DATE: September 30, 1987

SUBJECT: Characteristics of Soils and Saprolite in Solid Waste Storage Area 6

TO: T. E. Myrick

FROM: S. Y. Lee

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 578-8401, FTS 626-8401.

NTIS price codes—Printed Copy: A10 Microfiche AD1

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
ENVIRONMENTAL SCIENCES DIVISION

CHARACTERISTICS OF SOILS AND SAPROLITE IN
SOLID WASTE STORAGE AREA 6

and S. Y. Lee

*Department of Plant and Soil Science, The University of Tennessee,
Knoxville, Tennessee.

Date of Issue - September 30, 1987

Prepared for the
Office of Defense Waste and Transportation Management

Prepared by the
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831
operated by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the
U.S. DEPARTMENT OF ENERGY
under contract No. DE-AC05-84OR21400

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
Table of Contents

Acknowledgements .. iii
Abstract .. iv
List of Tables ... vi
List of Figures ... vii
1. INTRODUCTION .. 1

2. MATERIALS AND METHODS ... 3
 2.1 Geology .. 3
 2.2 Pedology .. 3
 2.3 Sample - Field Methods ... 6
 2.4 Sample Preparation .. 8
 2.5 Physical and Engineering Analysis 8
 2.6 Mineralogical Analysis ... 8
 2.7 Micromorphological Analysis 9
 2.8 Chemical Analysis .. 10

3. RESULTS AND DISCUSSION ... 12
 3.1 Soil Morphology and Classification 12
 3.2 Soil Physical and Engineering Properties 19
 3.2.1 Particle size distribution 19
 3.2.2 Bulk density .. 19
 3.2.3 Moisture retention ... 22
 3.2.4 Atterberg limits ... 22
 3.3 Mineralogical Properties .. 25
 3.3.1 Clay size fraction .. 25
 3.3.2 Iron and manganese oxide coatings 29
 3.3.3 Microscopic observations of oxides 33
 3.4 Soil Chemical Properties .. 33
 3.4.1 Organic matter content 33
 3.4.2 Hydrogen ion activities 37
 3.4.3 Cation exchange capacity and exchangeable and extractable bases .. 37

4. SUMMARY .. 41

5. REFERENCES .. 45

APPENDIX A. X-Ray Diffractional of Clay Fraction from
 Selected Soil Horizons ... 47

Appendix B. Thin Section Descriptions 69
Acknowledgments

The authors thank D. A. Lietzke for his profile descriptions and consulting efforts toward the successful completion of the soil and saprolite characterization of Solid Waste Storage Area 6 (SWSA-6). Our deepest thanks are given to A. B. Jenkins, R. E. Lambert, and Peiyuan Qian for their many contributions to laboratory analyses. We also wish to extend our sincere appreciation to J. E. Foss for editing and report preparation.
Abstract

Solid Waste Storage Area 6 (SWSA-6) is one of the disposal sites for solid low-level radioactive waste at Oak Ridge National Laboratory. Soils and saprolites from the site were characterized to provide baseline information to initiate assessment for remedial actions and closure plans. Physical, chemical, mineralogical, and engineering analyses were conducted on soil and saprolite samples.

High bulk density in the soil solum generally indicates low permeability, depending upon soil structure. The saprolite is more dense (1.9 to 2.0 g/ml) where less weathering has occurred as in profile I. These bulk density values should be representative of saprolite at depths of 5 to 6 meters. Samples from the more oxidized and leached saprolite of soil profiles 3 and 4 have lower bulk densities (1.3 to 1.5 g/ml). These bulk density values are applicable to the upper 3 to 5 meters of saprolite. Surface and Bt horizons of the soil profiles have relatively high silt contents. This is primarily due to the presence of loess (wind blown silt) and the high silt content of the saprolite. The clay content generally increases with depth in the soil solum and clay-plugged upper saprolite but decreases after contact with harder saprolite. Moisture retention values generally decrease with depth, due to an increase in rock fragments.

Engineering properties of the soil solum are not too important because of the shallow depth. However, solum engineering properties are an indication of what saprolite fill properties will become as it weathers. Freshly removed saprolite has a unified soil classification of GC (clayey gravels) or GM (silty gravels), which indicates very high
gravel content with very few fines. Over time the gravel content will decrease and the fines will increase, with a resulting shift in plastic index to 15 or higher.

The presence of low pH values, low calcium carbonate equivalents (CCE), high concentrations of hydroxylamine-reducible manganese, and high concentrations of CBD-extractable manganese and iron are indicative of the highly weathered nature of the soils and saprolite at the site. High CCE values, and neutral to mildly alkaline pH values (pH 7-8) have been observed in the bedrock samples of HHMS core drillings. The soils and saprolites at SWSA-6 are generally low in organic carbon.

X-ray diffraction analyses of the clay size fraction of the soils and saprolite show high amounts of hydroxy-interlayered vermiculite. Large quantities of kaolinite have been found in the clay size fraction of samples from soil profiles 4 and 9. Gibbsite is present in the clay size fraction of only one horizon in soil profile 9. High concentrations of manganese and iron oxides along with poorly crystalline (neoformed) kaolinite are present in the clay size fraction of soils formed in the Maryville Limestone. Manganese and iron oxides are present in the soils and saprolites formed from the Nolichucky Shale, loess and alluvium. Micromorphological examinations indicate the presence of manganese and iron oxides in many different forms and associations. Manganese and iron oxides commonly occur as coatings on peds and saprolite surfaces. These oxides are generally associated with clay.

The results of physical, chemical, and mineralogical studies of SWSA-6 soils and saprolites will be incorporated with the results of other investigations, including geochemistry, geology, and hydrology for development of a comprehensive remedial action and closure plan.
List of Tables

Table 1. USDA classification and parent materials of 5 soil profiles described at SWSA-6 13
Table 2. Particle size (in mm) distribution, including rock fragments, and USDA soil textures of 6 soils at SWSA-6 21
Table 3. Water retention, bulk density and total porosity of six soils at SWSA-6 ... 23
Table 4. Atterberg limits of 5 soils at SWSA-6 24
Table 5. Summation of mineralogic analysis from X-ray diffraction and differential scanning calorimetry determinations 27
Table 6. The distribution of pH, ammonium acetate extractable bases, sodium dithionite extractable (CBD) iron and manganese, and hydroxylamine reducible (HA) manganese for five soil profiles at SWSA-6 30
Table 7. pH, hydroxylamine reducible manganese and calcium carbonate equivalent distributions from drill core samples from SWSA-6 ... 31
Table 8. Organic carbon distributions in six soils at SWSA-6 35
Table 9. Exchangeable bases, exchangeable Al total acidity, and summation cation exchange capacity on five soil profiles and a shallow trench at SWSA-6 38
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Location of Solid Waste Storage Area 6</td>
<td>4</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Soil map with locations of soil profiles, trenches and core drillings</td>
<td>7</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Photographs of soil profiles in SWSA-6 showing soil and saprolite development: A) Soil profile 1. Manganese coatings (mn) are present on the saprolite B) Soil profile 3 C) Soil profile 4, D) Soil profile 9</td>
<td>14</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Manganese coatings (mn) on the saprolite in soil profile 1</td>
<td>15</td>
</tr>
<tr>
<td>Figure 5</td>
<td>A rounded quartz grain (q) and a disintegrated quartz grain (q) present in the alluvial soil of profile 9. The disintegrated quartz grain indicates a high degree of weathering</td>
<td>17</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Surface residue (r) is observed adjacent to a pore that contains an infilling of highly oriented clay (c) on the side and manganese and iron oxide (o) accumulation in the center. Small voids (v) are also present. This feature was observed in the BC horizon (190-230 cm) of soil profile 9</td>
<td>18</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Soil profile in the Shallow Trench</td>
<td>20</td>
</tr>
</tbody>
</table>
Figure 8. Various forms of manganese and iron oxides and their associations: A) Manganese and iron oxide nodule (n) with quartz grain (q) inclusions. The nodule is present in the E horizon of soil profile 9 (20 cm). B) Granular segregation (g) of manganese and iron oxide. Exfoliating mica grains (m) are also present. These features were found between 3.66 and 4.27 meters in the deep trench. C) Crystalline manganese and iron oxides (cryst) are present with highly oriented clays (c) enclosed within voids (v). These features occurred in the Cr2 horizon of soil profile 4 (290-300 cm). D) A complex neocutan (neo) consisting of manganese and iron oxides and clay (c) coating a void (v) located in the Cr2 horizon of soil profile 9 (110-140 cm). Quartz grains (q) are also present. E) Granular segregation occurring in dendritic growth lines (d) found in the deep trench between 3.66 and 4.27 meters. Clay coatings (c) are also present. F) Botryoidal segregation (b) of manganese and iron oxides found at 3.66 to 4.27 meters in the deep trench. Clay coatings (c) are also present.

Figure 9. Pore with infillings of highly oriented clay (c) on the sides and manganese and iron oxides (o) in the center. These features were found in the 2BC horizon (190-230 cm) of soil profile 9.
1. INTRODUCTION

Solid Waste Storage Area 6 (SWSA-6) is a low-level radioactive waste burial facility located on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. Wastes composed of paper, filters, rags, gloves, tools and biological substances have been disposed in this low-level waste disposal site. Soils in SWSA-6 have been developed from the upper Maryville Limestone and lower Nolichucky Shale members of the Conasauga Group. The landforms on the site have been formed from episodic erosional geomorphic processes (Liezke and Lee, 1986). Drainageways are located in areas which favored surface waterflow. Drainageways tend to initially form in areas that either had a closer joint spacing or were more fractured, or in areas where the drainage network was inherited from an earlier erosion cycle. Because soil in the past has been removed by overland flow, depth to unoxidized and unleached rock is generally shallower in drainageway bottoms than on interfluves where more rainfall infiltrated and percolated downward, resulting in greater chemical weathering of rock and thicker saprolite.

An understanding of SWSA-6 soils, their role in the chemical environment of the solum and saprolite zone, and in surface and subsurface water movement is crucial in remedial action and closure of this and other burial grounds located on Conasauga Group residium. Information regarding characteristics of soil and saprolite is revealed through physical, chemical, and mineralogic analyses. An understanding
of the various properties of soil and saprolite materials in disposal sites is important for development of a comprehensive management plan of the sites. This is especially true when an aspect such as hydrology of a disposal area is considered.

After entering the environment, radioactive contaminants leached from wastes will contact soil and geological materials. Characteristics of the soil and saprolite that change with increasing depth will influence the migration and interaction of radionuclides. Small differences among soils and wastes may greatly influence radionuclide migration. As a result of different speciations of various radionuclides, prediction of their behaviors in soils is difficult. Mechanisms of radionuclide interaction with soil materials are used as tools for predicting the amount of radionuclide movement in soils.
2. MATERIALS AND METHODS

2.1 Geology

Low-level radioactive Solid Waste Storage Area 6 (SWSA-6) is located in Melton Valley, northwest of White Oak Lake and southeast of Lagoon Road and Haw Ridge on the Oak Ridge Reservation in Tennessee (Fig.1). The study area encompasses 28 hectares and has been used as a solid waste disposal site for 20 years. The Oak Ridge Reservation occurs in the Valley and Ridge Province of East Tennessee. SWSA-6, which is located on the Copper Creek thrust block, is underlain by strata of the Middle to Late Cambrian Conasauga Group. The Conasauga Group in the Melton Valley area is approximately 550 m thick, and composed of silty limestones, calcareous shales, and alternating calcareous siltstones and mudstones. The uppermost Maryville Limestone and lowermost Nolichucky Shale are formations of the Conasauga Group that occur in SWSA-6. The greater portion of SWSA-6 is underlain by the Upper Member of the Maryville Limestone. This is composed of dark gray, green and maroon-colored calcareous shales interbedded with gray-blue silty limestones and mudstones. In the southern most part of SWSA-6, the Maryville Limestone is interbedded in a transitional zone with the Nolichucky Shale which contains oxidized claystones (Boegly, 1984).

2.2 Pedology

According to Boegly (1984) the soils in the SWSA-6 area are moist, strongly leached, acidic, low in organic matter, and have cation exchange capacities less than 10 meq/100g of soil. The carbonate cement
that is found throughout most of the group is leached out near the surface. The saprolite material still has bedding and rock structure present. A thin veneer of soil, usually less than 1m thick, overlies the saprolite. There are no distinct boundaries between the soil, saprolite and bedrock (Boegly, 1984).

The three types of parent material found in SWSA-6 are: 1) in situ regolith (residuum or saprolite), 2) transported sediments (colluvium and alluvium), and 3) ancient alluvium. Residuum from the upper member of the Maryville Limestone and the Nolichucky Shale beneath makes up the greatest portion of the parent material (Lietzke and Lee, 1986).

Throughout the area, thin limestone lenses have weathered to form thin seams of red and yellow clay. Silty limestone weathers to porous brown siltstone saprolite. Shales weather to saprolites with a brown or dull olive color. Weathering and differential water movement enhances the abundant joints in these siltstones and shales. Thicker and more numerous limestone lenses are found in the northernmost part of the site. At higher elevations in SWSA-6, resistant limestone lenses are found within a few feet of the surface. Boegly (1984) reports that the particle size data for near surface saprolite has a mean sand content of 36%, a silt content of 22% and a clay content of 42%. Due to the higher claystone content of the saprolite, the soils of SWSA-6 have a higher clay content in the subsoil. Small faults and folds are found throughout the saprolite and bedrock beneath (Boegly, 1984).

The second most abundant parent material found at SWSA-6 is transported sediments (colluvium and alluvium). This parent material consists of sediments derived from both saprolite and in situ soils
The third parent material which exists in SWSA-6 is ancient alluvium (Lietzke and Lee, 1986). This material is found on a stable upland summit that represents the highest elevation in SWSA-6. According to Boegly (1984), the ancient alluvial deposits do not resemble the surrounding bedrock. The sediment probably originated from ancient Clinch River flooding events (Boegly, 1984). This deposit is generally 0.3 m thick, but in the southwestern corner of the site alluvium thickness is about 5 m. Highly weathered shale residuum lies beneath the alluvium.

2.3 Sampling - Field Methods

Soil and saprolite samples were taken from soil profiles 1, 3, 4, 9 and 10. Sampling was also completed on a shallow trench located approximately 100 m east of profile 9. A deep trench (trench 487) located approximately 150 m south of the entrance to the site was also sampled. All site locations are shown in Figure 2. Bulk soil and saprolite samples were taken from the various single and combined soil and saprolite horizons from the profiles and shallow trench. Core samples were taken from various single and combined soil and saprolite horizons using a sampling tube. Samples were stored in cylindrical containers. Large soil and saprolite clods taken from a depth of 3-6 m were retrieved from the deep trench. Core drillings were taken from depths of 0 to 12.4 m approximately 100 m northeast and east of profile 5 (Fig. 2). Thin section analyses were conducted on subsamples from the deep trench and bulk profile samples.
Figure 2. Soil map with locations of soil profiles, trenches and core drillings.
2.4 Sample Preparation

Bulk soil samples were air dried and ground to pass a 2 mm sieve. Coarse fragments and fine earth materials were stored in plastic bags in the Soil Sample Prep Building on the University of Tennessee, Knoxville campus. The core drillings that contained no bedrock were sieved in order to separate the fine earth and coarser fractions. Core drillings containing bedrock were not sieved.

