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CHAPTER I 

INTRODUCTION 

The purpose of this paper Is to make a detailed study 

of vector spaces and a certain vector-like system. In 

Chapter II a vector-like system is studied, this system 

arising if one defines a vector to be a directed stroke 

from a point to a point {in Euclidean 3-space). It is shown 

that this system does not possess the properties which are 

desirable for a system to have if it is to be used in a 

study of vector analysis. Further, it is shown that this 

is not the actual system that is usually considered in 

vector analysis, A relationship is defined between the 

elements of this system and is used to partition the system. 

After the partitioning, another system is defined In Chapter 

III and it is shown that it has the properties which would 

be desirable for a system to have in a study of vectors. 

In Chapter IV the system defined in Chapter III is shown to 

be an ordinary vector space. A systematic study of a finite 

dimensional vector space is made in Chapter IV. 

The properties of the real number system, complex 

number system, and notions of a field are assumed. A 

collection of objects will be referred to as a set and will 

be denoted by a capital letter. The set of real numbers 

will be denoted by R. 
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Definition 1.1 The symbol € means "Is an element of," 

Thus t e T means that t Is an element of the set T. 

Definition 1.2 The set X is said to have ft as a 

relation if for each pair (a,b) of elements of X, the phrase 

"a is in the relation ft. to b" is meaningful, being true or 

false depending upon the choice of a and b. The symbol x a y 

means that x is in the relation * to y. 

Definition 1,3 The statement that Y is a subset of 

set X means that every element of X is an element of X. 

Definition 1.4 The statement that X is a partition of 

Y means that X is a collection of subsets of Y such that Y 

is the union of the sets of X and no two sets of X have an 

element in common. 

Definition 1.5 The statement that a relation ft is 

reflexive on the set X means that x* x for each xeX. 

Definition 1.6 The statement that a relation is 

symmetric on the set X means that if xeX, yeX, and xfty, 

then also yft x. 

Definition 1.7 The statement that a relation ft is 

transitive on set X means that if x, y, zeX and x <R y and 

yftz, then also xRz. 

Definition 1.8 The statement that a relation H is an 

equivalence relation on X means that fL is reflexive, sym-

metric and transitive. 

Definition 1.9 If each of S and T is a set, then a 

mapping of S into T is a correspondence <4 between S and a 

subset of T that associates with each element of S a unique 



element of T. A mapping * of S into T is a mapping of S 

onto T if for each beT, there exists an a € S such that 

a et » b. Thus if <* is a mapping of £ onto T, each element 

of T corresponds to some element of 8, 

Definition 1,10 The mapping ^ of S onto T is a 1-1 

mapping of B onto T if for each a, bcS, a / b implies 

a 4 fi b<* . 

Definition 1,11 The statement that * is an operation 

from AXB to C means that * is a mapping of AXB into C, 



CHAPTER II 

STUDY Of A CERTAIN VECTOR-LUCE SYSTEM 

A system {"Sj |+)„ (•)] will, now toe defined. Let S 

denote the collection of all ordered pairs of points in 

Euclidean 3-space. Define (+) to be an operation from 

S X S to S and (-) to be an operation from B X S. to S as 

followsi The statement that (A,B) (+) (C,D) * (B#F) means 

that 1 - A and f]> » bx + d1 - fg « bg + dg - c 2 and 

f3 " ^3 + d3 ~ °y 3X1(1 feiie s^^eraent that k (•) (A,B) « (D#C) 

means that keR, D = A, and + k(b^ - a^), eg sw-

ag + k(b2 - a2) and c^ = a^ + k(b^ - a^), where A « 

(a^, a2, â }» B « (b1# bg, b^)# C » (op
 c

2>
 c3^ D " 

(d-̂.» d2, d^)i B *» (®ji i ®2# ' and P *° {fp f ̂ *̂ The 

following nine theorems establish properties of the system 

J which are similar to those of an abstract vector space. 

Theorem 2,1. If (A,B), (C,D), and (E,F) e S, then 

(A,B) (*) [(C,D) (*) (S,P)3 - [(A,B) (+) (C,D)] (+) (E,F). 

Proof. By the definition of {•) it follows that 

(A,B) (+) (C,D) » (A,H) where h^ » + d1 - Oy h2 « 

bg + dg - c2 and h^ • b^ + d^ - c^. Similarly it follows 

that (A,H) (+) (B,P) « (A,G) where gx - bj + dx - a2 + fx - e^ 

g2 - b2 + d2 - c2 + f2 - e2 and g3 « b^ + d3 ~ c3 + f3 - ey 

Also by the definition of (•) it follows that (C,D) (+) {1,F} -

{ X ) where * d^ + f^ -̂g ** dg *t" f2 ~ ̂  and 



x 3 - d 3 + f 3 ~ t y and (A,B) (+) (C,X) « (A,Y) where 

y^ « b^ + d^ + f^ ** ®2 ~ cl* ^2 ** ̂ 2 ^ ^2 + ^2 "* ®2 ~c2' 

and = b3 + d 3 + - e 3 - c^. Hence it Is clear that 

G - I and the proof of the theorem Is complete. This 

theorem Implies that the operation (+) is associative. 

Theorem 2.2. If (A,B) arid (C,D) e S, k e R, then 

k (-) [(kfB) (+) (C,D) ] - k <•} (A,B) (+} k (•) (C,D). 

Proof. By the definitions of (+) and (•) it follows 

that k (•) (A,B) - (A,X), where xx - a 1 + k(b1 - ax), 

x 2 -
 a

2 + k(bg - a g) and *3
 = a3 + k ^ 3 ~ k (*) ( C* D) 

(C, Y), where Jx 53 C1 + k( di "* c i ^ y2 " c2 + k ^ 2 *" c 2 ^ 

and y 3 = c 3 + k(d3 - c3). Also, (A,X) (+) (C, Y) « (A,2), 

where 35 ai + kb^ - ka^ + kd^ - ke^, z2 "* a2 ~ 

kag + kdg - kCg and + kb 3 - ka3 + kd^ - kc3> It 

follows In a similar manner by the definition of (+) that 

(A,B) {+) (C,D) » (A, T), where t x - b1 + d 1 - tg » 

b 2 -f d 2 - o2, and t 3 « b3 + d 3 - c3. Also, by the defi-

nition of (*} It follows that k (•) (A,T) - (A,P) where 

^1 * al + ^ 1 * ^ 1 " ^"Cl ~ ^ 1 * P2 558 a 2 + ^ 2 + ^ 2 ** 

kc2 - ka2> and p 3 * a 3 + kb3 + kd3 - kc 3 - ka3< Hence 

F - Z and the proof is complete. It is established by 

this theorem that the operation (•} is distributive* 

Theorem 2.3» If (A, B) € S ano ic € R, c € R, then 

(k + c) (•) (A,B) - k (•) (A,B) (*) c (-) (A,B). 

