1-3. Let F denote the set of rational numbers and let x and y be indeterminants. Then the set of polynomials in x and y with coefficients in F is a ring. It is from this ring that an important example will be constructed in Chapter III.

Some basic properties of a ring are stated in the following four lemans.

Lemma 1-1. Given $a \in R$, the element $x \in R$ such that x ($A=0$ is unique and will be denoted by the ymbol -a. Proof: Let y be any element of R such that $y(4)=0$.

$$
\begin{aligned}
& x \oplus a=y \oplus a \\
& (x \oplus a) \oplus x=(y \oplus a) \oplus x \\
& x \oplus(a \oplus x)=y \oplus(a \oplus x) \\
& x \oplus 0=y \oplus 0 \\
& x=y .
\end{aligned}
$$

Proof: Lat $a, b \in$ 名. Since $b=b \oplus 0$, $b=(b \oplus 0) * a=$

$$
\begin{aligned}
&-b^{*} a \oplus b^{*} a-b^{*} a \oplus\left(b^{*} a \oplus o^{*} a\right) \\
& 0=\left(-b^{*} \oplus b^{*} a\right) \oplus o^{*} a \\
& 0=0 \oplus o^{*} a \\
& 0=o^{*} a
\end{aligned}
$$

In a filar tanner it can be shown that $a * 0=0$.
Leman 2-S. Suppose in is ring. If 8 is the "gum" of any n element of R, any insertion of parentheses will yield the ama "sum" 8 。

Proof by induction: For $n=1$ the result is trivial. For $n=3\left(a_{1} \oplus a_{2}\right) \oplus a_{3}=a_{1} \oplus\left(a_{2} \oplus a_{3}\right)=$ $a_{2} \oplus a_{2} \oplus a_{3}$ by wII. $\sum_{i} a_{i}$ independent oft the manner in which parentheses axe Inserted.

$$
\sum_{1}^{k} a_{1}=a_{1} \oplus \sum_{2}^{k} a_{1}
$$

$$
\begin{aligned}
\sum_{i}^{k} \oplus a_{k+1} & =a_{2} \oplus \sum_{2}^{k} a_{i} \oplus a_{k+1} \\
& =a_{1} \oplus\left(\sum_{2}^{k} a_{i} \oplus a_{i k+1}\right) \\
& =\left(a_{1} \oplus \sum_{2}^{k} a_{i}\right) \oplus a_{k+1} \\
& =\sum_{1}^{k+1} a_{i}
\end{aligned}
$$

Since inside each parenthesis there are exactiy in elements, parentheses may be inserted in any way desired about these $\%$ ements. Therefore $\sum_{1} a_{i}$ is independent of parenthese; hence this is true E or any positive integer n. The proof for * is similar.

Lerma 1 -4. If $a, c \in \mathbb{R}$. then $-(a * c)=-a^{*} c=a^{*}(-c)$.
Proof: If $c \in R$, then $c \in-c=0$.
But $a *(c \oplus-c)=a * c \oplus a *(-c)=0$.
By leman 1-1, ($a^{*} c$) is unique. There:ore, $a *(-c)=-(a * c)$. Similarly it can be shown that $-(a * 0)=-a * c$.

In certain algebraic systems some of the properties of a ring may be replaced with equivalent properties. It will be assumed that these algebraic systems are non-empty.

Theorem 1-1. Suppose K is an algebraic system with ali the properties of a ring except for PIII and PIV. R is a ring if and only if for $a, b \in R$ the equation $a \oplus x=b$ has a solution in R.

Proof: Suppose for $a, b \in \mathbb{R}$ the equation $a \oplus x=b$ has a solution in R. In particular, there is $x \in R$ such that $a \oplus x=a$ and there is a $y \in R$ such that $b \oplus y=b$. Further more there are elements $y^{\prime}, x^{\prime} \in R$ such that $a \oplus y^{\prime}=y$ and $b \oplus x^{\prime}=x . \quad$ But $y=a \oplus y^{\prime}=a \oplus x \oplus y^{\prime}=a \oplus y^{\prime} \oplus x=y \oplus x$ and $\mathrm{x}=\mathrm{b} \oplus \mathrm{x}^{\prime}=\mathrm{b} \oplus \mathrm{y} \oplus \mathrm{x}^{\prime}=\mathrm{b} \oplus \mathrm{x}^{\prime} \oplus \mathrm{y}=\mathrm{y} \oplus \oplus \mathrm{y}=\mathrm{y} \oplus \mathrm{x}$. Therefore, $x=y$ and the existence of a zero is established.
 This fact establishes PIV. Conversely, if in ring for $a, b \in \mathbb{R}$ the equation $a \oplus x$ b has a solution in x . Namely $x=\mathbf{b}$ (1) -

Theorem 2-2. Let R be an algebraic system which, except

Proof: Lat $a, b \in R$. Then $A^{(1) b}$ and $b \in a \in R$. Let c denote any non-zero element of f. $\mathrm{d} *(\mathrm{a} \oplus \mathrm{b})$ and $-a^{*}(b \oplus a) \in \mathbb{R}$.

$$
\begin{gathered}
c^{*}(a \oplus b)=c^{*} a \oplus c^{*} b \\
-a^{*}(b \oplus a)=-c^{*} b \oplus-a^{*} a
\end{gathered}
$$

$$
\begin{aligned}
{[a *(a \oplus b)] \oplus\left[-a^{*}(b \oplus a)\right] } & =\left[\left(c^{*} a\right) \oplus\left(a^{*} b\right)\right] \oplus\left[\left(-a^{*} b\right) \oplus\left(-a^{*} a\right)\right] \\
& =\left[\left(c^{*} a\right) \oplus\left(-a^{*} a\right)\right] \oplus\left[\left(a^{*} b\right) \oplus\left(-a^{*} b\right)\right] \\
& =0 \oplus 0 \\
& =0
\end{aligned}
$$

Therefore $c^{*}(a \oplus b)=a *(b \oplus 4) ;$ hence $(4) b=b \oplus$ and R is a ring.

Thaprea 1-3. Suppose n and S are two distinct singe. Lat $\mathrm{a} \times 5$ denote the set of all ordered pairs: (a, b) where $a \in \mathrm{~g}$ and $\mathrm{b} \in \mathrm{S}$. Then $\mathrm{r} \times \mathrm{S}$ is axing if "addition" and "multiplication" axe defined in the Following manner:

$$
\begin{aligned}
& (a, b) \oplus(a, d){ }^{\left(a \oplus_{r} c, b()_{a} d\right)} \\
& (a, b) *(c, c) \quad\left(a c^{c} c, b+d\right)
\end{aligned}
$$

Proof: Note that PI is satisfied since $a \oplus_{r} 0, a_{r}{ }_{r} c \in R$ and $b \oplus_{s} d, b{ }_{s} d \in S$ because both R and S are ringa. Let (a, b), $(c, d),(h, f) \in R \times S$. Then $[(a, b) \oplus(c, d)] \oplus(h, f)=$ $\left[\left(a \oplus_{r} c, b \oplus_{3} d\right)\right] \oplus(h, f)=\left(a \oplus_{r} c \oplus_{r} h, b \oplus_{s} d \oplus \oplus_{s}\right)$ and $(a, b) \oplus[(c, d) \oplus(h, f)]=(a, b) \oplus\left[\left(c \oplus_{r} h, d \oplus_{s} f\right)\right]=$ $\left(a \oplus_{r} c \oplus_{r} h, b \oplus_{s} d \oplus_{s} f\right)$.

The remaining properties of PII can be shown in a similar manner. Since both R and S are rings they each contain a zero. Denote these elements as 0 and σ. If (a, b) $\in R \times S$, then $(a, b) \oplus(0, \bar{\sigma})=\left(a \oplus_{r} 0, b \oplus_{s} \bar{\sigma}\right)=(a, b)$. Hence $(0, \delta)$ is the zero for $R \times S$. Finally if $(a, b) \in R \times S$ then $(-a,-b) \in \mathbb{R} \times S$. $(a, b) \oplus(-a,-b)=\left(a \oplus_{r}-a, b \oplus_{s}-b\right)=(0, \bar{\sigma})$. Therefore $R \times S$ is a ring.

Definition 1-2. A subset S of a ring A is a subring of R if S is a ring with respect to the operations of \oplus and * in R.

An equivalent definition for subring is the basis for the next theorem.

Theorem 1-4. A non-empty subset S of a ring R is a subring of R if and only if for $a, b \in S$ $a \oplus-b$ and $a * b$ are elements of S.

Proof: For $a, b \in S$ suppose $a * b$ and $a \in-b$ are elements of S. Therefore, S is closed with respect to *. If $a \in S$
then $a \oplus-a=0 \in S$. Since $0, b \in S, 0 *-b \in S$. Therefore $a \oplus-(0 \oplus-b) \in S$.

$$
\begin{aligned}
& -(0 \oplus-b) \oplus(0 \oplus-b)=0 \\
& -(0 \oplus-b) \oplus-b=0 \\
& -(0 \oplus-b) \oplus-b \oplus b=b \\
& -(0 \oplus-b)=b
\end{aligned}
$$

Therefore, $a \oplus b \in S$ hence S is closed under \oplus. All parts of PII hold since $S \subseteq \mathbb{R}$. Since the zero of R is an element of S, PIII is satisfied. If a is any element of S, $0 \oplus-a$ is also an element of S. Since $a \in-a=0$ PIV is satisfied and S is a subring of R. Conversely, if S is a subring of R for $a, b \in S \quad a * b \in S$. Furthermore if $b \in S,-b \in S$. Since S is closed $a \oplus-b \in S$ and the proof is complete.

In general, not all rings are commtative with respect to *. Furthermore, it is not necessary for all rings to have what is termed a unity element.

Definition 1-3. A ring R is said to be a commutative ring if $a * b=b * a$ for $a l l a, b \in R$.

Definition 1-4. An element h of a ring R is said to be anity element of R if $a^{\star} h=h * a=a$ for every element $a \in R$.

Obviously, if R has a unity element it is unique.
Definition 1-5. Let a denote non-zero element of a ring R. If there exists $a b \in R$, $b \neq 0$, such that efther $a * b=0$ or $b * a=0$, a will be called a divisor of zero.

In view of the preceding deqinitions, the following three theorem can now be stated and proved.

Theorem 1-5. Suppese R is a ring with a finite number of elements which has anity element h, but which has no divisor: of 0 . Then for $a \in R$, afo, there is an $x \in R$ such that $\mathbf{a * x}_{\mathrm{x}}=\mathbf{h}$.

Prooe: Let $\left\{a_{1}, a_{2}, a_{3}, \ldots a_{n}\right\}=R$. Since n has a unity element h, h is some a_{i}. Without loss of generality assume that $a_{2}=h$. Now asoume that there $L s$ an $\in \in$, afo, such that $a^{*} x \neq h$ for any $x \in R$. Again without loes of generality denote this partiaular element an \mathbf{a}_{2} Consider the n products of the form $a_{2}{ }^{*} a_{j}$ where $j=1,2, \ldots n$. None of these products is equal to h. Since n producte have been formed and since no product is equal to e_{1}, there are at moet n-1 distinct reaults. Hence, two of the producta formed in this process are idontical. Therefore, $a_{2}{ }^{*} a_{r}=a_{2} a_{a}$. There exists $-a_{s} \in$. Furtherrore, since $a_{2} *\left(a_{s} \oplus-a_{2}\right)=a_{2} 0=0$,
 But $a_{2} a_{x}\left(a_{2} *\left(-a_{s}\right)=a_{2}^{*}\left(a_{r}\left(6-a_{s}\right)=0\right.\right.$, hence either $a_{2}=0$ or $a_{r}\left(1-a_{s}=0\right.$ since R has no divisore of 0 . $a_{2} f 0$ by hypothesis. Tharetore, $a_{r} \oplus-a_{a}=0$ hence $a_{r}=a_{s}$. At this point a contradiction has been reached since $a_{r} \neq a_{s}$. Therefore the assumption that there is no $x \in \mathbb{R}$ auch that $a_{2}{ }^{*}=h$ is false and the proof is complete.

Theorem 1-6. A ring R is free of divisors of zero if, and only if, the following cancellation law holds. The equalities $a * b=a * c$ and $b * a=c * a$ imply that $b=c$, if $a \neq 0$, for otherwise arbitrary elements $a, b, c \in R$.

Proof: Suppose R has no divisor of zero. If $a * b=a * c, a * b \oplus(-a * c)=0 . \quad B y \operatorname{lema} 1-4-a * c=a *(-c)$. Therefore $a * b \oplus(-a * c)=a * b \oplus a *(-c)=a *(b \oplus-c)=0$.

Since R has no divisors of zero, elther $a=0$ or $b \oplus-c=0$. By hypothesis $\neq 0$. Therefore $b \oplus-c=0$.
$b \oplus-c=0$
$b \oplus-c \oplus c=0 \oplus c$
$b \oplus 0=0 \oplus c$
$b=c$.
In a similar manner it can be shown that if $b * a=c * a$, $a \neq 0$ then $b=c$. Conversely, if $a * b=a * c$ and $b * a=c * a$ imply $b=c$, suppose $a * b=0$ with $a \neq 0$. Since $0=a * 0, a * b=a * 0$. Hence, $b=0$. In a similar manner it can be shown that if $b^{\star} a=0$, then $b=0$.

Theorem 1-7. Let a be an element of a ring R which has no divisors of zero. If $a * a=a, a \neq 0$, then a is a unity for R.

Proof: If $b \in R$, then $b * a$ and $b *(a * a)$ are also elements of R. Since $a^{*} a=a, b * a=b *\left(a^{*} a\right)$. By PII, $b *(a * a)=$ $(b * a) * a=b * a$. Therefore, $b * a=b$ by theorem 1-6. In addition both $a * b$ and ($a * a$)*b are elements of R. Once again
$a *(a * b)=a * b$. Therefore by theorem $1-6 a * b=b$. Since $a * b=b * a=b, a$ is anity for R.

Definition 1-6. Suppose ($R, \oplus, *$) and ($R_{1}, \oplus_{1}, *_{1}$) are rings. Let ϕ denote mapping of R into R_{1}. If $\phi(a \oplus b)=\phi(a) \oplus_{1} \phi(b)$ and $\phi(a * b)=\phi(a){ }_{1} \phi(b)$ for all $a, b \in R, \phi$ is said to be a homomorphism of R into R_{1}. Furthermore, if ϕ is a one-to-one mapping of R onto R_{1}, ϕ is called an isomorphism of R onto R_{1}.