2.5 Physical and Engineering Analysis

Physical and engineering analyses were conducted on soil and saprolite horizons. The pipette method was used to determine particle size distribution of the soil and saprolite (Soil Survey Staff, 1984). Liquid and plastic limits and flow index were determined using standard techniques (ASTM, 1980). Shrinkage limit was determined using the following equation: \(SL = 2 + pi \), where \(SL \) is the shrinkage limit, and \(pi \) is the distance above or below the A-line that the plot of plasticity index and liquid limit rests on Casagrande's plasticity chart (Casagrande, 1932). Moisture retention was determined at 1/3 and 15 bars tension on a ceramic plate extractor (Richards, 1965). Moisture retention values were adjusted to account for coarse fragment content. Bulk densities were determined by the core method (Blake, 1965). Soil particle density was measured from five random core samples using the method of Blake (1965). These values were averaged and used to calculate total porosity.

2.6 Mineralogical Analysis

Qualitative mineralogy of soil and saprolite clay samples was
determined by x-ray diffraction and differential scanning calorimetry. Untreated clay samples were collected in conjunction with particle size determinations. Iron was removed from the clay fraction of selected samples using sodium citrate bicarbonate dithionite (CBD) followed by saturation of split samples with 1 N KCl and 1 N MgCl (Jackson, 1975). The untreated clay samples were oriented on ceramic tiles by suction through a Buchner funnel. Magnesium and potassium saturated clay samples were oriented on glass slides by the filter-membrane peel technique of Drever (1973). Before the clays were oriented on the slides, they were dispersed ultrasonically for 10 min. Air-dried magnesium-saturated samples were analyzed by x-ray diffraction at room temperature and after a 10% glycerol treatment. Air-dried potassium-saturated samples were analyzed at room temperature and following heat treatments at 105°C, 300°C, and 550°C.

Clay analysis by x-ray diffractions was conducted at the Oak Ridge National Laboratory. Diffractograms were made with a Philips model 3-202 diffractometer connected to a California Scientific computer system. The radiation was CuKα generated at 35 kV and 15 mA. Diffractograms were completed at a scan speed of 1 degree per minute stepped at intervals of 0.02 degrees. Diffractograms began and ended at 2 and 30 degrees 2θ, respectively. Quantification of quartz, kaolinite, and gibbsite was achieved using differential scanning calorimetry (DSC).

2.7 Micromorphological Analysis

Petrographic analysis was conducted on 29 thin-section samples using a polarizing microscope. Descriptions, observations and
measurements of the optical properties of rock and soil forming minerals along with other crystalline and amorphous materials were by the methodology of Fitzpatrick (1984). A scanning electron microscope (SEM), Model ISI-40, was used to examine Cr horizon materials, especially manganese coatings (Jackson, 1975).

2.8 Chemical Analysis

Chemical analyses were conducted on representative samples from single and combined soil and saprolite horizons as well as core drillings. Soil pH was measured using a 1:1 (w/v) soil-to-solution ratio in water and 1 M KCl on the fine earth (<2 mm) of soil profiles. The same pH procedure was used on the fine earth (<2 mm) and the coarse fragment fractions (>2 mm) of the core drillings. The pH of one core drilling sample was measured in the supernatant portion of a 1:1 (w/v) soil/water paste (Peech, 1965). Organic carbon was determined by using a Leco CR12 Carbon Determinator. Calcium carbonate equivalent (CCE) was determined by acid titration (Sobek et al., 1978). Exchangeable bases were extracted with 1 M NH₄OAc. Exchangeable Al was extracted with 1 M KCl. Exchangeable bases and Al were determined by atomic absorption spectroscopy. Cation exchange capacity (CEC) was calculated as the sum of exchangeable bases plus KCl exchangeable Al (Soil Survey Staff, 1984). Exchangeable acidity was determined using a modified version of Thomas (1982). The following modifications were used: 50 ml of 1 M KCl were added to 2.5 g of soil and the mixture agitated on a mechanical shaker for 30 minutes. The extract was collected by gravity filtration
through Watman No. 42 filter paper. The remainder of the determination was unmodified.

Reducible manganese was extracted with hydroxylamine hydrochloride followed by determination using atomic absorption spectroscopy (Chao, 1972). Iron and magnesium were extracted using sodium citrate dithionite as described by Jackson (1975).
3. RESULTS AND DISCUSSION

3.1 Soil Morphology and Classification

Taxonomic classifications and mapping units for the five soils sampled are listed in Table 1. The soils are described in Lietzke and Lee (1986). Four of the profiles are illustrated in Figure 3. The soil in pit 1 is classified as a member of the loamy-skeletal, mixed, thermic, shallow Typic Dystrochrepts. The soil is formed in high silt content saprolite from the Maryville Limestone. Greater than 70% rock fragments by volume are present in soil 1. The saprolite (a slightly weathered siltstone facies of the Maryville Limestone) is present within 50 cm of the soil surface. Saprolite fragment interstitial and surface coatings have olive-yellow to olive-brown colors. The saprolite is also coated with manganese oxides as illustrated in Figure 4. This soil probably formed during the late Pleistocene or early Holocene.

The soil in pit 3 is classified as a member of the clayey-skeletal, mixed, thermic, Ruptic-Ultic Dystrocrepts. The parent material is residuum from the Maryville Limestone. The saprolite is variegated, with olive colors. Siltstone and sandstone saprolite fragments are present throughout but greatly increase below a depth of 100 cm. The Ruptic-Ultic Dystrocrept has a moderately deep solum over weakly consolidated sedimentary rock. An intermittent, thin argillic horizon occurs where the depth to rock is greatest. The base saturation is less than 60% throughout the control section (approximately 25-100 cm) and the clay content is greater than 35%. Red and dark red iron oxides and black manganese oxides coat the saprolite joint and fracture faces.

The soil in pit 4 is classified as a member of the clayey, mixed,
Table 1. USDA soil classification, soil series and parent material of five soil profiles described at SWSA-6.

<table>
<thead>
<tr>
<th>Pit</th>
<th>Soil No.</th>
<th>Classification</th>
<th>Parent Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>43</td>
<td>Typic Dystrochrepts; loamy-skeletal, mixed, thermic, shallow</td>
<td>Maryville Limestone</td>
</tr>
<tr>
<td>3</td>
<td>42</td>
<td>Ruptic-Ultic Dystrocrepts; clayey-skeletal, mixed, thermic</td>
<td>Maryville Limestone</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>Typic Halpudults; clayey, mixed, thermic</td>
<td>Maryville Limestone</td>
</tr>
<tr>
<td>9</td>
<td>92</td>
<td>Typic Paleudults; fine-loamy, siliceous, thermic</td>
<td>Old alluvium from local and distant sources</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>Ruptic-Aquultic Dystrocrepts; loamy-skeletal, mixed, thermic</td>
<td>Interbedded basal Nolichucky and uppermost Maryville</td>
</tr>
</tbody>
</table>
Figure 3. Photographs of soil profiles in SWSA-6 showing soil and saprolite development: A) Soil profile 1. Manganese coatings (mm) are present on the saprolite, B) Soil profile 3, C) Soil profile 4, D) Soil profile 9.
Figure 4. Manganese coatings (mn) on the saprolite in soil profile 1.
thermic family of Typic Hapludults. This soil is formed in a thin layer of loess and old alluvium and the underlying saprolite from the Maryville Limestone. Soil profile 4 is a freely drained soil that is deep to hard rock. Bright hues of 5 YR are present between 46 to 84 cm, indicating high oxidation status in the soil solum. Hard manganese nodules (1-2 mm dia.) occur between 6 and 27 cm and a few black iron-manganese oxide nodules are between 27 and 70 cm. Red to dark red iron oxide and black manganese oxide coatings are present on faces of the saprolite. Rock fragments occupy less than 35% by volume of the soil solum.

The soil in pit 9 is classified as a member of the fine-silty, siliceous, thermic family of Typic Paleudults. The parent material is old alluvium from local and distant sources. Chert from the Knox formation and quartzite pebbles are present between 37 and 80 cm. Red clay plasma is present as coatings on the ped surfaces. A lithologic discontinuity is present in this soil profile at 53 cm where a layer of loess covers the highly weathered ancient alluvium. The presence of rounded quartz grains (Fig. 5) provides evidence of the alluvial nature of the parent material. Water flow zones are present below and within the 2Bt5 horizon. Surface residues are observed microscopically in these horizons (Fig. 6). These residues are the outer surfaces of aggregates from which one or more internal constituents have been removed. In this case clay and oxides have been removed.

The soil in pit 10 is classified as a member of the loamy-skeletal, mixed, thermic family of Ruptic-Aquultic Dystrocrepts. The parent material is interbedded basal Nolichucky shale and uppermost Maryville Limestone. Ped and fragment surfaces in the soil solum are coated with
Figure 5. A rounded quartz grain (q) and a disintegrated quartz grain (q) present in the alluvial soil of profile 9. The disintegrated quartz grain indicates a high degree of weathering.
Figure 6. Surface residue (r) is observed adjacent to a pore that contains an infilling of highly oriented clay (c) on the side and manganese and iron oxide (o) accumulation in the center. Small voids (v) are also present. This feature was observed in the BC horizon (190-230 cm) of soil profile 9.
different shades of brown and gray clay. Black manganese oxides coat
brown colored shale fragments between depths of 84 to 120 cm.
Glaucnite pellets also occur within this zone. Steeply dipping rock
structure is present in all horizons except the A and Bt horizon. The
saprolite materials are quite hard below 120 cm.

The shallow trench exposed the basal old alluvium, the pebble zone
beneath which represents an ancient river bed, and the underlying
highly weathered Maryville saprolite beneath (Fig. 7).

3.2 Physical and Engineering Properties

3.2.1 Particle size distribution

Particle size distribution is reported in Table 2. High silt
contents are predominant in the surface and in some Bt horizons of all
soil profiles. This is due primarily to the presence of loess. Higher
percentages of sand sized particles in C and Cr horizons are a result of
disaggregation of larger shale fragments during sample preparation. The
clay content generally increases with depth in the soil solum and clay
plugged uppersaprolite but decreases after contact with harder
saprolite. Fracture and joint spacing in harder saprolite are closer
togather which percludes migration of clay. However, most faces are
coated with either iron or manganese compounds.

3.2.2 Bulk density

Bulk density values for the soil and saprolite horizons of the five
soil profiles and shallow trench are shown in Table 3. High bulk
Figure 7. Soil profile in the Shallow Trench.
<table>
<thead>
<tr>
<th>Pit Horizon</th>
<th>Depth (cm)</th>
<th>VCS 2-1</th>
<th>VCS 1-5</th>
<th>MS .5-2.5</th>
<th>FS .25-1</th>
<th>FS .1-05</th>
<th>CSI .05-.02</th>
<th>FSI .02-.002</th>
<th>Sand 2-0.05</th>
<th>Silt 0.05-.002</th>
<th>Clay <0.002</th>
<th>Texture with Modifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A-Bw</td>
<td>0 - 8</td>
<td>10.6</td>
<td>3.6</td>
<td>0.9</td>
<td>1.5</td>
<td>2.9</td>
<td>29.0</td>
<td>40.9</td>
<td>19.5</td>
<td>69.9</td>
<td>10.6</td>
<td>24.50</td>
</tr>
<tr>
<td></td>
<td>ext. shaly loam</td>
</tr>
<tr>
<td></td>
<td>ext. shaly clay</td>
</tr>
<tr>
<td></td>
<td>ext. shaly clay</td>
</tr>
<tr>
<td></td>
<td>ext. shaly clay</td>
</tr>
<tr>
<td>2 A-E</td>
<td>0 - 18</td>
<td>8.0</td>
<td>3.2</td>
<td>1.1</td>
<td>3.4</td>
<td>10.4</td>
<td>43.6</td>
<td>27.0</td>
<td>26.1</td>
<td>70.6</td>
<td>3.3</td>
<td>9.39</td>
</tr>
<tr>
<td></td>
<td>silt</td>
</tr>
<tr>
<td></td>
<td>very shaly clay</td>
</tr>
<tr>
<td></td>
<td>very shaly clay</td>
</tr>
<tr>
<td></td>
<td>very shaly clay</td>
</tr>
<tr>
<td></td>
<td>very shaly clay</td>
</tr>
<tr>
<td>3 A-E</td>
<td>0 - 27</td>
<td>3.5</td>
<td>1.7</td>
<td>0.3</td>
<td>0.5</td>
<td>2.1</td>
<td>54.4</td>
<td>30.8</td>
<td>8.1</td>
<td>85.2</td>
<td>6.7</td>
<td>10.45</td>
</tr>
<tr>
<td></td>
<td>silt</td>
</tr>
<tr>
<td></td>
<td>very shaly clay</td>
</tr>
<tr>
<td></td>
<td>very shaly clay</td>
</tr>
<tr>
<td></td>
<td>very shaly clay</td>
</tr>
<tr>
<td></td>
<td>very shaly clay</td>
</tr>
<tr>
<td>4 A-E</td>
<td>0 - 20</td>
<td>2.6</td>
<td>1.6</td>
<td>2.4</td>
<td>8.4</td>
<td>7.5</td>
<td>38.9</td>
<td>34.9</td>
<td>22.5</td>
<td>73.8</td>
<td>3.7</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>silt</td>
</tr>
<tr>
<td></td>
<td>very shaly clay</td>
</tr>
<tr>
<td></td>
<td>very shaly clay</td>
</tr>
<tr>
<td></td>
<td>very shaly clay</td>
</tr>
<tr>
<td></td>
<td>very shaly clay</td>
</tr>
<tr>
<td>9 A-E</td>
<td>0 - 20</td>
<td>1.5</td>
<td>1.5</td>
<td>1.9</td>
<td>8.6</td>
<td>9.2</td>
<td>26.8</td>
<td>30.6</td>
<td>22.9</td>
<td>48.7</td>
<td>28.6</td>
<td>1.59</td>
</tr>
<tr>
<td></td>
<td>gravelly clay loam</td>
</tr>
<tr>
<td></td>
<td>gravelly clay loam</td>
</tr>
<tr>
<td></td>
<td>gravelly clay loam</td>
</tr>
<tr>
<td>10 A-E</td>
<td>0 - 14</td>
<td>2.8</td>
<td>2.9</td>
<td>1.0</td>
<td>2.2</td>
<td>2.5</td>
<td>21.2</td>
<td>34.5</td>
<td>11.4</td>
<td>55.7</td>
<td>32.9</td>
<td>12.73</td>
</tr>
<tr>
<td></td>
<td>silty clay loam</td>
</tr>
<tr>
<td></td>
<td>silty clay loam</td>
</tr>
<tr>
<td></td>
<td>silty clay loam</td>
</tr>
<tr>
<td></td>
<td>silty clay loam</td>
</tr>
<tr>
<td>11 A-E</td>
<td>0 - 14</td>
<td>2.8</td>
<td>2.9</td>
<td>1.0</td>
<td>2.2</td>
<td>2.5</td>
<td>21.2</td>
<td>34.5</td>
<td>11.4</td>
<td>55.7</td>
<td>32.9</td>
<td>12.73</td>
</tr>
<tr>
<td></td>
<td>clay</td>
</tr>
<tr>
<td></td>
<td>clay</td>
</tr>
<tr>
<td></td>
<td>clay</td>
</tr>
<tr>
<td></td>
<td>clay</td>
</tr>
</tbody>
</table>

ST: shallow trench, APZ: above pebble zone, PZ: pebble zone, BPZ: below pebble zone. **ext. = Extremely. **scl = sandy clay loam.
density in the soil solum generally indicates low permeability, depending upon soil structure. The saprolite is more dense where less weathering has occurred as in profile 1. The saprolite horizons of profiles 3, 4 and 9 are highly weathered. These horizons exhibit lower bulk densities than the saprolitic material in profile 1 (Table 3). Saprolite bulk densities of soil profile 1 are indicative of deeper less oxidized and leached saprolite encountered in the bottoms and lower sidewalls of waste trenches in SWSA-6 at depths of 4 to 6 m.

