
. WSRC-RP-93-1464

UNIX PROGRAMMER'S ENVIRONMENT AND
CONFIGURATION CONTROL

t

by

P. W. Wyatt

Savannah River Site

Aiken, South Carolina 29808

A documentpreparedfor.

Society for Computer Simulation-1994 Multiconference, SCS Multiconference Proceedings

at P. O. Box 17900, San Diego, CA 92177-7900
from 4/11/94 thru 4/15/94

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer.
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

DOE Contract No. DE-AC09-89SR18035

This paper was prepared in connection with work done under the above contract number with the U. S.

Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U. S.
Government's right to retain a nonexc!usive, royalty-free license in and to any copyright covering this paper,
along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper.

M SI[
DISTRIBUTION OF THIS DOCUMENT 18UNLIMITE_



t

i*

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily.
constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and
Technical Information, P. O. Box 62, Oak Ridge, TN 37831; prices available from
(615) 576-8401.

Available to the public from the National Technical Information Service, U. S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161



t I

UNIX PROGRAMMER'S ENVIRONMENT AND
CONFIGURATION CONTROL

T. R. Arnold
Mead Data Central

Dayton, Ohio

P. W. Wyatt
Westinghouse Savannah River Company

Savannah River Site
A/ken, South Carol/ha

be created and used by people who are not
expertUNIXprogxammers.

A package of UNIX utilities has been
developed which unites the advantages of IN'IIODUC_ON
the public domain utility "/make" and a
configuration control system. The "tmake" Development of engineering
utility is portable. It allows a user to make applications has oRen begun without a
Makeflies on a wide.variety of platforms means of managing the software in an
without worrying about the machine- ordered, modular fashion. This is
dependent tdtmyncrac/es of the UNIX ut/lity particularly true of appllcat/ons that were
"make'. Makeflles are a labor-saving or/g/nally coded under operating _ystems
for compiling and linking complicated which do not lend themselves to a
programs, and "/make" is a labor-saving development enviromnent. Somet/mes, you
device for making Makeflles, as well as other may still find applications consisting of a few
useful software (like a program's internal (perhaps one} large FORTRAN sources in a
dependencies on included flies}. This simple directory structure (or lack of
"Environment', which has been developed structure}. On a system where a user's
around "tmake', allows a programmer to "own" space Is I/m/ted, they may not even fit
manage a compltcated project consIsting of into an edit buffer. This situation was later
multiple executables which may each link addressed with Makeflles (or their rough
with mult/ple user-created libraries. The equivalents}. The Makeffleis input for the
conflguraUoncontrol aspect consIsts of a UNIXuttaty "make". Thisutttttyuses other
directory hierarchy (a baseline) which is UNIX executables to find sources, compile
mirrored in a developer's workspace. The and link them, and deLver an executable
workspace includes a minimum of flies somewhere. It may also embody a list of
copied from the baseline: it employs soft dependencies on included files. This means
links into the baseline wherever possible, that when you add a new (perhaps hidden}

The uttl/t/es are a mulU-t/ered suite of dependency to a source, the "make" _ottabe_Bourne shells to copy or check out sources, will know which sources need
check them back in, import new sources recompiled and will do the operation for you.
{sources which are not in the baseline} and You may compile, link, and deliver a
link them appropr/ately, create new low-level complicated executable by typing "make".
directories and link them. compare with the
baseline, update Makeflles with minimal So why not Just use "make", which
effort, and handle dependencies. The is a powerful tool, to manage code
directory hierarchy utilizes a single source development? There are several reasons. In
repos/tory, which is mL,rored in the basetine the first place, "make" does not recognize
and in a workspace for a several platform conditionals. So to port from one platform
architectures. The system was ordure/ to another, you must edit each Makeflle to
written by T. R. Arnold to support C code on suit the platform. If you have a lot of
Sun-4's and RS6000's. It has now been Makeflles, you must do a lot of editing. But
extended to support FORTRAN as well as C "/make", which uses a series of data flies
on SGI and Cray YMP platforms as well as that allow conditionals, requires little
Sun-4's and RS6000's. This means that editing. Also, "make" has no flow control,
large FORTRAN programs can be managed and any Makelile dependencies on headers
in much the same way that UNIX developers are Inherently non-portable. We can I/mR
managed the development of X -- with order ed/ting to a few key points wlth "/make" and
and planning in the way the code Is take most of the burden off the user. The
controlled, updated, compiled, linked, and user will have to tailor some of the
installed. It also means that Makeflles can "Environment" directory structtlre to be



mnemonically named. But that's not a big workspace, for Import/ng and linking blocks
Job. of new code, for identifying who has

something checked out (and thereby denied
UTH.ITY PACKAGE DESIGN to other users until it is checked back in},

and for qulckly showing what local files are
The "Environment" combines new, or d/fferent from, or the same as the

