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MAGNETOHYDRODYNAMIC SIMULATION OF SOLID-

DEUTERIUM-INITIATED Z-PINCH EXPERIMENTS

by
Peter Trogdon Sheehey

ABSTRACT

Solid-deuterium-initiated Z-pinch experiments are numerically simulated us-

ing a two-dimensional resistive magnetohydrodynazaic model, which includes

many important experimental details, such as "cold-start" initial conditions,

thermal conduction, radiative energy loss, actual discharge current vs. time,

and grids of stutficient size and resolution to allow realistic development of the

plasma. The alternating-direction-implicit numerical technique used meets the

substantial demands presented by such a computational task. Simulations of

fiber-initiated experiments show that when the fiber becomes fully ionized (at a

time depending on current ramp _nd fiber thickness), rapidly developing m=0

instabilities, which originated in the coronal plasma genera'_ed from the ablating

fiber, drive intense non-uniform heating and rapid expansion of the plasma col-

umn. The possibility that inclusion of additional physical effects would improve

stability is explored. Finite-Larmor-radius-ordered Hall and diamagnetic pres-

sure terms in the magnetic field evolution equation, corresponding energy equa-

tion terms, and separate ion and electron energy equations are included; these

do not change the basic results. Model diagnostics, such as shadowgrams and

interferograms, generated from simulation results, are in good agreement with

experiment. Two alternative experimental approaches are explored: high-current

magnetic implosion of hollow cylindrical deuterium shells, and "plasma-on-wire"

(POW) implosion of low-density plasma onto a central deuterium fiber. By min-

imizing instability problems, these techniques may allow attainment of higher

temperatures and densities than possible with bare fiber-initiated Z-pinches.

Conditions for significant D-D or D-T fusion neutron production may be re-

alizable with these implosion-based approaches.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

The confinement of plasma by the "pinch effect", in which a unidirectional

("z") current generates a self-constricting azimuthal magnetic field, was one of

the earliest investigated routes by which it was hoped to reach and sustain condi-

tions of temperature and density sufficient for controlled thermonuclear fusion.

Theoretical analysis of the stability of such a confined plasma, based on the

ideal magnetohydrodynamic model, seemed to agree with early experimental

observations of gas-initiated Z-pinches: rapid development of "sausage" and/or

"kink" instabilities disrupted the discharges, long before desired temperatures

and densities could be reached 1. Efforts to stabilize such pinches by employ-

ing additional, more elaborate magnetic fields have led to present-day magnetic

confinement configurations, such as the tokamak; however, the simplicity and

relatively low cost of the Z-pinch have been lost with such elaboration.

Advances in technology have led to the possibility of obtaining conditions

quite different from those obtained in the early experiments. This has led to a

new round of high density, fast-current-rise Z-pinch experiments. In one such

approach, a very fast rising electrical current (peak reached in 0(100 nsec)) is

discharged through an initially solid deuterium fiber2-4. Some discharges of

this type appeared to show 'anomalous stability": absence or greatly delayed

onset of visible instability development. If this alleged stability were to hold

as current is scaled up to the Pease-Braginskii level (the theoretical limit for

a Z-pinch discharge, at which ohmic heating is balanced by Bremsstrahlung

radiation coolingS-7), the Z-pinch could be the basis for a compact and relatively

inexpensive fusion reactor s-l°.



Such dense Z-pinches employ modern high-voltage pulsed power technology,

capable of producing current ramps approaching the "Haines-Hammel curve"

9,11,12,which in a constant radius plasma column balances ohmic heating, Brems-

strahlung cooling, and temperature/current increase, up to the steady-state

Pease-Braginskii current (roughly 1.4 MA for deuterium) s-7. Deuterium fiber

experiments, with current peaks up to about half the Pease-Braginskii current,

reported very long-lived, compact plasmas showing little indication of disruption

by m=0 "sausage" or m=l "kink" instabilities 2-4, based on visible radiation

emission and shadowgram images. Second-generation machines 13-15 designed

to reach the Pease-Braginskii current, however, have to date shown stronger in-

dication of expansion and m=0 instability growth, in discharges at greater than

half the Pease-Braginskii current (700-900 kA) 13,14.

Can it be expected that the apparent stability seen in low-current dense

Z-pinches will be retained as current is scaled up? Analytic stability theory is

insufficient to answer this question, as the experimental plasmas produced move

through a range of non-ideal conditions (a function of temperatures, densities,

etc., varying in time and space) more complicated than any stability calculation

can handle. If a computational model of the experiment can be constructed in

enough detail to accurately depict existing experiments, it can aid in analysing

and understanding such experiments, and may further serve as a starting point

for the prediction of the results of future experiments. That is the goal of this

thesis. It will be seen as this model is assembled, that the "simplicity" of the

Z-pinch is a zelative concept; inclusion of sufficient capability and detail to accu-

rately model such an experiment is still a very demanding computational task.



1.2 The Computational Mgdeling Task

The dense Z-pinch is fairly unique among fusion experimental plasmas, in

that for a significant fraction of its lifetime, it meets the classical (collisional-

ity) requirements for description as a magnetohydrodynamic (MHD) fluid (see

Appendix A). Therefore, a detailed MHD fluid simulation can be expected to

reasonably well describe the behavior of such a system. Furthermore, the consis-

tent (but so far unexplained 16) observation that three-dimensional (3-d) behavior

(e.g., growth of m=l "kink" instabilities) is virtually absent in such experiments

(diagnostic images are highly symmetric about the axis, until quite late in the

discharge) 2-4,13,14,17 encourages confidence in the results of simulation in only

two dimensions. This is fortunate, because the inclusion of vital experimental

details discussed below would at present make full 3-d simulation prohibitively

expensive.

Linear ideal MHD stability theory for a Z-pinch plasma in general predicts

instability to "sausage" (m=0) and "kink" (m=l) modes _8. However, the growth

rate of such instabilities is dependent on radial pressure profiles of the plasma;

indeed, "Kadomtsev" profiles exist which are m=0 stable is. Linear stability

results for a number of non-ideal fluid regimes (such as resistive MHD) have

been developed 19-3°. Any actual experiment is likely to move through several of

these regimes, as density, temperature, etc., vary during the discharge; nonlinear

effects, as well, are likely to be encountered.

Therefore, it is highly desirable to simulate such experiments starting from

time zero (zero current, frozen fiber) if possible, in order for realistic plasma

profiles to form and develop linearly/nonlinearly, as they will. Energy terms

such as thermal conduction, Joule heating and radiation are clearly going to



be important. And the plasma "surface" must be free to develop as if, as in

the experiment, in vacuum, without the influence of an unrealistically confining

boundary or an insufficiently resolved grid.

Hence one needs a two-dimensional resistive MHD code with classical (Bra-

ginskii 31) heat conduction, ohmic heating and radiation cooling terms in the en-

ergy equation, and the capability to deal with huge density and temperature

gradients (e.g., solid deuterium vs. hot plasma vs. vacuum), as well as po-

tentially rapidly changing relevant length and time scales, without running into

prohibitive numerical timestep restrictions. This suggests that an implicit algo-

rithm, with some capability to adjust time and space step-sizes as the problem

develops, will be desirable. Given that such a code can be found or devised, it

should be possible to simulate such experiments in a very direct manner. One

may then compare the simulation results directly to experiment, by generating

from the results predictions of what diagnostics used in the experiments would

show. If agreement of simulation and experiment is good, one may begin to

use the computational tool developed to interpret experimental results, and to

evaluate new experimental concepts with some confidence.

1.3 Early Work and its Limitations

The first efforts by this author to computationally evaluate the "anoma-

lous stability" of fiber Z-pinches employed a 3-d resistive MHD code developed

by Schnack and Nebe123'3°,32. This code had been developed to model the rel-

atively ideal (non-resistive, non-radiative, non-thermally-conductive) magneto-

hydrodynamics of such controlled fusion research devices as the reversed field

pinch, approximating the toroidal configuration of such machines by cylindrical

(r, 0, z) geometry with periodic axial boundary conditions. Details of transport-



resistivity, viscosity, heat conduction-were not implemented to follow classical

(Braginskii) MHD; however, resistivity, as expressed by the Lundquist number

("S"= rre,istive dillu,ion/rAllven *ran,it, an index of the ideality of the plasma),

and a scalar (vV2g) artificial viscosity (both essential to this code for numeri-

cal stabilization purposes), were parameters which one could vary to approach

expected classical transport properties of a given experiment, such as the fiber

Z-pinch. The algorithm was pseudospectral (going between Fourier and normal

space representations when each are of greatest utility) in the z and 8 directions,

and finite-difference in the r direction, with a semi-implicit time advance.

In order to run even a portion of the high-gradient (solid/vacuum) dense

Z-pinch problem with this code, it was found necessary to restrict the model

to incompressible, resistive MHD: magnetic field and fluid velocity evolution

from resistive MHD, with an adiabatic pressure (energy) equation. Resistivity

and Lundquist number were set to values of a plasma of near-solid density,

at temperatures believed to be reached in the experiments (eV to keV), and

the artificial viscosity was set to the corresponding classical (Braginskii r/033)

viscosity (in effect, assuming that the initial condition frozen fiber has evolved

to such plasma conditions). The surrounding vacuum was simulated by an area

of very high (106 times plasma) resistivity and pressure 10-2 times the peak

pressure of the plasma. Then various radiM Z-pinch pressure/field equilibrium

profiles (for a Z-pinch, radial pressure/field profiles satisfying Vp(r) = Jz(r) x

Bo(r)) with small perturbations were time-a£1vanced, to measure the growth rate

of m=0 and m= 1 instabilities. Even with this restricted model and the efficient

semi-implicit algorithm of the code, it was clear that run time was going to be

a problem; however, it was possible to survey the linear stability of a range of



plasma profiles and temperatures.

The basic results were unchanged even after this author implemented a more

sophisticated explicit full (five-coefficient) Braginskii viscous stress tensor 34, and

included an ohmic heating term. They were that at low temperature/Lund-

quist number (i.e., below S,-_ 100), resistive field diffusion could act to very

much reduce instability growth rates (both m=0 and m= 1). This could be part

of the explanation for the observed "anomalous stability", if existing experiments

actually remained in this regime. This resistive stabilization effect was more pro-

nounced for fleld/current profiles concentrated at the plasma edge, which from

an ideal MHD standpoint would have been expected to be maximally unstable is.

An ideal-MHD-stable "Kadomtsev profile" was also tested, and did exhibit the

theoretically predicted stability; such a profile has center-peaked pressure and

current density profiles, quite the opposite extreme from the edge-peaked, re-

sistively stabilized current profiles. At temperatures in the range of 5 keV, the

viscous terms were also observed to exert a strong stabilizing effect, but this is of

doubtful physical significance, because such a plasma loses its collisionality (an

assumption on which the Braginskii viscosities were calculated; discussed further

in Chapter 2 and Appendix A) above about 1 keV.

These results were in agreement with other analytic and computational work

going on at the time 19-27, but like these other investigations, rather begged the

question of dense Z-pinch stability. Yes, various initial profiles and non-ideal ef-

fects will make a difference on stability, but into which profiles and effect regimes

do the experimental plasmas actually enter? As mentioned above, one clearly

desires to be able to evolve plasma profiles as they do in the experiments, from

fiber to hot plasma, and allow linear and nonlinear development in a surround-



ing vacuum. The 3-d code, like other computational and analytical tools in use

at the time, could suggest possible stabilizing mechanisms; it clearly could not

make the key connection between the plethora of theoretical possibilities, and

experimental reality.

Lindemuth, McCall, and Nebel began the effort to do a computer "experi-

ment" which corresponded, as much as feasible, to the actual laboratory Z-pinch

experiments, first in one dimension and then in two, using a code developed

by Lindemuth 35-3s. This code (about which much more wiU be said later, be-

cause it is the starting point for the bulk of the work reported here) could solve

the equations of compressible, resistive MHD with an energy equation including

classical heat conduction, ohmic heating, and radiative cooling, utilizing a semi-

empirical equation of state and material property data base (SESAME 39) which

can be expected to reasonably follow the state of deuterium from solid to hot

plasma.

It was possible with this code to run one-dimensional (radial) simulations 35

of the low-current (<: 600kA) Los Alamos and NRL fiber Z-pinch experiments up

to times (--. 200 nsec) well past the discharge current peak, and two-dimensional

(r,z) runs 36,37up to about half the current peak. The results showed some agree-

ment with experiment, such as visible radiation em;ssion (compared to streak

photographs), but suggested some controversial features: current was carried

largely in a coronal plasma ablated from the fiber surface, of density several

orders of magnitude below solid density, while some non-ionized core fiber could

persist for a significant fraction of the discharge time (in Los Alamos HDZP-I,

30 to 100 nsec out of a 125-nsec curren_ peak discharge); this coronal plasma

tended to show very early instability development, in seeming contradiction to



the "anomalous stability" observations. Several problems would have to be over-

come in order to address this controversy with a more definitive, two-dimensional

computational model.

1.4 Needed Additions/Enhancements

Lindemuth's code had features and capabilities vital to performing a realistic

simulation of a problem such as the fiber-initiated Z-pinch. The basic magne-

tohydrodynamic model included important details, and the implicit algorithm

was robust enough to deal with the huge temperature and density gradients in-

volved, at a reasonable though not insignificant cost in computer time. However,

when this author began collaboration with Lindemuth on the problem of dense

Z-pinch simulation, there were a number of problems to be solved before two-

dimensional simulations of the low current experiments could be extended to

larger fractions of the discharge times (e.g., at least to the current peak), much

less before high-current planned experiments could be evaluated.

First, very fine radial zoning in the vicinity of the fiber is required to resolve

the early stages of fiber ablation, but in 2-d runs, as current increases, the

plasma corona expands to many times the original fiber radius and develops

instability, making fine zoning desirable at larger radii. When current nears half

the discharge peak in an HDZP-I simulation, a significant amount of plasma and

current density has reached the computational radial wall, at a radius of about

a millimeter. Mass could be allowed to leave through the wall, preventing an

unrealistic mass buildup or bounce-back, but the field and current profiles are

limited to this radius; hence the free development of instability and expansion in

a vacuum-like environment is lost. Fixed grids of much greater than a millimeter

would be prohibitively expensive in 2-d.



Second, resolution of the controversy about early onset of instability requires

close examination of experimental data. Ideally, given details of experimental

diagnostics, generation of corresponding diagnostics from simulation data would

allow direct comparison.

Third, as temper_*_ures increase and densities drop, the criterion for the

single-temperature MHD model (see Appendix A) approaches the point where

ions and electrons cannot be considered in equilibrium, even though the colli-

sional fluid model may still hold. This point may well be reached in high-current

fiber Z-pinch discharges, as well as late in low-current experiments. Hence a

two-temperature model is desirable.

Fourth, ideal MHD fluid theory orders out the Hall (J x B/(n_e) ) and

diamagnetic pressure terms in Ohm's Law, and accompanying energy equation

terms, on the basis of a small ratio of Larmor radius to plasma scale length 4o.

That this ratio may not be small in a Z-pinch, with its field null on axis, is well

known19,41; also, the fiber Z-pinch will have areas of partial ionization, and a

low-density corona, in which the Hall term may become important. It is then

potentially important to include such terms in a computational evaluation of

such experiments.

How these problems have been solved, and the application of theresulting

computational tool to the evaluation of existing and proposed solid-deuterium-

initiated Z-pinch experiments, are the subjects of the rest of this report. The

first step in this, in Chapter 2, is a derivation of the equations actually solved

in the model used here, from the generally accepted Braginskii two-fluid plasma

transport equations 31. In Chapter 3, the adaptation of the basic MHD code

to model dense Z-pinch experiments is described, along with the results of that



modeling. Addition of the Hall and associated terms to the code, and the re-

sults for the dense Z-pinch, are described in Chapter 4. The application of the

computational tool developed to the evaluation of some promising variations to

the fiber-initiated Z-pinch is the subject of Chapter 5. Finally, the conclusions

of this work are summarized in Chapter 6, and some directions for future work

are discussed.
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CHAPTER 2: DERIVATION OF MODEL EQUATIONS
!

2.1 Braginskii Collisional Two-Fluid Model

The detailed two-fluid equations of plasma transport derived by S. I. Bra-

ginskii al from the Landau kinetic equation 42 in the 1950's are still the most

widely accepted formulation of the classical plasmatransport theory. R. Balescu,

in his recent comprehensive book Transport Processes in Plasmas 4a, expresses

his admiration for, and only limited disagreements with, the Braginskii work.

Braginskii's equations for a fully ionized plasma consisting of electrons and a

single ion species of charge Z e are (rewritten here in Systeme International-

meter, kilogram, second-units, and as vector equations)"

(2.1.1) &' "0---7+ V" (n_v_)=0

i)ni
(2.1.2) _ + _7" (niffi) = 0

n .0_',
(2.1.3) m, _(---_- + (g, . V)g,) + VP, + V" lie + en,(E + v", x ,B) = R

(2.1.4) ,_,_(--_ + (_'_.v)_'_)+ w,, + v" n_- z_n,(_ + ,,-',x_) =

3 OT,
(2.1.5) _n,(.--_- + (g, . v)T,) + p, V . v_ + V . q', + (rl, . vg,) - Q, = O

(2.1.6) 3.0T_ .. ._n_(-_-+ (_'_.V)T_)*p_V'_ + V'q,+ (n_'Vv_)- Q_= 0

where subscripts e or i refer to electron or ion species, e is the magnitude of charge

of an electron, n is particle (number) density, v is velocity, B is magnetic field,

11



is electric field, p is pressure, T is temperature, II is the stress tensor (minus, as

in Braginskii, the isotropic pressure part),/_ is the momentum transferred from

ions to electrons by collisions, _' is heat flux, Q e is heat generated in electrons

due to collisions with ions, and Qi is heat generated in ions due to collisions

with electrons. Electric and magnetic fields are governed by Maxwell's.equations.

These equations are for a fully ionized plasma; the simulations reported here also

deal with the partially ionized case. How this is accommodated for these, and

for the derived single-fluid MHD equations which the computer code employed

actually solves, is discussed in section 2.4, below.

It should be noted that Braginskii derives his equations and transport co-

efficients using the assumption of a collisional plasma 4°'43'44, as discussed here

in Appendix A. He alludes to the "highly magnetized" regime in which fluid-

like equations hold for motions perpendicular to the magnetic field, and supplies

transport coefficients for both highly magnetized (Wc_clot,-onZeoilision )_>1) and ar-

bitrary wcr conditions. The equations and transport coefficients given, however,

are for a collisional plasma; the distinction between this and the highly magne-

tized "collisionless MHD" regime is well discussed in Freidberg 4°. In Appendix

A it is argued that the experiments modeled here (and the corresponding sim-
I

ulations) take place substantially in the collisional plasma regime, unlike many

controlled fusion experiments (at which one can marvel that MHD predictions

work so well, or scoff that MHD ultimately fails to work for such experiments).

In general, the code developed here will run outside the collisional regime, and

some care has been taken that in this case non-physical results will be avoided

(for instance, by employing a cutoff density below which highly resistive, low

density "vacuum" plasma regions do not undergo ohmic heating). However, this

12



author is wary of making claims about MHD simulation results for coUisionless

plasmas. The modification of this code to give fully consistent physical results

in the "collisionless MHD" regime is a worthy subject for further research, but

beyond the scope of this thesis.

The full Braginskii two-fluid equations are still a highly nonlinear (partic-

ularly in the transport coefficients), strongly coupled set of equations, involving

a very wide range of length a_ld time scales. They include the motion of the

very low-inertia electron fluid, as well as what is more commonly considered the

plasma fluid motion, that of the ion fluid (proper_.y in a one-fluid model, as shall

be developed here, fluid motion is that of the center of mass of ions and electrons;

in general, because of the much greater mass of the ions, they dominate the fluid

motion).

From a computational perspective, these equations present a formidable

challenge. Even if one assumes that in a given problem to be computationally

modeled, the equations will act relatively linearly (so that primarily linear nu-

merical analysis results might hold), one is faced with two choices, neither of

which is likely to be fully satisfactory. An explicit computational algorithm will

require excessively small timesteps in order to satisfy Courant-Friedrichs-Lewy

(CFL) numerical stability restrictions ((Vco.vtcti_eAt/Ax) < 1) 45 due to the

very high speeds of information propagation by the electron plasma fluid; this

is carried by electron plasma waves, which transport information at essentially

the electron thermal speed 46. Implicit algorithms are theoretically (for linear

equations) numerically stable for any timestep, but if one chooses very large

timesteps, the accuracy of the solutions suffers, particularly if important phe-

nomena are occurring at the electron fluid time scale. This author is not aware

13



of any computational implementation of the complete two-fluid Braginskii equa-

tions in more than one dimension. Multi-dimensional particle and kinetic theory

codes do exist, which should duplicate all the physics contained in Braginskii's

equations (which are derived from such models) and then some, but they too

must face the computational difficulties mentioned above.

2.2 Transformation to Center-of-Mass Equations / "Hall MHD"

The model equations used here, in simulating the dense Z-pinch, solve for

magnetic field, plasma specific internal energy (either total or separate ion and
f

electron energies), total mass density, and center-of-mass plasma velocity. By

solving for total mass density and center-of-mass velocity and using quasineu-

trality, the need to resolve the full Braginskii model's electron fluid motions is

avoided, although it will be seen that the Hall and associated terms do bring

some electron fluid effects into the model (in effect, preserving a distinction

between electron motion and center-of-mass plasma motion; see Appendix C).

Their introduction brings a corresponding price in required temporal resolution.

It is instructive to go through the derivation of the model equations from the full

Braginskii equations, to highlight the numerous assumptions that nmst be made

to obtain a model with which two-dimensional simulations of these experiments

can be carried out. At the end of this chapter, the plasma parameters for the

dense Z-pinch, which justify such assumptions, will be worked out.

Define the (total) mass density, p = nirni + heine, and the center-of-mass

velocity, fi"= (nimi_i + nernev_)/(nirni + ntrn,). Before going further, a con-

siderable simplification of the algebra can be gained by invoking the assumption

of quasineutrality, that is, ni "' he. This assumption exploits the fact that the

energy required to produce an appreciable separation of the ions from the elec-

14



trons '_sso large (much larger than the thermal energy, for regions larger than

a Debye length 47, AD = (eokTe/(ne2))½; much larger than the magnetic energy,

for regions larger than ,,_D/t_ ) that no significant deviation of ni from n, oc-

curs on scales greater than AD: Ini - nel/(ni or ne) << 1. By assuming electrons

move "quickly" (i.e. instantaneously) to take up their neutralizing positions,

the inertia of electrons is ignored (this will be returned to in the Ohm's Law

derivation); hence time and length scales dealt with in the model must be much

longer than those involving electron inertia, specifically the characteristic times

and lengths of the electron cyclotron frequency (wee = eB/me) and the electron

plasma frequency (w_e = (ne2/(eom_)) ½). The effect of this on the model is

to remove Poisson's equation, eo V" if-, = e(ni - he), from the set of equations,

requiring that /_ be obtained by other means; it does not imply that /_ = 0

everywhere or that _7' /_ = 0, only that _0 V" ff-,/e(ni or he) << 1 48.

