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CHAPITER I 

RINGS 

The purpose ©f this paper will be to investigate certain 

properties of algebraic systems known as ring®, The proofs, 

in most cases, are based ®n definitions and theorem® in this 

paper. A basic knowledge of the algebra of sets is assumed. 

definition 1-1. A set R will be called a ring if R 

satisfies the following properties: 

PI. R is closed with respect to the binary operations 

(§> and *. These operations will be called "addition" 

and "multiplication." 

Pll. If a, b, c £R, then the following properties are true: 

CI) a ® (b ® c) * (a (g> b) €> c 

(2) a*(b*c) « (a*b)*c 

(3) a © b s b ® a 

(4) a*(b ® c) « a*b ® a*c 

(5) (b ® c)*a » b*a ® c*a 

PHI. There exists an element o £R such that 0 © a a a 

for every a£R. 

PIV. Given a £Rt there is an x£R such that x © a » 0. 

Note that the o£R is not necessarily the real number 

zero. 



2 

The following systems are examples of rings. 

Example 1-1. Let V denote the set consisting of the 

totality of ordered n-tuples of real numbers. Let 

** 85 ^2* "* a n d ® ®2* *** B^^be element® of V. 
rt ® > - [ w v v - *»* v 
^ *B = Ccx B , <*B , ... * B 

1 1 1 ' 2 2 n n 

V is clos«td under the operations of ® and * sine# the real 

number system is closed with respect to addition and multi-

plication. Therefore, PI is satisfied. Da© to the corre-

sponding properties of real numbers, PII is satisfied. For 

Pill let 0 a 0 * where 0^ is the real number 

zero. Therefore 0 ® «- * In order to satisfy PIV, let 
X S rm (A } 

I V r n) * 

Then x © a « £0^ - c^( „ cy ... <x̂  . 0 2 ... 0, 

Therefore V is a ring with respect to ® and *, 

1-2. Suppose € is the elass of all functions f(x) 
of the real variable x defined and continuous on the closed 

interval [o, l] . If f, g €C, let (f $ g) <x) a f<x) + g(x) 

and (f*g) (x) « f(x).gCx). Since f(x) and g(x) are defined 

and continuous on [o,l] , f(x) + $(x) and f(x).g(x) are also 

defined and continuous on fo,l] . Therefore, (f © g) (x) 

and <f*g) (x) E. c and PI is satisfied. Again PII is satisfied 

due to the corresponding properties of real numbers. 
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Let e(x) 2 0 for x e [o,l] . Sine© e(x) la defined 

and continuous on [o,l] , e(x) £ C« 

(a ® f) <x) » e(x) + f(x> 

« 0 + f(x) 

« f(x). 

Hence PIII is satisfied. Finally if f(x) e C, • f(x) also 

belongs t© G and PIV follows since (f ® -f) (x) « f(x)-f(x)*0. 

Therefore C is a ring. 

Example 1*3. Let F denote the set of rational numbers 

and let x and y be indetenainants. Then the set of poly-

nomial® in x and y with ©©efficients in F is a ring. It is 

from this ring that an important example will be constructed 

in Chapter III. 

Some basic properties of a ring are stated In the following 

four lemmas. 

Lemma 1*1. Given a £ R, the element x e R such that 

x $ a « 0 is unique and will be denoted by the symbol -a. 

Proof: Let y be any element of E such that y <$ a • 0. 

X ® a as y a 

(x ® a) ® X « (y ® a) 68> ac 

x ® (a @ x) « y © (a x) 

x ® 0 » y e> 0 

x * y. 
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!->» 0*a • a*0 * 0 f o r a 6 l« 

Proofs Lat a ,b GE» Siaoa b » b £) 0, b*a » (b 0 0 ) * * « 

b*a $ 0*a. 

•b*a ® b*a » *>b*a €> <b*a ® 0*a) 

0 « <-b*a ® b*a) ® 0*a 

0 • 0 ® 0*a 

© « o #a 

Im a a l a i i a r ©aimer i t oa& bt sho«m that a*0 « 0* 

In—B» l«3» Suppoa* & 1 1 1 r ing . If S Is tha "au*" of 

aogr si aiaaaota of &» any in««rtiom of pmrmtimmB will f£«14 

tbs aaaa "ram** 8* 

Proof by indnotion: For a * 1 tha roault 1« t r i v i a l , 

fo r (* 2 <§) a^) » 
Jfc» al ® ^ MX* l » i 1» indapaadant of tha aanoar in 

which parMthiMt ara LiMrt«4. 
k k 
£ a . • *. ® £ A , 
1 1 2 1 

k k 
f i ® V i - \ ® | ' i ® V i 

/k 

" * i ® ( 2 
v 2 

®*Wl 

t» l 
» £ a,« 



Since, inside aaoh parenthesis there are exactly x 

elements, parentheses may be inserted in any* way desired 
k+1 

about these k elements. Therefore $ a, is independent 
I 

of parenthesesf hence this is true for any positive integer n. 

The proof for * is similar. 

Lemma !-*». If a,c £ R. then -<a*c) = -a*c = a*(~c). 

Proof; If ceR, then c © -c ® 0. 

But a*(c ® -e) s a*c ® a*(~c) = 0. 

By lemma 1-1, -<a*c) is unique. Therefore, a*(«c) = «(&*c) 

Similarly it can be shown that ~(a*o) = - a*c. . 

In certain algebraic systems some of the properties of 

a ring may be replaced with equivalent, properties. It will 

be assumed that these algebraic systems are non-empty. 

Theorem 1-1. Suppose R is an algebraic system with all 

the properties of a ring except for Pill and PIV. R is a 

ring if and only if for a,b £ R the equation a © x * b has 

a solution in R. 

Proofs Suppose for a,b £R the equation a ® x a b has 

a solution in R. In particular, there is x e R such that 

a ® x a a and there is a y e R such that b ® y » b. Further-

more there are elements y', x' e R such that a © y' = y and 

b ® x' ss x • But y = a ® y' s a x ® y' ® a ® y * ® x ^ y @ x 

and x a b ® x' B b ® y ® x' ~ b © x * ® y a x ® y ~ y @ x . 

Therefore, x = y and the existence of a zero is established. 



For 0|m € R tb* aquation a ® x « 0 al»® bus a solution. 

Thia f ac t oatabliafeos PIV. Gonvorsoly, If R if i ring f o r 

«,b 6. E «fc* aquation a ® x « b Km a solution in R. Namely 

x * b ® -a . 

Tbaoraa l»<» Ijafe a bo an algobraio system wbieli, oxoopt 

f o r oowoutotivity of © i s a ring;. If a*b » a*c with a / 0 

iapliaa b * ©t than R l i « ring* 

Proofa Imt a»b £ &• Tten a ® b and b @ a £ R« Lot 

o dotioto any non-ear© olomtnt of R„ u*(a <§) b> and 

<*©•(& ® a) £ 8U 

e*C&®b> » ©*a(D,@*b 

~o*(b (J) a} * ~c*b ® -*0*0 

|o*(a ® b)J ® j^o*<b <§) a)j « j(o*a) ® <o*b)} ® j(-o*b) ® <-o*a>] 

» ^(c*a) ® C -o*a)j ® ^(o*b) © <-o*b)^ 

» 0 © 0 

» 0 

Tboroforo o*(a <$) b) » o*(b ® a); bono® « £> b * b<§) a and 

It io a ring* 

Tbaorest 1»3» Supposo t aid S are t m diat inot rings* 

Lot EX1 donoto tbo oot of a l l ordorad pairs (a ,b) uboro 

& € a and b € S. Than RXS i s a ring if "addition" and 

"multiplication" aro dofinod in tba following wmmr: 

( • tb ) ^ (o#d) (a ® re, b ®#d) 

(a»b)*<o»d) «d («*ro» 



Proof: 19®te tha t PI is satisfied since c, a*r c&R 

and b ® d, b* A es because both R and S are rings. Let ( a , b ) , 
S & 

( c f d ) , ( h , f ) e R x s . Then £ ( a , b ) $ ( c , d ) J ® ( h , f ) * 

Ka ® c b ® d) ® (h»f) » ( a ® e ® b, b ® d © £) and 
1 Si J T T s a 

(a»b) © | < c f d ) ® (h,£)J « (a#b) €> j(o ®rht d © # f ) s 

(a ®rc ®rh» b ®gd ©gf). 

The remaining properties of PII can be shown in a similar 

manner. Sine© both R and S are rings they each contain a zero. 

Denote these elements as 0 and CT. If (a,b)6.RXS, then 

(a,b) 9 (O*?) * (a ®ro, b ©s£f) ® (a,b), Hence (0,5") is the 

aero for RXS. Finally if ( a , b )£ R xs then (-a,»b)£RXS. 

(a,b) ® C-a^-b) « Ca ®r-a, b ®8-b) » (0,5). Therefore R X s 

is a ring. 

Definition 1-2. A subset S of a ring R is a subring 

of R if S is a ring with respect to the operations of 9 and 

* in R. 

An equivalent definition for subring is the basis for 

the next theorem. 

Theorem 1-4. A non-empty subset S of a ring R is a 

subring of R if and only if for a,b£S a ®~b and a*b are 

elements of S. 

Proofs For a,b6S suppose a*b and a ® -b are elements 

of S. Therefore, S is closed with respect t o *. If a e S 
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then a © ~a ~ 0 €S. Since 0»b € S, 0 ® -b e S. Therefore 

a ® -(0 ® €.S« 

-co ® -b) ® (o m -b) « o 

-Co ® -b) ® ~b s 0 

-(0 ® -b) ® -b ® b « b 

-(0 <$> -b) » b 

Therefore, a ® b &S hence S is closed under ®. All 

part® of PII hold since S QR» Sine# the aero of R is an 

element of S» fill is satisfied* If a is any element of S, 

0 $ « a i i also an element of S. Since a ® -a » 0 PIV is 

satisfied and S is a sabring of R. Conversely, if S is a 

sabring of R for a»b£3 a*b €S. Furthermore if b €S,-b6S. 

Since S is closed a <f> -b 6S and the proof is complete. 

In general, not all rings are commutative with respect 

to *. Furthermore, it is net necessary for all rings to have 

what is termed a unity element. 

Definition 1-3. A ring 1 i® said to be a commutative 

ring if a*fo « b*a for all a,b£R, 

Definition 1-%. An element h of a ring R is said to 

be a unity element of R if a*h » h*a * a for every element 

a £R. 

Obviously, if R has a unity element it is unique. 

Definition 1*5. Let a denote a non-aero element of a 

ring R. If there exists a beR# b/©» such that either a*b » 0 

o r b * a « 0, a will be called a divisor of zero. 
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Xii view mi flit preadding definition#, the following 

thru* thmmnmm can now be stated and proved. 

