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ABSTRACT

We have investigated the response of layered superconductors to an external magnetic field using the
_emiclassical phase approximation. The linearized gap equations ha.ve been derived, and solved numerically

to calculate the upper critical field Hc2(T) for layered superconductors with one or two layers per unit
cell for both s-wave and interlayer BCS-like pairing mechanisms. In the weak-hopping limit the equations
reduce to the Lawrence-Doniach form, and for general hopping the appropriate gap equations are derived

and numerically analyzed. One e)_counters the familiar dimensional crossover in the Hc2,11(T) curve for
weak hopping. A different type of dimensional crossover can occur in the two-layer case with unequal
intralayer or interlayer coupling strengths, such that at the dimensional crossover temperature, the magnetic
field suppresses the superconductivity in the weakly coupled layers while leaving the strongly coupled layers
superconducting. The effect is enhanced by unequal hopping strengths. The flux lattice consists of alternating
superconducting and normal layers.

1. INTRODUCTION

Recently, we have examined the competing roles of intralayer and interlayer pairing interactions in
)t_._ layered superconductors with 1 < N < 4, where N is the number of conducting layers per _nit cell c-axis

edge s. I-5 In these papers, the intralayer pairing was assumed to have the s-wave, BCS form for quasiparticle
pairing at local sites within a conducting layer, and the interlayer pairing interaction involved pairing between
quasiparticles directly above and below one another on adjacent layers. In all cases, the c-axis conduction was
assumed for simplicity to be coherent, as pictured for N = 2 in Fig. 1, and the magnetic field was.absent. We
investigated the superconducting gap anisotropy arising from such models, and found that it could depend
upon the wavevector kz normal to the layers, but was independent of the wavevector components k_ and ky
parallel to the layers. Hence, the questions of gap anisotropy and of the _.ompetition of order parameters
(OPs) reduced to a solvable, one-dimensional problem, with gap functions periodic in k_s.

C .

</; ....... i ..... _.._ ._ Fig. 1. Cross-sectional view of a N : 2 crystal
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arated by d and d' = s- d, respectively. The
intra- and interlayer pairing interactions Aol,"Ao2,
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t:_r th,- one-I;tyer c:kse (N = 1), intralayer s-wave l_airiitg gives rise to an isotropic, scalar single.t OP
and eiwrgy gap, the amplitude of which which has a I{(_S temperature dependence below the transition
telllper;iture "l_-.On the other hand, interlayer pairing stabilizes both a scalar singlet OP and a vector triplet
OP, with associated gap functions proportional to cos/,'es and sin/,'..s, respectively, which depend strongly
ill>on /%, exhibiting nodes. These two Ol's have identical "I'_values, r_..sulting in their coexistence in the
superconducting stale. The energy gap arising from interlayer pairing is also isotropic, however, as the free
energy is a minimum when the anaplitudes and phases of the singlet and the vector triplet components are
all equa I, When both intralayer and interlayer pairing interactions are present, the interaction leading to
the higher bare T_ value completely suppresses the transition temperature of the other to zero, leading to
an overall isotropic energy gap and a complete incompatibility of intralayer and interlayer pairing.

For multiple layers per unit cell, the competition between intralayer and interlayer pairing is more
complex. In an N-layer system, interlayer coherent hopping results in N normal state quasiparticle bands.
Since either the intralayer or interlayer pairing interactions are defined in real space (i. e., on or between
the discrete layers), in momentum space they result in both intraband and interband pairing. Qua.siparticles
which form pairs within the same band can form a time-reversal invariant state, which is not suppressed
by band parameters, such as interlayer hopping. On the other hand, interband pairing breaks time-reversal

" invariance, and the transition temperature is suppressed by interlayer hopping. In our previous analyses
of the problem, we considered only the intraband pairing parts of the intra- and interlayer interactions.

For N = 2, intralayer s-wave pairing results in isotropic gaps on both bands, even for inequivalent pairing
strengths on the layers within the unit cell. 1-4 For N 2>3 inequivalent s-wave intralayer pairing strengths

give rise to-gap functions which are different on each of theN bands, and weakly k,-dependent. 5 For this
case, the quasiparticle density-of-states (DOS) curves exhibit non-monotonic structure inside the main peaks.
For interlayer pairing with N > 2, one of the singlet state has the highest T¢, and its gap function dominates
the behavior near to To. For N = 2, the dominant singlet gap function can be either nodeless, or have a
pair of line nodes at fixed values :t=kz0 of kz. When the singlet gap function is nodeless, the other singlet
gap function and the triplet gap functions can all be neglected, On the other hand, when the singlet gap
function has a pair of line nodes, the set of three triplet states with the higher bare Tc value can become

__ non-vanishing at a second transition temperature, below the T_ of the dominant singlet state. For N >_ 3,

the triplet states are usually negligible, but for N odd, the dominant singlet gap function always has a line
node at k, = 0, leading to an overallDOS whicti increases linearly with quasiparticle energy from zero at
the Fermi energy EF, and exhibits structure within the main DOS peaks. Such structure may have been

observed in the cuprate superconductors YBa2CuaOT-6 (YBCO) and Bi2Sr2CaCu2Os+6 (BSCCO). 6'7
Similar models have been treated in the usual mean-field approximation in real space by Tachiki et al. s

and by Bulaevskii and Zyskin 9. In this approximation, the OPs are indexed according to the indexation of
the discrete layers, corresponding to _he interaction under consideration. For N = 1, there is no difference
between the real space and the band representations, as there is only one quasiparticle band. For N = 2,

however, the real space representation rem_lts in a higher Te value than does the intraband projection of the
momentum-space representation, at leas'_ for weak interlayer hopping. For strong interlayer hopping, there
is no difference between the real space and intraband representations, as interband pairing is suppressed. 1°