Number d_nsities ni "_ n_ will thus henceforth be written simply n (except

in the Hall and associated terms, for reasons which shall be discussed later).

Now mass density is simplified to p = n(mi + me), and center-of-mass velocity

to f; = (miv'_ + m,v_ )/(mi + m,). Multiplying the Braginskii electron continuity

equation by m_ and the ion continuity equation by mi, adding the two equations,

and applying the definitions of mass density and center-of-mass velocity gives the

total mass continuity equation:

(2.2.1) ¢9p v.(p =0

the first of the model equations.

If one drops the electron inertia term,

(2.2.2) men_(-_ -_ + (fie" V)ffe)
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from the Braginskii electron momentum equation and solves for/_, an "Ohm's

Law" expression for the electric field can be derived:

(2.2.3) /_= _1 (- Vpt - V.IIe + aq) - v"tx/_.
nee

The electron viscous stress tensor lie, e'_en more so its divergence, V' He, is

a complicated series of terms 49,5o.The leading-order terms (for large wcr, these

are the diagonal terms IIe,jj) are proportional to Braginskii's electron viscosity

coefficient r/0, and to the divergence of the electron velocityS°:

(2.2.4) IIe,jj _ r/0(2VII' v_ll- y V' v_) ,-, (neTeree)( )

where vth, refers to the electron thermal speed, the parallel marks refer to the

direction parallel to the magnetic field, and a is a relevant scale length, typically

in this problem the effective radius of the plasma column. Then the ratio of

V" IIe to VPe is:

1)neTeree( _-'_ ) v,horeev.n °
(2.2.5) I VP' I " (_) aa

if electron collisionality holds, as established in Appendix A. Exactly the same

argument holds for the ratio of V" IIi to _TPi (although the ion viscosity effects

are a factor of (mi/me)½ larger than the electron), if the subscripts e for electron

quantities are replaced with i for ion quantities; this result will be utilized below

in the derivation of the center-of-mass momentum equation.

•The above argument somewhat glosses over the complexity of the stress

tensor and its divergence: it is conceivable that V" fi', V" II, and VP will have

different scale lengths; and the non-parallel viscosity coefficients r/1 through r/4

can be of the same order as r/0when tocr _ 1 49,51(at the end of this chapter it
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will be seen that the plasmas modeled here are not generally highly magnetized).

There is good reason to place the inclusion of these terms on a lower priority than

other terms (such as the Hall and associated terrr _) which have been included in

the present work. Our own early computational results with the Nebel/Schnack

code 2a suggest that viscosity (a full five-coefficient stress tensor, or portions of

such) does not have a strong stabilizing effect until temperatures are in the sev-

eral keV range, temperatures so high that the collisionality-dependent Braginskii

coefficients are not applicable to the problem under consideration. Parallel com-

putational work by Glasser 23,3° agrees with this result. Furthermore, an attempt

to reconcile earlier theoretical and computational results _5,26, which suggested

that "viscoresistive" (due to resistivity and viscosity) effects could account for

the claimed "anomalous stability" of the experiments modeled here, concluded

"viscoresistive effects are inadequate to account for these observations ''29. Hence

one is not confident of seeing much of a payoff in return for the significant amount

of work involved in adding V" II to a code, particularly if one maintains energy

consistency by adding viscous heating, (II • V6'), to the energy equation as well.

Bowers and Haines 52 and others have developed fluid equations for a colli-

sionless, magnetized plasma which include finite-Larmor-radius (FLR) ordered

viscous stress terms, related to the Braginskii "gyroviscous" non-diagonal stress

terms (his r/a and r/433,53). Haines has projected 22,54 that the nominally 2-MA

fiber-pinch machine "MAGPIE", recently completed at Imperial College, may

take a Z-pinch into the regime where these are important, unlike the (largely

collisional) experiments modeled here. Simulating such a plasma would then call

for a consistent "collisionless MHD" model, which among its FLR effects should

include such viscous stress terms, as well as the Hall and associated terms which
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are included in the present collisional, finite-Larmor-radius "Hall MHD" model.

I ' has been argued that for high wcr, the Braginskii "gyroviscous" stress terms

33,53 become independent of collision time. However, it will be seen that when

typical ion and electron wcr's are computed for the experiments modeled here,

the large wcr assumption necessary to consider these gyroviscous stress terms in-

dependent of collisions is not satisfied, so it is consistent for these to be ignored,

as long as collisionality holds.

/_, the change in momentum of electrons due to electron-ion collisions, can

reasonably be related to the relative velocity of the two species, v_ - v-'i,which

is proportional to the current densitySS'56:

(2.2.6) J = nievi - n,ev,_ = ne(ffi - v,_).

In the case of a plasma without a magnetic field, the constant of proportionality

between/_ and f is a scalar, and can be written so that

(2.2.7) R = rln_e,f

where 77is the electrical resistivity of the plasma. In the case, such as dealt

with in this paper, of a plasma with a magnetic field, the relationship between

R and J is a tensor relationship, with a resistivity (or its inverse, a conductiv-

ity) tensor. This is because the magnetic field introduces an anisotropy into the

plasma: particle motion parallel to the field will be unaffected, because of the

nature of the Lorentz v_ x B force (and in fact the parallel resistivity will be

identical to the unmagnetized one), but particle motion perpendicular to/_ is

influenced by B and must be dealt with separately, resulting in different resistiv-

ity coefficients. Due to the symmetry of the problem 57, there can be only three
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independent coefficients: resistivities parallel and perpendicular to the field, and

a non-diagonal effective resistivity, relating current in one direction to electric
i

field in another direction. This non-diagonal effective resistivity in fact leads to

the Hall effect, which has already been incorporated (i.e., separated out from R)

in the Braginskii transport equations, and will be pointed out shortly.

Braginskii 58 and others 5r also discuss non-diagonal thermoelectric ef-

fects (Nernst and Ettinghausen effects) which are due to ion-electron collisions.

The ordering of these effects is not simple. As Wet gets much larger than one,

a 1/(wcr) dependence emerges (as in all the non-diagonal transport coefficients,

including the above-mentioned gyroviscous coefficients; in the gyroviscous case,

an additional r factor can cancel out the collision time dependence). These

thermoelectric effects are also dependent upon electron density, the gradient of

temperature, and f x/_. Chittenden and Haines 59 in a recent paper state that

these effects "cannot be ignored when electron and ion temperatures are suffi-

ciently decoupled." They have not been implemented in the present model; some

implications of the Chittenden/Haines work will be discussed later. Replacing

the (1/(n,e))R term in the Ohm's Law with the two diagonal components of the

resistivity tensor (additionally dropping the _7" He term) then gives

8) E --_( " " "
(2.2 • "- - V Pc) + r/llJII4- rl±Y± - _e x B.

Using the definitions given above of current density J (2.2.6) and center-of-mass

velocity ff (above 2.2.1), and using n, = ni = n, one can solve for v-', and v, in

terms of _' and J. Here we use

J Y
(2.2.9) v5 = if- nee(1 + m) "_ g- "---ml nee
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where the melmi factor for a deuterium plasma (approximately 1 over 3698) can

be dropped with very little effect, to give an Ohm's Law:

_ ,._ _ ,,,4,

(2.2.10) /_ = ---(J ×/7- VPe) + r/llJII + r/±J.L - fi' x B.
nee

-,O --0

This is the "Hall MHD" Ohm's Law, where specifically (1/ne)J x B is known as

the Hall term.

Neither f nor /_ is solved as a separate variable in the model used here.

Faraday's Law can be used to transform the above Ohm's Law into an equation
==o

for the time evolution of magnetic fieId, removing E:

OB . (_).5(: -. -.(2.2.11) _ = - V xE = - V x x B - VPe) + r/ll I+ r/±J.L - fi' x/_).

Finally, the usual "low-frequency" assumption of magnetohydrodynamics ne-

glects the displacement current in the full Ampere's Law, i.e.,

(2.2.12) -J+ (V x/_) 0/_= _0--_-=0.#0

This requires that electromagnetic disturbances of interest have phase velocities

(such as the Alfven speed, VA = B/(l_oP)½) much less than the speed of light, as

must be the thermal speeds. Note that the restricted geometry employed in the

model (discussed in section 2.4), that /7(r,z) l plane of computation, removes

many possible waves (such as ion cyclotron waves) from the problem. Then using

:= (v x

og j__((v xg . . .
(2.2.13) ----0t= - V ×(nee g0 ) x/_ - VPe) + r/llJII+ r/.LJ± -- fi"x B).

This is the "Hall MHD" equation for advancing the magnetic field.

The two Braginskii momentum equations must be added to obtain a center-

of-mass momentum equation. The two viscous stress divergences are dropped,
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following the above argument that their respective pressure gradients will domi-

nate. The forces due to ]_ cancel out under charge neutrality, that is, Zni = ne

(the quasineutral deuterium plasma generally discussed here has Z = 1 and

hence ni - he). Now first in the v, ore x ]_ expressions, substitute for 6'e (as

above, 2.2.9) in terms of 6' and J, and for v, by the corresponding expression:

J me J. . =_+( )----
(2.2.14) vi = v + nie(1 + m."_ ) mi + me nee

(where writing the second expression will be seen to be helpful in ordering terms,

shortly). A number of terms cancel out, leaving:

(z2.15) m,-,(_-_+ (< •V)_,)+m,-,(_ + (<•V)_,)+ V' (p,+p,)+

-(1 + xB=O.
rni

At this point, substituting v"e(6',J") and 6'i(6', J'_ in the inertial (convective deriva-

tive) expressions, further cancellation, and replacing (rn,i + m_)n with p gives:

(2.2.16) O(p6") -.-7 +p(_'_z)_+_'_z-(p_+v(p_+p,)- Yx _+

+(terms proportional to me) = O.

Dropping the electron-mass-order terms, writing J in terms of B, and use of a

tensor identity 6° gives:

(2.2.17) 0(p6') -.+ _. (p_¢)+ v(p_+p,)- (_ ×-----_) ×B =0_0

This is the model momentum equation; using the dyadic tensor "p6'6'" form has

been found helpful in coding the equation in a conservative form el.

One can multiply the Braginskii continuity equations (2.1.1, 2.1.2) by _kT,:,

and add them (because these still equal 0) to the first terms of the respective
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Braginskii energy equations (2.1.5, 2.1.6), to obtain energy equation terms in

conservative form:

3 .aT,_ a(. n,,kTo) 3
(2.2.18) _na(-_ + (_'_. v)T_) = 0t + V'(2 van'_kT'')

where subscripts a refer to electron or ion species. The code used here solves for

the specific internal energy e_ (energy per unit mass); energy per unit volume,

which in Braginskii (ideal gas) is "_nakTa, is in these terms pea. Then the first

terms in the Braginskii energy equations can be written

(2.2.19) O(pe__._._)+ V" (ffopea).Ot

The heat fluxes qa, analogously to the discussion of the resistivity tensor,

have parallel (to/_), perpendicular, and off-diagonal components. Heat fluxes

coupled to the previously mentioned (and neglected) off-diagonal thermoelectric

effects (Nernst/Ettinghausen effects), and diagonal thermoelectric heat fluxes

(Balescu discusses "thermoelectric coefficients", relating/_ and heat flux6_), are

not included in the present model. This leaves the more familiar "Fourier's Law"-

type heat conduction, again split into components parallel and perpendicular to

B:

(2.2.20) q_ = t%ll VII Ta + tc,,j. _TJ. To

where _'s are prescribed by Braginskii es (the formulas used are given in section

3.1).

Of course if viscous stress is neglected, as discussed above, the viscous heat-

ing terms (IIa" _6'_) also drop out. Collisional heat source terms, Qa, fol-

low Braginskii64: both include an electron-ion energy equilibration term Qei
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( 3m,ne(Te- Ti)/(miree); note the inverse reemi/rnt dependence, characteris-

tic of the electron-ion collision time re_s), while the electron heat source also

includes ohmic heating, r/liJii2 + r/±J± 2, but does not include any thermoelec-

tric heating. This leaves only the compressional work terms, pc, V" v"_, and

the replacement of v_ and 6'e by their expressions in terms of _' and J. After

rearranging, the energy equations (2.1.5, 2.1.6) become:

-V" (r,e± V± Te 4- tCellVII Te) - r/i J± 2 - r/llJll2 4- Oei = O.

-V' (_± V± T_- _i,IVIITi) - Q_ = 0

where Q_ is the electron-ion energy equilibration term (energy lost from elec-

trons to ions), f = (V x/_)/_0, and the two terms in the ion equation propor-

tional to rn_/(mi + me) have been dropped,

m. )p,V"( ))V'(((2.2.23) ( mi + me

These are the "Hall MHD" (two-temperature) energy equations.

If one makes the further assumption of temperature equilibration (Ti = T_,

p_ = p_, e_ = ee, p = p_ + Pc, tc =tci + t¢_, and _ = ei + _e) and adds the two

energy equations, the total energy equation is:

O(pe.._) -J -J

(2.'2..24) & + V" (_Pe) + V" ((-ZS,_)P_,) + P V" _ + P, V" (-_,_)+

-V" (_¢±V± T 4- tellVII T) - r/±J.k2 - r/ilJii2 = 0.
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The above developed equations for the time development of mass (2.2.1),

momentum (2.2.17), energy (2.2.21 and 2.2.22, or single-temperature 2.2.24),

and magnetic field (2.2.13) constitute the "Hall MHD" model used here in sim-

ulation of dense Z-pinches (the geometric restrietion_ that /_(r,z) £ plane of

computation, discussed in section 2.4, eliminates the parallel resistivity and par-

allel heat conduction terms). The equations are valid subject to the numerous

assumptions mentioned. These assumptions will be summarized mad examined

for the dense Z-pinch at the end of this chapter. Quotes are used in this paper

around "Hall MHD" to distinguish this model from the Hall MHD, dealt with

by numerous authors 19'66'67,which includes only the magnetic or electric field

Hall term, f x B/(nee). The other terms (diamagnetic pressure and associated

energy equation terms) included here shall be shown in the next section to have

the same ordering as the Hall term.

2.3 Elimination of Finite-Larmor-Radius Terms/Standard MHD

The equations derived in section 2.2 represent a relatively standard single-

fluid MHD model, with the following exceptions. Ideal MHD drops the resistive

field diffusion and ohmic heating terms. Many MHD simulations use a simpler

energy equation, isothermal or adiabatic, because tl_e Braginskii heat conduction

coefficients, which can be drastically different parallel and perpendicular to the

magnetic field, can present numerical difficulties. These difficulties are geometri-

cally avoided in the simulations done here, as will be pointed out in section 2.4.

When the Hall term is included in the magnetic field evolution, this is generally

termed Hall MHD. Sometimes the diamagnetic pressure term (Vpe/(nee)) is also

included, but it will be shown shortly that unless the Pe V .(-f/(nee) ) energy

equation term is also included, total (thermal plus magnetic) energy will not be
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conserved. The electron-current energy convection term V' (pee(-d/(nee)))is

rarely included, although Haines 6s'69 has done some theoretical work with it,

notably a calculation of tolerable energy end-losses for a fusion Z-pinch 7°. In

this thesis, the Hall, diamagnetic pressure, and the two just-mentioned energy

equation terms are referred to as "Hall and associated terms." It will be shown

that these all have a similar, finite-Larmor-radius ordering; hence a consistent

finite-Larmor-radius model should include them all.

Some vector algebra will illustrate the above-mentioned problem of conser-

vation of total energy when the Hall and diamagnetic pressure terms are included.

These terms' effect on the time derivative of magnetic energy, B2/(2#0), is pro-

portional to/_. (0/_/0t), hence to/_. (V x/_H), where/_H is the electric field

due to the Hall and diamagnetic pressure terms. A vector identity gives

(2.3.1) /_' (V x/_n) = _' (/_H X 2_)+ 2_H' (X7 X B).

The first term, a divergence, is already in conservative form for an equation

giving the time development of magnetic energy; that is to say, if one spatially

integrates the divergence in order to obtain the change in magnetic energy 0(B 2)

in time 0t, by Gauss's theorem that integral will be the sum of the fluxes of
-.o ..-0

EH x B across the surface of the volume integrated. The second term becomes

' - " -. -1 -.(2.3.2) EH "J = x B - VP,) " a = _ V P, • a.
nee ne£

If the equation for magnetic energy is added to the thermal energy equation,

one should still have conservation of total energy, but this term is clearly not in

conservative form. However, if the Pe _7 .(-J](n,e) ) term has been included in

the thermal energy equation, it can be added to the offending magnetic energy
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term, to obtain the desired conservative form:

(-J
1 T

(2.3.3) Pc V' _ ) - "- " " • _))n,e n,e V P, J=V (P_( •

The _7P and f ×/_ terms are both in the momentum equation and should

be comparable; in fact, for an isotropic equilibrium with 6' = 0, these terms

should be equal (hence the "pressure balance" expression po---0 = Bp=o2/(2po)).

Therefore, the ratio of the diamagnetic pressure term to the _ x/3 term in the

Ohm's Law expression (2.2.10), should be similar to the ratio of the Hall term to

g×/3. A characteristic fluid speed to use in such sealing is the ion thermal speed 71

vth, = (kTi/mi)½; one might prefer the Alfven speed VA = B/(pop) ½, but under

pressure balance p = nkT " B2/2#o, this scales the same way (in section 2.5 it

will be seen that these quantities are similar for the dense Z-pinch). Then for a

plasma near temperature equilibrium (Ti ": Te):

IV pe/(n,e)l ._n,kT,/n,e rLi
(2.3.4) .. ,,-, ,-, ---

I_'xB I (kTi/mi)]B a

where rLi = vth,/wci = mivi.l./(eB) is the ion Larmor radius.

Using similar scaling, that J ,_ _Tp/B and that (9(pc)lOt goes as nkTvth,/a

(again for a near-temperature-equilibrium, Ti _ Te, and quasineutral, ni _ ne,

plasma), the ratios of the electron "work" term p, V.(-f/(n_e)) and the electron

current energy convection term V" (pee(-J"/(n_e)) ), to the time derivative of

thermal energy ig(pe)/Ot, are also shown proportional to ion Larmor radius over

scale length:

IV .(pe,(-Yl(n,e)))I _n,kT,(nkT/aB)/n,e rLi

(2.3.5) 10(p,)/0 l ,',kT,,,h,/a a ;

(2.3.6) IP.V .(-f/(n.e))I~ n.kT.¼(nkT/aB)/n.e~ rL.._i-
10(p,)/&l nkTv, h,/a a "
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Hence if (rLi/a) << 1 in the plasma to be modeled, these terms can be

ignored. This reduces our model equations to a relatively standard one-fluid

resistive MHD, with perhaps a more detailed energy equation (including heat

conduction) than is often used. It will be seen that for the dense Z-pinch,

(rLi/a) << 1 is not necessarily a good assumption. This has motivated our

efforts to add the Hall and associated terms to the computational model. How-

ever, simulation of dense Z-pinches with the standard MHD model presented in

the next chapter, still shows remarkably good agreement to experiment.

2.4 Additional Details

There are a number of additional details concerning the model used here

which should be noted. First, as mentioned in Chapter 1, is the geometri-

cal simplification to cylindrical symmetry. The computational model is two-

dimensional, solving for mass density, radial and axial velocities, specific in-

ternal energy (or separate ion and electron energies), and azimuthal magnetic

field, as functions of radius r and axial location z only; i.e., azimuthal symme-

try is assumed. Experimental evidence that this is a good assumption, at least

for a significant portion of the experiments, has already been noted 2-4,13,14,17.
,,,,#

Because quantities are computed only in the plane perpendicular to B, terms

proportional to parallel resistivity (parallel field diffusion and ohmic heating)

and parallel heat conductivity are not needed; hence the scales of resistivity

and heat conductivity with which the numerics must deal, depend only on the

perpendicular values.

The Braginskii transport equations, and the single-fluid models derived

above, assume a fully ionized plasma. The intent of the simulations done here

is to follow these experiments all the way from "cold-start", that is, the solid,
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neutral deuterium fiber, up to the hot, fully ionized plasma state. To allow

this with a Braginskii-like set of equations would require additional equations

for the density, momentum, and energy of the third, neutral fluid species. A

means of relating the neutral and plasma densities, such as the Saha equation72,

would be necessary (this would be reflected in "source terms" in the continuity

equations), as would be other terms coupling the neutral and plasma equations.

Details of transport (e.g. resistivity), which were calculated by Braginskii for a

fully ionized plasma, would need to be re-examined for the neutral-dominated

case.

To allow "cold-start" simulations with the derived, single-fluid model equa-

tions, an assumption is made that neutral atoms will move as the ions do:

v-', = v"/, i.e., no ion-neutral slip. Center-of-mass velocity 6' is then redefined

as 6' = (n,(mi + m,)6', + nirn,v-_ + n,m_v",)l(n,(m_ + m,) + nimi + n_m,),

and total mass density p = n,(mi + m,) + nimi + n_m,. When v"e and v_ in

terms of the redefined 6' (with 6., = v'i) and d are incorporated into the derived

equations, the results are very little different from the original derivation; terms

proportional to m,/(mi + m,), which were dropped, are still small quantities,

proportional to n,m,/p. The meanings of #e (or, in a two-temperature model,

pei) and p (or pi; also Ti) have changed: these are now quantities including energy

and pressure due to neutral particles. Appropriate values for these quantities are

obtained from equation(s) of state (relating specific internal energy, density, and

temperature), pressure(s), resistivity, and average ionization level, contained in

a semi-empirical data base, the Los Alamos SESAME tables 39, which provide

the best available (to my knowledge) values for such quantities over the wide

range of temperatures and densities covered. The SESAME energies and pres-
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sures include the effects of energy going into phase changes and ionization, which

a simple ideal gas model does not; it is remarkable, however, how closely these

quantities follow the ideal gas values from 0 K up to the fully ionized plasma

state. MHD runs were done using ideal gas temperatures and pressures, and

very little difference could be seen from those done with SESAME values.

In the "Hall MHD" model used here, correct values of pe, ee, and he, which

in conditions of partial ionization can be substantially less than total pressure,

energy, or number density values, have been incorporated. This is done by

obtaining the average ionization fraction "zb" as a function of mass density and

temperature from the SESAME table, then computing ne = zb p/(mi -t- me),

ee = e zb/(1 + zb), and Pe = P zb/(1 + zb).