Two basic propertiea of homomorphisms are stated in the following lemma.

Lemma 1-5. Let \neq denote a homomorphism of R into R_{1}. If 0 is the zero of R, then $\phi(\theta)$ is the zero of R_{1}. In addition if $a \in R, \phi(-a)=-\phi(a)$.

Proof: Given $a \in R, \phi(a \oplus 0)=\phi(a) \oplus 1 \phi(0)$. Since $\phi(a \oplus 0)=\phi(a), \phi(a)=\phi(a) \oplus 1 \phi(0)$. Since R_{1} is a ring $-\phi(a) \in R$ such that $\phi(a)(-\phi(a))=\overline{0}$, where $\bar{\sigma}$ is the zero of R_{1}. Hence $\sigma=\sigma \oplus{ }_{1} \phi(0)=\phi(0)$. Also given $a \in R$, $\phi(a \oplus-a)=\phi(a) \oplus 1 \not \phi(-a)$. However, $\phi(a \oplus-a)=\delta$. Therefore, $\sigma=\not \equiv(a) \oplus_{1} \not p(-a)$.

$$
\begin{aligned}
&-\phi(a) \oplus_{1} \overline{0}=-\phi(a) \oplus_{1} \phi(a) \oplus_{1} \phi(-a) \\
&-\phi(a)=\overline{0} \oplus_{1} \phi(-a) \\
&=\phi(-a) .
\end{aligned}
$$

In view of lemma 1-5, theorem 1-8 follows immediately.

Theorem 1-8. If ϕ is a homomorphism of R into K_{1}, $R_{1} \phi={ }_{d}\{\phi(a) / a \in R\}$ is a subring of R_{1}.

Proof: Suppose $\phi(a), \phi(b) \in \mathbb{R}_{1} \phi$. Since ϕ is a homomorphism, $\phi(a){ }_{1} \phi(b)=\phi\left(a^{*} b\right)$. Hence $\phi(a){ }_{1} \phi(b) \in R_{1} \phi$. If $\phi(b) \in R_{1} \phi, b \in R$. Hence $-b \in R$ and $\phi(-b) \in R_{1} \phi$. Due to lemma 1-5 $\phi(a) \oplus_{1} \phi(-b)=\phi(a) \oplus_{1}-\phi(b)$. Since $\phi(a) \oplus_{1} \phi(b)=$ $\phi(a) \oplus_{1}-\phi(b)=\phi(a \oplus-b), \phi(a) \oplus_{1}-\phi(b) \in R_{1} \phi$ and $R_{1} \phi$ is a subring of R_{1} by theorem $1-4$.

In theorem 1-3 it was shown that if R and S are two rings, then $\mathrm{R} X \mathrm{~S}$ is a ring with suitable definitions for \oplus and *. The next theorem illustrates a homomorphism of $\mathrm{R} \times \mathrm{S}$ into $\mathrm{R} \times \mathrm{S}$.

Theorem 1-9. Let $R \times S$ be the ring of theorem 1-3. Then the mappings ϕ and defined by $\phi[(a, b)]=(a, \overline{0})$ and $\psi[(a, b)]=(\bar{o}, b)$ are homomorphisms.

Proof: $\phi[(a, b) \oplus(c, d)]=\phi\left[\left(a \oplus_{r} c, b \oplus_{S} d\right)\right]=\left(a \oplus_{r} c, \bar{o}\right)$.
$\nsim[(a, b)] \oplus \emptyset[(c, d)]=(a, \overline{0}) \oplus(c, \overline{0})=\left(a \Theta_{r} c, \overline{0}\right)$. Therefore, $\phi[(a, b) \oplus(c, d)]=\phi[(a, b)] \oplus \phi[(c, d)]$. In regard to *, $\varnothing[(a, b) *(c, d)]=\varnothing\left[\left(a^{*} r^{c}, b^{*}{ }_{s} d\right)\right]=\left(a^{*}{ }_{r}, \overline{0}\right)$.
$\phi[(a, b)] \star \phi[(c, d)]=(a, 0) *(c, \overline{0})=\left(a^{*} r^{c}, \overline{0}\right)$. Hence $\phi[(a, b) *(c, d)]=\phi[(a, b)] * \phi[(c, d)]$. Therefore ϕ is a homomorphism of $R \times S$ into $R X S$. In the same manner it can be shown that ψ is a homomorphism of $R X S$ into $R X S$.

Example 1-4. Consider the ring of 2×2 matricies over the real numbers. The mapping \varnothing such that $\phi\left[\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)\right]=a$ is not a homomorphism into the real numbers since $\phi\left[\left(\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right]=\phi\left[\left(\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right)\right]=2$, while $\phi\left[\left(\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right)\right] * \phi\left[\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right]=$ $(1)(0)=0$.

If R is a ring, there are situations in which consideration of a ring which contains a subring isomorphic to R may be of interest.

Theorem 1-10. If S is a ring, and T is a set of elements in a one-to-one correspondence with the elements of S, then \oplus_{1} and * ${ }_{1}$ may be defined in T in such a way that T is a ring isomorphic to $s \quad(1, p, 83)$.

Proof: Since S and T are in a one-to-one correspondence ϕ, let $\psi: T \rightarrow S$ such that if $a \in S$ then $\phi(a) \in S$ and $\psi(\phi(a))=a$. Define \oplus_{1} in T to be $\phi(a) \Theta_{1} \phi(b)=\phi(a \oplus b)$ and define ${ }_{1}$ such that $\phi(a){ }_{1} \phi(b)=\phi(a * b)$. Properties PI and PII are immediately obvious since S is a ring. Let $x \in T$. There is an a $\in S$ such that $\phi(a)=x$. But $\phi(a) \oplus_{1} \phi(0)=\phi(a \oplus 0)=\phi(a)$ which satisties pILI. In addition, $\phi(a) \oplus_{1} \phi(-a)=\phi(0)$ which satisfies RIV.

Suppose $x, y \in T$ then $x=\phi(a)$ and $y=\alpha(b)$ for sone $a, b \in s$. Since $\psi(\phi(a)) \oplus \psi(\phi(b))=a \oplus b$ end $\psi\left(\phi(a) \oplus_{1} \phi(b)\right)=\psi(\phi(a \oplus b))=a \oplus b, \psi(\phi(a)) \oplus \psi(\phi(b))=$ $\psi\left(\not \phi(a) \oplus_{1} \phi(b)\right)$.

Similarly $\psi(\phi(a)) * \psi(\phi(b))=a * b$ and $\psi\left(\phi(a) *{ }_{1} \phi(b)\right)=$ $\psi(\phi(a * b))=a * b$. Hence $\psi(\phi(a)) * \psi(\phi(b))=\psi\left(\phi(a) *{ }_{1} \phi(b)\right)$. Therefore T is isomorphic to S since ψ is a one-tomone onto mapping that preserves the operations.

Theorem 1-11. If R and S are rings with no lements in common, and S contains a subring S_{1} which is isomorphic to \mathbb{R}, there exists a ring T which is isomorplate to S and which contains R as a subring ($1, p$. 83).

Proof: Let $T=R \cup\left\{x \in S \mid X \notin S_{1}\right\}$ and let ϕ denote the Lsomorphism between S_{1} and R. Suppose $x \in S$. Let $\psi(x)=x$ if $x \in S_{1}$ and $\psi(x)=\phi(x)$ if $x \in S_{1}$. The mapping is well defined since R and S are disjoint. Let $x \in T$ then either $x \in R$ or $x \in\left\{x \in S \mid x \notin s_{1}\right\}$. If $x \in R$ then there is an $\in S$, such that $x=\phi(a)$. Therefore $x=\psi(a)$. If $x \in\left\{x \in S \mid x \notin s_{1}\right\}$ then $\psi(x)=x$. Hence ψ is an onto mapping. Let $x, y \in S$. Suppose $\psi(x)=\psi(y)$. Since $x \in S, \psi(x)=x$ or $\psi(x)=\not(x)$. If $\psi(x)=x$, then $x=\psi(y)$. Since $y \in S, \psi(y)=y$ or $\psi(y)=p(y)$. Suppose $\psi(y)=\phi(y)$, then $\phi(y)=x$ and $x \in \mathbb{R}$. This is impossible since \mathbb{R} and S are disjoint. Secondly if $\psi(x)=\phi(x)$, then $\phi(x)=\psi(y)$. Since $y \in S, \psi(y) \neq y$. Therefore $\psi(y)=\phi(y)$. Since ϕ is a one-to-one mapping $x=y$. Therefore ψ is a one-to-one onto mapping. All that remains is to observe that S and T are in a one-to-one correspondence and apply theorem 1-10.
R is a subring of T since if $x, y \in R, x=\phi(a)$ and $y=\phi(b)$ Eor some pair $a, b \in S_{1}$. Since $\not \phi(a) * \not(b)=\phi(a * b)$, $x * y \in R$ because $a_{1}^{*} b \in S_{1}$. In addition $\phi(a) \oplus-\phi(b)=\phi\left(a \oplus_{1}-b\right)$ and since S_{1} is a subring $x \oplus-y \in R$. Therefore \mathbb{R} is a subring of T.

The remainder of this chapter will deal with a special type of ring known as a Boolean ring.

Definition 1-7. A ring R is said to be a Boolean ring if for every $a \in \mathbb{R}, a^{*} a=a$.

Example 1-5. Let H Jenote any set. Suppose $X \equiv\{x / x$ is a subset of $H\}$. If $A \subseteq H$, then $A^{\prime} \equiv\{x / x \in H$ and $x \notin A\}$. Suppose $A, B \in X$. Define $A \oplus B \equiv(A \cup B) \cap(A \cap B)^{\prime}$ and $A * B \equiv A \cap B$. With these operations X is a Boolean ring.
X is closed since both $A \oplus B$ and $A * B$ are subsets of H. Before proceeding further it will be convenient to develop an equivalent expression for $A \oplus B$.

$$
\begin{aligned}
(A \cup B) \cap(A \cap B)^{\prime} & \equiv\left[A \cap(A \cap B)^{\prime}\right] \cup\left[B \cap(A \cap B)^{\prime}\right] \\
& =\left[A \cap\left(A^{\prime} \cup B^{\prime}\right)\right] \cup\left[B \cap\left(A^{\prime} \cup B^{\prime}\right)\right] \\
& =\left[\left(A \cap A^{\prime}\right) \cup\left(A \cap B^{\prime}\right)\right] \cup\left[\left(B \cap A^{\prime}\right) \cup\left(B \cap B^{\prime}\right)\right] \\
& =\left(A \cap B^{\prime}\right) \cup\left(B \cap A^{\prime}\right)
\end{aligned}
$$

The verification of all parts of PII will now be examined in detail.
(1) $A \oplus(B \oplus C)=\left[A \cap(B \oplus C)^{\prime}\right] \cup\left[(B \oplus C) \cap A^{\prime}\right]$

$$
\begin{aligned}
= & {\left[A \cap\left\{\left(B \cap G^{\prime}\right) \cup\left(C \cap B^{\prime}\right)\right)\right\} } \\
& \cup\left[\left\{\left(B \cap C^{\prime}\right) \cup\left(C \cap B^{\prime}\right)\right\} \cap A^{\prime}\right] \\
= & {\left[A \cap\left\{\left(B \cap C^{\prime}\right)^{\prime} \cap\left(C \cap B^{\prime}\right)\right\}\right] } \\
& \cup\left[\left\{\left(B \cap C^{\prime}\right) \cap A^{\prime}\right\} \cup\left\{\left(C \cap B^{\prime}\right) \cap A^{\prime}\right\}\right] \\
= & {\left[A \cap\left\{\left(B^{\prime} \cup C\right) \cap\left(C^{\prime} \cup B\right)\right\}\right] } \\
& \cup\left[\left\{\left(B \cap C^{\prime}\right) \cap A^{\prime}\right\} \cup\left\{\left(C \cap B^{\prime}\right) \cap A^{\prime}\right\}\right]
\end{aligned}
$$

$$
\left.=\left[A \cap\left(B^{\prime} \cup C\right) \cap C^{\prime} \cup B\right)\right]
$$

$$
U\left[\left\{\left(B \cap C^{\prime}\right) \cap A^{\prime}\right\} \cup\left\{\left(C \cap B^{\prime}\right) \cap A^{\prime}\right\}\right]
$$

$$
=\left[\left\{\left(A \cap B^{\prime}\right) \cup(A \cap C)\right\} \cap\left(C^{\prime} \cup B\right)\right]
$$

$$
U\left[\left\{\left(B \cap C^{\prime}\right) \cap A^{\prime}\right\} \cup\left\{\left(C \cap B^{\prime}\right) \cap A^{\prime}\right\}\right]
$$

$$
=\left(\left[\left(A \cap B^{\prime}\right) \cup(A \cap C)\right] \cap C^{\prime}\right)
$$

$$
U\left(\left[\left(\mathbf{A} \cap \mathbf{B}^{\prime}\right) \cup(\mathbf{A} \cap C)\right] \cap \mathbf{B}\right)
$$

$$
U\left[\left\{\left(B \cap C^{\prime}\right) \cap \mathbf{A}^{\prime}\right\} \cup\left\{\left(\mathbf{C} \cap \mathbf{B}^{\prime}\right)\right\} \cup \mathbf{A}^{\prime}\right]
$$

$$
=\left(\mathbf{A} \cap \mathbf{B}^{\prime} \cap \mathbf{C}^{\prime}\right) \cup\left(\mathbf{A} \cap \mathbf{C} \cap \mathbf{C}^{\prime}\right) \cup(\mathbf{A} \cap \mathbf{B} \cap \mathbf{C})
$$

$$
U\left[\left\{\left(B \cap C^{\prime}\right) \cap A^{\prime}\right\} \cup\left\{\left(C \cap B^{\prime}\right) \cap A^{\prime}\right\}\right]
$$

$$
=\left(A \cap B^{\prime} \cap C^{\prime}\right) \cup(A \cap B \cap C) \cup\left(B \cap C^{\prime} \cap A^{\prime}\right)
$$ $U\left(C \cap B^{\prime} \cap A^{\prime}\right)$.