Proof. By the definition of (•} It follows that 

k (•) (A,B) * (A,X) where « a-̂  + k(b^ - a-̂ ), x 2 » 



a 2 + k(bg - a g) and « a^ + k(b^ - a^). Also, by the 

same definition o (•} (A,B) « (A,Y), where y^ ® a^ + ^(b^ - a^), 

y 2 • a 2 + c{bg • a 2) and y^ =» a^ + 0(^3 - a.3)* It follows 

from the definition of (+5 that (A,X) (+) (A,Y) » (A,z) where 

Z1 38 X1 + yl " al> z2 = x2 * y2 ~ a2 431(5 z3 * x3 + y3 " a3' 

Also, since k,c c R then (k •+• c) (•} (A,B) = (A,T), where 

tl " al + + °)(bi - ai).» t 2 « a g + (k + c)(b£ - a 2) and 

t^ * a^ + (k + c)(b^ - a^). But = a^ + kb^ - ka^ + a^ + 

cb^ - a^ - ca^ =» a^ + (k + c) (b^ - a^), z 2 = a 2 + kbg - ka2 +• 

a2 + c b2 ~ a 2 ** c a2 - a2 + + ° ) ^ 2 " a2^ z3 38 a3 + 

kbj - ka^ + + cb^ - a^ ~ ca^ 35 a^ + (k + c)(b^ - a^). 

It Is clear that - t^, z g « tg, and z^ *-» t y Hence Z » T 

and the proof of the theorem is complete. This theorem 

establishes a certain distributive property for the oper-

ation {*). 

Theorem 2,4, If (A,B) € S and k e R, c € R, then 

tc'k] (•) (A,B) - e {•) [k (•} (A,B) ]. 

Proof, It follows from the definition of (•) that 

c*k (») (hfB) » (A,X) where
 xi " ai * c*k{b^ « a^), Xg » 

a 2 + c'k(bg - a g) and • a^ + c*k{b^ - a^). Also, 

k (•) (A,B) » (A,T), where t^ = a 1 + k(b^ - a^), t 2 -

a 2 k (bg ** a 2) and t̂> ** a^ k (b^ ** a^) s and c (*) (A, T} >* 

(A,Y), where ~ ai + c(t^ - a^}, y 2 » a 2 + c(t2 - a 2) and 

y^ ^ a-, c (t^ m a^)« A1 so, ®® a^ d (b«̂  *•' a^) ** a-̂  

c'k(b1 - a-̂ } and in a similar fashion x £ « c*k(bg - a g) and 

« c'kfb^ - a^). It follows then that y^ « + 



cl"-al + ^fel "" al^ ** al^ " ai * c*k(b} - and a similar 

egression is true for y2 and y^. Hence X » Y and the 

proof is complete, 

theorem 2,5. If k (•) {A,B) - (A,A) then either k - 0, 

or B ** A, 

Proof. Suppose k / 0 and B / A. Then by the definition 

of {•} it follows that k {•) (A,B) » (A,Y), where y^ » 

^1 *" )> Yg *** ®>g k(bg "• &2) and y^ m a^ k(**• ) • 

But by the hypothesis Y ® A, and so y^ » a1# yg » ag and 

^3 58 a3' T h i e ®®&n® that k(b 1 - a-^5 « 0, k(b 2 - a 2 ) =» 0 

and k(b^ - a^) - 0, Since k / 0, then b^ » a^, bg » ag 

and b^ « â > which is contrary to assumption. Hence the 

theorem is valid. The proof of the converse follows in 

the next theorem. 

Theorem 2.6. If k « 0 or B » A then k (•) (A,B) » (A#A), 

Proof. 

Case I. Suppose k ® 0. It follows from the definition 

of {•) that k (•) (A,B) •» (A,X), where x^ » + ©(b^ - a^) = a^, 

Xg « &g + 0(bg - a2)
 m a.g and x^ » + 0(b^ - a^) 80 a^. 

Hence X » A and the theorem is valid for this case. 

Case II, Suppose k / 0 and B « A, By the definition 

of (•) then k (•) (A,A) « (A,X), where » a^ + k(a^ - a^) * a1# 

x2 - a 2 + ^(
ag " a2^ ™ a2 811(1 x3 88 k(a^ - a^) « a^. Hence 

X » A and the proof of the theorem is complete. 

Theorem 2.7. If k (•} (A,B) =» (A,B) and B / A then k * 1, 

Proof, Suppose k (•} (A,B) » (A,X). By the definition 
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of {*) it follows that x^ » + kCb^ - a^), x2 ™ a2 + 

k{bg - a2) arid *3 **
 a3 + ^(^3 - 8-3)* But by the hypothesis 

X » B, and so b^ » + k(bx - a^), bg •» a2 + k(bg - ag} 

and b^ « + ̂ ^3 ~ *3). Also, by the hypothesis B / A, 
thus then either bx / a1# or bg / a2> 02? b^ / â » Suppose 

bl ^ ai* ®iea it; follows that b^ - ai = kfb.̂  - a^) and 

k - 1. The otter cases are similar. Hence the theorem is 

true, 

Theorem 2.8. If k « 1 then k (•) (A,B) » (A,B). 

Proof. Suppose k « 1. Then by the definition of (•) 

it follows immediately that k (•} (A,B) » (A,X), where « 

(b-̂  ** a^)f Xg at Sg (bg ** &2) <md x^ * a^ (b^ ** a^) • 

It is clear that X <* B and the proof is complete. Mote 

that this property of the System / is a postulated property 

of a vector space. 

theorem 2.9. If (A,X) (+) (A,Y) - (A,Y) then X « A. 

Proof. Since by the hypothesis (A#X) (+) (A,Y) » (A,Y), 

it follows by the definition of (•) that y^ » x^ + (ŷ  - a^), 

y2 « x2 + (y2 - ag) and y^ » x^ + (y^ - a^). Hence it is 

clear that X = A and completes the proof of the theorem. 

In the following theorem it is established that the 

system j*P does not have a certain very important property 

which every vector space possesses. 

Theorem 2.10. There exist elements (A,B) and (C,D) € 

S, such that (A,B) (+) (C,D) / (C,D) {+) (A,B). 

Proof. Consider the points A(l,2,3)> 1(2,3*4), C{3#4»5) 

and D(4,5,6) of E3. By the definition of (+), (A,B) fr) 



(C,D) « (A»X), where » 3, x2 « 4 and x^ » 5. Also by 

the came definition (C,D) (t) (A,B) « (C,Y), where y1 = 5, 

y2 - 6 and y3 » 7. Hence (A*X) / (C,Y) and the proof is 

complete. This theorem establishes that the operation f) 

is not commutative, A relation la defined on the elements 

of the set S in the following definition which is used in 

connection with the study of another system in the following 

chapter. 

Definition 2,1 The statement that (A,B) rv (c,D) means 

that b^ * •* c^j bg ~ Sg dg — Cg and b^ — a<̂  m 

d^ — o y 

Theorem 2.11. The relation defined in Definition 2.1 

and denoted by aj is an equivalence relation on the set S« 

Proof. Suppose any element (A,B) c B Is chosen. It 

follows immediately that (A,B) ro (A,B) since b̂ ^ - * 

^1 " ai' b2 *" a2 " b2 ~ a2 ^3 *" a3 * ̂ 3 " a3* Therefore 

the relation ru is reflexive. Next, consider any two 

elements (A,B) and (C,D) of the set S such that (A,B) r̂ j 

(C,D). From the definition of nJ it follows that b^ - a^ » 

% ~ cl* b2 " a2 ™ ̂ 2 ** c2 ^3 " a3 38 ̂ 3 ** c3* Since 

a,b,c,d e R it is clear that d^ - c^ » b^ - a^, dg - c2 « 

bg * a2 and d^ ** c^
 81 b^ ** a^. Hence (Ĉ  D) f\j (A ̂ B). 

