
ILIII°°

LBL-33706

Data Management Tools for Genomic Applications:
A Progress Report

Victor M. Markowitz and I-Min A. Chen

Information and Computing Sciences Division
Lawrence Berkeley Laboratory

University of California
Berkeley, CA 94720

September 1993

Thisworkwassupportedbythe Officeof HealthandEnvironmentalResearchProgramofthe Officeof Energy
Research,U.S. DepartmentofEnergyunderContractDE-AC03-76SF00098.

MASTER

Data Management Tools for Genomic

Applications: A Progress Report *

Victor M. Markowitz and I-Min A. Chen

Information and Computing Sciences Division

Lawrence Berkeley Laboratory, Berkeley, CA 94720

Abstract

We report in this paper on the development of data management tools
that allow scientists to construct and manipulate genomic databases in
terms of appUcation-specific objects and protocols. We axe developing
tools for specifying genomic database structures, as well as for entering,
changing, maintaining, browsing and querying data in genomic databases.
These tools ire based on the Object-Protocol Model (OPM) developed
by us and taxget commerdal rda_ional database management systems

which axe widely used in moleculax biology laboratories. OPM allows
scientists to interact with genomic databases in tezms of their own frame
of reference, namely genomic objects and protocols. Databases developed
using the data management tools axe easier to use, manages and adapt.

1 Introduction

The information controlling the development of biological organisms is encoded
in their genome in the form of polymeric molecules known as DNA. DNA in-

formation is encoded as a sequence of nucleotid_. Regions of the DNA called

genes specify the information for protein molecules. In higher organisms (yeast,

plants, animals, humans) the DNA is organized into several linear chromosomes.

Several projects are attempting to determine the complete DNA sequence

of various organisms. These projects require databases for managing DNA data

and related information. Typically, the structure of a genomic database can be

modeled in terms of objects characterized by (having) attributes that take val-
ues from a domain (set of values); objects that share common attributes can be

organized (c/ass/Red) into homogeneous sets of objects. For example, consider

• the contig maps used in determining the complete DNA sequence of various

"Issued as Technical Report LBL-33706. Thii work is supported by the Office of Health
and Environmental Research Program of the Office of Energy Research_ U.S. Department of

• Energy under Contract DE-AC03-76SF00098.

organisms, and consisting of ordered DNA fragments x. Contig maps can be
modeled as objects that have attributes such as contig..id, osraer (representing
owners of contig maps), and (fragment, position) (representing component
fragments and their positions in contig maps); similarly, fragments can be mod-
eled as objects that have attributes such as frag_entAd and o_rner.

Genomic databases also contain data on protoco/s representing experimental
laboratory procedures. Given an input, a protocol instance (i.e., an elementary
experiment) results in an output. Protocols often involve a series of subprotocol
steps. The recursive specification of protocols in terms of component subpro-
tocols is called protocol erpan_ion. Protocol expansion reveals the composition
of component subprotocols and/or alternative ways of performing the protocol.
For example, consider a con_lr_cZ protocol for constructing contig maps of or-
dered DNA fragments: such a protocol is applied on DNA fragments (input) and
result in contig maps (output). Protocol construct can be expanded into two
alternative protocols, overlap and con.s_raint, both followed by protocol assem-
ble: protocol overlap compares two DNA fragments using a computer program,
protocol cor_Zraint compares manually two DNA fragments according to certain
constr_nts, and protocol assemble assembles DNA fragments into a contig map
according to information in the connection tables regarding possible connecting
positions of two DNA fragments.

Most genomic databases developed in the past few years use commercial
relational database management systems (DBMSs). Relational DBMSs do not
provide constructs for representing directly genomic-specific objects and proto-
cols. These objects and protocols are usually represented in relational databases
by several disconnected tuples scattered axnong multiple tables, logically tied t_
gether by primary key-foreign key references. Such representations are not only
hard to comprehend, but also entail the development of large procedures for
assembling data on application-specific objects from (i.e., by joining) several
relations. Furthermore, because of the complexity of the relational representa-
tions for objects and protocols, the development, maintenance, and modification
of such databases are tedious, error-prone, and time-consuming processes.

