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Abstract 

This paper describes an approach to estimate a bullet's trajectory from a time sequence of 
angles-only observations from a high-speed camera, and analyzes its performance. The technique 
is based on fitting a ballistic model of a bullet in flight along with unknown source location 
parameters to a time series of angular observations. The theory is developed to precisely 
reconstruct, from firing range geometry, the actual bullet trajectory as it appeared on the focal 
plane array and in real space. A metric for measuring the effective trajectory track error is also 
presented. Detailed Monte-Carlo simulations assuming different bullet ranges, shot-angles, 
camera frame rates, and angular noise show that angular track error can be as small as 100 pad 
for a 2 madpixel sensor. It is also shown that if actual values of bullet ballistic parameters were 
available, the bullet's source location variables, and the angles of flight information could also be 
determined. 

, 

*Larry Ng is with the Engineering Research Division in Electronics Engineering matrixed to the 
Advanced Technology Program. Tom Karr is the Principal Investigator of the project and resides 
in the Special Studies Division. 
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Introduction 

Estimation of target trajectory from a time sequence of angles-only observations has long 
been studied by the Navy in the context of submarine target motion analysis [l-51. A key issue in 
the analysis is the problem of observability 161. Observability measures the ability to process a 
set of observations in order to estimate unambiguously the unknown target parameters such as 
position and velocity. For the submarine problem it was found that under a constant-velocity- 
target assumption, observability is achieved by inducing bearing accelerations from platform 
maneuvers. 

The bullet tracking problem differs from the submarine target motion analysis problem in 
three important aspects: (1) the sensor platform moves very little during the observed bullet time 
of flight, and (2) the bullet undergoes a tremendous deceleration due to aerodynamic drag, and 
(3) the bullet travels along a nearly straight line path over the short observation time interval of 
several 100 ms. Thus for the purposes of track estimation, neglecting gravity often is acceptable. 
mote: We analyze the trajectory estimation problem including gravity in a forthcoming paper.] 

This study analyses the source location problem (Le., where the bullet was fired), the shot 
angle (where the bullet is going), and the time of fire (when the bullet leaves the gun muzzle). A 
metric was developed to measure the effective error of the estimated bullet trajectory. Detailed 
Monte-Carlo simulations were conducted to assess its performance for different firing ranges, 
shot-angles, camera kame rates, and angular noise. This study also found that full observability 
can be achieved if knowledge of bullet muzzle velocity and ballistic coefficient is available. 

This study also investigates the performance (accuracy) of the resulting trajectory 
reconstruction from firing range geometry as it appears (1) on the focal plane m y ,  and (2) 
actual geometric space. We will call the first problem azimuth elevation (AZEL) state vector 
estimation, and the latter as ballistic state vector estimation. 

Problem Formulation (no gravity) 

We choose to analyse a planar case 
first. We aIso neglect the effect of gravity, 
so the trajectory stays on a horizontal 
plane. As shown in Figure 1, we assume at 
time to , a bullet was fired at position (XO, 
yo) with muzzle velocity VO, and at a shot- 
angle @, with respect to (w.r.t) the Y axis. 
A camera, located at the axis origin, with a 
given field-of-view (FOV), will observe a 
time sequence of bullet positions. 

Furthermore, let s(t) be the bullet 
position measured from the point of fire at 
time t and v(t) be the velocity. Also the 
bullet is located at angle 8(t), w.r.t. the Y 
axis pointing at the firing point. Discrete 
angular measurements of the bullet in 

X 
Camera 
position 
Figure 1 Planar bullet camera geometry 

flight were collected as 8k at time tk ; k = 0, 1,2, ... , N. Note, in our notation, 80 is the muzzle 
flash, and 81 and 8N correspond to the first and last bullet detections. 
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Our problem is the following one. Based on a set of measurements 

a column vector, we want to estimate the six unknowns given by 

xo 
yo 
vo = muzzlevelocity, 
Cp = shot angle, 
a 
to = timeoffire. 

= x coordinate of bullet initial location, 
= y coordinate of bullet initial location, 

= bullet's ballistic drag coefficient (or inverse of ballistic coefficient), and 

When a muzzle flash is detected, then both and xo are known and can be eliminated from the 
parameter *estimation problem; otherwise one must estimate all six parameters. The estimation 
problem can be formulated and numerically solved as a least mean squares problem as follows: 

At any time t = t k , the angular measurement is related to the position and velocity state of the 
bullet by the relation: 

where 

is the net distance a bullet traveled along the track and is shown in Eq(A-4) from Appendix A. 
Thus using Eqs.(2) & (3) one can rewrite in general the relation between measurement and the 
unknown parameters as: 

where . 

e 

(4) 

Note in Eq.(4), we further partitioned the parameter vector into position data @) and weapon data 
(w). Using Eq.(4) in Eq.(l), we obtain a concise relation between the measurement vector and 
the unknown parameter vector: 
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Furthermore let WN represent the N+l element noise vector collected from each angular 
measurement. Then one can formulate the problem into a standard least squares form as: 

Z, = h,(x)+WN. 

