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Mass model for unstable nuclei

Peter Mbllertand J Rayford Nix$

1'Japan Atomic Research Institute, Tokai, Naka-gun, Ibaraki, 319-11 Japan

:_Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545,
USA

Abstract. We present some essential features of a macroscopic-microscopic
nuclear-structure model, with special emphasis on the results of a recent global cal-

culation of nuclear masses. We discuss what should be some minimal requirements
of a nuclear mass model and study how the macroscopic-microscopic method and

other nuclear mass models fullfil such basic requirements. We study in particular

the reliability of nuclear mass models in regions of nuclei that were not considered
in the determination of the model parameters.

1. Introduction

An understanding of the reliability," of nuclear-structure models far from stability is of great

importanance for the design of experiments leading to reaction products far from stability, for
astrophysical applications, and for many other applications. Here we discuss several nuclear-

structure models but focus most of our presentation on results obtained in the macroscopic-
microscopic method applied to nuclear masses. In contrast to many other mass models the

macroscopic-microscopic method does not diverge when applied to nuclei outside the region

where its parameters were adjusted It can also describe such diverse properties as nuclear
energy levels, ground-state masses and shapes, 3-decay properties and fission-barrier heights.

In the macroscopic-microscopic method, the energy of a nucleus is calculated as the sum
of two contributions. The macroscopic energy gives the smooth trends, and the microscopic

correction gives the fluctuations about the smooth trends. The former contribution can be

determined from a liquid-drop model, droplet model, Thomas-Fermi model, or similar macro-
scopic model. In nuclear mass calculations two radically different approaches have usually

been used to determine the latter contribution. In one approach the microscopic correction is
determined from calculated single-particle levels by use of Strutinsky's method. In the other

approach an expression for the microscopic correction is postulated, with the parameters of

this expression adjusted to reproduce experimental data. In this latter approach different pa-
rameters are required for each deformed region. Other nuclear mass models are based on other

concepts, such as the nuclear shell-model and the Garvey-Kdson mass relations. We discuss

here the relative merits of the different models and make detailed comparisons.

lake any physical theory, a theory of nuclear masses should fulfill certain standard re-

quirements. I;br example, it should be able to describe several related phenomena in terms

of a fe.w simple assumptions, have predictive power, be able to provide new physical insight,



and be capable of l)eing disl)roved, it. is reasoual)leto reclaim that a theory of nuclear Ina.,,,,,>
predict, the energy of any minim,ira that occurs when the shape of the nucleus is varied, irr,,

spective of whether it is the lowest, ground-state minimum or a shape-isomeric minimum. I_
is also natural to require that it predict, the next magic proton and neutron numbers beyond

2°8pb. If this is not possible one cannot have confidence that it can correctly predict effect,,,
related to gaps in regions far from/_-stability. To study the reliability of different mass mod-

els far from/3-stability, we investigate the results of various approaches when applied to new

regions of nuclei thai; were not. considered when the theories were formulated or its parameters
determined.

2. Macroscopic-microscopic model

Most, models that have been used for calculating a large number of nuclear-structure proper-
ties for extended regions of nuclei are based on the macroscopic-microscopic method. There

are several possible choices of macroscopic models and also several possible choices of single-

particle models. For each of these models several reasonable parameter sets may exist. Thus.
over the years hundreds of different macroscopic-microscopic calculations have been published.

Although many of these calculations are based on very similar models, there usually e_st
significant differences between their detailed predictions. It is our experience that to fully un-

derstand nuclear structure in terms of an underlying model, one has to develop the model in
a careful and consistent manner, and avoid switching back and forth between various formu-

lations of the model with no clear idea of which is the preferred formulation. We illustrate

this principle with a couple of examples from our own work over the years. In particular, we
illustrate how improvements of the calculations lead to the discovery of new physical effects.

2.1. Macroscopic models

In most early applications of the macroscopic-microscopic method 1-5) the macroscopic model
of choice has been the standard liquid-drop model 6,7). Itowever, later several extensions to the
liquid-drop model have been developed.

The droplet model s-L°) expands the energy to one higher order in A -1/3 and relative

neutron excess I = (N - Z)/(N + Z), which allows for the inclusion of compressibility effects

and a neutron skin. t[owever, many applications of the droplet model m,tt) to the calculatioll
of nuclear masses fat" from stability indicated that the nuclear mass surface was too soft. As a
consequence, the neutron drip line was predicted to be about 20 neutrons further from stability

than indicated by astrophysical evidence.