Data models such as the Ez_ended En_i_y-Rela_ior_ship Model (EERM) [10]
and the Semantic Da_a Model (SDM) [4] provide constructs for modeling ob-
jects, sets of objects, and object associations, and therefore are better suited
than relational DBMSs for specifying the structure of genomic databases. For
example, in EEKM atomic objects called entities are classified into entity-sets,

•and are qualified by attributes that take values from value-sets. Associations of
entities are modeled as relationships classified in relationship-sets. EERM has a
generalization mechanism that allows viewing similar (specialization) entity-sets
as a single generic entity-set.

We have explored using EER.M for describing genomic databases [9], and
found that it is too restricted for specifying accurately their object structure.
Such restrictions can be overcome by using au_.iliary entity-sets and relationship-

1Sinceexisting technologypermits sequencingonly frag_nnentsof a few hundred nucleotide_,
chromosomal DNA is cut into smaller fragments, the fragments are propagated as clones, and
then assembled into contlg maps.

sets. For example, contig maps, fragments and their owners can be represented
, by three EERM entity-sets called C0NTIGA_AP,FRAGMENT,and PERSON,respec-

tively. However, representing that contig maps and fragments can be owned by
persons requires an auxiliary entity-set generalizing C01T:I:G_APand FRAGMENT,
OI_F___OBJECT,together with an auxiliary relationship-set, OWNED_BY,associating
OWNED_0BJECTwith PERSON.Auxiliary constructs do not represent application-
specific objects and therefore unnecessarily increase the complexity and obscure
the semantics of databases.

The need to employ a diversity of continuously evolving mapping and se-
quencing strategies require facilities for efficiently constructing genomic databases
that are easy to use and change. In order to attain the desired level of flexibil-
ity and adaptability, we decided to develop data management tools that allow
scientists to rapidly construct and manipulate genomic databases in terms of
genomic objects and protocols. The underlying data model for these tools is
provided by the Object-Protocol Model (OPM) developed by us.

OPM has similarities with other object data models (cf. [5]), especially with
SDM [4]. Similar to SDM, in OPM objects are classified into object classes and
are qualified by attributes that take values from value classes. Unlike SDM,
however, in OPM attributes can be composite, that is, consisting of multiple
component simple attributes, and can be associated not only with single value
classes, but also with unions of value classes. These constructs allow avoiding
the creation of object classes that do not have an application-specific counter-
part. Furthermore, unlike other data models (e.g., such as those reviewed in [5]
or [6]), OPM provides a protocol class construct for modeling laboratory exper-
iments. A protocol class in OPM can be associated with reg,_lar attributes as
well as input and output attributes used for specifying input-output protocol
connections. OPM also supports a protocol expansion mechanism for specifying
a protocol class in terms of component subprotocol classes.

The data management tools we develop will benefit several molecular biology
laboratories and genome centers. In particular, our project supports directly _.!_e
large-scale sequencing project at University of Washington, Seattle, for charac-
terizing up to six million bases of the human and mouse T-cell receptor loci and
the development of the Integrated Genomic Database at the German Cancer

Research Center, at Heildelberg.
The rest of the paper is organized as follows. Our approach to developing

data management tools is described in section 2. The status of our work is
reviewed in section 3. Section 4 briefly discusses future plans.

2 Approach

The data management tools are based on a data model developed by us, the
Object-Protocol Mo,lel (OPM). OPM is briefly reviewed below. A complete
description of OPM is provided in [1].

2.1 The Object-Protocol Model

OPM allowsdescribingdatabasestructuresintermsofobjectscharacterizedby

attributes taking values from value classes, and classified into object classes. For
example, the contig maps mentioned in the previous section can be represented
in OPM by object class CONTIG_AP having attributes contig_id, owner, and
(fragment, position). Similarly, fragments can be represented by object class

FRAGMENThavingattributesfragmenc_id, sequence, length, and owner; and
ownerscan be representedby objectclassPERSON havingattributesperson.id,

name and owns (seefigureI).

