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CHAPTER I
INTRODUCTION

The purpose of this paper is to make a detalled study
of vector spaces and a certain vector-like system. In
Chapter II a vector-like system is studied, this system
arising 1f one defines a vector to be a directed stroke
from a point to a point (in Euclidean 3-space). It is shown
that this system does not possess the properties which are
degirable for a system to have 1f it 1s to be used in a
study of vector analysis. PFurther, 1t is shown that this
1s not the actual system that 1s usually considered in
vector analysis. A relationship is defined between the
elements of this system and is used to partition the system.
After the partitioning, another system is defined in Chapter
III and it is shown that it has the properties which would
be desirable for a system to have in a study of vectors.

In Chapter IV the system defined in Chapter III 1s shown to
be an ordinary vector gpace. A systematlic study of a [inite
dimensional vector space is made in Chapter IV.

The properties of the real number system, complex
number system, and notions of a fleld are assumed. A
collection of objects will be referred to as a set and will
be denoted by a capital letter. The set of real numbers

will be denoted by R.
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Definition 1.1 The symbol ¢ means "is an element of."

Thus ¢+ ¢ T meansg that t 18 an element of the set T.

Definition 1.2 The set X is sald to have R as a

relation if for each pair (a,b) of elements of X, the phrase
"a 18 in the relation R to b" is meaningful, being true or
false depending upon the cholce of a and b, The symbol XRYy
means that x ls in the relation R to y.

Definition 1.3 The statement that Y is a subset of

set X means that every element of Y 1s an element of X.

Definition 1.4 The statement that X is a partition of

Y meang that X is a collection of subsets of Y such that ¥
is the union of the sets of X and no two sets of X have an
element in common.

Definition 1.5 The statement that a relation R 1is

reflexive on the set X means that xR x for each xeX.

Definition 1,6 The statement that a relation R 1is

symmetric on the set X means that 1f xeX, yeX, and xRy,
then algo yR X.

Definition 1.7 The statement that a relation R 1s

transitive on set X means that if x, y, zeX and xRy and
YRz, then also XRz.

Definition 1.8 The statement that a relation R 1s an

equivalence relation on X means that R 1s reflexive, sym-
mebtric and transitive.

Definition 1.9 If each of 8 and T is a set, then a

mapping of 8 into T is a correspondence & between & and a

subset of T that associlates with each element of 5 a unique



element of T. A mapping & of 8 into T is a mapping of 8
onto T if for each beT, there exists an a e & such that

ao = b, Thus if &4 18 a mapping of 8 onto T, each element
of T corresponds to some element of &,

Definition 1,10 The mapping A of 8 onto T is a 1-1

mapping of & onto T if for each a, beB8, a # b implies
ad ¥ ba .

Definition 1,11 The statement that * is an operation

from AXB to C means that #* is a mapping of AXB into C.



CHAPTER II
STUDY OF A CERTAIN VECTOR~LIKE SYSTEM

A system.§ {8; ), ()] will now be defined. Let §
denote the collection of all ordered palirs of points in
Buclidean 3-space. Define {*) to be an operation from
8§ X 8 to 8 and {-) to be an operation from RX 3 to § as
follows: The statement that (A,B) (® (C,D) = (E,F) means
that E = A and fl = bl + dl - Cqs fg = bg + d2 - Cyp and

f3 = h3 + d, - ¢ and the statement that k () (A,B) = (D,C)
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means that keR, D = A, and ¢y = a, + Lc;(b1 - al), ey =
a, + }c(b2 - ae) and ¢y = ag + k(b3 - as), where A =
(al’ a’?’.,” 3«3)» B = (bl’ bg’ b3): C = (Glx 02; 03): D=
(43, dyy d3), E = (e, ey, e3), and F = (£, £, f3). The
following nine theorems establish properties of the system
J which are similar to those of an abstract vector space.
Theorem 2,1. If (A,B), (¢,D), and (E,F) ¢ 8, then
(4,B) (0 [(c,D) () (E,F)] = [(a,B) () (c,D)] () (E,F).
Proof. By the definition of {») it follows that
(A,B) () (C,D) = (A,H) where hy = by + d; - ¢y, hy =

ba + &2 - Cy and h3 = bB + ds - C3. 8imilarly it follows
that (A,H) () (E,F) = (A,G) where g = by + dj -~ ¢q + ) ~ ey,
Also by the definition of () 1t follows that (C,D) () (E,F) =

(¢, X) where Xq = dy + £y - ey, Xy =dpy + Iy - gand
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X3 = d3 + f3 - eg, and (a,B) () (C,X) = (A,Y) where
vy = bl + dl + fl - € = Cyy Jp = b2 + de + fa - &5 ~Cpy
and y3 = b3 + d3 + fB - e3 - 03, Hence 1t is clear that
G = Y and the proof of the theorem i1s complete. This
theorem implies that the operation (¥ is assoclative.
Theorem 2.2. If (A,B) and (C,D) ¢ 8, k € R, then
x () 1(a,B) () (¢,D)] =% () (A,B) () x () (c,D).
Proof. By the definitions of () and () 1t follows
that k¥ () (A,B) = (A,X), where x

;o= ay + k(bl - al),
Xy = ay + k(b2 - ae) and Xy = ag + k(b3 - a3); x () (¢,D) =
(C,Y), where y; = cq + k(d1 - cl), Yo = cp + k(d2 - eg),
and yg = ¢3 + k(a3 - c3). Also, (A,X) () (¢,Y) = (A,2),
wherg Zq = 2y + kbl - kal + kdl - kcl* Zy = 2, + kbg -
kag + kdg - ke, and zg = ag + kb3 - ka3 + kd3 - kcs. It
follows in a similar manner by the definltion of (*) that
(a,B) () (¢,D) = (A,T), where t; = by +dy - ¢y, &y -
ba + d2 - Cos and t3 = b3 + d3 - c3. Also, by the defl-
nition of () it follows that k (-) (A,T) = (A,P) where
Py = 84 + kbl + kdl - kcl - kal, Dy = 8, + kb2 + kda -
kcg - kag, and ps = aB + ka + kd3 - kc3 - kas. Hence
P = Z and the proof is complete. It 1s established by
this theorem that the operation (-} is distributive,
Theorem 2.3. If (A,B) ¢ 8 an¢ i© ¢ R, ¢ ¢ R, then
(x + ) () (4,B) =k () (A,B) () ¢ () (AB).
Proof. By the definition of () 1t follows that

