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Intra-versus interlayer pairing in the copper oxide superconductors: Response to a magnetic field
Richard A. Klemm

Materials Science Division, Argonne National Laboratory
9700 South Cass Ave., Argonne, lHlinois 60439 USA

Samuel 1I. Liu

Solid State Division, Qak Ridge National Laboratory
Oak Ridge, Tennessee 37831-6032 USA

ABSTRACT

We have investigated the response of layered superconductors to an external magnetic field using the
semiclassical phase approximation. The linearized gap equations have been derived, and solved numerically
to calculate the upper critical field H.,(T) for layered superconductors with one or two layers per unit
cell for both s-wave and interlayer BCS-like pairing mechanisms. In the weak-hopping limit the equations
reduce to the Lawrence-Doniach form, and for general hopping the appropriate gap equations are derived
and numerically analyzed. One encounters the familiar dimensional crossover in the Hcyy(T') curve for
weak hopping. A different type of dimensional crossover can occur in the two-layer case with unequal
intralayer or interlayer coupling strengths, such that at the dimensional crossover temperature, the magnetic
field suppresses the superconductivity in the weakly coupled layers while leaving the strongly coupled layers

superconducting. The effect is enhanced by unequal hopping strengths. The flux lattice consists of alternating
superconducting and normal layers.

1. INTRODUCTION

Recently, we have examined the competing roles of intralayer and interlayer pairing interactions in
layered superconductors with 1 < N < 4, where N is the number of conducting layers per unit cell c-axis
edge 5.5 In these papers, the intralayer pairing was assumed to have the s-wave, BCS form for quasiparticle
pairing at local sites within a conducting layer, and the interlayer pairing interaction involved pairing between
quasiparticles directly above and below one another on adjacent layers. In all cases, the c-axis conduction was
assumed for simplicity to be coherent, as pictured for N = 2 in Fig. 1, and the magnetic field was absent. We
investigated the superconducting gap anisotropy arising from such models, and found that it could depend
upon the wavevector k, normal to the layers, but was independent of the wavevector components k- and k,
paraliel to the layers. Hence, the questions of gap anisotropy and of the ~ompetition of order parameters
(OPs) reduced to a solvable, one-dimensional problem, with gap functions periodic in k.s.
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Fig. 1. Cross-sectional view of a N = 2 crystal
section. The quasiparticles hop with matrix ele-
ments J; and J; between neighboring layers sep-
arated by d and d' = s — d, respectively. The
intra- and interlayer pairing interactions Agy,~Ag2,
j kP y// A1, and Ay are also pictured.
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For the one-layer case (N = 1), intralayer s-wave pairing gives rise to an isotropic, scalar singlet OP
and energy gap, the amplitnde of which which has a BCS temperature dependence below the transition
temperature 7-. On the other hiand, interlayer pairing stabilizes both a scalar singlet OP and a vector triplet
OP, with associated gap functions proportional to cosk,s and sin k. s, respectively, which depend strongly
upon k., exhibiting nodes. These two OPs have identical T, values, resulting in their coexistence in the
superconducting state. The energy gap arising from interlayer pairing is also isotropic, however, as the free
cnergy is a minimum when the amplitudes and phases of the singlet and the vector triplet components are
all equal. When both intralayer and interlayer pairing interactions are present, the interaction leading to
the higher bare T, value completely suppresses the transition temperature of the other to zero, leading to
an overall isotropic energy gap and a complete incompatibility of intralayer and interlayer pairing.

For multiple layers per unit cell, the competition between intralayer and interlayer pairing is more

" complex. In an N-layer system, interlayer coherent hopping results in N normal state quasiparticle bands.