Objectclassescan havesubclass-superclassrelationships.For example,one
can specifya classSCIENTIST as asubclassofPERSON.

AttributesinOPM can be:

I. atomic,suchas attributecontig.idofobjectclassCONTIG._AP,or com-
posite,thatis,consistingof aggregationsof atomicattributes,such as

attribute(fragment,posi%ion)ofCONTIG_MAP;

, 2. single-valued,suchasattributeperson_id ofobjectclassPERSON,ormulti-

valued,suchasattributeowns ofPERSON;

3. local,suchas attributesequence ofobjectclassFRAGMENT,orreferential,
thatis,representingreferencestootherobjects,such as attributeolrner

ofFRAGMENT,representingreferencestoPERSON;

4. associatedwith a singledomain, such as attributename of objectclass

PERSON,or with a unionof differentdomains,such as owns of PERSON
whose domain istheunionofobjectclassesCONTIG._AP and FRAGMENT;

5. derived,thatis,attributesthathave valuesderivedfrom the valuesof

otherattributesusinga derivationexpression,such as attributecompo-
sition,arithmeticexpressions,aggregatefunctions,orattributeinversion;

forexample,attributeo,ner ofCONTIG_AP infigureI isspecifiedas the

inverseofattributeowns ofPERSON (i.e.,the valueofo_rnerfora given

contigmap m isthepersonwhose owns valuecontainsm).

In additiontoobjects,OPM supportsmodelinglaboratoryprotoco]s.Pro-

tocolsareclassifiedinprotocolclassesand can be qualifiedby both regularand
special, input and output, attributes. For example, protocols construct, overlap,
constraint, and assemble mentioned in the previous section can be described in

OPM by the protocol classes shown in figure 2, where their inputs and outputs
are modeled by the object classes shown in figure 1. Thus, the experiments for
constructing contig maps of ordered DNA fragments can be represented by the

instancesofprotocolclassCONSTRUCT havingan outputattributecontig.map
representingtheresultofconstructprotocolsappliedon fragments,where frag,

ments arerepresentedby inputattributefragments.

OPM has a protocolexpansionmechanism forthe recursivespecification

of protocolsintermsof allcrnalivcprotocols,sequencesofprotocols,and op-

tionalprotocols;"or",",",and "[]"areused todenotealternative,sequences

OBJECT CLASS FRAGMENT

, DESCRIPTION: DNA fragment

ID: fragment_id
ATTRIBUTE fragment_id: INTEGER not null single-valued

ATTRIBUTE sequence: VARCHAR(750) single-valued

ATTRIBUTE length: INTEGER single-valued

ATTRIBUTE owner: PERSON single-valued
DERIVATION: inverse of PERSON.ovns

OBJECT CLASS CONNECTION_TABLE
DESCRIPTION: connection table

ID: table_id

ATTRIBUTE table_id: INTEGER not null single-valued
ATTRIBUTE left_entry: FRAGMENT

ATTRIBUTE right_entry: FRAGMENT
ATTRIBUTE distance: INTEGER

OBJECTCLASS CONTIG_MAP

DESCRIPTION: contig map
ID: contig_id
ATTRIBUTE contig_id: INTEGER not null single-valued

ATTRIBUTE (fragment, position): (FRAGMENT, INTEGER) multi-valued

ATTRIBUTE owner: PERSON single-valued
DERIVATION: inverse of PERSON.ovns

OBJECT CLASS PERSON

DESCRIPTION: person

ID: person_id

ATTRIBUTE person_id: INTEGER not null single-valued
ATTRIBUTE name: CHAR(80)

ATTRIBUTE owns: CONTIG_MAPor FRAGMENT multi-valued

Figure 1: Object Classes Representing the Input and Output for Protocols

of, and optional protocols,respectively,and parentheses are used for speci-

fying complex protocol compositions. For example, consider protocol classes

CONSTRUCT, OVERLAP, CONSTRAINT, and ASSEMBLE shown infigure2. The expan-

sionofCONSTRUCT interms ofOVERLAP, CONSTRAINT, and ASSEMBLE isexpressed

asfollows(seefigure2):EXPANSION: (OVERLAP or CONSTRAINT), ASSEMBLE.