Braginskii's transport equations do not include an energy loss term for ra-

diative effects. The Z-pinches modeled here were designed to reach conditions

where radiative cooling is very significant in the energy balance. An energy loss

term is incorporated in the energy equation (electron energy equation, in the

two-temperature case) to account for this. The values are also obtained from

SESAME tables 39, and include line and Bremsstrahlung radiation.

2.5 Dense Z-Pinch Plasma Parameters

In Appendix A, the case is made that the dense Z-pinch experiments mod-

eled here exist for significant times in the collisional regime in which Braginskii's

transport equations are valid. To go from those equations to the single-fluid

equations actually used in the simulations (as is done in this chapter), a number

of additional assumptions have been pointed out. Quasineutrality and the drop-

ping of the electron inertia require that plasma scale lengths be greater than the

Debye length, and that time scales be greater than electron cyclotron or electron
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plasma oscillation times. Further, the "low-frequency" assumption (dropping

of displacement current) requires that characteristic speeds of important distur-

bances, such as the Alfven speed or ion thermal speed, be much less than the

speed of light. If the standard MHD equations are to hold, the ion Larmor ra-

dius should be much less than plasma scale lengths; otherwise, the "Hall MHD"

model should be used.

The scale length a used here is typically the radius of the plasma column,

which can vary from tens of microns to several millimeters or more. For a given

radius, other plasma quantities can be estimated. For instance, the small radii oc-

cur generally very early in the discharge, when temperatures and fields/currents

are relatively low; larger radii occur when the plasma has expanded, and may

correspond to lower densities. Thus one needs to compute the desired plasma

parameters for a range of plasma conditions. For given parameters' functional

dependencies, it may be possible to compute "worst-case" values, that is, the

combination of conditions (temperature, density, etc.) which can occur in the

plasma, which will give the parameter value closest to violating an assumption.

The Debye length 73, AD = (eokTe/ne2) "_ = 7.4(Tev/nc,n-a)_ m, will be

largest at high temperature and low density. The highest temperature at which

the fluid model for these simulations can generally be taken seriously is about

1000 eV, and the lowest density is about 10-4 solid, or O(10 is cm-3). This gives

a AD of about 2 x 10-7 m., much less than the smallest radius, about 10-5 m.

Characteristic times for comparison to the electron cyclotron or plasma os-

cillation times, can be derived by dividing characteristic speeds-thermal speed or

Alfven speed-into the scale length a. The "worst-case" thermal speeds, of course,

occur for the electron fluid at the highest temperatures; 1000 eV corresponds to
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a vta, -_ 2 × 107 m/sec. Dividir,_ this into the smallest scale length, ~ 2 × 10-5

m, the characteristic time is about 10-12 sec. This compares to a slowest plasma

oscillation time (for the sma_est density, 10is cm-3), of 1/wpe ~ 10 -13 sec; the

comparison for higher densities or slower ion motion will be much more favor-

able. The ion thermal speed for 1000 eV is about 3 x 105 m/sec. If one assumes

pressure balance (p = B 2/2/_0) to obtain field and density values with which to

compute an Alfven speed (B/(gop)_), it will be of the same order as ion thermal

speed. "Worst-case" Alfven speeds, for fields of 20 megagauss at densities of 10is

cm -3 (p ,,_ 10-2 kg/m 3) still are of the order 10 7 m/sec. Hence these ion motion

times will be larger than the electron plasma oscillation time (and ion motions

will be slower). These ion speeds are generally much less than the speed of light,

satisfying the "low-frequency" assumption.

The electron cyclotron time 1/wc_ = me/eB for a 20 megagaus,; field is

O(10 -is) sec, and the electron Larmor radius for such a field at 1000 eV is

O(10 -s) m. These are well below the characteristic scale times and lengths of

the plasma modeled. Of course, in a Z-pinch the field goes to 0 at r=0, so the

cyclotron times and Larmor radii become large (Z-pinch particle orbits in the

vicinity of the origin are actually of more complexity than a simple "Larmor

radius" orbit, as pointed out by Haines7°). Hence the zero-electron-inertia re-

quirement, that electron cyclotron times and lengths be much less than plasma

scale times and lengths, may be questionable near the origin, although this area

is surrounded by a plasma which does satisfy this assumption. The plasmas

modeled here do remain collisional near the origin, where the density remains

relatively high (for a near-solid density plasma at 1000 eV, the mean free path

is O(10 -4 cm)), until very deep instability development sets in (collisionality is
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further discussed in Appendix A).

Ion Larmor radii, even for the conditions (20 megagauss, 1000 eV) which

satisfied the small gyroradius assumption for electrons, are relatively large: on

the order of microns, approaching the initial fiber/plasma column radius (as

small as 15 p). The above-mentioned worsening of this ratio as the origin is ap-

proached, is thus much more serious, where rLi/a is concerned. Hence inclusion

of the rLi/a ordered terms, as done in the "Hall MHD" model here, is important.

Typical like-particle collision times (proportional to T_ ha) are calculated

here for two extreme conditions: 1) "core" plasma: 100 eV, solid density (_

5 × 1022cm -3, in which case r,e "_ 10-16 sec, and r,i '-, 10-14 sec; 2) "coronal

plasma"" 1000 eV, density 5 × 10is cm -3, in which case re, "-"10-1° sec, and

rii "_ 10 -s sec. Hence tee values may range from 10-l° to 10-16 sec, while rii

values range from 10 -s to 10-14 sec. Above, an electron cyclotron frequency of

1015 sec -1 was calculated; for the same, 20-megagauss field, the ion cyclotron

frequency will be O(1011 sec-1). Hence wceree values may range from 10 -1 to

10_, and weir, values from 10-3 to 103. It is thus not safe to assume w,_r_ >> 1, to

justify the use of some simplified transport coefficients or a collisionless MHD"

model, requiring wora >> 1.

Although it is here indicated that the "Hall MHD" model is of greater

validity than the basic MHD (negligible Larmor radius) model, the results of

simulation using the basic MHD model will be presented first. It will be seen that,

even with the basic MHD model, reasonably good agreement with experiment

has been obtained.
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CHAPTER 3: MHD MODELING OF HDZP-I AND HDZP-II

3.1 Detailed Basic MHD Model of Experiments

The primary experiments modeled here were performed on the Los Alamos

High Density Z-Pinch (HDZP) machines HDZP-I 3'4 and -II 4,14. These machines

employed Marx bank generators with water-insulated pulse-forming networks

to apply maximum voltages of 600 kV (HDZP-I) and 2 MV (HDZP-II) to the

deuterium fiber loads; this would bring current roughly linearly in time to peaks

of 200-250 kA at 125 nsec (HDZP-I) and 800 kA (to date; design maximum 1.2

MA) at 100 nsec (HDZP-II). Frozen deuterium fiber loads were typically 30 #m

in diameter by 5 cm long. Diagnostics included X-ray pinhole photography and

filtered PIN diodes, neutron counting with various teckmiques and time history,

electrical diagnostics, and highly time-resolved (better than 0.2 nsec) optical

imaging (shadowgrams and interferograms; see Appendix B).

The computations reported here represent an extension of Lindemuth's

MHRDR (Magneto-Hydro-Radiative-Dynamics-Research) code 3s. MHRDR

uses a time- and space-centered alternating-direction-implicit (ADI) numerical

method which avoids "splitting" of the equations: a,ll quantities are solved in

vector equations, which include representation of all terms in the equations at

every step of the solution procedure. Newton-Raphson-like iteration 7a is em-

ployed to deal with nonlinear quantities, i.e., nonlinear terms are approximated

by the first two terms in a Taylor series, then the resulting linear implicit problem

(solution of a block tri-diagonal matrix) is iterated to convergence. The model

applied to the dense Z-pinch problem in this chapter is basic (negligible rLi)

MHD, the two-dimensional (r,z) equations of magnetohydrodynamics including

thermal conduction, radiative energy loss, and resistive diffusion (as developed in
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Chapter 2: equations 2.2.1, 2.2.17, 2.2.24, and 2.2.13, dropping the "Hall MHD"

terms noted in section 2.3, and with the additional details noted in section 2.4):

Op +
(3'1"1/ N V'(P _)=0

(3 1.2) O(piT) -. -.. & +V'(p_'_')+Vp-JxB=0

(3.1.3) O(pe)---_ -FV . (pffe) + p kT" ff - V . (x.L v T) -- TIf _ + Qraa = 0

(3.1.4) 0/_ -.--_--+ v x (-_'x B + _ V xg)=0Po

where p is mass density, fi' is velocity, B is magnetic field, J"(= V ×/_/p0) is

electrical current density, e is specific internal energy, p is pressure, T is tem-

perature, Q,.,,d is the radiative energy loss, r/is the electrical resistivity, and tea.

is the (perpendicular) thermal conductivity. When a two-temperature model is

used, the single energy equation above is replaced by ion and electron energy

equations (from 2.2.21 and 2.2.22, again as modified in sections 2.3 and 2.4):

(3.1.5) O(pe,) F V" (pge,) + p, V" _- V" ('_±, V T,) - _P+&

+Q_.d+ Q_= 0

where e_, Pa, To, and t¢±_ refer to the appropriate ion or electron quantities,

and Q,i is the electron-ion energy equilibration term.
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The basic alternating-direction-implicit solution algorithm is as follows3s

(portions of Reference 38, which describes this in much greater detail, are repro-

duced in Appendix D). The component forms of the equations to be solved (such

as shown in Appendix D) contain terms which are exactly spatially integrable

in one direction (i.e., in "conservative" form), representing fluxes of mass, mo-

mentum, etc._and terms which are not so integrable, which Lindemuth refers to

as "forces." Spatial integration of these terms is done at a given finite-difference

cell; one then has expressions for the fluxes, at the interfaces between cells, and

approximates the "force" terms, by taking the average of such terms at the two

interfaces of a cell. Each flux and force term at a given cell interface is then writ-

ten in finite-difference form, i.e., in terms of the cell and neighboring cell values

of the quantities to be solved. The key to the alternating-direction-implicit al-

gorithm is that the finite-difference equations which result at this point, are the

sum of terms depending on quantity values and their spatial derivatives in one

direction, and terms depending on quantities and derivatives in the other direc-

tion. This is because none of the equations to be solved contains mixed spatial

derivatives (the presence of mixed derivatives in the Hall term thus presented a

major problem, the solution of which is described in Chapter 4).

One can then treat the terms dependent on quantities and derivatives in

one direction implicitly (on this step leaving the other direction terms explicit),

and the resulting matrix to be solved (after linearization) is not the huge matrix

which a full two-dimensional implicit solution would require, but only a much

more tractable block tri-diagonal one-dimensional implicit matrix, because the

unknown quantities are only along a single line in the implicit direction. On

the next step, the alternate direction is treated implicitly. In MHRDR, which is
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"time-centered" (in a Douglas-Gunn sense75), the first step includes implicit and

explicit flux and force terms in one direction, plus explicit terms (which have just

been solved for in the previously completed full step, incorporating implicit and

explicit contributions) in the other direction; the second step includes implicit

and explicit terms in the second direction, plus the just-computed implicit terms

and explicit terms in the first direction. Both steps include a representation

of all terms in the equations (in both directions) at once. Hence, each step

results in solution values which are entirely consistent with the complete set of

partial differential equations, in contrast to the results of "operator splitting,"

where each intermediate value is actually inconsistent. In MHD, where physical

processes "compete," the MHRDR method should in principle allow the use of

larger timesteps than splitting methods.

The program proceeds using essentially a Newton-Raphson iterative lin-

earization method TM. At each cell interface on a given line, the implicit fluxes

and forces are approximated by calculating the explicit fluxes and forces and the

explicit derivatives of those fluxes and forces with respect to the quantities to
..$

be solved (e.g., B, p, etc.). These numbers become elements in the block tri-

diagonal matrix to be solved for the implicit quantities. When all the elements

have been calculated for a given line, the implicit matrix is solved by forward-

backward substitution 76. If the solution values have not converged to a preset

degree (for each quantity, typically 10-5 times its largest value), they are used

as explicit values with which to compose a new matrix, the solution of which

is iterated until convergence for that line is reached (up to a limited number of

iterations; if convergence is still not reached, the timestep will be cut). When all

the lines in one direction have been solved in this way, the implicit and explicit
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flux values are stored (because they will be used in the second step), and the

implicit solve procedure is repeated for all the lines in the second direction. The

solution values of this second step are the final values for the solved quantities

at the new time.

By careful differencing of the equations, the code has uncommon conser-

vation properties 77. The spatial differencing (in the limit At _ 0) not only

conserves mass, momentum, energy, and magnetic flux, but also maintains "sub-

conservation" properties, that partial sums of component energies (thermal, ki-

netic, magnetic), such as the sum of kinetic and magnetic energies, are conserved

where appropriate (i.e., each pair of corresponding terms individually maintains

energy conservation). In general, the time- and space-centered algorithm is sec-

ond order accurate in At and Az.

MHRDR employs an "artificial viscosity" in the vicinity of strong shocks

(large velocity gradients) in order to more accurately depict the physics in such

areas (give the correct increase in entropy when a shock traverses the plasma, ir-

reversibly converting ion kinetic energy to ion thermal energy). I.,indemuth 77-79

strongly argues that "artificial" is a misnomer here, because the numerical re-

sults will be farther from physically correct without it. The functional form of

the artificial viscosity is such that it is very localized to the large velocity gra-

dient regions. Intrinsic to the use of such artificial viscosity is a shock heating

term, included in the energy equation (ion energy equation in a two-temperature

model, because of the mass dependence of viscous effects) for consistency.

For certain types of linear equations s°, the time- and space-centered alter-

nating-direction-implicit algorithm employed in MHRDR is unconditionally nu-

merically stable, i.e. there is no limit on the size of the timestep allowable.
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For the nonlinear equations which are being solved here, this is probably not

true; one is hard put in advance to know what timestep will be desirable to

resolve important details of a given problem, even if such a timestep is numeri-

cally stable. MHRDR uses an adaptive timestep: a starting timestep and min-

imum/maximum allowable timesteps are set, then, as the simulation proceeds,

the timestep goes up or down, depending on a number of conditions. If quan-

tities are not changing much, the timestep will go up until the largest change

in any quantity reaches a preset value, often a percentage such as 30% of the

given quantity; timesteps will be cut if changes exceed this value, if non-physical

results such as negative temperatures or densities are encountered, or if the it-

erations are not converging. In this way, it is possible to relatively efficiently

follow a problem, such as the fiber-initiated Z-pinch, with timesteps which re-

solve interesting physical phenomena as they develop.

The magnetohydrodynamic model used requires for completeness the spe-

cific internal energy, the pressure, the. thermal conductivity, the average ioniza-

tion level, the radiative energy loss, and the electrical resistivity as functions of

the density and temperature. To obtain the equation of state (specific energy

and pressure), the ionization level, the radiative energy loss, and the resistivity,

the Los Alamos SESAME z9 tabulated atomic data base computer library is used.

SESAME Planckian opacity is employed for the radiative energy loss term, ap-

propriate for on optically thin condition (Wrad > WVe), which fiber pinches such as

HDZP-I and -II can be shown to maintain for temperatures and densities typical

of such discharges. Thermal conductivity follows the (arbitrary Wcr) Bragin-

skii formalism _3, as does electron-ion energy equilibration. Hence the thermal
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conductivities are:

ne Teree 4.66 w_er_e + 11.92

(3.1.7) _±e= 4 4 2 2 3.77);me (wcerae + 14.79Wcerae +

niTirii 2 2 2wcirii + 2.64
(3.1.8) _±i =

4 4 2 2 0.68)"mi (%irii + 2.7w_irii +

Single-temperature _1 is the sum of these. The electron-ion energy equilibration

term 64 is

(3.1.9). Qei = amen, (Te - Ti)
1Tt i T e e

Actual experimental current vs. time values provide the boundary con-

dition for magaetic field at the outer radial wall: Ampere's Law prescribes

Bo(rwat_) = #oI/(2rrwau). The code employs a method by which field and

plasma can realistically pinch inward from a radial wall, if equations and bound-

ary conditions so dictate, and later expand back to the wall in a consistent

fashion 81 (at early stages of the simulation, field very rapidly diffuses across the

low-density "vacuum" region to the current-carrying surface of the fiber). Mass

is allowed to leave through the outer radial wall, if it is moving in that direction;

this prevents an unrealistic build-up or "bounce-back" of mass at the outer ra-

dius, which is intended to simulate the surrounding vacuum. When it was iound

that significant current and plasma density needed to be resolved in the vicinity

of the outer radius: a means was found to expand the grid to treat this appropri-

ately; this is described below. The axial boundary conditions are usually taken

to be electrically conducting and heat insulating, giving "mirror" conditions at

these boundaries for field and energy; axial walls are intended to be solid, as are

the real electrodes, hence V_or,,_at = O. Haines has done some theoretical work
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predicting that end losses of energy from such a pinch will not be significant

over the typical O(100 nsec) discharge time 7°, and a single simulation run with

zero-temperature axial boundaries agreed with this result.

"Cold-start" initial conditions are a solid, cryogenic deuterium fiber (density

88 kg/m a, which is half that of solid deuterium, to account for observed voids

and other non-uniformities in the fiber; temperature 0.001 eV; radius 15/_m; 2%

random density fluctuations provide perturbations for instability growth) sur-

rounded to about twice the fiber radius by a low density, "warm" halo plasma

(e.g., density 0.088 kg/m a, with no perturbations; temperature 1 eV), which

provides an initial current conduction path. Computed results axe insensitive to

the details of this halo plasma after a short-lived (< 10 nsec) transient, because of

the small mass involved relative to the fiber-generated plasma. The surrounding

vacuum is simulated by a cold, very low density region (e.g., density 10-7 kg/m a,

temperature 0.025 eV) of total mass less than 1% of the fiber, extending out to a

zero-temperature, electrically insulating wall. To avoid unrealistic ohmic heating

of the highly resistive "vacuum region", a "cutoff density" is used, below which

ohmic heating is turned off. Because the bulk of the plasma in such discharges

may go from high, near-solid densities to expanded, much lower densities, this

author implemented a variable cutoff density, which adjusts itself, within pro-

grammed limits, so that (typically) 99% of the plasma (presumably the bulk of

the fiber-generated plasma) remains above cutoff at all times. The results from

runs with both fixed cutoff densities, and these adaptively varying cutoff densi-

ties, showed no significant differences (typical cutoff densities axe from 1018 to

1016cm-3).
i

The early fiber-ablation stage of the discharge necessitates relatively fine ra-
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dial grid spacing, but this stage can be followed by an explosive expansion of the

heated plasma. Because of this, Lindemuth's initial two-dimensional simulations

could only be run to about half the HDZP-I current peak before "running out of

grid": significant current and plasma density needed to be resolved outside the

original, maximum affordable radial grid. To overcome this problem, this author

explored the use of an existing capability in the code, allowing pre-programmed

radial grid expansion. This was found to be impractical, because one doesn't

know in ad_nce when and how fast the grid should be expanded. It was neces-

sary to implement an adaptive system, capable of expanding or contracting the

grid (within programmed limits) to follow an expanding or contracting plasma.

The radial grid is checked at each timestep, and adjusted so that the outer

boundary is always at least 150% of the radius within which 95% of the total

axial current is contained. Provision for this grid motion is written into the

"generalized Eulerian" (moving-orthogonal-grid) difference equations, avoiding

the complications of the Lagrangian approach: i.e., finite-difference equations

are written and solved for quantities, such as velocity, relative to a known (pre-

programmed, or now, adaptively set) grid velocity.

To allow direct comparison of simulation results with experimental data,

this author wrote an addition to the code's graphical post-processor to generate

shadowgrams and interferograms, as collected on the experiments, from simula-

tion results (this is done by tracing a grid of rays through the simulated plasma;

see Appendix B). A dynamically developing instability may be overlooked in

a plasma imaging diagnostic which lacks temporal resolution (visual and X-

ray images require rather long exposure times relative to the nanosecond-scale

dynamics of such pinches). It has been possible to produce very highly time-
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resolved (better than 0.2 nsec) experimental shadowgraans and interferogrmns.

Hence these present experimental data of primary interest for comparison with

the simulations.

In the simulations reported here, radial grids of 80 to 100 points, more finely

spaced near the axis (zones smaller than2/_) to better resolve the fiber/plasma

column, cover a radius as small as 1 millimeter, but ultimately as large as several

centimeters, if rapid expansion is followed. It would be desirable to cover the

full 5 centimeter axial length of the experimental chamber with many hundreds

of grid points, to resolve the smallest and largest instability scales possible, but

this is prohibitively expensive at present. It has been possible to cover axial sec-

tions as large as 2 centimeters, and as small as 0.25 millimeters, with uniformly

spaced axial grids of 31 (sometimes 62) points. These are respectively capable

of resolving the largest (X-ray "beads") and smallest (shadowgram "spicules"-

fine spikes radiating outward from the main axial column at early times in the

discharge) features observed in any of the experiments. Although the smallest,

most finely resolved grids do show fine-scale instability growth starting earlier

than the larger grids, these fine-scale instabilities are not ultimately the most

unstable or fastest expanding disturbances, because as heating and expansion

take place, shorter wavelengths saturate, and larger-scale instabilities tend to

dominate the system. Mid-size grids, covering about 2 millimeters axially, show

the most rapid instability growth and expansion; larger grids show a delay before

the larger modes they can resolve begin to develop. Hence the timing of insta-

bility development and expansion may vary by as much as 20 nsec (in 100-nsec

current-peak discharges) for different grid sizes. This is comparable to experi-

mental timing uncertainties (e.g., the relation between driving voltage, current,
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and diagnostic images in time).

With these improvements implemented, it has been possible to run simula-

tions to about 120 nsec for HDZP-I, near its 200-250 kA current peak, and to 44

nsec (about 300 kA) for HDZP-II (also as high as 430 kA for an as yet not exper-

imentally realized 1.2 MA-peak shot on HDZP-II). At these points, not only is it

numerically difficult and expensive to deal with the very rapidly expanding and

highly irregularly developing plasma, bu_ large parts of the plasma have reached

temperatures and densities where the validity of the fluid model is very much

in doubt; this will be discussed further below. Extending the simulation beyond

these points, then, is as much a matter of finding an appropriate physical model,

as it is a matter of numerical technique.

A potentially important limitation of these computations is geometric:

quantities vary only as functions of r and z, and only the azimuthal magnetic

field and velocity components perpendicular to the field (v,.,vz) are computed,

along with scalar mass density and internal energy. Within the fluid model,

the finite-Larmor-radius ordered terms in the magnetic field equation (Hall term

and diamagnetic pressure), the viscous stress tensor, and accompanying terms

in the energy equation, are ignored as well. Up to the point where the fluid

description and classical transport break down, comparison of the results of such

a simulation with experiment can suggest whether or not any of the aspects left

out, geometric or otherwise, were essential to the behavior of the system.