Recently, wc have extended our investigations of intralayer and interlayer pairing in the N = 1,2
systems to include an external magnetic field in an arbitrary direction. 11 By use of the semiclassical phase
approximation, the magnetic vector potential can be incorporated into the problem through an external
wave vector. Wc have calculated the linearized gap equation, including the Pauli paramagnetism present for
antiparallel-spin pairing states. In each case, we have derived the effective linearized Lawrcncc-Doniach gap
equation, which can be used to calculate the upper critical field tf_ for an arbitrary field direction. In all
cases, the quasipart, icle pairs obey a SchrSdingcr equation with a generalized Lawrencc-Doniach potential,
containing an harmonic potential arising from the component of the magnetic field normal to the layers,
and a periodic part arising fro,n the compollent of the magnetic field parallel to the layers. This periodic
potential is responsible for dimensional crossove.r ett'ects for the field parallel to the layers at T', below which
1.lie vortex cores tit, between the sliperconductillg layers. For N = 2, the behavior near to 7'_ for intrala.vcr and
illterl,tver Imirillg is essentially ill_listillguislial_le. Wil, li dilferelit intralav,.'r or int.erlavcr ll;liring.slr,:'ngtils,
ll<)w_.'ver,(.lie detail;; of (.lie dilllellSiOllal Cl(iss,-)vcr at,' ;ill.era'it fYOlll lllOSe of equal illlra- ¢lr illl,erlgivcr llairing,
;is l.hc ord,,r l/aralliel,cr c_/rl',SliOll¢liilg I.(i ill,' weak_,r of tile lwo iilieracl.ions is SUl,l>r_'ssedi_d;i iv,, l<J llial,
c¢)rrcsl)<lildillLr, Io lli_' sl.r<_lltr,i'r ilit_,racliolis, fie,ice. Ill,' \',)rl.ex c</r,.s Call llellci,r;ile the w<mklv-l,air,',l lay,:rs



;L'_well _L_the inlcrstil.ials, Icavi.ng the sl,rongly-lmircd layers SUlmrconducl,ing. Ill or,her w_,rds, the lattice
par;ulmter characterizing dilncnsiollal crossover is the c-axis unit cell edge s. i"or N ::: 1, I,,)wcvcr, int.crl_Lyer
pairing fi_vors triplet pairing 1"2,except for tim ticld m:ar to parMIcl to the layers in the vicinity of 7::.. llencc,
the l)ar_dlel-field contiguratiml cau exhibit ;m lid.cresting singlct-triplet tr;ulsi/i(m II

2. 'FIIE ()NE-LAYER MODELS

2.1 Intralaycr BCS pairing

We assume there is one conducting layer per unit cell which is infinitely thin. The layers are separated
by a distance s, which also compris_ the c-axis unit cell edge. Weuse units in which h = c = ku = 1. In the

----+ --...+

presence of an external magrietic field H, there is a local.magnetic induction b.(r, z) = _ x A (r, z), where

-_ = (b, b,)and -A = (A, A,), and bold-faced quantities are.two-dimensional vectors, such as A = (A_,Av).
The single quasiparticle part H0 of the Hamiltonian H = H0 + V is taken to have the gauge-invariant form

jo jo

where _j_(r) annihilates a quasipartide with spin a = 4- at position r in the jth layer, J is the quasiparticle
hopping integral between adjacent layers,

_0aCr) = [-_iV - eACr)]2/2m0 - EF - aI, (Xb)

where e is the quasiparticle charge, m0 is the bare effective mass for free quasiparticle motion parallel to the
layers, I -" gttB/2 is one-half of the Zeeman energy nplitting, and we have assumed A(r) independent of the
layer index near to H¢2. The phase factor in Eq. (la)is given by ¢i(r) = esA_(r), assuming Az indeper/dent
of z near He2, and the s-wave intralayer pairing interaction V has the form

1 :_r t r t r (le)v = -__0_ sf d ¢_( )¢_,__()¢j,_o(r)¢_(_).
j¢,

Such a model couldbe obtainedfrom Fig. I by settingJ1 = J_ = J, ,_o_= .Xo_= .Xo,and ,_.= _2 = O,

d = d' = s/2, and then letting s ---,2s.

In this treatment, we assume H _ H¢2, so that b -" H can be taken to be a constant. The temperature
Green's function matrix in constructed in the usual way,

_e T[¢_d_,_)¢],_(¢,_')1>, (_a)Gjj,(r, r', r - r') =_ - <

"_ , (_)Fji, (r, r', r - r') -< T[tbja(r, r)¢j,_(r' r')] >i

and similarly for the G _f and F'f functions, where Cja(r,r) is the quasiparticle annihilation operator at
temperature r in the lteisenberg representation. The gap function Aj(r ) is given.by

o

A0(r)=--T _ ,k0Fi_'-_(r,r,w), (3)

is taken to be independent of j, and the sum over the Matsubara frequencies w is cut otf at Wll. We _,_sume
that tl_e semich_ssical apl)roximation for the magnetic field dependence of tim (i;rccn's function in tim form
appropriate for a layered sui)crconductor. _a- _6 'l'hc inverse of the. Fourier trausforu_ of (,(!_.(r - r', w) is given" 31'