k¥ () (A,B) = (A,X) where Xy = a; + k(bl - al), Xy =



a, + k(b2 - ag) and x5 = agy + k(b3,~ 33). Also, by the
same definition ¢ () (A,B) = (A,Y), where ¥ = aq + c(b1 - al),
Vp = ay + e(b2 - ag) and y3 = ag + c(b3 - &3)’ It follows
from the definition of (+) that (A,X) () (A,Y) = (A,Z) where
z, = %y + Yy = 8ys Zp = Xy + Vo - 2y and 33 = x3 + y3 - as.
Also, since k,c € R then (k + ¢) () (A,B) = (A,T), where
ty = a; + (x + c)(bl - al), ty = ay + (x + c)(b2 - ag) and
bty = ag + (x + c)(b3 - 33). But z; = a; + kb, - ka; + a; +
ébl -8, -ca; =a; + (k + c)(bl - al), z, = a, + kb, - ka, +
ay + ¢cb, - a, - ca, = a, + (x + c)(b2 - ag) and zy = ag +
kby - kag + ag + eby - ag - cag = ag + (x + c)(b3 - a3).
It 18 clear that zy = tl’ Zy = tg, and Zy = tS“ Hence Z = T
and the proof of the theorem is complete, Thls theorem
establishes a certain distributive property for the oper-
ation (-).

Theorem 2.4, If (A,B) ¢ Sand k ¢ R, ¢ ¢ R, then
[e'x] ) (A,B) = ¢ () [x () (A,B)].

Proof. It follows from the definition of () that

¢'k () (A,B) = (A,X) where xq = a; + c'k{bl - al), Xy =

a. + c'k:(b2 - ag) and %X, = a._ + ¢ k(b3 - ag)‘ Algo,

2 3 3
k () (A,B) = (A,T), where t; = a; + k(by - 2;), t, =

a, + kb, - a,) and ty = ag + k(by - a3); and c () (a,7T) =
(a,7Y), where ¥y = aq + c(tl - al), Yo = ap + c(t2 - aa) and
y3 = 2+ e(t3 - a3). Also, x, = a; + ci(b:L - al) = aq +
c‘k(bl - al) and in & similar fashion x, = c“k(ba - ag) and
Xy = e'k(b3 - a3)w It follows then that y; = a; +
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cyla; + k(b1 - al) - al] = a; + c'k(b1 - al) and & similar
expression is true for Yo and y3. Hence X = Y and the
proof 1ls complete.

Theorem 2.5. If k (-) (4,B) = (A,A) then either k = O,
or B= A,

Proof., Suppose k ¥ O and B # A, Then by the definition
of (*) 1t follows that k () (A,B) = (A,Y), where ¥y =
But by the hypothesis Y = A, and so ¥y = 815 Vo = 2y and
y3 = ag. This means that k(bl - al) = 0, k(b2 - ag) = 0
and k(b3 - as) = 0. BSince k # 0, then by = a;, b, = a,
and b3 = a3, which is contrary to assumption. Hence the
theorem 18 valid. The proof of the converse follows in
the next theoren,.

Theorem 2.6. If k = O or B= A then k () (A,B) = (4,4),

Proof.
Case I. Buppose k = 0, It follows from the definition
of () that k () (A,B}'m (A,X), where Xy = a; + O(bl - al) = a5,
X, = a, + o(b2 - ag) = a, and X3 = a3 + o(b3 - a3) = as.
Hence X = A and the theorem is valid for thils case,
Case II. Suppose k ¥ 0 and B = A, By the definition
of (+) then k () (A,A) = (A,X), where Xy = ay + k(ay - al) = aq,
Xy = ay + k(aa - ag) = a, and X3 = k(a3 - a3) = ag. Hence
X = A and the proof of the theorem is complete.
Theorem 2,7. If k () (A,B) = (A,B) and B # A then k = 1.
Proof. Suppose k () (A,B) = (A,X). By the definition




of (-) it follows that Xy = ay + }s:(b1 - al), Xy = 8, +
k(b2 - ag) and X3 = ag + k(b3 - aa). But by the hypothesis
X =B, and 80 by = a, + k(b1 - al), b, = a, + k(b, - a,)

and b3 = ag + k(b3 - aB). Also, by the hypothesis B # A,
thus then elther b, # a), or b, 7 a5, OF by # ag. Suppose
by # a;. Then 1t follows that b, - a; = k(b1 - a,) and

k = 1. The other cases are similar. Hence the theorem 1is
true,

Theorem 2,8. If k = 1 then k () (A,B) = (A4,B).

Proof. BSuppose k = 1, Then by the definition of (v
it follows immediately that k (-) (A,B) = (A,X), where Xy =
ay + (by - al), Xy = 8, + (b8 - aa) and x3 = ag + (b3 - a3).
It 18 clear that X = B and the proof is complete. Note
that this property of the System »f is a postulated property
of & vector space.

Theorem 2.9. If (A,X) (¥ (A,Y) = (A,Y) then X = 4.

Proof. Since by the hypothesis (A,X) () (A,Y) = (A,Y),
1t follows by the definition of () that y, = Xq + (y1 - al),
¥p = x5 + (y, ~ a,) and ¥y = X3 + (y3 - as). Hence it 1is
clear that X = A and completes the proof of the theorem,.

In the following theorem it 1ls established that the
system »f does not have a certain very lmportant property
which every vector space possesses.

Theorem 2.10. There exist elements (A,B) and (C,D) €
S, such that (A,B) () (c,D) # (¢,D) &) (A,B),

Proof. Consider the points A(1,2,3), B(2,3,4), C(3,4,5)

and D(4,5,6) of Es, By the definition of (), (A,B) &)



(¢,p) = (A,X), where Xy = 3, X, = 4 and x3 = 5. Also by
the same definition (C,D) () (A,B) = (C,Y), where ¥, = 5,
¥ = 6 and y3 = 7. Hence (A,X) # (C,Y) and the proof is
complete. This theorem establishes that the operation )
is not commutative. A relation is defined on the elements
of the set 8 in the following definition which is used in
connection with the study of another system in the following
chapter.