$(A \oplus B) \oplus C=\left[(A \oplus B) \cap C^{\prime}\right] \cup\left[C \cap(A \oplus B)^{\prime}\right]$

$$
\begin{aligned}
& =\left[\left\{\left(A \cap B^{\prime}\right) \cup\left(B \cap A^{\prime}\right)\right\} \cap C^{\prime}\right] \\
& \cup\left[C \cap\left\{\left(A \cap B^{\prime}\right) \cup\left(B \cap A^{\prime}\right)\right\}^{\prime}\right] \\
& =\left[\left(A \cap B^{\prime} \cap C^{\prime}\right) \cup\left(B \cap A^{\prime} \cap C^{\prime}\right)\right] \\
& \cup\left[C \cap\left\{\left(A \cap B^{\prime}\right)^{\prime} \cap\left(B \cap A^{\prime}\right)^{\prime}\right\}\right] \\
& =\left[\left(A \cap B^{\prime} \cap C^{\prime}\right) \cup\left(B \cap A^{\prime} \cap C^{\prime}\right)\right] \\
& \cup\left[C \cap\left\{\left(A^{\prime} \cup B\right) \cap\left(B^{\prime} \cup A\right)\right\}\right] \\
& =\left[\left(A \cap B^{\prime} \cap C^{\prime}\right) \cup\left(B \cap A^{\prime} \cap C^{\prime}\right)\right] \\
& \cup\left[C \cap\left(A^{\prime} \cup B\right) \cap\left(B^{\prime} \cup A\right)\right] \\
& =\left[\left(A \cap B^{\prime} \cap C^{\prime}\right) \cup\left(B \cap A^{\prime} \cap C^{\prime}\right)\right] \\
& \cup\left[\left\{\left(C \cap A^{\prime}\right) \cup(C \cap B)\right\} \cap\left(B^{\prime} \cup A\right)\right. \\
& =\left[\left(A \cap B^{\prime} \cap C^{\prime}\right) \cup\left(B \cap A^{\prime} \cap C^{\prime}\right)\right. \\
& U\left[\left\{\left(C \cap A^{\prime}\right) \cap\left(B^{\prime} \cup A\right)\right\} \cup\left\{(C \cap B) \cap\left(B^{\prime} \cup A\right)\right\}\right] \\
& =\left[\left(A \cap B^{\prime} \cap C^{\prime}\right) \cup\left(B \cap A^{\prime} \cap C^{\prime}\right)\right] \\
& \cup\left[\left(C \cap A^{\prime} \cap B^{\prime}\right) \cup\left(C \cap A \cap A^{\prime}\right) \cup(C \cap B \cap A)\right] \\
& =\left[\left(A \cap B^{\prime} \cap C^{\prime}\right) \cup\left(B \cap A^{\prime} \cap C^{\prime}\right)\right] \\
& \cup\left[\left(C \cap A^{\prime} \cap B^{\prime}\right) \cup(C \cap B \cap A)\right] \\
& =\left(A \cap B^{\prime} \cap C^{\prime}\right) \cup\left(B \cap A^{\prime} \cap C^{\prime}\right) \cup\left(C \cap A^{\prime} \cap B^{\prime}\right) \\
& U(C \cap B \cap A) \text {. }
\end{aligned}
$$

Hence $A \oplus(B \oplus C)=(A \oplus B) \oplus C$.
(2) $A *(B * C)=A \cap(B \cap C)$.
$(A * B) * C=(A \cap B) \cap C=A \cap(B \cap C)$.
Hence $(A * B) * C=A *(B * C)$.
(3) $A \oplus B=(A \cup B) \cap(A \cap B)^{\prime}$
$B \oplus A=(B \cup A) \cap(B \cap A)^{\prime}$
since $A \cup B=B \cup A$ and $A \cap B=B \cap A, A \oplus B=B \oplus A$.
(4) $A^{*}(B \oplus C)=A \cap\left[(B \cup C) \cap(B \cap C)^{\prime}\right]$

$$
=A \cap(B \cup C) \cap(B \cap C)^{\prime}
$$

$$
=[(A \cap B) \cup(A \cap C)] \cap\left(B^{\prime} \cup C^{\prime}\right)
$$

$$
=\left[(A \cap B) \cap\left(B^{\prime} \cup C^{\prime}\right)\right] \cup\left[(A \cap C) \cap\left(B^{\prime} \cup C^{\prime}\right)\right]
$$

$$
=\left(A \cap B \cap B^{\prime}\right) \cup\left(A \cap B \cap C^{\prime}\right) \cup\left(A \cap C \cap B^{\prime}\right)
$$

$$
U\left(A \cap C \cap C^{\prime}\right)
$$

$$
=\left(A \cap B \cap C^{\prime}\right) \cup\left(A \cap C \cap B^{\prime}\right)
$$

$A * B \oplus A * C=(A \cap B) \oplus(A \cap C)$
$=[(A \cap B) \cup(A \cap C)] \cap[(A \cap B) \cap(A \cap C)]^{*}$
$=[(A \cap B) \cup(A \cap C)] \cap\left[\left(A^{\prime} \cup B^{\prime}\right) \cup\left(A^{\prime} \cup C^{\prime}\right)\right]$
$=[(A \cap B) \cup(A \cap C)] \cap\left[A^{\prime} \cup B^{\prime} \cup C^{\prime}\right]$
$=\left((A \cap B) \cap\left[A^{\prime} \cup B^{\prime} \cup C^{\prime}\right]\right) \cup\left((A \cap C) \cap\left[A^{\prime} \cup B^{\prime} \cup C^{\prime}\right]\right)$
$=\left(A \cap B \cap A^{\prime}\right) \cup\left(A \cap B \cap B^{\prime}\right) \cup\left(A \cap B \cap C^{\prime}\right)$
$\cup\left(A \cap C \cap A^{\prime}\right) \cup\left(A \cap C \cap B^{\prime}\right) \cup\left(A \cap C \cap C^{\prime}\right)$
$=\left(A \cap B \cap C^{\prime}\right) \cup\left(A \cap C \cap B^{\prime}\right)$.
Therefore $A *(B \oplus C)=A * B \oplus A * C$.
(5) A imilar proof holds for ($B \oplus 0$) A.

In the verification of PIII and PIV, \varnothing will denote the empty set.

$$
\begin{aligned}
\phi(\dagger) & =(\phi \cup A) \cap(A \cap \phi)^{\prime} \\
& =A \cap \phi^{\circ} \\
& =A \cap X \\
& =A .
\end{aligned}
$$

Hence is the zero for X.
$A \oplus A=(A \cup A) \cap(A \cap A)^{*}$
$=A \cap \mathbf{A}^{\prime}$
$=\varnothing$.
Therefore A -A and PIV in satisfied. Parthermere since $A * A=A \cap A=A, X$ is Boolean ring.

Example 1-6. The set $k=\{0,1, a, b\} w i t h(4)$ and * defined ac Follows in Boolean ring (L, p. 140).

+	0	1	a	b
0	0	1	a	b
1	1	0	b	a
a	a	b	0	1
b	b	a	1	0

$*$	0	1	a	b
0	0	0	0	0
1	0	1	a	b
a	0	a	a	0
b	0	b	0	b

Theorem 1-12. The Boolean ring K is isomorphic to the ring of all subsets of a two element aet.

Proof: Let $\{x, y\}$ denote a two element set. The subsets of $\{x, y\}$ are $\{x\},\{y\},\{x, y\}$ and ϕ. Therefore the ring of abate X of $\{x, y\}$ has ito elements $\{x\},\{y\},\{x y\}$ and X. Let γ be mapping of k onto x such that $\gamma(0)=\varnothing, \gamma(1)=$ $\{x, y\}, \gamma(a)=\{x\}$, and $\gamma(b)=\{y\}$. If F is any eicwent
of $\mathrm{K} \gamma\left(\mathrm{o}^{*} \mathrm{p}\right)=\gamma(0)=\phi$ and $\gamma(0) \cap \gamma(\mathrm{p})=\phi$. Likewise $\gamma(p * 0)=\gamma(p) \cap \gamma(0)=\phi$. Again if p is an element of k, $\gamma(1 * p)=\gamma(p)=\gamma(p * 1)$. While $\gamma(1) \cap \gamma(p)=\{x, y\} \cap \gamma(p)$
$=\gamma(p)$ since $\gamma(p) \subseteq\{x, y\}$. Finally $\gamma(a * b)=\gamma(b * a)$ since $a^{*} b=b^{*} a=0$. Therefore $\gamma\left(a^{*} b\right)=\phi$. Since
$\gamma(a) \cap \gamma(b)=\{x\} \cap\{y\}=\phi, \quad \gamma(a \star b)=\gamma(a) \cap \gamma(b) . \quad$ In a similar manner it can be shown $\gamma(p) \oplus \gamma(q)=\gamma(p \oplus q)$ where $p, q \in K$. Hence K is isomorphic to the ring of subsets of a two element set.

Both example 1-5 and example 1-6 were commutative rings as well as Boolean rings. This is, in fact, true for all Boolean rings.

Lemma 1-6. Let R be a Boolean ring. Xf $a \in R$, $a \oplus a=0$.
Proof: $(a \oplus a) *(a \oplus a)=(a \oplus a) * a \oplus(a \oplus a) * a$

$$
\begin{aligned}
& =a * a \oplus a^{*} a \oplus a * a \oplus a^{\star} a \\
& =a \oplus a \oplus a \oplus a .
\end{aligned}
$$

Since
$a \oplus a=a \oplus a \oplus a \oplus a$,
$-a \oplus a \oplus a \oplus-a=-a \oplus a \oplus a \oplus a \oplus a \oplus-a$

$$
\begin{aligned}
0 \oplus 0 & =0 \oplus a \oplus a \oplus 0 \\
0 & =a \oplus a .
\end{aligned}
$$

Theorem 2-i3. If R is a Boolean ring, then R is a commutative ring.

Proof: Let $a, b \in R$.

$$
\begin{aligned}
(a \oplus b) *(a \oplus b) & =(a \oplus b) * a \oplus(a \oplus b) * b \\
& =a * a \oplus b * a \oplus a * b \oplus b * b \\
& =a \oplus b * a \oplus a * b \oplus b
\end{aligned}
$$

Therefore $a \oplus b=a \oplus b * a \oplus a * b \oplus b$
$-a \oplus a \oplus b \oplus-b=a \oplus a \oplus b * a \oplus a * b \oplus b \oplus-b$

$$
0=b^{*} a \oplus a^{\star} b .
$$

Therefore $b * a=-(a * b)$. By lemma $1-6 b^{*} a \oplus b * a=0$. Hence $b * a=-(b * a)$. Then $b y$ lemma $1-1,-(b * a)=-(a * b)$ and $b^{*} a=a * b$ follows.

CHAPTER BIBLIOGRAPHY

1. MoCoy, Neal H., Rings and Ideals, Baltimore, The Vaverly Press, 1948.

GHAPTER II

IDEALS

In the study of rings, a speoial type of subring plays a prominent roie. This chapter will examine this type of subring known as an ideal.

Definition 2-1. A non-empty subset S of a ring R is called an ideal in R if for $a, b \in S$, $a \in-b \in S$, and whenever $a \in S$, $a^{*} r$ and x^{*} a belong to S for every $r \in R$.

Theorem 2-1. If $S_{\lambda}, \lambda \in \Lambda$, is a collection of ideals in R, then $\cap S_{\lambda}$ is an ideal in R.

Proof: Suppose $a, b \in \cap S_{\gamma}$. Then a and b are elements of each S_{λ} hence $a-b$ is an element of each S_{λ} since each S_{λ} is an ideal. Therefore $a-b \in \cap S_{\gamma}$. Since a is an element of each $S_{\gamma}, r * a$ and $a * x$ are elements of each S_{λ} for $r \in R$ because each S_{f} is an ideal. Hence $a * r, r * a$ $\in \cap S_{\gamma}$ for $r \in R$. Hence $\cap S_{\gamma}$ is an ideal in R. Note that $0 \in S_{\gamma}$ so that $\cap s_{\gamma} \neq \phi$.

Definition 2-2. Suppose A and B are sets. Let \oplus and * denote binary operations defined on A and B. Define $A \oplus B \equiv\{x \oplus y / x \in A, y \in B\}$. If a_{1} is a fixed element of A, then $a_{1} \oplus B \equiv\left\{a_{1} \oplus b / b \in B\right\}$ and $A * a \equiv\left\{a^{*} a_{1} / a \in A\right\}$.

Before proceeding with the study of ideals, it will be necesaxy to prove the following theorew which deale with nubringa in general.

Theorem 2-2. Suppose R is aring and B is subring ink. If ($\left.\alpha_{1} \oplus B\right) \cap\left(c_{2} \oplus B\right) \neq f$, then $a_{1} \oplus B=c_{1} \oplus \mathrm{~B}$.

Prope: Suppone $\left(a_{1} \oplus B\right) \cap\left(b_{2} \oplus B\right) \neq \$$. Henoe there La $p \in\left(A_{1} \oplus B\right) \cap\left(c_{2} \oplus D\right)$. Therafore $p=a_{1} \oplus s$ and $P=c_{1} \oplus s$ where $x, E \in B$. Suppose $x \in A_{2}$ B, then $x=a_{1} \oplus t$ where $t \in B_{+}$Since $p a_{2} \oplus r, a_{2}=p \oplus-r$ but $a_{1}=c_{1}$ ($t(-r)$. Therefore $x=c_{1} \in(-x) \in t$ $=c_{1} \oplus(\oplus(-r) \oplus t)$. Howsver B it subring and is aloaed hence $s \oplus(-r) \oplus \in \in B$. Therefore $x \in c_{1} \oplus B$ and $a_{1} \oplus B \subseteq c_{1} \oplus$. Convercely suppose $x \in o_{1} \oplus \mathbf{B}$, than $x=c_{1} \oplus h$ where $h \in B$. But $o_{1}=p \rightarrow-s=a_{1} \oplus(-s)$. Hence $x=a_{1} \oplus x \oplus(-s)(4$
 If γ is hommorphiem between two ringe \mathbb{R} and \mathcal{R}_{p}, an Ldeal can be constructed in with respect to γ.

Theorem 2-3. Let γ be honomorphism of $\begin{aligned} & \text { anto } \mathrm{E} \text {. }\end{aligned}$ Then the of elements $N \gamma, N \gamma=\{a \in \mathbb{R} \gamma(s)=\sigma\}$. is an ideal in R.