3.2.3 Moisture retention

Moisture retention values for soil and saprolite horizons of the five soil profiles and shallow trench are shown in Table 3. The moisture retention values of samples from the surface horizons of the five soil profiles ranged from 12.4 to 17.9 percent. These horizons have high silt and organic carbon contents which are responsible for the high water retention values. High organic carbon contents are observed in the samples from the surface horizons of profiles 1 and 3 (Table 8).

Moisture retention of the soils in SWSA 6 generally decreases with depth, due to increased rock fragment content. Moisture retention values have been adjusted where more than 15% rock fragments are present.

3.2.4 Atterberg limits

Atterberg limits for the soils investigated are presented in Table 4. The liquid, plastic, and shrinkage limit values of samples from profiles 4 and 9 increase with depth. Additionally, in samples from profile 10 plasticity index, liquid and plastic limit values
Table 3. Water retention, bulk density, and total porosity of six soils at SWSA-6.

<table>
<thead>
<tr>
<th>Pit Horizon</th>
<th>Depth (cm)</th>
<th>Moisture 17.3 Bar</th>
<th>Retention* between 1/3-15 Bar</th>
<th>Corrected moisture for Rock Frag.</th>
<th>Rock Fragment</th>
<th>Bulk Density</th>
<th>Total Porosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-Bw</td>
<td>0 - 8</td>
<td>37.20</td>
<td>13.55</td>
<td>23.65</td>
<td>17.86</td>
<td>24.50</td>
<td></td>
</tr>
<tr>
<td>C-Cr</td>
<td>8 - 40</td>
<td>21.28</td>
<td>14.30</td>
<td>6.98</td>
<td>2.02</td>
<td>71.12</td>
<td>1.59</td>
</tr>
<tr>
<td>Cr2</td>
<td>40 - 110</td>
<td>19.18</td>
<td>15.16</td>
<td>4.02</td>
<td>0.56</td>
<td>85.99</td>
<td>1.91</td>
</tr>
<tr>
<td>Cr3</td>
<td>110 - 145</td>
<td>19.68</td>
<td>15.17</td>
<td>4.51</td>
<td>0.98</td>
<td>78.27</td>
<td>1.96</td>
</tr>
<tr>
<td>Cr4</td>
<td>145 - 205</td>
<td>18.10</td>
<td>11.86</td>
<td>6.24</td>
<td>0.37</td>
<td>94.00</td>
<td>-</td>
</tr>
<tr>
<td>3 A-E</td>
<td>0 - 18</td>
<td>35.48</td>
<td>19.23</td>
<td>16.25</td>
<td>-</td>
<td>9.39</td>
<td>1.52</td>
</tr>
<tr>
<td>BE</td>
<td>18 - 25</td>
<td>24.33</td>
<td>15.63</td>
<td>8.70</td>
<td>-</td>
<td>8.67</td>
<td>-</td>
</tr>
<tr>
<td>Bt-C</td>
<td>25 - 105</td>
<td>35.41</td>
<td>23.74</td>
<td>11.67</td>
<td>5.00</td>
<td>51.19</td>
<td>-</td>
</tr>
<tr>
<td>C1</td>
<td>105 - 132</td>
<td>43.21</td>
<td>24.12</td>
<td>19.09</td>
<td>6.30</td>
<td>67.00</td>
<td>1.45</td>
</tr>
<tr>
<td>C2</td>
<td>132 - 150</td>
<td>45.52</td>
<td>26.96</td>
<td>18.56</td>
<td>6.17</td>
<td>66.76</td>
<td>-</td>
</tr>
<tr>
<td>Cr-Mn</td>
<td>175 - 260</td>
<td>29.73</td>
<td>16.34</td>
<td>13.39</td>
<td>2.82</td>
<td>78.93</td>
<td>1.34</td>
</tr>
<tr>
<td>Cr</td>
<td>201 - 213</td>
<td>38.11</td>
<td>22.39</td>
<td>15.72</td>
<td>6.51</td>
<td>58.61</td>
<td>-</td>
</tr>
<tr>
<td>4 A-E</td>
<td>0 - 27</td>
<td>24.02</td>
<td>11.67</td>
<td>12.35</td>
<td>-</td>
<td>10.45</td>
<td>1.42</td>
</tr>
<tr>
<td>Bt1-Bt2</td>
<td>27 - 70</td>
<td>30.77</td>
<td>23.44</td>
<td>7.33</td>
<td>-</td>
<td>14.59</td>
<td>1.42</td>
</tr>
<tr>
<td>Bt3-Bt4</td>
<td>70 - 110</td>
<td>23.07</td>
<td>9.54</td>
<td>7.11</td>
<td>25.51</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C1</td>
<td>110 - 170</td>
<td>43.50</td>
<td>31.95</td>
<td>11.55</td>
<td>6.16</td>
<td>46.69</td>
<td>1.45</td>
</tr>
<tr>
<td>C2</td>
<td>170 - 190</td>
<td>47.82</td>
<td>32.65</td>
<td>15.17</td>
<td>9.44</td>
<td>37.57</td>
<td>-</td>
</tr>
<tr>
<td>Cr1</td>
<td>190 - 230</td>
<td>33.15</td>
<td>22.29</td>
<td>10.66</td>
<td>1.51</td>
<td>86.14</td>
<td>-</td>
</tr>
<tr>
<td>Cr2</td>
<td>205 - 300</td>
<td>54.61</td>
<td>31.85</td>
<td>22.76</td>
<td>6.35</td>
<td>72.12</td>
<td>-</td>
</tr>
<tr>
<td>Cr3</td>
<td>230 - 300</td>
<td>29.41</td>
<td>19.33</td>
<td>10.08</td>
<td>0.60</td>
<td>94.03</td>
<td>1.44</td>
</tr>
<tr>
<td>Cr4</td>
<td>290 - 310</td>
<td>34.15</td>
<td>19.88</td>
<td>14.27</td>
<td>1.14</td>
<td>92.18</td>
<td>-</td>
</tr>
<tr>
<td>Cr5</td>
<td>310 - 366</td>
<td>35.81</td>
<td>19.49</td>
<td>16.32</td>
<td>9.13</td>
<td>44.08</td>
<td>-</td>
</tr>
<tr>
<td>Cr6</td>
<td>366 - 396</td>
<td>22.15</td>
<td>18.38</td>
<td>3.77</td>
<td>1.89</td>
<td>49.84</td>
<td>-</td>
</tr>
<tr>
<td>9 A-E</td>
<td>0 - 20</td>
<td>19.27</td>
<td>12.90</td>
<td>6.37</td>
<td>-</td>
<td>4.44</td>
<td>1.35</td>
</tr>
<tr>
<td>Bt1-Bt2</td>
<td>20 - 53</td>
<td>18.68</td>
<td>15.90</td>
<td>2.78</td>
<td>-</td>
<td>1.59</td>
<td>1.55</td>
</tr>
<tr>
<td>2Bt3</td>
<td>53 - 80</td>
<td>19.41</td>
<td>11.43</td>
<td>7.98</td>
<td>6.59</td>
<td>17.42</td>
<td>1.36</td>
</tr>
<tr>
<td>2Bt5</td>
<td>119 - 190</td>
<td>23.66</td>
<td>21.33</td>
<td>2.53</td>
<td>2.06</td>
<td>18.61</td>
<td>1.52</td>
</tr>
<tr>
<td>10 Ap</td>
<td>0 - 14</td>
<td>19.25</td>
<td>17.30</td>
<td>1.93</td>
<td>-</td>
<td>12.73</td>
<td>-</td>
</tr>
<tr>
<td>Bt</td>
<td>14 - 23</td>
<td>20.81</td>
<td>18.99</td>
<td>1.82</td>
<td>-</td>
<td>1.52</td>
<td>16.30</td>
</tr>
<tr>
<td>Btg</td>
<td>23 - 50</td>
<td>25.76</td>
<td>23.10</td>
<td>2.66</td>
<td>-</td>
<td>1.27</td>
<td>54.33</td>
</tr>
<tr>
<td>Cr</td>
<td>50 - 74</td>
<td>24.17</td>
<td>21.26</td>
<td>2.91</td>
<td>0.39</td>
<td>86.96</td>
<td>-</td>
</tr>
<tr>
<td>Cr2</td>
<td>74 - 94</td>
<td>27.98</td>
<td>25.19</td>
<td>2.79</td>
<td>0.68</td>
<td>75.71</td>
<td>-</td>
</tr>
<tr>
<td>3Cr</td>
<td>84 - 120</td>
<td>21.63</td>
<td>19.06</td>
<td>2.57</td>
<td>0.30</td>
<td>88.66</td>
<td>-</td>
</tr>
<tr>
<td>4Cr</td>
<td>120 - 123</td>
<td>36.81</td>
<td>27.33</td>
<td>9.48</td>
<td>3.05</td>
<td>67.85</td>
<td>-</td>
</tr>
<tr>
<td>5Cr</td>
<td>123 - 150</td>
<td>23.60</td>
<td>17.31</td>
<td>6.29</td>
<td>0.55</td>
<td>91.21</td>
<td>-</td>
</tr>
<tr>
<td>ST APZ</td>
<td>100</td>
<td>27.32</td>
<td>22.67</td>
<td>4.67</td>
<td>-</td>
<td>1.22</td>
<td>-</td>
</tr>
<tr>
<td>PZ</td>
<td>200</td>
<td>14.93</td>
<td>11.67</td>
<td>3.26</td>
<td>1.84</td>
<td>43.52</td>
<td>-</td>
</tr>
<tr>
<td>BPZ</td>
<td>300</td>
<td>24.06</td>
<td>20.95</td>
<td>3.11</td>
<td>0.20</td>
<td>93.71</td>
<td>-</td>
</tr>
</tbody>
</table>

ST = shallow trench, APZ = above pebble zone, PZ = pebble zone, BPZ = below pebble zone, * = used as an estimate of available water holding capacity.
Table 4. Atterburg limits of five soils at SWSA-6

<table>
<thead>
<tr>
<th>Plot</th>
<th>Horizon</th>
<th>Depth (cm)</th>
<th>Liquid Limit</th>
<th>Plastic Limit</th>
<th>Plasticity Index</th>
<th>Flow Index</th>
<th>Shrinkage Limit</th>
<th>Activity Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A-Bw</td>
<td>0-8</td>
<td>50.5</td>
<td>32.2</td>
<td>18.3</td>
<td>14.4</td>
<td>24.0</td>
<td>1.73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C-Cr1</td>
<td>8-40</td>
<td>29.3</td>
<td>20.5</td>
<td>8.8</td>
<td>10.0</td>
<td>18.0</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>Cr2</td>
<td>40-110</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Cr3</td>
<td>110-145</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Cr4</td>
<td>145-205</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3 A-E</td>
<td>0-18</td>
<td>43.3</td>
<td>29.6</td>
<td>13.7</td>
<td>7.2</td>
<td>23.3</td>
<td>4.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BE</td>
<td>18-25</td>
<td>27.1</td>
<td>19.8</td>
<td>7.3</td>
<td>9.8</td>
<td>17.9</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>Bt-C</td>
<td>25-105</td>
<td>49.0</td>
<td>25.2</td>
<td>23.9</td>
<td>14.2</td>
<td>17.4</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td>105-132</td>
<td>49.6</td>
<td>33.7</td>
<td>15.9</td>
<td>8.8</td>
<td>25.7</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>132-150</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CrMn</td>
<td>175-260</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Cr</td>
<td>201-213</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4 A-E</td>
<td>0-27</td>
<td>22.4</td>
<td>15.6</td>
<td>6.8</td>
<td>1.4</td>
<td>15.0</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bt1-Bt2</td>
<td>27-70</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Bt3-C8t</td>
<td>70-110</td>
<td>43.1</td>
<td>28.7</td>
<td>14.4</td>
<td>7.9</td>
<td>22.5</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td>110-170</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>170-190</td>
<td>61.8</td>
<td>45.9</td>
<td>15.9</td>
<td>26.8</td>
<td>34.6</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>Cr1</td>
<td>190-230</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Cr2</td>
<td>230-310</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Cr5</td>
<td>310-366</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Cr6</td>
<td>366-396</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9 Ap-E</td>
<td>0-20</td>
<td>27.2</td>
<td>16.4</td>
<td>10.7</td>
<td>4.2</td>
<td>14.5</td>
<td>2.89</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bt1-Bt2</td>
<td>20-53</td>
<td>31.2</td>
<td>17.8</td>
<td>13.4</td>
<td>4.9</td>
<td>14.8</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>2Bt3</td>
<td>53-80</td>
<td>47.2</td>
<td>29.3</td>
<td>17.9</td>
<td>3.1</td>
<td>22.0</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>2Bt5</td>
<td>119-190</td>
<td>49.4</td>
<td>33.4</td>
<td>16.0</td>
<td>17.0</td>
<td>25.5</td>
<td>0.41</td>
</tr>
<tr>
<td>10 Ap</td>
<td>0-14</td>
<td>35.6</td>
<td>23.1</td>
<td>12.5</td>
<td>8.1</td>
<td>18.9</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bt</td>
<td>14-23</td>
<td>46.5</td>
<td>23.6</td>
<td>22.9</td>
<td>8.9</td>
<td>16.4</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>Btg</td>
<td>23-50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Cr</td>
<td>50-74</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2Cr</td>
<td>74-84</td>
<td>51.5</td>
<td>28.3</td>
<td>23.2</td>
<td>9.7</td>
<td>19.8</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>3Cr</td>
<td>84-120</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>4Cr</td>
<td>120-123</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>5Cr</td>
<td>123-150</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
increase with depth. The samples from the C-Crl horizon in profile 1 and the BE horizon in profile 3 have lower plasticity index and other values than their overlying surface horizons. The activity ratios are calculated by dividing the plasticity index by the percent clay. Generally, clays present in the soils at SWSA-6 are interpreted to be 1:1 or 2:1 non-swelling type clay minerals due to low activity ratios (A<1.15).

Due to high percentage of organic carbon, liquid and plastic limits and clay activities are high in surface horizons of profiles 1 and 3. Clay activity ratio over 4 is determined in profile 3 where the organic carbon percentage is 4.1% (Table 8). Organic matter can assume the characteristics of shrink-swell clays at high water contents. High shrinkage limits in profiles 1 and 3 are evidence of this. The liquid, plastic and shrinkage limits are low when small amounts of organics are present. Kow quantities of organic carbon also cause a decrease in the plasticity index. In soil profiles where the organic carbon content of surface horizons is high (i.e., >1%) liquid, plastic and shrinkage limits and plasticity indexes are high. These values decrease in the E horizons and increase once again in the underlying Bt horizons (Table 4).

3.3 Mineralogical Properties

3.3.1 Clay size fraction

X-ray diffractograms of the clay size fraction of the soils at SWSA-6 are shown in Appendix B. Samples of the clay fraction from selected soil horizons were analyzed by X-ray diffraction to determine
their mineralogy (Table 5 and Appendix A). This information is useful for determining relative weathering intensity, soil forming processes and landform stability.

The minerals present in the clay size fraction include kaolinite, smectite, hydroxy interlayered vermiculite (HIV), vermiculite, chlorite, and illite. The other constituents of the clay size fraction of the soils in SWSA-6 are organics plus manganese and iron oxides. The clay minerals, organics and manganese and iron oxides are important for colloidal adsorption of radionuclides. The cation exchange capacity (CEC) of the clays in the soils of SWSA-6 vary with clay type.