I,.v

(;'"'_ (_-,_0)::=i_, --(.o(k).-- "2,/,:(,:__:..._, (4)



where k _ (k, k_.) and ,_0,,(k) :-- k_/2,,_ -+ t';;.. ....<rl is tim Fourier tra||s[ort|| of Eq (lh) l,, t,lu, at,s,mce <,f
the vector potential. 'l'he cxpr¢,ssi(,tJ for the littcariz-.d gap ful_ction is re+ulily found to ira,

= ';' <,-+-,..,)A,,(,.),
I,.,1<_.,11k'

k_: : (k' ::t::q/2, k', :t: qz/'2), (hb)

q = H(r) -- -iV - 2cA(r), (5c)

q,(r) : -2eA,(r). (hd)

Itence, the magnetic vector potential is incorporated into the problem by use of the external wavevector

-q = (q, qz). In Eq. (5c) II(r)is the two-dimensional canonical momentum operator.

The k' integration is readily performed, leading to

1 ln(TdT)Ao(r), (6a)
(4"_m01I_i_(r ) + go(qz I))A0(r) = --b0EF

I = $oN(O)all(T¢), (6b)

all,±(T) --In(2Tw[[,j./_'T), (6c)

bo(T) = 7_(3)/[8(_T)2], N(0) = m/(27rs) is the band density of states at the Fermi level, 7 = 1.781, and
go(q,, I) is a periodic function It of q,s with period 27r. The transition temperature Tc is given by Eq. (61-_
For small J/Ep and I/Er, we may expand Eq. (6a), yielding

where II(r) is given by Eq. (5c). Equation (7) has the form of the linearized order parameter equation in the '
Lawrence-Doniaeh phenomenological model of a layered superconductor t7 for an arbitrary field direction, t4,ts
The effective mass for propagation along the c-axis in the superconducting state is obtained by expanding
Eq. (7) for small q,, which for small J reduces to M = EF/2J2s 2.

Numerical calculations 11 with the full go(q,, I) have been performed for the field parallel to the layers,

choosing Y = (H,0, 0) with _ = (0,0, Hy). In this case, Eq. (6a) reduces to the form of the Hill equation,
a Schrhdinger equation with "a periodic potential. It is'thus an eigenvalue equation, the lowest eigenvalue

of which determines the upper critical field Itc2,11 parallel to the layers. In the weak hopping limit, Eq.
(8) reduces to the Mathieu equation, as discussed previously t4. For more general hopping strengths J, the
cigenvalue equation may be solved numerically, rib do so, we employ a variational technique, using tim
periodic trial solution with variational parameter a,

LX0(y) = Cexp[-ctq_/2], for - 7r/s < qz < 7r/s, (8)

which is repeated outside the first zone. Note that q_ = -2cfty. Such a trial solution is a simplified.version

of that which has been successfully used in the study of H¢2,11in superconducting superlatticcs. 19 This form
of the trial solution is exact in the low-field, three-dimensional (3D) limit very near to 7_ and in the high-
field, two-dii+lensional (21)) ]itJ_it well below the dimensional crossover teml)erature 7"'. llowcver, it is only
qualit.ativc in (.It(' vicinity of 7'" given i,, tl,e I.av,.,rence-l)oniach model by _j..('l") = s/x/:2, ,.vhcrc ,_.L(7') is
the (;iJ)zl)urg-l,an,tau ('olmr(,_lc(, length horn|hi to tl_e layers.

lr_ Fig. 2, 11_.,.ll(7')/llu is sll,,v,'tl for this A; ::: 1 i_mt.ralavcr I)airing iit(,,Icl, f¢,r '.,'ariotls valtt+,s ,)f .I/'1',.,
v,'l,,.r,. It+_ .... ,,,,,'l',./t'+..s},'I 'I'll,: :;,)li_t (:urv,.'-; ar,: tit,' t,,;,nlt.s <)l)l+ai,t<.',:tfr<,_tt t,l,<:ort,it;tJ l,airl,r,,;tki_g ;tl(,t|c,
,d,t.;titt,',l l,v s(,t.t,it_.e,I ::: II, ;,_,I If,+, <la:;]_,,(lc_t'v,,s iI_,'l_,,l,, l_(d.h()rl_il.;tl ;ttxd l'a,tli l)airl,r<tkilt.K, l)i,,,,.,mi+m;tl
,'r+,s:.;,,v,.ri.'-;c.'.:l_il,1,.,t I,v 1,1,,.s_ t,,,_!,,_l,V..'ar,tctlr'¢;tL_lr<: +,1"It<,.ll('l' ) r,,r t,l+,'v.,,,;tkh,,l,l)it|v+,-t_r,.',.s .1/1_ : ().5).