Since either the intralayer or interlayer pairing interactions are defined in real space (i. e., on or between
the discrete layers), in momentum space they result in both intraband and interband pairing. Quasiparticles
which form pairs within the same band can form a time-reversal invariant state, which is not suppressed
by band parameters, such as interlayer hopping. On the other hand, interband pairing breaks time-reversal
invariance, and the transition temperature is suppressed by interlayer hopping. In our previous analyses
of the problem, we considered only the intraband pairing parts of the intra- and interlayer interactions.
For N = 2, intralayer s-wave pairing results in isotropic gaps on both bands, even for inequivalent pairing
strengths on the layers within the unit cell.!=* For N > 3 inequivalent s-wave intralayer pairing strengths
give rise to-gap functions which are different on each of the'N bands, and weakly k.-dependent.® For this .
case, the quasiparticle density-of-states (DOS) curves exhibit non-monotonic structure inside the main peaks.
For interlayer pairing with N > 2, one of the singlet state has the highest T, and its gap function dominates
the behavior near to T.. For N = 2, the dominant singlet gap function can be either nodeless, or have a
pair of line nodes at fixed values k.o of k,. When the singlet gap function is nodeless, the other singlet
gap function and the triplet gap functions can all be neglected. On the other hand, when the singlet gap
function has a pair of line nodes, the set of three triplet states with the higher bare T, value can becomie
non-vanishing at a second transition temperature, below the T, of the dominant singlet state. For N > 3,
the triplet states are usually negligible, but for N odd, the dominant singlet gap function always has a line
node at k, = 0, leading to an overall DOS which increases linearly with quasiparticle energy from zero at
the Fermi energy Ef, and exhibits structure within the main DOS peaks. Such structure may have been
observed in the cuprate superconductors YBa;CuzO7_s (YBCO) and BiaSraCaCuz0s4s (BSCCO).%7
Similar models have been treated in the usual mean-field approximation in real space by Tachiki et al.®
and by Bulaevskif and Zyskin®. In this approximation, the OPs are indexed according to the indexation of
the discrete layers, corresponding to tlic interaction under consideration. For N = 1, there is no difference
between the real space and the band reprasentations, as there is only one quasiparticle band. For N = 2,
however, the real space representation results in a higher 7% value than does the intraband projection of the
momentum-space representation, at least for weak interlayer hopping. For strong interlayer hopping, there
is no difference between the real space and intraband representations, as interband pairing is suppressed.!®
Recently, we have extended our investigations of intralayer and interlayer pairing in the N = 1,2
systems to include an external magnetic field in an arbitrary direction.!! By use of the semiclassical phase
approximation, the magnetic vector potential can be incorporated into the problem through an external
wave vector. We have calculated the linearized gap equation, including the Pauli paramagnetism present for
antiparallel-spin pairing states. In each case, we have derived the effective linearized Lawrence-Doniach gap
equation, which can be used to calculate the upper critical field H.o for an arbitrary field direction. In all
cases, the quasiparticle pairs obey a Schrodinger equation with a generalized Lawrence-Doniach potential,
containing an harmonic potential arising from the component of the magnetic field normal to the layers,
and a periodic part arising from the compouent of the magnetic field parallel to the layers. This periodic
potential is responsible for dimmensional crossover effects for the field parallel to the layers at 1™, below which
the vortex cores fit. between the superconducting layers. For N = 2, the behavior near 1o T, for intralayer and
interlayer pairing is essentially indistinguishable, With different intralayver or interlayer pairing strengths,
however, the details of the dimensional crossover are altered fram those of equal intra- or interlayer pairing,
as the order parameter corresponding to the weaker of the two interactions is suppressed rela ive to that
carresponding to the stronger interactions. Hence, the vortex cores can penetrate the weakly-paired layers
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as well as the interstitials, leaving the strongly-paired layers superconducting. In other werds, the lattice
parameter characterizing dimensional crossover is the c-axis unit cell edge s. For N = [, bowever, wnterlayer
pairing favors triplet pairing'?, except for the field near to parallel to the layers in the vicinity of 7, Hence,
the parallel-field configuration can exhibit an, interesting singlet-triplet transition.'!

2. THE ONE-LAYER MODELS

2.1 Intralayer BCS pairing

We assume there is one conducting layer per unit cell which is infinitely thin. The layers are separated
by a distance s, which also comprises the c-axis unit cell edge. We use units in which k = ¢ = kg = 1. In the

. erd . . . . e - -
presence of an external magretic field H, there is a local. magnetic induction b.(r,z) = V x A(r, z), where

b= (b, b,) and A= (A, A;), and bold-faced duantities are two-dimensional vectors, such as A = (A, Ay).
The single quasiparticle part Hp of the Hamiltonian H = Ho + V is taken to have the gauge-invariant form

Ho=3s / dr], (O )eau (E50(0) + T 3 s f el (), () expli; () + Hel,  (la)
jo jo

where xbja(r) annihilates a quasiparticle with spin o = % at position r in the j*" {ayer, J is the quasiparticle
hopping integral between adjacent layers,

€oo(r) = [~iV — eA(r)}?/2mo — EF ~ o1, (1b)

where e is the quasiparticle charge, myg is the bare effective mass for free quasiparticle motion parallel to the
layers, I = gup/2 is one-half of the Zeeman energy splitting, and we have assumed A(r) independent of the
layer index near to H.,. The phase factor in Eq. (1a) is given by ¢;(r) = esA,(r), assuming A, independent
of z near H.9, and the s-wave intralayer pairing interaction V has the form

V= “}i'\oZ5/dzl"/’!a(")*/’},~a(l‘)¢j,_.,(r)t{zjd(r). (o)
jo

Such a model could be obtained from Fig. 1 by setting J; = Jo = J, do1 = Ao2 = Ao, and Aj-= Xy =0,
d =d' = s/2, and then letting s — 2s.