3.2 Results of Basic MHD Models2-s4

An account of the low-current experiment HDZP-I described plasma

columns "free from visible instabilities for typically 80 nsec into the current

discharge, at which time the [m=0] instability growth times would be expected
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to be _1 nsec...m=l modes are not observed. "3 Fastest growth times for ideal

m=0 (and m=l) instabilities is are on the order of the Alfven time rA = a/vA,

where a is a scale length of the plasma, and vA is the Alfven speed. Typical

Alfven speeds and scale lengths of these plasmas (discussed in section 2.5) do

indeed correspond to Alfven times on the order of 1 nsec, if not smaller. Plasma

columns also appeared to be relatively compact (radius < 200pro), based on

shadowgrarn images (Figs. la, 2a; note that these are electronically collected

images of finer resolution than the original photographic shadowgrams on which

the above comments were based; see Appendix B), which were employed to pro-

vide well time-resolved images without the complex temperature dependence of

passive radiation emission. A similar experiment 2 at the Naval Research Lab-

oratory (about which more will be said later) also appeared to exhibit such

compactness and relative stability, on the basis of visible and X-ray emission

imaging of the plasma.

The two-dimen_onal (2-d) basic MHD simulations of HDZP-I discharges

show significant expansion and m=0 instability development (Figs. lc, ld) before

the fiber has become fully ionized, which occurs in the simulations at 30 to 50

nsec. Model shadowgrarns generated from simulation of HDZP-I reasonably

agree, in size and instability wavelength, with those from experiment (Figs. la,

l b). The width of the shadowgrams tends to remain smaller than the effective

diameter of the plasma column, in terms of mass (Fig. lc) or current (Fig. ld).

This is true because light ray deflection (which creates the shadow) depehds on

density gradients, and is greatest near the central core of the plasma column

(particularly while this is still being fed from the ablating fiber), where these

density gradients are the largest. The lower density, more gently varying outer
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regions of the plasma column do not provide enough ray deflection to cause

obvious shadows, even though a sig_fificant fraction of the mass or current may

reside there. Significant instability development in these outer regions (Figs.

lc, ld) only shows up as slight variations in the shadowgrams (Fig. lb). After

the fiber is completely ionized, the simulation-generated shadowgrams expand

and become more irregular, even disappearing at some points along the axis,

again in agreement with experimental results (Figs. 2a, 2b, also la, right-hmad

image, 3a, 3b). This may be interpreted as evidence of full development of the

instability, to the extent that line density (total number of particles per unit

axial length, Fig. 5c) along the axis becomes very irregular (i.e., plasma column

separates into distinct "blobs", ultimately reflected in formation of "beaxts" in

X-ray images2'14).

Simulations and observations of the Los Alamos high-current experiment

HDZP-II 4,14 resemble the higher-current, later phases of HDZP-I discharges. In

the simulation of HDZP-II, the higher current fully ionizes the (15/Jm radius)

fiber in 10 to 20 nsec (where 0.75 to 1.2 MA current peaks would occur at 100

nsec, although HDZP-II simulations were not run all the way to current peak).

Instabilities develop rapidly, and drive intense nonuniform heating and rapid

column expansion to radii on the order of centimeters, within 50 nsec. Only

very early in the experiment is there enough density gradient to give a useful

shadowgram at all (Fig. 3a), and this wide and irregular image resembles the late

shadowgrams of the low-current experiment HDZP-I (Fig. 2a). The computed

shadowgram (Fig. 3b) has many features (width and instability wavelength) of

the observed one (Fig. 3a).

Because late time shadowgrams were impossible to obtain on HDZP-II, in-
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terferometric imaging techniques (see Appendix B) were then employed. Inter-

ferograms give images integrated directly off plasma density rather than density

gradient (as in shadowgrams). These images, both experimental 14and simulated,

show characteristic "island" patterns of large amplitude m=0 modes (Figs. 4a,

4b); again, a repeat of what is seen in late low-current simulations (Figs. 4c, 4d,

4e). The line density along the axis, derived from the simulations, is in good

agreement with the results from experimental interferograms (Figs. 5a, 5b, 5c).

Experimental variation in fiber size, and the use in simulations of starting fiber

density one-half that of pure solid deuterium (to compensate for possible voids

in the experimental fiber), account for the minor differences between computed

and measured line density.

Theoretical and computational investigation into the reported "anomalous

stability" of the early, low-current experiments has concentrated on the con-

nection between driving current ramp times and plasma profiles 24'sS's6, and the

stability of such profiles as modified by non-ideal effects such as resistivity 19-s°.

In particular, it has been found that low-temperature plasma columns which are

relatively resistive, with Lundquist number (rresistive dillusian/'rAllven transit) up

to about 100, may be m=0 stable 21'2s'24'3°. The plasmas for which these re-

suits have been derived are constant-radius, uniform (Bennett st) temperature,

and of near-solid density (i.e., fully ionized, and expanded to no more than a

few hundred/_m). In contrast, what is seen in early (pre-complete ionization)

stages of these one- and two-dimensional simulations (e.g., Fig. 1 of Ref. 35)

is a low-density (e.g., 10-Sxsolid) coronal plasma with a temperature peak at

the edge that may be considerably higher than the Bennett temperature. Such

profiles resemble those discussed by Bobrova, et al, for exploding copper wire
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and deuterium fiber Z-pinchesss. Low density and high temperature are factors

which would raise the effective Lundquist number of such a plasma from "safe"

Lundquist numbers of order 1, beyond the critical values around 100, even dur-

ing the low current, early stages of the discharge. Once instabilities begin to

grow in the corona, expansion of the column is enhanced, leading to still lower

densities, larger radii, and still higher Lundquist numbers.

The presence of the cold core does seem to inhibit full nonlinear instability

development, such as displayed in Figs. 4d and 4e (note the drop in density in the

m=0 "neck" region, in contrast to the earlier density contours, Fig. lc), which

appears connected with the explosive expansion of higher-current discharges on

HDZP-II. The simulations show re-connection of the outer regions of such m=0

lobes, and current jumping across them at progressively increasing scale lengths;

this may not only directly contribute to the physical expansion of the column,

but may lead to instability heating sg, which further drives expansion (note in

this regard the two-temperature simulation results discussed below).

The high temperatures and low densities, which may be seen in the fully

developed instability/expansion stage of the discharges, are likely to drive the

plasma out of the one-temperature regime (ions and electrons in energy equilib-

rium), as noted in Appendix A. Lindemuth's code has an existing two-tempera-

ture capability, but it was found impossible to run the fiber Z-pinch problem in

the two-temperature mode, due to problems either with the very low tempera-

ture sections of the two-temperature SESAME equation-of-state tables, or with

the energy equilibration section of the code; these problems have not yet been

resolved. However, it was possible to do two-temperature runs using an ideal gas

equation of state in place of the SESAME tables (still using SESAME resistiv-
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ity, ionization state, and radiation); confidence in this procedure was bolstered

by the fact that one-temperature ideal gas runs showed little overall difference

from all-SESAME one-temperature runs. The ion and electron energy equations

differ, in addition to the use of appropriate ion or electron pressures and thermal

conductivities, in that the electron equation has the ohmic heating and radiative

cooling terms, while the ion equation has an "artificial viscosity" shock heating

term (both have complementary equilibration terms).

The general instability/expansion behavior was still seen in these two-tem-

perature runs, but an interesting detail emerged in the heating pattern (see Fig.

6). In 1-d and early stages of 2-d runs, ohmic heating of electrons was the

primary heating source, and electron temperature thus either led or remained in

equilibrium with ion temperature. However, when instability development led

to extreme and irregular density and velocity gradients (such as in Figs. 4d and

4e), shock heating of ions caused the ion temperatures to exceed those of the

electrons, by as much as 50 eV for average temperatures (Fig. 6a), and hundreds

of eV for peak temperatures (Fig. 6b). This fits the pattern of instability heating

suggested by R. Lovbergsg, which is under experimental investigation by Lovberg

and R. Riley Jr.

Chittenden and Haines in a recent paper have stated that the thermoelec-

tric Nernst and Ettinghausen effects "cannot be ignored when electron and ion

temperatures are sufficiently decoupled. ''59 In 1-d Lagrangian two-temperature

simulations using Braginskii perpendicular resistivity, they see such decoupling

in the very low density outer edge of the coronal plasma; this region carries

a lot of current, and hence has large ohmic heating of the electrons, but they

do not equilibrate with the ions. The ions could normally conduct much of
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the heat away, because the ion cross-field thermal conductivity (3.1.8) is larger

than that of the electrons (3.1.7) by the factor (rn_/rne) _. In this case, the

low electron-ion thermalization rate (3.1.9, proportional to n_/T_), leads to a

runaway electron temperature situation at the plasma edge; higher temperature

(lower resistivity and thermalization) leads to higher currents, more heating, etc.

However, if the Nernst and Ettinghausen effects (which cause a radial flow of

heat and current density) are included, the ion and electron temperatures stay

much closer together, resulting in a much more uniform current distribution.

Chittenden has also found a similar effect, causing current to be more uniformly

distributed across the pinch radius, due to anomalous (micro-turbulence gener-

ated) resistivity 9°.

In the two-temperature runs done here, one does not see a significant de-

coupling of the electron and ion temperatures at the edge, as seen in the Chit-

tenden/Haines paper, for several reasons. There is a cutoff density in MHRDR,

below which ohmic heating is not included, in order to avoid unrealistic heating

(and runaway processes such as described above) in the low-density "vacuum"

plasma regions. Although the use of such a cutoff does introduce a somewhat

arbitrary, physically inconsistent element into the model, the intent is to use it

only in "vacuum" areas which do not meet the criteria for the fluid model, and

which do not have a decisive effect on the bulk plasma dynamics. Cutoff density

values have been varied over two orders of magnitude without seeing any signif-

icant differences in the simulation results. Also, the resistivity used here is from

the SESAME tables, rather than Braginskii. The semi-empirical SESAME re-

sistivity tables give values for a wider range of temperatures and densities than

the Braginskii fully-ionized plasma model; in particular, for conditions where
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neutrals are dominant, and for conditions of such low density that almost no

current-carriers are available. Hence it may be that SESAME resistivity, in

the low-density coronal edge regions where the above discussed phenomena take

place, is greater than Braginskii resistivity, and so tends to exclude current from

such regions.

In a one-temperature model, as noted above, ohmic heating at the edge

can be balanced by (predominantly ion) heat conduction away from the edge.

Hence not including the Nernst and Ettinghausen effects in the one- and two-

temperature simulations presented here did not lead to the runaway edge current

and heating problem brought up by Chittenden and Haines. There are other

situations in which ion and electron temperatures may decouple, such as the

instability ion heating discussed above. Shock-heated ions, in areas of low density

and high temperature, would also have a low electron-ion thermalization rate.

The possibility of Nernst and Ettinghausen effects playing an important role in

such situations makes addition of these effects desirable.

A major difference between the Los Alamos experiments and the deuterium-

fiber-initiated experiments at the Naval Research Laboratory (NRL) 2'1s is the

thickness of the fiber: NRL used 40- to 60-/zm-radius fibers, as opposed to 15-#m

at Los Alamos. Current rise rates have also varied among the two Laboratorys'

experiments, from about 1 to 10 kA/nsec. A striking observation of the early

NRL experiments 2 (current peaks up to 640 kA at 125 nsec) is that significant

expansion of the originally very compact visible emission image (taken to indicate

onset of gross instability) does not occur until current peak (dI/dt=0). Thus the

pinch would appear to remain stable "as long as the current is rising. ''2

The NRL experiments have not been as comprehensively modeled as the
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Los Alamos ones, but 2-d simulations have been carried out for 60-pm-radius

fiber, 640 kA at 125 nsec NRL discharges; a simulation was also done of a

planned 40-_tm-radius fiber on Los Alamos' HDZP-II with current peak 750 kA

at 100 nsec. In these simulations, the fibers did survive considerably longer

(40-50 nsec for the 40-/_m fiber, as opposed to 10-20 nsec in the analogous,

HDZP-II 15-/_m fiber run; survival was longer than 60 nsec for the 60-/_m fiber).

Onset of drastic instability development and expansion did not occur until the

40-/_m fiber was gone (around 55 nsec, as opposed to 30 nsec for the 15-_tm

run). The 60-#m simulation could not be run beyond 60 nsec (260 kA), because

portions of the coronal plasma had reached the highly irregularly developed, high

temperature, low density (fluid model invalid) conditions which have ultimately

defeated the numerical algorithm used in all these simulations. At this point in

the 60-#m simulation, a cold (_<1 eV) core remained, surrounded by a medium-

hot (._100 eV) corona of about 10-1 times solid density out to about 100/_m

(which could be responsible for the visible radiation image of about this radius

at this time), surrounded by a hot (into keV range), several orders of magnitude

lower density, strongly unstably developing outer corona. This resembles the

pre-complete-ionization coronal plasma seen at earlier times in the 15-_tm-fiber

HDZP-I and -II runs. In two-dimensional simulations, the expansion and severe

instability development, which occur shortly after complete fiber ionization and

are reflected in shadowgram and interferometric imaging, would also be reflected

in a sudden expansion in the visible emission images 36. Hence if ionization

of the fiber is completed prior to current peak, one would expect the above

"dI/dt=0 hypothesis ''2 to be violated, and visible expansion to occur while the

current is still rising. Such instabilities and expansion while the current is rising

51



were reported for the later, higher current NRL experiments 13. These later

experiments did employ a current ramp (920 kA peak at 840 nsec) much slower

than that of the original NRL experiments, which were considered to use an

optimum current rise value (,_4 kA/nsec). The 2-d simulations of the original

NRL experiments are consistent with the fibers becoming completely ionized very

near the time of current peak, making it difficult to distinguish between whether

the visible expansion at this time is due to dI/dt=0, or due to completed fiber

ionization. It would be desirable to run a series of experiments on a single

well-diagnosed machine, accompanied by a series of simulations, in which fiber

thickness and current ramp rates were varied, so that one could clarify the effects

of each. Because at this point in time, operations have ceased on the Los Alamos

and NRL machines, it is hoped that such work may be done on the Imperial

College high-current fiber-pinch machine 54.

Comparison of simulation and experimental results on HDZP-I and -II leads

to the following interpretation. The "anomalous stability" reported for the thin-

fiber HDZP-I experiments may have been a misinterpretation based upon limited

diagnostics; "stability" in any event is limited to the earlier, lower-current stages

of the discharge. Even at early times, there appears to be instability develop-

ment in the outer corona which is only faintly reflected in shadowgram images.

Full nonlinear instability development does appear to be held back, as long as

some portion of the heat-sinking fiber persists. Because of the higher currents

encountered earlier in HDZP-II discharges, the fiber becomes completely ionized

earlier, allowing drastic instability development to drive rapid expansion at a

very early point. It appears thicker fibers, such as those used in the NRL exper-

iments, could delay the early onset of gross instability and expansion (although
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the simulations still show an unstable coronal plasma). However, this would

almost certainly reduce the temperature and may prevent conditions for signifi-

cant neutron production from being reached; this is a question to be settled by

further experiment and computation.

Once a computational tool shows the capability to give results in agreement

with existing experiments (and in the next chapter, an effort is made to include

terms which might enhance this agreement), one can with caution begin to use it

to predict the outcome of new experiments. A natural area to explore for fiber-

initiated discharges is the effect of the driving current ramp. Both theoretical

and experimental investigations have related the current ramp to the resulting

plasma profiles, and the connected issue of stability 19-3°'sS,s6. One example is

the Haines-Hammel curve 9,11,12,which will theoretically maintain a constant ra-

dius plasma column while raising the current up to the Pease-Braginskii limit,

where ohmic heating is just balanced by radiative cooling. Of course, the actual

experiments, and the simulations done here, start with a cold fiber, not a plasma

with the fiber's dimensions. One-dimensional simulations using such a current

ramp did show roughly constant radius behavior; however, in 2-d, the charac-

teristic explosive instability/expansion set in strongly by the time the current

reached 500 kA. Extremely fast rising current ramps (as much as 30 kA/nsec)

gave similar results. Ramps as slow as 1 kA/nsec have been tried; they also

show instability and expansion. This code was also used to do a simulation of a

"fiat-top" current ramp discharge, in which current goes to 160 kA in about 20

nsec (at which point no instability or unusual expansion is evident), then is held

at that value. The same explosive instability/expansion as seen in the rising cur-

rent case, still occurred within 20 nsec of the time current was fiat-topped; the
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plasma did then settle into a low-density (expanded out to centimeters radius),

less unstable configuration. There is some interest in using a slow-ramped or

flat-top current rise fiber-inititated Z-pinch as a means of providing an initial fill

plasma for a heavy liner "magnetized target fusion" implosion 9z'92. In this case,

the expansion of the plasma is not critical, because the intent is to re-compress

it to fusion conditions, by imploding a surrounding liner.

The pattern which is seen repeatedly in these fiber-initiated pinch simu-

lations is formation of a low-density (orders of magnitude below solid) coronal

plasma, which carries most of the current; consequently, it heats rapidly into the

hundreds of eV range. Such a plasma has a relatively high Lundquist number,

well beyond the levels for which resistive stabilization has been theoretically or

computationally predicted. Accordingly, it acts like a classical ideal MHD Z- I

pinch: it is an unstable plasma, and when there is no longer a low-temperature

core to provide some restraint to instability development, violent instability and

expansion result. These simulations have been run far into the nonlinear stages

of instability development (see Figs. 4d and 4e), although plasma conditions

tend to occur at this stage which make doubtful the validity of the fluid model.

The only nonlinear "stabilization" mechanism seen is re-connection of the outer

plasma lobes; this produces an expanded, lower density plasma, which is not

what one looks for in an ostensibly self-confining, self-heating fusion device.

It has been noted by Kies 93 and others that the plasma initiation stage

of an initially non-conducting fiber-into-pla._na discharge may be crucial to its

subsequent development. As discussed above, instabilities first develop in the

low-density, early coronal plasma; higher density may be stabilizing here (lower

Lundquist number). Some pre-ionization of the fiber, by a voltage pre-pulse or
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radiation flash, may be desirable to set up current/density profiles which may

lead to a stable or relatively stable high density Z-pinch. To this end, simulation

parameters of the initial conduction (coronal) plasma were varied, without much

effect. Although the details of current initiation at the beginning of such a dis-

charge are unknown, it would seem that providing an initial conducting corona,

of negligible mass compared even to the quickly appearing ablation-generated

corona, should not have a crucial effect. 2-d simulations attempting to model

flash-ionized fibers have been done, including a 2 eV, half-solid-density pinch

which immediately starts at 200 kA current, to prevent sudden expansion; it too

ultimately showed explosive instability and expansion. Investigation of experi-

mental variations, such as plasma initiation techniques, is continuing. Some hope

for obtaining the desired micron-scale, high-density plasma current channel has

recently been generated by experiments utilizing the "plasma-on-wire" (POW)

technique 94, which will be examined in Chapter 5.

As temperatures rise and density drops, particularly in and around the

narrow m=0 "necks" which develop in the simulations, the appropriateness of

the fluid model breaks down. Thus late development of instabilities may well be

controlled by effects absent from the model. An improvement in the fluid model

would come from the inclusion of terms usually ordered out on the basis of small

Larmor radius (which may indeed not be small in the case of the Z-pinch 19'41,as

noted in Chapter 2 and Appendix A): the Hall and diamagnetic pressure terms

in the Ohm's Law (magnetic field evolution) equation, and accompanying terms

in the energy equation.

Analytic and numerical work on the influence of the Hall term gives equilibri-
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um-dependent results (lower m=0 growth rates for some equilibria, higher for

others) 19, so the present simulation work's close-to-the-experiment approach is

important, to insure that realistic equilibria are evaluated. That the Hall term

may have drastic effects on the important scales of an instability is graphically

illustrated in a recent paper by Huba, Lyon, and Hassaxn 66. The implementa-

tion of Hall and associated terms in the 2-d code used here, which required a

major adaptation of the alternating-direction-implicit algorithm, is described in

the next chapter.
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CHAPTER 4: HALL MHD SIMULATIONS

4.1 "Hall MHD" Computational Modeling Task

The "Hall MHD" model developed in Chapter 2 requires the addition of four

similarly ordered terms to the standard MHD equations. These are the Hall and

diamagnetic pressure terms (added to the magnetic field evolution equation), and

the electron "work" and electron current energy convection terms (added to the

energy equation): V x (J x B/(nee) ), _ x (Vpe/(nee) ), pe _?.(-J/(nee) ), and

V" (pee (- f /(nee)) ). From a practical point of view, these are four separate

numerical modeling tasks; it's hard enough to debug and benchmark a single

new term in a large code, without trying to do four terms at once. By doing

terms one at a time, one may initially miss compensating effects between two

or more terms, which the MHRDR code, with its simultaneous solution of all

quantities, is able to exploit. It is the most practical approach, however, to

implement one term at a time, deal with the obvious problems which it presents,

then go on to the next term, and any inter-relationships which then arise. A

look at the algebra in section 2.3, in which it is shown that if the diamagnetic

pressure term is included, energy consistency requires that the electron "work"

term be included, also reveals that the Hall term by itself only conservatively

re-distributes magnetic energy. Hence a natural division of the task is as follows:

do the Hall term first, then the diamagnetic pressure term, then the "work"

term, and finally the electron current energy convection term. In this chapter,

development of the additional terms is reported in that order; then the results of

simulations of the dense Z-pinch will be given, including some of the new terms

(physically inconsistent, but potentially informative cases), and finally including

all of the new terms.
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To the extent possible, it will be desirable to follow the existing MHRDR

algorithm, which has proven suitable to the demands of tile fiber Z-pinch prob-

lem. However, all the new terms introduce a significant complication: they

involve cross-derivative quantities. For the limited-geometry MHD model solved

by MHRDR in Chapter 3, a key feature of the equations, which made the

alternating-direction-implicit approach possible, was that the flux of any quan-

tity in a given coordinate direction, depended only on quantities and their spa-

tial derivatives in that direction. Hence the problem very naturally splits into

one-dimensional implicit lines to be solved (sequential implicit solves for both

directions give the final values for the new time). The curl of the pressure gra-

dient VP,, in the diamagnetic pressure term, and the curl or divergence of the
,.,.#

current J in the other terms, couple the fluxes of quantities in one direction to

the cross-derivatives (the derivatives in a perpendicular direction). Hence, if an

implicit approach is to be used, some means must be found to deal with this,

hopefully compatible with the existing ADI coding.