Theores 1-5. Suppose S is a ring with a finite muster 

of eleoettto whioh haa a unity element h, but whioh has no 

divieora of 0. Then for a £R, ajfe, there it m x 6 R such 

that a*x » h* 

Proofs lAt ja^, a2, a3# ... af|J « R. Sinoe 1 haa a 

unity element h, h is soma a^. Without loaa of generality 

that » h* How assume that there la as a €R, a/0, 

•uch that a*x / h for any x € R. Again without loaa of 

generality denote thia particular element aa a^. Oonaider 

the si produota ©f the for® a2*®j,, where j * 1,2, ... n. Hone 

of theae prodoota ia equal to h. Since n producta have been 

famed and ainoe no produot ia equal to e^, there are at moat 

n-l distinct reaulte. Kenoe, two of the prodoota formed in 

thia prooeaa are identical. Therefore, a2*ar « aa*af. There 

exiata -t§ e r# Furthermore, ainoe a2*(a# e -a#) « a2*o « 0, 

V a « ® * 0. Sinoe a2*«r * a2*ae» a2^ar <$ a2*( -ag) » o. 

But a2*ar ® a2*(-aa> « a2*(ar ® . a8) ** ©» henoe either «2 ® 0 

or «r ® * © since E ha# no divisorc of Q» a^O by 

hypothesis. Therefore, a ® .a * 0 henoe a. * a . At thia 
m * B 

point a contradiction haa been reached ainoe ar / « , 

Therefore the assumption that there is no x € R aueh that 

a2*K » h ia falae and the proof is complete. 
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Theorem 1-6. A ring R is free o£ divisor® of aero if, 

and only if, the following cancellation law holds. The 

equalities a*b » a*e and b*a « c*a imply that b • c, if 

a / 0, for oth*rwi«« arbitrary elements a,b,c 6 R. 

Proof: Suppose R has no divisor of aero. If 

a*b » &*6f a*b ® C-a*e) * 0. ly lemma 1-k -a*© » a*(-e). 

Therefore a*b 0 (~a*e) * a*b @ a*{-©) « a*(b & -e) * 0. 

Sine® R has no divisors of aero, either a • 0 or 

b # -c = 0. By hypothesis a / 0. Therefore b ® -e = 0. 

b ® -e » 0 

b ® ~ e ® c * 0 © c 

b ® 0 « 0 © c 

b « o. 

In a similar maimer it can be shown that if 

b*a * o*a, a/Q then b = c. Conversely, if a*b « a*c and 

b*a » c*a imply b * e, suppose a*b « 0 with a / 0. Since 

0 * a*0, a*b « a*©. Hence, b « 0. In a similar manner it 

can be shown that if b*a » 0, then b * 0. 

Theorem 1*7. Let a be an element of a ring R which has 

no divisors of zero. If a*a • a,a/0, then a is a unity for R. 

Proofi If b 6 R, then b*a and b*(a*a) are also elements 

of R. Since a* a * a, b*a « b*(&*a). By PII, b*(a*a) = 

(b*a)*a • b*a. Therefore, b*a • b by theorem 1*6. in 

addition both a*b acid (a*a)*b are elements of R. Onee again 
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a*(a*b) * a*b. Therefore by theorem 1-6 a*fe » Is. Sine* 

a*b • b*a * b, a if * unity for R* 

Definition 1-6. Suppose (R, <§> , *) and (%» @i»*x> «re 

rings. Let 0 denote a mapping of R into R^. If 

0(& % b) « /(a) |f(b> and jri(a*b> • 0(&)*t0(b) for all 

a,b£R, t U said to b. a homomorphi™ of R into Rt. 

Furthermore, t£ 0 ie & one-to-one mapping of R onto R^f 0 

is called an isomorphism of R onto R^* 

Two basic properties of homomorphisms are stated in 

the following lemma. 

1-5. Let 0 denote a hotaomorphism of R into R^. 

If 0 is the aero of R, then 0(B) is the zero of R^. in 

addition if a^R, 0(-&) » -0(a), 

Proof: Given aei, 0(a ® Q) » /(a) ® L 0(0), Since 

0(* ® 0) « 0(&)t A*)
 9 ¥<*> ® i 0(0), Since Rl is a ring 

«/(a>€R such that 0(A) ® (-^<a)) » where 5" is the 

aero of R^. Henee S" « 5 ® ^ 0(0) « ̂ (0). Also given aeR, 

0(a ® -a) * ̂ (a) ® ^ 0(~m), However* ĵ <a <§> -a) « 5". 

Therefore, U * f£(a) j^Oa}. 

-0(») ®1o- -0(A) ^(a) ^(-a) 

~0(&) * C 0(~a) 

=» ̂ (-a). 

In view of lemma 1-5, theorem 1-8 follows immediately. 
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Theorem 1-8, If / is a homomorphism of R into R^, 

Rl/ =d ̂ /(a) / a 6 r] is a subring of 1^. 

Proof: Suppose /(a), /(b) 6 R^/. Since / is a homo-

morphism, /(a) /(b) « /(a*b). Hence /(a)*^/(b) 6 R^/« 

If /(b) 6 R̂ /» b £ R. Hence -b€.R and j({(-b) £R^. Due 

to lemma 1-5 /(a) ®L /(-b) = /(a) ̂  -/(b). Since /(a) & x /(-fc) s 

/(a) © - /(b) » /(a -b), /(a) ̂  - /(b) £ Rj/ and R^/ 

is a subring of R-̂  by theorem 1-4. 

In theorem 1-3 it was shown that if R and S are two 

rings, then R X S is a ring with suitable definitions for 

<$ and *. The next theorem illustrates a homomorphisra of 

a X S into R X S. 

Theorem 1-9. Let Rx S be the ring of theorem 1-3. 

Then the mappings / and defined by / |T(a,b)J « (a,o) 

and f (a,b)J = (o,b) are homomorphisms. 

Proof: / f(a,b) © (c,d)J « / (a ®rc, b ®sd)J = (a ®rc,o). 

/ £(a,b)J © / (c,d)J = (a,o) © (c,o) = (a ©rc,o). Therefore, 

/ (a,b) © (c,d)J = / |(a,b)] €> / j(c,d)J . In regard to *, 

/ (a,b)*(c#d)J = / |̂ (a*rc,b*Bd)] = (a*rc,o). 

/ £(af b)j*/ jj(cfd)] « (a,o)*(c,o) = (a*rc,o). Hence 

/ £(a,b)*(e,d)J = / £(a#b)J * / [(c,d)] . Therefore / is 

a homomorphism of R A" S into R XS. In the same manner it can 

be shown that <f~ is a homomorphism of R X S into R XS. 
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Example 1-%. Consider the ring of 2X2 matricies over 
r/a cYj 

the real numbers. The mapping / such that / |\b &)) = a is 

not a homoiaorphisia into the real number# since 

/ (o 2 ) (l o). * / [(& 3] « 2, while / (o o)] */ _(l ©)]* 

CDC©) « o. 

If R is a ring, there are situation® in which consideration 

of a ring which contains a sabring isomorphic to R may be of 

interest* 

Theorem 1*10, If $ is & ring* and T is a set of elements 

in a one-to-one correspondence with the elements of S, then 

and may be defined in T in such a way that T is a ring 

isomorphic to S CI* p» 83)• 

Proof: Since S and T are in a one-to-one correspondence 

/, let ip it—»$ such that if a G S then /Ca) € S and ~^C/Ce))« a. 

Define ̂  in T to be /Ca) (Ŝ /Cb) » /(.a ® b) and define * such 
4i# 

that /Ca)*j/(b) a /(a*b), properties PI and PII are immediately 

obvious since 8 is a ring. Let x £T. There is an a 6 s such 

that /Ca) « x. But /Ca) ®L /Co) « /(a ® o) » /Ca) which satis-

fies Fill. In addition, /Ca) ® /C-&) ™ /Co) which satisfies 

PIV. 

Suppose x#y £T then x « /Ca) and y « /Cb) for some 

afb 6 S. Since T̂ C/C®),) ® (/Cb)) » a b end 

^C/Ca) ̂  /Cb)) « #(/Ca $ b)) « a © b, -p(/(m)) ®y,(frb)) * 

>(/Ca) /(b); . 
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Similarly yijiia)) * y (/(b)) = a*b and ]£(/<«)* /(b)) a 

% (/( a*b) ) = a*b» Henca #f/(a)) * ̂ O(b)) « ̂ ^(a)\/(b>) . 

therefore T is isomorphic to S since ]6ig a ®ne-to«one onto 

mapping that preserves the operations. 

Theorem l-ll. If R and $ are rings with no elements in 

common, and S contains a sabring which is isomorphic to R, 

there exist# a ring T which is isomorphic to S and which 

contains R as a subring (I, p. 83). 

Proof: Let T * R U ̂  x 6 sjx^s^j and let / denote 

the isomorphism between and R, Suppose x £ s. Let 

y>(x) « X if X 6 SL and >(x) * /<x) if x 6 The 

mapping is well defined since R and S are disjoint. 

Let x 6 T then either x € R or x e £ x e s | x i S 1 } • 

If x £R then there is an a £ S, such that x » /(a). 

Therefore x * T^(a). If xejxesj x ^ then y-(x) « x. 

Hence l£> is an onto mapping. Let x,y €. s. Suppose >J(x) « ^(y>. 

Since x £S, VC*) » x or ^,(x) » /(x). if ^(x) * x, then 

x * lA-(y). Since y £S» y>(y) • y or y^Cy) « /(y). Suppose 

ipiy) » /(y), then /(y) « x and x £ R. This is impossible 

since R and a are disjoint. Secondly if y,(x) * /(x)# then 

/(x) = }6(y). Since y £ S» 1/,(y) / y . Therefore (y) a /(y), 

Since ^ is a one-to-one mapping x«y. Therefore If* is a one-

to-one onto mapping. All that remains is to observe that S 

and T are in a one-to-one correspondence and apply theorem l»10. 
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E is a subring of T since if x,y £ R, x = a) and y = ̂ (b) 

for some pair a,b 6 S^. Since /(&)* jrf(b) « j£(a*b), x*y 6 R 

because a*b€ S^. In addition /(a) ® ~^(b) = jrf(a ®^-b) and 

since is a subring x © -y £. R. Therefore R is a subring 

of T. 

The remainder of this chapter will deal with a special 

type of ring known as a. Boolean ring. 

Definition 1-7. A ring R is said to be a Boolean ring 

if for every a £ Rf a*a = a. 

Example 1-5. Let H denote any set* Suppose X - £x/x 

is a subset of . If A^H, then A1 - £ x/x £H and x <£ A^ . 

Suppose A#B 6. X. Define A® B 5 (AUB)/1 (A HB)1 and A*B 5 A OB. 

With these operations X is a Boolean ring. 

X is closed since both A ® B and A*B are subsets of H. 

Before proceeding further it will be convenient to develop 

an equivalent expression for A © B. 