Proof: $N \gamma$ is non-empty since $\gamma(0)=0$. Suppose $\mathrm{a}, \mathrm{b} \in \mathbb{N} \gamma$. Then $\gamma(\mathrm{a})=\bar{\sigma}$ and $\gamma(\mathrm{b})=0$. since $\gamma(\mathrm{a} \oplus-\mathrm{b})$ $=\gamma(a) \oplus \gamma(-b)=\gamma(a) \oplus(-\gamma(b) b y \quad$ lemma $1-5, \gamma(a \oplus-b)$ $=\delta \oplus-\delta=\sigma \oplus \delta=\bar{\sigma}$. Therefore $a \oplus-b \in N \gamma$. Suppose $a \in \mathbb{N} \gamma$ and let $r \in R$. Then $\gamma\left(r^{*} a\right)=\gamma(r) * \gamma(a)=\sigma$ and $\gamma\left(a^{*} x\right)=\gamma(a) t \gamma(r)=\sigma \hbar \gamma(r)=\sigma$. Therefore $N \neq i s$ an ideal in R.

In view of theorem $2-2$ if B is an ideal in R, an important ring can be constructed with respect to B.

Theorem 2-4, Suppose R is a ring and B is an ideal in R. The set $D \equiv\{a \oplus B / a \in R\}$ with appropriate operations is a ring.

Proof: Suppose $a \oplus B, b \oplus B \in D$. Define $(A \oplus B) \oplus(b \oplus B)$ \# (a $\oplus \mathrm{b}) \oplus \mathrm{B}$ and $(\mathrm{a} \oplus \mathrm{B}) *(\mathrm{~b} \oplus \mathrm{~B}) \equiv(\mathrm{a} * \mathrm{~b}) \oplus \mathrm{B}$. Since the elements of D are sets, it is necesaary to show that m and $*$ are well defined. Suppose $a \oplus B=a^{\prime} \oplus B$ and $b \oplus B=b^{\prime} \oplus B$. Let $x \in(a \oplus b) \oplus$ B. Then $x=(a \oplus b) \oplus x$ where $x \in B$. Since $a \in a^{\prime} \oplus B$ and $b \in b^{\prime} \oplus B, a=a^{\prime} \oplus$ and $b=b^{\prime} \oplus$ © where $s, t \in B$. Therefore $x=\left(a^{\prime} \oplus t\right) \oplus\left(b^{\prime} \oplus s\right) \oplus x=\left(a^{\prime} \oplus b^{\prime}\right)$ $\oplus(t \oplus s \oplus r)$. Because B is a subring, $t \oplus s \oplus r \in \mathrm{~B}_{\mathrm{A}}(\oplus)$ Hence $x \in\left(a^{\prime} \oplus b^{\prime}\right) \oplus B$. Therefore by theorem 2-2, ($a \oplus b$) $\oplus B=\left(a^{\prime} \oplus b^{\prime}\right) \oplus B$. Now let $x \in a^{*} b \oplus B$. Hence $x=a^{*} b \oplus r$ where $r \in B$. Since $a=a^{\prime} \oplus t$ and $b=b^{\prime} \oplus s$, $a^{*} b=\left(a^{\prime} \oplus t\right) *\left(b^{\prime} \oplus 8\right)=a^{\prime *} b^{\prime} \oplus a^{\prime *}{ }^{\prime} \oplus t^{\star} b^{\prime} \oplus t^{*} s . \quad$ But B is an ideal, so $a^{\prime *} s, t b^{\prime}$, and $t * s$ are elements of B.

Hence $a^{\prime *} \mathrm{~g}_{\mathrm{s}} \oplus \mathrm{t}^{\prime} \mathrm{b}^{\prime} \oplus t \mathrm{t}_{\mathrm{s}} \in \mathrm{B}$. Therefore $\mathrm{x} \in \mathrm{a}^{\prime *} \mathrm{~b}^{\prime} \oplus \mathrm{B}$ and by theorem 2-2 $a^{*} b \quad B=a^{*} * b^{\prime} \oplus B$. Hence 9 and * are well defined.

Obviously PI in satisfied since R is a ring. A verification of PII will now be given.
(L) $[(a \oplus B) \oplus(b \oplus B)] \oplus(c \oplus B)=[(a \oplus b) \oplus B] \oplus(c \oplus B)$
$=\left[\begin{array}{lll}(a \oplus b & + & c\end{array}\right] B$
$=\left[\begin{array}{lll}a & (b & c\end{array}\right] \oplus B$
$=(a \oplus B) \cdot[(b \oplus c) \oplus B]$
$=(a \oplus B) \oplus[(b \oplus B) \oplus(c \oplus B)] \quad$

$$
=[a *(b * c)] \oplus B
$$

$=[(a * b) * c] \otimes B$
$=[(a * b) \oplus B] *(c+B)$
$=[(a \in B) *(b \not B)] *(c \oplus B)$.
(3) $(a \in b)(b \oplus B)=(a \oplus b) \oplus B$

$$
\begin{aligned}
& =(b \oplus a) \oplus B \\
& =(b \oplus B) \oplus(a \oplus B)
\end{aligned}
$$

$$
=(a \oplus B) *(b \oplus B) \oplus(A \oplus B) *(c \oplus B)
$$

(5) Verification is similar to (4).

Therefore PII is satisfied. If o is the zero of R, then $(a \oplus B) \oplus(0 \oplus B)=(a \oplus 0) \oplus B=A \oplus B$. Hence $0 \oplus B$ is the zero for D. In conclusion if $a \oplus B \in D$, then $-a \in R$. But $(a \oplus B) \oplus(-a \oplus B)=(a \oplus-a) \oplus B=0 \oplus B$, so-a $\oplus B$ is the inverse with respect to \oplus for $a \in B \in D$. Therefore D is a ring.

If R is a ring and B is an ideal, the ring D of theorem $2-4$ will be denoted as R / B. Recalling the ideal $N \gamma$ of theorem 2-3 furnishes theorem 2-5.

Theorem 2-5. Suppose ($R, \oplus, *$) and $R_{1}, \oplus 1, *_{1}$) are two ringe. Let γ be a homomorphism of R onto R_{1}. Then the ring $R / N \gamma$ is isomorphic to R_{1}.

Proof: Let ψ be the mapping of $R / N \gamma$ into R_{1} defined by $4(a \in N)=\gamma(a)$ for $a \in R$. First it is necessary to show that ψ is well defined. Suppose $a \oplus \mathrm{~N} \gamma=\mathrm{b} \oplus \mathrm{N} \gamma$, hence $b \in a \oplus \mathbb{N} \gamma$. Therefore $b=a \oplus x$ when $x \in \mathbb{N} \gamma$. But

$$
\gamma(b)=\gamma(a \oplus x)=\gamma(a) \oplus_{1} \gamma(x)=\gamma(a) \oplus_{1} o_{1}=\gamma(a) .
$$

Hence if $a \oplus N \gamma=b \oplus N \gamma, \psi(a \oplus N \gamma)=\psi(b \oplus N \gamma)$ and ψ is well-defined. Suppose now that $\psi(a \oplus N)=\psi(b \oplus N)$. Then $\gamma(a)=\gamma(b)$. Hence $\gamma(a) \oplus_{1}-\gamma(b)=0_{1}=\gamma(a \oplus-b)$. Therefore $a \oplus-b \in N \gamma$ and since $a=a \oplus b \oplus-b=b \oplus(a \oplus-b)$, $a \oplus \mathrm{~N} \gamma=\mathrm{b} \oplus \mathrm{N} \gamma$ by theorem $2-2$. Therefore ψ is a one-to-one mapping. This mapping is an onto mapping since γ is an onto
mapping. All that remains is to show that 4 preserves the operations.

$$
\begin{aligned}
& \psi[(a \oplus N \gamma)\oplus(b \oplus N \gamma)]=\psi[(a \oplus b) \oplus N \gamma] \\
&=\gamma(a \oplus b) \\
&=\gamma(a) \oplus_{1} \gamma(b) \\
&=\psi(a \oplus N \gamma) \oplus_{1} \psi(b \oplus N \gamma) \\
& \psi[(a \oplus N \gamma) *(b \oplus N \gamma)]=\psi[(a * b) \oplus N \gamma] \\
&=\gamma(a * b) \\
&=\gamma(a)^{*} \gamma \gamma(b) \\
&=\psi[a \oplus N \gamma] *_{1} \psi[b \oplus N \gamma] .
\end{aligned}
$$

In the study of ideals, there are a number of different types of ideals. The next two definitions serve as a start for a closer investigation of types of ideals.

Definition 2-3. Let R be a ring and let M be an arbitrary non-empty subset of R. The intersection of all ideals containing M is called the ideal generated by M and is denoted by (M). An ideal generated by a single element is called a principal ideal.

Definition 2-4. Let R be a ring and let B denote an ideal in R. If B has the property that when $a * b B$, either $a \in B$ or $b \in B$; then B is called a prime ideal.

Theorem 2-6. Suppose R is a ring and (M) is the ideal gencrated by an arbitrary non-empty set of elements in R; then (M) is the "smallest" ideal in R containing M.
proof: In ordar to prove theorem 2-6, it is necessary to how that $(M) \subseteq B$ where B is any ideal containing M. The proof follows immediately from the definition of (M); since if $x \in(M)$, x is an element of every ideal containing M. Hence in particular $x \in B$. Therefore ($M \subseteq \mathbb{C}$ (or any Ideal B which contains M. Hence (M) is the emallest ideal in R containing M.

Theorea 2-7. Let I denote the ring of integers under
 (a).

Proof: Let $x, y \in H$. Then $x=k a$ and $y=k^{*} a$. Since $x-y=(k-k) a_{i} x-y \in H$. If $x \in R$ and $x \quad H, r x=x \times=r k a=k r a$ since $x=k . \quad$ Therefore $x x \in H$. Note that $0 \in H$, so that u is non-expty. Hence H is an ideal. H contains a ance $a=1 . a$. If B le any ideal in I containing $a, k \in B$ where k \in. Therefore $H \subseteq B$. In partioular $H \subseteq(a)$. But (a) $\subseteq H$ since (a) ic a aubet of any ideal containing a by theorem 2-6. Tharefore (a) $=$.

Theorem 2-8. Suppose I is the ring of integers and let p be a prime integer. If (p) is the principal ideal generated by p, then every non-zero element of $I /(p)$ has an inverse with reapect to the multiplication in $I /(p)$.

Proof; Since I contains the unity element 1 , it dan be easily verified that $1+(p)$ is the unity for $I /(p)$.

There are at most p elements in $I /(p)$. This fact can be proved by showing that given any integer 1 , there is an integer h such that $0 \leq h \leq p-1$ and $i+(p)=h+(p)$. If i is a positive integer, the proof is by induction. For $i=1,1 \leq p$ for any prime p. Choose $h=1$ if $1<p$. If $p=1$, choose $h=0$; since $1+(1)=0+(1)$ because $0 \in 1+(1)$ and $0 \in 0+(1)$. Therefore $1+(1)=0+(1)$ by theorem 2-2. Suppose for $i=k, k+(p)=h+(p)$ where $0 \leq h \leq p-1$. If $k+(p)=h+(p)$, then $[k+(p)]+[1+(p)]$ $=[h+(p)]+[1+(p)]$. Hence $[k+1]+(p)=[h+1]+(p)$. Since $h \leq p-1, h+1 \leq p$. If $h+1<p$, then $h+1 \leq p-1$ and proof is complete. If $h+1=p$, then $[k+1]+(p)=0+(p)$ since $p \in 0+(p)$. Therefore if is a positive integer, there is an h such that $0 \leq h \leq p-1$ and $i+(p)=h+(p)$. If is is a negative integer, $i+(p)=-1[p-1]+(p)$ since $-1[p-1]$ $=-i p+1=1-i p=1+[-i p]$. Therefore $-i[p-1]$ belongs to $i+(p)$ and $-i[p-1]+(p)$. Hence $i+(p)=-1[p-1]+(p)$ by theorem 2-2. Observe $i-i p>0$ except for $p=1$. If $p=1$, choose $h=0$; since $i+(1)=0+(1)$. For $i-i p>0$, $[i-i p]+(p)=h+(p)$ for s mme $h \quad 0 \leq h \leq p-1$. Hence $i+(p)=h+(p)$ for $0 \leq h \leq p-1$. Therefore $I /(p)$ can have at most p elements.

Suppose $a+(p), b+(p) I /(p)$ such that $[a+(p)] \cdot[b+(p)]=$ $0+(p)$. Therefore $a b+(p)=0+(p)$.

Hence $a b=k p$. Since p is a prime integer if $a b=k p$, either $a=r p$ or $b=s p$. If $a=r p, a \in 0+(p)$ and $a+(p)$ $=0+(p)$. Likewise if $b=s p, b+(p)=0+(p)$. Therefore if $[a+(p)] \cdot[b+(p)]=0+(p)$, either $a+(p)=0+(p)$ or $b+(p)=0+(p)$. Hence $I /(p)$ has no divisors of zero. Since $I /(p)$ also has only a finite number of elements each non-zero element of $I /(p)$ has an inverse by theorem 1-5.

Ideals in the ring I have many desirable properties. One such property is dealt with in theorem 2-9.

Theorem 2-9. If $\left\{a_{1}, a_{2}, \ldots a_{n}\right\}$ is any set of integers in the ring I, there exists an element $a \in I$ such that (a) $=\left(a_{1}, a_{2}, \ldots a_{n}\right)$.

Proof: Let the integer a denote the greatest common divisor of the integers $a_{1}, a_{2}, \ldots a_{n}$, Then (a) $=\left(a_{1}, a_{2}, \ldots a_{n}\right)$. Since $a \in(a)$ and since by the Euclidean Algorithm, there exist integers $x_{1}, x_{2}, \ldots, x_{n}$ such that $a=x_{1} a_{1}+x_{2}{ }^{a} 2+\ldots+x_{n} a_{n}$. Therefore $a \in\left(a_{1}, a_{2} \ldots a_{n}\right)$. Hence (a) $\subseteq\left(a_{1}, a_{2}, \ldots a_{n}\right)$ since (a) is a subset of any ideal containing a by theorem 2-6. Furthermore since is the greatest common divisor of the integers $a_{1}, a_{2}, \ldots a_{n}$, a divides each integer. Therefore $a_{1}=k_{1} a^{\prime} a_{2}=k_{2} a ;$. . $a_{n}=k_{n} a$. Hence $a_{1}, a_{2}, \ldots a_{n}$ are all elements of (a) which guarantees ($a_{1}, a_{2}, \ldots, a_{n}$) $\subseteq(a)$.

Definition 2-5. Suppose R is a ring. Let $a \in R$ and

 be o where o is the zero element of R.