The computational physicist, searching for an answer to an interesting phys-

ical problem, may take a more pragmatic approach than a numerical analyst or

mathematician. The elegance of a solution is of less importance to the physicist

than its accuracy, in the broad sense of the term: does the numerical technique

used preserve the essential physics of the problem to be modeled? Of course,

advanced numerical techniques may be vital to the possibility of solving a phys-

ical problem, even with today's impressive computing hardware; the present

investigation would have been impossible without the extremely robust implicit

algorithm employed. However, even though ordering of terms in the fluid model

suggests the possible importance of the Hall and diamagnetic pressure effects,

I
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one could not know in advance that these would be significant relative to other

complex processes taking place as the plasma develops (such as the distribution

of heat and current density over the ablating fiber and coronal plasma). Nor

could one know whether or not the new terms would have an overriding effect

on numerical stability (though some 20/20 hindsight will later be displayed on

this matter). One might desire the relative freedom from timestep restrictions

(of unknown severity) provided by implicit methods. However, implicit methods

tend to be programming intensive: the additional coding complexity and com-

puting time required discourage one from starting with this approach. Hence,

the logical first step in adding these terms to the present simulation is through

explicit additional fluxes of magnetic field.

4.2 Explicit Hall and Diamagnetic Pressure Terms

The Hall and diamagnetic pressure terms, as additions to the left-hand side

of the magnetic field evolution (_×(Ohm's Law)) equation 3.1.4, are:

(4.2.1) v x x B) x vp ))
nee Po

These terms were spatially center-differenced in conservative form using the

explicit values of (electron) density, pressure, and magnei_ic field. "Conserva-

tive form" means that the component forms of the equations (such as given in

Appendix D) are the sum of all spatial derivative terms, so that after an exact

spatial integration, they will represent fluxes across a cell interface. No analytic

manipulation is done to the terms before differencing. A center difference for a

spatial derivative is a second-order accurate approximation for the derivative:

(4.2.2) i:gf,,_(fj+1- fj-1)
Ox - 2Ax
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where the j's are the indices of the grid in the x-direction.

These explicit fluxes of magnetic field (in the appropriate direction) were

then added to the time-centered (i.e., half implicit and half explicit) magnetic

fluxes in each direction, on each alternating-direction step. "Floor" values of the

electron density were implemented (similar to the cutoff density values mentioned

in chapter 3, below which ohmic heating is turned off"to prevent unrealistic

heating of "vacuum" regions), so that very low density "vacuum" regions would

not show an unrealistic Hall effect. After constant density runs (which for this

geometry will result in complete cancellation of Hall and diamagnetic pressure

effects) were done to establish that this differencing would have the expected

null effect, the same fiber-initiated Z-pinch problems described in the previous

chapter were started.

These would run only a few nanoseconds before fine-scale perturbations in

the magnetic field would begin to appear at the edge of the still relatively cool

(e.g. 10 eV) coronal plasma (Fig. 7a), long before any instability growth had

been noted in the MHD runs. Unfortunately, this was quickly accompanied by

a breakdown of the numerics: the adaptive timestep setting routine found that

it could not cut the timestep enough (within the pre-set limits of 10-9 to 10 -is

seconds) to keep field at some point from growing uncontrollably (see Fig. 7b).

If the other terms (magnetic convection, diffusion, and diamagnetic pres-

sure) in the field evolution are neglected, and the Hall term (in r,z coordinates)

is transferred to the right-hand side, one has the following equation:

OBo Be One OB...._eeBo One Be 2 One 2Be OBo
(4.2.3) OB._..oo= _ {_ ._r _ j-"_ + Oz _ "_r n e20z + }cgt epo net 8z

Characteristic of the Z-pinch is a large radial density gradient. At points

with such large density gradients, the second term in the above equation may
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strongly exclude field where the axial gradient of field has one sign, and gain field

where the sign is opposite, leading to the perturbation growth seen. However,

if enough field is excluded that the sign of the field at that point changes, the

sign of the second term also changes, leading to a reversal of the process de-

scribed. Hence the "hole" in the field should not grow without limit (of course,

accompanying changes in field and density gradients can also affect this). It does

appear, however, that the explicit algorithm misses this self-limiting effect (see

Fig. 7b), and the field "hole" tries to reach large negative values; in essence, this

is a numerical instability.

Can this be simply explained? Numerical stability analysis is most easily

done for linear equations. For nonlinear equations such as the above, one may

start by finding a linearization that preserves important features of the problem,

and then analyse the linearized equations (of course, stability of the linear case

does not guarantee stability of the nonlinear case, as shall be seen). First, assume

that all but the second term of the above equation can be ignored, and there

is a large fixed density gradient in r, but no density gradient in the z-direction.

Then linearize about a constant field (Be = Bl(r,z,t) + B0):

OB1 Bo On_ OB1 OB1
(4.2.4) ----- =

Ot e_on, 2 Or O-"-Z"= Veonwctiw-ff['z .

The result is a simple (one-direction) convection equation for B1 in the z-

direction. A constant field is perhaps not a very good model for the Z-pinch;

one could try a second linearization, for example, about a field varying only in z

with a large constant axial gradient (axial gradients could be expected to appear

for a number of reasons, such as if any MHD m=0 mode growth were present,
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or due to axial boundary effects). Then where the B0 field equals 0, one has:

(4.2.5) 0B_...2.1.., _ 1 OBo One BI = kexpBl
Ot - e#one 20z Or

where Bo = Bo(z) + Bl(r,z,t) with constant OBo/Oz and OBo/OZ >> OBl/Oz:

a simple exponential equation.

Both these linear equations bode ill for an explicit algorithm. Numerical sta-

bility for the exponential equation is subject to strict timestep limits 95 (which

may become insuperable due to the nonlinear dependence of the linearized "con-

stant" k_xp), and the simple convection equation can be shown to be uncondition-

ally unstable for a spatially centered (as this code is, although also time-centered

for all other terms) explicit algorithm 96 (the reasons for which shall be much fur-

ther discussed). At this point it is apparent that an implicit treatment of these

terms will probably be necessary.

4.3 Adaptation of Implicit (ADI) Algorithm for Hall Term

There are good reasons for trying to stay within the existing alternating-

direction-implicit algorithm, when a_lding new physics to the numerical code

used here. First, it is known that this particular code, with the modifications

described, can handle the not insignificant demands of this problem; a different

approach might have trouble with the strong gradients, for instance, before even

running into the additional numerical demands of the new terms. No doubt

related to the demonstrated robustness of the present algorithm is an integral

feature of its design which, though probably not unique among multi-dimensi0nal

MHD codes, is at least uncommon: there is no operator splitting. MHRDR solves

for the complete vector of time-advanced quantities (e.g., density, magnetic field,

velocities vr and v_, and internal energies) simultaneously, always including all
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terms of a given equation (e.g. magnetic convection and diffusion). Although

only one direction is handled implicitly on each half-step, every (half-step) set of

difference equations solved is a complete representation of the differential equa-

tions, including the effects of implicit and explicit fluxes in the implicit direction,

and the previous half-step's implicit and explicit fluxes in the other (presently

non-implicit) direction. Thus, a very natural simultaneous treatment of all phys-

ical effects is maintained, while any unnatural effect of the directional splitting

(which makes the implicit solve task a relatively tractable one-dimensional one)

is minimized. To separately solve in some other manner for the Hall and dia-

magnetic pressure effects, and then add them in, would violate this scheme, and

potentially lose its demonstrated robust nature.

The fiber-initiated Z-pinch, and the effect of the Hall term on it, are prob-

lems on which there is no definitive theoretical, and only limited experimental,

knowledge of the outcome. In attempting to model complicated physical systems

such as this, it is extremely desirable to find one or more test problems with clear-

cut results dependent on the newly added physics, to serve as "benchmarks" of

the code. If the computational tool gives correct physical results in such known

cases, one gains confidence in its application when the results are unknown. The

Hall term is dii_cult in this regard, in that it is an intrinsically two dimensional

effect; one cannot first do a simpler one-dimensional case, and then deal with

the more complex two dimensions. Fortunately, computational and analytic re-

search on Hall-driven magnetic penetration into highly conducting plasmas into

which no penetration would occur without this term, has yielded an excellent

test problem for a Hall MHD code: Kingsep-Mokhov-Chukbar (KMC) magnetic

penetration 67.
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Kingsep, Mokhov, and Chukbar have shown that the Hall MHD magnetic

evolution equation becomes a Burgers equation (a nonlinear equation, which

can be transformed by substitution into a linear equation with exact analytic

so! _tions) under certain conditions. Mason, et al 9_ have further developed their

solution into a shock-like magnetic penetration along a density ramped channel

(see Fig. 8); the result resembles the penetration of magnetic field in a plasma

opening switch. The problem sets up as follows: the field evolution by the Hall

term can be written

aB 1 vXB)x )
(4.3.1) _ - - V x(_-'I_,e( /_o

This can be simplified for B,(x) and n,(y) to

(4 3.2) OB, O ( B, OB, OB,av

where u_ = (B,/(#oe))O(1/n,)/Oy.

Kingsep, Mokhov, and Chukbar found shock-like solutions travelling to pos-

itive x at speed uw/2 for B, < 0 and One/Oy > 0. Mason's density ramp channel

is a channel in which O/Oy(1/n,) is a known constant value (hence uw will be

fixed), above and below which are constant density regions (see Fig. 8); in

this case the penetration occurs only along the density ramp region. This is

a striking, nonlinear result, and provides a clear (and numerically challenging)

test problem for a Hall MHD code. It has been successfully modeled with Ma-

son's multi-fluid/hybrid code ANTHEM 97 (ANTHEM has not proven suitable

to performing the very detailed simulation of dense Z-pinch experiments such

as performed here, although perhaps it could be modified to do so; it could be

used to do short runs-e.g. _1 nsec-to evaluate the stability of late-time plasma

profiles generated by MHRDR).
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As mentioned above, a major problem must be overcome before the addi-

tional terms can be implemented in the alternating-direction-implicit algorithm.

In the limited-geometry standard MHD solved by MHRDR originally (B(r,z) 2.

plane of computation), the equations are free of mixed partial derivatives. This

has the effect that the flux of any quantity in one direction depends only on the

values (and derivatives) of all quantities in that direction. Thus, the equations

divide easily for purposes of the alternating-direction-implicit advance. The Hall

and associated terms, however, intrinsically involve mixed derivatives; this leads

to the unusual property that a gradient in one direction drives fluxes of mag-

netic field (or energy) in the perpendicular direction (a discussion of the physics

behind this is contained in Appendix C). If these cross-derivatives must be fully

implicitly evaluated to maintain numerical stability, an ADI approach will not

suffice.

However, one can approximate the implicit value of the cross-derivatives by

using a first-order spatial backward difference between (implicit) quantities on

the line presently being solved implicitly, and quantities on the adjacent, just

implicitly solved line. That is to say, (Of/Oy) "+1 "_ (f_,+l _ f_+_')/Ay, where

k is the index of the y-(cross-) direction grid, and the prime on f_+_' is to

indicate that this is an "implicit" (time n + 1) value, but from the previously

solved adjacent line, and is not being implicitly solved for on the present line.

This drops spatial accuracy from second to first order, and could have the re-

sult that differences all in one direction would lead to a spatial biasing of the

solution. These effects can be mitigated by alternating the order of solution of

lines between bottom to top (using backward differences) and top to bottom

(using forward differences), on succeeding timesteps. Because the average of a
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forward difference and a backward difference is a (second-order accurate) central

difference, the effect of this should be in the direction of higher accuracy.

Using the method just described for treating cross-derivatives, but in all

other respects following the existing MHRDR space- and time-centered differ-

encing scheme, the Hall and diamagnetic pressure terms were implemented. If

the Hall term were to act, as suggested in the above analysis of the explicit ap-

proach's numerical instability, as a convective operator on the magnetic field, this

implicit scheme could be expected to work, as in fact it does for the (V x (_'x B))

convection already implemented in the code; ADI schemes have been shown to be

stable for simple convective equations 98. Of course, the highly nonlinear nature

of the Hall term's effective convective velocity (including the special treatment

of cross-derivatives) could still prove troublesome.

After successful testing of simple null cases, the KMC problem was set up

and run on the MHRDR Hall coding described above. Since MHRDR is writ-

ten in generalized coordinates, going from cylindrical to Cartesian coordinates

required only minor changes. An "open" magnetic field boundary condition, to

simulate the infinite space in which the solutions were derived, had to be added;

this entailed allowing magnetic flux convection through the boundaries, as if

an infinite expanse of plasma and field were available. The first runs brought

out some previously undiscovered bugs in the coding, which were removed. The

debugged code then showed the formation of the magnetic penetration front,

which begins to move along the density ramp into the field-free area. However,

large positive and negative spikes in magnetic field appear and grow rapidly, dis-

rupting the solution and driving the required timestep down unacceptably, i.e.,

numerical instability still appeared to be present. The coding was thoroughly
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checked, and it was determined that the fluxes from one cell to another were

exactly as had been planned. That nonlinearity can render unstable algorithms

which are stable for related linear equations is well known; in particular, the

nonlinear effective convection velocity, which involves the cross-derivatives dis-

cussed above, was known as a possible source of trouble. A simpler approach

for the cross-derivatives was tried: explicit central differences; this removes any

part of the cross-derivative from the implicit line solved, except as explicit matrix

coefficients. This still appeared numerically unstable.

If the field equation could be considered as fundamentally a convection equa-

tion (though nonlinear), the appearance of positive field anywhere in a problem

which started with all negative field raises a red flag: from where can this positive

field have been convected? It was seen that the positive field spikes originated

in zero-field cells, adjacent to negative-field cells in which the convection veloc-

ity pointed from the zero-field cell into the adjacent cell. The value of field to

be convected, based on our center differences, was the average value of the two

cells, hence less than zero. The result was that negative field was convected from

the zero-field cell into the adjacent one, leaving behind a positive spike. If the

algorithm used had been an explicit one, this would have been a classic example

of "wrong-way" (i.e., not upwind) differencing for a convection equation: only

values behind (in the sense of the convective velocity) a point can affect its value

at future times 99. The time-centered implicit algorithm using central spatial

differences is supposed to be immune to this problem, because it solves for all

points at one time self-consistently, but the stability analysis yielding this result

is for a linear convection equation with constant convective velocity, not for the

nonlinear convective velocity dealt with here. This nonlinear convective velocity,

67



-f/(n,e), can change magnitude and direction as field and density vary.

However, if in this case even the implicit space-centered algorithm is going

to give clearly nonphysical results, i.e., convecting field from points where there

is no field to be convected, one can prevent this in the same way a proper

explicit algorithm does. A donor-cell scheme convects only the quantity from

the cell behind (again in the sense of convective velocity) the interface between

two cells, not the average value of the two cells. This results in only first-order

spatial accuracy for the spatial derivative driving convection at the interface,

but insures that perturbations will be convected only in the proper direction

(the so-called "transportive" property1°°), and will not convect something that

is not there out of a cell. Adapted so that the correct donor-ceU is selected

based on the local, nonlinear convective velocity (using the second scheme for

this, based on explicit central-differenced cross-derivatives), MHRDR with the

Hall term finally gives the correct result: a well-defined magnetic penetration

along the density ramp channel (see Figs. 9a and 9b). For the values of field

and density ramp used in this problem (B=-1.5 Tesla, ne ramped from 10la

to 10 TM cm-3), the shock front advances at the correct speed, approximately 2

cm/nsec. Some Gibbs phenomenon-like noise is seen originating at the steep

field gradient (Fig. 9c), but this does not grow out of control. Spatial definition

of the front along the channel is good, and can be improved by a finer (half

the cell width) mesh (Fig. 10). Noise suppression was enhanced by limiting the

timestep to 3 x 10-lz seconds (even with an implicit algorithm, smaller timesteps

will still give a solution with less error O(At2)), but the algorithm is stable and

fundamentally correct at considerably larger timesteps.

An explicit donor-ceU convection algorithm works weU, but has the disad-
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vantages of potentially significant numerical diffusion proportional to At and

Az, and strict Courant-Friedrichs-Lewy (CFL) numerical stability restriction

((vconvectiveAt/Ax) < 1) 4s. One can show by doing a Hirt's analysis TM of the

time-centered implicit donor-cell scheme used here, that this differencing removes

that numerical diffusion present in explicit donor-cell which is proportional to

At. In a Hirt's analysis, one studies the differential equation which most closely

corresponds to a difference equation, to reveal properties of the difference equa-

tion, such as the nature of its error terms. This procedure, applied to the implicit

donor-cell scheme used here, reveals that the time-differencing numerical error

is proportional to (At) 2 and is dispersive, not diffusive. The explicit scheme's

numerical diffusion, proportional to At, is closely related to the CFL timestep

restriction (if the restriction is violated, this error term represents a physically

inadmissible negative diffusion), so it is anticipated that the timestep restriction

will be relaxed.

This is confirmed by doing a von Neumann stability analysis 1°2'1°3. For

purposes of analysis, the effective convection velocity c = (1/(neepo))OB/Oy >

0, and all other quantities are taken to be constant. Then the implicit donor-cell

equation has the form

(4.3.3) B_'+1 - B_' c (B_,+I _ B,,+ 1 ,, ,,At = - 2A""_ J-_ + Bj - Bj__ )
i

where subscripts j refer to the spatial grid number and superscripts n refer to the

timestep. If a spatially periodic solution is assumed of form B(x,t) = e_tf(t)

(where xj = jAx), and the resulting equation is multiplied by e -ikjAt, then

(4.3.3) becomes

f.+l _ f.
(4.3.4) At = - 2A-'-_(f"+1(1 - e--i_A') +/"(1 -- e-i_at)).
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This can be rearranged to give the relative amplitudes of fn+l and fn.

fn+l 11- 2Az_'cAt[1 -- e -ikAz) [

(4.3.5) f" 11+ 2-'A-_,"- I'-- cat {1 e -ikAz )

This ratio must be less than or equal to 1 if numerical stability is to hold. Because

e -i_az = cos(kAx) - i sin(kAx), the ratio is

I1 cat ¢1_ cos(kAx)) - c,',,ri sin(kAx))l
(4.3.6)

I1+ 2A,cA',-ra_ cos(kAz)) - 2A,cA',elsin(kAx))l"

The complex contribution to the magnitude, o(sin2(kAx), is the same for top

andbottom.(1 ) is 0 2, and t/(2a )is

always positive. Thus, the contribution to the magnitude of the real part of the

upper expression is always smaller than that of the lower expression; this assures

unconditional numerical stability of the algorithm. That the nonlinearity of the

full set of equations solved, mad the necessity of using explicit cross-derivatives in

the effective convection velocity, did not apparently upset this numerical stability

(as seen in the results on the KMC and Z-pinch problems), is indeed fortunate.

Numerical dispersion is present in many other implicit schemes TM (and likely

already present in the rest of MHRDR). In the time-centered implicit donor-

cell scheme used here for the Hall term, there is a residual nuanerieal diffusion

proportional to Ax. This can be controlled by choosing appropriately small

Az, without any concern about simultaneously satisfying CFL restrictions. The

sharpness of the magnetic penetration front visible in Fig. 9 is evidence that this

implementation of the Hall term does not give unreasonably diffusive results; the

"rounding" of the bottom corner, where the front leaves the initial field area, may

be due to dispersive effects.

The first-order spatial accuracy of the scheme does represent a drop from

MHRDR's otherwise second-order accuracy (second-order temporal accuracy is
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also compromised by the use of the purely explicit cross-derivatives), so some in-

vestigation was made into alternate schemes of potentially higher accuracy. Van

Leer convection schemes 1°5 vary between donor-cell and average quantity con-

vection, depending on the speed of convection and whether or not the result will

change the nature of the solution (e.g. change its monotonicity). Flux-corrected

transport 1°6 convects potentially unstable quantities such as averages, then goes

back in an anti-diffusion step to restore a more correct solution. Neither of these

methods fit readily into the existing code. However, a simple technique was tried

which brings the method closer to second order spatial accuracy: average field

was convected whenever velocities and relative field values in neighboring cells

were such that this could take place without causing the nonphysical changing of

signs noted above. This did seem to sharpen some of the edges of the advancing

magnetic front (Fig. 11), but some thought about the approach, which convects

donor-cell quantitities at some points and average quantities at other points, re-

veals a potentially serious drawback: this may result in a distortion of the shape

of a field configuration, such as a wave, as it is convected. This is because the

rising part of a wave might be convected with donor-cell differencing, while the

falling part could be convected with average differencing, leading to a "wave-

breaking"-like effect of the wave changing shape as it travels. Because the Hall

term is intrinsically nonlinear, and hence is expected to do this itself (e.g. the

formation of the nonlinear shock front in the test problem), it would seem inad-

visable to use numerics which might add their own, nonphysical contribution to

this effect (any more than existing numerical dispersion-which causes different

Fourier spatial components to travel with different speeds-already does).

An effort was made to use donor-cell convection with the original implicit
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scheme, which used alternating forward/backward differences from the implicit

lines for the cross-derivatives. This would be no worse in spatial accuracy (first

order or better) than other donor-cell schemes, but by using more nearly implicit

cross-derivatives, is closer to second-order accurate in time. Several variations of

this idea were tried, and all appeared to be numerically unstable on the magnetic

penetration test problem. Donor-cell Hall magnetic convection, using center-

differenced explicit cross-derivatives, is the algorithm found here to correctly

execute the KMC magnetic penetration problem (the differencing of this term

is shown in Appendix D). This is the algorithm used in the dense Z-pinch runs

reported later in this chapter, which yielded a number of interesting results.

Discussion of some details regarding boundary conditions will be deferred until

then, because these tie in to some of the results noted.

4.4 Diamaznetic Pressure and Electron "Work" Terms

As pointed out in the previous section, the Hall term J× B/(nee) splits up

into an effective convection velocity -J/(nee) (the minus sign comes in because of

the curl operator in Ampere's Law) and a magnetic field B to be convected (such

as in equation 4.3.2). The diamagnetic pressure term, while still nonlinear and

involving a cross-derivative of the electron pressure, is not clearly a convective

term, but more resembles a new source of field (magnetic energy exchanged with

electron thermal energy). Therefore, it may be that MHRDR's original time-

and space-centered differencing will work, again employing explicit values for the

electron pressure cross-derivatives. However, one must be careful to include the

accompanying electron "work" (pe V" (-g"/(nee))) term in the electron energy

equation, to account for the energy which goes into (or leaves) magnetic field by

this term (expansion or compression of the electron fluid by the magnetic field
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as the two move together).

The diamagnetic pressure term was installed in the code in this manner

(differencing appears in Appendix D), first without the accompanying energy

term. A "benchmark" problem comparable to the Hall term KMC problem

could not be found, so debugging and evaluation of the algorithm had to be done

on constant-density null cases (these ran correctly), mock "Z-pinch" problems

containing some very strong density gradients (along which instability patterns

quickly developed), and on the dense Z-pinch problem itself. The time- and

space-centered algorithm appears to run stably on these problems, with similar

effects on the self-adaptive timestep to those of the Hall term (these shall be

discussed in section 4.6).