—
In this treatment, we assume H ~ H.,, so that ¢ = H can be taken to be a constant. The temperature
Green's function matrix in constructed in the usual way,

G?ﬂ(r, v, 7= 1) = = <T[h,(r, r)gb},p(r', )] >, (2a)
Ff(e,r', 7 = 1) =< Tl olr, Iy, 7)) >, (26)

and similarly for the Gt and Fi functions, where 11),-,,(1',1') is the quasiparticle annihilation operator at
temperature 7 in the Heisenberg representation. The gap function A;(r) is given by

Do(r) = =T Y XoFj;™"(r,r,w), (3)
|w]Lwyy ‘

is taken to be independent of j, and the sum over the Matsubara frequencies w 1s cut off at w);. We assume
that the semiclassical approximation for the magnetic ficld dependence of the Green's function in the form

appropriate for a layered superconductor.’®=1¢ The inverse of the Fourier transform of (I?;-’,(r —r' w)is given
by

G (k,w) = 1w - Euo(k) — 2J cos k, s, (1)
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where & = (k, k) and &,(k) = k¥ /2my — K — al is the Fourier transform of Bq. (1b) w the absence of
the vector potential. The expression for the linearized gap function is readily found to be,

Ag(r) = L L,\.,(,‘* WG (kL —w)Ao(r), (Ha)
Jw] ey &

ky = (k' £ q/2,k £ ¢./2), (50

q = I(r) = —iV ~ 2¢A(r), (5¢)

g:(r) = —2eA,(r). (5d)

Hence, the magnetic vector potential is incorporated into the problem by use of the external wavevector
7 =(q,q:). In Eq. (5¢) II(r) is the two-dimensional canonical momentum operator.
The k' integration is readily performed, leading to

(4—1—“”0') +g0(g: 1) Bo(r) = 3  In(T./T)Ao(r), (6a)
my F

1= AgN(0)ay(Te), (6b)

ay,L(T) = In(2ywy, L /T), (6c)

bo(T) = 7¢(3)/[8(%T)?)}, N(0) = m/(2ns) is the band density of states at the Fermi level, ¥ = 1.781, and
90(q:, I) is a periodic function!! of ¢,s with period 2x. The transition temperature Tc is given by Eq. (fF).
For small J/Er and I/Ep, we may expand Eq. (6a), yielding ,

2
(4",%;“2(") + -[:«]]‘—;[1 — cos(2eA, s)]) Ao(r) = -6;%,—; (ID(TC/T) - 2b012)A0(!‘), (M

where II(r) is given by Eq. (5¢). Equation (7) has the form of the linearized order parameter equation in the -
Lawrence-Doniach phenomenological model of a layered superconductor!? for an arbitrary field direction.!4:18
The effective mass for propagation along the c-axis in the superconducting st.at.e is obtamed by expanding
Eq. (7) for small ¢,, which for small J reduces to M = Ep/2J2s2.

Numerical calculations!! with the full go(q,,I) have been performed for the field parallel to the layers,

choosing b = (H,0,0) with A= (0,0, Hy). In this case, Eq. (6a) reduces to the form of the Hill equation,
a Schrodinger equation with a periodic potential. It is'thus an eigenvalue equation, the lowest eigenvalue
of which determines the upper critical field H.,) parallel to the layers. In the weak hopping limit, Eq.
(8) reduces to the Mathieu equation, as discussed previously!®. For more general hopping strengths J, the
eigenvalue equation may be solved numerically. To do so, we employ a variational technique, using the
periodic trial solution with variational parameter «,

Ao(y) = Cexp[~ aqf/?], for ~n/s<gq,<7/s, (8)

which is repeated outside the first zone. Note that ¢, = —2ef{y. Such a trial solution is a simplified version
of that which has been successfully used in the study of H., ) in superconducting superlattices.!® This form
of the trial solution is exact in the low-field, three-dimensional (3D) limit very near to 7. and in the high-
field, two-diiensional (2D) limit well below the dimensional crossover tcmporaturc T°. However, it ts only
qkldh(dtlw in the vicinity of 7 given in the Lawrence-Doniach model by &, (1) = s/V/2, where €,.(T') is
the Ginzburg-Landau coherence length normal to the layers.

In Fig. 2, .o (T 1y s showu for this N o= 1 ntralayer pairing model, for various values of J /T,
where 1y = T fkpslel The solid curves are the results obtatned from the orbital pairhreaking alone,
obtained by setting 7 = 0, and the dashed curves inelude both orbital and Panli pairbreaking. Dinvenstonal
crossover is exhibited by the strong upward curvature of 1 (7)) for the weak hopping curves (J /1. . 0.5).