Definftion 2-6. An ideal B in a ring R is said to be a radical ideal if whenever $a^{n} \in B$ for some positive integer n, $a \in B$.

Definition 2-7. An ideal B in a ring R is said to be right primary if for $a * b \in B$ with $a \notin B$, implies $b^{n} \in B$ for some positive integer n. An ideal B in a ring R is gaid to be left primary if whenever $a * b \in B$ with $b \notin B$, implies $a^{n} \in B$ for some positive integer n, If B is both left and right primary B is said to be primary.

Definition 2-8. A non-zero element $a \in R$ is called nilpotent if there exists a positive integer n such that $a^{n}=0$.

The following set of theorems and examples is based on consequences of definition 2-4 through definition 2-8.

Theorem 2-10. Every prime ideal is a radical ideal.
Proof: Let B denote a prime ideal. Suppose $a^{n} \in B$. Since $a^{n}=a^{*}\left(a^{*} \ldots * a\right)$, either $a \in B$ or $a^{n-1} \in B$. If $a \in B$, the proof is complete. Suppose $a \notin B$, then $a^{n-1} \in B$. Since $a^{n-1}=a^{*} a^{n-2}, a^{n-2} \in B$. This process can be continued
k times until $n-k=2$ at which point $a^{2} \in B$. Therefore $a \in B$ and every prime ideal is a radical ideal.

Theorem 2-11. Every prime ideal is a primary ideal. Proof: Suppose B is a prime ideal. Let $a \star b \in B$. If $a \notin B$, then $b \in B$. Hence B is right primary, If $b \notin B$, then $a \in B$. Hence B is left primary. Therefore B is primary. Theorem $2-10$ howed that every prime ideal is radical ideal and theorem $2-11$ showed that every prime ideal is a primary ideal. The following examples will show that a primary ideal is not necessarily a prime ideal or a radical ideal, and a radical ideal need not be a prime ideal or a primary ideal.

Examples 2-1. Every primary ideal is not a prime ideal. Consider the ideal (4) in I. Since $2 \cdot 6 \in(4)$ with neither 2 nor 6 belonging to (4), (4) is not a prime ideal. However if $a b \in(4)$ with $a \notin(4)$ implies $b^{2} \in(4)$. If $a \notin(4)$ then a is not a multiple of 4 . Hence the largest power of 2 which is a factor of a is 2^{1}. Since $a b \in(4)$, b must be even. Hence $b=2 k$. Therefore $b^{2} \in(4)$ and (4) is primary.

Example 2-2. Every primary ldeal is not a radical ideal since $4 \in(4)$ and $4=2^{2}$, but $2 \notin(4)$.

Example 2-3. Every radical ideal is not a prime ideal. Consider the ideal (6) in I. Let $a^{p} \in(6)$. Then $a^{p}=6 k$ by theorem 2-7. Suppose a is not a multiple of 6 . Then both

2 and 3 are not factors of a and hence are not factors of a^{p}. This is a contradiction since $a^{p}=6 k$. Therefore (6) is a radical ideal. Since $4 \cdot 3 \in(6)$ with neither 4 nor 3 belonging to (6), (6) is not a prime ideal.

Example 2-4. Every radical ideal is not primary since (6) is a radical ideal which is not primary. This can be shown by noting that $2: 3 \in(6)$ with $2 \notin(6)$ and $3^{k} \notin(6)$ for any positive integer k.

Theorem 2-12. If B is a radical ideal in R, then R / B has no nilpotent elements.

Proof: Suppose R / B contains a nilpotent element $a \oplus$ B. Then there exists a positive integer n such that $(a \oplus B)^{n}=$ $0 \oplus B$. Hence $a^{n} \oplus B=0 \oplus B$. Therefore $a^{n} \in O \oplus B$. Therefore $a^{n} \in B$. Since B is a radical ideal $a \in B$. Hence $a \oplus B=0 \oplus B$ by theorem 2-2. This contradicts the fact that a \oplus B is nilpotent. Hence R / B has no nilpotent elements.

Theorem 2-13. Suppose B is a primary ideal in a ring R. Then every divisor of zero in R / B is nilpotent.

Proof: Let a \rightarrow be a divisor of zero in F / B. Therefore there exiats an element $c \oplus B \neq 0 \oplus B$ such that efther $(O \oplus B) *(A \oplus B)=0 \oplus B$ or $(A \oplus B) *(C \oplus B)=0 \oplus B . \quad$ If $(c \oplus B) *(a \oplus B)=0 \oplus B, c^{*} a \in B$. Since $c \notin B, a^{n} \in B$ for some positive integer n. Therefore $(a \oplus B)^{n}=0 \oplus B$. Similarly if $(A \oplus B) *(C \oplus B)=0 \oplus B$ it can be shown that there exists a positive integer n such that $(a \oplus B)^{n}=0 \oplus B$.

Theorem 2-14. The intersection of every set or prime ideals is a radical ideal.

Proof: Suppose $B_{\alpha}, \alpha \in \Lambda$, is a set of prime ideals. Then $\cap B_{\alpha}$ is an fieal by theorem 2-1. Suppose $\varepsilon^{n} \in \cap B_{\alpha}$. Then a^{n} is an element of each $B \alpha$. Since each B_{α} is prime, a is an element of each $B \alpha$ by theorem 2-10. mherefore $a \in \cap B_{\alpha}$ and $\cap B_{\alpha}$ is a radical ideal.

The following lemas concerning ideals will be of use in Chapter III.

Lemma 2-1. If A and B are ideals in a ring R, $A * B \equiv\left\{x \mid x\right.$ is a finite sum of the form $a_{1}^{*} b_{1} \oplus \ldots \oplus a_{n}^{*} b_{n}$ where $a_{i} \in A$ and $\left.r_{i} \in B\right\}$ is also an ideal in R.

Proof: Tf $x, y \in A^{*} B, x \oplus-y$ will obviously be a inite sum of the desired form. Let $x \in A * B$. Then $x^{*} x$ and $x^{*} r$ are also elements of $A * B$ since A and B are ideals. Hence $A * B$ is an ideal.

Lemun 2-2" The set $B^{T} \equiv B * B^{*} \ldots * B, r$ factor*s, is an ideal in R if B is an ldeal in R.

Proof by Induction: If $x=1, B^{1}=B$ is an ideal. Suppose for $r=k, E^{k}$ is an ideal. Hence $y^{k} k B$ is an ideal by lema 2-1. Therefore $\mathrm{B}^{\mathrm{k}+1}$ is an ideal and the proof is complete.

Lemma 2-3. If B is a prime ideal and C and D are ideale such that $C * D=B$, then either $C=B$ or $D=8$.

Proof: Suppose $x \in B$; then $x=c_{1} * d_{1}$ (1) ... (7) $c_{n} * d_{n}$ since $C * D=5$. Therefore $x \in C$ and $x \in D$. Hence $P C C$ and $B \subset D$. Suppose that $B \neq C$; then there is $t \in C$ such that $t \notin B$. Let Y denote any element of D. Since $C^{*} D=B, t^{*} \Psi \in B$. But B is a prime ideal. Therefore $Y \in B$. Hence $B=D$. In a similar fashion it can be shown that if B / D, then $\mathrm{B}=\mathrm{C}$.

Lemma 2-4. If A and B are ideals in a commutative ring R, then $\overline{A B} \equiv\{x \in R / b * x \in A$ for all $b \in B\}$ is an ideal of R.

Proof: Note that $\overline{A B}$ is non-empty since $o \in \overline{A B}$. Let $x, y \in A B$. Then $b * x \in A$ and $b \star y \in A$ for any $b \in B$. Since A is $a n$ ideal, $b * x \oplus-b * y \in A$.

$$
\begin{aligned}
b{ }^{*} \times-b^{*} y & =b *_{x} \oplus b^{*}(-y) \\
& =b *(x \oplus-y) .
\end{aligned}
$$

Therefore $x \oplus-y \in \overline{A B}$. Let $x \in \overline{A B}$ and let $r \in R$. Since $x * b \in A$ for $a l l b \in B$ and since R is commutative, $b *(r * x)$ and $\left(x^{*} x\right) * b \in A$ for all $b \in \mathbb{R}$. Therefore $\overline{A B}$ is an ideal.

CHAPTER III

NOETHERIAN RINGS

Before proceeding with Noetherian rings, a few properties concerning radicals of ideals will be investigated.

Definition 3-1. If B is an ideal in a ring R, the set $H \equiv\left\{x \in R \mid x^{n} \in B\right.$ for some positive integer $\left.n\right\}$ is called the radical of B.

Lemana 3-1. If B is a radical ideal, $B=H$.
Proof: Obviously $B \subseteq H$. Suppose $x \in H$. Then there exists a positive integer n such that $x^{n} \in B$. Since B is a radical ideal, $\mathbf{x} \in \mathbf{B}$. Hence $\mathbf{H} \subseteq \mathbf{B}$.

Lemma 3-2. If B_{1} and B_{2} are ideals, then radical $\left(B_{1} \cap B_{2}\right)=\operatorname{radical} B_{1} \cap$ radical B_{2}.

Proof: Suppose $x \in$ radical $\left(B_{1} \cap B_{2}\right)$; then there exists a positive integer n such that $x^{n} \in\left(B_{1} \cap B_{2}\right)$. Hence $x^{n} \in B_{1}$ and $x^{n} \in B_{2}$. Therefore $x \in r a d i c a l B_{1}$ and $x \in$ radical B_{2}. Hence $x \in\left(\operatorname{radical} B_{1} \cap r a d i c a l B_{2}\right)$. Therefore radical $\left(B_{1} \cap B_{2}\right) \subseteq$ radical $B_{1} \cap$ radical B_{2}.

Suppose $x \in$ radical $B_{1} \cap$ radical B_{2}. Then there exist positive integers n and k such that $x^{n} \in B_{1}$ and $x^{k} \in B_{2}$. Let h denote the larger of n and k. Therefore $x^{h} \in B_{1}$
and $x^{h} \in B_{2}$. Hence $x^{h} \in B_{1} \cap B_{2}$. Therefore $x \in$ radical $\left(B_{1} \cap B_{2}\right)$. It follows that radical $\left(B_{1} \cap B_{2}\right)=$ radical $\mathbf{B}_{1} \cap$ radical B_{2}.

Lemma 3-3. If B is an ideal, radical (radical B) $=$ radical B.

Proof: Suppose $x \in$ radical (radical B). Then there exists a positive integer n such that $x^{n} \in$ radical B. If $x^{n} \in \operatorname{radical} B$, there exists a positive integer r such that $\left(x^{n}\right)^{r} \in B$. It can be easily verified that $\left(x^{n}\right)^{x}=x^{n r}$. Obviously radical $B \subseteq$ radical (radical B). Hence the proof is complete.

Theorem 3-1. If B is an ideal in a commutative Ring R, then the radical of B is also an ideal in R.

Proof: Suppose $a, b \in$ radical B. Hence for some positive integers m and $n, a^{m} \in B$ and $b^{n} \in B$. Without loss of generality suppose $\geq n$; then $a^{2 m}$ and $b^{2 m} \in B$. Consider the product $(a \oplus-b)^{2 m}$. Since R is a commatative ring, it is easily verified that the binouial expansion holds for $(a \oplus-b)^{2 m}$. In the $r^{t h}$ term of $(a \oplus-b)^{2 m}$, a is raised to the $2 m-x+1$ power and $-b$ is raised to the $r-1$ power. If $r=m$, a is raised to the $m+1$ power and $h a^{m+1} *(-b)^{m-1} \in B$ where h is positive integer. If $r>m$, then $r-1 \geq m$. Hence $h_{1} a^{2 m-r+1}{ }_{k}(-b)^{r-1} \in B$. If $r<m, m<2 m-r+1$. Hence
$h_{2} a^{2 a n-r+1} *(-b)^{x-1} \in B$. Therefore every term in the expansion of $(a \oplus-b)^{2 m}$ is an element of B and hence $(a \oplus-b)^{2 m} \in B$. Therefore $a \oplus-b \in$ radical B. Let $x \in$ radical B. There exists a positive integer n such that $x^{n} \in B$. Suppose $a \in R$; then $a^{n} \in R$. Since B is an ideal $a^{n} \pi_{x}{ }^{n} \in B$. But since R is commutative, $a^{n} * x^{n}=\left(a^{*} x\right)^{n}=\left(x^{*} a\right)^{n}$. Therefore radical B is an ideal in R.

An immediate consequence of theorem 3-1 is corollary 3-1.

Corollary 3-1. If B is a primary ideal in a commatative ring R, then radical B is a prime ideal in R.

Proof: By theorem 3-1 radical B is an ideal in R.
 n such that $(a * b)^{n} \in B$. Since R is commutative, $(a * b)^{n}=a^{n} * b^{n}$. Suppose $a^{n} \notin B$. Since B is primary, there exists a positive integer k such that $\left(b^{n}\right)^{k} \in B$. Since $\left(b^{n}\right)^{k}=b^{n k}, b \in$ radical B. . Similarly if $b^{\mathfrak{n}} \notin \mathrm{B}, \mathrm{a} \in$ radical B . Hence whenever $a * b \in \operatorname{radical} \mathrm{~B}$, either $\mathrm{a} \in$ radical B or $\mathrm{b} \in$ radical B .

Definition 3-2. A ring R is said to satisfy the ascending chain condition for ideals if every sequence of ideals B_{1}, B_{2}, \ldots in R such that $B_{1} \subset B_{2} \subset \ldots$ has only a finite number of terms.

Definition 3-3. A comatative ring which satisfles definition 3-2 is said to be a Noetherian ring.

There are other statements which could also serve as the definition of a Noetherian ring. Theorem 3-2 will give two alternate definitions. The following leman will aid in the proof of theorem 3-2.

Lemma 3-4. If $B_{1} \subset B_{2} \subset \ldots$ is an infinite ascending chain of ideals in a ring R, then the union of all the ideals in the chain is an ideal.

Proof: Suppose $a, b \in \cup B a$; then a belongs to some B_{k} and b belongs to some B_{h}. Either $B_{k} \subset B_{h}$ or $B_{h} \subset B_{k}$. Hence both $a, b \in B_{k}$ or $a, b \in B_{h}$. Therefore $\left(\oplus-b \in B_{k}\right.$ or $a \oplus-b \in \mathbf{B}_{\mathrm{h}}$. Hence $a \oplus-b \in \cup_{B_{\alpha}}$. If $x \in \cup \mathbf{B}_{\alpha}$, then x is an element of some B_{k}. Since B_{k} is an ideal, $r^{*} X$ and $x^{*} r \in B_{k}$. Therefore $r^{*} x$ and $x^{*} r$ are elements of $\cup B \alpha$.