Definition 2.1 The statement that (A,B) ~u (C,D) means

ﬁs - C‘Bo
Theorem 2.11, The relation defined in Definition 2.1

and denoted by ~u 18 an equivalence relation on the set 5.
Proof. Suppose any element (A,B) € 8 is chosen. It
follows immediately that (A,B) ~u (A,B) since by - aq =
bl - 8y, b2 - a, = b2 - a, and b3 - &3 = b3 - a3. Therefore
the relation nv ia reflexive. Next, consider any two
elements (A,B) and (C,D) of the set 8 such that (A,B) ~v
(C,D). From the definition of ~ it follows that by - 8y =
dl ~ €y, b2 - a5 = d2 - ¢y and b3 - ag = dS - C3. Since
a,b,¢,d € R 1t 1s clear that dl - €y = bl - 2y, 62 - 0y =
b, - a, and d3 - ey = b3 - ag. Hence (¢,D) ~ (A,B).
- Therefore the relation ~v is symmetric on the set 8. Also
consider any three elements (A,B), (C,D) and (E,F) of the
set 8, such that (A4,B) ~ (C,D) and (¢,D) ~ (E,F). By
the definition of ~ it follows that b1 - By = dl - Cqs
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b2 - ay = d2 - Cq and bB - ag = d3 - Cg. Similarly, it is
true that d1 - ey =1 - ey, dy - ¢, = f2 - e, and d3 - Cy =
f3 - &3. S8ince a,b,c,d,e,f € R it is clear that bl -8y =
£y - ey, by - &, = f2 - e, and b3 - ag = f3 - e3. Hence the
relation ~~ satisfies Definition 1.8 and is an equivalence
relation on the set 8.

Note the existence of a unique element (N,N) e S where
ny = 0, n, = 0 and ng = 0. Suppose (A,B) is any element of
gset 8. It follows by the definition of (¢} that (A,B) ()
(N,N) = {(A,B). Therefore the element (N,N) serves as a
right additive identity element for every element (A,B) ¢ 8.
Notice also that there exists a subset Sl ¢ 5 such that
(A,B) ¢ S, Af and only i1f A = B, and that the subset S, is
an infinite set. Since it has been established by Theorem
2.10 that the (¥ operation is not commutative on the set 8,
it cannot be assumed that every right addltive identity is
also a left additlive identity. Suppose there exists an
element (X,Y) ¢ 8 such that for any element (A,B) ¢ 8, it
is true that (X,¥Y) (0 (A4,B) = (A,B). It follows immediately
from Theorem 2.9 that thls could occur if and only if X =
Y = A, Hence X and Y depend upon A and no unique additive
identity exlsts in the system of .



CHAPTER III
A BYSTEM DERIVED FROM A VECTOR-LIKE SYSTEM

A system .f° {S';DJ,{&} will now be defined in terms
of the notions developed in Chapter II. Let 8! denote the
get of elements such that & 8' 1f and only if 4 18 a subset
of 8 which belongs to the partition of S induced by the
equivalence relation ~. Define [+] to be an operation from
8 X 8' to 8' and [-] to be an operation from RX 8! to 8!
as follows. The statement that & [+] 8 = ¥ means 1if
(A,B)e s and (C,D)c B then (A,B) (*) (C,D)e ¥. The statement
that k¥ ['] 4 = @ means that if keR and (A,B)e 4 then
k () (A,B)e p. The first two of the following theorems
ghow that [+] and [-] are well defined.

Theorem 3.1. If (A,B)ed ,(C,D)e ¥,(E,Fle o and (G,H)e ¢
then (A,B) &) (¢,D) ~ (E,F) () (G,H).

Proof, By the hypothesis (4,B) ~u (E,F) and (C,D)~~

(6,H). From the definition of (#) it follows that (4,B) ()
(c,D) = (A,X) and (E,F) &) (0,H) = (E,Y) where x, =
bl + dl - Cys Xy = b2 + d2 - Cos x3 = b3 + d3 - 03, vy =
fl + h1 - By Vp = fﬁ + h2 - 85 and y3 = f3 + h3 - gs.
S8ince Xy - a = b1 + dl - ¢y - a8y and Vi - e = fl + hl -
8 - al = bl 4 dl - cl = 8q, it folleows that Xy = &y = vy - €1
and in a simlilar manner Xy = 8y = Yo = €p, and X3 = ag =
y3 - e3. Hence (A,X) ~ (E,¥) and the proof is complete.
11
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Theorem 3.2. If (A,B)ed, (C,D)e & and keR then
k () (A,B)~ x () (c,D).

Proof. By the hypothesis (A,B) ~ (C,D) and from
the definition of {), k () (A,B) = (A,X) and k¥ (- (C,D) =

{C,Y), where x; = a; + kiby ~ a9), x5 = ay + kb, - as)s
Xy = ag + k(b3 - a3), ¥y = ¢y *+ k:(dl - cl), Yp = Cp + k(d2 - cg)
and y3 = ¢3 + k(d3 - 03). Since x; = a;+ k(b1 - al) and
¥y - ¢ = k(d1 - cl) = k(b1 - al), then y, - ¢q = X4 - 2.
It follows in a like fashion that Yp = Cp = X5 = 2y and
y3 - ©3 = X3 - as. Hence (A,X)~ (C,Y) and the theorem 1s
valid,
Theorem 3.3, If & ¢S' and B eS' then 4 [#] B =2 PFla.,

Proof. Let & [t} # =¥ and # [*]a =¥ . Then if
(A,B)e 4 and (C,D)e s, it follows from the definition of [+]
that (A,B) () (C,D)e 8 and (C,D) &) (A,B)e ¥. 8ince (A,B)
() (¢,D) = (A,X), where Xy = Dby +dy - €q, Xy =Dy +dy - Cp,
and x5 = by + d3 - cx, and (C,D) &) (A,B) = (C,Y), where
¥y = d1 + bl - 8y Vo = d2 + b2 - 8y and y3 = d3 + b3 - a3,
it follows that Xy = 8y = bl + d1 - Cq = 8y, Xy - 8y =
bz + dg - Cy = 8p and XB - 33 = b3 + d3 - c3 - a3. Similarly,
it follows that vy - ¢y = dl + b1 - 83 = Cqs ¥p - Cy =

‘dg + ba - 85 v Cy and y3 - 03 = d3 + b3 - a3 - c3. Hence,
Xq = 8y = Fy = Cyy Xy = By = Jg - Co and x3 - a3 = y3 - 03‘
Therefore (A,X) ~ (C,¥) and the prcof of the theorem is
complete, This theorem establishes that the operation [+

is commutative.
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Theorem 3.4, If d ,4,Y e8!, then [4 [f] B8] Fl ¥ =
afr] [AF]¥].
Proof. Let o [¥] B = 6 and 8 [+] ¥ = @. Suppose