The optimization problem becomes: Find x to minimize the functional 

If x is observable in Eq.(6), that one can solve x in terms of the measurement vector ZN from the 
minimization process of Eq.(7). For the noiseless case (Le., perfect measurements) and with 
muzzle flash detection, a minimum of 4 independent bullet observations would be needed since 
for this case we only have 4 unknowns. However, because the measurements are noisy, we must 
solve Eq.(7) using the least mean squares minimization. Note it is well known in the literature 
that passive angles-only track estimation is difficult to achieve. In fact without gravity Eq.(6) is 
not fully observable for the bullet tracking problem since neither the sensor nor the bullet 
deviates from a straight line path over the observation interval. In order to intelligently estimate 
the source location and the bullet track without gravity, we must make use of appropriate prior 
knowledge. Thus the real question is what is the minimum set of information we need to supply 
in order to achieve observability. The following sections document some of ow approaches and 
their experimental validations. 

AZEL State Vector Estimation 

In many bullet tracking situations, a muzzle flash is detected in addition to the bullets. 
However, in most instances bullets are not detected on every frame where they are present. Thus 
we are interested in the feasibility of reconstructing the azimuth and elevation locations of a 
bullet as they would appear on the Focal Plane Array (ITA) at each time frame including the 
frame containing the muzzle flash. Because of o w  choice of coordinate system in Figure 1, xo = 
0 and is known. Note also that as measured on the FPA, the precised pixel location of the 
muzzle flash is not available because it contains many pixels. The unknown parameter vector is 
given by x = [yo, p, a, v,]. We choose to solve Eq.(7) using an iterative search approach by 
linearizing the measurement equation about the estimated parameter state vector. Note for AZEL 
estimation, the solution for x is not unique since the observability matrix does not achieve full 
rank. Specifically, the rate of change of the observed angle with respect to range is proportional 
to the rate of change of the angle with respect to velocity. There are many possible solutions. For 
example, if we scale the initial state vector by xb = k * x,, yo = k * yo , a' = ab, vb = k * v,, 
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the angular measurements as described by Eq.(2) remain unchanged. However, although there 
are infinite many number of solutions, but any one of the solutions will give the same least 
squares estimates of the AZEL state vector. Thus for angular observations taken at time t = tk , 
we obtain: 

where 

mk = "k  dx, 
= H ( f i k )  SX,. 

is a 4 element row vector. Mathematical expressions of each derivative in Eq.(8b) is given in 
Appendix B. Thus an iterative least squares solution is given by: 

where h is the numerical convergence control parameter, and I is the identity matrix. 

Extension To Out of Plane Traiectory 

Our formulation based on Figure 1 was for a planar case resulting in a purely horizontal 
bullet trajectory on the FPA. In general the plane formed by the muzzle flash, bullet, and the 
camera location does not lies on the camera X-Y plane. It will result in a FPA trajectory with a 
non-zero slope. This problem however, can be handed by a pure rotation of the camera about the 
Y axis. As shown in Figure 2, a rotation of 8e radians about the Y axis will put the plane FOB on 
the X-Y plane. The new angular measurement along the line OB is given by: 

where 8a and 0e are the azimuth and elevation angles on the FPA. Note also from purely 
geometric relations, €le, bullet elevation angle on FPA, is related to ge, bullet actual shot 
direction in eleyation, by: 

where again, 9; is the estimated shot direction ( L BFO) in azimuth after FPA rotation. 



Bullet 
track 

Y X 

Figure 2 FPA projection of an out of plane trajecotry 

Extension to No Muzzle Hash Detection 

For the case where no muzzle flash was detected, we can center the Y- axis (see Figure 1) 
on the first bullet. Since tl is known, we need to estimate to or equivalently we can estimate the 
delay D = tl -to . Letting Dk = & - ti; k = 1,2,3, ..., N, be the known time differences, then 
using the relation: 

fk-f,=Dk+t~-f,=Dk+D; 

Eq.(3) can be rewritten as: 

Eq.(8b) can be extended to include the partial derivative of h w.r.t. D as given by: 

Simulation Studies 

To verify our approach, we developed a simulation capability to evaluate the performance 
of AZEL track estimation. Figure 3 shows a block diagram of the simulator. The simulator takes 
inputs of specifications on : weapon types such as muzzle velocity, ballistic coefficient; geometry 
of gun and camera positions and orientations; and camera parameters such as frame rate, field of 
view (FOV), pixel size, and angular noise. These inputs along with camera position and 
orientation parameters allow for the computation of the bullet ballistic state vector. One can also 
compute the true AZEL state vector on a focal plane array. Noisy measurements of AZEL can 
then be generated as input for the track estimator. The track estimator generates first the AZEL 
track and then the ballistic track depending on the amount of apriori information assumed. 
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Figure 3 Bullet trajectory estimation simulation block diagram 

AZEL Track Estimation M 'th Muzzle Flash Detection 

As stated earlier, angles-only bullet track estimation does not have full observability. 
However, for AZEL track estimation, it is found that formulation using Eq.(7) has superior angle 
tracking capability because it is based on a physical model. When a muzzle flash is observed so 
the time of fire is known, fewer than 25% of overall bullet observations is needed to reconstruct 
the whole trajectory. Accurate azimuthal angle tracking in time also allows for precision 
estimation of the elevation angles using a linear least squares fit between measured elevation and 
azimuth locations of bullets on the FPA. 