(AUB)n(ADB)' 5 [aH(A flB) ' 

= [ A H C A W ) 

U ^ B 0 (A HB)'J 
U ^BHCA'U B* ) J 

= [(AnA')U(AnB')] U (B f)A') U(B 03* )J 

= (AOB') UCB/1A') . 

The verification of all parts of PIl will now be examined 

in detail. 
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<1> A @ (B ® C) = [ A H ( B ® 0 ) ' ] U[(B € > C ) n A ' ] 

» [A n [ ( B O G , > U{C 0 1 * ) ) ] 

U[[(B n a ' > u ( c O B ' ) } O A ' J 

* [A N [ ( B N C ' J ' R K C N B ' ) } ] 

U [ { ( B n c ' ) HA*] u [ ( G O B ' ) A A ' 3 ] 

s [ A n { ( B ' u c ) r u c ' u B > } ] 

U[[(B H C ^ O A ' ] U {(C O B ' ) O A ' 3 ] 

= [A O(B ' UCYNC* UB)] 

UFFISNC') DA*] U [(ENS') RIA'J] 

• [ [ (A FLB*) U C A H C ) } 0*UB)]' 

U[[<B n c ' j n A ' ] u [ c c r i B ' j n A ' J J 

» ( [ ( A H B ' ) u ( A N C ) ] n c 'J 

u([(A HB') U ( A n c ) ] fl b ) 

U ^ B N C ' J N A * } U ^ C A S ' ) ] ^ ' ] 

« CAPiB' n c ' ) U C A n c n c ' ) U<AHB AG) 

u [ [ ( B n c ' ) A A ' J u [ ( G O B ' ) ^ A ' J ] 

« ( A n i ' n c ' ) u C A a s n c ) ^ ( b a c ' o a ' ) 

u c c n s ' n A ) . 



(A ® 1) © G « jjA G> B) DC'J 0 [CD(A® B)'] 

* [{<A OB*) U(B OA*)} A c'J 

u[c a {(aob') u (boa')J J 

« [caab'AG') C/(B da* AG*)] 

u[o n [ ( A 0 i , ) , n { i o A f ) ^ ] 

* [(AHB* AC ) U(s ha' AC*)] 

u[c A [(a'ub) nci'uA)] J 
* [(A OB f Ac') U (B OA* no')] 

u[cn(A' UB) o(b' UA)J 
» [ (A AB* A c ' ) U (B h a ' A C ) J 

u [ [ ( C AAf) U (CAB) ] ACB'UA) 

* [ C A A B r A C 1 ) U ( B HA* A C) 

u[[(c HA') A<B* UA)] t; {(CnB) A(B'ua)JJ 
» [(A A b ' a c ' ) U (B Aa' AC 1 ) ] 

ULCC nA'AB')U(CAA nA')U(C OBf)A)J 
- rCAn. 'no ' )ucin4 'nog 

U[<C DA* A B f ) U(C AB A A ) ] 

= (A OB AC ) U(B A A AC*) U(CAA'A B') 
U(C A B AA) v 

Htnce A ® (B ® C) s (A ® B) ® c, 
(2) A*(B*C) * A A(B AC) . 

(A*B)*C « <A HB) AC a A A(B AC). 
Hence <A*B)*C * A*(B*C). 

17 
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(3) A ® 1 « (A UB) n(AnB)' 

B © A a (B UA) n(B HA)f 

Sine® A UB = B UA and A OB « BOA, A © B « B ® A. 

W a*(b © o = a n [(b uc> n(B no>'J 

a A O(BUC) n(l nc)1 

» [(AOB) U(AHC)] n (b'uc') 

« [(AOB) 0<b' UC*)] U ]~__(A nc) nCB* uc')] 

* (A OB OB1) L>(AOB He') U < A A C OB*) 

UCAAGno') 

« (AOB no') UCAOCnB*), 

A*B ® A*G * kA OB) ® CA HC)' 
1 I 

* [(A PiB) U(AAC)] O [(AOB) H(A HQ)] 

» [_<a ob) u(a nc)J n [(a'ui'juca'uc')] 

* Lcaob) U(AOO)] n |A' ub'UG'J 

* ((A OB) n [ a ' U B W J ) U ((A OC) O [ V U B W J ) 

* (A OB OA* ) U ( A O B OB') UUfiB DC') 

U(AOCOa') U (A 0 C! OB* ) U (A OC Oc') 

» (A OB OC*) U (A OC 0B?). 

Therefore A*(B © C) ~ A*B ® A*G. 

(5) A tlnllar proof holds for (B © G)t A. 

In the verification of Pill and PI?, 0 will denote the 

empty set. 
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jf@A » t0UA}n<Ar)0' 

m kf)$* 

» A m 

« A . 

Hanoa i s tha » r # f o r X . 

A © A « < A U A ) D (A HA) * 

* aoa" 

a 0. 

Tfearafora A » 4 and P I? i s s a t i s f i e d , 

sinoa A*A « A HA « A, X i s a Boolaan r i n g . 

Example 1*6, Til® set K « [ o , l , a , b^v i th @ and * 

def ined as fo l lows i s ® Boolean r i n g ( l f p . I kO} # 

F a r t h a m o r ® 

0 

I 
* 

b 

© l a b 

o 1 * b 

l o b s 

a b © 1 

b * 1 o 

0 

1 

a 

b 

o 1 a b 

0 0 0 0 

o i a b 

o a a o 

o b © b 

Thaoratn %•»%%» Ths Boolean r i n g K i s isomorphic t o the 

r i n g o f * 1 1 subsets o f s two element s e t . 

Proofs Lot £x#y$ denote a two element s a t , Ths subsets 

o f [x,y] are [x}# [ y } , £x ,y ] and Therefore the r i n g o f 

subsets X o f [*»jr3 i t # £y} , £ * # y j and 

L e t I r i n i capping o f K on to X snob t h a t 2T(o) » 0 / ( 1 ) « 

[ * » * 3 » ^<»> * £*3 # «ad ^ ( b ) • £ y j . U P i s any a l««ent 
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of K if Co*p) ® if Co) ~ $ and if Co) D if Cp) ~ Likewise 

if (p*o) « /Cp) D Co) = /f. .Again if P 1 ® an element of K, 

^<l*p) = <fcp> « /Cp*l). While <TCD 0 /Cp) ~ [x9yj f) XCp) 

= ̂ Cp) since Cp)C [x,y j . Finally Ka*b) = ^ Cb*a) 

since a*b » b*a = o. Therefore if Ca*b) = Since 

<T(«) 0 Cb) = [x ̂  n £y ] « jdt, (TCa*b) « /Ca) fl ̂Cb). In a 

similar manner it ©an be shown X Cp) @ ^(q) « <TCp © q) 

where p,q €K. Henae K is isomorphic to the ring of subsets 

of a two element set. 

Both example 1-5 and example 1-6 were commutative 

ring# a© well as Boolean rings• This is, in fact, true 

for all Boolean rings. 

Lemma 1-6. Let R be a Boolean ring. If a€R, a © a = o. 

Proof: Ca ® a)*Ca ® a ) ® {a® a)*a © Ca ® a)*a 

» a*a ® a*a ® a*a ® a*a 

« a ® a ® a © a . 

Since a © a = a ® a ® a ® a, 

-a © a © a €> ~a =»a © a © a ® a © a © ~ a 

© @ o = o ® a ® a ® o 

o =s a © a. 

Theorem 1-13 * If R is a Boolean ring, then R is a 

eoramutative ring. 

Proof: Let a,b€:R. 
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( a ® b ) * ( a © b) = (a §> b )*a ® (a © b)*b 

» a*a ® b*a ® a*b ® fe*b 

« a ® b*a @ a*b ® b . 

Therefor© a © b * a ® b*a © a*b © b 

»a © a © b ® «*b » a @ a @ b*a ® a*b ® b ® *t> 

o * b*a © a*b. 

T h e r e f o r e b*a « »(a*b). By lemma 1 - 6 b*a © b*a » 0 . 

Hence b*a * - ( b * a > . Then by lemma 1*1, ~(b*a) « «(a*b) and 

b*a « a*b £©llews. 
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CHAPTER II 

IDEALS 

Ito the study of rings, a special type ®£ subring plays 

a prominent role, This chapter will examine this type ©f 

subring known a* an ideal. 

Definition 3*1. A non-empty •«b*«t S of a ring R is 

called m ideal in R if for a,b £ St a ® -b e s, and whenever 

a 6 S| a*r and r*a belong to S for every r e R. 

Theorem 2»l. If Sj. is a collection of ideals in 

R, then fi SJL is an ideal in R, 

Proof: Suppose a,b € 0 . Then a and b are elements 

of each hence a ® -b is an element of each Ŝ . since each 

is an ideal. Therefore a ® - b e , Since a is an 

element of each , r*a and a*r are elements of each Sy. 

for r e r because each S^. is an ideal. Hence a*r, r*a 

en S?. for r e R, Hence 0 is an ideal in R. Note that 

o €(\S7 SO that n s?. / jS. 

Definition 2*2. Suppose A and B are sets. Let ® and * 

denote binary operations defined on A and 1. Define 

A 9 B* £x @ y/x e A, y e b] . If at is a f iaced element of 

A, then a1 ® B ® ̂ al ® b/b€B^and A*a 5 [•*»]/« £ A ] . 

23 
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Before wi th tha study of i d e a l s , I t w i l l 

be neoeaaaxy t o p r o m t h e fo l lowing theorem which dea l s wi th 

aubringa in g e n e r a l . 

2*2, Suppose & i s a r i n g and B i s a subr ing 

i n R. I f t&i ® B)D <c r ® B) / t!um ^ <D B * ^ <$> B. 

Proofs Suppoee <a^ ® 8 ) 0 ( 1 ^ • B) / Henae t h e r e 

is a p £(*i ® »>f | (a-^ ® B)» Therefore p » ® r and 

p » <§> s where r , a £ B. Suppoee x e n ^ « B, then 

m w a^ ® t where t €B. Sine® p « e^ <$ r , a^ * p ® *r# 

bat €> « ® C ~ r ) . Therefore k * $ i $ (*r> @> t 

* ®> (# $ O r ) ® t ) . However S l i • eubring and i s oioeed 

bonce S ® <- r ) ® t £B. Therefore x € o t ® B and a^ <$> BC©^ ® I . 

Oonveraely eoppoae x £ o l ® Bt than x * &x ® h where h e | . 