Theorem 3-2. In any comnatative ring R the following conditions are equivalent.
(1) R satisfies the ascending chain condition.
(2) Every ideal in \mathbb{R} is generated by a finite number of elements.
(3) Every non-empty set of ideals in R contains at least one ideal which ie not contained in any other ideal of the set (3, p. 20).

Proof: Suppose R satisfies the ascending chain condition, Let B denote an ideal of R and let $b_{L} \in B$. Then $\left(b_{1}\right) \subseteq B$ since if $x \in\left(b_{1}\right)$ is an element of every ideal containing b_{1}. If $\left(b_{1}\right)=B$, the proof is complete. Suppose $\left(b_{1}\right) \subset B$. Now choose $b_{2} \in B$ such that $b_{2} \notin\left(b_{1}\right)$. Obviously $\left(b_{1}\right) \subset\left(b_{1}, b_{2}\right) \subseteq B$. If $\left(b_{1}, b_{2}\right)=B$, the proof is complete. If not $\left(b_{1}, b_{2}\right) \subset B$ and again choose an element $b_{3} \in B$ such that $b_{3} \notin\left(b_{1}, b_{2}\right)$. Now we have $\left(b_{1}\right) \subset\left(b_{1}, b_{2}\right) \subset\left(b_{1}, b_{2}, b_{3}\right) \subseteq B$. This process can only be done a finite number of times. Otherwise there would exist an infinite ascending chain in R. Therefore for some positive integer $k,\left(b_{1}, b_{2}, \ldots b_{k}\right)=B$.

Suppose now every ideal in R is generated by a finfte number of elements. Furthermore suppose there exists a set K of ideals in R such that for every $B_{\alpha} \in K, B_{\alpha}$ is contained in some other ideal in K. Without loss of generality the ideals in K can be arranged in a sequence such that $B_{1} \subset B_{2} \subset \ldots \subset B_{\delta} \subset \ldots$ By lemma $3-4 \cup B_{\alpha}$ is also an ideal in R and hence is generated by a finite number of elements. Therefore, $U B \alpha=\left(b_{1}, b_{2}, \ldots b_{r}\right)$. Now each one of the generators for $\cup B_{\alpha}$ is an element of some B_{α} in the chain. Observe now that there is an ideal B_{h} in the chain such that $b_{2}, b_{2}, \ldots b_{r} \in B_{h}$.

The contention is that $\mathrm{B}_{\mathrm{h}}=\bigcup \mathrm{B}_{\alpha}$. obviously, $\mathrm{B}_{\mathrm{h}} \subseteq \cup \mathrm{B}_{\alpha}$. Since $U_{B \alpha}=\left(b_{1}, b_{2}, \ldots b_{r}\right)$ with each $b_{i} \in \mathbb{B}_{h}, U B_{\alpha} \subseteq B_{h}$. Hence $U B_{\alpha}=R_{h}$. Obviously B_{h} is not contained in any other member of the set K . Therefore every non-empty set of ideals in R contains at least one ideal which is not contained in any other ideal of the set.

Finally suppose every non-empty set of ideals in R contains an ideal which is not contained in any other member of the set. Let $B_{1}, B_{2}, \ldots, B_{k}$.. be a sequence of ideals in \mathbb{R} such that $B_{1} \subset B_{2} \subset \ldots \subset B_{k} \subset \ldots$. Consider the set of all ideals in this sequence. There exists an ideal B_{m} such that $\mathrm{B}_{\mathrm{m}} \not \subset \mathrm{B}_{\mathrm{t}}$ for any B_{t} in the set. Since these ideals form a chain, $B_{t} \subseteq B_{m}$ for every element in the set. Therefore since this is a sequence of ideals the chain is of finite length.

The next set of lemmas is suggested by the fact that every ideal in a Noetherian ring is generated by a finite number of elementa.

Lemma 3-5. If ($x_{1}, x_{2}, \ldots x_{n}$) is an ideal in a comutative ring R, then ($x_{1}, x_{2}, \ldots x_{n}$) $=G$ where $G=\left\{x \mid x=\sum_{i}^{n}\left[n_{i} x_{i} \oplus a_{i} *_{x_{i}}\right]\right.$ where $n_{i} \in I$ and $\left.a_{i} \in R\right\}$.

Proof: Suppose $_{n} x, y \in G$; then $x=\sum_{i}^{n}\left[n_{i} x_{i} \oplus a_{i} *_{i}\right]$ and $-y=-\sum_{1}^{n}\left[a_{i} x_{i} \oplus b_{i} *_{x_{i}}\right]$.

$$
\begin{aligned}
x \oplus-y & =\sum_{i}^{n}\left[n_{i} x_{i} \oplus a_{i *} x_{i}\right] \oplus-\sum_{1}^{n}\left[m_{i} x_{i} \oplus b_{i} *_{x_{i}}\right] \\
& =\sum_{1}^{n}\left\{\left[n_{i}-m_{i}\right] x_{i} \oplus\left[a_{i} \oplus-b_{i}\right] * x_{i}\right\}
\end{aligned}
$$

Therefore $x \oplus-y \in G$. Suppose $x \in G$ and $x \in R$.

$$
\begin{aligned}
r * x & =x^{*} r=x * \sum_{1}^{n}\left[n_{i} x_{i} \oplus a_{i}^{*} x_{i}\right] \\
& =\sum_{1}^{n}\left\{r *\left[n_{i} x_{i}\right] \oplus r * a_{i} * x_{i}\right\} \\
& =\sum_{1}^{n}\left\{\left[n_{i} r\right]^{*} x_{i} \oplus r * a_{i} * x_{i}\right\} \\
& =\sum_{1}^{n}\left[n_{i} r \oplus r^{*} a_{i}\right] * x_{i} \\
& =\sum_{1}^{n}\left[o_{i} x_{i} \oplus c_{i}^{*} x_{i}\right]
\end{aligned}
$$

The o_{i} is the real number zero and $c_{i}=n_{i} r \oplus r^{*} a_{i}$. Therefore G is an ideal. Since G contains $x_{1}, x_{2}, \ldots x_{n}$, ($\left.x_{1}, x_{2}, \ldots x_{n}\right) \subseteq G$. Let b denote an clement of G. Then $b=\sum_{i}\left[n_{i} x_{i} \oplus a_{i} * x_{i}\right]$. Hence $b \in\left(x_{1}, x_{2}, \ldots x_{n}\right)$ because $\left(x_{1}, x_{2}, \ldots x_{n}\right)$ is an ideal. Therefore $\left(x_{1}, x_{2}, \ldots x_{n}\right)=0$.

Lemma 3-6. If B is an ideal in a commutative ring R, the ideal B^{r} is the set P of all finite sums of products with r factors. In set notation $p=\left\{x \in R \mid x=\sum_{i=1}^{n} a_{i 1} * a_{i 2} * \ldots * a_{i r}\right.$ where $n \in I$ and $\left.a_{1 j} \in B\right\}$.

Proof by induction: For $x=1$ the result is trivial. For $r=2$, the lemma is true by lema 2-2. Suppose lemma is true for $r=k$. Then if $y \in s^{k}, y=\sum_{1}^{n} a_{i 1}{ }^{\star} a_{i 2}{ }^{*} \ldots * a_{i k}$ where $a_{i j} \in B$. Now $B^{k} * B=\{x / x$ is a finite sum of the form $y_{1} * b_{1} \oplus y_{2} * b_{2} \oplus \ldots y_{n}{ }^{*} b_{n}$ where $y_{j} \in B^{k}$ and $\left.b_{j} \in B\right\}$. Each y_{j} is exprassible as a finite sum of terms with each term consiating of a product of k elements of B. Also each y_{j} is "multiplied" by $b_{j} B$. Upon application of the distributive law each term in the sum is a product of $k+1$ elements of B. This is also a finite sum since each $y_{j}{ }^{*} b_{j}$ is a finite sum and there are only a finite number of these sums. Therefore $B^{k}{ }_{* B} \subseteq\left\{x \mid x=\sum_{1}^{n} a_{11}{ }^{*} a_{12}{ }^{*} \ldots{ }^{*} a_{1 k+1}\right.$ where $n \in I$ and $\left.a_{i j} \in B\right\}$. But if $y \in\left\{x \mid x=\sum_{1}^{n} a_{\left.11 * a_{12} * \ldots * a_{i k+1}\right\} \text {. }}^{n}\right.$. $y=\sum_{1}^{n}\left[a_{i 1} * a_{i 2} * \ldots\right] * a_{i k+1} . \quad$ Therefore

$$
\left\{x \mid x=\sum_{1}^{n} a_{i 1} *_{*} \ldots a_{i k+1} \text { where } n \in I \text { and } a_{i j} \in B\right\} \subseteq B^{k_{*}} B
$$

Hence lemma 3-6 is true.
Lemma 3-7. If R is a commatative ring, $\left(x_{1}, x_{2}, \ldots x_{n}\right)^{r}=(\ldots, \underbrace{x_{i}{ }^{*} x_{j} *_{\ldots} x_{r}}_{x \text { factors }}, \ldots)$.

Proof: Suppose a $\in\left(x_{1}, x_{2}, \ldots x_{n}\right)^{r}$, then by lemma $3-6$ a is expressible as a finite sum of products $a_{1} * \ldots$. $_{r}$ with r factors each a_{i} being an element of $\left(x_{1}, x_{2}, \ldots x_{n}\right)$.

$$
\begin{aligned}
& a_{1}=\sum_{1}^{n}\left[n_{1} x_{1} \oplus d_{1} * x_{1}\right] \\
& a_{2}=\sum_{1}^{n}\left[a_{1} x_{i} \oplus b_{1} * x_{1}\right]
\end{aligned}
$$

$$
a_{r}=\sum_{i}^{n}\left[P_{i} x_{i} \oplus h_{i}^{*} x_{i}\right]
$$

Hence $a_{1} *_{2} a_{2} \ldots *_{a_{r}}=\left[\sum_{1}^{n}\left[h_{1} x_{1} \oplus d_{1} * x_{1}\right]\right] *\left[\sum_{1}^{n}\left[m_{1} x_{1} \oplus b_{1} *_{x_{1}}\right]\right] *$ $\ldots *\left[\sum_{1}^{n}\left[p_{i} x_{i} * h_{i}{ }^{*} x_{i}\right]\right]$. Each terw in this product consiats of x factors of the form $x_{j}{ }^{*} x_{i k}^{*} . . .{ }^{*} x_{1}$. Since a is a finite sum of factors of this type, a can be written in the Eorra $a=\sum_{i}^{k}\left[m_{j} y_{j} \oplus l_{j}^{*} y_{j}\right]$ where $w_{j} \in I_{i} \quad \ell_{j} \in$ and y_{j} is a product of the form $x_{i} * x_{j_{r}} *$ actors ${ }^{*} x_{x}$ * Therefore
$a \in\left(\ldots, x_{1} *_{j} \ldots x_{r}, \ldots\right)$. Obvioumly any product of the form $x_{1}{ }^{*} y_{j}{ }^{*} \ldots * x_{r}$ wili belong to $\left(x_{1}, x_{2}, \ldots x_{n}\right)^{r}$ by lemma r tactors 3-6.

The preceding three Lemas have Lald the groundwork for theorea 3-3.

Theorem 3-3. If B is an ideal in n Noetherian ring, there exiats a positive integer mach that $[\text { radial } s]^{m} E$ (3. p. 22).

Proof: Since radical B is an ideal in R by theorem 3-1, it is generated by a finite number of elements due to theorem 3-2. Therefore radical $B=\left(x_{1}, x_{2}, \ldots x_{n}\right)$. For each x_{i}, there exists a positive integer misuch that $x_{1} m^{m i} \in B$. Let $m=m_{1}+m_{2}+\ldots+m_{n}$. By lemma 3-7, $\left(x_{1}, x_{2}, \ldots x_{n}\right)^{m}=$ (.... $\underbrace{}_{\left.x_{1}{ }^{*} x_{j} * \ldots * x_{k}, \ldots . .\right) . \text { Since there are only } n .}$
distinct X_{i} 's and since R is comoutative, each
 $n_{p}+n_{p}+\ldots+n_{k}=m_{1}+m_{2}+\ldots+n_{n}$. For each x_{n} in the product of x factors, there corresponds an n_{h}. Each x_{h} in the product of r factors is also contained in the product of a factors. Observe for each x_{h} there is an m_{h} such that $x_{h}{ }^{m h} \in A$. Consider the sum $n_{p}+n_{q}+\ldots+n_{k}$ and the sum $m_{p}+m_{q}+\ldots+m_{k}$. It is easily seen that $n_{p}+n_{p}+\ldots+n_{k} \geq m_{p}+m_{q}+\ldots+m_{k}$ Hence there is $n_{s} \geq m_{s}$ for ame n_{s} and m_{s} since if every $n_{t}<m_{t}$, then $n_{p}+n_{q}+\ldots n_{k}<m_{p}+q_{q}+\ldots m_{k}$. But this statement cannot be true since $n_{p}+n_{q}+\ldots n_{k} \geq m_{p}+m_{q}+\ldots m_{k}$. Therefore there is an $n_{s} \geq u_{s}$. Hence contained in each product $\mathbf{x}_{1}{ }^{*} \mathbf{x}_{j} * \ldots{ }^{*} x_{1 c}$ there is an $x_{s}{ }^{n s} \in B$. This Esct guarantees that every elenent in the set of generators for $[\text { radical } B]^{\mathrm{m}}$ belongs to B. Hence $[\text { radical } B]^{\mathrm{mP}} \subseteq B$.

A similar type of proof can be applied to theorem 3-4.
Theoren 3-4. If B_{1} and B_{2} are ideals in a Noetherian ring R, there existe a poaitive integer r ach that $B_{1}{ }^{r} \subseteq B_{2}$ if and only if radical $\mathrm{B}_{1} \subseteq$ radical B_{2}.