Figure 4 shows a simulation of a 0.50 caliber weapon at a distance of 220 meters with a 
muzzle velocity of 900 m/s and a ballistic drag coefficient of about 0.0014 m-1. The weapon is 
pointing at an angle 68 mrad (4 degrees) to the left of line-of-sight (LOS). Assuming a frame rate 
of 200 f/s, an ifov of 2 mrad, every bullet is detected, and initializing all unknown parameters at 
least 30% off (greater than) their nominal values, we notice in Figure 4 that although the 
distance-to-weapon does not converge (because of the lack of observability), the least squares fit 
on the azimuthal angle track looks good. The measured angles lie within 1 pixel, 3-0, while the 
estimated positions lie within 0.1 pixels of the true track except for the last 10 observations 
(when the bullet has very high angular velocity on the FPA). The slope of the elevation versus 
azimuth angles on the focal plane array plot is determined by the weapon's shot direction in 
azimuth and elevation via Eq.(ll). Note also that the error plots in Figure 4 were obtained by 
subtracting the true value from its estimate. Thus the error goes to zero as the estimate 
approaches the true. The least squares fit for the last 10 measurements were relatively poor as 
can be seen in the expanded angular track plot shown in Figure 5. The early portion of the track 



is more or less linear while increasing rapidly near the end. The fit near the end is not as good 
because it requires in essence a higher order fit which is known to be more noisy [4]. 
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Figure 4 AZEL track simulation with ballistic coefficients and muzzle velocity deviated 30% 
from their true state and assuming a bullet is detected at every expected frame. 

Solid (true ), o (measurements), x (prediction) 

frame number 

Figure 5 Angular track with bullets detected in 
every expected frame 

Solid (true ), o (measurements), x (prediction) 

Figure 6 Angular track with only 25% of bullets 
detected plus a muzzle flash 
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Figure 6 shows the simulation results for the same geometry, but with the bullets detected only in 
the last 25% of the frames (i.e., 11 bullets plus the muzzle flash out of an expected total of 43 
frames). The corresponding error plots are shown in Figure 7. Note again, neither the range (Y- 
pos error) nor the shot-angle converge, although the AZEL track is excellent - the track is 
within 0.1 pixels except for the last 5 observations. Also note that the missing 75% of the bullets 
were accurately reproduced by the AZEL track estimator. 

o (measurements), x (estimates) o (true), x (estimate) 

CI .x_ 5 0 0 1  40 ... .:. . =  . .:. ....................... ...... 
Q 
U 

frame number 

I 

I 
S 0 0.01 l..c2000 ........! .................. 1 
= u 
.- E! 0 ......... 0.0. ....................... 
Y 73 0 o ~ ~ o o o o o o o o o  
6 -0.01 0 10 20 

iteration # 

Figure 7 AZEL track simulation with ballistic coefficients and muzzle velocity deviated 30% 
from their true state and assuming bullets only detected on last 25% of the frames. 

Metric for Effective Track Emr 

We are interested in developing a metric to measure the effective angular displacement of 
the estimated track and the true track on the FPA. In general the two tracks may be in parallel, 
crossing, or diverging from each other. We define the effective track error (or displacement) 
between two tracks on a FPA as the total area subtended by the two tracks divided by the 
effective pixel length of the true track. Thus let Le and Lt be the estimated and the true tracks on 
a FPA, then the effective track error is given by: 

t 

..... e..... > 

lo' 20 40 60 80 100 122 
Azimuth (pixel) 



Table 1 shows the track error for three simple geometries. Thus we see that ETR gives an 
indication of the effective displacement between two tracks. The effective displacement is 
identical to the actual displacement for the case of two parallel tracks. We are interested in 
applying this metric of track error to estimate the accuracy of track estimate for different system 
design parameters such as: frame rates, angular noise, weapon range, and shot-angle. 

Track geometry 

Parallel tracks 

Diverging 
tracks 

crossing 
tracks 

Effective track error 
(mad) 