In a different approach, the liquid-drop model was generalized to the finite-range liquid-

drop model 12.t3) by modification of the surface-energy term to account for the finite range of
the nuclear force. This reduce_ the surface energy for shapes with a pronounced neck or for

configurations of nearly touching nuclei in heavy-ion collisions. Thus,fission-barrier heights for

nuclei in the vicinity of A -- 100 are calculated to be about 40 MeV, in good agreement with
measured values. In contrast, the liquid-drop model and droplet model both give substantially

higher barrier heights for nuclei in this region. For the interaction barrier in heavy-ion collisions
the finite-range liquid-drop model gives results that are similar to those obtained by .use of the

t,roximity-force model t4), but is more general.

The combination of this macroscopic term with the folded-Yukawa single-particle model
we designate the finite-range liquid-drop model (FRLI)M)is), which abbreviation is also used

for the macroscopic model only. In an application t6,17) of the first formulation of this model

to the calculation of nuclear masses and fission barriers throughout the periodic system the
FItI, I)M gave excellent results. Itowever, the macroscopic part in this formulation does not



(lescribe such features as nuclear compressibility and corresponding variations in tile proton
and neutron radii.

The droplet model s-to), an extension of t he origi nal liquid-drop model 6), does describe
such features. The well-known deficiencies of its original formulation led Myers to suggest

that tile surface-energy terms of the droplet model be generalized to account for tile finite

range of tile nuclear force. During this work it also became apparent that the description of

nuclear compressibility needed improvement. The new macroscopic model is,19) that resulted.
the finite-range droplet model, is labeled by FRDM. which also denotes its combination with

the folded-Yukawa single-particle model.

2.2. Microscopic models

In the more fundamental version of the macroscopic-microscopic approach the microscopic cor-

rection is determined from calculated single-particle levels by use of Strutinsky's method 1,2).
Reviews of earlv work may be found in refs. 4,20,21). Commonly used potentials are the folded-

Yukawa5'16'22), Woods-Saxon23), modified-oscillator 3) and two-center oscillator 24) single-

particle potentials. The pure single-particle models alone are inappropriate for calculating

total potential energies or transition probabilities. In potential-energy calculations it is nec-
essary to include residual pairing interactions treated in either the BCS 2°'2a-28) or Lipkin-
Nogami 29-33) approximation. In calculations of transition rates additional residual interac-

tions, specific to the transition operator, must also be included. In studies of Gamow-Teller

'3-decay a residual Gamow-Teller interaction is treated in the quasi-particle random-phase
(QRPA) approximation 34-38),

3. Calculated nuclear-structure properties

As a first step in studying nuclear decay properties it is natural to determine the nuclear

ground-state shape. Once the ground-state deformation parameters are known, the nuclear

ground-state mass and nuclear wave functions may be calculated. Matrix elements giving
3-decay transition rates and many other quantities of interest can also be determined. Studies

of fission properties require calculating the nuclear potential-energy surface for shapes relevant
to the fission process. In addition, the inertia tensor must be determined.

3. I. Nuclear potential energy of deformation

To determine the nuclear ground-state shape one must minimize the nuclear potential energy
with respect to the shape of the nuclear surface. This cannot be done anMytically so in practice

one calculates the potential energy for a set of deformation parameters and determines the

minimum numerically from the energy in the calculated grid points. A common method is to
draw an energy contour diagram based on the energy in the calculated grid points and locate

the minimum in the contour diagram.

In fig. 1 we show a typical result of a calculation of the nuclear potential energy of
deformation for the nucleus 24°pu. The calculation was carried out for a two-dimensional grid in

the Nilsson perturbed-spheroid parameterization in 378 gridpoints by using 27 equidistant val-

ues of _,_(_:'2= -0.30, 0.25,..., 1.0) and 14 equidistant values of e_ (e_ = -0.24,-0.20,..., 0.28),
/ t

where (4 = (4 if e2 _< 0.2.5 and % = e4 + (e2 - 0.'25)/5.0 if e.2 >_0.2,5 Since tile appearance of

a contour diagram is strongly dependent on the particular variables in terms of which it is

displayed it is normally best to avoid displaying the calculated results in terms of the param-
eters of tile actual l)arameterization. Instead it is best displayed in terms of parameters that

characterize the shape in a more general way. One possible choice would be to display tile