Therefore the relation rj is symmetric on the set S. Also 

consider any three elements {A„3), (C,D) and (E,JP) of the 

set S, such that (A,B) (Cf$) and (C,D) r>u (S*F). By 

the definition of it follows that b-̂  •» a-̂  ™ d*̂  "* ̂i* 
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t>2 ~ a2 =» dg - Cg and b^ - a^ « d^ » c^. Similarly, It la 

true that d-j_ - » f2 ~ e^, dg - Cg » fg - eg and d^ - 03 » 

fg * e^. Since a,»b,c,d,e,f € R it is clear that b-̂  - a-̂  = 

*1 "* el' b2 " a2 m f2 " e2 ^3 ~ a3 ** ̂ 3 "* e3* Hence, the 

relation satisfies Definition 1*8 and is an equivalence 

relation on the set S. 

Note the existence of a unique element (N,N) c S where 

n^ = 0* ng » 0 and n^ » 0, Suppose (A,B) is any element of 

set S. It follows by the definition of (•) that (A,B) {+) 

(N»N) * {A,B)» Therefore the element (N,N) serves as a 

right additive identity element for every element (A,B) € S. 

Notice also that there exists a subset € S such that 

(A,B) e if and only if A » B, and that the subset is 

an infinite set. Since it has been established by Theorem 

2.10 that the {+} operation is not commutative on the set S, 

it cannot be assumed that every right additive identity is 

also a left additive identity. Suppose there exists an 

element (X,Y) e S such that for any element (A,B) € B, It 

is true that (X,Y) (•) (A,B) « (A#B). It follows immediately 

from Theorem 2*9 that this could occur if and only if X » 

Y = A. Hence X and 1 depend upon A and no unique additive 

identity exists in the system oS . 



CHAPTER III 

A SYSTEM DERIVED FROM A "VECTOR-LIKE SYSTEM 

A system -Jx [S1; W, [-]J will now be defined in terms 

of the notions developed in Chapter II, Let S' denote the 

set of elements such that eS* if and only if <* is a subset 

of S which belongs to the partition of S induced by the 

equivalence relation ro , Define [+] to be an operation from 

S* X S' to S' and [•] to be an operation from Rtf S* to S' 

as follows. The statement that * [+] /S « y means if 

(A,B)e * and (C,D)e fi then (A,B) (+) (C,D)€ *. The statement 

that k [•] «< • /S means that if keH and (A,B)e « then 

k (•) (A,B)£ /3. The first two of the following theorems 

show that [+] and [•] are well defined. 

Theorem 3.1. If (A#B)e e\ , (C#D)e * , (l#F)€ «h and {Q,M)e * 

then (A,B) {+) (0,0) ̂v/ <E,F) {+) (a,H). 

Proof« By the hypothesis (A,B) (E,F) and (C,D)rvj 

(Q,H). From the definition of {+} it follows that (A,B) (+) 

(C,D) » (A,X) and (E,F) (*) (0,H) - (E,Y) where x1 -

"l + fll " °1' x2 = b2 + a2 " c2' x3 " b3 + d3 " °3' yl " 

fl + hl ~
 sl* y2 " f2 * h2 " g2 y3 " f3 + h3 " s3* 

Since xi - ai * bi + di "* ci ~ ai and yi ~ el ao ̂ l + hl ~ 
gl ~ el ~ bl + dl *" C1 "" a]L, it follows that x1 - a1 =» y^ - e1# 

and in a similar manner Xg - a2 = y2 - e2» and x^ - a^ « 

y3 - e^. Hence (A,X) ̂  (E, Y) and the proof is complete. 

11 
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Theorem 3.2, If (A,B)€ , (C,D)e <* and keR then 

k (•) (A#B) ro k (•) (C,D). 

Proof, By the hypothesis (A,B) ro (C,D) and from 

the definition of (•)* k (•) (A,B) « (A,X) and k (-) (C,D) — 

(C,Y), where + k(b^ - a1), Xg ® ag + k(bg - ag}4 

x3 « a3 + k(b^ - a^), " ci + k(di " ci)» ^2 " c2 + k ^ 2 " e2^ 

and y0 » c, + k(d« - c0), Since x, « an + k(bn - an) and 
3 J J J JL X J. X 

y, - c, •» k(d-, - c,) » k(b, - a,), then y, - c1 - x, - a,. 

It follows in a like fashion that y0 - c0 » x0 - a0 and 
^ & <& d, 

y-a - c-3 "" x-s - a,. Hence (A,X) ̂  (C, Y) and the theorem is 
Z3 J? *5 *»!/ 

valid. 

Theorem 3<3» If * eSl and P eS* then M [+3 fi 88 /s W * . 

Proof, Let a [+] 4 = < and ft [*] <* *» V . Then if 

(A#B)e«\ and (C,D)e /3 , it follows from the definition of [+] 

that (A,B) (+} (C,D)e A and (C,D) {*) (A,B)e •. Since (A,B) 

(+} (C,D) - (A,X), where x^ « b^ + d^ - c^, xg = bg + dg - cg, 

and x3 ^ b3 + d3 - c^, and (C#D) f-) (A,B) « (C, Y)# where 
yl " dl + bl " al* y2 88 d2 + b2 " a2 a n d y3 « d3 + b3 - &3, 

it follows that xn - a, = b, + d, - c, ~ a-., x0 - a« -
JL X X *1* Jbn 4*m 9m 

bg + dg ~ Cg - ag and x3 - a3 « b3 + d3 -
 c

3 - a3« Similarly, 

it follows that y^ ~ c-̂  = d-̂  + b-̂  - a-̂  - c^, yg -
 cg =• 

dg "i" bg *• ag *•* cg and y3 ** c3 ™ d3 -i* b3 a3 ** ĉ » Hence^ 

Xj •* a^ 588 y^ "* Cĵi Xg — ag 2=8 yg ** cg and x3 *"• a3 ^ y3 ™ c 3, 

Therefore (A,X) ̂  (C,Y) and the proof of the theorem is 

complete. This theorem establishes that the operation [+] 

is conwuttative, 
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Theorem 3.4. If 4 , /3, X eS', then [<x |>J $\ [+] t * 

i M it M *). 

Proof. Let <* j+] $ » a and /5 j>] * » 0t Suppose 

(A,B)e«s( , (0,D}e /S and (l,F)e x . Then by definition it 

follows that (A,B) {+) (C,D)e 0 and (C,D) (+) (l,P)€j2f. By 

definition (A,B) (+) (C,D) « (A,X) where x^ «* b^ + d^ - c^, 

Xg « bg +• dg - Gg and x^ * b^ + d^ - c^. Similarly, 

(C,D) (+) (E,F) - (C,Y) where y1 » d-̂  + f1 - e1# y2 » dg + 

fg - @g and y3 ~
 d

3 +
 f

3 ~ ey 0 [+] * °= cu and 

<* H 0 - V • Then (A,X) (+) (E,P)e<o and (A,B) (+) (C,Y)e V . 