Fig. 2. The upper critical field /{5 (T) rela-
tive to Hy is plotted versus T/T. for the one-
layer model with intralayer s-wave pairing, are
plotted for different values of J/T¢, and Hg =
moT,/kprslel. Solid curves are the result of or-
bital pairbreaking alone (I = 0), and dashed
curves include both orbital and Pauli pairbreak-
ing effects, assuming g/2krs = 0.2.

HeaMo

2.2 Interlayer pairing

For interlayer pairing with N = 1, we assume Hy is again given by Eq. (1a), but the pairing interaction
V is given by

V=gh 5o [ a0 .00, ©
joo!

where all values of o,0’ = + are allowed, since the interaction is assumed to be spin-independent, and the
Pauli exclusion principle does not apply to pairing between quaiparticles at different positions. This model is
also illustrated in Fig. 1, with J; = Jo = J, do1 = o2 = 0, A\; = A2, d = d’ = 5, and letting s — 25. Hence,
both singlet and triplet pariing states are allowed, and they have identical transition temperatures, even in
the presence of spin-independent scattering, so they are essentially degenerate, and it is inappropriate to
consider one without the other. As we shall see, the magnetic field breaks this degeneracy, but the manner

in which the degeneracy is broken is rather complicated. We define the interlayer order parameters in a
manner analogous to Eq. (3),

t !
A5 () = =T Y MF{7(r,rw). (10)
{wiwy
We then Fourier transformation in the sum of and difference between the layer indices with wavevectors k’,
and k,, respectively. At H.z, we may neglect the k’ dependence of the gap functions, as such dependence

arises from the center-of-mass motion of the pairs, and is only important if one considers fluctuation effects.
The resulting gap function equation is then

A% (k,r) =T >0 Acos(k, — k)s]GO (K, w) AT (KL, 1) GO (<L, ~w), (11)

[wiSwy &

where the £} are given by 'Eqs. (5b)-(5d). As shown previously!, for the uniform, field-indepedent situation,
the gap functions can be written as A,(k.,r) = V2 cos(k,s) A,(r) and A¢m(k,,v) = vV2sin(k,s) A¢m, where
m = 0,1 are the triplet spin states. In zero field, the three triplet spin states are all degenerate with with

singlet state. In a magnetic field, this degeneracy is broken. The linearized gap function equations are found
to be

(4"1 () + 0, (0, 1)) Aulr) = e i (0T, (124)
\ . ‘
(H:,—,;” (x )'i“!/t(({:,l))élm(l) S (1. /YA i), (120)
]
(/’1"‘”’;11 (r) + {lt(’l:,U))Ati(r) = 2!)01 - (s /YN < (r). (12¢)




where the transition temperatures 7. and T4 are given by 1 = ,15/\1N(0)al('_l}) and | = %A,Ni(O)aL(Tci)‘
where ay (1) is given by Bq. (6b), Ny (0) == N(0) £ IN'(0) are the single quasiparticle densities of states
for the up (4) and down (=) spins, and Nl(()) is the derivative of the density of states at the Fermi level.
In bq. (12), 9.(q., ) and ¢,(q., 1) are slightly different periodic functions of ¢, s with period 2, the sum of
which would equal go(q., 1) if wi = wyy.

In a field, since N1 (0) differs form N(0) by an amount linear in the field, the T values for the three
triplet states are split, with one of the parallel-spin states having the highest T, value overall. Note that
both parallel-spin states do not exhibit Pauli pairbreaking, buth that both the singlet and the antiparallel-
spin triplet states do exhibit Pauli pairbreaking. In addition, since g,(q.,I) is different from g:(q., I), the
amounts of prbital pairbreaking present in the singlet and triplet states is different. Expanding for small J
and I, we obtain g,(q.,I) = (J2/2EF)[1 —cosq,s]+ I*/Ep, and g:(q:, I) ~ (3J2/2EF)[1 — cos q.s] +I1*/EF.
Thus, in the weak-hopping limit, the eflective masses for propagation along the c-axis direction are M, =
Er/J%s* and M, = Er/3J%s?, respectively. As for the N = 1 intralayer pairing case, we have performed

a numerical evaluation of Hc (T') for the interalyer pairiing singlet and triplet states, using the same
variational procedure [Eq. (8)).

For H ||, the orbital effects on all of the OPs are the same, so the Pauli pairbreaking determines the
relative importance of the states, which would be otherwise degenerate. Depending upon the sign of 1 N (0),
one of the parallel-spin states will have the highest T, either T., or T._. For the purposes of discussion,
we let this state be the A state with transition temperature Te:. Just below T.4, only A¢y with be
non-vanishing. However, at the temperature T, < T, the system undergoes a second second-order phase
transition to the ST state!, in which A, and the other parallel-spin state A;_ are also non-vanishing. In
the parallel-spin state T, < T' < T.¢, the gap function will have line nodes at k, = 0, %x/s. Below T,,, the
non-vanishing A, removes the nodes, leading to a gap function which is nearly isctropic at low temperature,
the only anisotropy arising from the Pauli pairbreaking terms. Such behavior was first discussed by Efetov
and Larkin,'? and details of the argument are given in Ref. (11).