\ - ] •x
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2.2 Interlayerpairing

ForinterlayerpairingwithN = 1,we assumeHo isagaingivenby Eq. (la),but thepairinginteraction
V isgivenby

jO'O 'l

where all values of or,o" = 4- are allowed, since the interaction is assumed to be spin-independent, and the
Pauli exclusion principle does not apply to pairing between quaiparticles at different positions: This model is

_ also illustrated in Fig. 1, with J1 = J2 = J, A01 = A02 = 0, A1 = A2, d = d_ = s, and letting s _ 2s. Hence,
both singlet and triplet pariing states are allowed, and they have identical transition temperatures, even in

the presence of spin-independent scattering, so they are essentially degenerate, and it is inappropriate to
consider one without the other. As we shall see, the magnetic field breaks this degeneracy, but the manner
in which the degeneracy is broken is rather complicated. We define the interlayer order parameters in a
manner analogous to Eq. (3),

Aoo' _'°°' '- ¢o). (10)J,J+l(r)=-T E Al"Vj,J :kltr'r'
M<,o±

We then Fourier transformation in the sum of and difference between the layer indices with wavevectors k_
and k,, respectively. At H¢_, we may neglect the k'_ dependence of the gap functions, as such dependence
arises from the center-of-mass motion of the pairs, and is only important if one considers fluctuation effects.
The resulting gap function equation is then

' , = _ '_slGO_rk, w)A_,o' , ' ,L_"_'(kz r) T E E)'I cos[(kz kz, j t +, (k' z r)G Oa (--k' --w), (11)
I_1<___±}'

where the k_k are given by'Eqs. (5b)-(5d). As shown previously t, for the uniform, field-indepedent situation,

the gap functions can be written as A,(k,,r)= Vf2cos(k,s)A,(r) and Atm(k,,r)= v_sin(k,s)Arm, where
rn = 0, 4-1 are the triplet spin states. In zero field, the three triplet spin states are all degenerate with with
singlet state. In a magnetic field, this degeneracy is broken. The lincarized gap function equations are found
to be

('__ )4--_,_n2(_-)+ q_(q.,I) A.(r) =

( 2_ ) ---' ,,,(_l'_/'r)_,,,,), (,'2_);i n_(") + u,(q;,I) A,o(,.)= _b,,fc,..

+:,,(,,,.4,no 2boEt." '



' ' N4wllerc tile I,ransiti()ll telnp(:ralures 7; and ']_:t.:_tr,',givell t)y 1 = ._A1N(0)al.(']'r) and 1 --- _

wher(, at('/') is given by l'](t. (6b), N:i:(O) _ N(()) :i: IN'(()) are the single qua._il)artic, le densities of states
for tl,_" up (+) amt down (-) spins, and N'(O) is the derivative of the density of states at the Fermi level.
l_ i.](I. (12), g.,(q_, I) and g_(q., I) are slightly (lilferent periodic functio,,s of ¢l_Swith perio(l 2n, the sum of
wliicll would equal g0(q.-, I) if w± = wll.

In a field, since N&(0) differs form N(0) by an amount linear in the field, the _ values for the three
triplet states are split, with one of the parallel-spin states having the highest T¢ value overall. Note that
both parallel-spin states do not exhibit Pauli pairbreaking, buth that both the singlet and the antiparallel-
spin triplet states do exhibit Pauli pairbreaking. In addition, since g,(q_, I) is different from g_(q_, I), the
amounts of prbital pairbreaking present in the singlet and triplet states is different. Expanding for small J
and I, we obtain g,(q,,I) ..m(J2/2EF)[1--cosq_s]+ I2/EF, and g,(q_,I) _ (3J2/2EF)[1-cosq, s]+ I2/EF.
Thus, in the weak-hopping limit, the effective masses for propagation along the c-axis direction are M, =
EF/J2s 2 and Mt -- EF/3J2s 2, respectively. As for the N = 1 intralayer pairing case, we have performed

a numerical evaluation of Hc2,11(T) for the interalyer pairiing singlet and triplet states, using the same
variational procedure [Uq. (8)].

For H[]_:, the orbital effects on all of the OPs are the same, so the Pauli pairbreaking determines the
relative importance of the states, which would be otherwise degenerate. Depending upon the sign of IN'(O),
one of the parallel-spin states will have the highest To, either To+ or T¢_. For the purposes of discussion,
we let this state be the &t+ state with transition temperature Tc_. Just below To+, only At+ with be
non-vanishing. However, at the temperature To, < Tot, the system undergoes a second second-order phase
transition to the ST state 1, in which Aj and the other parallel-spin state At_ are also non-vanishing. In
the parallel-spin state T¢, < T < Tot, the gap function will have line nodes at kz - O, +Tr/s. Below To,, the
non-vanishing A, removes the nodes, leading to a gap function which is nearly is(tropic at low temperature,
the only anisotropy arising from the Pauli pairbreaking terms. Such behavior was first discussed by Efetov
and Larkin, 12 and details of the argument are given in Ref. (11).

'.,: 2.of _, .... , i
/ \c IA

. I

[" _'"_X I Fig. 3. Curves of Hc2,11(T)/Ho versus T/Tc for the
_. _ N = 1 interlayer-pairing states, including Pauli

=-..__.0 - corrections. Curve A is'for the singlet state ne-, glecting Pauli pairbreaking. Curve B is for the

"_'\.._ _-__\ singlet state, including Pauli pairbreaking effects

\\_x_ with g/2kFS- 1. Curve C is for the parallel-spintriplet state of the same model. The system un-