% the definition of {+}, (A,X) (+) (S,P) « (A,T) where t^ « 

*1 + fl " el' ^2 * x2 + f2 ~ e2 8131(1 fc3 " x3 + f3 " e3* 

Likewise, (A,B) (+) (C, Y) * (A,V) where » b-̂  + y^ -

v2 - b2 + y2 - c 2 and » b^ + y^ ~ e^. It follows then 

that ~ ai *" vi ~ ai> tg - a 2 »
 vg - ag and t^ - « 

v0 - a0. Hence the proof of the theorem is complete. This 
3 3 

theorem establishes that the operation [+] is associative. 

In the following theorem it is shown that the operation [•] 

is distributive with respect to the operation |+). 

Theorem 3.5. If A eS', /3 «S», and keR, then k [•] 

[ * H 4 ] . ( k l ' ) i ) W (k [•] /* ), 

Proof. Let m W z3 « y • Suppose (A»B)€<a and 

(C,D)e /3 . Then (A,B) (+) (C,D)e y . By definition of (*-), 

(A,b5 {+) (C,D) *» (A,X) where x^ * b^ + d^ - c^, Xg » bg 4-

dg - Cg and x^ » b^ + d^ - Q y It follows from the definition 

of [•] that k ['] V - /> such that if (l,P)e then k (•) (E,P) 
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€/> . Sine© (A,X)e * , then k {•) (A,X)e/> and k {•) (A,X) » 

(A,T) where +'k(x^ - a^), tg « a2 + k(x2 - ag) and 

^3 * a3 * k^x3 ~ a3^* k [•] * =* 0 and k [•] /* » V , and 

suppose (G,H)e «< and (I# J)e /3 . Then k (•) (G,H)€$f and k (•} 

(I,j)e i/. Sins® (A,B)e «* and (C,D)e /S then k {•} (A,B)e0 

and k (•) (C,D)e V, where k (•) (A,B) - (A, Y) and k (•) (C,D) « 

(C,Z) such that ̂  - a| + k(b^ - a1), y2 " + k(b2 - a2), 

y3 « a3 + k(b3 - a^), z1 « Cj + k(d1 - cx), Zg » o2 + 

k(d2 - c2) and z3 - c3 + k(d3 - c3). It follows from the 

definition of M that 0 W i/ « c*> such that if (K, L)e0 

and (M,N)e V then (K,L) (+) (M,N)ew, By the definition of 

(+), (A,Y) (+) (C,Z) « (A,S) where b1 - yx + z1 - ex, »2 -

y2 + z2 - Og and a3 » y3 + z3 - o3» Since t^ - a-̂  * kb^ + 

kd^ - kc^ - ka1 and - a^ •* kb^ 4* kd^ - kc^ - ka^ it is 

clear that • a^ •» - a^. In a similar manner it i® 

true that t2 - ag « s2 - ag and ̂ 3 ~ a3 88 s3 ~ a3* 

follows that (A»f} ssj (A, S) and therefore p « tx> . Hence 

the theorem is valid, 

In the following theorem a distributive property of the 

operation [*3 with respect to the operation 1+3 la established. 

Theorem 3.6. If 4 eS', k€R, and ceR, then (k + c) [-] 

* m (k [•] * ) [+3 (c [•] * }. 

Proof* Let k + c m d and d [*3 =» /3 . Suppose (A,B)e «< 

It follows then that d (•) (A»B)e /? and d (•) (A,B) - (A,X) 

where x1 « a2 + d(bx - a15» x2 « a2 +
 d^b2 ~ a2^ a n d x3 ~ 

a0 4- d(b« - a,). I»et k [•] 4 mi/ and c [•} W * <*> • Then 
J J J 
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k [•] (A,B)e V and c [•] (A,B)e u> • Also k (*) (A,B) « (A, Y) 

where 885 a l + k ^ b l " a l ^ y2 = a2 + k^b2 " a2^ a n d y3 ** 

- a^), and c (•) (A, B) = (A,Z) where = a^ + 

c(b1 - a^), z2 » a2 + c(b2 - ag) and + e(b^ - a^). 

Let V [+] u» = t . Then (A,Y) (+) (A,Z)e jr , where (A,Y) (+•) 

(A,Z) = (A,T) such that t 1 = y1 + z1 - a ^ t 2 ^ y2 + z2 *" a2 

and ^3 = ^3 + z3 ~ a3' Since Xx ~ a l 23 a l + d ( b i - a^) ~ a ] 3 

(k + c)(b1 - a^) and t^ - a^ = y^ + - a^ - a^ » 

(k + c)(b^ - a^), i t i s clear that (A,X) ^ (A»T) and 

therefore ft = / . Hence the proof of the theorem i s 

complete and a desirable property i s established for the 

system J l 1 . 

Theorem 3.7. I f « eS' and c,keR then (c-k) [•] * = 

C CO (k [•] 4 ). 

Proof. Let e-k = d and d [•] 4 = t , and suppose that 

(A,B)e* . Then d ['] (A,B)e V where d (•) (A#B) ® (A,X) such 

that xx = ax + d(b1 - a^), x2 = a2 + d(bg - ag) and x^ = a^ + 

d(b3 - a s ) . Let k [•] = fi , and suppose that (C,D)e + . 

Then k (•) (C,D)e fi . Since (A,B)e 4 then k (*) (A,b)€ fi , 

where k (•) (A,B) = (A,Y) such that y^ = a^ + k ( b i ~ a]_)> 

y2 = a
2 + k(b2 - a2) and y^ = a^ + k(b^ - a^). Let c [•] p « 

V and suppose that (E,F)e fit . Then c (•) (E,P)e Since 

(A,Y)e/fl , then c (•) (A,Y)e V, where c (•) (A,Y) = (A,T) such 

that t^ = a^ + c(y^ - a^), t 2 = a2 + c(y2 - a2) and t^ * 

a^ + c(y3 - a^). I t follows that x^ - a^ = ck(b^ - a^) and 

t i "* a l ~ "* a i ) • Therefore i t i s clear that « 

t . - a., and s imi lar ly i t i s true that x„ - an = t 0 - a~, 
d d d d 
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and x3 ~ a3 *3 ~ a3* I t Allows then that (A,T) ̂  (A,X) 

and t = V. Hence the proof of the theorem is complete. 

In the following theorem a property regarding the multi-

plicative identity element in R and any element of the set 

S' is established. 

Theorem 3.8. If h eS1, then 1 [•} = 4 . 

Proof. By the definition of [«) it follows that 

1 [•] a = 0 such that if (A,B)e <* then 1 (•) (A,B)e>tf. 

Since by a theorem in Chapter II, 1 (•) (A,B) » (A, B) it 

is clear that the element (A,B) is common to «< and /3 , 

Hence 4 = $ and the proof is complete. 