!
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Fig. 3. Curves of H.q ) (T')/Ho versus T[T, for the
N = 1 interlayer-pairing states, including Pauli
corrections. Curve A is-for the singlet state ne- -
glecting Pauli pairbreaking. Curve B is for the
singlet state, including Pauli pairbreaking effects
with g/2kps = 1. Curve C is for the parallel-spin
triplet state of the same model. The system un-
dergoes a first-order phase transition at the point
where curves B and C cross.
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For H 1 ¢, the situation is more interesting. In the low field limit, both the Pauli correction to N(0)
and the orbital correction are linear in the field strength, but the orbital correction is generally much more
important, obeying |Jevp|s/T2 >> up|N'(0)|/N(0), where v is the Fermi velocity parallel to the layers.
In this case, we can set T,y = T, at least for a qualitative discussion. Since the interlayer pair hopping costs
more energy for the triplet states, the singletstate A, 1s favored near to T.. At low temperatures, dimensional
crossover removes the orbital paribreaking for both singlet and triplet states, so the Pauli pairbreaking
dominates. This leads to a crossover from the singlet state A, just below T, to the lower-energy parallel-spin
triplet state Ay at a lower temperature, with a corresponding first-order phase transition. This behavior
is pictured i Fig. 3. With regard to nodes in the gap function, we note that just below T, the singlet, gap
function proportional to cosk, s prevails. This function has line nodes at &, = fa/2¢. While we have not
mvestigated the competition between the various states in a magnetic field parallel to the layers, it seems

likely that the two parallel-spin states could combine with the singlet state (as for H{je¢) to remove the




nodes at lower temperature, provided that the temperature at which this oceurred was above the first-order
transition to the purely parallel-spin triplet state. It remains to be seen if the singlet state could recombine
with the parallel-spin triplet states at a temverature lower than this first-order transition.

3. THE TWO-LAYER MODELS

3.1. Intralayer BCS pairing

The single quasiparticle Hamiltonian for a superconductor with two layers per unit cell c-axis edge is
taken to be of the form

1 " o
Ho = 3 oy 5 0 (0160 (W O+ 101 e+ 0] e Ot (13
Jo n

where n = 1,2, J; and J, are the interlayer hopping matrix elements pictured in Fig. 1, £oo(r) is given
by Eq. (1b), the interlayer spacings are d within a unit cell and d' = s — d between neighboring unit cells,
respectively, ¢;1(r) = edA.(r), and ¢;2(r) = ed'A,(r) are required for gauge invariance near to Hcz. In the
absence of the pairing interaction, Ho can be diagonalized by the canonical transformation.!~* giving rise
to two normal-state quasiparticle bands indexed by . As for the N = 1 case, we employ the quasiclassical
approximation to write the Green’s function in the presence of a magnetic field in terms of the bare Green's
function in the absence of the vector potential,

GCY  (k,w) = iw — £oo (k) F €y (k2), (14)

where &g, (k) is the same as in Eq. (4), and €, (k,) = [J} + J? + eJ1Jo cos k, s]V/2.
For BCS intralayer pairing with N = 2, the pairing interaction may be written as

V= —% Zz\o,,s/dzrtb}na(r)t/)}n'_a(r)zﬁjn'_,(r)qum(r), (15)

inco

which is pictured in Fig. 1. Although it is possible to treat the case of inequivalent conducting layers with
inequivalent two-dimensional band structures!%2%, we assume for simplicity that the layers have the same
zero-field two-dimensional band structures £y, (k), but allow for inequivalent intralayer pairing interactions
Aoy and Ag2. As a result, each layer within a unit cell has its own gap function A,(r), obtained from

An(®) =T S Mon S GOk, w)CoR 7 (—k, ~w) Am(r), (16)

JwlSwyy k'm

where n,m = 1,2 index the layers within a unit cell, and the k% are given by Eqgs. (5b)-(5d).

Although in the N = 1 case, intralayer pairing gives rise to an expression for T, [Eq. (6b)] which
1s independent of the hopping J, for the general two-layer problem with inequivalent intralayer pairing
interactions, T, depends upon the hopping matrix elements J; and J;. Hence, we must first determine the
expression for the zero-field T, before we can write down the equations for the gap functions in the presence
of a magnetic field. For simplicity, in the following we shall ignore the Pauli limiting, but such effects always
occur for singlet states, as for the N = 1 cases discussed in §2. In the absence of a magnetic vector potential,
the linearized gap equations may be written as

A = Aoa N(O) S lag(T)bun — (~1)*" 6a(T)) A, Ca7)

where §a(T') gives rise to pairbreaking duc to the interlayer hopping. The critical temperature 1) is then
found by setting the determinant of Eq. (19) equal to zero.