I i i I I _ _ I I _ I I I I

_:o1.00 - 10
"8 Potentialenergy for 24°Pu 10- 12

"E 1 ."
- . " :

10 - 2q
,-"0.75 - 16.
.0 1 20

1
- 1

C
0 - 1 ,,,, .... , .... , .... ,,,

LLI...c - _>_1°

_050fc_E" ,,=__o -t
18 ,.,, .... , .... , .... ,,

II t l I I i t I t I t J t I j0.75 1.00 1.25 130J I I I I l I

0.75 1.00 1.25 1.50

Distancebetween Mass Centers r (Units of Re)

Figure 1. Calculated potentiM-energy surface for 24°pu for symmetric deformations. The
insert corresponds to the potential energy along the dotted line.

contour diagram in terms of the multipole moments of the shape. However, then the inertia
of two separated fragments would not be constant, which would complicate the interpreta-

tion of fission potential-energy surfaces. Therefore we have often chosen to display calculated

potential-energy surfaces in terms of the two moments r and O'39'40), where r is the distance
between the centers of mass of the two halves of the system and a is the sum of the root-mean-

square extensions along the symmetry axis of the mass of each half of the system about its
center of mass.

Figure 1 is ba.sed on a sufficiently large grid to show almost the entire barrier that a
nucleus undergoing symmetric fission would have to penetrate. Fission and barrier penetration

are multidimensional concepts, but to obtain a one-dimensional picture one often plots the
energy along a path through the minima an(] saddle points in the multidimensional space

versus r. In the insert we see such a one-dimensional fission barrier corresponding to the

dotted path in the two-dimensional contour diagram. The contour diagram illustrates that
there are several minima in the potential-energy surface. The minimum at r/Ro = 1.12 is the
fission isomeric state. The deepest minimum at r/Ro = 0.87 is the nuclear ground state. The

contours are plotted relative to the spherical macroscopic energy. A third minimum in the
lower left corner represents an oblate local minimum.

3.2. Inadequacy of models without deformation

Oblate minima cal_ sometimes become lower than the prolate minima. In our calculations of
ground-state shapes of 8979 nuclei we find that for 771 nuclei (2 < -0.10 and for 5558 nuclei
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<._ >_ 0.10. The occurrence of oblate minima is tile reason we feel that models that do noi

incorporate deformation can never properly describe nuclear masses. :l'o illustrate this. let

us for simplicity discuss the case of a multiparameter mass model of a type that contains an
expression whose parameters are adjusted by minimizing the rms deviation between calculated

and measured masses. Suppose further that in some region of the nuclear chart nuclei have

both oblate and prolate minima but that the oblate minima for all known masses are about
1 MeV higher than the prolate minim,_. The nuclear mass "model" describes the nuclear masses

corresponding to these prolate minima well. Now we assume that new nuclei are discovered

in this region, and that the oblate minima becomes lower than the prolate minima by say
2 MeV, because for oblate shapes a large energy gap appears in the level diagrams at the
appropriate nucleon numbers. In this situation the multiparameter model that does not account

for deformation would predict a mass corresponding to the prolate minimum, and be in error
by about 2 MeV.

3.3. Nuclear masses

Our own work on nuclear mass models has now resulted in a preferred formulation based

on the folded-Yukawa single-particle potential and the finite-range droplet model. It will be
completely specified in a forthcoming contribution to Atomic Data and Nuclear Data Tables 29).

This model has its origin in a 1981 nuclear mass model 16) which utilized the folded-Yukawa

single-particle potential developed in 1972s). One important feature of the 1981 calculation
was the use of an improved choice 22) for the spin-orbit and diffuseness parameters of the

potential. Another was the use of the finite-range liquid-drop model as the microscopic model.

The FRLDM is of importance both for the calculation of the effect of higher multipoles on
the ground-state mass and for the calculation of fission-barrier heights. Because of these

improvements, the 1981 calculation was sufficiently accurate to show Pa (octupole) effects
on masses near 222Ra and P6 effects on masses near 2S2Fm. The observation of the octupole

effects on nuclear masses provided the seed stimulus for a revived interest in the properties

of nuclei near 2'22Ra, as summarized in the extensive paper 41) by Leander and Chen. :rhe
improved model also showed the presence of a peninsula of stabilityl?) extending from the
superheavy island towards the heaviest known elements.

