ORLANDO AREA (ARMS-11)

R. B. Guillou

Issuance Date: June 1966

CIVIL EFFECTS TEST OPERATIONS
U.S. ATOMIC ENERGY COMMISSION
LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

ORLANDO AREA (ARMS-II)

By
R. B. Guillou

Approved by: L. J. DEAL
Chief, Civil Effects Branch
Division of Biology and Medicine

Edgerton, Germeshausen & Grier, Inc.
Santa Barbara, California
April 1964
NOTICE

This report is published in the interest of providing information which may prove of value to the reader in his study of effects data derived principally from nuclear weapons tests and from experiments designed to duplicate various characteristics of nuclear weapons.

This document is based on information available at the time of preparation which may have subsequently been expanded and re-evaluated. Also, in preparing this report for publication, some classified material may have been removed. Users are cautioned to avoid interpretations and conclusions based on unknown or incomplete data.
ABSTRACT

An Aerial Radiological Measuring Survey (ARMS) of the Orlando area was made for the Civil Effects Test Operations, Division of Biology and Medicine, U. S. Atomic Energy Commission, by Edgerton, Germeshausen & Grier, Inc. (EG&G), between Feb. 11 and Feb. 21, 1963. The survey was part of a nationwide program to measure present environmental levels of gamma radiation. Approximately 4500 traverse miles were flown, at an altitude of about 500 ft above the ground, in the area which consisted of the land portion of a 100-mile square centered on the Kennedy Space Center. The EG&G ARMS-II instrumentation was used in the survey.

The data are presented as aeroradioactivity units, or areas with similar gamma radiation counting rates at 500 ft, at two map scales: (1) generalized at about 1:1,000,000 and (2) detailed at 1:250,000. The maximum aeroradioactivity in almost all the area was less than 400 counts/sec. In a few small areas along the east coast, the maximum counting rate was 500 counts/sec.

Aerial measurements of ground radioactivity in the ARMS-II Orlando area were consistent with what was expected, considering the geology of the area. Artificial radionuclides were probably present in only small quantities because background gamma radioactivity was less than 200 counts/sec in many places.
CONTENTS

ABSTRACT ... 5

1 INTRODUCTION 9
 1.1 Location of Area 9
 1.2 Purpose of Survey 9
 1.3 Airborne Survey Procedure 9
 1.4 Instrumentation 10

2 THEORETICAL CONSIDERATIONS OF ARMS DATA 13
 2.1 Sources of Gamma Rays 13
 2.2 Effect of Meteorological Conditions on the Gamma-ray Flux from Terrestrial Sources 14
 2.3 Conversion of Counting Rate to Dose Rate 14

3 AERORADIOACTIVITY DATA 15
 3.1 Compilation 15
 3.2 Interpretation 16
 3.3 Presentation of Aeroradioactivity Data 17

4 CORRELATION OF AERORADIOACTIVITY UNITS 17
 4.1 Correlation of Aeroradioactivity Units with Geology 19
 4.2 Correlation of Aeroradioactivity Units with Other Sources 19

5 SUMMARY AND CONCLUSIONS 19

REFERENCES 19

ILLUSTRATIONS

FIGURES
1 Index Map Showing Location of ARMS-II Orlando Area .. 10
2 Civil Effects Test Operations ARMS Program 11
3 Diagram of EG&G ARMS-II Instrumentation 12
4 Data Flow 15
5 Aeroradioactivity Data and Units 17
6 Generalized Aeroradioactivity Map of the ARMS-II Orlando Area 18

PLATES
1 Aeroradioactivity Map (ARMS-II), Orlando Area, Florida, North Part. In pocket

7
CONTENTS (Continued)

2 Aeroradioactivity Map (ARMS-II), Orlando Area, Florida, Center Part . . . In pocket
3 Aeroradioactivity Map (ARMS-II), Orlando Area, Florida, South Part . . . In pocket

TABLE

1 Potassium-40, Thorium, and Uranium in Igneous and Sedimentary Rocks . . . 14
ORLANDO AREA (ARMS-II)

1 INTRODUCTION

1.1 Location of Area

An Aerial Radiological Measuring Survey (ARMS) of the Orlando area was made for the Civil Effects Test Operations (CETO), Division of Biology and Medicine, U. S. Atomic Energy Commission, by Edgerton, Germeshausen & Grier, Inc. (EG&G), between Feb. 11 and Feb. 21, 1963. The area surveyed, which consists of the land portion of a 100-mile square centered on the Kennedy Space Center, lies east of 81°27' W. longitude and between 27°45' and 29°15' N. latitude (see Fig. 1).