There are usually two solutions for Tt obtained from Eq. (17), and the physical solution is the higher 7.

vidue. fa the linit of no hopping (1, Jy =+ 0), ba{T) = 0, 50 Bq. (17) factorizes. The critical temperature
Teo, obtained i this limit of no inteclayer hopping, is theq

N N(O)ay (L) = 1 {(18a)
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where Ay, is the larger of Mgy, Ago. For small Jy, Ja, ba(1') = by(JE 4 J3)/2, whichi is pairbreaking, decreasing
T from its bare value Teo. In the opposite limit of strong interlayer hopping, max(Jy, J2) >> wyy, ba(T) =
}z.a“('l'), and T, s given by

AN (O)ay (1) = 1, (18b)

where X = (Ag; + Ao2)/2 is the average of the intralayer pairing interactions. A plot of 1t /1o versus Jo/Teo
is presented by curve A in Fig. 4 for J;/J; = 0.8, Ag2/Ao1 = 0.9, and N(0)Xo;1 = 0.5. In the limits of weak
and strong hopping, T./T.o approaches unity and 0.9, respectively. Note that the strong hopping limit is
obtained when only one of the interlayer hoppings is large, as well as when both of them are large.

reo T T T

Fig. 4. Plots of T¢ relative to the respective bare
value T,y obtained in the absence of interlayer
hopping, as a function of Jy/T¢q, for two mod-
els with N = 2. Curve A is for intralayer pairing
with Aga/Ao1 = 0.9, Jl/Jz = 0.8, and N(O)/\m =
0.5. For very strong hopping, Tc/Teo — 0.9, the
band limit. Curve B is for interlayer pairing with
M/A2 =09, Jy/J2 = 0.7, and N(0)A2 = 0.5.
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We now consider a finite magnetic field. In order to simplify the equations as much as possible, we shall
neglect the Pauli contributions, but these can be inserted in a manner entirely analogous to that for the

N = 1 case. Expanding Eq. (16) for small q, and carrying out the k' integrations, we have the system of
equations of the form

1 1
3 (G o)+ 90 (02) Brrte) = g (a0(7) = 555 ), .

where t,n:(q;) and gnn'(q.) are periodic functions!! of g,s with period 2x. While these functions appear to
also depend upon d as well as upon s, the d-dependence only enters the relative phases of the constituents
of the resulting gap functions, but does not contribute to any measureable quantity.

In the weak hopping limit Jy, J; << T, the functions ¢, and g,/ may be evaluated analytically, and
the 2 x 2 matrix diagonalized, leading to

1 1 P, by, .
(o T2 g U+ o 2010 cos sl 1) Bs (1) = I—)O—L;;(a”(T)~ XBTIIWT)” D(J+I3) As (1),(20)
where the A4(r) are the two linearly independet gap functions obtains in diagonalizing the matrix. Equation
(20) was used by Lee, Klemm, and Johnston?® to fit the fluctuation diamagnetism data of YBa;Cuz07, and
was derived phenomenologically.?? In terms of fluctuations, the quantity g, is a variable of integration, and
2 — k? is another variable of integration. Note that there are two order parameter bands, with different
T, values. In this case, only the (-) band with the higher, unsuppressed 7T, value [given by either Eq. (18a)
or (18b)] is relevant for the study of [1.5. This band has a ¢, dispersion which is similar to that of the
Lawrence-Doniach model, and an effective mass for c-axis propagation given by M = I«,',v(Jf2 + .l:,“'“’)/s!.
Another interesting limit is the case of two very different layers, [Agy| >> [Aga], for which the supercon-
ductivity in the no= 2 layers is primarily obtained from the proximity of the more superconducting n = |
favers. Inothis cases we may eliminate Ay from B, (19) (o obtain,
b b A N 320 0 cos g ) | 1 bo

S TE R Ay (T . IV A ()L
dng () AR (Ao [ Aos - 1) 1) bl g l”( ) Aoy V() )( FER A




In this case, there is a suppression of 1, due to interband pairbreaking, and a Lawrence-Doniach dispersion
characterized by a c-axis effective mass given by M = I2p(Xgy/ Aoz — 1)/[boN (0)Aay JiJ3s%].
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Fig. 5. (a) Shown are Il 5,(T') curves neglecting Pauli pairbreaking for an N = 2 intralayer
pairing model with Ag2/Ae1 = 0.5, J;/J> = 0.1, and Ay N(0) = 0.5. Dimensional crossover
is possible for Jy/T. = 1, which corresponds to rather large values of J,/T. = 10. (b) The
magnitude |A2/A;| of the ratio of the intralayer order parameters calculated at H,(T') for
the same parameters as in (a), as a function of T/T, and hopping strength J2/T.. The curves

demonstrate that at the dimensional crossover temperature T, the order parameter in layer 2 is
suppressed.