In 1984 it was shown that the incorporation of the finite-range surface energy and an
exponential term is) to the original droplet model s-10) resulted in dramatic improvements in its

predictive properties, as summarized in the discussion of table A in ref. 19). Mass calculations
based on both the FRLDM ts) and the FRDM 1,J) were presented in the 1988 review of mass

models in Atomic Data and Nuclear Data Tables. These calculations also used an improved
pairing model relative to that used in the 19_.1 work. In the 1988 results the error in the FRDM
was about 10% lower than that in the FRLDM.

There were two major unresolved issues in the 1988 calculations. First, there still existed

some deficiencies in the pairing model and parameter choices that were used. Second, c3
and _6 shape degrees of freedom were still not included, so deviations between calculated and

measured masses due to the omission of these shape degrees of freedom were still present.

Extensive investigations of pairing models and their parameters have now been completed and

resulted in an improved formulation of the pairing modela3). We have now also minimized the
potential energy with respect to _-aand ,'_ shape degrees of freedom. An overview of the results
has been given in a paper on Coulomb redistribution effects42).

3._. Recent mass model improvements

The FR.DM, which includes Coulomb redistribution effects, is now the preferred nuclear mass

model. Relative to the work described in refs. 42.43) further improvements have been incorpo-

rated into the model. First, it was found that the ? zero-point energy could not be sufficiently
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Figure 2. Comparison of experimental and calculated microscopic corrections for 1654
nuclei, for a macroscopic model corresponding to the finite-range droplet model. The bot-
tom part showing the difference between these two quantities is equivalent to the difference
between measured and calculated ground-state masses. There are almost no systematic
errors remaining for nuclei above N = 65, for which region the theoretical error is only
0.448 MeV. The results shown in this figure represent our new mass model.

accurately calculated in our current model. It is therefore no longer included, whereas tile

zero-point energy is retained. Second, we have also returned to the original prescription of

including basis functions corresponding to 12 oscillator shells for all A values, instead of using
somewhat fewer basis functions for lighter nuclei42'43). Third, we now use an eighth-order

Strutinsky shell correction with a range 7 = 1.0 hw instead of our earlier choice of a sixth-order
Strutinsky shell correction with the same range. The change in zero-point energy reduced the

error in the calculated neutron separation energies from 0.551 MeV to 0.444 MeV and the mass
error from 0.778 MeV 42,43) to 0.773 MeV. The second and third improvements further reduced

the separation-energy error to 0.411 MeV and the mass-model error to 0.669 MeV.

Figure 2 shows the results of the FR,DM c',flculation. As usual, the top part shows the
differences between measured masses and the spherical macroscopic FRDM contribution plotted

against the neutron number N, with isotopes of a particular element connected by a line. These

"experimental microscopic corrections" are to be compared with the calculated microscopic
corrections, which are plotted in the middle part of the figure. When the macroscopic and

microscopic parts of the mass calculation are combined and subtracted from the measured

masses the deviations in the bottom part of the tigure remain. The trends of the error in the

heavy region suggest that this mass model should be quite reliable for nuclei beyond the current
end of the periodic system. When c3 and e6 shape degrees of freedom were included in the mass
calculations it became clear that the FRLDM, which does not treat Coulonlb redistribution

effects, is deticient in the heavy-element region, as is seen in fig. 3.

Because the Coulomb redistribution term that is included in the FRI)M is proportional to
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Figure 3. Analogous to fig. 2, but for the finite-range liquid-drop model, which contains
no Coulomb redistribution terms. This leads to the systematic errors in the heavy region,
where the negative errors indicate that calculated masses are systematically too high.

Z2A 1/3 this term grows very rapidly for increasingly heavy nuclei. One therefore expects that

masses calculated in models that do not account for Coulomb redistribution effects will diverge
as one moves towards heavier nuclei. This is borne out by our calculations where we find, for
example, a 3-MeV difference for 272110 between the FRDM prediction of 133.82 MeV and the

FRLDM prediction of 136.6I MeV. Titus, _ccording to the FRDM, in heavy-ion reactions the

compound system is created at a higher excitation energy relative to predictions of models that
do not account for Coulomb redistribution effects.