But ©x » p « -a • a^® r 9 ( - a ) , Hanoe x * ® r 9 <-e) ® h 

* a^ # <r ® ( * • ) # h ) . Therefore x £.a^ ® By and * B ^ a ^ ® I , 

I f y i« a homotaorphifiBi b e t m n two r i n g s ft and ft , an 

i d e e l can be oonetruoted in R with reepeot t o y • 

Theorem 2-3» Let be a hoaumorphiea of R onto IT. 

t han t h e s e t of aWaanta N y » If <T * £ a € R / y<a) « o j , 

i a an i daa i i n R. 
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P r o o f : i s non-empty s i n c e /(O) ® I?. Suppose 

a , b e m • Then ^ ( a ) * ® and <T(b) « U. S ince H&® -b ) 

« / ( a ) $ / ( - b ) « / ( a ) ® r<b) by lemma 1 - 5 , <T(a ® -b ) 

w ? g) ~£f & T h e r e f o r e © ® ~b£ lW » Suppose 

a e Ny and l e t r e R. Then ^ ( r * a ) » X ( r ) * / ( a ) * HT and 

/ ( a * r ) » ^ ( a ) t ^ ( r ) » 5% / ( r ) * CF* T h e r e f o r e Ncf i s 

an i d e a l i n R, 

In view of theorem 2-2 i f B i® an i d e a l i n R, an 

impor tan t r i n g can be c o n s t r u c t e d w i t h r e s p e c t t o B. 

Theorem 2-4 . Suppose R i s a r i n g and B i s an i d e a l i n 

R, The s e t D * £ a @ B/ a e R^ w i th a p p r o p r i a t e o p e r a t i o n s 

i s a r i n g . 

P r o o f : Suppose * $ B, b # B 6 D. Def ine ( a ® B) $ ( b <3 1 ) 

« ( a ® b ) d B m 4 ( a ® B)*(b@B) « (&*b) « B. Sinoe t h e e lements 

of D a r e s e t s , i t i s n e c e s s a r y t o show t h a t <3 and * a r e wel l 

d e f i n e d , Suppose a $ B * a ' 9 B and b 0 B « b* <3 B. L e t 

x 6 ( a f b) ® B, Then x * ( a § b) <$> r where r e B . S inee 

a ' ® B and be b ' ® B, a * a ' @ t and b * b* ($> a where 

s » t £ B . T h e r e f o r e x ® (a' ® t) ® (b* ® s ) § r » (a* <$> b ' ) 

® it ® s © r ) * Because B i s a s u b r i n g , t g s | r 6 B , 

Hence x € (a* 0 b ' ) g) B. T h e r e f o r e by theorem 2-2 , 

<a (& b) ® B a (a* © b*) 0 i , now l e t x £ a*b (f) B. Hence 

x = a*b $ r where r £ B . S ince a « a* @ t and b » b ' ® s t 

a*b » (a* <$> t ) * ( b ' ® s ) * a ^ b 1 ® a ' * s <$> t*b* ® t*s* But 

B i® an i d e a l , so a**®, t * b % and t * a a r e e lements ®f B« 



26 

Heuce &'*a 9 t*b* 9 fc*a£B. therefore x6a'*l>' © ® aM by 

fcls®®r«8i 2-2 a*b 9 B • a**b* ® B. Hanaa 9 «n4 * arm wall 

defined. 

Obviously PI ia aatisflad ainea R i s a ring* A 

verification of FIX wil l now be given. 

a > 

tt 

C® 9 i> 9 (b 9 B)J 9 (e S) « 
<a 9 b) 9 e 

a # (b » e) 

* <a 9 8} « 

<a 9 b> 9 B 
1 

9 B 

© B 

j<b 9 ©} © B 

9 Ce 9 B) 

(2) <a 9 B) * 

Cb ® B) ® Ce 9 B) 

<b*o) a B 

a (a © B) ® 

<b 9 B)*(c a B)J » (a ® B>* 

• a*(b*e)J ® B 

» <a*b)*ej % B 

«[(a*b) & bJ *<® • B) 

• j<* % B)*(b 9 B)J *<c ® B). 

(3) (a & B) ® Cb 9 B) » ( a 9 b) ® B 

» <b 9 a) 9 B 

• (b ® 8) 9 (a ® B). 

(*0 Ca ® 8)* (b © 8) 9 (« 9 B) 

a*(b 9 c) 

* (ft 9 B)* 

6 B 

a*b ® a*ej 9 B 
J 

(b 9 a) €> B 

» [c«*b) 9 B] 9 [<a*a) ® i j 

» (a © B)*(b 9 B) 9 (a 9 B)*(e ® B), 



27 

(5) Verification is similar to (4). 

Therefore FIX is satisfied. If o is the zero of R, 

then (a ® B) ® (o ® B) » (a €> o) © B « a © B. Hence o €> B 

is the zero for D. In conclusion if a $ ie&, then *a£R, 

But (a © B) (~a ® B) * (a ® -a) ® B * o ® B, so -a ® B 

is the inverse with respect to ® for a $ B€D. Therefore 

D is a ring. 

If R is a ring and B is an ideal, the ring D of theorem 

a«4 will be denoted as R/B. Recalling the ideal N/ of theorem 

2*3 furnishes theorem 2-5. 

Theorem 2~5. Suppose (R» ® , *> and R^, © 1, *^> are 

two rings* Let Y be a homomorphism of R onto R^. Then the 

ring R/W is isomorphic to R^. 

Proof? Let 9- be the mapping of R/W into R defined 

by f (a ® 1© * if (a) for a £ R. First it is necessary to 

show that ̂  is well defined. Suppose a ® * b ® N 

hence b 6 a ® NJ * Therefore b « a €> x when xeN^ . But 

^(b) • <f (a ® x) * /(a) <̂ (x) « <T<a) 0^ « <^(a). 

Hence il a ® N<T * b $ , ^<a @ Ncf ) = ^(b $ M <f) and 

is well-defined. Suppose now that ^(a © N£ * ^ (b ® NO. 

Then if (a) « ^(b). Hence /(a) 9^- /(b) » ol » ^<a ® ~b). 

Therefore a @ -b C.Nd' and since a * a ® b ® « * b » b ® (a® -b), 

a & N/ « b ® by theorem 2«2» Therefore is a one-to-one 

mapping. This mapping is an onto mapping since / is an onto 
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mapping. All that remains is to show that y- preserves the 

operations. 

Ca ® ® C b © M ^ ) J m *f 

* C a ® b) 

* H a) 

(a m>> ® N<r 

* f*(a $ N<r ) /(b © N* }. 

^ [C* ® N }r )*(b & W )] * <f- j^Ca*b) © N<rJ 

« ^Ca*b) 

« /(a)^ ^(b) 

«^[a ® w j *L ̂ [b ® wrj . 

In the study of ideals, there are a number of different'; 

type® of Meals. The next two definitions serve as a start 

for a closer investigation of types of ideals. 

Definition 2*3. Let R be a ring; and let M be an arbitrary 

aon-empty subset of R. The intersection of all ideal® con-

taining M is called the ideal generated by M and is denoted 

by CM). An ideal generated by a single element is called 

a principal ideal. 

Definition 1-4. Let R be a ring and let 1 denote an 

ideal in R. If B has the property that when a*b B, either 

a€ B or b€B? then B is called a prime ideal. 

Theorem 2*6. Suppose R is a ring and CM) is the ideal 

generated by an arbitrary non-empty set of elements in Rj 

then <M) is the "smallest" ideal in R containing M. 
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Proof: In ordar to prrnm tkm&rm 2-6, it is naeaaseary 

to show that CM) £= I vhara B is any idaal containing M. 

Tha proof follow® ianadiataly from tha definition of (N){ 

®ii*ea if x e (H) , x is an alanant of m r y ideal containing 

M* Hence in pirtlottlar xe B. Therefore (M)c.B for any 

ideal B vhleh oontaina M. Hanoo CM) ia the amalleat ideal 

in E containing M. 

Theorem Z-7. Lat I denote tha ring of integers under 

• and • „ Suppose tel. Tha set H « £x& i/x » ka.Ve I Jig 

(a). 

Proof: Lat xfyeH, Than x » ka and y * k*a. Since 

x"*y » (k«k )a# x*y& H. If r e R and x H, rx • xr * rka « kra 

silica x « ka. Tharafora xreH. Note that oeH, ao that H 

ia non-eapty. Hanoa H ia an ideal. H contains a alnoa 

a » I. a. If B ia any idaal in I containing av kae B nhara 

k€|» Tharafora HQB. In particular Bat Ca) 9 u 

ainca Ca) ia a aubaat of any idaal containing a by theorem 

2-6. Tharafora C«) • if. 

Theorem ^ Suppose I ia tha ring of intagara and lat 

p tee a prlae integer. If Cp) ia tha principal idaal ganaratad 

by pt than avery non-aero eleaent of l/Cp) hat an invaree 

with raapact to tha multiplication in l/Cp). 

Proof: Since I contains tha unity alanant I, it oan 

fee aaaily verifiad that I • Cp) ia tha onlty for l/Cp). 
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There are at most p elements in l/Cp). This fact can be 

proved by shewing that given any integer it there is an 

integer h such that o^h^p-l and i • <p) » h •* Cp). If i 

is a positive integer# the proof is by induction. For 

i « 1, I ̂ p for any prime p. Choose h » 1 if 1 <p. If 

p * i» choose h » ©i since 1 * (i) » o • (I) because 

0 €l • CD and 0 6 0 • (1). Therefore I + (i) • e • CD 

by theorem 2-2. Suppose for i « k # k + ( p ) * h + C p ) where 

®<h£ p - i * If k • (p> * h • (p)y then jk + <p)J • [l + Cp)] 

» |h • (p)] • [l • Cp)[. Hence [k • ij • Cp) * [h • IJ + Cp). 

Since h<p-i, h • 1< p. If h • l<p, then h + I £p-1 and 

proof is complete, If h • 1 « p» then [_k 4 lj • (p) * o • (p) 

since peo • Cp). Therefore if i is a positive integer, there 

is an h such that o&h <p-I and i * (p) * h • (p). If i is 

a negative integer, i • Cp) » -i [ p - l j • Cp) since -i j^p-lj 

* -ip * i * i -ip * i * [*ipj . Therefore -i jjp-lj belongs to 

1 • (p) and - t [p-lj • (p). Hence i • Cp) » - i[p - l j • Cp) 

by theorem 2-2. Observe i - ip > o except for p • 1. If 

p « 1, choose h « o; since i * C D * o + (D« For i-ip^ o, 

[i-ipj • Cp) * h * Cp) for some h o Hence 

i • Cp) * h • <p) for o ^ h ^ p - l . Therefore l/Cp) can have 

at most p elements. 

Suppose a • Cp)» b • Cp) l/Cp) such that Ja * Cp)J*|b • (p)J * 

o * Cp) • Therefore ab • Cp) • o + (p ) . 
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Hence ab • kp. Since p is a. prim® integer if ab * kp, 

either a « rp ©r b » sp. If & = rp, n £o • (p) and a + (p) 

s o • (p). likewise if b » sp, b • (p> * 6 • <p). Therefore 

if [a • (P) ] b * Cp)j * o + (p), either a • (p) « 0 + Cp) 

or b • (p) » © • (p). Hence l/(p> has no divisors of zero. 