The small traces of HIV present in some horizons are likely the result of illite weathering to vermiculite and its subsequent transformation to HIV in a freely drained and acidic soil environment. Based on qualitative estimates of HIV, a large amount of illite weathering appears to have occurred in the soils of profiles 4 and 9. Due to the small amount of illite present in the loess material, the clay fraction in the Ap and E horizons in profile 9 contains only small amounts of HIV and vermiculites.

Pedogenic chlorite is present in the soils and saprolite of profile 4, and the Bt1-Bt2 and 2Bt3 horizons of profile 9. Pedogenic chlorite is also observed in the shallow trench soils at a depth of 300 cm and in the clay fraction of soils in profile 10. Pedogenic chlorite is a transformation product of HIV in these soils.

Clay morphology is an important characteristic that affects micropore size and geometry, which in turn affects permeability. Kaolinite is present in both poorly crystalline (Neoformed) and highly
Table 5. Summation of mineralogical analyses from x-ray diffraction and differential scanning calorimetry determinations.

<table>
<thead>
<tr>
<th>Pit</th>
<th>Horizon</th>
<th>Depth (cm)</th>
<th>Smectite</th>
<th>Vermiculite</th>
<th>HIV*</th>
<th>Chlorite**</th>
<th>Kaolinite</th>
<th>Illite</th>
<th>Oxides</th>
<th>Gibbsite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A-Bw</td>
<td>0-10</td>
<td>ND</td>
<td>H</td>
<td>Tr</td>
<td>ND</td>
<td>Tr</td>
<td>M</td>
<td>Tr</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>Cr4</td>
<td>145-205</td>
<td>ND</td>
<td>M</td>
<td>ND</td>
<td>ND</td>
<td>Tr</td>
<td>H</td>
<td>Tr</td>
<td>ND</td>
</tr>
<tr>
<td>3</td>
<td>A-E</td>
<td>0-18</td>
<td>ND</td>
<td>M</td>
<td>M</td>
<td>ND</td>
<td>Tr</td>
<td>M</td>
<td>Tr</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>Bt-C</td>
<td>84-105</td>
<td>ND</td>
<td>L</td>
<td>L</td>
<td>ND</td>
<td>Tr</td>
<td>H</td>
<td>Tr</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>132-150</td>
<td>ND</td>
<td>L</td>
<td>L</td>
<td>ND</td>
<td>Tr</td>
<td>H</td>
<td>Tr</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>Cr</td>
<td>201-213</td>
<td>ND</td>
<td>M</td>
<td>Tr</td>
<td>ND</td>
<td>Tr</td>
<td>H</td>
<td>Tr</td>
<td>ND</td>
</tr>
<tr>
<td>4</td>
<td>A-E</td>
<td>0-27</td>
<td>ND</td>
<td>Tr</td>
<td>H</td>
<td>Tr</td>
<td>Tr</td>
<td>L</td>
<td>Tr</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>Bt1-Bt2</td>
<td>27-70</td>
<td>ND</td>
<td>L</td>
<td>H</td>
<td>Tr</td>
<td>Tr</td>
<td>L</td>
<td>Tr</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>Cr1</td>
<td>190-230</td>
<td>ND</td>
<td>M</td>
<td>M</td>
<td>ND</td>
<td>Tr</td>
<td>M</td>
<td>Tr</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>Cr4</td>
<td>290-310</td>
<td>ND</td>
<td>L</td>
<td>M</td>
<td>ND</td>
<td>Tr</td>
<td>H</td>
<td>Tr</td>
<td>ND</td>
</tr>
<tr>
<td>9</td>
<td>Ap-E</td>
<td>0-20</td>
<td>ND</td>
<td>Tr</td>
<td>L</td>
<td>H</td>
<td>Tr</td>
<td>L</td>
<td>Tr</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>Bt1-Bt2</td>
<td>20-53</td>
<td>ND</td>
<td>Tr</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>Tr</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>2Bt3</td>
<td>53-85</td>
<td>ND</td>
<td>Tr</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>Tr</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>2Bt5</td>
<td>119-190</td>
<td>ND</td>
<td>L</td>
<td>H</td>
<td>Tr</td>
<td>L</td>
<td>Tr</td>
<td>Tr</td>
<td>ND</td>
</tr>
<tr>
<td>10</td>
<td>Ap</td>
<td>0-14</td>
<td>Tr</td>
<td>M</td>
<td>Tr</td>
<td>ND</td>
<td>Tr</td>
<td>M</td>
<td>Tr</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>Bt1-Bt2</td>
<td>23-50</td>
<td>Tr</td>
<td>H</td>
<td>Tr</td>
<td>ND</td>
<td>Tr</td>
<td>H</td>
<td>Tr</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>Cr</td>
<td>50-74</td>
<td>Tr</td>
<td>H</td>
<td>Tr</td>
<td>ND</td>
<td>Tr</td>
<td>H</td>
<td>Tr</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>5Cr</td>
<td>123-150</td>
<td>Tr</td>
<td>M</td>
<td>Tr</td>
<td>ND</td>
<td>Tr</td>
<td>H</td>
<td>Tr</td>
<td>ND</td>
</tr>
<tr>
<td>ST</td>
<td>AP2</td>
<td>100</td>
<td>ND</td>
<td>L</td>
<td>H</td>
<td>ND</td>
<td>L</td>
<td>M</td>
<td>Tr</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>200</td>
<td>ND</td>
<td>L</td>
<td>M</td>
<td>ND</td>
<td>L</td>
<td>M</td>
<td>Tr</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>BP2</td>
<td>300</td>
<td>ND</td>
<td>L</td>
<td>M</td>
<td>ND</td>
<td>Tr</td>
<td>M</td>
<td>Tr</td>
<td>ND</td>
</tr>
</tbody>
</table>

Notes: ND=not detected, Tr=trace(<10%), L=low(10-20%), M=medium(20-30%), H=high(>30%).
* HIV=hydroxy interlayered vermiculite. **Chlorite=pedogenic chlorite. ST=shallow trench,
APZ=above pebble zone, PZ=pebble zone, BPZ=below pebble zone.
crystalline forms in the clay fraction of soils in SWSA-6. Poorly crystalline kaolinite affects micropore size. The poorly crystalline grains do not stack evenly and the clay particles are not evenly distributed. The geometry of the resultant larger micropore is less uniform when poorly crystalline kaolinite is present. In contrast, highly crystalline kaolinite tends to stack evenly resulting in smaller micropores with more even distribution of clay. The size and distribution of micropores has an indirect effect on radionuclide adsorption by clays.

A sharp X-ray diffraction peak at 0.72 nm indicates crystalline kaolinite while broad 0.72 nm peak is typical of neoformed kaolinite (Appendix A). Highly crystalline kaolinite is present in the clay fractions of profiles 9 and 10. Soil profile 9 has old alluvium as parent material covered by a loess cap. The soil in profile 10 has interbedded Nolichucky Shale and upper Maryville Limestone as a parent material. Most of the highly crystalline kaolinite in saprolite is inherited from the Nolichucky Shale. Neoformed kaolinite (poorly crystalline) is present in the clay fractions of the soils throughout profiles 1, 3 and 4 (Appendix A). Soils containing neoformed kaolinite are present on the Maryville residuum.

Formation of gibbsite is used to estimate the relative age of a soil. Soil profile 9 represents the oldest soil in SWSA-6. Gibbsite, an aluminum hydroxide polymorph, is found in the clay fraction of the 2Bt5 horizon of profile 9 as indicated by differential scanning calorimetric analysis. The presence of gibbsite indicates that an advancement of weathering has occurred in profile 9.
Clay moves through larger cracks and voids of the saprolite and rock and coats these surfaces. Filling of host rock void spaces by clay minerals is the dominant cause of radionuclide and fluid flow retardation in the undisturbed zone (Lee and Tank, 1985). Clay is found as coatings and plugs associated with iron and manganese oxides and organic matter in larger saprolite voids and fractures. The clay coatings in the cracks and voids of the saprolite are likely deposited there by water movement within the soil profile or else are neoformed from solution.

3.3.2 Iron and manganese oxide coatings

Soil peds and weathered bedrock present in SWSA-6 contain iron and manganese oxide coatings that are in easily defined locations in the soil solum and underlying saprolite. These coatings have an extremely high adsorption capacity for a great number of radionuclides in low-level wastes.

Sodium citrate-bicarbonate-dithionite (CBD) extractable iron and manganese values are reported in Table 6. High iron values are found throughout all soils investigated. Lower iron values are present in the surface horizons of profiles 1 and 3. High manganese concentrations are present throughout most profiles.

Hydroxylamine reducible manganese (HA-Mn) concentrations are reported in Tables 6 and 7. In samples where low CBD-manganese concentrations are reported, low HA-Mn values also occur. Hydroxylamine reducible manganese decreases significantly in the presence of free carbonates. High concentrations of HA-Mn are present in highly
<table>
<thead>
<tr>
<th>Pit Horizon</th>
<th>Depth (cm)</th>
<th>Water pH (1:1)</th>
<th>KCl NH₄OAc</th>
<th>Fe CBD</th>
<th>Mn IA Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-Bw</td>
<td>0 - 8</td>
<td>6.57 5.75</td>
<td>3507</td>
<td>826</td>
<td>399 297</td>
</tr>
<tr>
<td>C-Cr1</td>
<td>8 - 40</td>
<td>6.73 4.93</td>
<td>2261</td>
<td>117</td>
<td>1611 627</td>
</tr>
<tr>
<td>Cr2</td>
<td>40 - 110</td>
<td>4.82 3.48</td>
<td>1858</td>
<td>544</td>
<td>1927 229</td>
</tr>
<tr>
<td>Cr4</td>
<td>110 - 145</td>
<td>4.96 3.30</td>
<td>1924</td>
<td>343</td>
<td>1642 908</td>
</tr>
<tr>
<td>Cr4</td>
<td>145 - 205</td>
<td>5.00 3.38</td>
<td>2688</td>
<td>361</td>
<td>1305 1534</td>
</tr>
<tr>
<td>3 A-E</td>
<td>0 - 18</td>
<td>6.45 5.79</td>
<td>2997</td>
<td>137</td>
<td>765 918</td>
</tr>
<tr>
<td>BE</td>
<td>18 - 25</td>
<td>6.11 5.18</td>
<td>1537</td>
<td>138</td>
<td>1550 752</td>
</tr>
<tr>
<td>Bt-C</td>
<td>25 - 105</td>
<td>5.38 4.31</td>
<td>2492</td>
<td>142</td>
<td>3626 207</td>
</tr>
<tr>
<td>C1</td>
<td>105 - 150</td>
<td>4.60 3.46</td>
<td>238</td>
<td>166</td>
<td>3326 100</td>
</tr>
<tr>
<td>C2</td>
<td>132 - 150</td>
<td>4.90 3.52</td>
<td>44</td>
<td>196</td>
<td>3956 1368</td>
</tr>
<tr>
<td>CrMn</td>
<td>172 - 205</td>
<td>5.02 3.48</td>
<td>77</td>
<td>159</td>
<td>2126 834</td>
</tr>
<tr>
<td>Cr</td>
<td>201 - 213</td>
<td>5.20 3.61</td>
<td>33</td>
<td>192</td>
<td>161 108</td>
</tr>
<tr>
<td>4 A-E</td>
<td>0 - 27</td>
<td>4.81 3.75</td>
<td>150</td>
<td>9</td>
<td>1255 60</td>
</tr>
<tr>
<td>Bt1-Bt2</td>
<td>27 - 70</td>
<td>5.09 3.59</td>
<td>157</td>
<td>129</td>
<td>2855 114</td>
</tr>
<tr>
<td>Bt3-CBt</td>
<td>70 - 110</td>
<td>5.31 3.60</td>
<td>14</td>
<td>57</td>
<td>2580 17</td>
</tr>
<tr>
<td>C1</td>
<td>110 - 170</td>
<td>5.47 3.51</td>
<td>9</td>
<td>73</td>
<td>5467 117</td>
</tr>
<tr>
<td>C2</td>
<td>170 - 190</td>
<td>5.11 3.55</td>
<td>10</td>
<td>79</td>
<td>2315 126</td>
</tr>
<tr>
<td>C1</td>
<td>190 - 200</td>
<td>4.84 3.55</td>
<td>27</td>
<td>186</td>
<td>3480 988</td>
</tr>
<tr>
<td>C2</td>
<td>205 - 300</td>
<td>5.21 3.61</td>
<td>33</td>
<td>217</td>
<td>3264 2834</td>
</tr>
<tr>
<td>C3</td>
<td>230 - 300</td>
<td>4.84 3.55</td>
<td>11</td>
<td>327</td>
<td>1876 1820</td>
</tr>
<tr>
<td>Cr2</td>
<td>250 - 310</td>
<td>5.28 3.69</td>
<td>24</td>
<td>395</td>
<td>2950 1950</td>
</tr>
<tr>
<td>Cr4</td>
<td>305 - 366</td>
<td>5.11 3.51</td>
<td>34</td>
<td>477</td>
<td>1872 1628</td>
</tr>
<tr>
<td>Cr5</td>
<td>366 - 396</td>
<td>4.90 3.54</td>
<td>50</td>
<td>491</td>
<td>1443 2215</td>
</tr>
<tr>
<td>9 Ap-E</td>
<td>0 - 20</td>
<td>5.91 5.55</td>
<td>1401</td>
<td>114</td>
<td>2683 13</td>
</tr>
<tr>
<td>Bt1-Bt2</td>
<td>20 - 53</td>
<td>4.49 3.79</td>
<td>270</td>
<td>3</td>
<td>1948 11</td>
</tr>
<tr>
<td>28t3</td>
<td>53 - 80</td>
<td>5.00 3.69</td>
<td>150</td>
<td>90</td>
<td>2203 182</td>
</tr>
<tr>
<td>28t5</td>
<td>119 - 190</td>
<td>4.90 3.48</td>
<td>61</td>
<td>40</td>
<td>2683 11</td>
</tr>
<tr>
<td>10 Ap</td>
<td>0 - 14</td>
<td>4.68 3.55</td>
<td>912</td>
<td>325</td>
<td>2097 592</td>
</tr>
<tr>
<td>Bt</td>
<td>14 - 23</td>
<td>4.80 3.15</td>
<td>556</td>
<td>246</td>
<td>2652 1552</td>
</tr>
<tr>
<td>Bt2</td>
<td>23 - 50</td>
<td>4.81 3.48</td>
<td>406</td>
<td>256</td>
<td>2642 521</td>
</tr>
<tr>
<td>Cr</td>
<td>50 - 74</td>
<td>4.81 3.42</td>
<td>722</td>
<td>629</td>
<td>2244 932</td>
</tr>
<tr>
<td>2Cr</td>
<td>74 - 84</td>
<td>5.05 3.45</td>
<td>600</td>
<td>488</td>
<td>4279 259</td>
</tr>
<tr>
<td>3Cr</td>
<td>84 - 120</td>
<td>5.50 5.09</td>
<td>3,488</td>
<td>1305</td>
<td>2539 103</td>
</tr>
<tr>
<td>4Cr</td>
<td>120 - 123</td>
<td>6.95 6.19</td>
<td>10,056</td>
<td>1468</td>
<td>2655 200</td>
</tr>
<tr>
<td>5Cr</td>
<td>123 - 150</td>
<td>7.25 6.25</td>
<td>17,643</td>
<td>1305</td>
<td>2597 165</td>
</tr>
<tr>
<td>APZ</td>
<td>100</td>
<td>4.98 3.55</td>
<td>29</td>
<td>118</td>
<td>4029 52</td>
</tr>
<tr>
<td>PZ</td>
<td>200</td>
<td>4.71 3.50</td>
<td>50</td>
<td>49</td>
<td>2127 155</td>
</tr>
<tr>
<td>BPZ</td>
<td>300</td>
<td>4.59 3.48</td>
<td>32</td>
<td>255</td>
<td>3723 81</td>
</tr>
</tbody>
</table>