1.2 Purpose of Survey

This area survey was one of many that have been flown for the CET0 since the nationwide ARMS program was started (1958). Figure 2 shows the location of the areas surveyed as of Apr. 1, 1964. The purpose of the program is to measure the present environmental levels of gamma radiation in areas around nuclear facilities and planned nuclear activities. It is desirable to document the environmental radiation, which results primarily from the natural radioactivity of the surface soil and rock, to establish a base line. ARMS data from selected areas, in conjunction with data from resurveys of these areas, can be used to appraise changes in environmental levels of radiation brought about by debris from nuclear weapons testing programs, operation of nuclear facilities, and radiation accidents. The data are also important for understanding the long-term biological effects of low-level radiation.

1.3 Airborne Survey Procedure

Topographic maps for the ARMS-II Orlando area were laid out, and the boundaries of the area were determined. Flight lines spaced 1 mile apart were drawn in an east–west direction. Ground checkpoints were then selected along the flight lines and at the ends of the flight lines so that aircraft-position information obtained along the flight path could be correlated with the maps of the area.

About 4500 traverse miles were flown between Feb. 11 and Feb. 21, 1963. The daily flight procedure included equipment-stabilization time and in-flight calibrations on the radiation-detection apparatus. As soon as the aircraft was airborne, the equipment was turned on and was allowed to reach temperature equilibrium. When thermal stabilization of the circuitry was reached, the radiation apparatus was calibrated with a 137Cs source. Measurements of airborne, cosmic, and extraneous radiation were then taken at 3000 ft above terrain. Upon arrival at the initial survey line for the day, the aircraft descended to the 500-ft survey altitude, and the value of the undesirable radiation, as measured at 3000 ft, was set into the radiation computer. The radiation data recorded as the aircraft progressed along the survey line represented net terrestrial gamma radiation. During the survey flight each day, the radiation-detection apparatus was periodically calibrated to keep the drift in the detection system to a minimum.
Upon completion of each flight, the data tapes were removed from the aircraft and were immediately edited by the flight personnel. Pertinent information, such as missing or obliterated ground checkpoints, new points selected during flight, and equipment malfunction, was immediately related to map locations and the radiation data. The corrected data were then entered onto the area working maps.

1.4 Instrumentation

The EG&G ARMS-II instrumentation was installed in a Beechcraft, model 50 twin Bonanza, N702B. The apparatus consists of three subsystems (Fig. 3):

1. Radiation-detection and radiation-measurement subsystem
2. Aircraft space-positioning subsystem
3. Information-printout subsystem

The functions of these subsystems and their components are described in detail in Ref. 1.

Fig. 1 — Index map showing location of ARMS-II Orlando area.
Fig. 2—Civil Effects Test Operations ARMS program.
The main detection unit utilizes a 9-in.-diameter 3-in.-thick thallium-activated sodium iodide crystal and a 12-in. photomultiplier tube. The radiation amplifier unit contains a voltage amplifier, a pulse shaper, and an energy base-line discriminator. The discriminator is set to reject pulses due to gamma rays with energies below 50 kev for a routine survey. It is calibrated with a ^{137}Cs source. The arithmetic computer performs the cosmic background correction, the compensation of the data for deviations from the nominal surveying altitude, and the classification of counting rate into channels and gives print-command signals to the information-printout subsystem. The gross count at 500 ft above the ground is corrected by subtracting a counting rate equal to the undesirable background; this gives the net count. This background is normally measured at 3000 ft above the ground. Compensation of the data for the deviations from the nominal surveying altitude is accomplished through control of the sampling period by introducing a signal from the radar altimeter. The normal sampling period was 1 sec. The sampling period was less than 1 sec when the aircraft was below 500 ft and greater than 1 sec when the aircraft was more than 500 ft above the ground. The counting rate was normalized to 500 ft above the ground in the range from 300 to 900 ft above the ground. The arithmetic computer classifies the counting rate into digital channels of predetermined width. In the range of most natural materials, between 0 and 2000 counts/sec, the channel width is narrow; above 2000 counts/sec a progressively wider channel width is used.