d 

=0.5*h 0.5*'d*h 
d 

0.25*h*d h 
d 4 

=- 

Table 1 Metric for effective error between two tracks 

Parametric Sensitivitv Studv of Track Errors 

Using the simulator we conducted a Monte-Carlo study of angular track accuracy. First we 
examined the track error versus single-look pixel noise. We assumed pixel noise values of 0.1 to 
1 pixel at 0.1 pixel step increments. Using the same geometry and weapon type (i.e., 0.50 caliber 
machine gun at 220 meters) as discussed earlier, we conducted 30 runs for each noise value. 
Figure 8 shows the resulting statistical distributions and Figure 9 shows the corresponding mean 
and sigma value of the same runs. Note that the standard deviation of track error increases as the 
input pixel noise values increases. The estimate of the mean at each pixel noise level should be 
accurate to 1 / & of the corresponding standard deviation value. A least mean squares fit of the 
mean value data for the 200 Hz frame rate is shown in Figure 10. The result shows that a ten fold 
increase in noise (0.1 to 1) produces a ten fold increase in effective track error (50 pad  to 500 
pad). For faster frame rates, track errors are expected to reduce further since higher frame rates 
produce more observations for a given observation period. Figure 11 summarizes the result for 
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frame rates of 200 .Hz to 500 Hz. [The crossing of the 300 Hz and 400 Hz lines is due to the 
statistical uncertainty in the mean estimates.) Note that there are no appreciable error differences 
between 400 HZ and 500 Hz. 
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Figure 8 30 Monte-Carlo runs at each pixel 
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Figure 9 Standard deviations of 30 Monte-Carlo 
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01 
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Figure 10 Least squares fit of the mean values Figure 11 Track error versus frame rates 

We also investigated the track errors at three different ranges (lOOm, 2OOm, & 3OOm) and 
for two different field-of-view sensors (128 x 128 FPA-15 degrees & 512 x 512 FPA-60 
degrees). For each condition, we evaluated the track error for shot-angles ranging from 2 degrees 
to 80 degrees. For all the runs a 0.5 pixel noise value was assumed. Figures 12 & 13 summarjze 
the results. Three observations can be made: (1) for a given shot-angle, track errors increase with 
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longer ranges, (2) for the 15" FOV sensor, track errors increase with larger shot-angles, and (3) 
for the larger 60" FOV sensor, track errors decrease with increasing shot-angles. These 
observations may be explained as follows correspondingly: (1) track errors increase with longer 
ranges because longer range implies larger pixel noise because of lower signal-to-noise ratio (this 
effect is built into our model); (2) track errors increase with the narrow FOV for greater shot- 
angles because larger shot-angle means a smaller number of total frames containing a bullets as it 
moves across the sensor FOV, and a smaller number of observations implies greater track 
uncertainty; and (3) for the larger FOV sensor, track errors decrease with increasing shot-angles 
because of two favorable conditions: larger shot-angle means more detected bullets in the FOV, 
and the angular track as a function of time becomes more linear and can be fit to a lower-order 
curve. A lower order least squares fit also increases the noise rejection capability because of its 
smaller equivalent bandwidth [4]. 

track error versus shot-angles for 128x128 FPA 
0.35 I 1 1 I i 

............ : ........... 
v 

0.25 
Y 

i! 0.2 
0 > 
V 

a, 

- 
Y 

0.15 

, .................... ............ 

track error versus shot-angles for 512x512 FPA 
0.22 I I I I 

I 
0 20 40 60 80 

0.1 I 
shot-angle (degree) 

Figure 12 Track error versus shot-angles for a 
128 x 128 FPA at different ranges 

Figure 13 Track error versus shot-angles for a 
512 x 512 FPA at different ranges 

AZEL Track Estimation with No Muzzle Flash Detection 

We extended the simulation to study the case where the muzzle flash was not detected 
either because it was not within the field-of-view of the sensor or it was somehow suppressed. To 
estimate the location of the muzzle flash, we need to estimate the time delay parameter D as 
shown in Eq.(12). Since we know tl, time of first bullet detection, to, time of muzzle flash is 
obtained from subtracting D from tl. The additional equation needed in the least squares 
estimation procedure is Eq.(14). The time delay parameter is estimated based on the muzzle 
velocity and ballistic coefficient. Again we used the same firing geometry and sensor 
characteristics as in the case under AZEL track with muzzle flash detection discussed earlier. 
Starting guess of the solution state vector is 30% greater than the true values. For the following 
studies, initial guess of the time delay parameter was set at 50% of it true value. 

Figure 14 shows the azimuth track as a function of detection frames with the assumption 
that bullets were detected only in the last 25% of the frames. It can be seen that the predicted 
bullet locations are very close to the true locations in frames where bullets are actually detected, 
and continue to be predicted very close to the true trajectory even on frames where no bullets are 
detected. Note the angular error of the gun location is small. The exact value is given in Figure 
15. The angular error plot shows that the prediction of the muzzle flash time is about 1.3 frames 
short, and the gun location error is approximately 3 mrad. 
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Figure 15 AZEL track with bullets detected in the last 25% of frames. (no muzzle flash) 
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o (measurements), x (estimates) time of muzzle flash prediction 
- 0  00000~0000Q0000 

0 :  

Figure 16 AZEL track with bullets detected in the last 50% of frames. (no muzzle flash) 

. Figure 15 also shows that although the range did not converged, but both the muzzle flash 
timing error and the shot-angle prediction error indicated convergence. Figure 16 confirmed the 
observation that with more bullets detected, convergence improved. Muzzle flash location error 
is now less that 0.5 pixels. Both shot-angle and time of muzzle flash essentially converged at a 
factor of 2 or more faster. 

Figure 17 shows improved performance with the assumption of detecting more bullets. 
Using the assumption that 75% of the bullets were detected, the muzzle flash location is now less 
that 0.1 pixels. 