Input and output attributesassociatedwith protocolsrepresentthe input

and output of protocols,respectively,and can be used to express the inher-

itanceof input or output attributesby component subprotocols from their

genericprotocols and the input-output connection of directlyrelatedproto-

cols. Input-output attributeinheritanceisexpressed using 'inpul is.a ...'

. statements (e.g., see attribute fragments of OVERLAP in figure 2) and 'oufpu_.

is-a...' statements (e.g., see attribute contig.map of ASSEMBLE in figure 2) in

the specification of the input and output attributes associated with subproto-
cols. Ifa protocol is followed directly by another protocol, then the input of the

latter may include some or all of the output of the former. Such input-output

PROTOCOL CLASS CONSTRUCT

DESCRIPTION: construct a contig map
ID: construct_id

EXPANSION: (OVERLAP or CONSTRAINT), ASSEMBLE

ATTRIBUTE construct_id: INTEGER not null single-valued

ATTRIBUTE fragments : FRAGMENT not null multi-valued input

ATTRIBUTE contig_map: CONTIG_MAP not null single-valued output
PROTOCOL CLASS OVERLAP

DESCRIPTION: compare fragments using computer programs

ID: overlap_id

ATTRIBUTE overlap_id: INTEGER not null single-valued

ATTRIBUTE fragments: FRAGMENT not null multi-valued

input isa CONSTRUCT.fragments

ATTRIBUTE connect_table: CONNECTION_TABLE not null output

ATTRIBUTE (program_na_e, program_version): (CHAR(40), CHAR(6))
PROTOCOL CLASS CONSTRAINT

DESCRIPTION: manually compare fragments using constraints

ID: constraint_id

ATTRIBUTE constraint_id: INTEGER not null single-valued

ATTRIBUTE fragments: FRAGMENT not null multi-valued

input isa CONSTRUCT.fragments

ATTRIBUTE connect_table: CONNECTION_TABLE not null output

ATTRIBUTE constraint_type: CHAR(80) single-valued
PROTOCOL CLASS ASSEMBLE

DESCRIPTION: assemble contigs

ID: assemble_id

ATTRIBUTE assemble_id: INTEGER not n_ll single-valued

ATTRIBUTE connect_table: CONNECTION_TABLE not null

input from OVERLAP via connect_table
or CONSTRAINT via connect_table

ATTRIBUTE contig_map: CONTIG_MAP not null single-valued

output isa CONSTRUCT.contig_map

Figure 2: Protocol Classes Representing Protocol Construct and its Components

attribute connections are expressed using 'input from.., via...' statements (e.g.,
see attribute connect_table of ASSFAIBLEin figure 2) in the specification of input
attributes associated with protocols taking their input from other protocols.

2.2 Data Management Tool Development

Developing data management tools based on OPM and targeting relational
DBMSs, involves mapping OPM constructs and data manipulation operations
(retrievals and updates) into relational DBMS constructs and SQL queries. This
mapping is very complex because of the discrepancy between the OPM and re-
lational DBMS constructs, but can be simplified by introducing an intermediate
EERM level that allows decomposing the OPM to relational DBMS mapping

into simpler mappings between OPM and EERM, and between EERM and re-
lational DBMS, respectively. The OPM to EERM mapping is easier to developt

than the direct OPM to relational DBMS mapping because EERM schemas
and queries are specified in terms of objects and object associations, and there-
fore are inherently more concise and simpler to specify than relational DBMS
schemas and queries, Furthermore, EERM schemas and queries are independent
of a specific DBMS, and therefore can be used across different DBMS platforms.
The EERM version we use is the EERM described in [10], extended with two
constructs (unary relationship-sets and a new form of directly associating entity-

sets) described in [2].
We have developed a mapping of OPM schemas that generates EERM

schemas together with queries for constructing OPM objects and protocols from
entities and relationships. These queries are expressed in the Concise Objecf