The position of the aircraft is determined by a modified General Precision Laboratories Doppler navigation system. The J-4 compass system establishes a reference line against which the actual path of the aircraft is compared, the heading information being held by either a driven gyro or a magnetically slaved gyro. The RADAN 500 Doppler radar unit determines
the ground speed and drift angle of the aircraft relative to the J-4 reference line. Signals from the J-4 compass and the RADAN 500 go to the TNC-50 (track navigation computer), where the along-track and the across-track distances relative to an initial ground point are computed. The along-track and the across-track distance signals then go to the analog-to-digital converter. When a print command is received from the radiation computer, these outputs go to the printer and are recorded.

The information-printout subsystem consists of two data recorders: (1) a decimal printer and (2) a binary tape punch. The data recorded are survey-leg number, radiation channel, along-track distance, across-track distance and direction, and detector sensitivity. Since the radiation-detection and -measurement subsystem also contains a small crystal that is used in high-intensity fields, it was necessary to record which detector was in use during collection of the data.

2 THEORETICAL CONSIDERATIONS OF ARMS DATA

2.1 Sources of Gamma Rays

The gamma-ray activity that is measured by ARMS equipment at 500 ft above the ground has three principal origins: (1) cosmic radiation; (2) atmospheric sources, or the radionuclides in the air; and (3) terrestrial sources, which are the radionuclides in the surficial materials of the earth. The relative contribution of each source cannot be measured directly during the survey, but certain assumptions and calibration procedures permit good estimates of the components of the gross gamma radiation.

The cosmic-radiation component at 500 ft above the ground is due mainly to the air-scattered gamma rays that are induced by cosmic particles. The counting rate at 3000 ft above the ground, where negligible radiation from the ground is present, is considered to be due to the cosmic component, the atmospheric sources, and the extraneous radiation. This contribution was measured each day while the ARMS flights were being conducted and was subtracted from the gross count at 500 ft above the ground to obtain the recorded net counting rate.

The average 3000-ft background during the ARMS-II Orlando area survey was about 1325 counts/sec; of this amount 800 counts/sec was due to the calibration source in the aircraft.

The component of the gamma-ray activity at 500 ft above the ground, which is due to radionuclides in the atmosphere, cannot be separated directly from the terrestrial or cosmic components. Measurements of the artificial and natural radionuclides in ground-level air, however, have been made for several years by various investigators, and these measurements indicate that the contribution of atmospheric sources (principally radon daughter products) to the total counting rate is normally insignificant. Abnormal situations occur during periods of severe inversion or immediately after testing of nuclear devices. Fission products that are present in the air are assumed to be uniformly distributed; therefore their contribution to the counting rate is removed with the cosmic background.

The terrestrial component of the gamma radiation found at 500 ft above the ground comes from the radionuclides in the surficial 12 in. of earth materials. Radionuclides in soil and, to a lesser extent, in rock are the major sources of gamma rays. Artificial radionuclides are generally concentrated in the surficial inch or two of material and, as is described later, probably have little effect on the distribution of aeroradioactivity units in the Orlando area. The present distribution of the surficial material and the concentrations of natural radionuclides in it are determined by the original content and form of the radioactive material in the parent rock and by changes brought about by geologic and pedologic processes.

The principal natural gamma-producing radionuclides found in rocks and soils are 40K and the members of the uranium and thorium series. The content of these radionuclides in various rocks is shown in Table 1.

There is a general trend for the content of these radionuclides in igneous rocks to increase with increasing silica content. Among the sedimentary rocks, shales are generally more radioactive than sandstones and carbonate rocks. The natural radioactivity of metamorphic rocks, unless radionuclides were added or removed during metamorphism, reflects
The potassium, uranium, and thorium content of the original sedimentary or igneous rock. The concentrations of the natural radionuclides in soils are probably similar to the concentrations in sedimentary rocks because both are produced by the breakdown of preexisting rocks. The fine clayey and silty soils are generally more radioactive than coarser sandy soils because much of the soil radioactivity results from radioelements that are fixed or absorbed on clay. The interaction of various soil-forming processes, however, sometimes produces a concentration of radioactive accessory minerals and therefore an increase in total radioactivity in the surficial soil.