Let y denote the element of S1 such that (A,B)e y 

if and only if B » A. The next four theorems establish 

some properties regarding the element V of the system ^ '. 

Theorem 3.9. If eS1, then 0 [•] <4 = y . 

Proof. It follows from the definition of [•] that 

0 [•] a = $ such that if (A,B)c ct then 0 (•) (A,B)e 4. 

Since 0 (•) (A,B) = (A,A) by a previous theorem and (A,A)e 

it is clear that ft = f and the proof of the theorem is 

complete. 

Theorem 3.10. If k [•] a = y , where keR and a cS' 

then either k = 0 or 4 » . 

Proof. Suppose k ^ 0 and d / ? . From the definition 

of [•] it follows that if (A,B)e d then lc [•) (A,B)e f . Also 

k (•) (A,B) « (A,X) such that x-̂  = a^ + kCb-̂  - ai)» Xg « 

a 2 + k(bg - a 2) and x^ = a^ + k(b^ - a^). By hypothesis 

(A,X)e y, and so - a^ «= 0, xg - a^ = 0 and x^ - a^ = 0-
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This means that k(b1 - a^) = 0, k(b2 - a2) = 0 and k(b^ - a^) 

0. Since k f 0, then b^ = a^, bg = a2 and b^ = a^, which is 

contrary to assumption and the theorem holds. 

Theorem 3.11. If k = 0 or «( = y where 4 , eS' then 

k [•] <k - ? . 

Proof. 

Case I. Suppose k = 0. Let k [•] 4 = A , and suppose 

(A,B)e <* . Then k (•) (A,B)€^. Since k (•) (A,B) = (A,X) such 

that xi ^ ai + - ai)> Xg = a 2 + lc(b2 - a 2) and x^ = 

a^ + " a3^ assumPtion k = 0, then X = A and so 

4 =• ? and the proof of Case I is complete. 

Case II. Suppose k / 0 but 4 » ? . Let k [•] a. = 7/ . 

It follows from the definition of [•] that if (A,B)e «* then 

k (•) (A,B)e V. By assumption * = so k (•) (A,A)et/, 

where (A,A)c 4 . Since by a previous theorem k {•} (A,A) = 

(A,A) it follows that V = y and the theorem is valid. 

Theorem 3.12. If (A,B) (+) (C,D)e y then (B,A) ̂  (C,D). 

Proof. By the hypothesis (A,B) (+) (CjDjc? and by the 

definition of (+) it follows that (A,B) fy) (C,D) = (A,X) such 

that x-̂  — b^ + d-̂  ~ ^ d 2 •* c2 and x^ * b^ -t* 

dg - Cg. Since ax = x^, a 2 = x2, and a^ • x^, it follows 

that ai - bi = di - c^, a 2 - b2 = d2 - Cg and a^ - b^ « 

d3 ** c3* w h i c h implies that (B, A) (C,D) and completes 

the proof of the theorem. 

Consider the possibility of the existence of an element 

*eS' such that for any element $ €S' it is true that 0 M 

4 « fi . Prom the definitions of [+] and (•) it follows that 
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if (A,B)e fi and (C,D)e * then (A,B) (+•) (C,D)ey, where V 

is to be equal to 0 . Thus (A,B) (A,B) (+) (C,D), But 

by the definition of (+) it follows that (A,B) {+) (C,D) « 

(A,X) such that « b^ + d-̂  - c^, Xg => bg + dg - Cg and 

x0 = b0 + do - c-,, It is clear that if X = B then (C,D)e"¥ . 3 3 3 3 

Therefore for any element fi eS•, then p M v = fi . 

Consider f [+] fi for any 4 eS' . From the definition 

of M it follows that f [+] » i/ such that if (A,B)s? 

and {C,D)c fl then (A,B) {+) (C,D)c Since <A,B) W (C,D) « 

( A,X) such that x^ « b^ + d-̂  - c^, Xg « bg + dg - Cg and 

x3 ~ ̂ 3 + ^3 " °3 ancJ ^ * A# t h e n xl ~ al 68 dl ** cl* 

Xg - ag =• dg - Cg and x3 " a3 ~ ̂ 3 " c3* Hence, it follows 

that (A, X) rj (C,D) and V » fi . Therefore f is a unique 

left or right additive identity element for the system J 1. 



CHAPTER IV 

ABSTRACT VICTOR SPACE 

In this chapter the notion of an abstract vector space 

is defined arid studied, and the system of Chapter III is 

shown to be a vector space,. Three functions related to 

vector spaces are studied, namely, inner products, norms 

and linear transformations. 

Definition 4,1 The statement that y £ Vj<^, <$>] is a 

vector space over the field ££ {Fj+, • J means that <£• is an 

operation from Vx V to V, and <•> is an operation from F XV 

to V such thati 

(i) if xc V and yeV, then x «&> y » y <&> x, 

(ii) if xeV, yeV, and Z€V, then x «£> (y <sg» z) « 

(x y) & z, 

(iii) there exists NeV such that if xeV, then 

M <$> x » x, 

(iv) if xeV, then there exists -xeV such that 

x <a> - x » u, 

(v) if xeV, yeV, and aeF, then a <£> (x <$> y) 

a <•> x 4> a <•> y, 

(vi) if aeF, beF, and xeV, then (a*b) O x 

a <£> (b <r> x), 

(vii) if aeF, beF, and xeV, then (a + b) <-> x 

a O x <$> b O x, 

19 
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(viii) if 1 is the multiplicative identity element 

in F and xeV, then 1 O x » x. 

Theorem 4,1, Suppose V {<$>»<•> J is an abstract 

vector space over & { Fj+, • J , Then 

(A) if If'cV and there exists xeT such that 

N« <$> x » x, then N' » N, 

(B) if xeV, there exists a unique element x'eY 

such that x x' » M, and 

(c) if x 0 y » N, then y » -x. 

Proof. I»et x be an element of V such that N1 <£> x = x. 

% (iii) N x =» x, and so H1 x » H ̂  x, By (lv) there 

exists -xeV such that x ̂  -x = N. It follows that (if' <J> x) 

-x » (H <2> x) <$» -x. But by (ii) N' «$> (x <$» -x) » N & 

(x <j> -x), and by (iv) N' <3> N =» N N. Hence, by (iii), 

N* » N and part (A) of the theorem holds. 

For proof of part (B), note that by (iv) there exists 

-xeV such that x ~x » N, Let -x' be an element of V 

such that x -x' = N, and so x ̂  -x » x ̂  ~x!. It 

follows then that -x ̂  (x <& -x) » -x <$> (x <3> -x«) and by 

(ii) it follows that (-x x) -x - (~x <& x) -x'. 

But by (iv) M O -x ® M «$• -x*, and by (iii) -x - -xf. 

Hence, part (B) is valid. 

For proof of part (C), consider the hypothesis which 

states that x,yeV and x O y ® N. By property (iv) x 

-x - N, and so, x y - x -x. It follows then that 

-x (x <3> y) - -X (x ̂  -x), and by (ii) then (-x x) 
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y * (~x x) <£> ~x. It follows by (iv) that N y « 

N ^ -x and by (ill) that y « -x. Hence, the proof of the 

theorem is complete. 