(A,B)ee, (C,D)e B and (E,F)e ¥. Then by definition it
follows that (A,B) (0 (C,D)e @ and (C,D) (#) (E,F)eg. By
definition (A,B) () (¢,D) = (A,X) where Xy = by +dq - Cq,
Xy = 1::>2 + dz - ¢y and x3 = b3 + e:?l3 - e3. Similarly,
(¢,D) @& (B,F) = (C,Y) where vy =dy + £ - ey, ¥, =4yt
fgweaandy?)md3+f3-93. let 6 H ¥ = w and
A Bl P =y . Then (A,X) (#) (E,Flew and (4,B) &) (C,Y)ev.
By the definition of (4, (A,X) @) (E,F) = (A,T) where t, =
Xl“‘”fl'el* tzwxz-i—fza«egandt3mx3+f3-63.
Likewise, (A,B) (® (C,¥Y) = (A,V) where Vi =by + ¥y, - ey,
Vo = b2 + Vo = Co and vy = b3 + y3 - es‘ It follows then
that ty ~ay =vy -~ ay, by = 85 = vy = 84 and t3 - 83 =
v3 - a.g. Hence the proof of the theorem is complete., This
theorem establishes that the operation [t] is associative.
In the following theorem it is shown that the operation []
is distributive with respect to the operation [].

Theorem 3.5. If 4 ¢8', # ¢8', and keR, then k [-]
[a Bl 81=(k [[Ja) B (O[] B).

Proof. let 4 [*] 8 = ¥ . Suppose (A,B)e 4 and
(c,D)e . Then (A,B) ) (C,D)e ¥. By definition of @),

(A,B) @ (¢,D) = (A,X) where Xy = Dby +dy - 0y, Xy = by +
d2 - ¢y and x3 = b3 + d3 - 03. It follows from the definition
of [/] that ¥ ['] ¥ = , such that if (E,F)e ¥ then k (-} (E,F)
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¢p. Since (A,X)e¥, then k () (A,X)ep and k () (A,X) =
(A,T) where t; = a, +‘k(x1 - al), by = ay + }c(x2 - aa) and
ty = ag + k(x3 - a3). Let k [J]d =fFandk [[] B =7, and
guppose (@,H)e« and (I,J)e A. Then k () (G,H)ef and k O]
(I,3)e /. Since (A,B)e & and (C,D)e 8 then k () (A,B)eg
and k () (¢,D)e+, where k (-} (A,B) = (A,¥) and k () (C,D) =
(¢,2) such that y, = a; + lc(b1 - al), Vp = 8y + k(ba - ag),
yy = a3 * k(b3 - a3), 2y = ¢y + k(d1 - cl), Zy, = Cp +
k(de - ca) and zg = ¢3 + k(d3 - 83). It follows from the
definition of [ that ¥ Bl v/ = w such that if (K,L)eg
and (M,N)e v then (X,L) ( (M,N)ew. By the definition of
®, (A,Y) @ (¢,2) = (A,8) where sy =y, + 2y - Cy, 83 =
Yo + Z5 - Cy and 33 = y3 + 23 - e3. Since ﬁl -8y = kbl +
kdy =~ ke, - ka, and 8, - 84 = kby + kd, - ke, - ka, it is
clear that t, - a, = 8y - a,. In a similar manner 1t 1is
true that t, - a5 = 85 - a5 and t3 - a3 = 83 - az. It
follows that (A,T) ~ (A,8) and therefore p = w . Hence
the theorem 1s valid.

In the following theorem a distributive property of the
operation [-] with respect to the operation ] 1s established.

Theorem 3.6. If 4 ¢8', keR, and ceR, then (k + e) []

a=(k [Ja) B (cl]la)

Proof. Let k + ¢ = d and d (] « = 4. Suppose (A,Blex.

It follows then that d () (A,B)e g and d () (4,B) = (A,X)

where X, = a, + d(b1 - al), Xy = 8y + d(b2 - aa) and xg =
a3+d(b3-a3). Let ¥k ['] ¢ = v and ¢ [(] &« = w. Then
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k {-] (A,B)e v and ¢ [-] (A,B)éw. Also k () (A,B) = (A,¥)
where y, = a; + k(b1 - al), Yo = a, + k(b2 - ag) and yg3 =

ag + k(b3 - a3), and ¢ () (A,B) = (A,Z) where z +

17 %%
c(b:L - al), Zy = 8, + c(b2 - az) and 23 = ag + c(b3 - a3).
Let vV [ w = ¥. Then (A,Y) (¥ (A,Z)e v, where (A,Y) ()
(A,2) = (A,T) such that by =¥y + 2y -8y, by =y, + 2z, - a,
and t3 = y3 + 23 - ag. Since x; - a; = a, + d(b1 - al) - a; =
(k + c)(by - a)) and t -2y =y, + 2y - a; -a; =
(k + c)(bl - al), it is clear that (A,X) ~~ (A,T) and
therefore g = ¢ . Hence the proof of the theorem is
complete and a desirable property is established for the
system £ '.

Theorem 3.7. If « €8' and c¢,keR then (c-k) [] « =
¢ [ (k [] «).

Proof. Let c'k =d and d [] 4 = ¥ . and suppose that

(A,B)ex. Then d [-] (A,B)e ¥ where d () (A,B) = (A,X) such
that x, = a; + d(b1 - al), X, = 8, + d(b2 - ag) and x5 = ay +
d(by - a,). Let k [[] « = g, and suppose that (C,D)e «.
Then k () (C,D)e g. Since (A,B)e 4 then k () (A,Bleg,
where k¥ (-) (A,B) = (A,Y) such that ¥y, =a; + k(bl - al),

Vo = 8, + k(ba - az) and y3 = ag + k(b3 - a3). Let ¢ [(] 8 =
v and suppose that (E,F)eg. Then ¢ () (E,F)e . Since
(A,¥)ep, then ¢ (-) (A,Y)e v/, where ¢ () (&,¥):= (A,T) such
that t, = a; + c(yl - al), ty = a, + c(y2 - a2) and tg3 =

ag + c(y3 - a3). It follows that x, - a; = ek(bl - al) and
ty - &g = cl{(b:L - al), Therefore 1t is clear that x; - a; =

tl - al and similarly it is true that x2 - a2 = t2 - ag,
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and X3 - ag = tg - ag. It follows then that (A,T) ~ (A,X)

and ¥ = ¥. Hence the proof of the theorem is complete.
In the following theorem a property regarding the multi-
plicative identity element in R and any element of the set
" 8' 1is established.

Theorem 3.8, If o e¢B', then 1 [] & = 4.