Proof: Suppose there is an r such that $\mathbf{n}_{1} \subseteq \mathrm{~B}_{2}$. Since R is Noetherian, $B=\left(x_{1}, x_{2}, \ldots x_{n}\right)$. Therefore $\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{r} \subseteq B_{2}, \quad B y \operatorname{leman} 3-7\left(\ldots, x_{1}{ }^{*} x_{j}{ }^{*} \ldots{ }^{*} x_{n}\right) \subseteq B_{2}$ Therefore for $p=1, \ldots, n, x_{p}{ }^{r} \in B_{2}$. This implies that the set of generators for B_{1} is contained in radical B_{2}. Therefore $B_{1} \subseteq$ radical B_{2}. Since $B_{1} \cap$ radical $B_{2}=B_{1}$, by lemma $3-2$ and Lema $3-3$ radical $B_{1}=$ radical $B_{1} \cap$ radical B_{2}. Therefore realical $\mathrm{B}_{1} \subseteq$ radical B_{2}. Now suppose radical $\mathrm{B}_{1} \subseteq$ radioal B_{2}. since $\mathrm{B}_{\mathbf{L}} \subseteq$ radical $\mathrm{B}_{1}, \mathrm{~B}_{\mathrm{L}} \subseteq$ radical B_{2}. Since R is Noetherian, $B_{1}=\left(x_{1}, x_{2}, \ldots x_{n}\right)$. For each x_{1} in the set of generators for g_{1} there existe an $r_{i} \in I$ ouch that $x_{1}{ }^{1} \in B_{2}$. Let $r^{2}=r_{1}+r_{2}+\ldots .+r_{n}$. Tha remainder of the proof is identical with that of theorem 3-3. Therefore $B_{1}{ }^{r} \subseteq B_{2}$.

Lempa 3-8. Suppose B is an ideal in R. Let ϕ denote the mapping of R onto R / B delined by $(X)=x \oplus B$ for $x \in R_{\text {. }}$ If C_{1} is an ideal in R / B, then $D_{i} \equiv\left\{x \in \mathbb{R} \mid \beta(x) \in C_{1}\right\}$ ie an Ideal in R.

Proof: Observe first that ϕ is a homorphism of R onto R/B. Suppose $x, y \in D_{i}$, then $\phi(x), \not(y) \in C_{i}$. But C_{i} is an ideal. Therefore $\phi(x) \oplus-\phi(y) \in C_{i}$. Since $\phi(x) \oplus-\beta(y)$ $=\phi(x \oplus-y), x \oplus-y \in D_{i}$. Suppose $x \in D_{i}$, Let $r \in R$. Since $\phi\left(r^{*} x\right)=\phi(r) * \phi(x)$ and $\phi\left(x^{*} r\right)=\phi(x) * \phi(r), r * x$ and $x * r \in D_{i}$ beaame C_{1} is an ideal. Therefore D_{i} is an ideal.

Lemma 3-9. If C_{1} and C_{2} are ideals in R / B such that $C_{1} \subset C_{2}$, then $D_{1} \subset D_{2}$.

Proof: Suppose $x \in D_{1}$; then $\phi(x) \in C_{1}$. Hence $\phi(x) \in C_{2}$, so $x \in D_{2}$. Since $C_{1} \subset C_{2}$, there exists a $y \oplus B \in C_{2}$ such that $y \oplus B \notin C_{1}$. Therefore $y \in D_{2}$ but $y \notin D_{1}$.

Theorem 3-5 follows from lemma 3-8 and lemma 3-9.
Theorem 3-5. If B is an ideal in a Noetherian ring R, R/B is a Noetherian ring (2, p. 198).

Proof: Suppose R/B is not Noetherian. Then there exists an infinite sequence of ideals in R / B such that $C_{1} \subset C_{2} C$. . . according to lema 3-8 and leman 3-9 the sequence of ideals $D_{1}, D_{2}, \ldots D_{n}$ in R is also infinite. But this atatement contradicts the fact that R ia a Noetherlan ring. Therefore R / B is Noetherian.

The remainder of this chapter will be devoted to the decomposition of an ideal in a Noetherian ring.

Definition 3-4. Suppose B is an ideal in a ring R such that $B=B_{1} \cap B_{2} \cap \ldots \cap B_{n}$ where each B_{1} is a primary ideal in R. This intereection will be called a primary decomposition of B.

Definition 3-5. An ideal B is said to be irreducible if whenever $B=B_{1} \cap B_{2}$, either $B=B_{1}$ or $B=B_{2}$.

Definition 3-6. A finite intersection of ideals is said to be irredundant if no ideal in the intersection contains the intersection of the remaining ideals.

A fundamental property of Noetherian rings is stated in theorem 3-6.

Theorem 3-6. In a Noetherian ring every ideal can be represented as the intersection of a finite number of irreducible ideals (1, p. 175).

Proof: If B is an ideal in R, either B is irreducible or B is not irreducible. If B is irreducible, B can be expressed in the form $B=B_{1} \cap B_{2}$ where $B=B_{1}=B_{2}$. Obviously $B_{1} \cap B_{2}$ is a finite intersection of irreducible ideals. If E is not irreducible, then there mast exist ideals B_{1} and B_{2} such that $B=B_{1} \cap B_{2}$ with $B \neq B_{1}$ and $B \neq B_{2}$. Therefore $B \subset B_{1}$ and $B \subset B_{2}$. If both B_{1} and B_{2} are irreducible, the theorem is proved. Suppose that exactiy one of B_{1} and B_{2} is not irreducible. Without loss of generality assume it is B_{2}. Then there exiat ideals B_{4} and B_{6} such that $B_{2}=B_{4} \cap B_{6}$ with $B_{2} \subset B_{4}$ and $B_{2} \subset B_{6}$. Therefore $\mathrm{B}=\mathrm{B}_{1} \cap \mathrm{~B}_{4} \cap \mathrm{~B}_{6}$ with $B \subset B_{2} \subset B_{6}$. Again if B_{4} and B_{6} are both irreducible the theorem is proved. So suppose B_{4} is irreducible and B_{6} is
not irreducible. Hence $B_{6}=B_{8} \cap B_{10}$ with $B_{6} \subset B_{8}$ and $B_{6} \subset B_{10}$. Now $B=B_{1} \cap B_{4} \cap B_{8} \cap B_{10}$ with $B \subset B_{2} \subset B_{6} \subset B_{10}$. Once again if B_{8} and B_{10} are irreducible the theorem is proved. If not, the same procedure is repeated. This procedure can only be done a finite number of times since the chain $B \subset B_{2} \subset B_{6} \subset B_{10} \subset \ldots$ can have only finite length. Hence there can be only a finite number of ideals in the intermection and all of these ideals are irreducible.

Theorem 3-7. If R is Noetherian, every irreducible ideal in R is a primary ideal (1, p. 176).

Proof: Suppose there is an irreducible ideal B in R which is not a primary ideal. Since is not primary, there exist elements $a, b \in R$ such that $a * b \in B$ with $a \notin B$ and $b^{n} \notin B$ for any positive integer n. Consider the set of ideals $A_{i} \equiv\left\{x \in R \mid x^{*} b^{i} \in B\right\}$. It is easily verified that each A_{i} is an ideal. observe also that $A_{i} \subseteq A_{i+1}$. Therefore the $A_{i}{ }^{\prime}$ form ohain in R. Since R is Noetherian, this chain can have only finite length. Therefore there exists a positive integer n such that $A_{n}=A_{n+1}$, Consider the set $K \equiv[B \oplus(a)] \cap\left[\left(B \oplus R^{*} b^{n}\right]\right.$. It can be easily verified that $B \oplus(a), R * b^{n}$ and $B \oplus R * b^{n}$ are ideals in R. If $x \in K$, then $x \in B \oplus(a)$. Hence $x=h \oplus k a \oplus k^{*}{ }^{*} a$ where $h \in B, k \in I$ and $k^{*} \in R$. Observe that $x^{*} b=h^{*} b \oplus k(a * b) \oplus k^{* *} a * b$. Since $h * b, k(a * b)$,
and $k^{\prime} * a * b \in B, x * b \in B$. Since $x \in B \oplus R * b^{n}, x=p \oplus q$ where $p \in B$ and $q \in R * b^{n}$. If $q \in R^{n} b^{n}$, then $q=r^{*} b^{n}$. Hence $x=p \oplus r^{*} b^{n}$. Therefore $x^{*} b=p * b \oplus r^{\star} b^{n+1}$. Since $x^{*} b$ and $-p^{*} b \in B, x^{*} b^{n+1} \in B$. Furthermore since $r * b^{n+1} \in B_{\text {, }}$ $r \in A_{n+1}$. But $A_{n}=A_{n+1}$. Therefore $r \in A_{n}$. Hence $r^{*} b^{n} \in B$. Since $x=p \oplus r^{*} b^{n}$ with $p, r * b^{n} \in B, x \in B$. Therefore $K \subseteq B$. Obviously $B \subseteq K$. Hence $K=B$. Since $a \notin B ; B \oplus(a) \notin B$. Also $B \oplus R * b^{n} \notin B$ since $b^{n+1} \notin B$. Therefore $B \subset B \oplus(a)$ and $B \subset B \oplus R^{*} b^{n}$. This result contradicts the fact that B is irreducible. Hence every irreducible ideal in a Noetherian ring le primary.

Before atating and proving the fundamental decomposition theorem one more lemma is needed.

Lemma 3-10. If B_{1} and B_{2} are primary ideals with radical $B_{1}=$ radical $B_{2}, B_{1} \cap B_{2}$ is a primary ideal.

Proof: Suppose $a * b \in B_{1} \cap B_{2}$ with $a \notin B_{1} \cap B_{2}$. Hence $a \notin B_{1}$ or $a \notin B_{2}$. Without loss of generality suppose $a \notin B_{1}$. Since $a * b \in B_{1} \cap B_{2}, a * b \in B_{1}$. Hence $b^{k} \in B_{1}$ for some positive integer k. Therefore $b \in$ radical B_{1}. Since radical $B_{1}=\operatorname{radical} B_{2}, b \in$ radical B_{2}.

Hence there exists a positive integer n such that $b^{n} \in B_{2}$. Let l denote the Larger of k and n. Then $b^{l} \in B_{1}$ and $b^{\ell} \in B_{2}$. Hence $b^{\ell} \in B_{1} \cap B_{2}$. Therefore $B_{1} \cap B_{2}$ is rivht primary. Similarly it con be shown that $B_{1} \cap B_{2}$ is left primary.

Theorem 3-8 is the fundamental decomposition theorem for Noetherian rings.

Theorem 3-8. Each ideal in a Noetherian ring r is an irredundent intersection of primary ideals with distinct radicals.

Proof: By theorem 3-6 if B is an ideal in R, B is the intersection of a finite number of irreducible ideals. Each of these irreducible ideals is primary by theorem 3-7. Let $B=B_{1} \cap B_{2} \cap \ldots \cap B_{n}$ denote this Intersection. Either this intersaction is irredundant or it is not irredundant. If it is not irredundant, there exists a $\mathcal{B}_{\mathcal{1}}$ such that $\mathrm{B}_{1} \cap \mathrm{~B}_{2} \cap \ldots \cap \mathrm{~B}_{\mathrm{i}-1} \cap \mathrm{~B}_{\mathrm{i}+1} \ldots \cap \mathrm{~B}_{\mathrm{n}} \subseteq \mathrm{B}_{\mathrm{i}}$. Therefore $B_{1} \cap B_{2} \cap \ldots \cap B_{i-1} \cap B_{i+1} \cap \ldots \cap B_{n}=B_{1} \cap B_{2} \cap \ldots \cap B_{n}$. Hence $B=B_{1} \cap B_{2} \cap \ldots \cap B_{i-1} \cap B_{i+1} \cap \ldots \cap B_{n}$. Clearly this process can be repeated until an irredundant expression Is found. Let $B=B_{1} \cap B_{2} \cap \ldots \cap B_{j}$ denote the Liredundant intersection. If all the $B_{j}{ }^{\prime}$ h have distinct radicals, the proof is complete. Suppose there is a B_{k} and a B_{P} with the same radical. By lema $3-10 \mathrm{~B}_{\mathrm{k}} \cap \mathrm{B}_{\mathrm{p}}$ is a primary ideal. Clearly this process can also be repeated until there is a representation $B=\cap B_{h}$ with each B_{h} having a distinct radical.

This intersection need not be unique as the following example will show.

Example 3-1. Let F denote the set of rational numbers. Consider the polynomial ring $F[x, y]$. It can be verified that $F[x, y]$ is a Noetherian ring. The ideal ($x^{4}, x^{2} y$) in $F[x, y]$ has more than one representation as the intersection of a finite number of primary ideals with distinct radicals.

For example $\left(x^{4}, x^{2} y\right)=\left(x^{2}\right) \cap\left(x^{4}, y\right)$ and $\left(x^{4}, x^{2} y\right)=\left(x^{2}\right) \cap\left(x^{4}, x^{2} y, y^{2}\right)$. Let f, g, and h denote elements of $F[x, y]$.

First of all $\left(x^{2}\right)$ is primary. Let $f * g \in\left(x^{2}\right)$ with $f \notin\left(x^{2}\right)$. Therefore there is a term in f which has degree less than two in x. Hence each term in g must be of at least degree one in x. Therefore $g^{2} \in\left(x^{2}\right)$ and $\left(x^{2}\right)$ is primary.

The ideal $\left(x^{4}, y\right)$ is also primary. Suppose $f * g \in\left(x^{4}, y\right)$ with $f \notin\left(x^{4}, y\right)$. Hence f has a term which does not contain either x^{4} or y. This particular term has a degree of less than four in x and of less than one in y. Hence eirery term in g must be of at least the first degree in x or of the first degree in y since $f \star g \in\left(x^{4}, y\right)$. Therefore $g^{4} \in\left(x^{4}, y\right)$ and $\left(x^{4}, y\right)$ is primary.

Finally the ideal $\left(x^{4}, x^{2} y, y^{2}\right)$ is primary. Suppose $f * g \in\left(x^{4}, x^{2} y, y^{2}\right)$ with $f \notin\left(x^{4}, x^{2} y, y^{2}\right)$. Then f contains a term which is less than the fourth degree in x, less than the second degree in y, and which is not of the form $h_{2} x^{2} y$.

Therefore every term of g is either of the first degree in x or of the first degree in y. Therefore $g^{4} \in\left(x^{4}, x^{2} y, y^{2}\right)$; hence $\left(\mathrm{x}^{4}, \mathrm{x}^{2} \mathrm{y}, \mathrm{y}^{2}\right)$ is primary.