Finally, we compare in fig. 4 our results to those calculated with the ETFSI-1 model 44'4'5).
It is tile only other recent global mass calculation based on a quantal treatment of the nucleon

interaction that we are aware of. In the graph we show the difference between measured

masses and calculated masses for the two models. For the FRDM we have limited the plot to

A >__36, which is the region considered in the ETFSI-1 calculation. Because slightly different
experimental data bases were used in the two investigations, the number of nuclei in the top and

bottom parts of the figure are not the same. One observes that the FRDM has considerably

smaller errors in the heavy region, and that the strong odd-even staggering present in the
ETFSI-1 results is absent in the top curve.

3.5. Estimation of model errors

In most earlier studies te;,4_), the error of a theoretical mass model was taken to be the root-
mean-square (rms) deviation

O'rms = _--_(_ _ M_h) 2!_//exp (i)
i=l
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Figure 4. Comparison of discrepancies between measured and calculated masses for two
models. The ETFSI-I model shows a strong odd-even staggering, indicating a problem in
the pairing model, The FRDM gives better agreement with experimental masses, especially
in the heavy region.

and the parameters of the model were determined by minimizing arms in eq. (1). Here M_h is the

calculated mass and M_xp is the measured mass for a particular proton-neutron combination
specified by Z and N. If one assumes that the calculated masses have a Gaussian distribution

around the true mass with zero mean deviation and if tile measured masses have zero error, then

the maximum-likelihood estimate for the standard deviation of the Gaussian distribution of

the model error is exactly arms. In the more general and realistic situation where the measured

masses are associated with errors, eq. (i) is an incorrect estimator of model error since it will

contain contributions from the experimental errors. It is reasonable to define model error as

before, with tile further assun_ption that the model error may have a non-zero mean deviation

]lth from the experimental masses. With these definitions the equations that determine the

model adjustable parameters p,, and the error quantities O'th and ltth are:

'=_ ' - M_. )10M:h.
['_lexp ( "_" 'th*i 2 Op. =0, v= 1 2.... ,m (2)i=I 6rexp "_"O'th2*
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Figure 5. Calculation to show model reliability in ne¢_ regions of nuclei. Here we used a
smaller set of measured masses to adjust the model parameters than in the full calculation
shown in fig. 2. The errors for nuclei not included in the adjustment are displayed in this
figure. The error is only 2% larger than in the region to which the model parameters were
adjusted. The larger deviations for two oxygen nuclei 6 and 7 neutrons from B-stability
tnay indicate that light nuclei this close to the neutron drip line are outside the range of
model applicability.

_(Gi 2 .)
[+,Vt_x,;- (,% +_,h')f _x_+ _',h_

_ )2 = 0 (:3)i=1 (O'ex p -[- O'th 2"

and

_ -
i=1 exp "Jr"O'th 2.)

A more complete discussion of our error analysis is presented in refs. 15,43). To allow

for a single error measure that is similar to an rms deviation between the data and model we

also calculate the square root of the second central moment of the error term, O'th;lz=O. This

quantity is obtained by setting #th -- 0 when solving eq. (3). In contrast to the rrns measure.

it has the advantage that it has no contributions from the experimental errors.

A common misconception is that one has to "throw away" data points that have errors

that are equal to or larger than the error of the model whose parameters are deterrnined. When

the above formalism is used, this is no longer necessary.

3.6. Extrapability of nuclear mass models

One test of the reliability of a nuclear mass model is to compare deviations between measured

and calculated masses in new regions of nuclei that were not considered when the model pa-
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Figure 6. Analogous to fig. 5 but for the model of yon Groote et al. 47). For this model
with postulated shell corrections and more adjustable parameters than our model with
calculated shell corrections, the error grows by 72% in the new region relative to the error
in the region where the parameters were adjusted. There is also a systematic increase in
the error with increasing distance from/3-stability.

rameters were determined to deviations in the origirlal region. This type of analysis was used

earlier by Haustein 46). However, we here considerably modify his analysis. In addition to ex-
aminirlg the raw differences between measured and calculated masses, we use these differences
to determine the model mean discrepancy #th from the true masses and the model standard
deviation O'th around this mean. Whereas the raw differerlces do not show the true behavior

of the theoretical error because errors in the measurements contribute to these differences, by
use of the ideas developed in the previous section we are able to estimate the true mean and

standard deviation of the theoretical error term eth.