Table 1—POTASSIUM-40, THORIUM, AND URANIUM IN IGNEOUS AND SEDIMENTARY ROCKS

<table>
<thead>
<tr>
<th></th>
<th>Igneous rocks</th>
<th>Sedimentary rocks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basaltic</td>
<td>Granitic</td>
</tr>
<tr>
<td>40 K ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>0.8</td>
<td>3.0</td>
</tr>
<tr>
<td>Range</td>
<td>0.2 to 2.0</td>
<td>2.0 to 6.0</td>
</tr>
<tr>
<td>Thorium, ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>4.0</td>
<td>12.0</td>
</tr>
<tr>
<td>Range</td>
<td>0.5 to 10.0</td>
<td>1.0 to 25.0</td>
</tr>
<tr>
<td>Uranium, ppm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>1.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Range</td>
<td>0.2 to 4.0</td>
<td>1.0 to 7.0</td>
</tr>
</tbody>
</table>

2.2 Effect of Meteorological Conditions on Gamma-ray Flux from Terrestrial Sources

Changes in meteorological conditions have only a small effect on the gamma-ray flux at 500 ft which is produced by terrestrial sources. This subject is treated in detail by Merian et al.2 The largest effect is caused by changes in the density of the air between the detector and the ground. The most important factor here, of course, is that of temperature variations. A temperature deviation of \(\pm 10^\circ F \) would create a maximum variation in counting rate of \(\pm 3\% \). The effect of air-pressure variations on the uncertainty in the data is negligible. The change in air pressure of \(\pm 8 \) mm Hg would introduce an error of only 0.15\% in the counting rate. Changes in relative humidity also have small effects on the attenuation of gamma rays. If survey operations were proceeding at 80°F at 500 ft and if the relative humidity were 50\%, a change of \(\pm 50\% \) in the relative humidity would introduce an error of about 0.9\% into the data. The meteorological parameters of humidity, temperature, and pressure were recorded for each survey day, but, since their combined effect on the radiation levels was small, they were not used in the present application of the data. They are available, however, if a more detailed analysis of the data is required at some future time.

2.3 Conversion of Counting Rate to Dose Rate

The EG&G, ARMS-II instrumentation was designed to give data that are compatible with the data of the existing U.S. Geologival Survey ARMS-I equipment. Both units were flown over the Extended Source Calibration Area at the Nevada Test Site for cross-calibration purposes. The calibration range consisted of 400 equal-value sources spaced on 100-ft centers to form a square that was 2000 ft on a side. The central source in the area was replaced by 100 smaller sources, spaced on 10-ft centers, the total intensity of which equaled that of the replaced source. The following results of the flight measurements were reported by F. J. Davis and P. W. Reinhardt, Oak Ridge National Laboratory:3

\[^{60}Co\text{ gammas: } 22 \text{ counts/sec at 500 ft} = 1 \mu\text{r/hr at 3 ft} \]

\[^{137}Cs\text{ gammas: } 25 \text{ counts/sec at 500 ft} = 1 \mu\text{r/hr at 3 ft} \]

These figures should be applied to ARMS-II survey data with caution since any individual reading obtained with the ARMS-II equipment represents a radiation intensity that is integrated
over a ground area approximately 900 ft in radius. In addition, no information is available concerning the energy of the radiation detected during survey operations. In view of these uncertainties and the small difference between the conversion factors for different gamma energies, the following single conversion factor is recommended:

\[
\text{25 counts/sec at 500 ft = 1 } \mu \text{r/hr at 3 ft}
\]

3 AERORADIOACTIVITY DATA

3.1 Compilation

The aeroradioactivity data for the ARMS-II Orlando area consisted of more than 45,000 data points. Automatic data-processing techniques, which are described in detail by Hand, were used in compiling the data. The data-flow process is illustrated in Fig. 4 and can be described as follows:

1. The raw survey data, which consist of radiation level and Doppler along-track and across-track positions for each data point on punched tape, were entered on cards on an IBM-047 tape-to-card converter.
2. The ground data, consisting of longitude and latitude of checkpoints used on the survey, were entered on cards by using the key-punch feature of the IBM-047.
3. The survey and ground data were entered on magnetic tape by the card to magnetic-tape converter unit of an IBM-1401 computer.
4. The data and programming magnetic tapes were entered into an IBM-704 computer which performed various checks on the data, calculated the longitude and latitude of each data point, and derived X-Y plotter coordinates for each data point. The IBM-704 output was on magnetic tape.
5. The compiled data were entered on the IBM-1401 to obtain a decimal tabulation of the radiation channel number, longitude, and latitude of each data point and to generate a set of cards containing the radiation channel number, the central coordinates of the appropriate plot area, and the X-Y plotter coordinates of each data point.
6. The master magnetic tape was stored in a controlled-environment room, and the decimal tabulation was filed for reference. The cards were sorted according to central coordinates on an IBM-082 card sorter.
7. The cards were read by an IBM-523 Summary Punch and the data plotted by an Electronic Associates, Inc. (EAI) model 3200 Dataplotter with a 30- by 30-in. plotting surface. The data were plotted on Mylar at a scale of 1 : 62,500 (about 1 in. equals 1 mile) for a permanent record and on tracing paper at 1 : 125,000 (about 1 in. equals 2 miles) for use in delineating aeroradioactivity units.

3.2 Interpretation

The interpretative step in the reduction of the data was the delineation of aeroradioactivity units, or the selection of borders for areas having similar counting rates on adjacent flight lines. Since the natural background radioactivity was commonly complex and since this detail was easily recorded by the ARMS instrumentation, the delineation of aeroradioactivity units put the data in a form that could be readily understood. The distribution of radioactivity on the ground is such that a range in counting rate is usually recorded on any segment of a flight line. If an area on the ground has a uniform gross gamma radioactivity, it will have associated with it a narrow range in counting rate. A nonuniform gross gamma radioactivity, such as the bands of different width with different radioactivity produced by alternating sandstone, shale, and limestone beds, gives rise to a wide range in counting rate. The size of the units represents a compromise between the narrowest possible range in counting rate and the largest possible area within one unit. Dissimilar counting rates on adjacent lines, as well as fluctuations along a flight line, contributed to the width of the range of counting rate for a particular aeroradioactivity unit. The upper limit of one unit may be the lower limit of an adjacent unit, or the
range of one unit may overlap the range of an adjacent unit. Since the data were prepared for presentation on a map at a scale of 1:250,000 (1 in. equals 4 miles), most of the units should be more than 2 miles wide (along the flight line) and should encompass more than four survey lines. Aeroradioactivity units as narrow as 1/2 mile are shown on the map if they differ substantially from adjacent units.

Low counting rates (less than 200 counts/sec) were recorded over or adjacent to the numerous lakes and swamps in the ARMS-II Orlando area. This was expected because the normal radioactivity of water is below the sensitivity of the ARMS equipment. Low counting rates related to bodies of water were not considered in delineating aeroradioactivity units in order to avoid unnecessarily complicated units. Aeroradioactivity units related to extensive swamps or to swamps that do not adjoin major lakes are indicated on the detailed maps.

The aeroradioactivity data and units shown in Fig. 5 illustrate the philosophy and problems connected with the delineation of aeroradioactivity units. The numerical values that are listed represent gamma counting rates (in hundreds of counts per second). As shown in Fig. 5, in many places the position of a unit boundary is unique and obvious, such as at A, B, and C. At other places, such as D, the placement of the boundary was arbitrary, and the dashed line could have been used. The selected boundary was chosen to indicate a unit with a slightly lower radioactivity to the right of the line; a single unit (3-7) instead of three units (4-7, 3-6, and 4-7) could have been used in this region. At E, a unit boundary was drawn through a fairly uniform segment (8-10). This arbitrary division of a segment is avoided if possible, but it is sometimes necessary to simplify the shape of units while holding the range of units as narrow as possible. The 8-25 unit to the right of E is an example of a complex area that required a wide range in counting rate to avoid a multitude of small units.
3.3 Presentation of Aeroradioactivity Data

Aeroradioactivity data for the ARMS-II Orlando area are presented in two forms: (1) a page-size generalized version at a scale of about 1:1,000,000 (1 in. equals 16 miles) (Fig. 6); and (2) a full-size version at a scale of 1:250,000 (1 in. equals 4 miles) (Plates 1 to 3 in pocket).