Query Language (COQL) [11], and involve associating a (primary) entity-set
with attributes of other (auxiliary) entity-sets and relationship-sets, where the
primary entity-set is associated with the auxiliary entity-sets and relationship-
sets either directly or via other entity-sets and relationship-sets. Thus, a primary
entity-set, its local and inherited attributes as well as the attributes of auxiliary
entity-sets and relationship-sets can be specified in COQL using an OUTPUT
statement, while the association of a primary entity-set with auxiliary entity-
sets and relationship-sets can be expressed using CONNECTIONS statements.
COQL also allows setting conditions on entity-sets and relationship-sets. Sup-
pose that the contig maps and their owners mentioned above are represented by
entity-sets CONTIG.NAP (with attribute contig_id) and PERSON, connected by
relationship-set OWNED.BY.Then the following COQL query expresses the asso-
ciation of contig maps with their owners:

OUTPUT CONTIG.MAP:contig_id,PERSON;
CONNECTIONS CONTIG_MAPOWNED_BYPERSON; END

In the COQL query above, PERSON is an auxiliary entity-set whose attributes
are associated with CONTIG_MAPvia relationship-set 0WNED_BY.

Regarding the mapping of EERM schemas and queries into relational DBMS
schemas and queries, we have developed tools that can automatically carry out
the EERM to relational DBMS schema and query mapping. The EERM schema

to relational schema mapping is presented in [10] and has been implemented as
part of an EERM schema translation tool called SDT [8]. SDT automatically
translates EER schemas into schema definitions for several relational DBMSs:

Sybase, Ingres, Informix, and Oracle. The DBMS database definitions generated
by SDT include procedures (e.g., triggers in Sybase) necessary for maintaining
referential integrity and value constraints. The information about schemas and
their mapping is subsequently stored in a metadatabase.

The COQL to SQL mapping is described in [11], and has been implemented
as part of a COQL translation tool. Based on the metadatabase generated by
SDT, the COQL translator maps a COQL query into one or several queries
in the SQL dialect, of the underlying relational DBMS. The COQL translator
has been implemented for Sybase and will be implemented for other relational
DBMSs as well.

3 Development Status
J

In this section we briefly review the status of the 0PM data management tools.

3.1 The OPM Schema Editor

We have developed a graphical schema editor for interactively specifying, dis-
playing, modifying, merging, and browsing 0PM schemas.

The OPM schema editor allows specifying incrementally complex object and
protocol structures by providing facilities for defining new schemas, modifying
existing schemas, and merging schemas. A schema can be browsed using an
Object Classes Listbox that lists in the main window the object classes of the
schema (_ee figure 3). This listbox can be switched into a Protocol Classes
Listbox or a Controlled Value Classes Listbox for browsing protocol classes and
controlled value classes, respectively.

For an object class selected in the Object Classes Listbox, its connections to

other classes (via attributes), and its supercla_ses and subclasses are displayed
in the drawing area of the main window. This graphical display can be also
used for browsing a schema by recursively expanding value classes associated
with displayed attributes.

An object class can be defined or modified by double clicking on the name
of an object class in the listbox or in the drawing area, or by selecting the OPH
0bject Class optionoftlleDefinemenu iteminthemain window. The Object

ClassDefinitionwindow shown infigure3 illustratesthe definitionofobject
classC0NTI(;..NAP.The DefineAttributeoptioninthiswindow allowsdefiningor

modifyingattributesofthecurrentclass.
The Composite AttributeDefinitionand Component AttributeDefinition

windows shown in figure3 illustratethe definitionof a compositeattribute,

namelyattribute(fragment, position)ofCONTI(I_MAP.The AttributeInverse

Definitionwindow shown inthesame figureallowsspecifyingobjectcrossref-

erencingby definingattributesas inversesofotherattributes.
Protocolclassescan be browsed,definedor modifiedina similarway. For a

protocolclassselectedinthe ProtocolClassesListbox,itsconnectionstoother
classesvia attributes,aswellas the graphicalrepresentation(ina DFD like

notation)ofitsexpansion(ifany)aredisplayedinthe main window drawing
area.A protocolobjectclasscan be definedor modifiedby doubleclickingon

thename ofaprotocolclassinthelistboxorinthedrawingarea,or by selecting
theOPN Protocol Class optionoftheDefine menu iteminthemain window.