Note: SY=shallow trench, APZ=above pebble zone, PZ=pebble zone, BPZ=below pebble zone.
Table 7. pH, Hydroxylamine reducible manganese and calcium carbonate equivalent (CCE) distributions for drill core samples from SWSA-6.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (m)</th>
<th>>2mm (1:1 H2O)</th>
<th><2mm (1:1 H2O)</th>
<th>>2mm (1:1 KCl)</th>
<th><2mm (1:1 KCl)</th>
<th>Hydroxylamine Mn (ppm)</th>
<th>Hydroxylamine CCE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHMS-4B</td>
<td>0-0.61</td>
<td>5.12</td>
<td>4.50</td>
<td>3.70</td>
<td>3.61</td>
<td>36.00</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>0.61-1.22</td>
<td>4.80</td>
<td>4.74</td>
<td>3.51</td>
<td>3.48</td>
<td>184.00</td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td>1.22-1.83</td>
<td>5.11</td>
<td>5.20</td>
<td>3.50</td>
<td>3.65</td>
<td>323.00</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>1.88-2.44</td>
<td>5.25</td>
<td>4.89</td>
<td>3.47</td>
<td>3.45</td>
<td>308.00</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>2.44-3.05</td>
<td>5.13</td>
<td>4.92</td>
<td>3.40</td>
<td>3.40</td>
<td>462.00</td>
<td>-0.03</td>
</tr>
<tr>
<td></td>
<td>3.05-3.66</td>
<td>5.64</td>
<td>4.77</td>
<td>3.33</td>
<td>3.39</td>
<td>509.00</td>
<td>-0.40</td>
</tr>
<tr>
<td></td>
<td>3.66-4.27</td>
<td>5.30</td>
<td>5.35</td>
<td>3.44</td>
<td>3.60</td>
<td>390.00</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td>4.27-4.88</td>
<td>5.74</td>
<td>5.45</td>
<td>3.80</td>
<td>3.87</td>
<td>512.00</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>4.88-5.49</td>
<td>6.11</td>
<td>5.85</td>
<td>3.80</td>
<td>4.09</td>
<td>355.00</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>6.91</td>
<td>7.60</td>
<td>-</td>
<td>6.33</td>
<td>-</td>
<td>87.00</td>
<td>26.17</td>
</tr>
<tr>
<td></td>
<td>7.52</td>
<td>8.39</td>
<td>-</td>
<td>6.21</td>
<td>-</td>
<td>89.60</td>
<td>22.76</td>
</tr>
<tr>
<td></td>
<td>8.13</td>
<td>8.10</td>
<td>-</td>
<td>6.73</td>
<td>-</td>
<td>91.80</td>
<td>28.92</td>
</tr>
<tr>
<td></td>
<td>8.74</td>
<td>8.11</td>
<td>-</td>
<td>6.70</td>
<td>-</td>
<td>87.00</td>
<td>21.72</td>
</tr>
<tr>
<td></td>
<td>9.35</td>
<td>8.30</td>
<td>-</td>
<td>6.48</td>
<td>-</td>
<td>72.80</td>
<td>17.10</td>
</tr>
<tr>
<td></td>
<td>9.96</td>
<td>8.24</td>
<td>-</td>
<td>6.89</td>
<td>-</td>
<td>68.60</td>
<td>17.58</td>
</tr>
<tr>
<td></td>
<td>10.57</td>
<td>8.30</td>
<td>-</td>
<td>6.69</td>
<td>-</td>
<td>70.00</td>
<td>16.96</td>
</tr>
<tr>
<td></td>
<td>11.18</td>
<td>8.11</td>
<td>-</td>
<td>6.42</td>
<td>-</td>
<td>89.20</td>
<td>21.00</td>
</tr>
<tr>
<td></td>
<td>11.79</td>
<td>8.25</td>
<td>-</td>
<td>6.70</td>
<td>-</td>
<td>95.60</td>
<td>25.33</td>
</tr>
<tr>
<td></td>
<td>12.40</td>
<td>8.11</td>
<td>-</td>
<td>6.70</td>
<td>-</td>
<td>88.00</td>
<td>27.66</td>
</tr>
<tr>
<td>HHMS-5A</td>
<td>0-0.61</td>
<td>4.89</td>
<td>4.78</td>
<td>3.59</td>
<td>3.61</td>
<td>13.00</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>0.61-1.22</td>
<td>4.82</td>
<td>4.73</td>
<td>3.38</td>
<td>3.49</td>
<td>47.30</td>
<td>-0.39</td>
</tr>
<tr>
<td></td>
<td>1.22-1.83</td>
<td>5.10</td>
<td>5.21</td>
<td>3.61</td>
<td>3.65</td>
<td>261.00</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>1.83-2.44</td>
<td>5.34</td>
<td>5.21</td>
<td>3.82</td>
<td>3.86</td>
<td>723.20</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>2.44-3.05</td>
<td>5.69</td>
<td>5.80</td>
<td>4.24</td>
<td>4.08</td>
<td>308.00</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>3.05-3.66</td>
<td>6.18</td>
<td>6.27</td>
<td>4.70</td>
<td>4.99</td>
<td>268.40</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>6.71-7.32</td>
<td>-</td>
<td>7.70</td>
<td>-</td>
<td>-</td>
<td>125.40</td>
<td>31.26</td>
</tr>
<tr>
<td></td>
<td>7.32-7.93</td>
<td>8.21</td>
<td>-</td>
<td>6.60</td>
<td>-</td>
<td>92.80</td>
<td>22.50</td>
</tr>
<tr>
<td></td>
<td>7.93-8.53</td>
<td>7.55</td>
<td>-</td>
<td>6.70</td>
<td>-</td>
<td>68.00</td>
<td>13.94</td>
</tr>
<tr>
<td></td>
<td>8.53-9.14</td>
<td>7.65</td>
<td>-</td>
<td>6.49</td>
<td>-</td>
<td>88.20</td>
<td>23.83</td>
</tr>
<tr>
<td></td>
<td>9.14-9.75</td>
<td>7.92</td>
<td>-</td>
<td>6.70</td>
<td>-</td>
<td>92.40</td>
<td>25.81</td>
</tr>
<tr>
<td></td>
<td>10.36-10.97</td>
<td>7.67</td>
<td>-</td>
<td>6.09</td>
<td>-</td>
<td>94.80</td>
<td>28.43</td>
</tr>
<tr>
<td></td>
<td>10.97-11.58</td>
<td>8.30</td>
<td>-</td>
<td>6.95</td>
<td>-</td>
<td>89.40</td>
<td>20.68</td>
</tr>
<tr>
<td></td>
<td>11.58-12.19</td>
<td>8.05</td>
<td>-</td>
<td>6.78</td>
<td>-</td>
<td>97.80</td>
<td>25.91</td>
</tr>
</tbody>
</table>

* Insufficient sample, therefore the paste method was used.

**Samples beyond this point were of bedrock and no soil.
weathered zones in the soil, saprolite, and deep core drillings at SWSA-6.

The diffractograms of the clay size fraction which received CBD treatments have no 0.78 nm or 0.48 nm peaks. The X-ray diffraction peaks at 0.78 nm and 0.48 nm are indicative of manganese oxides (D. A. Lietzke, Personal Comm.). The 0.78 nm peak is not present in X-ray diffractograms from the surface horizons of profiles 1, 3 and 4. The absence of this peak suggests that these horizons developed in a different parent material than the underlying horizons or that intense weathering processes caused the translocation of Mn oxides from these surface horizons. The upper horizons in these three profiles contain large quantities of silt that probably resulted from loess deposition. The soils in profile 9 and the shallow trench contain small concentrations of HA-Mn and CBD extractable manganese (Table 6). This suggests that these soils, which formed from old alluvium and loess, either contained small quantities of naturally occurring manganese when they were deposited or pedogenic processes have removed the majority of these materials.

Iron oxides are present throughout the five soil profiles and the shallow trench. An iron oxide X-ray diffraction peak at 0.41 nm was observed in the untreated clay size fraction of most samples (Appendix A). This X-ray peak disappeared after CBD treatment. A large concentration of CBD-extractable iron is present in the soils of all profiles and the shallow trench (Table 6).
3.3.3 Microscopic observations of manganese and iron oxides

Manganese and iron oxides are present microscopically throughout these soils (Appendix B). These oxides are in many different forms and have many different associations. Microscopically, manganese and iron oxides are observed as (1) nodules and concretions, (2) granular segregated bodies, (3) crystalline forms, (4) neo and quasi forms, (5) tubular bodies, (6) dendritic growths, (7) botryoidal forms, and (8) as impregnations (Fig. B). Manganese and iron oxides are abundant in highly oriented clay coatings around pores and on rock fragments (Fig. 9). The microscopic observations of manganese and iron oxide and clay coatings on rock, saprolite and ped faces indicate movement of these constituents within the soil and saprolite profile. This movement is primarily due to water.

3.4 Soil Chemical Properties

3.4.1 Organic matter content

The organic carbon contents decrease with depth in the soils in all profiles and the shallow trench (Table 8). The surface horizons of profiles 1 and 3 contain large quantities of organic carbon. Organic materials illuviate with clay minerals. These clay minerals and organic particles are translocated (illuviated) through the soil into saprolite. The accumulation of clay minerals and organic particles at 120 cm (profile 10) is a result of less permeable saprolite which begins at this depth.
Figure 8. Various forms of manganese and iron oxides and their associations: A) Manganese and iron oxide nodule (n) with quartz grain (q) inclusions. The nodule is present in the E horizon of soil profile 9 (20 cm). B) Granular segregation (g) of manganese and iron oxide. Exfoliating mica grains (m) are also present. These features were found between 3.66 and 4.27 meters in the deep trench. C) Crystalline manganese and iron oxides (cryst) are present with highly oriented clays (c) enclosed within voids (v). These features occurred in the Cr2 horizon of soil profile 4 (290-300 cm). D) A complex neocutan (neo) consisting of manganese and iron oxides and clay (c) coating a void (v) located in the Cr2 horizon of soil profile 1 (110-140 cm). Quartz grains (q) are also present. E) Granular segregation occurring in dendritic growth lines (d) found in the deep trench between 3.66 and 4.27 meters. Clay coatings (c) are also present. F) Botryoidal segregation (b) of manganese and iron oxides found at 3.66 to 4.27 meters in the deep trench. Clay coatings (c) are also present.
Figure 9. Pore with infillings of highly oriented clay (c) on the sides and manganese and iron oxides (o) in the center. These features were found in the 2BC horizon (190-230 cm) of soil profile 9.
Table 8. Organic carbon distributions in six soils at SWSA-6.

<table>
<thead>
<tr>
<th>Pit</th>
<th>Horizon</th>
<th>Depth (cm)</th>
<th>Carbon (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A-Bw</td>
<td>0-8</td>
<td>4.33</td>
</tr>
<tr>
<td></td>
<td>C-Cr1</td>
<td>8-40</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>Cr2</td>
<td>40-110</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>Cr3</td>
<td>110-145</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>Cr4</td>
<td>145-205</td>
<td>0.12</td>
</tr>
<tr>
<td>2</td>
<td>A-E</td>
<td>0-18</td>
<td>4.10</td>
</tr>
<tr>
<td></td>
<td>BE</td>
<td>18-25</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>Bt-C</td>
<td>25-105</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>Cr1</td>
<td>105-132</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>Cr2</td>
<td>132-150</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>Cr3</td>
<td>150-260</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>Cr4</td>
<td>201-213</td>
<td>0.11</td>
</tr>
<tr>
<td>3</td>
<td>A-E</td>
<td>0-18</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>BT1-BT2</td>
<td>18-70</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>BT3-BT4</td>
<td>70-110</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>Cr1</td>
<td>110-170</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>Cr2</td>
<td>170-230</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>Cr3</td>
<td>230-310</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>Cr4</td>
<td>310-366</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Cr5</td>
<td>366-396</td>
<td><0.01</td>
</tr>
<tr>
<td>4</td>
<td>Ap-E</td>
<td>0-20</td>
<td>1.80</td>
</tr>
<tr>
<td></td>
<td>Bt1-Bt2</td>
<td>20-53</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>2Bt3</td>
<td>53-80</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>2Bt5</td>
<td>119-190</td>
<td>0.09</td>
</tr>
<tr>
<td>5</td>
<td>Ap</td>
<td>0-14</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>Bt</td>
<td>14-23</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>Btg</td>
<td>23-50</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>Cr1</td>
<td>50-74</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>Cr2</td>
<td>74-84</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>Cr3</td>
<td>84-120</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>Cr4</td>
<td>120-123</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>Cr5</td>
<td>123-150</td>
<td>0.47</td>
</tr>
<tr>
<td>6</td>
<td>ST</td>
<td>100 cm</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>PZ</td>
<td>200 cm</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>BP</td>
<td>300 cm</td>
<td>0.06</td>
</tr>
</tbody>
</table>

ST = shallow trench, APZ = above pebble zone, PZ = pebble zone, BPZ = below pebble zone.
3.4.2 Hydrogen ion activities

The hydrogen ion activities (pH) of the soil and saprolite samples from the various soil profile horizons, core drillings and shallow trench ranged from 4.5 to 7.3 (Tables 6 and 7). Higher pH values are observed in the A and B horizons of profiles 1 and 3 and the lower saprolite (5Cr) of profile 10. Soil pH values range from 6.1 to 7.3 in these horizons. The higher pH values in the surface horizons of profiles 1 and 3 are due to past surface applications of lime. The pH of the lower saprolite horizon (5Cr) in profile 10 is high due to the presence of free carbonate. Free carbonates occur naturally in the saprolite and soil of profile 10. The carbonate bedrock of core HHMS-4B (below 7.52 m) has pH values > 8.1. The pH values of the carbonate bedrock of core HHMS-5A (below 7.32 m) range from 7.6 to 8.3.

Values for KCl extractable aluminum and total acidity for the soil and saprolite in the five soil profiles and the shallow trench are shown in Table 8. The values for extractable Al and total acidity generally increase with depth in all soils. The samples in profile 9 have low concentrations of extractable aluminum and total acidity due to the presence of free carbonate in the saprolite.

3.4.3 Cation exchange capacity and exchangeable and extractable bases

Cation exchange capacity (CEC) values vary throughout all soils investigated (Table 9). These values reported for saprolite may be high due to the presence of free carbonates. The values only express the CEC of the fines ($<2 \text{ mm}$) produced by laboratory manipulation and not the solid saprolite in the field state. Rock and/or saprolite fragments
Table 9. Exchangable bases, extractable Al, total acidity and summation cation exchange capacity on five soil profiles and a shallow trench SWSA-6.