Since our new mass model was developed only recently, we cannot test its reliability in
new regions of nuclei because sufficiently many new data points are not available. Therefore,

we have resorted to a simple simulation, in which we adjusted the model parameters to the

same experimental data set that was used in our 1981 mass calculation16). Consequently,
this calculation is not quite identical to the one on which fig. 2 is based. The differences
between the 351 new masses that are now measured 'is) and the calculated masses are plotted

versu,_ neutrons from /3-stability in fig. 5. We note no systematic increase in the error with

increasing neutrons frorn fl-stability. For the new region of nuclei the square root of the second

central moment is 0.686 MeV, comp_tred to 0.671 MeV in the region where the part,meters were
_tdjusted, representing _tn increase of only 2%.

Mass models based on postulated shell-correction terms and a correspondingly larger
number of par_tmeters normally diverge outside tile region where the parameters were deter-

mined. As an example of such behavior, we show in fig. 6 the error of the yon Groote et al.'tT)

l0
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Figure 7. Comparison of error behavior for two models applied to new nuclei versus
distance from d-stability. Compare this figure to fig. 8, which is plotted to the same scale.

mass calculation for the same region of nuclei.

To study more quantitatively how the error depends upon distance front _-stability, we
introduce bins in the error plots sufficiently wide to contain about 10-20 points and calculate
the mean error and standard deviation about the mean for each of these bins. The results for

the two models shown in figs. 5 and 6 and for five other models are displayed in figs. 7 and 8.

For each model the central, ligilt-gray band representing the original error region extends
one standard deviation on each side of zero. The solid dots connected by a thick black line

represent the mean of the error for nuclei that were not considered when the model parameters
were determined. The dark gray area extends one standard deviation on each side of this line.

The properties of the seven models displayed in figs. 7 and 8, as well as those of a recent neural
network calculation 49), are summarized in table 1.

In is of interest to note that for the three models that are based on a quantal treatment
of the nuclear interactions, namely the three models ill the lower part of fig. 8, only two of

the points represen_,ing the mean deviation fall, just barely, outside the original error region.

Also, the full error of the three models for new nuclei usually falls inside the error region
corresponding to the original data set. Also, there are lLo systematic increases of the error

II



4 i,,,,,,,,,,,,,,
I-- --I-- Mean error gl, I _ -

3 I- _ !_,.+-standard deviation _t, _ -

_-2__a)1 _ ........................_(_'":°r°riginalnucl'j' i

- 1 - Hilf-von Groote (1976) | _ -

-:_ 1 _- kiran-Zeldes (1976)

Z-1

oUJ _ 1

r FROM (1992) _----- "P

o iii',iii_ _:!

0 :i_i:!_i_::i_;:_ :::::::::::::::::::::::::::::::::::::::::::

-2 i_J_l,_ll_,_,l,,,t _tltll_lJ_lil

-20 -15 -10 -5 0 5 10 15

Neutrons from IS-stability

Figure 8. Comparison of error behavior for five ma.,_s models applied to new nuclei versus

distance from _-stability. Compare this figure to fig. 7, which is plotted to the same scale.

with increasing distance from /3-stability, with the possible exception of the Seeger-Howard

model on the neutron-rich side. This model is based on a Nilsson modified-oscillator single-
particle potential. The spin-orbit and pseudo-difuseness parameters of this potential vary

rather dramatically over the periodic system, in contrast to the behavior of these parameters
in the folded-Yukawa single-particle potential used in the FKLDM and FRI)M calculations.

Therefore, even though they are based on a quantal treatment of the nuclear interaction, the
Seeger-Howard results may be less reliable for new regions of nuclei than calculations based

Oil folded-Yukawa or Woods-Saxon potentials. In summary, we feel that at least the FRI, I)M

and FRI)M show substantial promise of being reliable _ the proton and neutron drip lines are
approached.

In contrast, it is clear that the remaining models that are not based on a quantal treat-

ment of the nuclear interaction quickly diverge when applied to nuclei outside the region where
their parameters were originally adjusted. One can expect that they would become even more

unreliable when applied even further from stability.
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Table 1. Comparison of errors of different mass calculations. The errors are tabulated
both tbr the region in which the parameters were originally adjusted and for a set of new
nuclei that were not taken into account in the determination of the parameters of the mass
models. The error ratio is the ratio between the numbers in columns 9 and 3, except for the
last line, where column 6 is used instead of column 9. It would have been preferable to use
the error ia column 4 instead of that in column 3, since ath does not contain contributions
from the experimental errors. However, as can be seen in the table, the difference between
the rms error and crthis small in the original region, where masses can be measured with
smaller experimental errors than is possible far from ¢3-stability.