It follows from the definition of a vector space that 

the mathematical system £S*j t+]> t'3 ] > studied in Chapter 

III, is a vector space over the field R f!j+,* ]. The 

element ? cS' satisfies property (iii) of Definition 4,1 

and has the properties of the element N in Theorem 4.1. 

Since the system J7 { Sj (+), (')] studied in Chapter II does 

not have property (l) of Definition 4.1 and property (i) 

of Theorem 4.1, It does not constitute a vector space over 

a field. Note also that it is not the system ordinarily 

3 
used in a study of vectors in 1 . 

Definition 4.2 The statement that Q is an inner 

product defined on the vector space If £Yj «£»,<•>J over the 

field £ {Cj+, • ] means that Q is a function from Yxl to 

C such thatt 

(i) q (x, x) > 0 and - 0 if and only if x « N, 

(il) Q (x y, z) - Q (x, z) + Q (yiz)> 

(iii) Q (c O x, y) « c.Q, (x, y), and 

(iv) Q (x, y) - Q {y, x). 

Theorem 4.2. If x, y, and zeV, ceC, where V is a 

collection of elements belonging to any vector space 

"2/ {Vj 4>,0 $ over € f Cj+, •} , then Q (x, y z ) » 

Q (x, y) + Q (x, z) and Q (x, e <-> y) = c Q (x, y) • 

Proof. Denote the elements x,y and zeC, which are 

n-tuples of complex numbers as follows* 
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^ ̂  ^g* * * * * m. ^ ^ ^ 2$ * *# $ ^tk^$ 

SI [ * v »s, ... , •„)• It follows from the definition 

of an limes? product function for a vector space that 

Q(x»y) « < x2^2 + * * * + riE/3n, Q(x,z) « 

* 1"3
r
1 + ^glTg + ... + -J n"Tn. Since y z ® t, such 

that teV and "t = y <$> "zt it follows that Q(x#y <$> as) »• 

Q(x,t) » °< i( ̂  x + y 1^ + * 2^ ̂  2 + *"sP + ... + -( rS + *n^ 

- + <* 2T 2 + *2~*2 + ••• + " n ^ n + " n ^ n " 

Q(x,y) + Q(x,z). Similarly by the definition of Q and <$>, 

it follows that Q(x,c <S> y) 

* °< 2.° Is 1 + ^ 2C ̂  2 * * *" + ^ nC/3 n 

= c U jTx + * 2 T 2 + ... + d n T n 3 

® cQ(x,y). Hence the proof of the theorem is complete. 

Theorem 4.3. If x,yeV, where V is the collection of 

elements belonging to any inner product vector space 

{Vj <&>, O } over € £ , then 

U(x,y)|2 < Q(x,x) Q(y,y). 

Proof. Suppose y is NeV, then it follows from the 

definition of an inner product that Q(y,y) « 0 and Q(x,y) «* 

0 for any xeV, and therefore for this special case 

|Q(x,y) j2 «• Q(x#x) Q(y,y)« By considering the more general 

case, where x,yeV and y / N* ce0* examine the inequality 

0 <; Q (x,c <H> y),(x,c O y) 

« Q(x,x) + Q(c <•» y,x) + Q(x,c O y) + Q(c O y,c <-> y) 
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- a(x,x) + c[«(y,x)] + c[«(x,y)) + cc[a(y,y)] + 

{<foy),3Vz + Q(*#y)„ C fft(y,y)jy* . ft(y,x) 
1 ' {Q(y.yji^ J I {Q(y,y)Jy* 

+ .flifo*) g|y*y|. - M**y)l 2. if c - - then it 

follows that 0 < I f which 1® positive 

or equivalent to zero If arid only If 

0 < Q(x,x) Q(y,y) - jQ(x,y)|2. Hence it follows that 

|Q(x,y)j2 < Q(x,x) Q(y^y) and the proof of the theorem Is 

complete. 

Definition 4,3 The statement that the set of n vectors, 

X v x2, ... , x^, belonging to a vector space 2f £7} <£>, Oj 

over 9> { P;+, • } is a linearly independent set means that 

if <•> xx <3> c2 <2> x2 <$> ... <$> cn <S> » H, where 

c JC eP, then » Cg »...=* cn =» 0. If a set 13 not 

linearly independent* it is said to be linearly dependent. 

Definition 4.4 The statement that V {<$>, <S> j ie an 

n-dimensional vector space over & [W$+f* J means that 

Definition 4,1 is satisfied and there exists a set of n 

linearly independent vectors in the space V > and there 

does not exist a set of (n + l) linearly independent vectors 

in V , 

Definition 4.5 The statement that a set of vectors 

x1,x2, ,xn of a vector space 1/ {Vj <£>,<•>/ over 

& (Pj+i • J is a basis for V > or spans V > means thati 
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(l) If yeV then y may be expressed as a linear 

combination of the set x^, Xg, ... , x^, 

(ii) x2, , xn is a linearly independent 

set. 

Definition 4.6 The statement that % is a norm for 

a vector space 1/ fVj <$>, «> ] over G [ C}+, mean® that tl 

is a function from f to E such that if x,yeV and aeC, then: 

(i) % (x) > 0 and 71 (x) «= 0 if and only if x » N, 

(ii) 71 {x <& y) < 71 (x) + n (y), and 

(Hi) (a <•» y) » 1 a| * 72(x). 

Consider a mathematical system Sn; <#> 4>~£ s where 

Sn is the set of all ordered n~tuples of real numbers. 

Define ̂  to be an operation from S5*** Sn to Sn such that 

IC ̂  T ** X, where XcS and x-̂  *• k^ ̂  t̂ / Xg m kg 4" t g, «*• $ 

x^ ® k.n -f tn. In addition, define <•> to be an operation 

from Rx Sn to Sn such that if eel, then c 4> K « Y, where 

¥eSn and yx ® ck1# yg « ckg, ... , yn « ckn. 

Theorem 4.4, The system n £ Snj 4>, <S> j is a vector 

space over ft £lj+, . 

Proof. It follows from the definition of <§> that if 

XeSn, YeSn and ZeSn then X 4> Y « Y <3> X, and X <S> (Y 4> Z) * 

(X <§» Y) <£> 2, Mote the existence of a certain element UeSn 

such that ux « u2 « ... = =* 0. By the definition of <&> 

it follows that if XeSn then U X ~ X and there exists 

an X'eSn such that X <&> X* » U. Here x'x - -x1, x'g -

-Xg, ... , x'n « -Xĵ . In addition it follows that if XeS
n, 
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YeSn, aeR, and beR, then a <5> (X 4> Y) « a <•> X a <£> Y, 

(a*b) <*> X - a <S> (b <S> X), (a + b) <£> X = a <•> X b <$> X 

and 1 <3> X « X, Hence Definition 4.1 is satisfied and ;<fn 

is a vector space over R {Rj+#«J . Observe that the 

element UeSn serves as the element N in Definition 4.1. 