The electron "work" term presents some new challenges. The Hall and dia-

magnetic pressure terms (and the electron current energy convection term, to be

discussed later) all have the form of fluxes: terms which can be exactly spatially

integrated in one direction, giving expressions at the front and back interfaces

of a cell which represent the fluxes of conserved quantities entering or leaving

the cell. To insure proper conservation (and for efficiency), MHRDR computes

the flux at any interface only once, then uses that quantity, properly signed, for

the flux leaving one cell, and the flux entering the adjacent cell. The "work"

term cannot be so exactly integrated, representing a source or sink of energy

at the cell (what Lindemuth calls a "force" term, as discussed in section 3.1

and Appendix D), rather than a flux. To represent such a term with similar

accuracy to the flux representations, an average of second-order spatially accu-

rate differencings of the term at the front and back interfaces of the cell was

implemented. These differencings are "direct", i.e., represent the term to be dif-
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ferenced exactly as written, without any intermediate analytical manipulations;

this results in difference equations very close to the original differential equations.

Because the electron pressure used in the diamagnetic pressure term is explicit

(the cross-derivative), the electron pressure used in the work term is also explicit,

for consistency. As usual, the cross-derivative current term is also explicit, other

quantities space- and time-centered (differencing appears in Appendix D).

When dense Z-pinch runs were attempted with the above coding, it was

found that the adaptive timestep dropped an order of magnitude or more com-

pared to runs without the "work" term, beginning several nanoseconds into the

simulation, when the first Hall effects become noticeable. Investigation revealed

timesteps were frequently dropping because the iterations of the implicit line

solves were not converging. In some cases, one iteration would include the Hall

and associated effects, but the resulting pc V" (-.f/nee) cooling would drop the

temperature (and hence electron density, which is supplied by the SESAME ion-

ization tables as a function of mass density and temperature) below the cutoff

value for Hall effects; the next iteration, without these effects, might bring con-

ditions back (e.g., by heat conduction into the cell) where Hall effects would be

allowed. Hence the iterations would bounce back and forth between with Hall

terms and without Hall terms, and fail to converge within the allowable limit

(typically ten iterations, and requiring that the largest quantity on a line not

change by more than a factor of 10-5 between iterations).

To counter this problem, a switch was installed which disabled computation

of Hall and associated effects at a cell for all iterations following any iteration in

which the conditions caused ne to fall below cutoff. This improved performance

(larger adaptive timesteps), but one would still run into points in dense Z-pinch
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simulations where the timestep would become unacceptably small (still smaller

than the Hall term alone would require). The intent of the "cutoff" density

coding was to prevent unrealistic (and numerically disrupting) effects in regions

of plasma (e.g. "vacuum" areas) which are not part of the main plasma column.

This does prevent computation of such effects in large areas of plasma which do

not meet the requirements for treatment as a collisional fluid (Appendix A), but

there may still be some regions above cutoff which, because of the temperature

dependence of collisionality, are not properly treated as a fluid. The model

used in these simulations assumes collisionality. The inclusion of the "work"

term at points where collisionality is not satisfied, in energy equations which

use collisional quantities such as Braginskii heat conduction and electron-ion

equilibration, is physically questionable and, numerically speaking, just asking

for trouble.

Therefore, a second set of numerical switches was installed. The simple

collisionality parameter vth, rii/a (equation A.1), which is supposed to be much

less than 1, is computed, using as the scale length a, the radius, for a given

axial location, within which 900£ of the total axial current is contained. If this

parameter is greater than 0.1 in a cell, the diamagnetic pressure and "work"

term there are not computed; switching off of the Hall term itself is optional

(because the Hall term does not cause numerical problems, and is arguably

still present in collisionless conditions). With this modification, the code would

stably run dense Z-pinch problems with Hall, diamagnetic, and "work" terms,

at comparable timesteps to those with the Hall term alone. This is the final

implementation of diamagnetic pressure and "work" terms, which was used in

the fiber Z-pinch runs discussed at the end of this chapter.
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4.5 Electron (_urre_t.Ener_¢ Convectioz,: Donor-Cell

The convection of energy by current-carrying electrons, reflected in the

_7" (pee (-.f /(nee)) ) term, is a nonlinear convection problem essentially sim-

ilar to the Hall magnetic convection problem; the effective convection velocity,

-,f/(n_e) (essentially the electron flow velocity relative to the bulk fluid), is

the same. Hence a donor-ceU treatment, analogous to the one derived for mag-

netic convection, is the obvious choice. This was implemented (differencing in

Appendix D) and, indeed, ran stably with minimal complications. The above-

noted switch disabling the term at cells in violation of the collisional model was

also applied to this term, for similar reasons: applying this effect at such points

to a collisional energy equation is physically and computationally of dubious

merit. Whether or not this term would cause the timestep problems in such a

case that the "work" term caused, has not yet been determined.

4.6 Hall MHD Results on Z-Pinchess4

The full "Hall MHD" model equations used in the following simulations of

the fiber Z-pinch experiments are (equations 2.2.1, 2.2.17, 2.2.24, and 2.2.13,

with the additional details noted in section 2.4):

(4.6.1) Op_-+ _7.(p_=o

(4.6.2) o(;,_'___/)+v. (,,_'e+?t,- i x_ =oOt

-,,it

-J

(4.6.3) o(p_____)&+? •(_',o_)+?.((-?-/)p,,)+pv •,_+;,,,,_ v. (E-;,_)+

-V" (_± V± T) - _j2 + Q_°d = 0
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(4.6.4) c3/_ _ /_ VP,) + r/J _"× B) 0(J× - - -nee

where p is mass density, ,_is velocity, /_ is magnetic field, J(= V ×/_/_0) is

electrical current density, nt is electron number density, _e is electron specific

internal energy, _ is total specific internal energy, pe is electron pressure, p is total

pressure, T is temperature, Q_od is radiative energy loss, _ is electrical resistivity,

and _± is (perpendicular) thermal conductivity. In this one-temperature model,

separate electron pressure, electron energy, and electron number density values

(needed for the Hall and associated terms) are obtained by the use of SESAME

tables giving average ionization fractions as functions of density and temperature,

as explained in section 2.4. Details of numerical implementation are as described

in this and the previous chapter; the spatial differencing used for the Hall and

associated terms, and other d_tails, are shown in Appendix D.

It was not possible tc iy as complete a set of simulations of the fiber

Z-pinch with the Hall model as it was with the basic MHD model, described

in Chapter 3. Early-appearing Hall-driven instability effects cause the adaptive

timestep to be reduced by roughly an order of magnitude, causing runs which

took a few Cray hours to become runs in the tens of Cray hours, a significant

expense. Hall runs were limited to the 750-kA peak HDZP-II discharge, which

was thoroughly examined with the basic MHD model in Chapter 3. However,

it was possible to do i-ram and 1-cm axial section simulations of HDZP-II with

the complete "Hall MHD" model; the Hall term alone; the Hall and diamagnetic

pressure terms; and the Hall, diamagnetic pressure, and "work" terms. In runs

including the energy equation terms, some computed the Hall texm regardless of

whether the fluid approximation was violated (unlike the diamagnetic pressure

i
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and energy equation terms, which are not computed at points in violation; see

sections 4.4 and 4.5), while other runs limited all terms to regions where proper

fluid conditions were satisfied. Runs without the energy equation terms com-

puted the Hall and diamagnetic pressure effects regardless of the fluid parameter

value (although the cutoff density still disabled these effects for large portions of

non-fluid "vacuum" plasma). By doing l-ram and 1-cm axial sections, one has

roughly bracketed the important instability length scales in this experiment, as

discussed in Chapter 3: the 1-cm section approaches the actual 5-cm length of

the fiber (and the largest observed instability features), although development of

instabilities is delayed by lack of axial resolution; and the l-ram section resolves

what appear to be the fastest-growing instabilities. "Set-up" details of the runs

are essentially the same as given in Chapter 3 for basic MHD runs; all grids here

were 96 (radial) by 31 (axial) zones.

Because some interesting boundary effects will be noted below, it has been

delayed until this section to discuss some details of boundary conditions used in

the Hall model implementation. At an electrically conducting boundary, Ell = 0.

Since it is Ell which gives rise to this boundary's contribution to the change in

magnetic flux for the cell ad.:acent to the boundary (Faraday's Law), no contri-

bution to magnetic field can be allowed from this boundary, including Hall or

diamagnetic field flux. This is implemented in the code: no Hall or diamagnetic

field convection is allowed across a conducting boundary.

However, in computing Hall flux a£!acent to a conducting boundary, if the

general center-differenced cross-derivative for J is used, one needs the value of

B at the boundary. For the limited-geometry resistive MHD of the original

MHRDR code, it can be shown that 0/_/0n = 0 at a solid conducting boundary,
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i.e., B at the boundary is the value at the point adjacent to it in the plasma: a

mirror condition. If the Hall and diamagnetic pressure terms are included, how-

ever, one has a more complicated expression for B at the boundary, relating the

cross-derivative at the boundary to a derivative of B parallel to the boundary.

An attempt was made to incorporate this boundary condition into the code,

but it proved numerically unstable. A major factor in this instability is the

fact that MHRDR does not compute quantities at (or "infinitesimally close"to)

boundaries, but only starting at the plasma half a cell into the system. Hence

applying boundary conditions for the adjacent boundary to the line Az]2 into

the plasma, is intrinsically an O(Ax) error, mixing (non-boundary) plasma rela-

tionships with the complicated relationship of the cross and parallel derivatives

at the boum'.,ry. To avoid this problem, an alternate O(Az) approximation

for the cross-derivative was used: the forward (or backward) difference between

the value of B at the first line in the plasma, and the value on the next line

in the plasma, in the direction away from the boundary. Like the first-order

accurate donor-cell scheme used for Hall convection, this sacrifices second-order

"accuracy" for numerical stability and more physically consistent properties.

It will be seen that results obtained with this method agree with indepen-

dent theoretical and computational results; one can interpret this as an indication

that the crucial boundary condition is accurately modeled here, that Hall flux

is not permitted from a conducting boundary, while the condition parallel to

the boundary has less importance. One detail which was noted, concerning the

adjacent-flux cross-derivative Y, was that the implicit value of B for the line

adjacent to the boundary (not the explicit value, as used in all the other cross-

derivatives) provided much more stable results than the explicit value, perhaps
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following fast-changing boundary phenomena better. Cross-derivatives involving

pressure at the boundary employed the mirror condition, that the wall pushes

back exactly as hard as the plasma pushes on the wall, without numerical diffi-

culties.

An interesting feature of the Hall effect is its directional asymmetry: pure

MHD modes develop without regard to "up" or "down" along the axis of current

flow; this is not true for the Hall effect. An example of this is the twisting of the

density and pressure (including magnetic pressure) contours for Rayleigh-Taylor

modes shown by Huba, et a166,when the Hall term is included. Hall magnetic

field convection is strongly directional (see Fig. 8): the primary convection of

field in the KMC magnetic penetration problem was up along the field gradient,

then out in the direction of penetration, up the front, and then back at the

top of the density ramp channel and out the top. This was clearly shown when

boundary conditions at the top and bottom of the KMC problem were "closed",

i.e., allowed no Hall convection through them (as is proper for a conducting

boundary, such as the axial boundaries for the Z-pinch runs): the field at the

bottom became depleted, and "piled up" at the top.

The first feature noted in Hall term dense Z-pinch runs (and runs including

all the other terms) is such an asymmetry in the current flow pattern (some-

times these patterns are obscured by instability development). At the anode,

lines of constant axial current appear to be pinched inward (toward the axis),

while at the cathode, they spread outward (see Fig. 12a). This is not seen in

MHD runs without the Hall term, which show a relatively constant current dis-

tribution from anode to cathode. This effect had been predicted on theoretical

grounds by Haines 1°7 and recently displayed in Hall MHD computational work
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by Vikhrev and Zabajdullin l°s. One can interpret this phenomenon in different

ways: Vikhrev and Zabajdullin describe it as "enhanced magnetic field propa-

gation along the anode," compared to the usual resistive MHD uniform inward

diffusion of field. Taking the point of view, suggested by the Hall work described

here, that the Hall effect gives a convection of magnetic field in the -f (current-

carrying electron velocity) direction, one can interpret this as a convection of field

away from the cathode, leading to "piling-up" at the anode. This was observed in

the KMC Hall test problem, and if one plots Z-pinch field profiles as a function of

radius near the cathode, and compares these to field profiles near the anode (Fig.

12b), the "pinched" current pattern does correspond to the depletion/ "piling-

up" interpretation. Vikhrev and Zabajdullin also note that this field build-up

at the anode does not lead to compression of plasma at the anode (i.e., the

field "slips" through plasma, violating the ideal MHD "field-frozen-to-plasma"

effect); the Hall MHD results here agree with that result, showing no plasma

compression at the anode.

Runs with the Hall and associated terms in general display new small-scale

instability development early in the fiber Z-pinch discharge (Fig. 13) in the

vicinity of the edge of the plasma corona; such effects were hinted in the first

explicit Hall term runs, although it is dii_cult to distinguish physical from nu-

merical instabi_!,ii_s in the brief explicit code results. This is in agreement with

the recent Vlasov-fiuid model result of Scheffel, Arber, and Coppins 2s, predicting

a destabilizing trend as rLi/a (the order of these terms; section 2.3) is increased.

The same basic explosive instability, and instability-driven expansion, seen in

non-Hall MHD runs, is still seen to assert itself here, on top of and ultimately

overriding the newly added effects. The timing of the explosive instability growth
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and expansion is generally a few nanoseconds earlier when the Hall terms are ic

cluded, perhaps due to a "head start" associated with the early-developing Hall

modes. As noted in Chapter 3, the timing of this expansion is experimentally

uncertain, but the earlier trend of the Hall runs is in the right direction; experi-

menters are hard-pressed to get a plasma image early enough in the high-current

discharges to miss the explosive expansion. It would have been rather suprising

to see a drastic stabilizing trend from the Hall runs, because the basic MHD

simulations already show good agreement to the experimental data from the Los

Alamos device HDZP-II; this is also the case for the Hall runs.

Allowing the Hall term to be computed regardless of the value of the fluid

parameters in a cell (see sections 4.4 and 4.5) gave a somewhat faster (,,_ 2 nsec)

instability development and explosive expansion, compared to runs in which all

Hall-order effects were suppressed in cells outside the collisional regime. This is

a difference in timing well below anything that has been measured experimen-

tally, although again in the direction experimenters expect. Because the other

effects are of the same order as the Hall term, but the model used here is inade-

quate to execute them in the collisionless regime, such a run could be considered

somewhat physically inconsistent. On the other hand, the Hall term appears

responsible for the main features distinguishing these runs from standard MHD

runs (asymmetric current flow pattern, early appearance of instabilities), and it

does continue to exist in the collisionless regime 52.

The electron current energy convection term did lead tt a flow of energy

in the direction of -J (current-carrying electron velocity), as shown in Fig. 14,

quite analogous to the Hall-driven flow of magnetic field. Again, however, this

did not substantially change the ultimate explosive plasma behavior.
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The approach taken in these simulations has been to try to very closely

model specific experiments: in this chapter, specifically the Los Alamos experi-

ments, to which this author has had the greatest access, and in which the simula-

tions (and corresponding experimental data) indicate that the collisional MHD

model used stays valid for long enough in the discharge to largely determine

the results. Other fiber-initiated Z-pinch experiments may substantially avoid

this coUisional MHD regime22,54(the "plasma-on-wire" technique discussed in

the next chapter may be a means to do this). In that case these (collisional)

"Hall MHD" results would not be expected to be valid, because there are other

finite-Larmor-radius effects of potential importance in the "collisionless MHD"

regime. This includes effects such as gyroviscous stress52; furthermore, certain

features of the model used here, such as compressibility, should not be used in

a collisionless MHD model 40. It should be possible to adapt the present code

to such a collisionless MHD model, but that is beyond the scope of the present

work.
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CHAPTER 5: TWO PROMISING RELATED FUSION CONCEPTS

5.1 Deuterium Shel! and "Plasma-on-Wire" Im.plosions

Variations of the deuterium-fiber-initiated Z-pinch concept (in fiber thick-

heSS, current ramp, and "flash" plasma initiation, as discussed in Chapter 3)

simulated to date have not shown any fundamental improvement over the basic

HDZP-I/II-type experiments, in terms of avoiding instabilities and the explosive

expansion which prevent fusion temperatures and densities from being reached.

As has been mentioned before, such an expanded plasma might serve as a suit-

able "magnetized target" to fill a chamber, which would then be imploded to

raise the target plasma to fusion conditions 91'92. To evaluate such a "magnetized

target fusion" (MTF) concept, including various means and geometries of implo-

sion, plasma-wall interactions, and fusion processes, is beyond the scope of this

thesis. However, the work reported here is a good starting point for modeling a

fiber-Z-pinch-based MTF experiment.

The computational tool developed here may be useful in evaluating and op-

timizing some related experimental concepts, which vary more significantly from

the original fiber-pinch approach. Two such concepts are the magnetic implo-

sion of hollow, annular columns of deuterium, and the "plasma-on-wire" (POW)

discharge through a low-density plasma surrounding a central fiber core. Both

concepts have been the subject of some recent experimentation, with encour-

aging results. This author has therefore begun a computational exploration of

these concepts.

One cannot assume that, because the model used here can be argued to be

valid, and agrees with experimental results, in the fiber Z-pinch case, such will

still be true for any proposed experiment. It will be seen, however, that these
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related experiments do fall within similar regimes to those of the fiber Z-pinch,

so similar modeling techniques should apply. As in the case of the fiber-pinch

modeling, careful attention must be paid to the details of the experiments to be

modeled.

5.2 Imulosion of Hollow Deuterium Cylinders

Recent experiments at the SATURN high-current, fast-current-rise facil-

ity at Sandia National Laboratory have imploded hollow "gas-puff" deuterium

columns with a peak current of 8 to 11 MA reached in approximately 40 nsec 109.

From a total deuterium mass of I mg, total neutron production has been O(1012),

with good evidence (better than 10% isotropy) that these are largely from ther-

mal reactions, and not from a beam-target interaction. A slight enhancement of

the neutron yield (up to 3×1012) was observed when a central, CD2 fiber was

included.

Parks suggested a fusion scheme also involving an imploding deuterium

shell 11°, although in his concept the fusion conditions were reached by a cen-

tral, HDZP-II-like fiber Z-pinch (on which the work presented here casts doubt),

and the separately driven shell largely provided fuel for a propagating fusion

burn. A hybrid of Parks' concept and the SATURN experiments is this: apply

the SATURN current ramp to a thin, solid deuterium shell of radius 1 era, sur-

rounding a solid deuterium fiber; it is possible enough field/current will diffuse

through the initially solid shell that the central fiber will form a fiber-initiated

pinch, on which the outer D shell will implode.

Such a concept was simulated in one and two dimensions using the basic

MHD model of Chapter 3, fJllowing the [_ractices used here in fiber-pinch simula-

tions. A 10 MA in 40 nsec current ramp provided the radial wall magnetic field
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boundary condition; a 300-point stationary nonuniform radial grid was used,

with the grid spacing varied to provide 2 pm resolution in the vicinity of the

solid deuterium (at the center and at the shell). Apart from the half-solid den-

sity deuterium fiber (30pro diameter) and shell (lOpm thick at 1 cm radius), and

initial current-path coronas of 10-5 times solid density and temperature 2 eV,

extending 25 pm from the surfaces of the solid, a room-temperature, 10-9 x solid

density "vacuum" filled the region between the shell and fiber, and the region

outside the shell to 1.5 cm (see Fig. 15). Two-dimensional runs used 31 axial

points covering a section 1 mm in length (the actual experimental chamber is

2 cm in length, but experience with dense Z-pinches suggested a 1 mm section

would give the most appropriate instability resolution).

The dimensions of the shell described above were chosen so that the total

mass of deuterium involved (for a 2-cm section) would be about 1 rag, approx-

imately the same as used in the Sandia gas-puff implosions. Some current was

observed to diffuse through to the fiber well in advance of the imploding shell

material, leading to a weak fiber pinch (certainly not near the 1-MA, HDZP-

II-idealized fusion source envisioned by Parks), but the bulk of the heating and

neutron production came from the radial convergence of the shell material, which

had come to resemble a 10-2x solid density, several ram-thick, 100-eV plasma

annulus as it approached the center. Convergence produced temperatures of

several keV in a column of several mm radius at 10-2x solid density for 10-20

nsec; this is enough to produce the observed O(101_) D-D neutrons (Fig. 16).

Conditions of O(1021 cm-3) at ~ 5 keV are sustained for 10 nsec, resulting in

an nr of order 10is cm-Ssec, close to the controlled fusion goal of 10TM. Some

; "._tability development was notices,ble, particularly in the lower-density region
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between the fiber and annulus. These instabilities appeared to be "swept-up"

by the rapidly imploding plasma, and resulted in no appreciable reduction in

neutron yield, as determined by comparing 1-d and 2-d runs. Some "spread-

ing" of the plasma density (and corresponding spreading out in time of neutron

production) did occur. An implosion from something on the order of radius 1

cm, to a plasma column of approximate radius a few ram, does not sound like a

very impresssive convergence, but the temperatures and densities reached over a

10-20 nsec period result in rather good plasma conditions for fusion and neutron

production. A variety of one- and two-dimensional runs were tried, varying the

shell thickness from 1.2 to 25 pro, and including a 120-pro central fiber, a 30-pro

fiber, or no fiber at all. It was found that the presence or absence of the fiber

made very little difference to the neutron yield. The best neutron yield (O(1013))

was obtained with a 5 prn shell, or about 0.5 mg total deuterium.

Sandia National Laboratory has proposed to build an electrical pulsed power

generator capable of driving up to 60 MA with an 80-100 nsec peak 111 (high ex-

plosive flux-compression current generators have been developed by the Russians

capable of at least 30 MA, but only over psec rise times; recently at Los Alamos,

a high explosive current generator delivered 12 MA to a load in 400 nsec). A

series of 1-d deuterium shell implosion simulations was done to examine what

sort of performance could be expected, if the Sandia-proposed generator became

available (or explosive generators can be adapted to faster rise times). These

runs were set up similar to the above shell-implosion runs, except the current

ramp was to 50 MA at 80 nsec. No central fiber was included, and shell thick-

nesses were 50 pm to 500 pm. D-D neutron yields were greater than 10le, with

the best 1017 from a 100-pro-thick shell (a single 2-d run has been taken to 51
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nsec, yielding more than 10'4 neutrons to that point). Peak magnetic fields were

over 100 MG, high enough that fusion-produced alpha particles would be re-

tarded from leaving the plasma, leading to additional heating and neutron yield.

Because the 10-MA shell-initiated simulations did not show substantially differ-

ent neutron production from the gas-puff initiated experiments, it is not clear

whether or not starting with a solid shell in the 50-MA regime is critical to the

results predicted by the simulation. Simulations of 10-MA and 50-MA annular

gas-puff implosions are planned, to help answer this question.