Since l/(p) also has only a finite number of elements each 

non-zero element of l/(p) has an inverse by theorem 1-5. 

Meals in the ring 1 have many desirable properties. 

One such property is dealt with in theorem 2-9. 

Theorem 2*9. If £â , a2, ... a^is any set of integers 

in the ring I, there exists m element a£ I such that 

(a) ® a2» •«* • 

Proof: Let the integer a denote the greatest common 

divisor of the integers a^, â » ... a^, Then 

(a) * (a^# a2i •** an). Since ae(a) and since by the 

Euclidean Algorithm, there exist integers x^t x2, Xj, 

t&mh that a a Xj.. a^ • x2?2 * ••• + Therefore 

a€^al» ®2 *** ®n^* Henee (a)c(a^t â » ... an) sinee (a) 

is a subset of any ideal containing a by theorem 2 -6 . 

Furthermore since a is the greatest common divisor of the 

integers a^t a^, an( a divides each integer. Therefore 

al 85 %aj ag * k2a$ . . . an * kna. Hence a^, ag» ... a^ 

are all elements of (a) which guarantees (alf a2, %)S<a). 
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Definition 2-5» Suppose R is„a ring. ' Let ae.R and 

n be a positive integer, Then ya*a* wil 1 be denoted 
n factors 

a" and \a@a® .«. «a/will be denoted as na. If n is a negative 
n factor* 

integer, na will mean v»a ® •*& ®, ... ® If n = o, na wilt 
n factors 

be © where © is the, sero element of R. 

Definition 2-6. An ideal » in a ring R is said to be 

a radical ideal if whenever a neB for some positive integer 

n, ae B. 

Definition 2-7. An ideal 1 in a ring R ia said to be 

right primary if for a*beB with a£ B» implies bne B for 

some positive integer n. An ideal 1 in a ring R is said 

to be left primary if whenever a*b€B with b^B» implies 

a n6B for some positive integer n. If B is both left and 

right primary 1 is said to be primary. 

Definition 2*8, A non-zero element a£R is called 

nilpotent if there exists a positive integer n such that 

a » o. 

The following set of theorems and examples is based 

on consequences of definition 2-fc through definition 2-8. 

Theorem 2*10. Every prime ideal ia a radical ideal, 

Proof; Let B denote a prime ideal. Suppose an6 B. 

Since an * a*<a* ... *a)t either a e B or a
n"^6B. if 

a£B, the proof is complete. Suppose a <$ B, then an~^£ B. 

Since a11 = a*an an ^6 B. This process can be continued 



33 

k t imes u n t i l n-k » 2 at which point a*£ B, Therefore 

a £B and every prime i d e a l i s a r a d i c a l i d e a l . • 

Theorem 2-11. Every p r i m idaal ia a primary ideal. , 

P r o o f : Suppose B i s a prima i d e a l , Le t a * b ^ B . If 

a £ b , t hen b £ B . Hence B i a r i g h t p r imary . If b then 

a £ 8 . Hence B i® l e f t p r imary . The re fo re B i t p r imary . 

Theorem 2*10 shewed t h a t every prime i d e a l i s a r a d i c a l 

i d e a l and theorem 2-11 shewed t h a t every pr ime ideal i a a 

pr imary i d e a l . The following examples w i l l show that a 

pr imary i d e a l i a not n e c e s s a r i l y a prime i d e a l o r a r a d i c a l 

i d e a l , and a r a d i c a l i d e a l need no t be a prime i d e a l o r 

a pr imary i d e a l , 

2 - 1 . Every pr imary i d e a l i s not a prime 

i d e a l . Consider t h e i d e a l <U) i n I , S ince 2»6£(4) wi th 

n e i t h e r 2 nor 6 belonging t o W , (%) i s no t a prime i d e a l . 

However i f ab 6.(4) w i th a £(<*) impl i e s b 2 € ( 4 ) , I f a £(*•) 

then a i s not a m u l t i p l e of h . Hence t h e l a r g e s t power of 

2 which i s a f a c t o r of a i s 2 l . S ince ab € ( 4 ) , b must be 

even, Henee b « 2k. The re fo re b 2 £ ( k ) and (<*) i s p r imary , 

Eaeample 2*2. Every pr imary i d e a l i s no t a r a d i c a l . 

i d e a l s i n c e k 6 ( k ) and 4 * 2^» b a t 2 4 i k ) , 

2 -3 . Every r a d i c a l i d e a l i s no t a pr ime i d e a l . 

Consider t h e i d e a l ( 6 ) i n I , Let a p 6 ( 6 ) . Then a p a 6k by 

theorem 2-7 , Suppose a i s not a multiple of 6 . Then both 
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2 and 3 are not factors of a and hence are not factor® of 

ap. This is a contradiction sine* ap * 6k, Therefore (6) 

is a radical ideal. Sine© 4- 3 6(6) with neither 4 nor 3 

belonging t© (6), (6) is not a prime ideal. 

2-4. Every radical ideal is not primary since 

(6) is a radical ideal which is not primary. This ©an be 
k 

shown by noting that 2-36(6) with, 2 ̂ (6) and 3 £ (6) for 

any positive integer k. 

Theorem 2*12. If B is a radical ideal in R, then R/B 

has no nilpotent elements. 

Frooft Suppose R/B contains a nilpotent element a @ B. 

Then there exists a positive integer n such that (a ® B)n » 

o ® B. Hence an @ B » o ® B. Therefore an£ o ® 8. Therefore 

a n£B. Since B is a radical ideal a e B. Hence a ® B « o ® B 

by theorem 2-2. This contradicts the fact that a ® B is 

nilpotent. Hence R/B has no nilpotent elements. 

Theorem 2*13. Suppose B is a primary ideal in a ring 

R. Then every divisor of zero in R/B is nilpotent. 

Proofj Let a m B be a divisor of aero in R/B. Therefore 

there exists an element c ® B^ o ® B such that either 

(c « B)*(a ® B) = o « B or (a ® B)*(c 9 B) * o ® B. If 

(c ® B)*(a $ B) s o 9 B, c*a£B. Since c £ B, an€ B for 

some positive integer n. Therefore (a ® B)n = o ® B. 

Similarly if (a <$> B)*(c ® B) * o ® B it can be shown that 

there exists a positive integer n such that (a ® B)n « o ® B. 
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Theorem, 2-1A. The intersection of every set of prime 

ideals is a radical ideal. 

Proof: Suppose , <*•£ A , is a set of prime ideals. 

Then OB* is an ideal by theorem 2-1. Suppose ene /IB* , 

Then an is an element of each . Since each Bex is prime, 

a is an element of each B«. by theorem 2-10. Therefore 

a € OB* and flB«. is a radical ideal. 

The following lemmas concerning ideals will be of use 

in Chapter III. 

Lemma 2-1. If A and B are ideals in a ring R, 

A*B 2 jx |x is a finite sum. of the form © ... ® 

where a. 6 A and t.€ B } is also an ideal in R. 
X 1 —' 

Proof; If x,y 6A*B, x <© -y will obviously be a finite 

sum of the desired form. Let xe A*B. Then r*x and x*r are 

also elements of A*B since A and B are ideals. Hence A*B 

is an ideal. 

Lemma 2-2. The set Br2 B*B* ...*B, r factors, is an 

ideal in R if B is an ideal in R. 

Proof by induction: If r = 1, B1 = B is an ideal. 

Suppose for r e k, Bk is an ideal. Hence B^*B is an ideal 
wi 

by lemma 2-1. .Therefore B is an ideal and the proof is 

complete. 

Lemma 2-3. If B is a prime ideal and C and D are ideals 

such that C * D « B, then either C - B or D = S. 
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Proof: Suppose xeB; then x - c*d, @ ... ® c *d 
1 1 n n 

since 0 • D « B. Therefore xeC and xe 0. Hence BCC and 

BCD. Suppose that B/C; then there Is t €€ such that 

t$B. .Let T denote any element of D. Since C*D = B, t*T £B. 

But B is a prime ideal. Therefore Y £B. Hence B * D. Xn a 

similar fashion it can be shown that if bA D, then B = C. 

Leimtia 2-4. If A and B are ideals in & commutative 

ring R, then KS ~ ij b*x £ A for all be B j is an ideal of R, 

Proof; Note that KS is non-empty since o 6 JR. Let 

x,yeM. Then b*x 6 A and b*y£A for any b € B. Since A is 

an ideal, b*x ® -b*y e A. 

b*x $ -b*y = b*x ® b*(-y) 

= b*(x @ -y). 

Therefore x © -y effi. Let x elff and let r £ R. since 

x*b€. A for all be. B and since R is commutative, b*(r*x) and 

(r*x)*b€A for all b£R. Therefore M is an ideal. 



CHAPTER III 

NOETHERIAN RINGS 

Before proceeding with Noetherian rings, a few properties 

concerning radicals of ideals will be investigated. 

Definition 3-1. If B is an ideal in a ring R, the set 

H 5 £ x€R I xn€ B for some positive integer n^ is called the 

radical of 1* 

Letana 3-1. If B is a radical ideal, B * H. 

Proofs Obviously BCH. Suppose x 6H. Then there exists 

a positive integer n such that x ne B. Since B is a radical 

ideal, x e B. Hence H ̂ B. 

Lenma 3-2. If B^ and B2 are ideals, then radical 

(Bj^DBg) « radical radical B2-

Proof: Suppose x 6 radical (BlDB2); then there exists 

a positive integer n such that xn 6(BjT) Bp. Hence xne B^ 

and x n£B 2, Therefore x£radical Bj_ and x e radical B2. 

Hence x £(radical B^H radical B2). Therefore radical 

(®inB2) C. radical Bĵ  O radical B2. 

Suppose x 6 radical ^ f) radical B2. Then there exist 

positive integers n and k such that xn £ B. and xk £ B*. 
<L 

Let h denote the larger of n and k. Therefore xh £ BL 

37 
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and x^€ Hence x h€ B^B^. Therefore x £ radical 

CBĵ nBjj). It follows that radical ( B ^ n%) « 

radical f) radical B^. 

Lemma 3-3. If B is an ideal, radical (radical 1) * 

radical B« 

Proof: Suppose x £ radical (radical B). Than there 

•xiata a positive integer n each that xn e radical B. If 

xn e radical B, thara exists a positive integer r such 

that (xn)re B. It can ba easily verified that (xn)r a xnr* 

Obviously radical B c. radical (radical 1). Hence the proof 

ia complete. 

Theorem 3*1. If B i® an ideal in a oonmotative Ring R, 

than the radical of B ia also an ideal in R. 