In numerical evaluation of H.z )j, we have neglected the Pauli paribreaking, as it plays a similar role as in
the N = 1 case. The orbital pairbreaking is a bit different than for N = 1, since there are two, inequivalent

order parameters. Hence, we have used a variational procedure which is an extension of that used for the
N =1 case,

An(g:) =Ca CXPI‘QQZ/‘ZL for ~n/s <q, < /s, (22)

for n = 1,2, where both a and C3/C, are variational parameters. These variational forms are used to
solve Eq. (19) with the full expressions for ¢, and gnne given elsewhere!!. The ratio Cy/C) is chosen to
diagonalize the equations, and « is then chosen so as to give the maximum T.(H). The resulting H, (T')
curves are shown in Fig.5 (a). All of these curves are linear near to T, as in the anisotropic Ginzburg-Landau
model, but show dimensional crossover at the temperature 7 at which Ho ((T°) diverges in the absence of
Pauli pairbreaking.

When one of the hoppings is much larger than the other one, the weak hopping determines the di-
mensional crossover. When Ja/w); >> 1 and J, fwy; << 1, the two layers within the unit cell are strongly
coupled together, and act as a single layer which is weakly coupled to its neighboring layers. In this limit,
the linearized gap equation reduces to that of Eq. (6), except that J is replaced with J; /2 and \g is replaced
by the average interaction X = (Ao1 + Ao2)/2. In Fig. 5 (a), we have shown plots of H o) (T)/Hy versus
T[T for Moa/Aor = 0.5, N(0)Aa1 = 0.5, J;/J2 = 0.1, for various values of J2/T;. The sharp upward cur-
vature at the dimensional crossover temperature 7 is expected to be smoothed somewhat by the inclusion
of Pauli pairbreaking effects. These curves demonstrate that dimensional crossover occurs when the smaller
hopping (in this case, Jy = 0.1J2) 15 less than or comparable to T, The calculations also showed that the
mixing ratios of Ay and Ay is strongly affected by dimensional crossover. Below 7%, the order parameter
corresponding to the layer with the weaker pairing interaction ceases Lo be superconducting, as shown in
Fig 5(b). This phenomenon is similar to that first discussed by ‘Pachiki and Takahashi® in superconducting
superlattices, but is a bit ditfferent in that it does not depend upon the initial slope of H e (1) as determined




by the amount of impurity scattering, as their did effect. Tn our case, dimensional crossover occurs when the
vortex cores extend over the entire unit cell edge s, not only over the insulating interstitial regions, hut also
suppressing the weakly superconducting layers. There is only one dumensional crossover temperature 7' in
our N = 2 models,

3.2. Interlayer pairing
For the N = 2 interlayer pairing case, the interaction has the form
1 .
Ve-33s / @ (M1 OV (00200 (01 () + 2] (10 (D100, 2o(6)) - (29)
joo!
The interactions A; and A, form pairs on adjacent layers in the same unit cell and in adjacent unit cells,

respectively. After Fouricr transformation over the unit cell indices, the gap equation in the semiclassical
approximation becomes

ALk t) =T 3 S Vanilke = kL) Y GO (K, 0) A% (ks 1) GO (kL , —w), (24)

jwiwy k! mm'

where k', are given by Egs. (5b)-(5d), and it is understood that the operators in k_ act to the left [upon

Apme (K., r)]. The Fourier transform of the interlayer pairing interaction is an off-diagonal matrix of rank 2,
with non-vanishing elements

Vig(k, = k) = Ay expli(k, — kL)d] + Az exp[—i(k, — k})d'] (25)

and Vo (k, — k) = Vi%(k, — k). Since it has been shown both in the weak hopping limit'® and in the strong
hopping limit'~4 that the highest T. value for interlayer pairing with N = 2 occurs for one of the singlet
states, we set 0/ = —¢ and drop the spin indices on the gap functions. Thus, the only non-vanishing Apq/
are Ayo(k;,) and Agy(k,,r). The structure of Eq. (28) leads to the useful parametrization,

Agy(k,,r) = A (r) explik,d] + Ax(r) exp[—ik,d'], (26)
and Aqy(k,, ris obtained from Eq. (26) by changing the sign of k,. Since d+d’' = s, exp[ik.d] and exp[—ik,d']

are mutually orthogonal functions over the full Brillouin zone, so that the gap equations may be separated
into equations for the Ap(r). After some algebra, we obtain

gf(a;—oﬂ’mznn.(q,) + T (00)) Boe) = 1 (01) = 577) B, &7

where the 1,,+ and the g, for n,n' = 1,2 are periodic functions of ¢,s with period 2, the detailed forms

‘of which are given in Ref. (11). The transition temperature is obtained by setting II(r) = 0 and ¢, = 0,

and T' = T, leading to a simple matrix of rank 2 which is easily diagonlized. In the absence of interlayer
hopping, the bare transition temperature Teo is given by Eq. (18a) with A5 in this case being the greater of
A1 and Ag, repectively. A plot of T, /T,y versus Jo/T.g is given in Fig. 4.