Proof. By the definition of [] it follows that
1 ['] &« = g8 such that if (A,B)e & then 1 () (A,Ble 2.
Since by a theorem in Chapter II, 1 (-) (4,B) = (A,B) it
18 clear that the element (A,B) is common to « and A .
Hence 4 = B and the proof is complete.
Let % denote the element of S!' such that (A,B)e %
if and only if B = A, The next four theorems establish
some properties regarding the element ¥ of the system 4'.
Theorem 3.9. If & €8', then 0 [] & = %,

Proof. It follows from the definitiocn of [-] that
0 [*] 4 = 8 such that if (A,B)e « then 0 (*) (4,B)e 4.
Since O () (A,B) = (A,A) by a previous theorem and (A,A)e %,
it is clear that B = P and the proof of the thecrem l1s
complete.

Thecrem 3.10. If k [] & = %, where keR and 4 eS8’

then elther k = Oor & = 9.

Proof. Suppose k ¥ O and o4 # % . From the definition
of [] it follows that i1f (A,B)e & then k [] (A,B)e». Also
k () (A,B) = (A,X) such that Xy = a; + l{(bl - al), Xy =
a, + k(b2 - ag) and X3 = ag + lc(b3 - a3). By hypothesis
(A,X)e ¥, and so X, - a; =0, x, - a, =0and X3 - ag = 0.
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This means that k(b1 - al) = 0, k(b, - ag) = 0 and k(b3 - a3) =
0. &ince k O, then ‘b1 = 84, b2 = 2, and b3 = a3, which is
conitrary to assumption and the theorem holds.
Theorem 3.11. If k = O or 4 =% where & , %2 eS' then
k [Ja =7.

Proof.

Cagse I. BSuppose k = 0. Let k [] 4« = @8, and suppose
(A,B)e . Then k () (A,B)e 8. Since k () (A,B) = (A,X) such
that x; = a; + k(bl - al), X, = ay + k(b2 - ae) and xg =
ag + k(b3 - a3) and by assumption k = O, then X = A and 80
A = % and the proof of Case I 1s complete.

Case II. Suppose k # O but o = ». Let k [] a = ¢.
It follows from the definition of [] that 1f (A,B)e & then
k¥ () (A,B)e /. By assumption & = % so k () (A,A)e
where (A,A)e « . Since by a previous theorem k () (4,A) =
(A,A) it follows that ¥ = % and the theorem is valid.

Theorem 3.12. If (A,B) () (C,D)e % then (B,A) ~ (C,D).

Proof. By the hypothesis (A,B) #) (C,D)e#» and by the

definition of () it follows that (A,B) &) (C,D) = (A,X) such
that Xy = bl + dl - Cyy Xy = b, + dy, = €5 and X3 = b3 +
d3 - c3. Since ay = X9, 85 = Xy, and aB = x3, it follows
that aq - bl =d; - ¢y, 85 - b2 = d2 - Cp and az - b3 =
d3 - e3, which implies that (B,A) ~ (C,D) and completes
the proof of the theorem.

Consider the possibility of the existence of an element
«€S' such that for any element @ €S' 1t is true that A [+

d =8 . From the definitions of [+ and (#) it follows that
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1f (A,B)e p and (C,D)e & then (A,B) ) (C,D)e, where v
is to be equal to 8 . Thus (A,B) ~ (4,B) ) (c,D). But
by the definition of () it follows that (A,B) & (C,D) =

(A,X) such that Xy = by +dy - ¢y, Xy = Dby +dy -, and

x3 = by + d3 - c3. It is clear that if X = B then (C,D)e%.
Therefore for any element M eS!', then g F] » = 4.
Consider % [+ # for any # e8'. From the definition
of B] it follows that 2 [ 4 = ¥/ such that if (A,B)e %7
and (C,D)e B then (A,B) (¥ (C,D)e . Since (A,B) (¥ (C,D) =
(4,X) such that X, = by +dy - ¢y, Xy =Dby +dy - ¢, and
x3=b3+d3-03 and B = A, thenxl-almdl-cl,
Xy = By = d2 - C5 and x3 - as = d3 - 03. Hence, 1t follows
that (A,X) ~ (C,D) and o = g@. Therefore % is a unique

left or right additive identity element for the system L.



CHAPTER IV
ABSTRACT VECTOR SPACE

In this chapter the notion of an abstract vector space
is defined and studled, and the system of Chapter III is
shown to be a vector space. Three functions related to
vector spaces are studied, namely, inner prcducts, norms

and linear transformations.

Definition 4.1 The statement that ¥ fV;&,<>F is a
vector space over the fileld & { F;+,- 7 means that < is an
operation from VXV to V, and <& 18 an operation from FXV
to V such thatt:

(1) if xeV and yeV, then x ® y = y & X,

(i1) if xeV, yeV, and zeV, then x & (y & z) =
(x & y) @ z,

(111) there exists NeV such that if xeV, then
N & x =X,

(iv) if xeV, then there exists -xcV such that

XQ}*X“N,

(v) if xeV, yeV, and acF, then a < (x © y)
a Dx @aoy,

{v1) if aeF, beF, and xeV, then (a-b) & x
a © (b & x),

(vii) if acF, beF, and xeV, then (a + b) © x

a & X <P b DX,

19
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(viii) if 1 is the multiplicative identity element
in F and xeV, then 1 <& x = X,
Theorem 4.1. Suppose Y {V; ©,<> ¢ is an abstract

vector space over & { F;+,* §. Then

(A) 4f N'eV and there exists xeV such that
N' & x = x, then N! = N,
(B) if xeV, there exists a unique element x'eV
’such that x @ x' = N, and

(C) if x © y = N, then y = =X,

Proof. Let x be an element of V such that N' & x = x,
By (111) N @ x = x, and so N' @& x = N & x. By (iv) there
exists -xeV such that x & -x = N, It follows that (N' <& x)
@ -x=(N®x) @ -x. But by (11) ' & (x & ~x) =N &
(x @ ~-x), and by (iv) N' @& N = N < N. Hence, by (1i1),
N' = N and part (A) of the theorem holds.

For proof of part (B), note that by (iv) there exists
-xeV such that x € -x = N, ILet -x' be an element of V
such that x € -x' = N, and 80 X & -x = x ¢ ~x'. It
follows then that -x & (x @ -x) = -x ® (x & -x') and by
(11) 1t follows that (-x & x) @ -x = (-x & x) & -x',
But by (iv) N @& -x = N & -x', and by (1i1) -x = -x'.
Hence, part (B) is valid.

For proof of part (C), consider the hypothesis which
states that x,yeV and x <b y = N. By property (iv) x <
~x = N, and 80, X €& y = x € -x. It followa then that
xS (xDy)=-x & (x & -x), and by (11) then (-x @ x)
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@y = (-x & x) & -x. It follows by (iv) that N & y =
N & -x and by (111) that y = -x. Hence, the proof of the
theorem is complete.