Figure4 illustratesthedefinitionofa protocolclass(CONSTRUCT)and itssub-
protocols.The Input/OutputAttributeDefinitionwindow allowsspecifyingthe

inputand outputattributesofprotocols.Protocolexpansioncan be definedor

modifiedusingthe ProtocolExpansionwindow. The Input From Definition

window allowsspecifying'inpu$from ...via'connections.For example,infig-

ure4)attributeconnect_tableofprotocolclassASSEMBLE isspecifiedas:from
OVERLAP viaconnect_tableorfrom CONSTRAINTviaconnect_table

A schemacan besavedinatextfileby selectingGenerate 0PM optionofthe

Figure 3: Specifying Object Classes using the OPM Schema Editor

Schema menu item in the main window. This file contains the schema definition

in the OPM data definition language, and can be passed to the OPM schema

translator described below, for generating the corresponding EER schema and
COQL queries.

The OPM schema editor has been implemented on Sun SPARCstations using

C++ and the Xll Motif graphical user interface toolkit and is described in [3].

3.2 The OPM Schema Translator

Since scientists in most molecular biology laboratories use commercial relational

DBMSs (mainly Sybase), the tools we develop target relational DBMSs. Con-
sequently, these tools involve mapping OPM schemas into relational schema

definitions and SQL queries that express basic manipulations (retrievals and

• updates) of OPM objects and protocols.

Figure 4: Specifying Protocol Classes using the OPM Schema Editor

As already mentioned above, our approach to mapping OPM schemas into
relational definitions and queries is to use an intermediate EERM level, so that
OPM schemas are mapped first into EERM schemas and queries, and then
EER.M schemas and queries are mapped into relational database schema defini-
tions and queries. This approach allows reducing the development of a complex
OPM to relational DBMS mapping to a simpler OPM to EER, M mapping, while
taking advantage of the existing EER.M to relational DBMS translation tools
[8, 11] for generating relational database definitions and queries from EERM
schemas and queries.

The complete specification of the OPM schema mapping procedure and ex-
amples can be found in [2]. Informally, mapping OPM into EER.M consists of
mapping every OPM object or protocol class into an entity-set, and of incremen-
tally constructing COQL queries associated with these entity-sets, that express
the construction (retrieval) of OPM objects and protocols from EERM entities

10

and relationships. Depending on their type (primitive, abstract, simple, compos-
, ite,etc.),non-derivedattributesofobjector protocolclassesare mapped into

EERM attributes,directentity-setassociations,or relationship-sets.Derived

attributesarenot mapped intoEERM schemacomponents(withtheexception

ofsome inverseattributes)and entailonlymodifyingCOQL queries.For each

(objector protocol)class,themapping generatesa COQL queryforretrieving
theinstancesinthisclass,includingthevaluesforalltheirnon-derived,derived,

and inheritedattributes.The mapping alsogeneratesa metadatabasethatcon-
tainsinformationon the colrespondencebetweenthecomponents ofthe OPM

schema and the components ofthegeneratedEER schema and COQL queries.
The OPM browsingand query toolswe planto developwillbe based on this
metadatabase.

Tile OPM schema translator has been developed on Sun SPARCstations in

C++ using Lex++ and Yacc++.

4 Summary and Future Plans

We have briefly discussed the development of data management tools that al-

low speci_'ing genomic database structures. These tools are based on the
Object-Protocol Model (OPM) developed by us and target commercial rela-
tional database management systems. These tools have been applied to the
development of a genomic database supporting the sequencing project at Uni-
versity of Washington, Seattle.