X_ I dergoes a first-order phase transition at the point
• l where curves B and C cross.
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For H J_ _:, the situation is more interesting. In the low field limit, both the Pauli correction to N(0)
and the orbital correction are linear in the field strength, but the orbital correction is generally much more
important, obeying [JevF[s/T2c >> I_ulN'(O)]/N(O), where vr is the Fermi velocity parallel to the layers.
In this case, we can set "/'_ - T,, at least for a qualitative discussion. Since the interlayer pair hopping costs
more energy for the triplet states, the singlet state A, is favored near to 7_. At low temperatures, dimensional
crossover removes the orbital paribreaking for both singlet and triplet states, so the Pauli pairbreaking
donli_tates. This leads to a crossover from the singlet state A_ just below "i"_to the lower-energy parallel-spin
triplet stat,,_ A_+ at a lower temperature, witll a corresponding first-order I>l_a.s(_transition. This b(.'havior
is l)iCt_red in Fig. 3. \Vitl_ regard to nodes i_ the ga I) f||||ction, w(. note t,l_al,just I)eh)w 7'_, the singlet gap
fl_cti()n l,rol)()rli_)_tl I,(_ c()s/,-es i)revails. 'l'l_is function t_as li_m .o(t,:s ;t_,L': =.: i::_/2s. Whih' w,' l_ave not
i_lv,'stigat.(:d l l.. ('(_l)etil, i()_ t)(,twr.el_ tl_(: various st,at(:s it_ a I_agn('.tic li(.'l(l l);tralh'l to t,l_,;layers, it, s(.e_s
likely tl_at l,lw_lwo l)arall(q-sl)in states c(._ld c()_d)iue witl_ the singl.t st,gtl,e (as f,)r ll{l(: ) l,o r,._.we l,h,:



nodes at lower temperal.ure, provided that the teillperature al, whicll this occurred was above the first-order
transition t.o the purely parallel-spin triplet state. It rmilaills tohe seen if the. sillglet state could recoinbiim
with the parallel-spin triplet st.ates at a I.elnl_erature lower than this tirst-orde.r trailsiti<m.

3. TIII_ 'I'W()-I,AYEII. MOI)EI,S

3.1.httralayerBCS pairing

The singlequasiparticleHamiltonianfora superconductorwithtwo layersper unitcellc-axisedgeis
takentobe oftheform

<1,)
,lo n

where n -- 1,2, J1 and ./2 are the interlayer hopping matrix elements pictured in Fig. i, _0<_(r) is given
by Eq. (lb), the interlayer spacings are d within a unit cell and d' = s - d between neighboring unit cells,
respectively, _bjl(r) = edA,(r), and _bj2(r) = ed'Az(r) are required for gauge invariance near to He2. In the
absence of the pairing interaction, H0 can be diagonalized by the canonical transformation. 1-4 giving rise
to two normal-state quasiparticle bands indexed by +. As for the N = 1 case, we employ the quasiclassical
approximation to write the Green's function in the presence of a magnetic field in terms of the bare Green's
function in the absence of the vector potential,

GO+°-' (k,w) -- iw - &o(k) T e. (k=), (14)

where _0a(k) is the same as in Eq. (4), and ¢±(k,) = [d_ + J_ + edtJ2coskzs] 112.
For BCS intralayer pairing with N = 2, the pairing interaction may be written as

1
[.t2_.,.1 tr_tb I _(r)_ n :(r) i_b.,,(r), (15)

jno"

which ispicturedinFig.I.Although itispossibletotreatthecaseof inequivalentconductillglayerswith

inequivMenttwo-dimensionalband structures1°,2°,we assumeforsimplicitythatthelayershavethesame

zero-fieldtwo-dimensionalband structures_0a(k),but allowforinequivalentintralayerpairinginteractions

A01 and A02.As a result,each layerwithina unitcellhasitsown gap functionAn(r),obtainedfrom

1_lS_ii k'm

where n,m = 1,2 index the layers within a unit cell, and the k_: are given by Eqs. (Sb)-(Sd).
Although in the N = 1 case, intralayer pairing gives rise to an expression for T_ [Eq. (6b)] which

is independent of the hopping J, for the general two-layer problem with inequivalent intralayer pairing
interactions, Tc depends upon the hopping matrix elements J1 and jr=. lfence, we must first determine the
expression for the zero-field To, before we can write down the equations for the gap functions in the presence
of a magnetic field. For simplicity, in the following we shall ignore the Pauli limiting, but such effects always
occur for singlet states, as for the N = 1 cases discussed in §2. In the absence of a magnetic vector potential,
the linearized gap equations may be written as

A,, = J0,,N(0) _'[all(T)&,,,- (-1)"-"'6a(7')lA,,, (17)
lit

where 6a(7') gives rise to pairbreaking due to l,he. interlayer hol)ping. The critical telnperature "/c is then
found by seti,ing the deteriniilant of l']q. (19) equal to zero.

There ;ire usually two solutions fc_r{I'_el/tallied from Eq (17), and the physical solution is the higher 7'c
valtie. Ill tim lift,it of I,o lu,pt,i_,g (Ji, .1:,.....()), bfl(']') ..... 0. so l']q. (17) f;tcl,orizes. 'l'lte critical t,"lllperature

: "l;-ll, _d>l.;tiilo<lill tlli.'_ liillil. <_fIIi) illi.,'llav_'r ll_,l>lliiil,;, is tliol

i ,\..N(()),il('l;.,, • 1, (lS<_)
............................................................................................... _'=_<"=-'_"_ ...................................................................... Ilfll................................. I11[|.............................. _"--



where A> is tl,; larger of A0a, A0.,. t%r su_all ./_, .1_, 6,(7') _ bo(.]i24-J._)/'2, ,vl_icl_is I,airl)rcakiug, d,;crca.,dug
,l:- frotll its bare value "]_o. IJl the opposite lill,il, of strong int,:rlayer hopl)ing, IllaX(./i, .1",) >> Wll, _a('/') ,._