It follows from the definition of a vector space that
the mathematical system f'{ 8'; Bl [-]}, studied in Chapter
III, is a vector space over the fleld R {R;+,- §. The |
element 7 ¢S' satisfies property (111) of Definition 4.1
and has the properties of the element N in Theorem 4.1.
Since the system ,f { 8; (-r),(-)} studied in Chapter II does
not have property (i) of Definitlon 4.1 and property (1)
of Theorem 4.1, it does not constitute a vector apace over
a field. Note also that it is not the system ordinarily
used in a study of vectors in E3.

Definition 4.2 The statement that Q 1s an inner

product defined on the vector space Yine, <> ¢ over the
field G §Cj+,- 2 means that Q is a function from VXV to

¢ such thats
(1) Q (x, x) > 0 and = 0 if and only 1if x = N,
(11) Q(x @y, 2)=Q(x, z) +Q(y.2)
(111) Q(c © %, y) = ¢-Q (x, y), and

(1v) Q (x, v) = T (7, %).

Theorem 4.2. If x, y, and zeV, ceC, where V is a

collection of elements belonging to any vector space

Y {V;e, &8 over § {cs+,-3, then Q (x, vy © 2 ) =

Q(x, y) + Q (x, z) and @ (x, ¢ Sy)=1ca(x, v).
Proof. Denote the elements x,y and zeC, which are

n-tuples of complex numbers as follows:



a2z

X3 {41) 421 cea g dn]: yi [161: ;321 vee g ﬁn]: and

z1 [a’l, Yps +ev s a’n]. It follows from the definition

of an inner product function for a vector space that

Q(Xay) = dlml + dg?a + oea. b A n?n; and Q(X“?-) =

oA "y 4+ & ¥ 5
l‘yl+ 2 2*‘““"’!11811‘

that teV and T =5 @ Z, it follows that Q(x,y & z) =

Since y € z = t, such

Ux,t) = o (BT F 7)) + (B ¥ ¥) + oo + 4 (G F ¥ )
= ABy A ¥t Bt Kot Fd At Y =
Qx,y) + ax,z). Similarly by the definition of Q and <,

it follows that Qx,c < ¥y)

= o CB, + A By + oo + o CA

e——

nan

L

e{d131+42ﬁ2+ ves + o d

ca(x,y). Hence the proof of the theorem is complete.

[

Theorem 4.3. If x,yeV, where V is the collection of

elements belonging to any inner product vector space
U {vi®,>f over & { C;+,-F , then
|6, ¥) |2 < lx,x) ofy,y).

Proof. Suppose y 1ls NeV, then it follows from the
definition of an inner product that Q(y,y) = 0 and Q(x,y) =
0 for any x¢V, and therefore for this speclal case
lQ(x,y)}Q = Q(x,x) oy,v). By considering the more general
cage, where x,yeV and y # N, ceC, examine the inequality
0<alxe @ y)ixne &y)

= Qx,x) + Qe & v,x) + Ax,e @ y) + Qe S y,¢ > y)
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= ox,x) + elQly,x)] + clalx,y)] + celaly,y)] + %&y} - Qg,y}

i

c 19 " Qlx,v) c i@%x,y‘)fyz Uy, x)
! i faly,y)3 "™ ' faly,y)3 "

L Amx) ry) - faEy)l® g, . Az, then 1t

Ay,y)

2
follows that 0 g EX) ATy - Ux , which is positive

or equivalent to zero if and only 1if

0 < afx,x) Ay,y) - lQ(x,y)lz. Hence it follows that

}Q(x,y)ia < Q(xz,x) a(y,v) and the proof of the theorem is
complete.

Definition 4.3 The sbatement that the set of n vectors,

Xys %ps ... s X, belonging to a vector space ¥ § Vi @, 7
over J { F;+,- ¥ is a linearly independent set means that
irf cy <->:§r.1 <+>c2 <->x2@ con <+>°n é)xnmﬂ, where

e c¢F, then Gy = Cg = s, = Cp = 0, If a set is not
1inear1y independent, it is sald to be linearly dependent.

Definition 4.4 The statement that ¥ {V;,< § is an

n-dimensional vector space over & { F;+,+ 3 means that
Definition 4.1 is satisfied and there exists a set of n
linearly independent vectors in the space 7, and there
does not exist a set of {n + 1) linearly independent vectors
invV.

Definition 4.5 The statement that a set of vectors

Xq1%ps +++ s%, Of & Vector space Y{v;e,of over
F {F;+,-¢ 1is a basis for ¥, or spans ¥ , means that:
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(1) if yeV then y may be expressed as & linear
combination of the set Xqs Xps eve s X

(i1) Xy» Xgs .. » X, 18 a linearly independent
set.

Definition 4.6 The statement that 1 1is a norm for

a vector space Y fV;@,> 7 over (§§C;+,-7 means that n
ia a function from V to R such that if x,yeV and a¢C, then:

(1) 7 (x) > 0 and %2(x) = 0 if and only if x = N,

(11) 7 (x & y) < n(x) + 72(y), and

(111) 22 (2 & y) = [a]- 72(x).

Consider a mathematical system »f § 55, <S¢, where
8% 18 the set of all ordered n~tuples of real numbers.
Define <> to be an operation from 8%x S® to 8% sueh that
K @ T = X, where Xes? and %y = kl + tl, Xy = k2 + tg, vou 8
x, =k, + t . In additlon, define <> to be an operation
from RX &8° to &2 such that if ceR, then ¢ <& K = Y, where
Yesn and vy = ck:l, Yo = ckg, R ckm.

Theorem 4.4, The system Jn{.‘i‘aﬂ; @©,>8 1is a vector

space over [ fR;+,-} .