Evidently, in many shot geometries the sensitivity of the time delay parameter to muzzle 
velocity error is less than 1:l. In the case of Figures 15-16, a 30% velocity error resulted in a 3% 
time delay error, and a correspondingly small error for the source location. 

I 
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Figure 17 AZEL track with bullets detected in the last 75% of frames. (no muzzle flash) 
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For AZEL state vector estimation, we concluded that given a reasonable set of initial 
conditions for the ballistic coefficient and muzzle velocity, the AZEL state vector converged 
nicely although the target range and shot direction did not converge simultaneously. However, 
we suspect that if we choose the correct values of ballistic coefficient and muzzle velocity, the 
target range and shot direction will converge to their true values. This is indeed the case as 
shown in Figures 18 and 19. Note in Figure 18, we assumed the bullet is detected on every frame 
while in Figure 19 we assumed bullets are detected on only the last 25% of frames in addition the 
muzzle flash. 

Note also that in Figure 19, although we used only 25% of the overall measurements, the 
azimuth angle track error is less than 0.1 pixels over the missing bullet locations. 
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Figure 18 Simulation of bullet track using the exact ballistic coefficient and 
muzzle velocity. Note that both range and shot direction 
converged to their true values. 
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Figure 19 Simulation of bullet track using the exact ballistic coefficient and 
muzzle velocity. Note that both range and shot direction converged to 
their true values where we assumed the bullet detected on only the last 
25% of frames. 

Error Analysis of Source Loc ation Paramet e n  

We are interested in the error sensitivity of source location parameters to percentage error 
in our estimate of ballistic parameters. We have shown that using the exact knowledge of 
ballistic parameters (muzzle velocity and ballistic coefficient), the ballistic state vector is 
observable from measured AZEL data. The ballistic coefficient is a function of mass, 
aerodynamic drag coefficient, and effective surface area. The ballistic coefficient of a weapon 
can be obtained from a firing table and is only a function of mach number, but the latter is also 
dependent on the muzzle velocity. Thus knowledge of muzzle velocity is crucial. Even if the 
weapon type is known, the muzzle velocity may change significantly from its nominal value due 
to different conditions of the gun barrel and ammunition. In a given experiment the muzzle 
velocity can be measured accurately. Muzzle velocity may also be available for non-real-time 
ballistic track reconstruction, for example during analysis of a crime. However, in a realistic real- 
time environment, it may not be possible to know the muzzle velocity with great accuracy. 

Figures 20 and 21 show the sensitivity of range and shot-angle to variation in muzzle 
velocity. An almost one-to-one percentage error is observed for the range. On the other hand, the 
shot-angle is non-linearly related to error in muzzle velocity. Note that the error is significantly 
more sensitive in the negative direction. 

0 



Figures 22 and 23 shows the sensitivity of range and shot-angle to variation in the ballistic 
coefficient, Both errors are linear and are approximately scaled down by a factor of six in 
percentage error. For example, a 30% error in ballistic coefficient produces only a 5% error in 
range and shot-angle. 
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Experimental Setup 

We analyze one of the many bullet tracking experiments done at LLNL's Site 300 firing 
range, and compare the trajectory of a real bullet to our estimated trajectory. Appendix C shows 
the locations of various weapons, camera and targets. The particular experiment we selected for 
analysis was conducted in August 1994 with a 0.50 caliber M2HB machine gun. The geometry 
of the experiment is shown in Figure 24, where the x, y, z, locations of the target, camera, and 
gun were given. The gun was firing to the left of camera-to-gun LOS. Note that in Figure 20 we 
corrected for the gun muzzle location by adding 1.14 meters in X and -1.3 meters in Z to the 
surveyed point which represents the tripod mount for the gun. Also we corrected for the actual 
target location by adding -0.6m in Z to the surveyed location. The geometric parameters such as 
shot angle and range can be computed as follows: 

Let 
Acg = distance vector from gun to camera, 

Atg = distance vector from gun to target, 

then we found that 

range = I Acg I = 220 meters 

and the shot angle is 

cosd P a  - - 

= 0.064 (rad), 

Also the 0.50 caliber muzzle velocity was measured by an Oehler chronograph and found to be 
900 meters per second with f 1% variation from shot-to-shot. Also the inverse ballistic 
coefficient is found to be 5 .24~10~m'~ .  

(216.02, 11.?4,10.74)-A 

P 

Figure 24 Geometry of bullet tracking 
experiment 

Figure 25 Reference vector in the Xi, Y 1,Zi 
coordinate system 
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Bullet Traiectorv Reconstruction 

We will briefly summarize the exact procedure for trajectory reconstruction. Our problem 
is the following. Given the surveyed locations of the gun, camera, and target, find the resulting 
true bullet trajectory on the camera FPA. We will make use the knowledge of muzzle flash 
location on the camera for this purpose. We noticed that the muzzle flash expanded rapidly to a 
radius as large as 5 pixels as the high pressure hot gas was pushing the bullet out of the gun 
barrel. .Thus during the expansion cycle, exact location of the flash is difficult to determine. 
However, after the expansion cycle, the pressure around the muzzle dropped rapidly resulting in 
a contraction cycle with an accompanying drop in temperature. The contraction cycle actually 
reduced the radius of the flash to smaller than 1 pixel. Subpixel resolution of the flash location 
may be feasible if a better model of the muzzle flash dynamics is available. 