<table>
<thead>
<tr>
<th>Pit Horizon</th>
<th>Depth (cm)</th>
<th>Exchangable bases</th>
<th></th>
<th></th>
<th>Extractable Al (KCl)</th>
<th>Total acidity</th>
<th>CEC summation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ca</td>
<td>Mg</td>
<td>K</td>
<td>Na</td>
<td>mg/100g</td>
<td></td>
</tr>
<tr>
<td>1 A-Bw</td>
<td>0 - 8</td>
<td>23.19</td>
<td>1.04</td>
<td>0.71</td>
<td>0.08</td>
<td>13.81</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 - 40</td>
<td>1.09</td>
<td>0.69</td>
<td>0.52</td>
<td>0.04</td>
<td>0.10</td>
<td>0.00</td>
</tr>
<tr>
<td>C-Cr1</td>
<td></td>
<td>40 - 110</td>
<td>0.96</td>
<td>2.37</td>
<td>0.63</td>
<td>0.06</td>
<td>2.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>110 - 145</td>
<td>1.16</td>
<td>2.17</td>
<td>0.30</td>
<td>0.17</td>
<td>1.67</td>
</tr>
<tr>
<td>Cr3</td>
<td></td>
<td>145 - 205</td>
<td>0.56</td>
<td>0.85</td>
<td>0.28</td>
<td>1.33</td>
<td>0.64</td>
</tr>
<tr>
<td>Cr4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 A-E</td>
<td>0 - 18</td>
<td>9.10</td>
<td>0.66</td>
<td>1.26</td>
<td>0.10</td>
<td>7.35</td>
<td>-0.39</td>
</tr>
<tr>
<td>BE</td>
<td></td>
<td>16 - 25</td>
<td>1.71</td>
<td>0.32</td>
<td>0.91</td>
<td>0.03</td>
<td>0.10</td>
</tr>
<tr>
<td>Bt-C</td>
<td>84 - 105</td>
<td>2.46</td>
<td>0.66</td>
<td>-</td>
<td>0.06</td>
<td>0.10</td>
<td>-0.39</td>
</tr>
<tr>
<td>C1</td>
<td>105 - 132</td>
<td>1.05</td>
<td>0.90</td>
<td>0.87</td>
<td>0.07</td>
<td>10.59</td>
<td>8.53</td>
</tr>
<tr>
<td>C2</td>
<td>132 - 150</td>
<td>0.225</td>
<td>0.60</td>
<td>0.22</td>
<td>0.02</td>
<td>8.45</td>
<td>9.05</td>
</tr>
<tr>
<td>Cr-Mn</td>
<td>175 - 260</td>
<td>0.12</td>
<td>0.86</td>
<td>0.31</td>
<td>-</td>
<td>8.20</td>
<td>7.13</td>
</tr>
<tr>
<td>Cr</td>
<td>201 - 213</td>
<td>0.225</td>
<td>1.12</td>
<td>0.25</td>
<td>1.43</td>
<td>8.10</td>
<td>5.75</td>
</tr>
<tr>
<td>4 A-E</td>
<td>0 - 27</td>
<td>0.60</td>
<td>0.07</td>
<td>0.16</td>
<td>0.06</td>
<td>8.86</td>
<td>1.50</td>
</tr>
<tr>
<td>Bt1-Bt2</td>
<td>27 - 70</td>
<td>4.70</td>
<td>0.60</td>
<td>0.27</td>
<td>0.03</td>
<td>2.08</td>
<td>5.63</td>
</tr>
<tr>
<td>Bt3-Cbt</td>
<td>70 - 110</td>
<td>0.078</td>
<td>0.30</td>
<td>0.22</td>
<td>0.02</td>
<td>6.76</td>
<td>8.47</td>
</tr>
<tr>
<td>C1</td>
<td>110 - 170</td>
<td>0.05</td>
<td>0.26</td>
<td>0.18</td>
<td>0.07</td>
<td>8.85</td>
<td>11.50</td>
</tr>
<tr>
<td>C2</td>
<td>170 - 190</td>
<td>0.06</td>
<td>-</td>
<td>-</td>
<td>0.04</td>
<td>11.67</td>
<td>9.63</td>
</tr>
<tr>
<td>Cr1</td>
<td>190 - 230</td>
<td>0.07</td>
<td>0.74</td>
<td>0.22</td>
<td>0.07</td>
<td>9.49</td>
<td>8.35</td>
</tr>
<tr>
<td>Cr2</td>
<td>205 - 330</td>
<td>0.09</td>
<td>0.22</td>
<td>0.22</td>
<td>0.11</td>
<td>9.79</td>
<td>7.18</td>
</tr>
<tr>
<td>Cr3</td>
<td>230 - 360</td>
<td>0.07</td>
<td>1.18</td>
<td>0.25</td>
<td>0.61</td>
<td>9.21</td>
<td>7.96</td>
</tr>
<tr>
<td>Cr4</td>
<td>290 - 310</td>
<td>0.10</td>
<td>1.34</td>
<td>0.22</td>
<td>0.02</td>
<td>8.25</td>
<td>7.67</td>
</tr>
<tr>
<td>Cr5</td>
<td>310 - 366</td>
<td>0.12</td>
<td>1.57</td>
<td>0.26</td>
<td>0.07</td>
<td>9.19</td>
<td>7.61</td>
</tr>
<tr>
<td>Cr5</td>
<td>366 - 396</td>
<td>0.23</td>
<td>2.17</td>
<td>0.28</td>
<td>0.06</td>
<td>6.60</td>
<td>5.79</td>
</tr>
<tr>
<td>9 Ap-E</td>
<td>0 - 20</td>
<td>-</td>
<td>0.35</td>
<td>0.27</td>
<td>0.03</td>
<td>0.03</td>
<td>0.39</td>
</tr>
<tr>
<td>Bt1-Bt2</td>
<td>20 - 53</td>
<td>1.16</td>
<td>0.15</td>
<td>0.35</td>
<td>0.03</td>
<td>0.03</td>
<td>2.10</td>
</tr>
<tr>
<td>2Bt3</td>
<td>53 - 60</td>
<td>0.02</td>
<td>0.13</td>
<td>0.21</td>
<td>0.03</td>
<td>0.03</td>
<td>6.84</td>
</tr>
<tr>
<td>2Bt5</td>
<td>119 - 190</td>
<td>0.01</td>
<td>0.13</td>
<td>0.20</td>
<td>0.03</td>
<td>0.03</td>
<td>6.56</td>
</tr>
<tr>
<td>10 Ap</td>
<td>0 - 14</td>
<td>1.06</td>
<td>1.55</td>
<td>0.41</td>
<td>0.03</td>
<td>10.31</td>
<td>5.83</td>
</tr>
<tr>
<td>Bt</td>
<td>14 - 23</td>
<td>3.72</td>
<td>1.40</td>
<td>0.37</td>
<td>0.04</td>
<td>6.74</td>
<td>6.53</td>
</tr>
<tr>
<td>Btg</td>
<td>23 - 50</td>
<td>2.90</td>
<td>1.51</td>
<td>0.47</td>
<td>0.05</td>
<td>7.97</td>
<td>8.55</td>
</tr>
<tr>
<td>Cr</td>
<td>50 - 74</td>
<td>0.67</td>
<td>2.29</td>
<td>0.36</td>
<td>-</td>
<td>9.24</td>
<td>8.16</td>
</tr>
<tr>
<td>2Cr</td>
<td>74 - 84</td>
<td>0.62</td>
<td>2.35</td>
<td>0.21</td>
<td>0.11</td>
<td>9.50</td>
<td>7.81</td>
</tr>
<tr>
<td>3Cr</td>
<td>84 - 120</td>
<td>2.18</td>
<td>6.25</td>
<td>0.25</td>
<td>0.08</td>
<td>0.10</td>
<td>0.39</td>
</tr>
<tr>
<td>4Cr</td>
<td>120 - 123</td>
<td>-</td>
<td>7.87</td>
<td>0.23</td>
<td>0.12</td>
<td>0.04</td>
<td>0.39</td>
</tr>
<tr>
<td>5Cr</td>
<td>123 - 150</td>
<td>-</td>
<td>6.26</td>
<td>0.15</td>
<td>0.16</td>
<td>0.04</td>
<td>0.00</td>
</tr>
<tr>
<td>ST APZ</td>
<td>100 cm</td>
<td>0.10</td>
<td>0.39</td>
<td>0.28</td>
<td>0.10</td>
<td>-</td>
<td>4.79</td>
</tr>
<tr>
<td>PZ</td>
<td>200 cm</td>
<td>0.16</td>
<td>0.17</td>
<td>0.37</td>
<td>0.23</td>
<td>5.07</td>
<td>4.74</td>
</tr>
<tr>
<td>BPZ</td>
<td>300 cm</td>
<td>0.08</td>
<td>0.28</td>
<td>0.41</td>
<td>0.07</td>
<td>15.12</td>
<td>12.16</td>
</tr>
</tbody>
</table>

ST = shallow trench, APZ = above pebble zone, PZ = pebble zone, BPZ = below pebble zone.
(>2 mm) comprise a large volume of the lower horizons in the soils at SWSA-6.

Total exchangeable bases for the soil and saprolite are reported in Table 9. Calcium values are high in surface horizons of profiles 1, 3, and 9. This is probably due to surface additions of lime. The calcium values of samples from the 3Cr, 4Cr, and 5Cr horizons of profile 10 were extremely high due to the presence of free carbonates. The calcium, magnesium, potassium and sodium values varied throughout all soils. The Cr horizons in profile 3 and the Cr4 horizon of profile 1 contained higher concentrations of sodium than found in any of the other soil horizons analyzed.

Ammonium acetate extractable base concentrations are shown in Table 6. High calcium values were observed throughout profile 1. Samples from profile 3 have high calcium concentrations in the upper one meter of soil. Calcium levels were also high in samples from the Ap-E and Bt1-Bt2 horizons of profile 9. The decrease with depth is related to the lithologic discontinuity present at 53 cm. The old alluvium at this depth is highly leached and therefore virtually free of carbonates. Extremely low calcium values were found in samples from the shallow trench. Samples from profile 10 contained extremely high calcium values especially in the saprolite horizons which contain free carbonate. Ammonium acetate extractable magnesium values varied randomly throughout all samples. High magnesium values were observed in the samples from the free carbonate saprolite horizons in profile 10. This suggests the presence of Mg-calcite or dolomite in the bedrock.

Calcium carbonate equivalent (CCE) values for the core drilling
samples are reported in Table 6. CCE values decreased sharply in highly weathered portions of the soil where pH values were low. These values increased at the weathering front between leached and unleached bedrock.
4. SUMMARY

The soil map of SWSA-6 shows the location and extent of each major kind of soil. Within each geologic formation, soils were identified according to morphologic characteristics. Weathering groups of soils were related to past geomorphic processes that shaped the present day landforms. Depth to unleached saprolite or to rock may not coincide with the formation of the soil solum, since deeper saprolite weathering can be active, while geomorphic processes are differentially stripping off surface horizons. During the past history of the site, the Clinch River flowed over part of the site. Evidence for this is the presence of well-rounded quartzites from the Unaka Mountains as well as local subrounded chert from the Knox Group. As the Clinch continued to down cut, erosion processes stripped off most of the alluvium, leaving a small uneroded and loess-covered remnant in the northwest corner. When the soil survey was made in 1985, the site was thought to be underlain by the upper Maryville Limestone. Further investigations have shown that the lower Nolichucky Shale and the transition zone between the two formations occupy the southern third of the site (Lietzke, personal communication).

Average soil solum thickness on the site, except for the No. 40 and 92 soils, is thin (less than 1 meter). Soil solums have a relatively high silt and clay content, and contain organic carbon. They have good sorption properties for radionuclides, but their thinness makes them relatively unimportant for remedial action and closure. In fact, during clearing activities, most of the soil solum in areas that have been...
heavily trenched was pushed off into drainageways or buried under leached and unleached saprolite removed from trenches.

Of importance for remedial action and future development of burial grounds in the Conasauga Group are the properties of the oxidized and leached saprolite. It is in this material that most low-level wastes have been buried. In-place properties of saprolite are much different from disturbed properties. In-place saprolite has fairly low permeability on a soil scale, but high permeability on a geologic scale. When this saprolite is removed, it readily parts into individual fragments bounded by joints and fractures. The chemical properties of in-place saprolite are largely controlled by the iron-manganese-clay complex that coats most fracture and joint surfaces, with minimal effects from clay minerals within fragments. The data contained in Tables 2 through 9 were obtained from disturbed, crushed, and otherwise manipulated samples, and is more applicable to properties of disturbed saprolite. Important physical, chemical, and sorption properties of undisturbed saprolite must be obtained from in-place observations with minimal disturbance. The methodology to accomplish this is either not available, not fully developed, or extremely expensive.

Leached saprolite varies greatly in physical and chemical properties depending on how weathered it is. The saprolite beneath the No. 43 soils is not highly weathered. Coarse fragment content is high and there is relatively low clay content. The leached saprolite beneath Soils 40 and 42 is more highly weathered. Fragment content is lower and the clay content is higher. The leached saprolite beneath the No. 51 soils should have similar properties as that beneath the No. 40 and 42
soils.

Engineering properties of the soil solum are not too important because of the shallow depth. However, solum engineering properties are an indication of what saprolite fill properties will become as it weathers. Freshly removed saprolite has a unified soil classification of GC, GM or GP, which indicates very high gravel content with very few fines. Over time the gravel content will decrease and the fines will increase, with a resulting shift to the ML, CL, ML-CL classifications and a plastic index of 15 or higher.

Water flow pathways in both leached saprolite and unleached saprolite are highly variable and irregular. Water that infiltrates the soil solum starts to become channelized in the lower solum. Tree stem flow directs water beneath the tree directly into tree roots and tree root voids. The influence of trees and tree roots on subsurface water flow pathways remains for long periods after tree removal. Water flow zones in leached and unleached saprolite have different chemical properties than the disturbed bulk chemical properties. Saturated water flow in these flow zones can carry radionuclides for long distances with minimal interaction with sidewalls. Most contaminated water flow from trench bottoms and lower sidewalls probably occurs in established flow zones, although some water will be transmitted for short distances as saturated flow through smaller fracture and joint planar pores before it assumes a condition of unsaturated flow. Unsaturated flow is slower and allows more time for contaminants to come into contact with pore sidewalls. Keeping water from ponding in trench bottoms is crucial to preventing or slowing movement of nuclides. Chemical and clay doping of
trench bottoms can be utilized to retain certain very mobile nuclides. The study of the chemical environment of existing filled trench bottoms is needed to determine the redox potential and how far nuclides have already moved under fluctuating perched water tables.

Remedial action for the closure of SWSA-6 will require a plan to provide for periodic maintenance for a considerable time. Irregular settlement of trench fill as decay of organic fill occurs and soil collapses into voids will necessitate the addition of fill to depressions. Fill will have to be obtained either on-site or from suitable off-site soil. Liming, fertilization and reseeding will have to be done with each reshaping. Vegetation will have to be selected for its shallow rooting characteristics. As the fill stabilizes and regrading disturbances become less frequent, woody plants will begin to invade the site, some with deep rooting characteristics.
5. REFERENCES

ASTM. 1980. Natural building stones; soil and rock. Annual book of
Philadelphia.

Blake, G. R. 1965. Bulk Density. In C. A. Black et al. (ed.).
374-390.

Boegly, W. J., Jr. 1984. Site characterization data for Solid Waste
Storage Area 6. ORNL TM-9442. Oak Ridge National Laboratory.
Oak Ridge, TN.

characteristics and transformations of a vertical
rock-saprolite-soil sequence in the North Carolina piedmont: I.
Profile morphology, chemical composition, and mineralogy. Soil

Chao, T. T. 1972. Selective dissolution of manganese oxides from
soils and sediments with acidified hydroxylamine hydrochloride.

specimens for x-ray diffraction analysis by a filter-membrane
peel technique. Amer. Mineral. 58:553-554.