Define a function Q for the vector space ̂  n as follows* 

If X,Y£Sn, then Q(X,Y) » xjj1 + x2y2 + ... + It 

follows from this definition of Q and the previous defi-

nitions of <& and <2> that if X,Y, and ZeSn» and ceR, then: 

(i) Q(X,X) ̂  0 and Q(X,X) « 0 if and only if X ® U, 

(ii) Q(X 4> Y,Z) - Q(X,Y) + Q(Y,Z), 

(ill) Q(c <» X,Y) - cQ(X,Y), and 

(iv) Q(X»Y) - Q\Y,X)* 

Hence, Q satisfies Definition 4.2 and is an inner product 

function for the vector space *f n. 

Define a function ft for the vector space as 

followst If XeSn, then ft (X) « [Q(X,X)]^. Note that the 

function 2? defined in this manner ©atisfles Definition 4.6 

and is a norm for the vector space ,/n. 

It is a consequence of later theorems that the vector 

space J n is a n-dimensional vector space over the field 

Notice the existence of a set of elements 

r«ii 

el> ® . e_cSn such that e. ' n i 2* 

*i2 

in 
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fl if i - j, 
where ©. 4 =f , which are linearly independent 

1J to if i / s, 
according to Definition 4.3 and serve as a basis for *fn. 

The mathematical system *fn £sn, 4>, <•>, Q, 7? J , is the 

system usually referred to as Euclidean n-gpace and denoted 

by #. 

Theorem 4.g. If the vector. ux, ug, Uj, ... , na 

are linearly dependent in the vector space If {Y; <3>, <>J 

over yi {F;+, * J , then the vectors u1# ug, u^, ... , u^, 
un+l* un+2* *' * * ̂la a r e linearly dependent. 

Proof, By the hypothesis and the definition of 

linearly dependent vectors there exists a set c1, cg, ... , 

cneF, and not all zero, such that c^u^ + c2u2 + ,,. + 

a A * M. It follows that cn+1\an+1 + .., + » N 

by simply letting cn+1 « .,, = cjn =» 0. Hence the set of 

vectors u,, ug, ... , u^, ... » u^ is a linearly 

dependent set and the theorem is valid. 

Theorem 4,6. If n vectors span a vector space con-

taining k linearly independent vectors, then n > k. 

Proof, Sy the hypothesis, there exists a subset A of 

set V composed of â, a2, ... * an, which spans the vector 

space °lf { Vj <s>, <c> J over % £ Fj+,«J , and also ¥ contains 

a set B of k linearly independent vectors b^, bg, ... , 

V Since b l / H, it may be expresaed as a linear combi-

nation of elements of set A. It follows from the defi-

nition of dependent vectors that the set b^, a^, a2, * « $ 
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an is linearly dependent and that some of this set is a 

lineal? combination of the other vector® of this set. 

Replacing by b^ it follows that the set composed of 

al> a2# *** ' al~l' ai+l* *# * * an s t i 1 1 the 

vector space. Continue this procedure until 

(a) all elements of set A are replaced by all of 

the elements of set B, or 

(b) all elements of set B and some elements of 

set A are used to span the vector space, or 

(c) all elements of set A are replaced by elements 

of set B and some elements of B remain, 

If (a) occurs, then n ® k, if (b) occurs, then n > k. If 

(c) occur® then the set b^g... bn, b n + 1 is linearly de-

pendent which is contrary to the hypothesis. Hence n > k 

and the theorem is valid. 

Theorem 4.7. Any n + 1 vectors in E11 constitute a 

linearly dependent set. 

Proof. If n + 1 vectors in E11 were linearly inde-

pendent, then by the previous theorem n > n + 1, which is 

absurd. Hence any n * 1 vectors of E0, must be linearly 

dependent and the theorem holds. 

Theorem 4.8. All bases of a finite dimensional vector 

space contain the same number of vectors. 

Proof. Let u1# u2, ... , u^ and e1# e2, ... , ek 

form sets U and E respectively and be bases of a common 

vector space. Since the set V spans the vector space and 
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the set K is linearly independent, it follows by Theorem 

4*6 that n > k. Similarly, the set E span® the same vector 

space and tl ia a set of linearly independent vectors, so 

that k > n. Hence these conditions establish that n » k, 

and the proof of the theorem is complete. 

Theorem 4.9* If there exist® a set of a linearly 

independent vectors e #̂ eg, ... , ©n of a vector space 

which spans the space V [ Vj <$•, O J over/I [ Bj+, *j , then 

the set forms a basis for the vector space and if xeV, then 

x has a unique representation as followsi x - <•> <$> 

a2 <•> e2 O ... <£> a^ O en, where the aifgeR. 

Proof. By the hypothesis if xeV then x » a^ <S> 

ag O eg . <• <•> en, where a^eR. Suppose x » b1 <•> 

©1 bg ©g <3> .». bn <•> en and each b̂ eE. It follows 

that N « (a-̂  - b-jJ <•> <& (ag - bg) <S> e2 ... <&> 

K " bn> ^ V Henoe> al " bl' a2 " b2' ••• ' an = bn 

and the proof of the theorem is complete. 

Theorem 4.10. If an inner product vector space 

^[y* <&* <-> ] is spanned by a collection of linearly 

independent vectors x^, x2, ... , x^, then there exists a 

set of orthonormal vectors b^, bg, ... , bn that span the 

same apace. 

Proof. Construct a set ŷ , y2, ... , yneV by a method 

known as the Gram-Schmidt process. In order to perform 

this construction choose 

yX - xi-
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v « x _ y , 
y2 2 Q{y^,y^) yl' 

Q(*vyi) Q(x vy 2) 
y3 = *3 - m f r ^ l yi - Q(yg,yg)

 y2 l n s e n e r a l 

- *k - ̂ L _ '̂ (y "y'")' yi' '®ie n e x t P a r t t h e pi*oof 
1 » 1 i i 

follows by induction, It is clear that properties (l) and 

(2) hold for J » 1. Assume the following properties hold 

for «| < ki 

(X) The vector space spanned by y^ y2, ... , 7 j 

is the same vector space as the sector space 

spanned by ^ xg, ... , X j. 

(2) The set y^, y2> ... » y^ is orthogonal. 

The next step Is to show that (l) and (2) hold when j « k. 

Notice that each y^ / N. This follows because if y^ « N 

then by (l) the set X p x2> ... , xn would be dependent and 

could not be a basis for a vector space. It follows from 

the general definition of y^ and (2) that if j < k then 

Q(yk,yj) - QCx^yj) - Q(xk,yJ) - 0. Hence y v y2, ... , 

yk are mutually orthogonal. By the definition of yk it is 

implied that is an element of the set X p xgl ... , x̂ ., 

... , x . Since y, 4 N and the assumption of (l) it 
n K. 

follows that property (2) is also valid for J ® k. This 

part of the proof establishes that if the construction can 

be performed k times, then there exists a mutually orthogonal 

set yp y2, ..., yk, yk+1» It follows that an orthonormal 
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basis bp tog, ... , bn can be formed by taking 

« • $ 

b. = , which completes the proof of the theorem. 
1 taty^)]* 

Theorem 4,11, Any finite dimensional vector space is 

isomorphic with the sector space V {V; <&> <•>] of ordered 

n-tuples over the same field. 