D-D neutron yields of 1013from the 10-MA existing generator at Sandia sug-

gest the possibility of 1015,if a mixture of deuterium and tritium is used. This

would be a significant production of neutrons and fusion energy. Conditions

reached in the 50-MA simulation runs, in which considerably higher numbers of

neutrons are produced, may approach D-T ignition conditions, when the addi-

tional alpha-heating mentioned above (which the present code is not capable of

computing) is included.

Similar plasma temperatures and densities exist in these simulations to those

discussed in Appendix A, where the validity of the fluid model for the dense

Z-pinch is established. The effective scale lengths in this case are larger, on

the order of ram, which helps to satisfy the fluid conditions. In contrast to

the fiber-initiated pinches, where instabilities lead to high-temperature, low-

density regions of questionable fluid conditions, the highest temperatures for the

implosion pinches are reached at the center, in high-density regions; thus the

fluid model is valid longer in these simulations. However, temperatures above a

few keV do stiil lead to breakdown of the collisional fluid model, as represented

in equation A.3 of Appendix A. Because the radial scale lengths of these plasmas
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are greater, and due to the larger fields, the Larmor radii are smaller, the Hall

and associated terms are smaller and less significant than for the fiber pinch; this

is fortunate, because the computation times for the 2-d basic MHD simulations

of these implosions are already very large.

5.3 !!Plasma-on,Wire" !mulosions

A series of Z-pinch experiments 94 performed by Etlicher, Choi, Wessel, Chu-

vatin, and others (a French-British-American-Russian collaboration) have shown

remarkable differences in the heating and apparent stability of discharges initi-

ated on a wire surrounded by a low density "puff" plasma, compared to bare

wire-initiated discharges. These experiments have involved a variety of materials,

often with the wire material different from that of the gas puff, but sometimes

with gas puff and wire all one material, such as aluminum. A Z-pinch initiated on

a bare aluminum or other wire rapidly goes unstable ("exploding wire"), produc-

ing hot spots whose temperature can be inferred from the spectroscopic details

of the material. "Plasma-on-wire" discharges, however, tend to show (in visible

and X-ray radiation images) a very compact, uniform, straight line of very high

temperature; often it is several keV, higher than even the hot spots of a cot.

responding exploding wire. This is suggestive of some stabilization mechanism

allowing much more uniform heating than is generally seen in pure exploding

wire discharges (or indeed, in the deuterium fiber discharges modeled here).

Having developed a tool to model deuterium fiber discharges, it should be

useful as a first step in evaluating single-material wire and plasma-on-wire dis-

charges. This will allow us to address the question of whether or not "plasma-

on-wire" might be helpful in the stabilization of deuterium pinches. In general,

radiation is a complicating factor for plasma discharges of materials heavier than
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hydrogen, particularly if the plasma becomes optically thick. In that case, one

must track the radiative energy transport from place to place; it has been fortu-

nate that the deuterium-fiber-initiated plasmas modeled here have been optically

thin in the important frequency range (Wrad > Wpe), SOthat radiation has only

produced an energy loss term. For some plasma-on-wire discharges, the optically

thin assumption may still be good; even if not, 2-d MHD modeling may still offer

insights into the important physics.

Details of an all-aluminum plasma-on-wire discharge were obtained from

Etlicher 112, and the problem was run using the 1- and 2-d basic MHD model of

Chapter 3. The current ramp went in two stages to a 250-kA peak at 70 nsec

(see Fig. 17), applied to a 30-/_m-diameter aluminum wire with and without a

1017 cm -3, 0.5 eV aluminum puff plasma extending out to a radius of 2.5 mm.

A fixed 96-point radial grid extending to 4 ram was used, with a "vacuum" of

10-gx solid density at .025 eV; 2-d runs were done for a 1-mm, 31-point axial

section. Of course, appropriate SESAME tables for aluminum were substituted

for the deuterium tables. The bare wire discharge displayed significant instability

development by the 70-nsec current peak, with formation of hot spots (Fig. 18).

At this point the plasma-on-wire discharge appeared much more uniform, with a

sudden jump to keV temperatures at the surface of the wire (which has carried

very little current until then) when the low-density puff plasma converges at the

wire (Fig. 19). This might represent a means of jumping a micron-size wire

or fiber to high current and temperature almost instantaneously; it appeared

desirable to do this for deuterium discharges, to avoid the low-density unstable

corona (which motivated the flash-ionization simulations discussed in section

3.2).
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Whether the sudden, uniform jump to high temperatures, at the time of

current peak/puff convergence, causes a strong, uniform diagnostic image which

masks later instability development (analogously to the early visible and shad-

owgram images of deuterium fiber Z-pinches), or actually brings the wire to a

high-density, high-temperature (collisionless MHD?) stable regime, is a question

to be answered by future computation and experiment. The 2-d POW simula-

tions done to date run into timestep trouble at the point of current peak/puff

convergence on the wire. This may be due to so much hea.ting happening in such

a small region, at the surface of the wire, and might be remedied by finer spatial

resolution there.

A small number of l-d, and one 2-d, simulations of plasma-on-wire dis-

charges with deuterium puffs and wires were run, using the same current ramp

and other details as used in the above discussed aluminum POW simulations.

The 1-d runs showed a notable difference from aluminum POW runs: when the

aluminum puff converges on the wire, the current is brought down to the wire

and stays there (Fig. 20a), while for the deuterium case, the puff" converges on

the fiber, but then bounces back to near its original radius (Fig. 20b). The 2-d

deuterium run showed considerably greater instability development throughout

the puff plasma, than seen in aluminum runs. Several factors come to mind

to explain these differences. One is the relative differences in resistivities: the

aluminum puff plasma and the aluminum wire are both conductors, so that the

current carried by the puff is readily accepted by the wire at convergence; while

the deuterium fiber (to the extent it remains cold, which it does until near the

the 70-nsec current peak) is initially an insulator, less able to accept current

from the puff. A second factor is the ability of the aluminum wire to accept a
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large amount of energy from the -,_100-eVpuff plasma and re-radiate it as line

radiation, while in this range deuterium is not nearly as strong a radiator. An-

other factor is the relative masses of the two materials: the deuterium plasma

is much lighter, so an equal amount of energy can push it around (i.e., collapse,

re-expand it, or develop instabilities) much more readily. The current ramp and

other details used in these simulations were experimentally optimized for the alu-

minum POW system, so it is probable that different values would be optimum

for deuterium.

It is likely to take considerably more computational and experimental re-

search to determine if POW techniques can lead to deuterium discharges with

the desired stability. The simulations done to date do support the view that the

POW technique can produce greater heating levels and uniformity in higher-Z

material discharges, such as aluminum, than can be produced with traditional Z-

pinch methods. Hence this technique may lead to a useful flash radiation source

for industrial applications.
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CHAPTER 6: CONCLUDING REMARKS

6.1 Summary

In this thesis, a very detailed computational model of a class of controlled

fusion experiments, the deuterium-fiber-initiated Z-pinch, has been constructed

(the primary examples modeled here of such experiments are the "high-density

Z-pinches" HDZP-I and-II, constructed by J. Hammel, et al3,4,1_). It has been

shown that the collisional magnetohydrodynamic equations are valid for sub-

stantial portions of such experiments. A two-dimensional magnetohydrodynam-

ics computer code has been adapted to simulate these experiments in a very

direct and detailed fashion, following the development of the fiber from frozen

solid to high-temperature plasma. In this way, one obtains a direct prediction

of the details and outcome of an experiment, which can then be compared to

real data. To facilitate this comparison, diagnostic images of the plasma, such as

shadowgrams and interferograms, have been generated from simulation results.

A major deficiency in applying the standard magnetohydrodynamic model

to such Z-pinches has been identified: the assumption, that ion Larmor radii

are much less than relevant plasma scale lengths, is not satisfied. The terms

which have been ordered out of the model based on this assumption, in the colli-

sional regime, are the Hall and diamagnetic pressure terms in the magnetic field

evolution equation, and electron pressure "work" and electron current energy

convection terms in the energy equation(s). These terms have been added to

the computational model (which this author now refers to as "Hall MHD"), and

demonstrated to give results which are consistent with known theoretical and

computational predictions.

Both the standard magnetohydrodynamic model, and the enhanced "Hall
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MHD" model, predict that the deuterium-fiber-initiated experiments modeled

here undergo explosive instability-driven expansion shortly after the fibers have

become fully ionized. Shadowgrams and interferograms generated from sim-

ulation results show good agreement with experimental data, supporting this

prediction. The "Hall MHD" model predicts slightly faster instability devel-

opment and expansion, which is in agreement with experimenters' qualitative

observations, but beyond confirmation with present quantitative experimental

data. Simulatic,.ls of variations to present fiber-initiated experiments in fiber

thickness, current ramp, and plasma initiation techniques have not shown any

exceptions to the instability/expansion problem seen. A fiber-initiated Z-pinch

might serve as a suitable target plasma for a "magnetized target fusion" implo-

sion, but this requires a secondary plasma compression scheme to reach fusion

conditions.

The computational techniques developed here have proven useful in begin-

ning the evaluation of two related fusion concepts, which involve similar plasma

scales, conditions, and geometries. Simulations of the implosion of hollow deu-

terium shells, with fast-rising (O(100 nsec)) 10- to 50-MA current ramps, indicate

plasma conditions, which would produce significant amounts of fusion energy and

neutrons, may be obtained. Simulations of "plasma-on-wire" discharges, in which

a low-density Z-pinch plasma implodes on a central fiber or wire, suggest that

such techniques may produce hotter and more compact pinches than traditional

Z-pinch techniques.

6.2 Deuterium-Fiber Pinches: Future Work

Although it is argued tb,tt the fundamental details and results of the exper-

iments modeled here, primarily the Los Alamos HDZP-I and -II devices, have

94



been reasonably correctly simulated, and the variations examined did not show

substantial ultimate differences in results, one cannot claim that these results

hold for all fiber-initiated Z-pinches. The philosophy behind the simulations

done here is that details are important, and though an attempt has been made

to include all the details expected to be relevant, this is obviously limited by the

knowledge of the modeler. Furthermore, the details of the experiments included

here are subject to endless variation by other experimenters; as well, the details
l

of the computational model are subject to debate. It would be very desirable

to run a series of controlled experimental variations on one machine, well diag-

nosed, and compare these to a corresponding series of simulations. This may

be possible, in collaboration with the fiber Z-pinch group led by M. Haines at

Imperial College.

A major change from the type of experiment modeled here, which has been

shown to exist for substantial times in the coUisional plasma fluid regime, would

be an experiment which operated primarily in the collisionless, or "collisionless

MHD", regime. At first glance, it might appear a fiber-initiated pinch would have

to go through the collisional regime, with its instability hazards so repeatedly

illustrated here, to get to the collisionless regime, in which stabilizing conditions

might prevail. But techniques, such as the "plasma-on-wire" discussed in Chap-

ter 5, show the possibility of producing very sudden changes in temperature in

a material; even a very dense material can become a collisionless plasma, if its

temperature is raised high enough. To adapt the present code to give consistent

results in the "collisionless MHD" regime, or even to follow collisionality and

adapt "on-the-fly" from collisional to collisionless fluid models, should be possi-

ble. This could give very useful results in systems, such as the dense Z-pinch,
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which can spend time in both regimes.

It has been argued that experimental evidence supports the geometric limi-

tations of the model used here (/_ 2. plane of computation; variation of quantities

only as functions of r and z). The agreement with experiment, of the results of

simulation with those limitations, supports this argument. The absence of the

ideally predicted m=l (non-azimuthally-symmetric) modes cannot be explained

by such a model, nor can it deal with the experimental evidence (Fig. 2a) of

such asymmetry, at late times in the discharge. Because including the many

important details of the experiments involves such computational demands, on

even the 2-d code employed here, one imagines a 3-d fluid code would need to be

considerably more efficient, but equally robust, +,otackle these issues. A shorter-

term solution would be to take plasma profiles generated by the 2-d code at

intervals in the discharge, and using these as initial conditions, run a 3-d code

for short times, e.g. one nanosecond, to get some idea of m=l stability at those

intervals. At later points, when the fluid model is breaking down, one could do

the same thing with 2-d or 3-d particle or hybrid codes, for insight into colli-

sionless behavior. Continuing advances in the power of computers should make

it possible to handle the full 3-d problem, not too many years into the future.

This author would like to make some shorter-term enhancements to the

computational model. The thermoelectric Nernst and Ettinghausen effects have

been mentioned as of potential importance when electron and ion temperatures

become decoupled, which can occur, for example, in the case of instability ion

heating. Enabling the code to run in two-temperature mode with SESAME equa-

tions of state, rather than the ideal gas model which had to be used to date, would

be desirable. This would also open the possibility of doing two-temperature runs
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with the full "Hall MHD" model, although unless code efficiency is substantially

improved, this may be just too costly in computer time ("Hall MHD" runs with

one temperature are already very expensive, in the tens of Cray hours). Support

for some of this work appears available, but the opportunity to pursue major

projects such as "collisionless MHD" is unclear at this time.

6.3 Other Hall MHD Applications

The "Hall MHD" computational model constructed in this work may prove

useful in other applications. One application, made obvious by the KMC mag-

netic penetration problem used to "benchmark" the code, is modeling of plasma

opening switches. Because _his code has been developed to model specific ex-

periments by including important details, such as "cold-start" initial conditions,

etc., it may be possible to model a given opening switch experiment more closely

than with previous Hall codes. If an experimental plasma spends significant time

in the collisional regime (like the Z-pinches modeled here), the inclusion in the

present code of the diamagnetic pressure and associated terms may bring new

results; this author is not aware of any other "Hall MHD" computations which

include these additional terms.

Another active Hall MHD research area is magnetospheric and other space

plasmas. However, such plasmas are generally collisionless. While this code,

including the Hall term, will run in the "collisionless MHD" regime, the consis-

tency of the results has not been carefully examined, as discussed several times

in this paper. Hence adaptation of the code for the collisionless regime, which

above was noted as desirable for evaluation of some variations of fiber Z-pinch

experiments, could also be useful toward some space plasma applications.
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6.4 Potential of Shell and "Plasma-On-Wire" Implosions

The potential of hollow deuterium shell and "plasma-on-wire"-type Z-pinch

implosions, as relatively inexpensive fusion concepts in the original spirit of the

fiber Z-pinch, appears high. These are both being pursued actively by small

research groups, who have expressed enthusiasm to this author about collab-

oration. A third concept, which has been mentioned briefly in this paper, is

a fiber-Z-pinch-target "magnetized target fusion" experiment. There are many

unanswered and critical questions regarding all these approaches, but these ques-

tions can be answered at modest cost (without investment of billions of dollars).

The achievement of controlled fusion in one of these inexpensive ways would

not immediately translate into cheap, clean, and safe energy, but it would be

a very significant step toward such a goal. These methods may also lead to a

useful flash X-ray source. Perhaps a completely "pure" scientist would not be

concerned with such considerations, but this author has always intended to do

science which can be useful to humanity.
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APPENDIX A: VALIDITY OF FLUID MODEL

A common criterion for the validity of MHD fluid theory 4° is that the ion-ion

collision time be much shorter than the ion thermal transit time:

(A.1) r_i _ vth, r, << 1
Tthl a

where a is an appropriate scale length of the system, here the effective radius of

the plasma column. That the mean free path of a particle be much shorter than

the scale length a will also result in the above restriction. For a two-fluid model,

this same criterion holds for the electron fluid, because the (mi/m_)½ factor

needed to obtain vthefrom vth, is cancelled by the (me/mi)½ factor to obtain tee

from rii; hence vthe're_/a is also much less than 1. What these criteria amount

to, is that particles in the plasma must experience sufficient collisions, as they

traverse the system, that their distribution functions will be nearly Maxwellian;

then, by taking moments of the kinetic equation, one obtains (as did Braginskii 31,

et al4°'43) a set of equations for the familiar fluid quantities density, velocity, etc.

More strictly, if ion-electron energy equilibration is to hold, one must have:

()' Vth_ Tiiflrte

(A.2) << 1.a

For a (single-temperature, Te = T_) deuterium plasma, this requirement can

be written in terms of density and temperature as

(A.3) 2.2 x 1014Tev2
'(n_m-aacmj <<1

where Tey is temperature in eV, ncm-8 is (number) density in cm -3, and ac,n is

in centimeters.
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A 100 eV plasma of dimensions similar to the fibers used in these experi-

ments (radius 15 to 60/_m, solid density _, 5x 1022cm -s) meets this requirement.

The important coronal plasma generated as the fiber ablates, in which the first

instability development seen in the simulations occurs, may have densities sev-

eral orders of magnitude below solid; however, its temperature is often lower,

and it exists at radii of several hundred microns to several millimeters. Hence

the factors compensate for each other, and the fluid parameter generally remains

in the required range.

Because the actual plasmas created in the experiments heat and expand

nonuniformly, the relevant scale length to use is subject to question. From

the computed density and temperature profiles, plots were made of the fluid

parameter (A.1), using as the scale length a, the radius, for a given axial location,

within which 90% of the total axial current was contained. For the most part,

these plots showed the plasma column remained within the fluid regime until

very deep m=0 instability development, with accompanying high-temperature,

low-density regions, occurred.

A cutoff density, below which ohmic heating (and later, Hall effects) was

turned off, was employed in the calculations to prevent unrealistic heating (and

exagerrated Hall effects) in low density, non-classical-fluid "vacuum" regions.

Both fixed cutoff densities, and cutoff densities which were varied as the plasma

developed so that 99% of the mass of the plasma remained above cutoff, were

tried, without significant differences in the results.

The strict single-temperature, single-fluid criterion above may be violated

as the plasma heats and expands, as noted in Chapter 1, even wl_'l.e the ion

and electron fluid criteria are still satisfied. This motivated the two-temperature
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MHD work reported in Chapter 3.

Ideal MHD fluid theory orders out the Hall (,fx/_) and diamagnetic pressure

terms in Ohm's Law, on the basis of small ratio of Larmor radius to plasma scale

length4°(this is discussed further in section 2.3 and Appendix C). That this ratio

may not be small in a Z-pinch,with its field null on axis, is well knownlg'41(also

see section 2.5). Plots of this parameter from the MHD simulations (Ch. 3)

showed this as well, motivating the implementation of Hall MHD in the code

(Ch. 4).
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APPENDIX B: IMAGING OF THE PLASMA

The bending of light rays by density gradients in a plasma allows imaging of

the plasma with a number of techniques known as Schlieren methods or shadowg-

raphy (Los Alamos experimenters refer to their images as "shadowgrams") 113.

In the Los Alamos scheme, a 530 nm laser shines through an area of plasma

(typically 1 cm2), on which an imaging lens is focussed. Rays which undergo

large deflection, due to a high density gradient, miss the lens, leaving a dark area

(shadow) on the image collected (pbotographically or electronically).

When higher-current experiments appeared to lack steepenough density

gradients to produce good shadowgrams, interferometric imaging was employed.

The phase shift of the beam passing through the refractive plas, _a, relative to

a vacuum reference beam, is used to generate interference fringes, which map

the density of the plasma 113. With these methods, the laser can be "flashed"

for extremely short times, so that it has been possible to generate highly time-

resolved (better than 0.2 nsec) images of the plasma.

To generate comparable diagnostic images from simulation density profile

results, one solves the Euler-Lagrange equation 114, which describes the path of

a light ray travelling through a medium of varying index of refraction #"

d{
= w,

where R is the position of the ray.

This may be expressed as six first-order O.D.E.'s:

ds dz

dz
ds p
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(similarly for y and z).

A seventh term may be added to this to compute the phase (shift) of the

wave ¢ travelling through the refractive medium:

(B.3) d._¢= _w..__.pds c

where w is the angular frequency of the wave.

Refractivity of a fully ionized plasma is given by:

((B.4) p= 1- w2 ]

2
where wpe = e2ne/eome.

However, for significant parts of the discharge, there may remain solid, non-

ionized material'which also has refractive qualities (in fact, of converging effect,

as opposed to the diverging effect of plasma refractivity). An empirical equation

for the refractivity of liquid deuterium, believed applicable for solid of similar

densities, is used 115. A grid of light rays is then traced through the computed

density distribution (he for plasma refractivity, neutral density for solid refrac-

tivity) to generate our predicted shadowgram/interferogram, using a packaged

O.D.E. solver, LSODE 116.

Test cases of this ray-tracing algorithm on deeply m=0 modulated Gaussian

radial plasma density distributions, pointed out something critically important

in the interpretation of experimental shadowgrams: geometric factors (imaging

lens size and distance from the plasma) may cause the shadowgram image to

differ drastically in size and modulation from the actual plasma.
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APPENDIX C" PHYSICS OF HALL AND ASSOCIATED TERMS

In examining the physics of the Hall and associated terms, it is useful to

look at some key steps in the derivation of single fluid MHD equations from

Braginskii's two-fluid transport equations, as done in Chapter 2. A first impor-

tant step is the dropping of the electron inertia term (2.2.2) from the electron

momentum equation (2.1.3, 2.2.3, 2.2.8). This has the effect of saying that, on

the time and length scales of the model, all forces on the electron fluid--electrical

(E), magnetic (fie x B), (electron) pressure (Vpe/(nee)), and those due to col-

lisions with ions (resistive, 7?J-')-arein balance, that is, sum to zero. Solving this

equation for E gi_:s an "Ohm's Law:"

nee

One can eliminate/_ from this equation by application of Faraday's Law, 0B/0t

= - V xE (note also that in this model J= (V x B)/#o)"

(C.2) 0/_ V "xE= (1 - . ---=-Or - - V pe) + rlJ- ve xB).

This equation gives the time evolution of magnetic field as a function of magnetic

field and electron pressure, density, and velocity (where plasma resistivity rl is

a function of these four quantities). It is limiting forms of this equation which

determine the magnetic field behavior in the various MHD models discussed here.

Jumping first to the "Ideal MHD" model (some assumptions of which shall

be more carefully discussed below), in which the Vpe/(nee) and rlf terms are

negligible, and the dominant part of electron velocity in v"ex/_ is given by simple

plasma (center-of-mass) velocity fi',one has:

(c.3) = v x x
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This equation leads to the interesting result 1aT'lag that magnetic flux through

any surface area moving with the (Ideal MHD) plasma is constant; in effect,

plasma is "frozen to the field lines," and magnetic field is convected with plasma

1 ity"ve on 13.