Proof: Suppose a,b e radical B. Hence for soma positive 

integers m and nf a® 6 B and b
n £ B, Without loaa of gener-

ality suppose m nj then a2® and b2® £ B. Consider the 

product (a ® -b)2®. Since R ia a coaaMstat ive ring ̂  it is 

easily verified that the binomial expansion holds for 

(a ® -b)^„ In the r t h tern of <a ® -b)2®, a is raiaad to 

the 2a * r*l power and »b is raiaad to tha r-1 power. If 

r * a, a ia raised to tha » • I power and & « * * * * ( 6 B 

where h is a positive integer. If r ̂ta, than r-l^su Hence 

a^"
r+l*<«b)r~le B. If r <»f m <2te*r * I. Hence 
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h*a2la"r*3**<-b)r"1^ B, Therefore every term in the expansion l2 

of 

Therefore a ® ~b £ radical B. Let x £ radical B. There 

(a ® »b)^ a i s an element of 1 and hence (a ® b . 

exists a positive integer n such that x11 e 1. Suppose 

a 6 Rj then an £ it. Since B is an ideal a^x*1 € B. But 

since R is eewaatative* a*1**11 « (a*x)n » <x*a)n. Therefore 

radical B is an ideal in R. 

An immediate consequence of theorem 3-1 is corollary 

3-1* 

Corollary 3-1. If B is a primary ideal in a coranutative 

ring R, then radical B is a prim# ideal in R. 

Proof: ly theorem 3*1 radical B is an ideal in R. 

Suppose a*b 6 radical B; then there exists a positive Integer 

n such that (a*b)n<£ B. Since R is commutative, (a*b)n » a^b11. 

Suppose a11 £ s* Since B is primary» there exists a positive 

integer k such that (bn)k£ B. Since ( b n ) k * fenk# b €radical B. 

Similarly if bn B» a e radical B* Hence whenever 

a*b G radical B, either a e radical B or b 6 radical B. 

Definition 3-2. A ring R is said to satisfy the as-

cending chain condition for ideals if every sequence of 

ideals B ^ b # ... in R such that c.B2 d... has only a 

finite number of terms. 
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Definition 3-3. A commutative ring which satisfies 

definition 3-2 is said to be a Noetherian ring. 

There are other statements which could also serve as 

the definition of a Noetherian ring. Theorem 3-2 will 

give two alternate definitions. The following lemma will 

aid in the proof of theorem 3*2. 

Lewtaa 3-fr. If B^CBg c... • is RB infinite ascending 

chain of ideals in a ring R, then the union of all the 

ideals in the chain is an ideal. 

Proof: Suppose a»b£ UB^ ; then a belongs to some 

Bk and b belongs to some Bh. lither Bk c Bh or Bh C. Bk, 

Hence both atb 6 B^ or a,beBh. Therefore a <$) *b 6 @r 

a <3» -b € Bh. Hence a ® -b& i^B* . If 3c 6 u Bo(, , then x 

is an element of some Bk. Since Bk is an ideal, r*x and 

x^r 6. B̂ .. Therefore r*s: and x*r are elena&nts of U Boc. . 

Theorem 3*2. In any consultative ring R the following 

conditions are equivalent. 

(1) R satisfies the ascending chain condition. 

(2) Every ideal in R is generated by a finite number 

of elements. 

(3) Every non-empty set of ideals in R contains at 

least one ideal which Is not contained in any 

other ideal of the set (3, p. 20). 
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Proofs Suppose R satisfies the ascending chain 

condition. Let B denote an ideal of R and let bj. e B. 

Then (b^> c. B since if x €<b^) * is an ei»a©nt of every 

ideal containing b,. If (bi^ - . 
i X) * îig, proof is complete. 

Suppose ibx) O b . How choose h% e B such that b2 £ ( b l). 

° b V i 0 U S l y ( V e ( b l ' V & » . ** <h* V • B, the proof 

is complete, if tt0t ( b l # b p C B a n d agaitl ohoo€ft a n m U m n t 

b3 e B such that h$ £ (blt b2). Now we have 

(bl> CCbj., *>a> b2, b 3 > Q i . This process can only 

be done a finite nunber of timet. Otherwise there would 

exist an infinite ascending chain in R. Therefore for some 

positive integer k# Cblt h % 9 ... bfe) « B, 

Suppose now every ideal in R is generated by a finite 

number of elements. Furthermore suppose there exists a set 

K of ideals in R such that for every B a £ K, is contained 

in some other•ideal in K. Without loss of generality the 

ideals in K can be arranged in a sequence such that 

®1 c ® 2 c. ... ciicT c. ... . By lemma 3-4 UB«_ ifi ai s o 

an ideal in R and hence is generated by a finite number of 

elements. Therefore, U b«. « (b,. b k \ *» 
vul» 2* •*« br>« Now each 

on. of the gattarators for U >». i« «, ele Mnt of son. Btt 

l n t h e o h a i K- Observe now that there is an Ideal Bh in 

the chain such that b1( b2, ... br s B„. 
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The contention is that B^ « U B* . Obviously, ®h. — UBoc • 

Since UB* = (b^ b2» ... br) with each b.e^, U B* C Bh. 

Hence UB<*. « B^. Obviously is not contained in any 

other member of the set K. Therefore every non-empty set 

of ideals in R contains at least one ideal which is not 

contained in m y other ideal of the set. 

Finally suppose every non-empty set of ideals in E 

contains an ideal which is not contained in any other 

member of the set. Let B^, Bg» *..» B^ .. be a sequence 

of ideals in E such that B^ C_ B2 C ... Cl^ C... . 

Consider the set of all ideals in this sequence. There 

exists an ideal B^ such that B^ <p. Bt for any Bt in the set. 

Since these ideals form a chain, Bt ̂ B ^ for every element in 

the set. Therefore since this i® a sequence of ideals the 

chain is of finite length. 

The next set of lemmas is suggested by the fact that 

every ideal in a Moetherian ring is generated by a finite 

number of elements. 

Imbbim 3-5. If <x^„ x^, ... xn) is an ideal in a 

commutative ring R, then <x1, x2, ... xn) « g where 
r ^ 

G « £ X I X • 1 © a ^ x j where *^£1 and a±e uj , 

Proof: Suppose x,y £.6; then x * < [" n.x. % a.*x ] 
n 1 L 1 1 i ij 

- 2 [«ix1 e _ 
and - y * 
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"r- - B r 

X ® -y = |[n l X i ® a i t X lj ® . S © b ^ c j 

n 

* ^[[ni - mi] \ « ® **£>£ ^ x 
1 

Therefore x ® - y £ G. Suppose x e G and r e R. 
ii 

r* x « x* r * r * £ <$ a *xJ 

n 1 1 

= f [ r * K x i ] «>r*a 1*x 1^ l 
H 

n 
a 

| [Oir]* x i ® r * a i * x i ^ 
Jm 

11 

[ ^ r ® r * a j * X £ 

3L 
n 
1 [ V l ® J . 
I 

The Oj is til® real number ztfo end as n^r ® r * , 

Therefore 0- is an ideal. Since G contain® X]L, x2? ... ̂  

^Xl'n
x2f ^ —°* L e t b denote an element of G. Then 

b = f K x i * V x i ] • Hence b €<x x, *Jt ... X n ) b e ^ . 

<xlt Xj. ... *„) is an ideal. Therefore (x , * ... x ) « o. 
l d n 

L?""nfl 3-6. If B is an ideal in a commutative ring R, 

the ideal Br is the set P of all finite sums of products with 

r factors. In set notation p - £xfe r|x = | * air 

where n 6 I and a^ . e= B ? . 
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Proof by induction; For r * 1 the reaalt i® trivial. 

For r » 2, the letama is true by lam® 2-2. Suppose lemma is 
k ** 

true for r * k. Then if yeB # y » £ a,n*a.** ...*a., . 
* * , 3U i2 ik where 

H S €-®* * 1 « £ x/x ia a finite sum of the form 

y%*hl ® Jl*** ® • * * wh«re yj and bj e B j . 

Eaot* yj i« expressible as a finite mm of tenia with each 

term conaiating of a product of k elements of B. Ala© eaoh 

YJ i s "Multiplied" by bj B. Upon application of the 

distributive law each term in the sum ia a product of k + I 

elements of fi» This ia alao a finite aim since eaoh yj*bj 

ia a finite am and there are only a finite number of these 

sums, therefore C f * I * a 5 . #. * *Q . 
L I | ail ai2 *aik+l wt«re 

r n 

n €1 and «£j 6 ' B u t l f 1*1* s ^ ail*ai2* * * **aik*l 
n 1 

y « % [a^ x *.. j*aik<fl. Therefore 

I n 

xr 3 f *ii *• • •* aik+i w h # r € 11 e I aR<l aij € B] ̂  Bk* i. 

Hence letrana 3-6 ia true. 

Lesaita 3-7. If R is a commutative ring, 

(xl* x2* *•* *n>r * (•••• xt * x^ * . .*xr ... ). 

f »i—n<i I , „ / 

aotors 
Proof: Suppos. . Zlx^ x,. ... »B>

r, tten by learn. 3-6 

a is expra.sibl. as a finite sun of product:* a,* *. 
it # # 

with r faotora each being an element of (x^, x2# 3^)^ 



!»5 

H * ̂  Lnixi # di* xil 
I J 

H 
«2 - £ [«i*i • V *1 ] 

II 
»r - f L

pi*i • V «t] • 

Hence aj**^ »»• **r m ® %* Ki J * ® * 

[P^x^ ® » Each ter» in this product consists 

* * # *s^ . Sine® a is a of r factors of the form Xj *xjg* 

finite sura of factors of thii type, a dan be written in the 
k 

form a * ® 5* J w* M S r® 6 R end fj is a 

product of the for® x^* x* * *xr. Therefore 
r factor® 

a €(..., *i**j •••*xr, • Obviously eny product of the 

fern *i**j* ... *xr will belong to (x^ xgt ... x^
1* by learna 

f* 

3 *6 • 

The preceding three lesgmas hmm laid the groundwork for 

thaorect 3-3. 

Theorem 3*3« If B is an ideal in a Noetherian ring, 

there exists « positive integer m such that 

(3» p. 22) • 

radical B C- B 
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Proof: Sine® radical B i s an ideal in E by theorem 3-1, 

i t i s generated by a f i n i t e number of elements due to theorem 

3*2. fherefore radical B « (x^, x^f . . . xn ) . f o r each x^, 

there ex is t a a posi t ive integer sueh that x^m^"6 B. Let 
lyi 

sa * mt * * . . . * By lemma 3-7, (x^f x^, . . . x^) « 

( . . • r * *• * . . . . ) . Sinoe there are only n 

a f ac t ore 

d i s t i n c t X£*a and s ince E i s consultative» each 
. . . *xk * Xpnp*xq

nq* . . . *xj k Where r s n. Observe 

ra f ac to r s r factor© 

Hp • rip • . . . • • m2 + . . . + o^. For each x^ in 

the product of r f a c to r s , there corresponda an n^. Eaeh 

x^ in the product of r f a c t o r s i s a l so contained in the 

product of m f a c t o r s . Observe for each x^ there i s an 
mL. 