In order to accurately reconstruct the bullet trajectory on the FPA, we need to accomplish 
two steps: (1) reconstruct the bullet trajectory in the firing range coordinate (i.e., X,Y, 2); (2) 
map the trajectory to the camera coordinate ftame denoted by the system (xc, Yc, ZC). The detail 
of the reconstruction and the coordinate transformation matrix are presented in Appendix D. 

Bullet Tracking Experiments and Performance Validation 

Using the geometry and bullet parameters as computed in the last section, we reconstructed 
the trajectory using Eqs.(l9) & (25). Figure 26 shows the expected angular track as a function of 
time. Expected measurements were computed at every frame time. Also the AZEL track as 
appearing on the camera FPA is shown in Figure 27. 
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Figure 26 Generation of azimuthal angular Figure 27 Generation of AZEL track as a 
function of time using the firing track as a function of time using the . 

firing range data. range data. 

Figure 28 shows an image of the experimental site. In the background of the bullet track is 
a steep hill. We analyzed the data on one of the shots known as d40809datZ-O.raw. The weapon 
is a 0.50 caliber machine gun located approximately at 220 meters from the camera and was 
shooting at a target 64 mad (-4O) to the left. Figure 29 shows a composite image from the 
bullets on 45 frames. Note that the bullets are visible in the processed data on almost every frame 
back to the muzzle flash of the gun. 
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Figure 30 shows the resulting least squares fit of actual azimuthal angles from the 
experiment. A very good fit is observed. The fit nicely connected the missing bullets. Experience 
shows that the ballistic model fit is superior than a polynomial fit, as the latter tends to curve 
around the missing bullet locations. Figure 31 compares the least squares fit trajectory from 
measured bullets to a reconstructed trajectory fiom the range geometry. Figure 32 provides an 
expanded plot of the reconstructed and actual measured trajectories on the P A .  Since we did not 
recorded the exact location of the bullet hole on the target, we could not precisely define the 
bullet track. However, we could construct two possible tracks, one for hitting the top of the target 
and the other for bitting the bottom of the target. Therefore if the bullet hit the target at all, it 
must be bounded between the two tracks. Using the least squares fit of the measured data, we 
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Practical Considerations for Real-time Source Location 

We have demonstrated that our high-speed sensor and the real-time angle tracking software 
has the ability to accurately estimate a bullet's trajectory on a focal plane to < 100 pad  for a 2 
mrad IFOV sensor. While detecting as little as 25% of the theoretical total number of frames 
where the bullet is within the field-of-view of the sensor, we could reconstruct the track and also 
back-predict the locations of where the bullet should have been. For practical real-time 
applications in the field, one may want to know, for example: (1) How would one pick the initial 
state vector for precision angle tracking? (2) How to estimate the gun location if we don't see the 
muzzle flash? (3) What happens if there are multiple bullet in-flight simultaneously? and (4) 
What would be some of the design specifications for a practical sensor with high track accuracy? 

First, picking the state vector for angular tracking is easy. Pick something reasonable and it 
will converge. The fact that we have an infinite number of solutions actually works to our 
advantage. It just needs to converge to any one solution and we will have established a robust 
angular track. 

Second, in order to estimate the gun location without the muzzle flash, we can accomplish 
this in two ways. (1) Using no prior knowledge of the weapon, bound the gun position by 
extrapolating the angular track to where the angular rate goes to zero. The gun must be 
somewhere along the track between the zero-rate point and the first point where a bullet is 
detected. This is a small angle, usually just a few degrees. (2) Use assumed knowledge of a 
weapon type to bound its location. Since the estimate of the state vector is relatively insensitive 
to the ballistic coefficient error ( a 61 reduction ) but almost one-to-one to the velocity error, we 
may simply assume a best guess for the ballistic parameter and bracket the muzzle velocity with 
probable minimum and maximum speeds based on experience with the shooter's probable 
weapon type. Then mapping the state vector back to the focal plane will bracket two possible 
locations on the angular track. The gun must be somewhere along the track between the locations 
for minimum and maximum muzzle,velocity. This is a small angle, usually less than a degree. 
Our simulation results shown that with proper initial condition, the estimated time error of the 
muzzle flash could be within a few frames, and the angle could be less that 2 pixels or 4 mrad. 

Third, multiple bullets would be handled by data association logic. Data association logic 
makes use of the fact that (1) each bullet track is a line on the focal plane, and (2) each bullet 
track has a distinct slope and intercept point. Thus for a design with 200 p d  track error, the 
system will be able to sort out tracks at > 200 pad apart. 

Finally, based on our simulation study and augmented with experimental results, we 
believe a practical system that can meet, for example, a track error less than 200 p a d  will have 
specifications given by the following table. 