If one maintains the more exact v'e × B expression (and then uses for fie

equation 2.2.9, v_ = _'- (f/(nee))),

(c.4) 0_ = v x(_'ox9)=v x(-I($x9))+v x(_"x9).nee

This is the field equation commonly used in a "Hall MHD" model (although in

this paper, additional terms of similar order are retained). It can be seen that

almost the same "frozen to the field lines" result can still be applied, except

that the field is now frozen to the electron fluid, and eonveeted with electron

velocity v",. This has been noted by Coppins et al ag, and is a major reason why

the Russian literature often uses the term "electron magnetohydrodynamics" 119

in reference to Hall MHD. In this light, the Hall term, f × B](n,e.), is seen as a

correction to the Ideal MHD assumption that electrons (and field) are eonvected

with center-of-mass velocity _'. The odd result that convection of/_ in one

direction is driven by its derivative in a perpendicular direction, arises from the
,-,)

Hall term's cross-product of J (which contains the cross-derivative of B, since

J = (_7 x B)/#o) with B, to which the Faraday's Law curl operation is then

applied.

If the Hall term is an important correction to the field equation, one expects

that the Vpe/(n_e) term may also be important; these terms are of similar or-

der, as noted in section 2.3. The Vpe/(nee) term leads to an effective current

corresponding to a magnetic field tending to reduce the existing field; hence it

107



is called the diamagnetic pressure term. It is relatively easy to see the reason

for this diamagnetic current in the case of an isothermal plasma, where an elec-

tron pressure gradient corresponds to an electron density gradient kTe V ne 12o.

Through any fixed volume element, Larmor gyration of particles around the field

lines will lead to a fluid drift perpendicular to/_ and Vn,. This is because more

particles from the high-density side will gyrate through the element, than cor-

responding particles on the opposite side of their orbits (moving in the opposite

direction) from the low-density side.

Thus the Hall and diamagnetic pressure terms can be seen as corrections

to the motion of the electron fluid, which ultimately determines the evolution

of the magnetic field (equation C.2). The electron energy convection term (see

section 4.5) and the electron pressure "work" term (section 4.4) in the energy

equation, Which are included here in the complete "Hall MHD" model, also arise

from this same attention to the details of electron fluid motion. The electron

energy convection term comes directly from the substitution of 6.- (J/(nee))

for v_ in the energy equation. So does the "work" term, which in section 2.3

has been shown to be vital to total energy conservation, when the diamagnetic

pressure term is included in the magnetic field equation.

These corrections can be dropped, as argued in section 2.3, when ion Larmor

radius is small compared to plasma scale length a. Specifically, this is to say that

the magnitude of the field convection term 6'x/3 will be much greater than that

of f x B/(nee), or the similarly ordered Vpe/(nee) term, when rLi/a << 1.

Although the algebra relating the ratios of the correction terms to 16'x/31, and

the ratio rLi/a, of section 2.3 is relatively straightforward, it is somewhat difficult

to paint a simple physical picture why this is so. The correction terms can
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be regarded as creating additional electric fields ("Ohm's Law" equation C.1)

leading to /_ x/_ drifts, which occur in fluid as well as particle models. The

magnitude of an/_ x/_ drift VD = E/B 121. Such drifts are the result of Larmor

gyration, but they are not directly proportional to Larmor radius; however, like

Larmor radius, they are inversely proportional to B. The drift due to one of

these correction terms' electric field will be VD = (Vp,/(n_e))/B. If such a

drift velocity is compared to a characteristic center-of-mass convection velocity
.,#

(which would appear in the _"x B term), such as the ion thermal speed vth_, the

ion Larmor radius ordering emerges.
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APPENDIX D" SOME DETAILS OF NUMERICS

The component forms, and the integrated spatially differenced fluxes/forces,

representing the four "Hall and associated" terms added to the code in Chapter

4, are as follows. These terms are incorporated into the numerical algorithm

described in Reference 38, five pages of which are reproduced following this ma-

terial. Reference 38 describes the code "ANIMAL", which is the predecessor of

the MHRDR code developed here; the details reproduced are essentially identical

for the two codes.

Hall term" 1 0 B2 0 (hzB2)}
e#o 0_1 { h2ne 0_3

mi BDi_C'(_2k+l-_2k+l + 6(h2)k+lS(B2)_+,+
f Hali =

2e#o ('_kh2kzbk + z"bk6(p)k6(h2)k+

-h2k-lB2k-1 - 6(h2)k_lS(B2)_:_l)

+'pk6(h2)k_(zb)k Jr h2k$(p)k6(zb)k)

Diamagnetic pressure term " el0_10{ nel Op,o_a}

Electron pressure"work"term" e_oPCoq_10{_.e_.3(10 h2B2)}

110



m

_.._._. (mi_zbk ){(h_j+l,_+lB_j+ld,+l-h2j+l,_-lB2j+l,k-l)f°wo k.
4epoPk" 1 + z"bk p.i+l,l, zbj+l,_

F

_ (h2 i,k+ 1B2 i,k+1 - h2 _,k-I B2 i,k-I ) }
Pj,_zb.i,k

Electron energy convection term" elaol0_10{ Pe'n_O¢sO(h2 B2) }

where Q"-_= (Qi+,,k + Qi,k)/2, ,S(Q)_ = (Qi+,,k- Qj,_)/2, and QD.O. is the

appropriately selected donor-cell quantity Qj,_ or Qj+I,_, depending on the di-

rection of V-'con_cti,_e= "J-'/nee. The generalized coordinate _, in the Z-pinch

work clone here, corresponds to the radial (r) direction (for which j is the index),

and _s to the axial (z) direction (for which k is the index); the second coordinate

_2 is the azimuthal (0) direction, for which the scale factor h2 is r. The above

formulas represen_ fluxes in the _ (r) direction; fluxes in the _s (z) direction can

be obtained by replacing _ with _s (indices j with k) and multiplying by -1.
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An MHD model based on local thermodynamic equilibrium is incorporated into ANIMAL. The basic model
equations are

ap *V (p_) 0, (l)
at

a(p_)+v. Govv)+Vp+ -- B x (Vx B)"-O, (2)
at _o

- [ ]a(ae)+v @ve)+pV._ v KVT+--X(VXB)
at _o

L.o2' .o

and

Bt P0

InF.qs,(I)to(4),p is_ density,_ isthefluidvelocity,pshepressure,B tl_magn¢6cfield,_tl_spocifici_tem_

energyofthefluid,K shethermalconductivity,T tl_temperatureinjoules,7}theelectri¢*lresistivity,eRAD ar_lhi_ve

energyloss,and_ thefr_-sl_.._permeability;inksunitsareusedthroughout.Equation(I)isthecontinuityequation,
Equation (2) is the equation of motion; the fourth term is the Lorentz force, _ x _, whe_ the current density J'has b_n
eliminated through the use of Ampere's law with she usual neglect of displacement current. Equation (3) is the internal
energy equation; she fourth term is the divergence of the heat-flow vector and she fast part of the next-to-last term
represents ohmic heating, "_. Equation (4) is Faraday's law, based on a simple Ohm's law, R -- - V x I3 + _'
- _ x _TT, where the vector _" is the "transverse" thermoelectric cocff'u:ient multiplied by a unit vectorin she B
direction.

For implementation into ANIMAL, the vector-model Eqs. (l)to (4) must be written out into component
form. The geometric versatility of ANIMAL is attained by writing the component equations in their general orthogonal,
curvLimear coordinate form and making a coordinate tnmsformation from the usual (x l, x3, t) ,'wo-.dimcasional
coordinate system to a "fixed" coordinate system (61, 63, t). It is required that the transformation must satisfy

8x....2.1= 0x==._.3= 0. Ignoring the azimuthal component of Eq. (4), the compo_nt forms of Eqs. (1) to (4) then
a,f3 a_
become

B B B

0--I-(hlh2h3gllx33P)+-- (x33h2h3p [vl--vG]) +-- (xllhlh2p [v3-vG]) -0, (5)aIil of3

B B

+ OI"_

Op 1 O

+h2h3x33 _Tt + _/Xoh3x33B 2 _ (h2B2)=0, (6)
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a a

__._x._.._._ (_._,_.v_[_,_v_]1
8

ap 1 a
+hlh2Xll _ + _ hlxllB2 (h2B2)=0,

Po _ (7)"_3

a

a a

.[,,x..(.....)]
8 Ihlh2Xll (K aT iffTIB21a__ + [h2B2])]a_3 h3x33 O_3 #oh2B2' 81_3

h3x33 a (h2B21 _ A (h2B2)+
hlh2xnP 0 a_| u0 a_l B2 0_l

[ ,o,,,hlXll a (h2B2) _? A (h2B2)+
h3h2x33/a0 a_3 $XO 8/;3 B2 D_3

. eRAD " O, (8)

and

8_l a_3

[ (a hlX11 n a (h2B2)+# _
a_ 3 h3x33 Poh2 ¢3_3 B2 a_ 3

a __h3x33 _ B (h2B2)+# _ _ =0. (9)
8_ 1 hlXll /_oh2 0f I B2 a[l

OX ! I_X 3 Ohl Oh3 a 0,.,,_xl h Ox3
In_s. (S)to(9),_ definitionsx_= "8"_'x3s-'8"_'hl3= "_' h3!'="8"_,'v/-= "IT 'andv3 = 3-'_"

havebeeninu'educedforconvenience.ThenotationsvIandv3refertothevelocitycomponen_inthe(land(3
direction,respectively,andB2isthecomponentofmagneticfieldnormalw the(I-(3plane.

ThecomponentEqs.(5)to(9)arewrittenessentiallyintheforminwhichtheyaredifferenced.Itisvery
imponamtonote thatonlylust andsecondspatialderivativesof thedependentvariablesp, vI,v3, e, andB2arepresent

andthatmixed derivativesof the form 82 do not appear.Any sdditionalBraginskii24physicseffects not in-
Off06

cluded in F.,qs.(I)to (4)generally involve the mixed secondderivative.
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The component Eqs. (5) to (9) can be written in the form

*x u' -0, (17)

where X, Y, T, and U ire five component vectors, and

U = (p,vI,v3,e,B2). (18)

Only derivativeswithrespecttoone orthogonalcoordinate_lappearin'Xandonlyderivativeswithrespecttothe
secondcoordinate_3appearin_'.The two alternatelyusedfinite-differenceequationsinANIMAL canbeconsidered
tohavetheform

[I ,,9,

in+2 tn+ 1 _j-l,k ' _ j,k /' _ j.l,klJ

\ j,k-I ' j,k ]' \ j,k+l -0 , (20)

where Uj, k designates values at time t'_and spatial coordinates (_l)j, (_3)k" In Eqs. (19) and (20), X and Y are spatial
finite-difference approximations to X and _, respectively. F.,quation_(19) and (20) show the standard ADI coupling
between unknown quantities. In Eq. (19), which is used to advance the calculations from tn to tTM , the unknowns are

_._:+] along a line of constant k; the quantities at k + I and k - I are known quantises since they have thethevalues ),k
superscriptn.InE,q.(20),whichisusedtoadvancethecalculationsfrom|n+l to In+2theunknownsarethevalues

U_j._"2alonga lineofconstantj;thequantitiesatj+ 1andj-Iireknown quantifiessincetheyhavethesuperscript
n+l. Equations(19)and(20)areingeneralnonlinearfunctionsoftheunknownquantifiesand thereforecannotbe

solveddirectly.To solveEqs.(19)and (20),ANIMAL usesessentiallya New_on-Raphsonmethodasgivenby
Pennmgton,2samong others.ApplicationoftheNewton-RaphsonmethodtoEq.(19)givesanequationoftheform

Vj,k _" l'Lk j+l,k + _" l'j,k -j- 1,k _--l'j,k ' (21)

where the additional superscripts _ and _ +1 indicate the iteration number and where _, _, and _ are matrices.
The calculations reported by Lindemuth and Killeen l't can be considered as using Eq. (21) for 1_= 0only. As

shown by IAndemuth and Kill_en, Eq. (21) for 1_ = 0 gives an approximation formally se_,ond-order accurate with
respect to the timestep At = tn+ I _ tn. Repeated application of Eq. (21) until convergence is achieved does not increase
the formal accuracy of the solution, and E4s. (19) and (20) are, when used together, still of second-order accuracy with
respect to the timestep. However, the basic reason for the suc.cess of ADI is that the errors introduced on one timestep
are cancelled on the foUowmg timestep. This apparently requires the two approximations to the X of Eq. (17) to have
the same values, as indicated in Eqs. (19) and (20). frEq. (21) is not iterated to some sorl of convergence, the net effect
is to use a somewhat different value for _ in (20) than is used in (19). Experience during the code development process
has shown that failure to iterate introduces unwanted, nonphysical effects that affect the calculations unless the timestep
is reduced considerably.
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Note that Eq. (19) or (20), considered alone, is an approximation to the complete physical system, Eq. (17).
ANIMAL, as its predecessor, 17 does not use fractional timestep or splitting procedures, whereby one physical
process--or one dimensionMis treated as if the others were not present. Experience during code development has
shown instances where the coupling between physical processes or dimensions was sufficiently strong that a fractional
fimestep method would have required a considerably re,duced timestep to maintain accuracy. For example, situations
have been observed where the energy increase due to Ohmic heating was balanced by the heat loss due to thermal
conduction, so that no net change occurred, and yet either process by itself would have led to a drastic change in the net
energy.

Equation (21 ) is appropriate only when 1 <j < Jand 1 < k < K. ANIMAL casts boundary conditions in the
form

0 -.. m

0n+l'_*l=l,k (E'l)ln,_TM 0n.l'_+12,k + (HI)In,[TM 0n+l'_+la,k + (FI)_I'Q , (22)

l,k "-PJ,k ° J-l,k 'I,k I- 2,k (FI"J,k ' (23)

U_j,11,_. • 3'j,1 "L_j,3 1+ (F3)jn,_l'_ (24)

and

j,K " 3_j,Z . " •"""3Jj,K "j,K-:2 I- (25)

Equations (21) to (23) form a set of linear, simulumeous, "_idiagonal" algebraic equations in the unknown

quantities 0 .a+ i. _ +] for 1_ j _ I along a line of constant k, 1 < k < K The method of solution involves calculating
1 J,"g- s and F's such that

-n+l,_.l = E'n.l,_ . un+l,i_+l -n+l,Q
Uj,k j,k j+l,k + Fj,k (26)

Substitution of Eq. (26) into Eq. (21) leads to the result that

m =--[ -- ' ='n+"_ (E _n+I,_]-I+ k •2,k 1"I ,k J "

'in+l, _ fI_ _n.l,l_
i) '_. (CI,2,k "X..lq,k . (27)

2,k = ""I _2,k I/2,k * 1"I ,k "

[ -"tn+l,_- (C.,tn+l,, - ], (28)

Ej,k " -- X_l"j,k lJj,k -j-l,k _'_j,k , 2 < j < J, (29)

and

(30)
a'j,k j-l,k j '
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UsingEqs.(29)and (30)forJ- Iand J-2 inEq. (26)and substitutingintoEq.(23)leadsto

fin. ffi - - " l,k
I,_+I

"3,k

{(_ ,n+l._+ [(H ,n+l._ _n.l.Q + (E ,n+l._ _'n+l.0
I/J,k I/J,k "_J-2,k I/J,k "rj-l,k

}""I/j,k "J- 2,k ' (31)

Thusthesolutionprocedurealongalineofconstan_tkistosetandstoretheboundaryconditionEq.(22),cal.gu_te..A,B,

_,and_'ofEq.(21)forj- 2,calculateandstore_ and]_2fromEqs.(27)and(28),repetitivelycalculate_,[_,C,and
ofEq.(21),andcalculateandstoretheF.'sandF'sofEqs.(29)and(30)for2 < j< J.O_isthencalculatedf1"ornE_.

(31).lindallotherUj'sarecalculatedindecreasingorderofjfromEq.(26).Notethatitisnotnecessarytostoreh,,B,C,
andV foreachjaslongastheboundaryconditionshavetheformgiveninEqs.(22)and(23).Also,notethateachk line

iscomputedindependently.

Equations(21)to(31),asamethodofsolvingEq.(19),givethebasicANIMAL algorithmforadvancing

thecalculationsfromtimetntotn+l.ThealgorithmbeginsbysettingUo+IOj,k' -- Ov-j._..Thenfork= 2(orK-l)Eqs

are appliedrepetitively R / _n+l,_j,k < 8, where 8 is typically
5 × 10-4. Then each successive k is advanced similarly. When all k such that 2 _ k _ K - I have been advanced, the

/_

boundary conditions Eqs. (24) and (25) are used to set values at k = 1 and k - K.
To adeance the calculation from time tn+l to tn+2, the Newton-Raphson method is applied to Eq. (20).

Boundary conditions have the same form as in Eqs. (22) to (24), with the superscript n+ 1 replaced by n +2. The
equations corresponding to Eqs. (21) and (26) are

-- = _n+2.12+I + (_ ,_n+2,12.l-rn+2.12+l= /_ ,sn+2,12
"'_3'j,kj''_ ,in+2,_, _j,_2,_.l, 4. (B3)jn_2,12 • ...j,k+ 1 ''3"j,k "j,k-I "--3"j,k (32)

and

_j,_2,Q.I= En+2,J2._n+2,Q+l -n+2,Qj,k _j,k+I + Fj,k , (33)

_n+2,_ _+2 _ _n+2 _ _:a+2,, 0_,_2,,corresponding to Eqs.respectively. The derivation of expressions for j.2 , j.2 ' ' j.k ' , "j.k ,

(27) to (31) is straightforward. Thus, _e__algori_t_s for solving both Eqs. (19) and (20) are identical except for the
method of establishing the coefficients E, H, and F of Eqs. (22) to (25) and the coefficients A, B, C, and _4of Eqs. (21)
and (32). (Rigorously speaking, _ and V are not "coefficients. ") The only other difference in the two algorithms is
where the computed results, Eqs. (26) and (33), are stored. The similarity in the two algorithms is use,d to minimize the
coding in ANIMAL.

As formulated by Eqs. (19) to (33), ANIMAL's basic algorithm is quite general and need not be restricted to a
five-component solution vector U as indicated in Eq. (18). ANIMAL is in fact set up to calculate subsets of the model
equations. The following subsets can be selected in addition to Eq. (18):

(1) _J = (p, _, B) in one-dimension, i.e., one-dimensional diffusive transport.
(2) 0 = (p,_, B) intwo dimensions.

(3) U = (p,v_,_),i.e.,one-dimensionalhydrodynamics.

(4) 0 = (p,vI,v_,_),i.e.,two-dimensionalhydrodynamics.
(5) 0 = (p,vI,_,B2),i.e.,one-dimensionalMHD.

For Eq. (18) and each of the subsets a variety of physics options are available; e.g., 0 = (p, v_, _) can be ideal
one-dimensionalhydrodynamicsffthethermalconductivityandradiationaresettozero.Inaddition,becauseofthe
generality, the ANIMAL algorithm is set up to handle as many as ten variables in anticipation of the addition of more
dependent variables. For example, most of the structure to handle additional magnetic field components B_ and B3 is
alreadyinthecode(ANIMAL's predecessor_7didinf_t calculateB_ and B3);whatismissingismerci);codingto
determinetheappropriatecoefficients,and thiswou,,bea relativelyminorfractionoftheentirecoding.

Itisimportanttonotethatfortheone-dimensionalsubsets,Y ofEqs.(19)and(20)areidenticallyzero.

Hence,inone-dimensionalcalculations,ANIMAL usesafullyimplicitmethod[Eq.(19)]toadvancefromtntotTM
and thenANIMAL usesafullyexplicitmethod[Eq.(20)]toadvancefromtn+ltota+2.By combiningEqs.(19)and

+2 to(20),one can seethattheone-dimensionaldifferenceequationsrelatingLTM , Un.forn even,appeartobe
Crank.Nicholson,_ whereasthoserelatingUn+3 toUn+_ appeartobe "leapfrog.'_
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FIGURES:

Figs. l(a-d): Shadowgrams and simulation results, HDZP-I (early): (la) Exper-

imental shadowgrazns, HDZP-I, shot 3863: left-hand image, ,,-30 nsec (,,_50 kA);

right-hand image, _40 nsec (-,_65 kA); each grid block is 0.1 mm square.
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Fig. lb: Simulation shadowgram from section of same size as la, HDZP-I, 30

nsec (50 kA).
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Fig. lc: Corresponding simulation density contours, 30 nsec (50 kA); right-most

solid contour (0.01 kg/m 3) contains 95% of the total mass; dotted contours, from

right: 0.012, 0.036, 0.23, 1.3 kg/m s.
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Figs. 2(a-b). Shadowgrams, HDZP-I (late)' (2a) Experimental shadowgrams,

HDZP-I, shots 3876,7: left-hand image (3876), _65 nsec (,-,120 kA); right-hand

image (7), ,,_80 nsec (,,_150 kA); each grid block is 0.1 mm square.
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Fig. 2b: Simulation shadowgram, HDZP-I, 65 nsec (120 kA).
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Figs. 3(a-b). Shadowgrams, HDZP-II: (3a) Experimental shadowgram, HDZP-

II, shot 194, ,,,5 nsec (,'-50 kA); each grid block is 0.25 "_m square.
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Figs. 4(a-e): Intefferograms and simulation results, HDZP-I and -II: (4a) Exper-

imental intefferogram, HDZP-II, shot 205, _,20 nsec (,,,200 kA); each grid block

is 0.25 mm square.
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Fig.4b: Simulationinterferogram,HDZP-II, 32 nsec(230kA).
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Fig. 4c: Simulation interferograra, HDZP-I, 50 nsec (85 kA).
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Figs. 6(a-b): Results of two-temperature HDZP-II simulations: (6a) Average

(mass-weighted) electron (dotted) and ion (solid) temperatures (eV) vs. time

(nsec); (65) Peak electron (dotted) and ion (solid) temperatures (eV) vs. time

(_c).
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Fig. 8: KMC magnetic penetration problem: At time=0, perpendicular mag-

netic field is -1.5 Tesla on left half-pla_e and 0 on right half-plane; field penetrates

at speed Uw/2 along density ramp channel for time>0.
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Fig. 9b, where y=4 cm, at 1 nsec.
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Fig. 11: KMC problem, implicit hybrid donor-cell/space-centered Hall term:

Magnetic penetration contours (field values in Tesla) at 2 nsec.
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Figs. 12(a-b): Hall MHD axial boundary effects (HDZP-II simulation): (12a)

Axial current contours "pinched" at anode (bottom), 4 nsec.
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Fig. 13: Density (top) and axial current (bottom) contours, HDZP-II simulations

(8 nsec), with (left) and without (fight) Hall term: Hall-driven small-wavelength

instability development.
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Fig. 14: Full "Hall MHD" model energy convection in -f direction: HDZP-II

simulation (6.5 nsec); (top) temperature contours; (bottom) temperature (eV)

vs. radius (m) for axial locations adjacent to anode (line A) and cathode (line

B).
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Fig. 15: Initial conditions for deuterium shell implosion simulations: density
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midsection.
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Fig. 18: Aluminum "exploding-wire" simulation, _,69 nsec: density, tempera-

ture, current contours.
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Fig. 19: Aluminum POW simulation, ,-,,69 nsec: density, temperature, current

contours•
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