Original nuclei New nuclei....

Model Npar _Yrnm O'th l_rnuc O'rms #th O'th O'th;t_= 0 Error
(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) ratio

J. (G.-K.) ,,_ 500 0.118 327 1.461 - 0.278 1.428 1.455 12.33
v. G. et al. _ 50 0.67 351 1.193 0.612 0.978 1.154 1.72
H. et al. ,-_50 0.66 351 1.271 0.519 1.124 1.237 t.87

L.-Z. 178 0.276 346 0.912 - 0.044 0.736 0.738 2.67
S.-H. 9 0.704 309 0.976 0.289 0.910 0.956 1.36

FRLDM 9 0.835 0.831 351 0.911 - 0.321 0.826 0.884 1.06

FRDM 14 0.673 0.671 351 0.735 - 0.004 0.686 0.686 1.02
Neural net 421 0.828 351 5.981 7.22

,,,

3. 7. Other properties of nuclear mass models

For some nuclear mass models, it has not been possible for us to study their behavior for new

nuclei far from/3-stability for several reasons. Some models have been developed only recently,
so there is not yet sufficiently many new masses to make a statistically significant analysis.

Others have been developed sufficiently long ago that new mass measurements are available.
but the models were originally applied to such a limited region of nuclei that agaJn a statistical

analysis is not possible, tIowever, for any model one may discuss how it fulfills the few standard
requirements for a physical theory that were discussed in the introduction.

We have not been able to test the extrapability of the ETFSI-1 model but have in-

vestigated the differences between the FRDM and the ETFSI-1 model far from /_-stability.
Normally, the differences between the models are only an MeV or so, but close to the neutron

drip lines the FRDM ma,sses are about 3 MeV more bound in the region below Pb. Above
Pb the situation is reversed and the FRDM masses may be 3 or more MeV less bound than

the ETFSI-1 masses near the neutron drip line. In the neutron-deficient superheavy region the
FRDM masses are more bound by 2-4 MeV relative to the: ETFSI-I masses.

4. Conclusions

Although mass models based on postulated microscopic corrections with a large number of

adjustable parameters t,ave _mall errors in the region where the parameters were adjusted,
they diverge severely when applied outside this region. The error is typically larger by 100%

or more in the new region than in the region where the model parameters were determined,
and the errors in most cases grow with distance from fl-stability. In contrast, models based on

a quantal treatment of the nuclear interaction show remarkable stability when applied to new

nuclei that were not considered when the models were initially formulated and their parameters
determined.
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Another tt'emendo,ls advantage of tile microscopic mass models is that their sound phys-
ical basis makes it possible to interpret discrepancies between calculated and experimental
masses in terms of new physical effects. In our own work, this has allowed the identification of

octupole effects on nuclear masses in the _2Ra region, the discovery (in parallel but indepen-

dently of experiments) of a deformed neutron-deficient superheavy region, and the discovery
of Coulomb redistribution effects on nuclear masses.

From the developments in nuclear-structure models over the last several years and the

application of these models to astrophysical calculations one can draw the following conclusions:

• Mass models based on postulated microscopic corrections and a large number of param-

eters are no longer worthwhile, and a disproportionate amount of effort on such models
should be avoided. Instead, the focus should be to develop further the microscopic models

that have provided so much insight into nuclear structure.

• Mass models based on calculated microscopic effects are now sufficiently reliable far from

/J-stability to contribute to the understanding of the r-process 50).

• The macroscopic-microscopic approach, in particular the FRDM version, is now used
for not only mass calculations, but also for the calculation of _-decay rates, delayed

neutron emission probabilities, fission barriers, pairing gaps, spins of the ground-state

and excited-state levels, and level densities, which are then used in various astrophysical
studies. ' "

• Our unified approach, based on actually calculating microscopic nuclear-structure effects

in a single model by solving the SchrSdinger equation, is now in some cases making it
possible to identify characteristic features in astronomical data as clear nuclear-structure

signatures or, alternatively, as stellar dynamical effects.

This work was supported by the U. S. Department of Energy and by the Japan Atomic

Energy Research Institute.
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