Table 2. Preliminary Specifications for a Practical System 
Sensor Parameter I Specifications 
Frame rate I > 200 

Table 2. Preliminary Specifications for a Practical System 
Sensor Parameter I Specifications 
Frame rate I > 200 



Summary and Conclusions 

We have developed a methodology to estimate the bullet track as appearing on the focal 
plane and in actual geometric space. Our approach makes use of a simple ballistic model 
parameterized by a bullet's muzzle velocity and ballistic drag coefficient. 

For AZEL tracking, we found that good angular track is obtained although the geometric 
parameters in range and shot-angle did not converge. There are multiple solutions to the angular 
least squares problem. However, anyone of those solutions will yield a good angular track. We 
also developed a metric called Effective Track Error to accurately characterize the track error 
between two bullet tracks on the FPA. 

Using the effective track error as a metric, we investigated the AZEL track error sensitivity, 
via Monte-Carlo runs, to key design parameters such as range, shot-angle, angular noise, frame 
rates, and sensor field-of-view. Depending on the choice of design parameters and firing 
geometry, track errors in the range of 100 pad to 500 pad can realistically be obtained. 

For ballistic tracking or source location estimation, we demonstrated that the system is 
indeed observable with knowledge of weapon parameters such as muzzle velocity and ballistic 
coefficient. We also conducted sensitivity analysis of the range and shot-angle variables to 
variation in muzzle velocity and ballistic coefficient. We found that the range parameter is 
almost linearly proportional to velocity error while the relation of shot-angle is not. Also, the 
percentage error of range and shot-angle to variation in the ballistic coefficient is significantly 
less sensitive - a factor of six in reduction is observed. 

We have shown how the firing source location can be estimated under practical conditions, 
where little is known a priori about the weapon or shooter. The line-of-sight to the shooter can 
be bounded to a very small range along the apparent trajectory. 

We have developed a detailed approach for bullet trajectory reconstruction from f i n g  
range data and knowledge of muzzle flash location on the camera FPA. The method developed a 
series of transformation matrices to relate any point in firing range coordinate to the camera 
coordinate. 

We used the AZEL track estimator to analyze one particular shot conducted recently at 
LLNL's Site 300 facility. Our analysis of the measured data from the experiment shows that the 
observed track is within the upper and lower bounds of the bullet path. The deviation may be 
attributed to the movement of the shooter, A more accurate comparison with experiment can be 
obtained if the experiment also records the exact location of the bullet hole on the target. 

Finally, we observed from experiments that accurate measurement of a muzzle flash 
location could be obtained during the contraction cycle of the flash. Thus a better understanding 
of the physics of the flash could lead to a consistent subpixel measurement of muzzle flash 
location. 

.I. 
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Appendix A 

Bullet Ballistic Model 

For our purposes of estimating the bullet track, a simple ballistic model will be utilized. Let 
the bullet at time t has velocity v(t) and at a distance s(t) itom the muzzle. We assume the 
principal force on the bullet is the aerodynamic drag on the order of hundreds of gs and the effect 
of gravity is negligible. If m is the mass of the bullet, then the equation of motion is given by: 

1 J2p vz C, A v =- m 

where a is inversely proportional to the ballistic coefficient given by: 

m 
CDA e 

p =- (A-2) 

where A is the effective surface area and CD is the aerodynamic drag coefficient. Eq (A-1) can 
be solved to yield 

V(f) = VO and vo =v(t,). 
l + a v ,  (t-t,)’ 

where vo is the muzzle velocity at t = to. Eq.(A-3) can also be integrated to yield 

s(r) =en (1+ a v, (+fa)) /  a. 

Eliminating the time variable in Eqs (A-3) and (A-4) yields: 

v(t) = v, 

64-31 

(A-5) 

Thus the bullet velocity slows down exponentially with distance determined by the ballistic drag 
coefficient a. We can also determine the ballistic drag coefficient from knowledge of bullet 
velocity and distance travel as a function of time from Eq. (A-5) as: 

(A-6) 

For example, given a bullet with the following deceleration profile: s(t) = [ 0, 100,200] meters, 
and v(t) = [975,850,733 metedsec, 

a = tn(975 / 850) / 100 = l‘n(975 / 735) / 200 = 0.0014. 
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Appendix B 

Computation of Partial Derivatives 

Using the following notations: 

'k 
xk 
yk 
rk 

and the relation 

h =  

= 
= 
= 

distance bullet at time $, 
x coordinate of bullet at time fk, 
y coordinate of bullet at time tk, and 