Proof. It follows from the definition of <& that if
XeS?, Yes® and ZeS®P then X @ Y=Y @ X, and X & (Y & 2) =
(X & Y) & 2. Note the existence of a certain element UeS"
such that uy; = U, = ... = u = 0. By the definition of >
1t follows that if Xe8™ then U ¢ X = X and there exists
an X'es™ such that X & X' = U, Here x‘l = =Xq, x*g =

~Xgy ... » X' = -x,. In addition it follows that if Xes®,
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YesS?, acR, and beR, then a & (X S ¥) =a & X & a & ¥,
(ab) ODX=a S (b SX), (a+b) SX=adXSb DX
and 1 & X = X, Hence Definition 4.1 is satisfled and 40
1s a vector space over R { R;+,- §. Observe that the
element UcS" serves as the element N in Definition 4.1,
Define a function Q for the vector space ,§ © as followsi
Ir %, Yesn, then Q(X,Y) = x4 + Xo¥p + ves + X Ve It
follows from this definition of @ and the previous defi-
nitions of < and <> that if X,¥Y, and Ze&n, and ceR, then:

(i) Q(X,X) > 0 and Q(X,X) = O if and only if X = U,
(11) Ux @ Y,2) = X, Y) + (Y,2),
(111) Alec & X,Y) = ¢Q(X,Y), and

(1v) a(x,¥) = QALX).

Hence, Q satisfies Definition 4.2 and 1s an inner product
function for the vector space of ".

Define a function % for the vector space = as
follows: If Xe8%, then % (X) = [Q(X,X)]1%. Note that the
function % defined in this manner satisfies Definition 4.6
and is a norm for the vector space . .

It is a consequence of later theorems that the vector
apace 4 N 48 a n-dimensional vector space over the fleld .

Notice the existence of a set of elements

€5 €y +ee s enesﬂ such that e, = |. ,




11f1 =3,
where eij = s Which are linearly independent
0if i1 # g,

according to Definition 4.3 and serve as a basis for 4 ™.
The mathematical system £ { s, &, S, 7 ¢, is the
system usually referred to as Euclidean n-space and denoted

by E°,
Theorem 4.5. If the vectors Ups Ups Ugs oo 5 Wy

are linearly dependent in the vector space ¥ { Vi@, 7
over & fF;+,»} » then the vectors u,, u,, Ugs «ee s Upy
Woiyr Yppps cec s Uy are linearly dependent.

Proof. By the hypothesls and the definition of
linearly dependent vectors there exlsts a set Cis Cpos eev s
cneF, and not all zero, such that Cquy + Cou, + el F
Cply, = N. It follows that Copi¥%tr T o0 T Cpy = N
by simply letting Chpl = »o0 = O = 0. Hence the set of
vectors Uss Ups wee g Ups Uopns oov 5 Uy is a linearly
dependent set and the theorem is valid,

Theorem 4#.6. If n vectors span a vector space cone

taining k linearly independent vectors, then n > kK.

Proof. By the hypothesis, there exists a subset A of
set V composed of 8y Bps veo 3 By which spans the vector
space Y { V; &, &3 over &F { Fs+, + 7, and also V contains
a set B of k linearly independent vectors bl, ba, cae 3
by - S8ince b, # N, 1t may be expressed as a linear combi-
nation of elements of set A. It follows from the defil-

nition of dependent vectors that the set bl, By 8ps ene s
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a, is linearly dependent and that some a; of thils set is a
linear combination of the other vectors of this set.
Replacing ay by bl it follows that the set composed of
bl’ Bys By ese s By 4y Byiqs eee s Ay gtill spans the
vector space. Continue this procedure until
(a) all elements of set A are replaced by all of
the elements of set B, or
(b) all elements of set B and some elements of
set A are used to span the vector space, or
(¢c) all elements of set A are replaced by elements
of set B and some elements of B remain.
If (a) occurs, then n = k, if (b) oceurs, then n > k. If
(¢) occurs then the set byby... By, b4 18 linearly de-
pendent which 18 contrary to the hypothesls. Hence n > k

and the theorem is valid.

Theorem 4.7. Any n + 1 vectors in E° constitute a

linearly dependent set.

Proof. If n + 1 vectors in E" were linearly inde-
pendent, then by the previous theorem n > n + 1, which is
absurd. Hence any n + 1 vectors of E° must be linearly
dependent and the theorem holds.

Theorem 4.8. All bases of a finite dimensional vector

apace contain the same number of vectors.
Proof. Ilet Uys Ups eee s Uy and €1y €ps cev 5 €
form sets U and E respectively and be bases of a common

vector space. 8ince the set U spans the vector space and
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the set E 1s linearly independent, it follows by Theorem
4,6 that n > k, Similarly, the set E spans the same vector
gpace and U ig a set of linearly independent vectors, so
that k > n, Hence these conditions establish that n = k,
and the proof of the theorem ls complete.

Theorem 4.9. If there exists a set of n linearly

independent vectors €15 €5y c0n 5 € of a vector space
which spans the space U fV;j<¥,<> ¢ over/ § Rj+,.7 , then
the set forms a basis for the vector gpace and 1f xe¢V, then
X has a unique representation as follows: X = aq <> ey <
a, & e, P ... Pa, e, where the a,, <R,

Proof. By the hypothesis if xeV then x = a;, & ey @
ay & e, P .. D a, < e, where a;eR. Suppose x = b, &
ey Db, Se, @ ... @b, &e and each byeR. It follows
that N = (a; =~ by) @ ey @ (ay -~ b)) S e, @ ... @

(an - b)) <& e . Hence, a; = by, a5 = by, ... , a, = b,

and the proof of the theorem ls complete.

Theorem 4,10, If an inner product vector space

Vivi®,< 7 1s spanned by a collection of linearly
independent vectors Xqs Xoy ere 3 X then there exlsts a
set of orthonormal vectors bl’ ba, cee bn that span the
same space.

Proof, Construct a set Iis Tos eee s ynev by a method
known as the Gram-Schmidt process. In order to perform
this construction choose

371 = Xlr
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o oy X
V2 = %2 é&Eﬁf%i% Ya»
Axq,74) x4, ¥,) .
ys = x3 - V1795 ¥y - Tpr Y, Yos =ee 5 in general

k-1

E U=, v, ) Th t £ th £
Yy = X - : . m’ Iy e next part o e proo

follows by induction. It i1s clear that properties (l) and
(2) hold for J = 1. Assume the following properties hold
for § < ks
(1) The vector space spanned by Y15 Tgr en s Ty
ig the same vector space as the vector space
spanned by Xis Xps een s XJ.
(2) The set Yys Tgr eev s ¥y 18 orthogonal.
The next step is to show that (1) and (2) hold when J = k.
Notice that each y, # N. This follows because 1f y, = N
then by (1) the set Xys Xps ++. » X, Would be dependent and
could not be a basis for a vector space, It follows from
the general definition of y, and (2) that if J < k then
Uresvy) = Qxeyy) - Ax,yy) = 00 Hence vy, yp, -ve s
¥, are mutually orthogonal. By the definitlon of Yy it is
implied that X is an element of the set Xis Kgs ene s xk,
cev s X . Slnce y, # N and the assumption of (1) it
follows that property (2) is also valld for j = k. This
part of the proof establishes that il the construction can
be performed k times, then there exists a mutually orthogonal

set Yys Yos eevs Vier Vyey1e It follows that an orthonormal
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basis bl, bz’ e 2 “xnn can be formed by taking

¥
b1 = L v which completes the proof of the theorem.
[Qyy,9,)1"%

Theorem 4,11. Any finite dimensional vector space is

isomorphic with the wector space ¥ {V;&,<> ¢ of ordered
n-tuples over the same fileld.