Hall. New York.
APPENDIX A. X-Ray Diffratograms of Clay Fraction from Selected Soil Horizons.
PROFILE 1
A (0-10 cm)

<2 μm

Mg-GLY SAT

Mg SAT
ROOM TEMPERATURE

K SAT
ROOM TEMPERATURE

K SAT
105°C

K SAT
360°C

K SAT
560°C

UNTREATED

20 (deg)
PROFILE 1
Cr3 (145-205 cm)

<2 μm

Mg-GLY SAT

Mg SAT
ROOM TEMPERATURE

K SAT
ROOM TEMPERATURE

K SAT
105°C

K SAT
300°C

K SAT
550°C
PROFILE 3
Ap (0-10 cm)

<2 μm

Mg-GLY SAT

Mg SAT
ROOM TEMPERATURE

K SAT
ROOM TEMPERATURE

K SAT
105°C

K SAT
300°C

K SAT
550°C

UNTREATED

2θ (deg)
PROFILE 3
C/Bl (64-105 cm)

<2 µm

Mg-GLY SAT

Mg SAT
ROOM TEMPERATURE

K SAT
ROOM TEMPERATURE

K SAT
105°C

K SAT
300°C

K SAT
550°C

UNTREATED

2θ (deg)
PROFILE 3
C (132-150 cm)

<2 μm

Mg-GLY SAT

Mg SAT
ROOM TEMPERATURE

K SAT
ROOM TEMPERATURE

K SAT
105°C

K SAT
300°C

K SAT
550°C
PROFILE 3
Cr (201-213 cm)
<2 μm

2θ (deg)

Mg-GLY SAT
Mg SAT
ROOM TEMPERATURE
K SAT
ROOM TEMPERATURE
K SAT
135°C
K SAT
300°C
K SAT
550°C
PROFILE 4
A AND E (0-27 cm)

<2 μm

Mg-GLY SAT

Mg SAT
ROOM TEMPERATURE

K SAT
ROOM TEMPERATURE

K SAT
105°C

K SAT
300°C

K SAT
550°C

UNTREATED
PROFILE 4
Bt1-Bt2 (27-70 cm)
<2 μm

<1.4
1.0
0.72
0.474
0.338
0.334

Mg-GLY SAT
Mg SAT
ROOM TEMPERATURE
K SAT
ROOM TEMPERATURE
K SAT
105°C
K SAT
300°C
K SAT
350°C

2θ (deg)
PROFILE 4
Crl (190-230 cm)

<2 μm

Mg-GLY SAT

Mg SAT
ROOM TEMPERATURE

K SAT
ROOM TEMPERATURE

K SAT
108°C

K SAT
300°C

K SAT
550°C
PROFILE 9
Ap AND E (0-20 cm)
<2 µm

Mg-GLY SAT

Mg SAT
ROOM TEMPERATURE

K SAT
ROOM TEMPERATURE

K SAT
105°C

K SAT
300°C

K SAT
550°C

UNTREATED

2θ(deg)
PROFILE 9
Bt1 AND Bt2 (20–53 cm)

<2 μm

Mg-GLY SAT

Mg SAT
ROOM TEMPERATURE

K SAT
ROOM TEMPERATURE

K SAT
105°C

K SAT
300°C

K SAT
550°C

2θ (deg)
PROFILE 9
2513 (53-80 cm)
<2 μm

Mg-Gly SAT
Mg SAT
ROOM TEMPERATURE
K SAT
ROOM TEMPERATURE
K SAT
100°C
K SAT
300°C
K SAT
550°C
UNTREATED
PROFILE 9
23t5 (119-19C cm)

<2 µm

1.4
1.6
0.72
0.56
0.358
0.334

Mg-GLY SAT

Mg SAT
ROOM TEMPERATURE

K SAT
ROOM TEMPERATURE

K SAT
108°C

K SAT
300°C

K SAT
550°C

2θ(deg)

2 10 20 30
PROFILE 10
Ap (0–14 cm)

<2 μm

Mg–GLY SAT

Mg SAT
ROOM TEMPERATURE

K SAT
ROOM TEMPERATURE

K SAT
105°C

K SAT
300°C

K SAT
550°C

UNTREATED
PROFILE 10
Btg (23–50 cm)

<2 μm

Mg–GLY SAT

Mg SAT
ROOM TEMPERATURE

K SAT
ROOM TEMPERATURE

K SAT
105°C

K SAT
300°C

K SAT
550°C

UNTREATED
PROFILE 10
Crl (50-74 cm)
<2 μm

Mg-GLY SAT

Mg SAT
ROOM TEMPERATURE

K SAT
ROOM TEMPERATURE

K SAT
105°C

K SAT
300°C

K SAT
550°C

UNTREATED

2θ (deg)
PROFILE 10
Cr5 (123-150 cm)

<2 µm

Mg-GLY SAT
Mg SAT
ROOM TEMPERATURE
K SAT
ROOM TEMPERATURE
K SAT
105°C
K SAT
300°C
K SAT
550°C
UNTREATED

2θ (deg)
SHALLOW TRENCH
ABOVE PEBBLE ZONE (100 CM)

<2 µm

- Mg-GLY SAT
- Mg SAT
- ROOM TEMPERATURE
- K SAT
- ROOM TEMPERATURE
- K SAT
- 105°C
- K SAT
- 300°C
- K SAT
- 550°C
- UNTREATED

2θ (deg)
SHALLOW TRENCH
PEBBLE ZONE (200 cm)

<2 μm

1.4
1.0
0.474
0.335
Mg-GLY SAT

Mg SAT
ROOM TEMPERATURE

K SAT
ROOM TEMPERATURE

K SAT
105°C

K SAT
300°C

K SAT
550°C

UNTREATED

2
10
20
30
θ(deg)
SHALLOW TRENCH
BELOW PEBBLE ZONE (300 cm)

<2 µm

Mg-GLY SAT

Mg SAT
ROOM TEMPERATURE

K SAT
ROOM TEMPERATURE

K SAT
105°C

K SAT
300°C

K SAT
550°C

2θ (deg)
Appendix B. Thin Section Descriptions.
Thin Section Descriptions

Sample #: 1
Pit: 1
Horizon and depth: Bw, cambic, 10-55 cm
Location: Oak Ridge, Tennessee, Solid Waste Storage area 6 (SWSA-6)
Structure and pores: Alveolar with many irregular pores distributed around rock fragments.
Passages: Abundant rounded to sub-rounded
Fecal material: None visible
Organic matter: Rare
Particle size distribution: Extremely shaly loam.
Fine material: Very frequent yellowish-orange, forming a matrix and coatings.
Silt: Abundant quartz and occasional feldspar
Sand: Very fine occasional quartz
Rock fragments: Dominant striated sedimentary rock fragments with some glauconite present in weathered areas.
Coatings: Clay coatings, manganese and iron oxide coatings and compound coatings of their combinations are found in rock fragments.
Surface residues: None
Secondary crystalline material: None
Segregation and concretions: Frequent, dark brown to black, well rounded to irregular manganese and iron oxide concretion and segregated bodies. They take form as solid concretion, concretions with enclosed quartz grains, infillings in rock fragments, coatings on rock fragments, coatings in pores and compound coating occurring alone with highly oriented clays in pores.
Weathering features: Highly weathered rock fragments with rounded edges, fine material removal from rock fragment, oxidation of manganese and iron.
Microorganisms: None visible
Genesis: A low amount of weathering has occurred and not much leaching has taken place. Weathering of sedimentary rock fragments in the horizon has occurred.
Thin Section Descriptions

Sample #: 10

Pit: 1

Horizon and depth: Cr1, saprolite; 55-110 cm, oriented parallel to the strike.

Location: Oak Ridge, Tennessee, Solid Waste Storage area 6, (SWSA-6)

Structure and pores: Massive with occasional irregular pores migrating parallel to the saprolite grain.

Passages: Occasional

Fecal material: None

Organic matter: None visible

Particle size distribution: Extremely shaly clay

Fine material: Very abundant reddish brown forming a matrix and clay coatings.

Matrix: Very abundant reddish-brown moderately anisotropic around pores.

Silt: Frequent quartz, rare feldspar, occasional mica, occasional glauconite.

Rock fragments: Rare

Coatings: Frequent clay coatings and an occasional occurrence of manganese and iron oxide coating are found predominantly in the pores.

Surface residues: Lighter colored areas are found adjacent to the pores that migrate perpendicular to the saprolite grains.

Secondary Crystalline material: None visible

Segregation and concretions: Segregations and concretions of manganese and iron oxide are found throughout.

Weathering features: Contorted and exfoliated mica grains, oxidation of manganese and iron.

Microorganisms: None visible

Genesis: Saprolite originating from weathering of sedimentary rock.
Thin Section Descriptions

Sample #: 11

Pit: 1

Horizon and depth: Cr2, saprolite, 110-145 cm, oriented parallel to the strike

Location: Oak Ridge, Tennessee, Solid Waste Storage area 6 (SWSA-6)

Structure and pores: Massive with dendritic pores that run parallel to the saprolite grain.

Passages: Rare

Faecal material: None

Organic matter: None visible

Particle size distribution: Extremely shaly sandy clay

Fine material: Very frequent pale brown forming a matrix and abundant orange to orange-red in pores.

Matrix: Very frequent pale brown, weakly anisotropic with frequent embedded silt grains.

Silt: Frequent quartz, occasional heavy minerals, rare feldspar and occasional mica.

Sand: Frequent quartz

Rock fragments: None

Coatings: Compound coatings of highly oriented clays, iron oxide, manganese and silt sized heavy minerals are present in pores.

Surface residues: None

Secondary Crystalline material: None visible

Segregation and concretions: Occasional black manganese concretions are found around pores and in the S-matrix.

Weathering features: Exfoliated and contorted mica grains, oxidation of manganese and iron.

Microorganisms: None visible

Genesis: Saprolite originating from weathering of shale and siltstone.
Sample #: 12

Pit: 1

Horizon and depth: Cr3, saprolite, 145-205 cm, oriented parallel to the strike.

Location: Oak Ridge, Tennessee, Solid Waste Storage area 6 (SWSA-6)

Structure and pores: Massive with dendritic pores that predominantly migrate parallel to the saprolite grain.

Passages: Occasional

Fecal material: None

Organic matter: None

Particle size distribution: Extremely shaly loam

Fine material: Very abundant highly oriented orange clay coatings are found in pores and on mineral grains.

Matrix: Rare orange, moderately anisotropic with embedded quartz and mica.

Silt: Abundant quartz, very frequent mica and rare feldspar

Sand: Very fine occasional glauconite

Rock fragments: None

Coatings: Occasional, highly oriented clay coating on mineral grains. Dominant clay coatings are found in pores passages and around micaeous bands.

Surface residues: Lighter colored areas are found around the larger passages and pores.

Secondary crystalline material: None

Segregation and concretions: Round and irregular brown to black manganese and iron oxide concretion are observed throughout the thin section. They are primarily positions around pores passages and mica bands. Manganese and iron oxide segregation and coating are prominent and associated with the sides of the pores and the clay on them. Neomangan are present on the shale saprolite fragment.

Weathering features: Micas were exfoliated and contorted, oxidation of manganese.

Microorganisms: None visible

Genesis: Sedimentary siltstone and shale are weathered to form saprolite.
Thin Section Descriptions

Sample #: 13
Pit: 3
Horizon and depth: C/Bt, illuvial clay and parent material 84-110 cm
Location: Oak Ridge, Tennessee, Solid Waste Storage Area 6 (SWSA-6)
Structure and pores: Angular blocky with irregular dendritic pores.
Passages: Occasional
Fecal material: None present
Organic matter: None
Particle size distribution: Very shaly clay
Fine material: Abundant reddish-orange, red and brown forming a matrix and coatings
Matrix: Abundant reddish-orange, red and brown anisotropic zones and random anisotropic flecks. Distinct flecks were found in the rock fragments in the lower relief areas. An area of green anisotropic clay is found adjacent to a rock fragment.
Silt: Rare quartz, rare mica, and rare feldspar
Sand: Very fine rare glauconite
Rock fragments: Very frequent shale
Coatings: Dominant highly oriented clay coatings are found between rock fragments in pores and on mineral grains. Manganese and iron oxide coatings are found associated with the clay coatings.
Surface residues: None
Secondary crystalline material: None
Segregation and concretions: Dark brown to black manganese and iron oxide concretions occur in rounded to irregular forms. Granular segregations of manganese and iron oxide are observed around the concretions.
Weathering features: Micas are contorted and exfoliated, quartz grains are pitted, rock fragments are broken and exhibited rounded edges.
Microorganisms: None visible
Genesis: Deposition of clay in the form of clay coatings, weathering of rock fragments.
Thin Section Descriptions

Sample #: 14 and 15

Pit: 3

Horizon and depth: Cr, saprolite, 201-213 cm

Location: Oak Ridge, Tennessee, Solid Waste Storage Area 6 (SWSA-6)

Structure and pores: Massive with occasional irregular pores

Passages: Occasionally

Fecal material: None

Organic matter: Rare

Particle size distribution: Very shaly clay loam

Fine material: Dominant orange and brown forming a matrix and clay embedded silt grains.

Matrix: Dominant orange and brown moderately anisotropic with embedded silt grains.

Silt: Abundant quartz, occasional feldspar and occasional highly oriented biotits and rare glauconite.

Rock fragments: Rare

Coatings: Very abundant highly oriented orange-red clay coatings are found around pores. Managanese and iron oxide coatings are found in association with the clay coatings

Surface residues: Lighter colored areas are found adjacent to areas of high clay content and manganese segregation.

Secondary Crystalline material: None visible

Segregation and concretions: Manganese and iron segregation are associated with clay coatings. Manganese and iron oxide granular segregation in dendritic growth bands and concretions are present.

Weathering features: Rare

Microorganisms: None visible

Genesis: Saprolite weathered form sedimentary rock
Thin Section Descriptions

Sample #: 16 and 17

Pit: 4

Horizon and depth: Cr2, saprolite, 290-300 cm, oriented parallel to the strike
Location: Oak Ridge, Tennessee, Solid Waste Storage area 6 (SWSA-6)

Structure and pores: Massive with occasional dendritic pores migrating parallel to the saprolite grain.

Passages: Occasional

Fecal material: None

Organic matter: Rare, plant tissue

Particle size distribution: Extremely shaly clay loam

Fine material: Dominant orange to orange-red and golden highly oriented clay are found as coating. Occasional golden and brown unoriented clay are found in inclusions.

Matrix: Dominant orange to orange-red and golden highly oriented clay are coating pores and occasional golden and brown unoriented clays are found within inclusions with embedded silt grains.

Silt: Frequent quartz, rare feldspars and occasional mica
Sand: Mica, occasional glauconite
Rock fragments: None

Coatings: Highly oriented clay is coating pores. Manganese and iron oxide coatings are found associated with the clay and iron coatings. Compound coatings of highly oriented clay and manganese and iron oxides are observed pores.

Surface residues: Lighter colored areas are found adjacent to pores and manganese oxide segregated areas.
Secondary Crystalline material: Crystalline manganese oxide

Segregation and concretions: Granular manganese and iron oxide segregation occur in the anisotropic areas. Neomangans are present adjacent to fractures and plane pores. Manganese and iron oxide concretions and highly crystalline manganese oxide are present in passages. Tubular shaped manganese oxides are present.

Weathering features: Micas were exfoliated and contorted, oxidation of manganese and iron.

Microorganisms: Bug in a pore

Genesis: Saprolite weathered from sedimentary rock
Thin Section Descriptions

Sample #: 18, 19, 20, 21, and 22

Pit: 4

Horizon and depth: Cr2, saprolite; 290-310 cm, oriented perpendicular to the strike.

Location: Oak Ridge, Tennessee, Solid Waste Storage Area 6 (SWSA-6)

Structure and pores: Massive with frequent dendritic pores migrating parallel to the saprolite grain.

Passages: Occasional

Fecal material: None

Organic matter: Rare

Particle size distribution: Extremely shaly clay loam

Fine material: Abundant orange-red forming coatings and bridges

Matrix: Abundant orange-red moderated to highly anisotropic with embedded silt grains.