= JGZ, 

then the following derivatives can be written as: 

where 

and finally 

dh - = + [yk cos Q, - x, sin q]. 
d9 ' k  

(B-5) 
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Appendix C 

Survey Map at LLNL Site 300 Firing Range 
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Surveyed Points at Site 300 Shooting Range 

position 
description 
x1 
x2 
x3 
x4 
x5 
X6 
x7 
X8 
X8a 
x9 
x10 
x11 
x12 
X13 
X14 
X15 
X16 
1 OOm tgt 
stump 
1st light 
Table 
rifle barrel 
nearest pole 
2nd pole 
3rd pole 
4th pole 
furthest pole 
50ca11 
50cal2 
M60 

distance 

80.21 
82.54 
86.26 
89.56 
94.89 
98.33 
96.33 
99.56 
105.9 

100.04 
21 6.34 
229.48 
225.38 
222.50 
98.36 
95.33 
92.37 
91.20 

245.53 

angle 

20.40 
17.78 
14.36 
11.31 
7.94 
5.49 
2.88 

357.55 
357.08 
353.43 
356.89 
358.67 

0.28 
5.1 5 

350.1 8 
346.61 
343.59 
. 0.00 
358.34 

height 

5.46 

5.1 1 0.00 NIA 
3.30 180.00 
2.90 180.00 
‘1.90 NIA NIA 
4.90 NIA NIA 
7.95 NIA NIA 

11.04 N/A NIA 
13.95 NIA NIA 
7.96 10.90 
8.77 26.30 

10.20 39.70 

5.49 
5.39 
5.06 
4.1 7 
4.09 
3.41 

10.74 
12.91 
15.73 
15.27 
3.00 
2.59 
2.31 
4.92 

16.52 

X 

75.1 8 
78.60 
83.56 
87.82 
93.98 
97.88 
96.21 
99.47 

105.76 
99.38 

21 6.02 
229.42 
225.38 
221.60 
96.92 
92.74 
88.61 
91.20 

245.43 
5.1 1 

-3.30 
-2.90 
-3.30 
-3.30 
-3.30 
-3.30 
-3.30 
7.82 
7.86 
7.85 

Y 

-27.96 
-25.20 
-21 -39 
-1 7.56 
-1 3.1 1 
-9.41 
-4.84 
4.26 
5.39 

11 -45 
11 -74 
5.33 

-1.1 0 
-1 9.97 
16.78 
22.08 
26.1 0 

0.00 
7.1 1 
0.00 
0.00 
0.00 
1-90 
4.90 
7.95 

11 -04 
13.95 
-1 -51 
-3.89 
-6.52 

z 
5.46 
5.46 
5.46 
5.46 
5.49 
5.39 
5.06 
4.17 
4.09 
3.41 

10.74 
1291 
15.73 
15.27 
3.00 
2.59 
2.31 
4.92 

16.52 

0 
N 
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Appendix D 

Bullet Traiectory Reconstruction from Firing Range Data 

Let G(xg, yg, ze) and T(xt, yty zt) be the vectors from the origin of X Y Z  system to the gun 
and the target respectwely (see Figures 24 & 25 of the report), then a unit vector along the bullet 
track is given by: 

03-11 

Let P(x, yy z) be a vector to any point on the bullet track in the XYZ system. Then we must have 
the following relation: 

P(XY Y, z) - G(X& Yg, Zg) = s utg , @-2) 

where s is a scalar ranges from s = 0 to s = D, the distance between the gun and the target, 
Solving Eq.@-2) results in a method to generate the bullet trajectoe as follows: 

03-31 

where we have included the effect of 5 v i t y  on the z component. For a 200 ms flight timey the 
contribution from gravity is less than 20 cm. Note that assuming a knowledge of the ballistic 
coefficient and muzzle velocity, the distance the bullet travels, s, at time t can be related ( See 
Appendix A). We next address the coordinate transformation problem, 

As shown in Figure 24, we fix a rectangular coordinate system (Xi, Y1,Zi) to the left 
bottom corner of the FPA looking from the back of the camera such that the initial camera 
orientation is given by X i  = Y, Y1= -X, and 21 = 2, or in matrix form: 

where A represents the transformation matrix. Now let C(XS, ysY 2s) be the vector to the 
measured sensor (or camera) location (i.e., origin of the Xiy  Y1,Zi system), we can express all 
vectors w.r.t. this initial camera system as: 



Figure 25 shows the a reference vector from sensor to muzzle flash expressed in initial camera 
coordinate system. Let this vector be denoted as R Ryl, Rz~), then w.r.t the Y1 axis, the 
reference vector is pointed at a direction with azimuth, 8R , and elevation, (PR. Both angles can be 
computed from: 

We can align the Y 1 axis along the reference vector by performing a negative rotation about 21 
through an angle, eR, and a positive rotation about X1 through an angle, (PR. The resulting 
transformation to an intermediate system (X2, Y2, 22) is given by: 

where Rot( )s are Euler rotation angles given by [SI: 

and 

O 1  0 
Rot,(@) = 0 C O S ( @ )  sin(@) . I: -sin(@) cos(@J 

@-7) 

Y 

@-9) 

Finally if the measured muzzle flash appearing on the FPA is at azimuth em, and elevation $my 
we can accomplish that by a positive rotation about 2 2  through an angle and a negative 
rotation about X2 through an angle (Pm. The final system (XC, Yc, 2,) is the reconstructed 
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camera orientation. Therefore, collecting all the necessary Euler angle rotations performed, we 
can transform any vectors in the (X, Y, 2) system to the camera system from the relation: 