(a) Generalized Aeroradioactivity Data. Two patterns are used in Fig. 6 to denote the generalized aeroradioactivity for the area, i.e., areas where the maximum radioactivity was mostly (1) less than 400 counts/sec and (2) less than 500 counts/sec. Only the gross features are shown in this figure; aeroradioactivity unit boundaries have been smoothed, and small units have been deleted.

The maximum gamma counting rate in almost all the ARMS-II Orlando area was less than 400 counts/sec. In a few areas along the Atlantic Coast, the maximum counting rate was less than 500 counts/sec. If the qualifications mentioned in Sec. 2.3 are borne in mind, these measurements indicate that the ground dose rate due to terrestrial gamma radioactivity in the Orlando area is less than 20 μR/hr and in most of the area less than 16 μR/hr.

(b) Detailed Aeroradioactivity Data. The detailed aeroradioactivity units in the ARMS-II Orlando area are shown on Plates 1 (north part), 2 (center part), and 3 (south part). These maps are printed so that the entire area can be studied by putting the three maps together without trimming. Topography and more detailed cultural information for the area can be obtained from the Daytona, Ft. Pierce, and Orlando sheets, Topographic Maps of the United States, 1:250,000 scale series; these maps are available from the U. S. Geological Survey.

4 CORRELATION OF AERORADIOACTIVITY UNITS

The general distribution of the terrestrial radioactivity in the ARMS-II Orlando area probably can be attributed to the geology of the area. A detailed study of the surficial geologic materials in the area would probably provide reasons for most of the changes in aeroradioactivity. To a large extent the terrestrial gamma radioactivity in the urban areas is probably a consequence of the building and road materials used in these areas. Artificial radionuclides are probably present in only small quantities because the maximum background radioactivity in places is less than 200 counts/sec. The distribution of artificial radionuclides in the area is assumed to be uniform.
Fig. 6—Generalized aeroradioactivity map of the ARMS-II Orlando area. Aeroradioactivity in counts per second normalized to 500 ft above ground. (Surveyed by EG&G, Feb. 11 to Feb. 21, 1963, with aircraft N702B.)
4.1 Correlation of Aeroradioactivity Units with Geology

Although specific correlations were not made in this brief study, the radioactivity of the ARMS-II Orlando area is probably a consequence of the pedology and geology of the area. The highest counting rates in the area (up to 500 counts/sec) were recorded over old beach ridges along the east coast.

A correlation between aeroradioactivity units and geologic units was not possible because of the following factors:
1. The ubiquitous swamps in the area, which obscured the aeroradioactivity picture
2. The slight differences in the radioactivity of the surficial materials
3. The use of data from flight lines spaced 1 mile apart
4. The emphasis on environmental radioactivity rather than on areal geology

4.2 Correlation of Aeroradioactivity Units with Other Sources

All the aeroradioactivity units in the ARMS-II Orlando area are believed to result from the distribution of natural (not artificial) radionuclides in the surficial rocks and soils.

5 SUMMARY AND CONCLUSIONS

The ARMS-II Orlando area survey was the ninth operational survey of a large area with the EG&G ARMS-II instrumentation. The operating procedures developed and proved in this and the previous surveys indicate that the system is extremely versatile, being capable of routine surveying on straight lines over areas of flat-to-moderate topography and of flying irregular individual traverses in mountainous terrain.

The radiation-detection and -measurement subsystem is sensitive to, and is capable of recording, the environmental gamma background in a complex area where extremes of background radiation are encountered. The aircraft space-positioning subsystem can furnish accurate geographic locations in areas of flat and rugged topography and on straight or irregular flight lines.

Automatic data-processing techniques were used to compile and plot the digital radiation and geographic position data. The compiled data are stored in the form of a decimal tabulation and an overlay at a scale of 1:62,500 (about 1 in. equals 1 mile). Interpretation of the data, which involved delineation of aeroradioactivity units or areas with similar gamma radioactivity, was necessary so that the data could be presented on a map at a scale of 1:250,000 (1 in. equals 4 miles). Because of the local complexity of the environmental gamma background radiation, these units have a wide or narrow range in counting rate.

Aerial measurements of ground radioactivity in the ARMS-II Orlando area were consistent with what was expected, considering the geology of the area.

REFERENCES