1% such that xj| € B. Consider the sum n^ * HF| * * • * * ftjg 

and the sum ®p • 4 . . . * ®k. xt i s eas i ly seen that 

*ip * np • . . . + t t | , > ' a p 4 - a q * . . . * mjj,. Hence there i® 

ng 2 ms f o r eotae ng and ®s aince i f every n^ then . 1 • 

ftp * nq • . . . % < ®p + nyt . . mj.# But this statement cannot 

be t rue since n^ • nq • . , , ^ 2 . 1 ^ 4 a q * . . . o^. 

Therefore there i s an ng ^ iag. Hence contained in each ' 

product X£*Xj* . . . *xk there i s an x e
a s € B. This f a c t 

guarantees tha t every elenient in the se t Of generators 

f o r [radical BJ® belongs t o B. Hence Jjradical BJ® C B. 



47 

A s imi lar typa of proof aan ba appiiad t o thaoram 3-4. 

fhwas*. .3*4, If B^ and B2 am idaa ls in a Noatharian 

r ing R» thara e x i s t s a pos i t i v s in tagar r euah t ha t B^ rc. § 2 

i f and only i f radical. B, C. rad ica l S 2 . 

Proofi Sttpp08® there is 1111 r eucH that Ml ̂  Mr 3i™« 

E i® Noatharian, B « <* l f x 2 , . . . x^) , Tharafora 

C*l# x | t . . . f % ) r Q i 2 , By laona 3-7 ( . . . , X£*xj*. . . •x^) c b 2 . 

Tharafora f a r p • I , . . . . nf £ B | , This i ap l i aa tha t tha 

sa t of ganaratars f a r B^ i s containad in rad ica l B2 . Tharafora 

l ^ C r a d i o a l B2, Sine® B̂  D radioal 1 2 » B^, fey l a m a 3*2 and 

l a m a 3-3 radioa l B^ * r ad ica l B^ f) r ad iaa l B2. Tharafora 

rad ica l Q. rad ica l B2. low suppose rad ica l c . r ad iaa l 12» 

Sine# Bj_ c radioal B^, c. rad ioa l B2 . Sinoa E i a Noatharian, 

®l * (*i» x 2 , % ) • For each x^ in tha sa t of ganarators 
¥*t 

f o r B^ thara ax ia ta an r^ e l such t h a t & b2» Lat 
r " r i • r 2 • . . * • r n . fha raaaiadar ©f tha praaf i s 

idan t ioa l with t h a t of thaoraa 3-3, Tharafara » l
r e b2„ 

3-&. Suppose B i s mi idaal in R. Lat + danata 

the mapping of R onto R/B dafinad by ^(x) * x S> B f o r x€ R. 

If Qt i s an idaa l in R/B, than % ~ [ xest ) jftx) s c* ] i® 

an idaa l in R. 
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Proofs Observe first that is a homorphism of R onto 

R/B. Suppose x,y 6. D^t then /f£x)t *£(y) £ C^. But is an 

ideal. Therefor* jf(x) ® ^(y)eC^. Since ^(x) ® ~/<(y) 

» ® -y), x m e D ^ Suppose x£ D^. Let re R. 

Since /f(r*x) * jf(r)*/(x) end /<x*r) * j((x)*j((r), r*x and x*re 

because is an ideal. Therefore Df is en ideal* 

Lemma 3-9. If and G$ are ideal« in R/B such that 

cCj, then D|C.D2* 

Proofs Suppose x €1̂ ; then ^(aOeG^. Ha nee jl(x)& C2> 

so x€D 2» Since C|C.02# there exists a y ® B €Cj such that 

j 6 B Therefore y € D2 but y^ Bj.. 

Theorem 3-5 follows from lemma 3-8 and lemma 3*9. 

Theorem 3*5. If B is an ideal in a Noetherian ring R, 

l/B ia a Hoetharian ring (2, p. 198). 

Proofs Suppose R/B is not Noetherian. Then there exist® 

an infinite sequence of ideals in R/B such that C^CCj C. . . . 

according to Itma 3-8 and lemma 3-9 the sequence of ideals 

°1» d2» *** % in R is also infinite. But this statement 

contradicts the fact that R ia a.Noetherian ring. Therefore 

H/B is Moetherian. 

The remainder of this ahapter will be devoted to the 

decomposition of an ideal in a Moetherian ring. 

Definition 3-fr. Suppose B is an ideal in a ring R such 

that B * B|_ n B%C\ ... 0 ® n where each B|_ is a primary ideal 

in R. This intersection will be called a primary decomposition 

of B. 
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Definition 3-5. Act Ideal 1 is said to be irreducible 

if whenever B * B^ 0 B2» either B * «r B » B2* 

Definition 3-6, A finite intersection of ideals is 

said to be irredundant if no ideal in the intersection 

contain® the intersection of the remaining ideals. 

A fundamental property of Noetherian rings Is stated 

in theorem 3-6 * 

Theorem 3-6. In a Noetherian ring every Ideal can be 

represented as the intersection of a finite number of irre-

ducible ideal® (1, p. 175). 

Proof: If B is an ideal in R, either B is irreducible 

or B is not irreducible. If B la irreducible, B can be 

expressed in the form B * B^ f) Bg where B * B^ ® B2. 

Obviously B^ D B2 is a finite intersection of irreducible 

ideals. If 1 is not irreducible, then there must exist ideals 

B^ and B2 each that B * B^D B2 with B / BL and B / B2» Therefore 

B C.B^ and B c. B2. If both B| and B2 are irreducible, the 

theorem i® proved. Suppose that exactly ©lie of and B2 

is not irreducible. Without loss of generality assume It is 

B2. Then there exist ideals Bft and B^ such that B2 * B^O®g 

with B2cB|| and B2 C-Bg. Therefore B « B^ f) % H Bg with 

B C B 2 CBg. Again if B|| and Bg are both irreducible the 

theorem is proved. S® suppose B^ is irreducible and Bg is 
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not irreducible. Hence Bg s Bg with Bg C Bg and % c ® 1 0 . 

Now B « » l n ^ n B # 0 » l o With BCB^CBgCB^g. Once again if 

Bg and B10 are irreducible the theorem is proved. If not, 

the same procedure is repeated* This procedure can only be 

done a finite number of time since the chain BC B^c. B^CB^C.,. 

can have only finite length. Hence there can be only a 

finite number of ideals in the intersection and ell of these 

ideals ere irreduoible. 

Theorem 3-7. If R is Noetherian, every irreducible 

ideal in E is a primary ideal (1, p. 176), 

Proof: Suppose there is an irreduoible ideal B in R 

which is not a primary ideal. Since B is not primary, there 

exist elements «#b€R such that a*b€B with a£B and 

b niB for any positive integer n. Consider the set ©f 

ideal# A|_ i £ xe R | x*b* € B^ # It is easily verified that 

each Ai is an ideal. Observe also that A^ C A ^ , Therefore 

the A^s for® a chain.in R. Since R is Noethnrian, this chain 

can have ©nly finite length. Therefore there exists a positive 

integer n such that An « A n 4 l. Consider the set . 

K $ [jB ® (a)J 0 |(B ® R*bnJ , It can be easily verified that 

B ® (&)# R*b
B and B @ R*bn are ideals in E, If x€ K, then 

x &B ® (a). Hence x * h ® ka ® k'*a where h&B, k e. I and k*e R. 

Observe that ac#b « h*b ® k( a*b) ® k**a*b. Since h*bt k(a*b>, 
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and k'*a*b€B» x*b£B. Since xel ® R*bn, x = p ® q 

where p € B and q €. R*bn. If q € R*bn# then q * r*b
n. 

Hence x = p © r*bn. Therefore x*b * p*b & r*b , Since 

x*b and -p*b € Bv r*b
n+1 -£ B. Furthermore since r*bn+3"e B, 

r € An+i. But An • An4,^. Therefore r e A^. Hence r*bn € B* 

Since x = p © r*bn with p» r*bn £.B» x e B. Therefore 

K C-B. Obviously B£K. Hence K » B. Sine* a£B# B to (a)4
B» 

Also B ® E*bw ̂  B sixice bn+^ 4 B. Therefore BdB ®» (a) and 

8 C I ® !*ba# This result contradicts the fact that B i® 

irreducible. Hence every irreducible ideal in a Hoetherian 

ring is primary# 

Before stating and proving the fundamental decomposition 

theorem one more lemma is needed. 

Lemma 3*10. If B^ and Bg are primary ideals with radical 

Bx « radical Bg* B^ 0 83 is a primary ideal. 

Proof: Suppose a*b £B], D B2 with a B ^ f\ B2. Hence 

a^Bj_ or a^Bg* Without loss of generality suppose a <sf B^. 

Since a*b 6 B^ 0 B2, a*b 6 Bj_* Hence bk 6 Bt for some 

positive integer k. Therefore b £ radical 8^, Since radical 

B^ « radical B2* b 6 radical Bg* 

. Henee there exists a positive integer n such that 

bn a B2. Let Jl denote the larger of k and n. Then \f e Bx 

and fcf € b2, Menoe \f e B1 C] b2. Therefore Bx Cl B2 is ri -ht 

primary* Similarly it can be shown that B^O B2 is left primary. 
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Theorem 3-8 is the fundamental decomposition theorem 

for Noetherian ring®. 

Theorem 3-*$. Each ideal in a Noetherian ring R is an 

irredundent intersection of primary ideals with distinct 

radicals* 

Proofs By theorem 3-6 if B is an ideal in R, B is 

the intersection of a finite number of irreducible ideals. 

Each of these irreducible ideals is primary by theorem 3-7, 

Let B « ®i H B2 f) ... f)Bn denote this intersection. Either 

this intersection is irredundant or it i® not irredundant. 

If it is not irredundant, there exists a 2^ such that 

B1 n B2 f) ... /I Mi„i n B^... n%n c- B£# Therefore 

BI ^ ®2 o * • • n »i+i n ... n BN «IXO B2 n ... o BN . 

Hence 1 = Bi 0 B2 0 ... /) B ^ f) Bi4l 0 ... 0 B n . Clearly 

this process can be repeated until an irredundant expression 

is found. Let B c B], H B2 D • «. O Bj denote the irredundant 

intersection. If all the Bj,s have distinct radicals, the 

proof is complete. Suppose there is a B^ and a Bp with the 

same radical. By lemma 3-10 Bk 0 Bp is a primary ideal. 

Clearly this process can also be repeated until there is a 

representation B » 0 Bh with each »h having a distinct 

radical. 

This intersection need not be unique as the following 

example will show. 
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Example 3-1. Let F denote the set of rational numbers. 

Consider the polynomial ring F [xfyj . It can be verified 

that F [x,y] is a Noetherian ring. The ideal (x\ x2y) 

in F £x,yj ha® more than one representation as the inter-

section of a finite number of primary ideals with distinct 

radicals. 