Suppose $\quad f \in\left(x^{4}, x^{2} y\right)$.

$$
\begin{aligned}
f & =f_{1} x^{4}+f_{2} x^{2} y \\
& =\left[f_{1} x^{2}+f_{2} y\right] x^{2} \\
& =f_{1} x^{4}+\left[f_{2} x^{2}\right] y
\end{aligned}
$$

Therefore $f \in\left(x^{2}\right)$ and $f \in\left(x^{4}, y\right)$. Hence $\left(x^{4}, x^{2} y\right) \subseteq\left(x^{2}\right) \cap\left(x^{4}, y\right)$. Suppose $f \in\left(x^{2}\right) \cap\left(x^{4}, y\right) ;$ then $f=f_{1} x^{2}$ and $f=g_{1} x^{4}+g_{2} y$. Hence $g_{2}=g x^{2}$. Therefore $f=g_{1} x^{4}+g x^{2} y$ and $\left(x^{4}, x^{2} y\right)=$ $\left(x^{2}\right) \cap\left(x^{4}, y\right)$. Since radical $\left(x^{2}\right)=(x)$ and radical $\left(x^{4}, y\right)=(x, y)$ with $\left(x^{2}\right) \nsubseteq\left(x^{4}, y\right)$ and $\left(x^{4}, y\right) \neq\left(x^{2}\right)$, this decomposition satesflies theorem 3-8.

Again suppose $f \in\left(x^{4}, x^{2} y\right)$.

$$
\begin{aligned}
\mathbf{f} & =\mathbf{f}_{1} x^{4}+\mathbf{f}_{2} x^{2} y \\
& =\left[f_{1} x^{2}+\mathfrak{f}_{2} y\right] x^{2} \\
& =f_{1} x^{4}+\mathbf{f}_{2} x^{2} y+o y^{2}
\end{aligned}
$$

Therefore $\left(x^{4}, x^{2} y\right) \subseteq\left(x^{2}\right) \cap\left(x^{4}, x^{2} y, y^{2}\right)$. Suppose $f \in\left(x^{2}\right) \cap\left(x^{4}, x^{2} y, y^{2}\right)$; then $f=h_{1} x^{2}$ and $f=g_{1} x^{4}+g_{2} x^{2} y+g_{3} y^{2}$. Since $f=h_{1} x^{2}, g_{3}=g x^{2}$. Hence

$$
\begin{aligned}
f & =g_{1} x^{4}+g_{2} x^{2} y+g x^{2} y \\
& =g_{1} x^{4}+\left[g_{2}+g y\right] x^{2} y
\end{aligned}
$$

Therefore $\left(x^{4}, x^{2} y\right)=\left(x^{2}\right) \cap\left(x^{4}, x^{2} y, y^{2}\right)$. Note once again that radical $\left(x^{2}\right)=(x)$ while radical $\left(x^{4}, x^{2} y, y^{2}\right)=(x, y)$.

Note also that $\left(x^{2}\right) \nsubseteq\left(x^{4}, x^{2} y, y^{2}\right)$ and $\left(x^{4}, x^{2} y, y^{2}\right) \nsubseteq\left(x^{2}\right)$. Therefore this decomposition also satisfies theorem 3-8. Finally note that $\left(x^{4}, y\right) \neq\left(x^{4}, x^{2} y, y^{2}\right)$ because $y \in\left(x^{4}, y\right)$ but $y \notin\left(x^{4}, x^{2} y, y^{2}\right)$. Hence these two decompositions are different.

The concluding two theorems in this thesis are consequences of theorem 3-8.

Theorem 3-9. The radical of an ideal in a Noetherian ring R is the intersection of the radicals of the primary ideals in theorem 3-8.

Proof: Let $B=\cap B_{i}$ of theorem 3-8.

$$
\begin{aligned}
\text { radical } B & =\text { radical }\left[\cap \mathbf{B}_{\mathbf{i}}\right] \\
& =\bigcap\left[\text { radical } B_{i}\right]
\end{aligned}
$$

The radicals of the primary ideals in theorem 3-3 are known as the associated prime ideals of B.

The final six lemmas prepare the way for theorem 3-10.
Lemma 3-11. If B is a primary ideal such that $a * b \in B$ with $b \notin$ radical $B, a \in B$.

Proof: Suppose $a \notin B$; then since B is primary b \in radical B. But $b \notin r a d i c a l$ B. Hence $a \in B$.

Lemma 3-12. If $\cap \mathrm{B}_{\mathrm{i}}$ and C are ideals,

$$
\left.\overline{\left[\cap B_{i}\right] c}=\overline{\cap\left[B_{i}\right.} \mathbf{C}\right]
$$

Proof: Suppose $\times \in \cap\left[B_{i}\right.$ C]; then x is an element of each $\left[B_{i} C\right]$. Therefore $x * C$ is an element of each B_{i} for $c \in C$. Hence $x \in\left[\overline{\cap B}_{i}\right] \mathbf{C}$. Suppase now $x \in\left[\bar{B}_{i}\right] C$; then for $c \in C, x^{*} c \in \cap B_{i}$. Hence $x^{*} c$ is an element of ach B_{1} for any $c \in 0$. Therefore x is in each $\left[\overline{B_{1}} \mathbf{C}\right]$ and hence $x \in \Pi \overline{\left.B_{i} C\right]}$.

Lemma 3-13. If B is a primary ideal, and C is an ideal which is not contained in radical $B, E C=B$.

Proof: Obviously $B \subseteq \overline{B C}$. So suppose $x \in \overline{B C}$. There exists a $c \in C$ such that $c \notin$ radical B. But $x^{*} c \in B$ for every $c \in C$ since $x \in B C$. Hence by lemaa $3-11 x \in B$.

Lemma 3-13. If B and C are ideals in a Noetherian ring R such that $B \subseteq C$, then for any positive integer n $B^{n} \subseteq C^{n}$.

Proof: Since R is Noetherian $B=\left(x_{1}, x_{2}, \ldots x_{p}\right)$ and $\mathrm{C}=\left(\mathrm{y}_{1}, y_{2}, \ldots y_{k}\right)$. By Iemma $3-7$
$B^{n}=\left(\ldots, x_{i}^{*} x_{j} \ldots{ }_{n} \ldots x_{l}, \ldots\right)$ and $c^{n}=\left(\ldots, y_{r^{*} y_{s}} \ldots{ }^{n} \ldots y_{t}, \ldots\right)$.

Each $x_{m}=\sum_{1}^{n}\left[n_{i} y_{i} \oplus a_{i} * y_{i}\right]$ where $n_{i} \in I$ and $a_{i} \in R$. Therefore each term in the product $x_{i} * x_{j} \ldots x_{\ell}$ will contain a n factors
product of the form $y_{h} * y_{f} \ldots \ldots y_{o}$. Hence every element of the set of generators for B^{n} is in c^{n}. Therefore $B^{n} \subseteq c^{n}$.

Lemma 3-14. If B and C are ideals in a Noetherlan ring R and $C \subseteq B$, then $B C=R$.

Proof: Obviously $\overline{\mathrm{BC}} \subseteq \mathrm{R}, \quad$ Suppose $\mathrm{x} \in \mathbb{R}$ and let o denote any element of C. Then $x^{*} c \in B$ since $c \in B$, Therefore $x \in B C$. Hence $\overline{B C}=R$.

Lemma 3-15. If A and B axe ideals such that $\overline{A B}=A$, $\mathrm{AB}^{2}=\mathrm{A}$ for each positive integer n .

Proof by induction: For $n=1, \overline{A B}=A$ by hypothesis. Suppose for $n=k \overline{A B^{k}}=A$; then $\overline{\overline{A B^{k}}}=\overline{A B}=A$. Hence it
 Let g denote any element of B^{k+1}. Then g is a finite sum of terms each term containing $k+1$ factors. Hence $x^{*} g=x^{*} \sum_{1}^{n} c_{i}{ }^{*} b_{i} \quad$ where $b_{i} \in B^{k}$ and $c_{i} \in B . \quad$ Each $x^{*} c_{i} \in \overline{A B^{k}}$ since $x \in \frac{A B^{k} B}{}$. since $x c_{i} \in A B^{k} x{ }^{*} c_{i}{ }^{*} b_{i} \in A$. Hence $x^{*} \sum_{i}^{n} c_{i} * b_{i} \in A$. Therefore if $g \in B^{k+1}, x^{*} g \in A$. Hence $x \in \overline{A B^{k}+I}$. Now suppose $x \in \overline{A B^{k+I}}$; then $x \in \overline{A B^{k *} B}$. Let b denote any element of B^{k} and let c denote any element of B. Then $x *[c * b] \in A$ for any $b \in B^{k}$. Hence $x^{*} 0 \in \overline{A B^{k}}$ which is true for all $c \in B$. Therefore $x \in \overline{A B}^{k_{B}}$ and proof is complete.

Theorem 3-10. If B and C are ideals in a Noetherian ring R, then $\overline{B C}=B$ if and only if C is not contained in any of the associated primes of B. ($1, \mathrm{p}, 179$).

Proof: Suppose C is not contained in any of the associated primes of B. Let $B=\cap B_{i}$ by theorem $3-8$.

$$
\begin{aligned}
\overline{B C} & =\left[\cap B_{i}\right] \mathrm{C} \\
& =\cap B_{i C} \quad \text { by } 1 \text { emma } 3-12 .
\end{aligned}
$$

For each B_{i} there is a $c_{i} \in C$ such that $C_{i} \notin$ rad B_{i}. Therefore for each $B_{i}, \overline{B_{i} C}=B_{i}$ by lemme 3-13. Therefore $\overparen{T B_{i} C}=\cap B_{1}=B$. Hence $\overline{B C}=B$. Suppose now $\overline{B C}=B$. Suppose also that C is contained in one of the associated primes of B. Without loss of generality denote this primary ideal as B_{1}. Then $C \subseteq r a d i c a l ~ B_{1}$. By theorem 3-3 there exists a positive integer n such that $\left[\text { radical } B_{1}\right]^{n} \subseteq B_{1}$. By lemma 3-13 $C^{n} \subseteq\left[\text { radical } B_{1}\right]^{n}$. Furthermore $\bar{B}_{1} C^{n}=R$ by lemma 3-14. Since $\overline{B C}=B, \overline{B C^{n}}=B$ by leman 3-15.

$$
\begin{aligned}
& B=\overline{B_{C}} \\
&=\overline{\cap B_{i} C^{n}} \\
&=\overline{B_{1} C^{n}} \cap \overline{B_{p} C^{n}} \text { by lemma } 3-12 \\
&=R \cap \frac{p \neq 1}{B_{p} C^{n}} \\
&=\cap \overline{B_{p} C^{n}} \\
& p \neq 1
\end{aligned}
$$

But $\cap B_{p} \subseteq \overline{O_{p} C^{n}}$. By lemma $3-12 \widehat{\cap B_{p} C^{n}}=\cap \overline{B_{p} C^{n}}$. $p \neq 1 \quad p \neq 1$
$p \neq 1$
$p \neq 1$
Therefore $\bigcap_{p \neq 1}^{B_{p}} \subseteq \cap \bigcap_{p \neq 1} \overline{B_{p} C^{n}}$. This implies $\bigcap_{p \neq 1}^{B_{p}} \subseteq B$.
Since $B=\cap B_{i}$ and $\cap B_{i} \subseteq \bigcap_{p \neq 1} B_{p}, B \subseteq \cap_{p-1} B_{p}$. Therefore $\mathrm{B}=\cap \mathrm{B}_{\mathrm{p}}$. But if $\cap \mathrm{B}_{\mathbf{i}}=\bigcap_{\mathrm{p} \neq 1}^{\mathrm{B}_{\mathrm{p}}}$ for $\mathrm{x} \in \bigcap_{\mathrm{p} \neq 1}^{\mathbf{B}_{\mathrm{p}}}, x \in \cap \mathrm{~B}_{\mathbf{i}}$.

However if $x \in \cap B_{i}, x \in B_{1}$. Hence $\bigcap_{p \neq 1} B_{p} \subseteq B_{1}$. But this
result ia contradiction since $\cap B_{i}$ ia an irredundant exprestion. Hence C is not contained in any of the associated primes of B .

1. Jacobson, Nathan, Lectures in Abstract Algebre (2 Volumes) New York, Van Nostrand, 1951.
2. MeCoy, Neal I., Rings and Ideals, Baltimore, The Maverly Press, 1948.
3. Northcott, D.D., Ideal Theory, Cambriage, University Press, 1953.

APPENDIX

Definition	Page	Example	Page
1-1.	1	1-1	2
1-2	7	1-2	2
1-3	8	1-3	3
1-4	8	1-4	13
1-5	8	1-5	15
1-6	11	1-6	19
1-7	15	2-1	33
2-1	23	2-2	33
2-2	23	2-3	33
2-3	28	2-4	34
2-4	28	3-1	53
2-5	32		
2-6	32		
2-7	32		
2-8	32		
3-1	37		
3-2	39		
3-3	40		
3-4	48		
3-5	49		
3-6	49		

Lemma	Page	Corollaxy	Page
1-1	3	3-1	39
1-2	4		
1-3	4		
1-4	5		
1-5	11		
1-6	20		
2-1	35		
2-2	35		
2-3	35		
2-4	36		
3-1	37		
3-2	37		
3-3	38		
3-4	40		
3-5	42		
3-6	43		
3-7	44		
3-8	47		
3-9	48		
3-10	51		
3-11	55		
3-12	55		
3-13	56		
3-14	56		
3-1.5	57		

Theorem	Page	Theorem	Page
1-1	5	2-12	34
1-2	6	2-13	34
1-3	6	2-14	35
1-4	7	3-1	38
1-5	9	3-2	40
1-6	10	3-3	45
1-7	10	3-4	47
1-8	12	3-5	48
1-9	12	3-6	49
1-10	13	3-7	50
1-11	14	3-8	52
1-12	19	3-9	55
1-13	20	3-10	57
2-1	23		
2-2	24		
2-3	24		
2-4	25		
2-5	27		
2-6	28		
2-7	29		
2-8	29		
2-9	31		
2-10	32		
2-11	33		

Jacobson, Nathan, Lectures in Abstract Algebra (2 volumes), New York, Van Nostrard, 1951.

McCoy, Neal H. Rings and Ideals, Baltinoce, The Waverly Press, 1948.

Miller, Kenneth S., Elements of Modern Abstrect Algebra, New York, Harper and Brothers, 1958.

Moore, John T., Elements of Abstract Algebra, New York,
Northcott, D.D., Ideal Theory, Cambridge, University Press,
1953 ,