Silt: Abundant quartz, abundant mica, rare feldspar and rare heavy minerals

Sand: Occasional mica

Rock fragments: Rare

Coatings: Orange-red highly oriented clays coat pores and passages along with manganese oxide. Together they form compound coatings.

Surface residues: Occasional light colored area around pores and segregated areas.

Secondary crystalline material: Manganese oxide

Segregation and concretions: Manganese and iron oxide are found as coatings on pores. Concretions and granular segregation of manganese and iron oxide are found in fine grained area and dark bands. Neomangans occurred in the saprolitic shale.

Weathering features: Contorted and exfoliated mica

Microorganisms: Rare

Genesis: Saprolite weathered from shale and siltstone
Thin Section Descriptions

Sample #: 23
Pit: 9
Horizon and depth: E, eluvial, 20 cm
Location: Oak Ridge, Tennessee, Solid Waste Storage Area 6 (SWSA)-6
Structure and pores: Granular with frequent pores
Passages: Frequent
Fecal material: None
Organic matter: Occasional, plant tissue (roots) with iron oxide coatings
Particle size distribution: Silt
Fine material: Rare golden, forming coatings and rare matrix areas in the matrix.
Matrix: Rare golden, moderately anisotropic with rare random domains.
Silt: Dominant quartz, rare feldspar, occasional mica
Sand: Very fine quartz
Rock fragments: Rare
Coatings: Rare oriented clay coatings in pores
Surface residues: None
Secondary Crystalline material: None
Segregation and concretions: Very frequent, well rounded to irregular and tubular shaped manganese and iron oxide concretions
Weathering features: Quartz grains are pitted and mica grains are exfoliated and contorted, oxidation of manganese and iron.
Microorganisms: Rare
Genesis: Loess (wind blown silt)
Sample #: 24

Pit: 9

Horizon and depth: 2Bt3, argillic, 70 cm, below loess zone

Location: Oak Ridge, Tennessee, Solid Wste Storage Area 6 (SWSA-6)

Structure and pores: Subangular blocky with frequent pores

Passages: Frequent

Fecal material: None

Organic matter: Rare, roots

Particle size distribution: Cobble clay loam

Fine material: Very abundant orange, orange-red highly oriented forming a matrix and clay coatings.

Matrix: Very abundant orange, orange-red highly oriented moderately anisotropic with very frequent random domains and embedded silt and very fine sand grains.

Silt: Dominant quartz, rare feldspar, occasional mica and occasional heavy mineral

Sand: Quartz, feldspar

Rock fragments: None

Coatings: High oriented clay coatings were found around pores along with manganese and iron oxide coatings forming compound coatings.

Surface residues: None

Secondary Crystalline material: None

Segregation and concretions: Orange to black colored manganese and iron oxide are found in segregated areas. Concretions dominately contain quartz grains.

Weathering features: Exfoliated and contorted mica grains, oxidation of manganese and iron.

Microorganisms: None

Genesis: Ancient alluvium and illuval zone for clays
Thin Section Descriptions

Sample #: 25
Pit: 9
Horizon and depth: 2Bt5, argillic, 130 cm (above a highly mottled zone)
Location: Oak Ridge, Tennessee, Solid Waste Storage Area 6 (SWSA-6)
Structure and pores: Subangular blocky structure with occasional pores
Passages: Occasional
Fecal material: None
Organic matter: Rare, roots
Particle size distribution: Cobbly clay loam
Fine material: Dominant light orange-red and red forming a matrix and clay coatings.
Matrix: Dominant light orange, orange-red and rare brown and red highly anisotropic with abundant random domains and embedded silt and very fine sand grains.
Silt: Abundant quartz, occasional feldspar, rare mica, and frequent heavy mineral.
Sand: occasional quartz, siliceous oolitic fragment and polycrystalline quartz grains are discovered.
Rock fragments: None
Coatings: Very frequent highly oriented clay coatings are found around pores. Manganese and iron oxide coating are found associated with them. Together they form compound coatings.
Surface residues: None
Secondary Crystalline material: None visible
Segregation and concretions: Manganese and iron segregation are found in flow zones. Segregations and concretions were dark red and black in color.
Weathering features: Pitted quartz grains and contorted and exfoliated mica grains are present. Oxidation of manganese and iron.
Microorganisms: None visible
Genesis: Ancient alluvial with illuvial clays present
Sample #: 26
Pit: 9
Horizon and depth: 2Bt5, argillic, 160 cm (bottom of highly mottled zone)
Location: Oak Ridge, Tennessee, Solid Waste Storage Area 6 (SWSA-6)
Structure and pores: Subangular blocky with occasional small dendritic pores
Passages: Rare
Fecal material: None
Organic matter: Rare, roots
Particle size distribution: Cobbly clay loam
Fine material: Dominant, orange, orange-red and red forming a matrix and crescentic clay coatings.
Matrix: Dominant, orange, orange-red and red with very abundant oriented domains and embedded silt and very fine sand.
Silt: Very frequent quartz, frequent biotite, occasional feldspar
Sand: Frequent quartz, occasional biotile
Rock fragments: None
Coatings: Thick, highly oriented, very abundant clay coatings manganese and iron oxide coatings are associated with clay coatings in pores.
Surface residues: None
Secondary Crystalline material: Goethite
Segregation and concretions: Manganese and iron oxide segregation is abundant. Manganese and iron oxide concretions are also present.
Weathering features: Rounded pitted quartz grains, exfoliated and contorted biotite, oxidation of manganese and iron.
Microorganisms: None visible
Genesis: Ancient alluvium with illuvial clays
Thin Section Descriptions

Sample #: 27

Pit: 9

Horizon and depth: BC, 190-230 cm, oriented perpendicular to the strike.

Location: Oak Ridge, Tennessee, Solid Waste Storage Area 6 (SWSA-6)

Structure and pores: Subangular blocky with very frequent pores

Passages: Rare

Fecal material: None

Organic matter: None

Particle size distribution: Cobbley clay loam

Fine material: very abundant yellow, golden orange, orange-red, red and green frequent area forming a matrix and coatings.

Matrix: Very abundant, yellow golden orange, orange-red, red and green frequent areas around pores and embedded silt and very fine sand.

Silt: Abundant quartz, occasional biotite, heavy mineral feldspar

Sand: Very fine occasional quartz, rare mica

Rock fragments: Frequent

Coatings: Abundant highly oriented clay coatings are found in pores and on rock fragments. Iron and manganese oxides are associated with the clay coatings thus, forming compound coatings.

Surface residues: Lighter areas are observed around pores

Secondary crystalline material: Iron oxide (goethite)

Segregation and concretions: Occasionally bright and dark red and black segregation and concretions are observed around the pores and rock fragments.

Weathering features: Pitted quartz grains exfoliated and contorted mica, oxidation of manganese and iron.

Microorganisms: None visible

Genesis: Ancient alluvium
Thin Section Descriptions

Sample #: 28, 29, 30

Pit: Deep trench
Horizon and depth: 244-305 cm, oriented parallel to the strike.
Location: Oak Ridge, Tennessee, Solid Waste Storage Area 6 (SWSA-6)
Structure and pores: Occasional
Passages: None
Fecal material: None
Organic matter: None
Particle size distribution: Extremely shaly loam
Fine material: Abundant orange forming a matrix and coatings
Matrix: Abundant orange moderately anisotropic with domain in siltstone.
Silt: Abundant quartz, rare feldspar, occasional mica
Sand: Very fine rare glauconite pellets
Rock fragments: Very abundant
Coatings: Occasional highly oriented clay coatings are found on pore and rock fragments. Manganese and iron oxide are associated with them. Together they form compound coatings.
Surface residues: Areas are present where fine material have been removed and deposited in adjacent zones.
Secondary crystalline material: Red crystalline mineral, (iron oxide)
Segregation and concretions: Brown, red and black segregations in areas with brown and black concretions were observed. They were associated with rock fragment and clay around pores. Neomangans are found in the saprolitic shale.
Weathering features: Oxidation of manganese and iron.
Microorganisms: None visible
Genesis: Saprolite weathered from siltstone and shale
Erratic: Striated areas of high oriented micaceous minerals
Sample #: 31,32, and 33
Pit: Deep trench
Horizon and depth: 366-427 cm, oriented parallel to the strike.
Location: Oak s, Tennessee, Solid Waste Storage Area 6 (SWSA-6)
Structure and pores: Massive with very abundant irregular pores in the saprolitic shale the pores are dendritic and migrate parallel to the grain. In the saprolitic siltstone the pores migrate perpendicular to the grain, but parallel to each other.
Passages: Occasional
Fecal material: None
Organic matter: None
Particle size distribution: Extremely shaly loam
Fine material: Occasional orange, orange-red highly oriented forming a matrix and coatings.
Matrix: Occasional orange, orange-red highly oriented and moderately anisotropic with occasional oriented domains and embedded silt grains.
Silt: Occasional quartz, rare mica abundantly oriented in lines, rare feldspar.
Sand: Frequent glauconite
Rock fragments: Rare
Coatings: Highly oriented orange, orange-red clay coatings are found in the pores. Manganese and iron oxide coating are also present. Compound coatings are developed from their combination.
Surface residues: None
Secondary crystalline material: None
Segregation and concretions: Manganese and iron segregation are observed in and around pores. Manganese and iron granular segregation occur in an accumulation zone. Small concretions of manganese and iron are distributed throughout the thin section.
Weathering features: Pitted quartz grains, exfoliated and contorted mica grains, oxidation of manganese and iron.
Microorganisms: None visible
Genesis: Saprolite weathered from siltstone and shale
Thin Section Descriptions

Sample #: 34, 35

Pit: Deep trench

Horizon and depth: 417-488 cm, oriented parallel to the strike

Location: Oak Ridge, Tennessee, Solid Waste Storage Area 6 (SWSA-6)

Structure and pores: Massive with occasional pores in saprolitic shales which have pores that migrate parallel to the grain.

Passages: Rare

Fecal material: None

Organic matter: None

Particle size distribution: Extremely shaly clay loam

Fine material: Very abundant orange, orange red highly moderately oriented forming a matrix and coatings.

Matrix: Very abundant orange, orange-red moderately anisotropic with occasional random and swirled domains and embedded silt grains.

Silt: Very abundant quartz, occasional feldspar, occasional oriented mica.

Sand: Very fine, very frequent glauconite

Rock fragments: Dominant

Coatings: Frequent highly oriented clay coatings are found in and around the pores. Managnes and iron oxide are associated with them. Together they form compound coatings.

Surface residues: None

Secondary crystalline material: None

Segregation and concretions: occasional black neomangans are present in the saprolitic shale. Occasional red, brown and balck manganese and iron granular segregations are found throughout the slide.

Weathering features: Pitted quartz grains contorted and exfoliated mica grains, oxidation of manganese and iron

Microorganisms: None visible

Genesis: Saprolite is formed from weathered siltstone with sorted grains and shale.

Erratic: Striated layering of mica grain that are highly weathered
Thin Section Descriptions

Sample #: 36

Pit: 3

Horizon and depth: Cr, saprolite, 160 cm (Manganese accumulation zone).

Location: Oak Ridge, Tennessee, Solid Waste Storage Area-6 (SWSA-6)

Structure and pores: Massive with very abundant dendritic and crazy plane pores.

Passages: Frequent

Fecal material: None

Organic matter: Rare, plant roots coated with iron oxide

Particle size distribution: Extremely shaly clay loam

Fine material: Abundant orange highly oriented form a matrix and clay coatings.

Matrix: Abundant orange highly oriented, low anisotropic with occasional domains and embedded silt grains.

Silt: Frequent quartz pockets in shale. In weathered areas quartz is oriented in a circle. Occasional mica, rare glauconite pellets.

Sand: Very fine quartz

Rock fragments: Abundant

Coatings: Highly oriented clays are found around pores and rock fragment along with managanese and iron oxides. They form compound coatings.

Surface residues: None

Secondary crystalline material: None visible

Segregation and concretions: Brown to black segregations and concretions of manganese and iron oxide are found in highly weathered zones and in pores.

Weathering features: Zones where fine material has been leached out are present. Mica is exfoliated and contorted, oxidation of manganese and iron.

Microorganisms: None visible

Genesis: The saprolite is formed from weathered sandstone and shale.
Acknowledgments

The authors thank D. A. Lietzke for his profile descriptions and consulting efforts toward the successful completion of the soil and saprolite characterization of Solid Waste Storage Area 6 (SWSA-6). Our deepest thanks are given to A. B. Jenkins, R. E. Lambert, and Peiymuan Qian for their many contributions to laboratory analyses. We also wish to extend our sincere appreciation to J. E. Foss for editing and report preparation.
Sample #: 36

Pit: 3

Horizon and depth: Cr, saprolite, 160 cm (Manganese accumulation zone).

Location: Oak Ridge, Tennessee, Solid Waste Storage Area-6 (SWSA-6)

Structure and pores: Massive with very abundant dendritic and crazy plane pores.

Passages: Frequent

Fecal material: None

Organic matter: Rare, plant roots coated with iron oxide

Particle size distribution: Extremely shaly clay loam

Fine material: Abundant orange highly oriented form a matrix and clay coatings.

Matrix: Abundant orange highly oriented, low anisotropic with occasional domains and embedded silt grains.

Silt: Frequent quartz pockets in shale. In weathered areas quartz is oriented in a circle. Occasional mica, rare glauconite pellets.

Sand: Very fine quartz

Rock fragments: Abundant

Coatings: Highly oriented clays are found around pores and rock fragment along with manganese and iron oxides. They form compound coatings.

Surface residues: None

Secondary crystalline material: None visible

Segregation and concretions: Brown to black segregations and concretions of manganese and iron oxide are found in highly weathered zones and in pores.

Weathering features: Zones where fine material has been leached out are present. Mica is exfoliated and contorted, oxidation of manganese and iron.

Microorganisms: None visible

Genesis: The saprolite is formed from weathered sandstone and shale.
INTERNAL DISTRIBUTION

1. J. S. Baldwin 17. G. K. Moore
2. C. Clark 18. J. A. Mortimore
5. E. C. Davis 24. D. K. Solomon
7. F. J. Homan 26. L. E. Stratton
8. C. S. Haase 27. L. E. Torran
10. L. D. Hyde 31. L. D. Voorhees
11. R. H. Ketelle 32. H. R. Yook
12. J. R. Lawson 33. Laboratory Records - RC
13-15. S. Y. Lee 34. ORNL Patent Office
16. D. A. Lietzke

EXTERNAL DISTRIBUTION

35-37. J. T. Ammons, Department of Plant and Soil Science, The
University of Tennessee, Knoxville, TN 37916

38. J. E. Foss, Department of Plant and Soil Science, The University
of Tennessee, Knoxville, TN 37916

39. R. E. Lambert, Department of Plant and Soil Science, The University
of Tennessee, Knoxville, TN 37916

40-42. D. H. Phillips, Department of Plant and Soil Science, The University
of Tennessee, Knoxville, TN 37916

43-44. M. E. Timpson, Department of Plant and Soil Science, The University
of Tennessee, Knoxville, TN 37916

45. OFFICE OF ASSISTANT MANAGER, ENERGY RESEARCH AND DEVELOPMENT,
U.S. DEPARTMENT OF ENERGY, DOE FIELD OFFICE, OAK RIDGE
P.O. BOX 2001, OAK RIDGE, TN 37831-8600

46-47. OFFICE OF SCIENTIFIC AND TECHNICAL INFORMATION, P.O. BOX 62,
OAK RIDGE, TENNESSEE 37831