;_-all('l'), and "1':.is given by

_N((i),,ll('l'e)- 1, (l_b)

where A = (A01 + A02)/2 is the average of the intralaycr pairing interactions. A l)lot of 7'ell'co versus J2/T¢o
is presented by curve A in Fig. 4 for Jl/J2 = 0.8, A02/A01 = 0.9, and N(0)A01 = 0.5. In the limits of weak
and strong bopping, "/_/Tc0 approaches unity and 0.9, respectively. Note that the strong hopping limit is
obtained when only one of the interlayer hoppings is large, as well as when both of them are large.

co I Z l [_

Fig. 4. Plots of 7c relative to the respective bare
B value To.0 obtained in the absence of interlayer

hopping, as a function of J_/T¢o, for two mod-
'L 095 - els with N = 2. Curve A is for intralayer pairing
- with A0_/A01 = 0.9, J1/J2 = 0.8, and N(0)A01 =

0.5. For very strong hopping, :l_/Tco "--*0.9, the
band limit. Curve B is for interlayer pairing with
At/A2= 0.9, J1/J2 = 0.7, and N(0)A2 = 0.5.
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We now consider a finite magnetic field. In order to simplify the equations as much as possible, we shall
_1_ neglect the Pauli contributions, but these can be inserted in a manner entirely analogous to that for the

N = 1 case. Expanding Eq. (16) for small q, and carrying out the k_ integrations, we have the system of
equations of the form

l-I2(r)tnn,(q,) + gnn,(q,))An,(r) = boEF A0,,N(0) )An(r)' (19)

where t,n,(qz) and 9nn'(qz) are periodic functions _ of qzs with period 27r. While these functions appear to
also depend upon d as well as upon s, the d-dependence only enters the relative phases of the constituents
of the resulting gap functions, but does not contribute to any measureablc quantity.

In the weak hopping limit J1, J2 << To, the functions t,,, and gn,,, may bc evaluated analytically, and
the 2 x 2 matrix diagonalized, leading to

1 , )(4_0 II_(r)_ _[Jl 4- J_ + 23232 cosq, 1 a 1 b0(,]_ + j_))A+(r),(20)

where tile A+(r) are the two linearly independet gap functions obtains in diagonalizing the matrix. Equation
(20) was used by Lee, Klemm, and Johnston 2_ to fit the {tuctuation diamagnetism data of YBa_Cua07, and
was derived phenomenologically. _ In terms of fluctuations, the quantity q, is a variable of integration, and
II _ --, k _ is another variable of integration. Note that there are two order l)aramctcr bands, with different

7_ values. In this case, only the (-) l)and with the higher, unsUl)l)ressed "1'_value [given by either Eq. (18a)
or (181))] is relevant for tile study of It_.2. This band h_s a q_ disl)er:dou wllich is silnilar to that of the

. t -" 2 .l,awreuce-l)oniach nlo(lel, and an effective t_a.ss for c-axis l)rol_agat,icm giwn_ I)v M = ';l"(Jl " + .17, )Is "e
A_tothcr i_d,crestiug litnit is the (:asc of two very (litf'creut layers, IA,,_I >> IA(,..,I,for which the' supercon-

_l_l,'tivity in ll_c n := '2 layers is I,rii_arily (,I,l.ained fr(_t l,h,' pr(:)xil_il.y ()f t.h(. ,n,)r(, St_l,(:rcotMuctin_ n = 1



In this cw_e, I.her_' is a sllpl_rossion _d '1', due I._ illi,¢,rlm,nd tmirbro.aking, a.d a l,awreuce-i)oniach ¢lislmrsion

characl.erizedby a c-axiseffective,11assg,iwm by AI _-::

i ...........................
........................................................ (t,)
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Fig. 5. (a) Shown are ffc2,11(7') curves neglecting Pauli pairbreaking for an N = 2 intralayer
pairing model with A02/)_0z = 0.5, Jz/J2 = 0.1, and X0zN(0) = 0.5. Dimensional crossover
is possible for Jl/Te = 1, which corresponds to rather large values of J2/Tc = 10. (b)The

magnitudeIA_/AII of the ratio of the intralayer order parameters calculated at H,2,II(T) for
the same parameters as in (a), as a function of T/Te and hopping strength ,12To. The curves
demonstrate that at the dimensional crossover temperature T', the order parameter in layer 2 is

i'-,_ suppressed.

In numerical evaluation of He2,11,we have neglected the Pauli paribreaking, as it plays a similar role as in
the N = 1 case. The orbital pairbreaking is a bit different than for N = I, since there are two, inequivalent
order parameters. Hence, we have used a variational procedure which is an extension of that used for the
N = 1 case,

A,,(q,) = C,, exp[-aq_/').], for - _/s <_q, <__/s, (29.)

for n = 1,2, where both a and C:_/Ct are variational parameters. These variational forms are used to
solve Eq. (19) with the full expressions for t,,n, and g,_,_, given elsewhere 11. The ratio C2/G1 is chosen to
diagonalize the equations, and a is then chosen so a.s to give the maximum 7_:(H). The resulting ffc2,11(7')
curves are shown in Fig.5 (a). All of these curves are linear near to To, as in the anisotropic Ginzburg-Landau

model, but show dimensional crossover at the temperature 7'* at which He2,1I(T) diverges in the absence of
Pauli pairbreaking.