For example (x\ x2y) = (x2) 0 (x\ y) and 
4 2 2 s\ h 2 2 

(x , X y) = (X ) n (x » X y, y ). Let f, g, and h denote 

elements of F £xfyj . 

First of all (x2) i® primary. Let f*g £(x2) with 

f £(x2). Therefore there is a term in f which has degree 

less than two in x. Hence each term in g must be of at 

least degree one in x. Therefore g 2 6 (x2) and (x2) is 

primary. 

The ideal (x\ y) is also primary. Suppose f*g£(x\y) 

with f £ <x\y). Hence f has a term which does not contain 

either x4 or y. This particular term has a degree of less 

than four in x and of less than one in y. Hence e/ery term 

in g must be of at least the first degree in x or of the 

first degree in y since f*g £(x*\y). Therefor® <x\y) 

and (x\y) is primary. 

Finally the ideal (x*\ x2yt y
2) is primary. Suppose 

f*g£(x\ x2y» y2) with f $ (x\ x2y, y2). Then f contains 

a term which is less than the fourth degree in x, less than 

the second degree in y, and which is not of the form h2*
2y. 
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Therefore every term of g is either of the first degree in x 

or of the first degree in y. Therefore g € (x f x y, y ); 

hence (x\ x2yt y
2) is primary. 

k « 
Suppose f € (x , x y). 

f = f̂ x*4 • f^x2y 

.2 = [ f j x 2 + f 2 y j x' 

« • [ v * ] y. 

Therefore f £ (x 2 ) and f £ ( x \ y ) . Hence ( x \ x 2 y ) C (x2) f ) ( x \ y ) . 

Suppose f £.(x^)0(x\y)i then f * f ̂x2 and f « g^x^ *> ggF* 

Hence gg « gx2. Therefore f » gjx** * gx2y and (x^fx
2y) * 

(x2) f) ( x \ y ) . Since radical (x2) * <x) and radical ( x \ y ) ® (x,y) 

with (x2) <£ (x \y ) and (x4,y) ̂ _<x2), this decomposition satis* 

fies theorem 3-8. 

Again suppose f £(x\ x2y). 

f * f x̂*1" • 

x2 85 [h*z
 * «2y_ 

= %x4 + f 2 x 2
y 4 oy2 

Therefore (x , x2y) C. (xA) C\ (.x*t x2y, y2), Suppose 

f e (x2) 0(x\ x2y, y2); then f « hjx2 and f • gj*4 * g2x
2y +g3y

2. 

Since f « hjx2, g3 * gx
2. Hence 

* * gjx* * gjx2y • gx2y 

» gjX4 * ĵ g2 • gy J x
2y. 

Therefore (x\ x2y) . (x 2 ) f| ( x \ x2y, y 2 ) . Mote once again 

that radical (x^) »(x)while radical (x^, x2y, y^) * (x?y). 
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Note also that (x 2)£(x\ x2y, y2) and <x\ x2y, y2)^(x2). 

Therefore this decomposition also satisfies theorem 3-8. 

Finally note that (x**,y) / (x\ x2y, y2) because y £(x\y) 

but y ̂  (x\ x2yt y
2). Hence these two decompositions are 

different. 

The concluding two theorems in this thesis are conse-

quences of theorem 3-8. 

Theorem 3-9. The radical of an ideal in a Noetherian 

ring R is the intersection of the radical® of the primary 

ideals in theorem 3-8. 

Proof: Lftt B = H of theorem 3-8. 

radical B » radical £f) 

« H radical 

The radical® of the primary ideal® in theorem 3-8 are 

known aa the associated prime ideals of S. 

The final six lemmas prepare the way for theorem 3-10. 

Lemma 3-11. If B is a primary ideal such that a*b €. B 

with b £ radical By a&B, 

Proof:. Suppose a^B; then since B is primary b€radical B. 

But b £ radical B. Hence aeB. 

Lemma 3-12. If 0 and C are ideals, 

K ] o = n [ » i o ] . 



56 

Proof: Suppose x£< f) CJ ; then x is an element of 

each fqnSjT. Therefore x*c is an eleoent of each B£ for 

c e C. Hence x € ITfBiJTT. Suppose now x € 'JTYBiJffi' then 

for c ec, x*c £ n®£. Hence x*c is an element of each 

for any oeQ, Therefore x is in each £B£ CJ and henca 

3C 6 fWiW . 

Lemma 3-13. If B is a primary ideal, -and G is an 

ideal which is not contained in radical B,~Tc~~ B* 

Proofs Obviously B cRJ. So suppose x £ BG. Thare 

exists a c € G such that c ^radical B. But x*c€B for 

every a € G since Hence by lemma 3-11 xeB. 

Lemma 3-13. If B and c are ideals in a Noetherian 

ring R such that 1 cc, then for any positive integer n 

Bn£Cn, 

Proof: Since R is Noetherian B « (x1( *2# ... xp) and 

c ® <n» y2f • •. y^). By lemma 3-7 

Bn - ...) and Cn - (..., yr*y 
n factors n factors 

n 
Each x m « 2. [njŷ  ® *i*y±] where n£ el and. ag,£R. Therefore 

each, tern in the product will contain a 
n factors 

product of the form yh * T g . Henca every element of 
II J» &Cf»0?T& 

the set of generators for Bn is in Cn. Therefore B^ cz. cn. 

Lemma 3-14. if b and G are ideals in a Noetherian 

ring R and 0 eg, then W « R. 
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Proof: Obviously ffiT c.R, Suppose x e R and let © 

denote m y element &£ C. Then x* c 6B since ceB, 

Therefore x 6 SC. Hence W - R. 

Lemma 3-15. If A arid B are ideals such that Si" - A, 

3®" = a for each positive integer n. 

Proof by induction: For n c 1, JS" *= A by hypothesis. 

Suppose for n = k AB* = Aj then A ? B « XS * A* Hence it 

will suffice to shew that A p B « AB k + 1. Suppose xe 

U 1 
Let g denote any element of B . Then g is a finite sum 

of terms each term containing k+1 factors. Hence 
n — — . 

xxg » x* *2 c^*b£ where and c/eB, Each x*e.f6AB^ 
*t. 

since x B. Since x c^ e Al^ x *b£ Ca. ' Hence 
n 

X * Jl C ± * h ± 6 A" T h e r e f 0 r * i f g £® k + I* * * « e A . Hence 

x e Z p T . NOW suppose x e H ™ . t h i m L # t b 

denote any element of Bk and let c denote any element of B. 

Then x *[c *b] € A for any b <=Bk. Hence x * o 6 A ? which is 

true for all c £1, Therefore x € AB^B and proof Is complete. 

Theorem 3*10. If B and G are ideals in a Noetherian 

ring R, then IS" * B if and only if C is not contained in any 

of the associated primes of B <1, p* 179). 

Proof: Suppose C is not contained in any of the associ-

ated primes of B. Let 8 * 0 « 1 by theorem 3-8. 

BST » insi] c 

=? 0 isic by lemma 3-12. 
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For each there is a c^eC Bach that <£ rad Bj_. 

Therefore for each I£<J » by leoraa 3-13. Therefore 

(fB'itf * /!% « B. Hence W * B. Suppose now W « B. 

Suppose also that G is contained in one of the associated 

primes of B. Without loss of generality denote this primary 

ideal aa B̂ « Then C ̂ radical B^. By theorem 3-3 there 

exists a positive integer n such that jjradioal BjJ^C- B^. 

By lemma 3-13 Cn Q [radical BjJ . Furthermore B̂ ctt « R 

by lemma 3-l^. Since BC * B, BCn = B by learn® 3-15. 

B = BGn 

e OBiCn 
MHllUmiiiliwiBOpy ii.MWitillWil'ilWtWrtiiM 

• Bxc n BpC by lemma 3-12 

pAl 
= R n i ^ r 

pA i 

- niyF -
¥ 
p/i 

But 0 Bp CfljyF" . By lemma 3-12 OBp G
n » f)Bp C

n . 

p A pA i p A i PA -L 

Therefore flBp G Db. Cn . This implies A b „ C b , 
p A p / l p ^ p ~ " 

Since B * D B^ and D B^ c_ D®p» ® H Bp . Therefore 
m pAIp 

B ~ 0 Bp. But if n Bt S n Bp for x e n Bp, X £ n B*. 
p A p A 

However if x € DB i f x£B 1. Hence f ) Bp ^.Bt. But this 
pA 
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result i» & contradiction stum f)&± Is m ir redundant 

Mprtiflm. Wanes € 1« »©t contained in any of tho aofoci-

*t*d prim* of B. 
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APPENDIX 

Definition Page Example Fasge 

1-1 1 1-1 2 

1-2 7 1-2 2 

1-3 a 1-3 3 

1-4 ® 1-4 13 

1-5 3 1-5 15 

1-6 11 1-6 19 

1-7 15 2-1 33 

2*1 23 2-2 33 

2-2 23 2-3 33 

2-3 28 2-4 34 

2-4 28 3-1 53 

2-5 32 

2—6 32 

2-7 32 

2-8 32 

3-1 37 

3-2 39 

3-3 40 

3-4 48 

3-5 49 

3-6 49 
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Leonita Page 

1-1 3 

1-2 4 

1-3 i4 

1-4 5 

1—5 11 

1-6 20 

2-1 35 

2—2 35 

2—3 35 

2*4 36 

3-1 37 

3*2 37 

3—3 38 

3-4 40 

3-5 42 

3—6 43 

3-7 44 

3—8 47 

3*9 48 

3-10 31 

3-11 55 

3-12 55 

3-13 56 

3-14 56 

3-15 57 

Corollary 

3-1 39 
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Theorem Page Ttieore© Page 

i-i 5 2*12 34 

1-2 6 2-13 34 

1-3 6 2*14 35 

1«4 7 3-1 38 

1*5 9 3—2 40 

1*6 10 3-3 45 

1*7 10 3«4 47 

1*8 If 3*5 48 

1*9 12 3-6 49 

1*10 13 3-7 SO 

1*11 14 3-8 52 

. 1*12 19 3—9 53 

1-13 20 3-10 57 

2-1 23 

2*2 24 

2*3 24 

2-4 23 

2-5 27 

2*6 28 

2*7 29 

2*8 29 

2-9 31 

2*10 32 

2-11 33 



BIBLIOGRAPHY 

Jacobson, Nathan, Lectures in Abstract Algebra (2 volumes). 
New York, Van Mo strand, lS>5l. 

McCoy, Neal H., Rings and Ideals, Baltimore, The Waverlv 
Press, 1948. 

Miller, Kenneth S., Elements of Modern Abstract Algebra. 
New York, Harper and BrofKers, 19SC 

Moore, John T., Elements of Abstract Algebra, New York. 
Macmillian, 1962. ----------- — 

Northcott, D.D., Ideal Theory, Cambridge, University Press, 
1953. ' 

64 