conflguraUon control w/th "/make', whose baseline. This automates a great deal of
data files like "hnake.tmpl". "ProJect.tmpl". what is sometimes done admlni_traUvely.
etc., are edited extensively. There is a What m/ght well be more/mportant is that/t
baseline d/rectory featuring places for could encourage the use of mechan/cally
"Imake" and its data files, two suites of generated Makefiles (and a code structure
Bourne shells layered over "/make", source that m/rrors a baseline template} among
locations, arch/tec_pendentres/dences programmers who are not experts in
for object code and ex_mtables, and delivery constructing Makeflles on multiple
points for "finished" stuff. The user creates platforms.
a "workslmce', which is a m/rror image of
the baseline but with certain stmpl/flcat/ons. _W, ATIOHS
The "tmake" deltce W and the "EnvLronment"
".ws" and "Ws"shells are not copied Into the Figure I shows a small part of a
workspace. Nor Is any unnecessary object Makeflie in the b/g window on the left. The
code copied from the baseline to the Makeflle is being managed v/a "imake",
workspace. Instead, such resources are whose input file, or "Imakefile", is shown In
"automatically" poInted to with soft links the lower of the two windows on the right.
whenever a new list of dependencies (a The rules for creating all those "make"
".depends" file)is created. Th/s reduces the targets and processes In the Makefile are
likelihood of error and cormerves disk space, embodied in the "tmake" templates (more
Also, Imakeflies ("/make" input) for standard data files). Some are standards which ought
directories llke "llb" are copied into the not to be changed much. You can dream up
workspace. The user may create other whatever rules you llke and put them into
d/rectorles (for new libraries or executables} others. The rules are Identified In the
wlth one of the "ws" shells. In/ttal Makeflles Imakeflle w/th a shorthand. So the
are also created at this t/me. The user may programmer who ts using "tmake" may refer
then copy sources out of the baseline or may repeatedly to "tmake" rules in many
Invent new ones. Each t/me new ones are Makeflles but only edit the rule Into the
/nvented, the Imakeflle must be ectlted and "tmake" templates once. An engineer can
the local Makefile must be rebuilt with manage a complicated program structure
"make Makeflle" -- in which the make target w/th very little effort. Most of the stuff that
is input for "make" itself. Then the mlght be fat-fingered Into oblivion is put
dependencies on headers (the ".depends" file, where it is seldom in harm's way. In
which starts out empty} must be updated essence, you get the names of your sources
with "make depend". Typing "make" creates typed In right and "tmake" takes care of the
a new executable, and "make Install" del/vers rest for you. As an added bonus, the
it to a poInt where it may be run from Imakeffle has none of the Makeflle's
outs/de the workspace. The dependencdes annoy/ng dependence on TABs.
are discovered w/th the %ws_srcdepend"
shell. It replaces the "/make* release's The "Environment" is illustrated
"makedepend" utfl/ty and searches for schemat/cally in Figure 2. The "workspace"
included files wlth the C preprocessor. The tsa d/rectory hierarchy that mirrors some
"Env/romnent" has been modified for use part (usually a single architecture} of the
with FORTRAN sources so that these may be baseline. The "share" directories hold
processed with the C pre-processor Just llke sources. Typically, "bIn" holds del/vered
C sources, executables, "llb" holds delivered libraries,

and "include" holds delivered headers that
There are many useful utflIUes In are sha_.d among d/fferent I/brarles and/or

the two groups of Bourne shells. Some are exect_ables. The lowest levels of the
accessed from outside the "Environment" d/rectory hierarchy Include whatever names
workspace. Others may only be used Ins/de the user wants to ass/gn to libraries and
it. Sources may be cop/ed or checked out executables. In this example, "lib" is for
from the baseline. They may be checked I/brarles and the "prog[l]" are for various
into the baseline by "author/zed" users. The programs that llnk to the libraries. Many
baseline itself is typically protected by applications may be supported by the
limiting both ownership and write "Environment". Figure 3 shows some
permission. There are utilities for quick graphical results from a movie generator
comparison between the baseline and the that is managed by the "Environment". An



application (not managed in this way since has the advantage of physically tying the
It exists as an executable purchased from a sources to the executables so that It's harder
vendor) writes data to a cllent-server to lose them. It also allows you to collect in
application (which IS managed by the an ordered way all the Junk you may think
"Environment'), which in turn feeds the X- you'll need some day. That's an
based graphics. In fact, the directory advantage/disadvantage of having your own
hierarchy ma) be tinkered with to save configuration control soRware, including
anything you _ -- including data and trash sources.
that really ought to be thrown away. This

I IIIII I iiiiiii

•lids pmlperwl Inpm_ Inem:meeiln'mthworkdoneunder_,ntrae¢ito. M#_M__ _ _ U.S.Delmrtme_
ofKamW.iS#.,ceepinee orthis imper,the_ and/or rectptemtaeknowled_ theU.S.C,oveemuemt',ridhim
a_qa_i_ mylty-f_ liccn__ Lndm B_,_l_li_t_tll p_= i_llwlthti_rightto_xluce allm"l_rt



Figure I: Makeflle andImakeflle





4'

,e

Flgure 3: Graphlcs for a V_ System Model