When one of the hoppings is much larger than the other one, the weak hopping determines the di-

mensional crossover. When J2/Wll >> l and Jl/Wll << 1, the two layers within the unit cell are strongly
coupled together, and act a.s a single layer which is weakly coupled to its neigLboring layers. In this limit,
the linearized gap equation reduces to that of Eq. (6), except that J is replaced with Jl[2 and X0 is replaced

by (,he average interaction A = (A0_ + A02)/2. In Fig. 5 (a), we have shown plots of 1t_2,11(7')/Ito versus
7'/7_ for A0_./A0_ = 0.5, N(0)A0_ = 0.5, ,1t/J._ = 0.1, for various values of J2/7'c. The sharp upward cur-
vature at the dimensional crossover tellli)eratur(: '1'* is expected to be smoothed somewhat by the ittclusion
of l'auli l_airbroaking efI'ects. 'l'hes, curves det_lonstrate that dimensional crossow'.r occurs when the m_mller
I_oi_ping (in this case, ,I_ = [).lJ.,) _s I_,ss tha_ or co=_l_aralfle to 7'_. The. calculations also slmwt'd that. tho
mixing ratios of A_ and A_ is sl.r¢,_gly alt'ectod I_yditn¢,nsional crossovor, l_elow 7", t,l_, ord,,r i_aranwter

_" c_rresl)<)mting t,_ l.l_, layer wit,l_ t.lw w,,ak_,r l_airing i_lt,racl.iot_ c_;as_,s 1,_ Im :_t_l_.rcott<lttcl.ing' a,_;sl_nvn i_
l"ig 5(I,) ']'l_is ]d_'l_o_'_lot_ in sit_ila_ Ix, t.l_at,first _li_,'_ss,,d by 'l'achiki an_! 'l'akal_asl_i 'n i_ Sulwrc_n_lttcti_ L

Sulmrl:tt.l.icvs , I_uLis a bit. dill'_r_:_l,it_ l,l_al,il. ,l_ws I_l, _h:l_O_dup_t_ t,l_! it_it,ial sl_qw._ff I1,.u,11('1')as _l_g,'r_itwd



by l,li," ;llii_)illit, (Jr iliil,uril.y scal,l.erillt_, a.St,ll_qr (ti(I eft,,c.I,.Ill ()iir c;t.<4e,(lillieli._i_,iial cr(m;sf)w;r ,)ccllrs wlieli l,lio
vorLex coros (,xl,end over Ilie entire unil, cell edgo ._, liol. Olily <)vt,r l,lle ill,_lllal.iil_4 ilil.ersl,ii.ial rel_iOliS, Ill,l. also
Sdlipres;.iilig, l,he weakly Slllierc.oll¢illcl,illg, layers. 'l'liere is (lilly f Jill, dililellf_iOII;ll cr¢,ssov_'r l,elillll..ritl, tlre '['* ill
(lilt f "'"'2,II1()(]('[_.

3.2. Int, l:rllly(.'.r liiliring

l"or the N = 2 interlayer pairing case, tile interaction has the foriri

' + (2a)
V = -_ o,

The interactions A1 and ,_2 form pairs on adjacent layers in the same unit cell and in adjacent unit cells,
respectively. After Fourier transformation over the unit cell indices, the gap equation in the senriiclassical
approximation becomes

: r v..,(k.- ,k' .0o' ,r)G,,m, (-k_ -w), (24)unmt +
I_1<_- l:' ram'

where k_: are given by Eqs. (5b)-(5d), and it is understood that the operators in k__act to the left [upon
Amm,(k_,, r)]. The Fourier transform of the interlayer pairing interaction is an ofVdiagonal matrix of rank 2,
with noli-vanishing elements

Vl_(k, - k'.) = ,_i exp[i(k, - k',)d] + _2 exp[-i(k, - k'z)d'] (25)

and V21(k, -- k'z) = V{2(k _ - k_). Since it has been shown both in the weak hopping limit l° and in the strong
hopping limit 1-4 that the highest Tc value for interlayer pairing with N = 2 occurs for one of the singlet

8_ states, we set o" = -a and drop the spin indices on the gap functions. Thus, the only non-vanishing Ann,
are A12(k,, ) and A21(k,, r). The structure of Eq. (28) leads to the useful parametrization,

A12(k:, r) = -Al(r)exp[ik, d] + A2(r)exp[-ik:a'], (26)

and A2_(k,, r is obtained from Eq. (26) by changing the sign of k,. Since a+a'= explik,aqandexp[-ik, d']
are mutually orthogonal functions over the full Brillouin zone, so that the gap equations may be separated
into equations for the An(r). After some algebra, we obtain

tit

wliere the inn' arid the finn' for n, n * - 1,2 are periodic functions of q,s with period 2r, tile detailed forms
of which are given in R.ef. (11). The transition temperature is obtained by setting II(r) = 0 and q. - 0,
and 7' = To, leading to a simple matrix of rank 2 which is easily diagonlized. In the absence of interlayer
hopping, the bare transition temperature To0 is given by Eq. (18a) with ,_> in this case being the greater of
Al and A2, repectively. A plot of TelT_o versus d2/T,o is given in Fig. 4.

hi the weak hopping limit Jl,./2 << T,, these functions may be expanded. Letting the renormalized
coupling strengths be _l = Al/[1 + AiN(0)b0d_] and _ = A_/[1 + A2N(O)bod?], for the special case _l = _2,
Eq. (78) reduces to

7n_(, .)+-_(1 --<:o._q=,_))i_(,.) = t,,,/'5.. -_ N(O)

wliere L_-t ....Al :t:A.>. 'I'll('. or(ler i_aralllel, er _1 llllS l,lw. lli_li+_r"1'_value, 411<1 fiJr I,llis st.at,I, tile c-a×is eirectiw_
IIIrl.%.q i:q A[ .... Iq#.'12,ll./:!.'_'-'.