Proof, Consider the basis set of orthonormal vectors 

bl» b2, , bn derived in the proof of Theorem 4.10. 

Since the set b^, bg, ..* , bn constitutes a basis for an 

Inner product vector space if [ Vj <£>,<£> J over & £ * J $ 

then any xeV has a unique representation x « k1b1 + kgbg + 

... + k b where each k, eF. Consider the element XeS1"1, n n i 

where X is the ordered n-tuple of real numbers k1# kg, 

k . It follows that x*+X is a one-to-one correspondence n 

between the elements of V and the elements of 1°. Also, 

this correspondence is an isomorphism between E31 and , 

since if x, yeV, then x y«-»-X <> Y, and if ceFs then 

c <•> x ® e O X. This completes the proof of the theorem. 

Definition 4,8 The statement that T is a linear 

transformation from 1/ £Vj <&, <£>] over & { F;+, • 7 to 

IK {^$(*)*(')] over & { Fj+, means if x,yeV, kcF then T 

satisfies the following properties! 

(i) T(x <£> y) » Tx (+) Ty 

(ii) T(k O y) =* k (•) Ty. 

Theorem 4.12. If the set x^, xg, ... , xn forms a 

basis for a vector space 2/ fV;<3>, O } over & £ Fj+, • } and 
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yl* y2* * * * * yn 1 8 ^ ordered set of elements of a vector 

space *W fWj (+},(•) j over , then there exists one arid only 

one linear transformation T from V to W such that ̂ (x^) « 

yi# for 1 * 1 , 2, ... , n. 

Proof. % the hypothesis if z-̂ , z^eV and ai# b^ef, 

then « a-̂ Xj <£> agXg <&...<&' anxn and Zg "
 bixi ^ b2x2 

<&...<£> bnxn. Define T(z1) » a1y1 (f) a2y2 (f) ... (4) anyn 

and T(z2) - b ^ (+) b2y2 (f) ... W \y n. It follows that 

(z^ ̂  Zg) * (a-̂ x̂  ̂  ^ anxn) ̂  ^ ^ b^x^) 

- [(a^ b1x1) <3> ... <$> (aYlxn \xn)3 

- [(a1 + b1)x1 <& ... <* (an + b^x^. 

By the definition of T(zx) and T(Z2) it follows that 

<$> z2) - T[(a1 + b1)x1 <$> ... <£> (a^ + bn)xn3 

- (&i ^ W ^n)yn 

- (a^y1 (0 ... W anyn) W ( b ^ (+) ... (+) bnyn) 

« T(zx) (+) 5?(Z2). 

If keF and z^V then it follows that 

k O z1 - (k <•> a1x1 <$> k <•> agx2 ^ ... k <S> anxn). By 

the definition of T(z^) it follows that 

T(k <•> z1) » T(k <•> a ^ <&> k O agXg^ ... <E> k «•> a n ^ ) 

» k (•) a1y1 (+) k (-) agy2 (+} ... (*) k (•) anyJ1 

- k (-) [(a^ (*) a2y2(f) ... (••) anyn)] 

® k (•) T(zx). 

Hence, by Definition 4.8 It follows that T is a linear 

transformation. To establish that T is unique, suppose 

there exists a linear transformation T' such that if z-̂ eV, 

then T*(z1) - y and in general T1(z±) « y ' for i = 1, 2, 
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• , n. If z^eV It follows that T' (z^) * T» (a-jX̂  . 

«• a ^ ) . By the assumption that T< is a linear trans-

formation It follows that if Is any element of V, then 

T'(Zl) - a1[T«(x1)3 ^ ^ an[T'(xn)] 

- *j7i W W «„yn 

« T(zx). 

Hence T* « f and the proof of the theorem Is complete. 

The following theorem characterizes linear tranafor-

mations from to E?\ 

Theorem 4.13. 

(l) If T is a linear transformation from E*1 to BP then 

there exist® an n by n matrix A such that 

x. 

if X =« cE0, then T(X) is the product of the matrix A 

n 

and the matrix X. 

(2) If A is an n by n matrix of real numbers then there 

exists a linear transformation T from En to E*1 such that 

x. 

if X - eE*1 then the matrix product of A and X is T(X). 

Proof. Suppose X is any element of then it follows 
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that Xi [x,, Xj, ... , x j or X 

n 

By theorem 4.4 and following remarks there exists a set 

el* ®2# * * * ' which spans . It follows by Theorem 

4.9 that X « x1e1 + x2e2 + ... + . Since T(X) « 

Ttx^©! + Xg©g + ... + xnen3 and since T Is a linear 

transformation by the hypothesis then T(X) - ^ ( e ^ + 

x2^(^2^ (®JJ) • 

Define ** 

a 

a. 

11 

21 

ni 

* for i * I# 2$ •.. > n. Xt follows 

that T(X) - x. 

a 

a, 

11 

'21 

®hl 

+ xr 

12 

22 

a. n2 

a 
In 

l2n 

®ftn 
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a u x x + a12xg + ... + alnxn 

a21Xl + a22*2 + a2nxn 

anlxl + an2x2 + + annxn 

a. 11 12 a 

a21 a22 a 

In 

2n 

a, *n 

, and part 

anl an2 ~im 

(l) of the theorem holds. 

For proof of part (2) suppose A Is any n by n matrix 

of real numbers, Xe#, YeSf1, keR, and T(X) is the product 

of the matrix A and the matrix X. It follows that 

T(X <> Y) -

a 11 

l21 

12 

l22 

a, nl n2 

a. 

a 

11 

21 

x. + a. 

+ a 

12 

22 

aln 
(*! + yx) 

a2n 

• 

<*2 + y2) 

* 

* 

ann : 

# 

t 

+ yn>_ 

x2 + + aln xn 

X2 + '** + a2n xn 

anl X1 + an2 4- * ,« 4* a HE n 
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+ 

A-11 J, + 8, 12 ¥c + .,, + a 

a21 yl + a22 yS 
& * * * & * * $ * IE# 

In 

l2n 

'n 

T n 

>1 *1 + ^2 ^ + 

» T(X) + T(Y)* Also, It follows that 

4* A nn 
y, 
n 

T(k <> X) » 

all a12 *•* aln kx^ 

a21 a22 
* 

*•* a2n 

# * 

kXg 

# 

* 

» 

anl 

# 

* 

an2 

• # 

# • 

• *" ann 

* 

* 

r «• 

k a n X1 + ka^g Xg 4* .. ' • + kaln n 

ka21 + ka00 
dd 

Xg + »« *n 

ka, nl + ka_ + ka. W1 r "~n2 x2 + •" + kann 

« kT(X), Hence, by Definition 4.8 it follows that T is a 

linear transformation from E11 to E?1. 

Consider the following as an application of the pre-

ceding two theorems. Suppose T^, Tg, 

set for HP and S, 

of S*1. Then there exists one and only one n by n matrix A 

of real numbers such that if 1 < i < n, then Si is the 

matrix product of A and the one-column matrix T^. 

,, , Tn is any basis 

, .». , Sn is any ordered set of points 
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