We are currently developing OPM data entry and browsing tools. These

tools will provide facilities for: (i) inserting, deleting, and updating objects
and protocols; (ii) s,.lecting and displaying objects and protocols that satisG'
certain conditions; (iii) browsing through selected sets of objects and protocols;
(iv) recursively displaying, for a given object or protocol, related objects or
protocols

We also plan to develop a more complex OPM query language and a query
tool based on this language. This tool will allow querying genomic databases
in terms of objects and protocols, and will consist of two main components:
(i) an OPM-based graphical interface will allow users to browse through OPM
schema specifications and incrementally specify queries in terms of object and
protocols; and (ii) a translator will map OPM queries into COQL queries, and
subsequently into SQL queries.

The data management tools we develop are currently targeting the Sybase
DBMS, mainly because Sybase is widely used in molecular biology laboratories
and centers worldwide. We recognize that relational databases are cumber-
some for implementing genomic databases. Since object-oriented DBMSs are
more amenable to represent complex protocols and DNA sequences and provide
mechanisms for incorporating apphcation-specific (e.g., sequence alignment) op-
erators, we plan to u_ such DBMSs for genomic databases. We will experiment
with one of the C-_+ based object-oriented DBMSs, such as Object Store, and
will extend our toot_, m order to ensure an easy transfer of genomic database.s

11

to theseDBMSs.

Acknowledgements. The OPM schema editorwas implementedby OferBen-

Shachar,FrancisPang,and CarolJean Smith.SDT was implementedby Weip-
ingFang and Jun Wang. The COQL translatorhasbeenimplementedby Ernest

Szeto.We greatlyappreciatetheirexcellentwork.

References

[1] Chen, I.A., and Markowitz, V.M., The Object-Protocol Model, Lawrence
Berkeley Laboratory Technical Report LBL-32738, 1993.

[2] Chen, IA., and Markowitz, V.M., Mapping Object-Protocol Schemas into
Extended Entity-Relationship Schemas and Queries, Lawrence Berkeley
Laboratory Technical Report LBL-33048, 1993.

[3] Chen, I.A., Markowitz, V.M., Ben-Shachar, O., and Pang, F., OPM Schema
EditorI.I:A GraphicalEditorforObject-ProtocolSchemas, Lawrence
BerkeleyLaboratoryTechnicalReportLBL-33410,1993.

[4] Hammer, M.,and McLeod, D.,DatabaseDescriptionwithSDM: A Seman-
ticDatabase Model, ACM Transactions on Database Systems, 6, 3, (1981),
pp. 351-386.

[5] Hull, R., and King, R., Semantic Database Modeling: Survey, Applications,
and Research Issues, Computing Surveys 19, 3 (1987), pp. 201-260.

[6] loannidis, Y.E., and Livny, M., MOOSE: Modeling Objects in a Simulation
Environment, Information Processing 89, G.X. Ritter (ed), Elsevier Science
Publishers B.V., 1989, pp. 821-826.

[8] Markowitz, V.M., Fang, W., and Wang, J., SDT 6.0. A Schema Definition
and Translation Tool for Extended Entity-Relationship Schemas, Lawrence
Berkeley Laboratory technical Report LBL-27843, 1993.

[9] Markowitz, V.M., Lewis, S., McCarthy, J., Olken, F., and Zorn, M., Data
Management for Genomic Mapping Applications: A Case Study, Proc.
of the 6th International Conference on Scientific and Statistical Database
Management, 1992, pp. 45-57.

[10] Markowitz, V.M., and Shoshani, A., Representing Extended Entity-
Relationship Structures in Relational Databases: A Modular Approach,
ACM Transaeti,ns on Database Systems, 17, 3, (1992), pp. 423-464.

[11] Markowitz, V.M., and Shoshani, A., Object Queries over Relational
Databases: Language, Implementation, and Applications, Proc. of the 9th
International Conference on Data Engineering, 1993, pp. 71-80.

12