["<)r j.,;,'iieral liOl,tlilig and ll;tirilig slrellgl.lis, l,ti<. Iili<':triz_!_t_:_lual,i<)lis t'<>r1,lie ord_.r llaraillel,_rs ill tim

I_r,'._+,ll,,,,)[ ;t ill;ty, li<.,l,ic field c;iil I)e solv,'<l liilllil!rically I.,_obl.aiil i.lle llltl,.r ,rii.ic,l li,.l_l 11<::,11('1') Ill Fig.

................................ _....... _ ................ ,_ _..._ _._ .... ,._ _ .



6(a), a set of f[_._,II(T)/Ho versus T/T_ curves is shown for .k_/,_, = 0.5, J,/J2 = 0.2, and N(0))_, = 0.5,
neglecting Pauli pairbreaking. Since dimensional crossover is determined by tile weaker of the hopping

strengths (Jl in this case), it can occur for rather large values of the stronger hoppi,ag (J2). In Fig. 6(b),

we have plotted the ratio of the magnitudes of the order parameters A2 and A1 versus 7'/T_, for tile same

parmaeters as in Fig. 6(a). Precisely as for the situation of inequivalent intralayer pairing with N = 2,
the order parameter (_2 in this case) corresponding to the weaker interlayer pairing interaction (,_2) is

suppressed below T °. Hence, the magnetic response of a layered superconductor with N = 2 layers per unit

cell cannot distinguish between intralayer and interlayer pairing, at least near to H¢2.

0.7 - /.fc,o=_

0.6 - 0.1 - J2

0.5 --

=? J
2/ToO

0.4 - t_-r" _.
I<:1

0.3 -

0.2. -

0.1 - (a) i
,

i i ! '
0.8 0.9 1.0 0 _...I i

0.8 0.9 1.0 i

T/To T/T= i

_., Fig. 0. (a) Shown are He2,11(T)/Ho versus T/Te curves for aninterlayer pairing N = 2 model

'> with ,k2/,_l = 0.5, Jl/J2 = 0.2, and ,_IN(0) = 0.5, for various values of J2/Tco. Dimensional
crossover is possible for J_/Tco < 2, which occurs for rather large values of J_/T¢o. (b) The

ratio 1_2/&11 of the two interlayer pairing order parameters for N = 2, as a function of T/Tc

for the same parameters as in (a). These curves demonstrate that at the dimensional crossover

temperature T*, the _ order parmeter corresponding to the weaker pairing interaction _2 is

suppressed.

4. SUMMARY AND DISCUSSION

We have derived the linearized gap function equations in the presence of a magnetic field for layered

superconductors with one and two layers per unit cell, with either intralayer or interlayer BCS-like pairing

interactions. In the limit of weak interlayer hopping, the equations reduce to the Lawrence-Doniach form,

with c-axis dispersions proportional to 1 - cos q_s and pair hopping energies proportional to J,_/EF. For

more general hopping strengths, the equations for He2 are similar to the Law.rence-Doniach form, with c-axis
dispersions that are periodic functions of qzs with period 27r, but with more general mathematical forms.

For N = 1, Hc2,11(T) can distinguish between intralayer BCS and interlayer BCS-like pairing interactions.

While both situations exhibit the familiar dimensional crossover at T* given by _x(T*) = s/,¢c2, the interlayer

pairing case can also exhibit a first order transition from the singlet state favored energetically .near to
Tc to the parallel-spin triplet state at lower temperatures. For the field parallel to the c-axis, interlayer

pairing favors parallel-spin triplet, pairing, whereas intralayer pairing favors singlet pairing. For N = 2,
since singlet states are dominant for both intralayer and interlayer pairing, the tie=, measurements cannot

distinguish between intralayer and interlayer pairing mechanisms. Itowever, and interesting situation arises

for either mechanism when one of tim two pairing strengths is less than tilt other. In this case, below the

dillw.nsiollal crossover tenlperature 7"" at, wllicll 1t_._,,11(7") would diverge in tim absence of l_auli lilniting,
I,Is,, order l_aranml.er correspol_ding to t, ll,_ weaker of t.he two pairillg iz,teractions is SUl>pr_:esse.d, allowing tlw

vort,,;x cor,_s to peuctr;d,e l,}lose lave.rs or interst, il,ials. All, lmugh we Isave not. yet solved f_,r t lw tt_x lattice

s/.rt_cl.t_r,, i[_ suc}_ a sil._al.ion, we anticipate l.l|al tim flux l;tttico it_ a parall,:l field b,low 7'" wit l_ .\ ...... 2 will



) ) j

consist, of alt,crnating sul)erconducting and normal layers. Such a inixcd state shouht be capable of carrying
large currents, since tile tltlx lattice is pinned intrinsically by tire crystal lattice.

This work was SUl)i)ort,cd by the U. S. l)epartment of I';nergy, Division of Basic Energy Sciences, under
Contract Nos. l)i;;-AC;005-84OR.21400 with Martin Marietta Energy Systenls, Inc., and W-31-109-ENG-38.
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