In the weak hopping limit Jy, Jo << T., these functions may be expanded. Letting the renormalized

coupling strengths be Xy = Ay /(14 A N(0)boJ2] and Xy = Ay/[1 + A2 N(0)boJ ], for the special case Xy = Ag,
Eq. (28) reduces to

) JiJy — \ 1 —
— 114 (r) 4: - l ~cosq.s Ar) = Ty - e o Ja A .
(47”” (r)d Iy (1 - cos ‘l.”)) Ay (r) e ((u(f) N (0) 3 boJ, ]h)Ai_(l), (28)

where Ay = Ay Ay, The order parameter Ay hias the higher 1. value, and for this state the c-axis effective
tass s A I','/.-/‘,l.ll,lif‘\"“’.

For general hopping and pairing strengths, the lincarized cquations for the order parameters in the
presence of amagnetie field can be solved nnmerically to obtain the upper eritical field 17, p(ry. In g,




6(a), a set of Hep (T)/Ho versus T[T, curves is shown for Aa/A; = 0.5, J;1/J2 = 0.2, and N(0)A, = 0.5,
neglecting Pauli pairbreaking. Since dimensional crossover is determined by the weaker of the hopping
strengths (J; in this case), it can occur for rather large values of the stronger hopping (Jz2). In Fig. 6(b),
we have plotted the ratio of the magnitudes of the order parameters A, and Ay versus T//T., for the same
parmacters as in Fig. 6(a). Precisely as for the situation of inequivalent intralayer pairing with N = 2,
the order parameter (A, in this case) corresponding to the weaker interlayer pairing interaction (Xz) is
suppressed below T*. Hence, the magnetic response of a layered superconductor with N = 2 layers per unit
cell cannot distinguish between intralayer and interlayer pairing, at least near to Hs.
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Fig. 6. (a) Shown are Hy(T)/Ho versus T/T. curves for an’interlayer pairing N = 2 model
with Ay/Al = 0.5, J;1/J2 = 0.2, and X; N(0) = 0.5, for various values of J2/T.o.. Dimensional
crossover is possible for J;/T.o < 2, which occurs for rather large values of J2/Tco. (b) The
ratio |A;/A,| of the two interlayer pairing order parameters for N = 2, as a function of T/7,
for the same parameters as in (a). These curves demonstrate that at the dimensional crossover

temperature T*, the A, order parmeter corresponding to the weaker pairing interaction A; is
suppressed. .

4. SUMMARY AND DISCUSSION

We have derived the linearized gap function equations in the presence of a magnetic field for layered
superconductors with one and two layers per unit cell, with either intralayer or interlayer BCS-like pairing
interactions. In the limit of weak interlayer hopping, the equations reduce to the Lawrence-Doniach form,
with c-axis dispersions proportional to 1 — cos¢,s and pair hopping energies proportional to J2/Ep. For
more general hopping strengths, the equations for H., are similar to the Lawrence-Doniach form, with c-axis
dispersions that are periodic functions of ¢,s with period 27, but with more general mathematical forms.

For N =1, Hey|(T) can distinguish between intralayer BCS and interlayer BCS-like pairing interactions.
While both situations exhibit the familiar dimensional crossover at T* given by £ (T*) = s/V/2, the interlayer
pairing case can also exhibit a first order transition from the singlet state favored energetically near to
T. to the parallel-spin triplet state at lower temperatures. For the field parallel to the c-axis, interlayer
pairing favors parallel-spin triplet pairing, whereas intralayer pairing favors singlet pairing. For N = 2,
since singlet states are dominant for both intralayer and interlayer pairing, the H.» measurements cannot
distinguish between intralayer and interlayer pairing mechanisms. However, and interesting situation arises
for either mechanism when one of the two pairing strengths is less than the other. In this case, below the
dimensional crossover temperature 7% at which ., (T) would diverge in the absence of Pauli limiting,
the order parameter corresponding to the weaker of the two pairing interactions is suppressed, allowing the
vortex cores to penetrate those lavers or interstitials. Although we have not yet solved for the flux lattice
structure in such a situation, we anticipate that the flux lattice in a parallel field below 77 with N = 2 will




consist of alternating superconducting and normal layers. Such a mixed state should be capable of carrying
large currents, since the flux lattice is pinned intrinsically by the crystal lattice.
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