Proof. Consider the basis set of orthonormal vectors
bl, bg, eve g bn derived in the proof of Theorem 4.10.

Since the set bl’ b.a, ceu s bn constitutes a basis for an
inner product vector space % § Vi<,<>3¢ over & f Fij+,° 7,
then any xeV has a unique representation x = klbl + kzbg +
e + knbn where each kieF'. Consider the element XeEn,
where X is the ordered n~-tuple of real numbers kl, 1::2, ver 3
kn' It follows that xeX 1s a one-to-one correspondence
between the elements of V and the elements of ER, Also,
this correspondence is an lsomorphism between E® and ,
since if x,yeV, then x €& yeX O Y, and Af ceF, then

¢ <> x=c¢ <> X, This completes the proof of the theorem,

Definition 4.8 The statement that T is a linear

transformation from % {V;®,<>f over & { Fi+,- f to
Wi, 6} over &F { F;+,+ ] means 1f x,yeV, keF then T
satiafies the following properties:

(1) ™Mx @ y) =Tx () Ty

(11) T(k & y) =k () Ty

Theorem 4,12, If the set Xi, X5, ... ; X, forms a

pasis for a vector space o {V;®,<&> ¢ over & {Fi+,- ¢ and
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Vis Tor ove 5 Ty is any ordered set of elements of a vector
space W {W;(),()} over & , then there exists one and only
one linear transformation T from V to W such that T{xi) =
Vi for i =1, 2, ... , n.

Proof. By the hypothesls if Z1s zaev and o bieF,
then z, = a;X, D asXy D oo P a, X, and z, = byX; @ byx,
& ... @bx . Define T(z,) = a5, ® a,ys ® ... @ a v,
and T(z,) = byy, ) by, @ ... ) byy,. It follows that
(2, ® 2z5) = (g% @ ... @ anxn) ® (byx, & ... & bnxn)

= [(a;%) @ byx;) @ ... @ (ax, @ byx))]
= [(ay + bl)xl ® ... ® (a, + b )x ]
By the definition of T(z;) and T(z,) 1t follows that
'l‘(zl > 22} ‘I‘[(a1 + bl)xl L ... ® (an + bn)xn]
() + bylyy 6 oo B (g, + b )y,
= (a9, @ .. O ay) ® (byyy ... ® pyy,)
= T(z,) © (z,).
If keF and zleV then it follows that
k &> zq = (k & 81X Pk D agx, @ ... DK Qb‘anxn). By
the definition of T(zl) it follows that
™k <> zl) = Tk & 8%y Pk &> agxaéb s Dk S anxn)
=k () a;y; Ok ) agy, O ... k) ay,
=k () [(agy] &) azyv®) ... @) a,7,)]
=k () T(zl).
Hence, by Definition 4.8 i1t follows that T is a linear

]

H

transformation. To establish that T 1s unlque, suppose
there exists a linear transformation T! such that if zlev,

then T*(zl) = y and in general T'(z;) = y,, fori=1, 2,
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+es 5 n. If z,eV it follows that T'(zl) = T‘(alxl P ...
s anxn). By the assumption that T' is a linear trans-
formation it follows that if zq is any element of V, then
T'(zl) = al[T'(xl}} @ ... P an[T'(xn)]
=a;y; 8 ... O ay,
= T(zl),
Hence T' = T and the proof of the theorem 1s complete.
The following theorem characterizes linear transfor-
mations from E° to E".
Theorem 4,13,

(1) If T is a linear transformation from E" to E® then

there exists an n by n matrix A such that

1f X = |. | €E® then T(X) is the product of the matrix A

and the matrix X,
(2) If A is an n by n matrix of real numbers then there

exists a linear transformation T from E" to E® such that

*y

X
o |
ifX= |. eE? then the matrix product of A and X is T(X).

*
. i
Kh. !

=) il

Proof. Suppose X is any element of En, then it follows
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that Xz [x,, X, ... , X, ] or X =

b i

By Theorem 4.4 and following remarks there exists a set

:elg €ss +ve s eneEn whlch spans En. It follows by Theorem
4.9 that X = xye; + xpe, + ... + X,e,. Since T(X) =
T{xlel + Xl + ... xnan] and since T is a lineapr
transformation by the hypothesis then T(X) = xlT(el) +

xeT(eg) + oe.. + an(en).

%11
o9
Define T(ei) = |, s for i =1, 2, .., , n. It follows
qni
ey i~ - -
843 810 81n
8n1 8o 8on
that T(x)mxl . + x5 | oo e x|
-anlJ aﬂEJ ann
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! nnn
- 1 pote. -1
817 B1p -+ 21n %4
8o 8pp 2on Xo
= . . . . , and part
%01 %n2 ®nn | *n|

(1) of the theorem holds.

For proof of part (2) suppose A is any n by n matrix
of real numbers, XeE®, YeE®, keR, and T(X)v i8 the product
of the matrix A and the matrix X. It follows that

_ 1 - -
817 830 ere a1, (Xl + yl)
8oy 8pp s as, (xa + yg)

T(X <> Y) = . . . *
hanl 2np .t a‘.rmj _(xn * yn )J




anl

ke

= T(X) + T(Y).

™M > X) = |.

kanl

o

= kT(X).

%

Also, 1t follows that
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t s Voo .. By, Yy
+ Bon Vo + Lo + a5, n
+ a0 Vo + ... ok 8n In
ree By kxl
e s aEn kx2
. arwa ‘la%{
+ kalg xz S U kaln xn
+ kﬁgg xg + ... F kaan xn
+ kang xz F e * kann xn

linear transformation from E° to E°,

Hence, by Definition 4.8 it follows that T is a

Consider the following as an appllcation of the pre-

ceding two theorems, Suppose Ty, Tpy -+« , T, is any basls

get for E? and Sl, 32, ves 3 sﬂ is any ordered set of points

of En.

Then there exists one and only one n by n matrix A

of real numbers such that 1f 1 <1 < n, then S, 1s the

matrix product of A and the one-~column matrix Ti'
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