PNL--8356-Vol.2

DE93 002946

ESTIMATION OF THE RELEASE AND MIGRATION OF LEAD THROUGH SOILS AND GROUNDWATER AT THE HANFORD SITE 218-E-12B BURIAL GROUND

VOLUME 2: APPENDICES

K. Rhoads B. N. Bjornstad R. E. Lewis S. S. Teel

٨

۸

K. J. Cantrell R. J. Serne J. L. Smoot C. T. Kincaid S. K. Wurstner

October 1992

.

Prepared for the U.S. Department of Energy under Contract DE-AC06-76RL0 1830

Pacific Northwest Laboratory Richland, Washington 99352

CHETRIGUTION OF THIS DOCUMENT IS UNLIMITED

CONTENTS

.

.

FIGURES
TABLES
GLOSSARY
APPENDIX A - TECHNICAL BASIS FOR A GROUNDWATER TRANSPORT ANALYSIS AT THE HANFORD SITE 218-E-12B BURIAL GROUND
A.1 INTRODUCTION
A.2 GEOLOGIC STRUCTURE AND PHYSICAL-HYDRAULIC PROPERTIES OF SEDIMENTS BENEATH THE HANFORD SITE 218-E-12B BURIAL GROUND . A.2.1 A.2.1 STRATIGRAPHY
A.3 CONCEPTUAL MODELS OF CONTAMINANT ADSORPTION
A.4 ADAPTATION OF THE GROUNDWATER FLOW MODEL A.4.1 A.4.1 CFEST MODIFICATIONS TO GRID AND BOUNDARY CONDITIONS . A.4.1 A.4.2 AQUIFER TRANSMISSIVITY DISTRIBUTION
A.5 SOFTWARE VERIFICATION AND VALIDATION
A.6 REFERENCES
APPENDIX B - FIELD AND LABORATORY DATA

.

.

FIGURES

A.1	Location Map of the 218-E-12B Burial Ground Study Area	A.2.2
A.2	Generalized Stratigraphic Column for the 200-East Area	A.2.3
A.3	Borehole and Cross Section Location Map	A.2.7
A.4	East-West Geohydrologic Cross Sections Near the 218-E-12B Burial Ground	A.2.8
A.5	North-South Geohydrologic Cross Sections Near the 218-E-12B Burial Ground	A.2.9
A.6	Stratigraphic Section 1 from 218-E-12B Burial Ground Showing Sample Locations and Mapped Units	A.2.12
A.7	Stratigraphic Section 2 from 218-E-12B Burial Ground Showing Sample Locations and Mapped Units	A.2.13
A.8	Isopach Map of the Ringold Formation, 200-East Area	A.2.15
A.9	Isopach Map of the Hanford Formation	A.2.16
A.10	Geomorphic Features Within the Central Pasco Basin	A.2.18
A.11	Gravel-Dominated Facies of the Hanford Formation	A.2.19
A.12	North-South Geologic Cross Section in the Vicinity of the 200 East Area	A.2.21
A.13	Sand-Dominated Facies of the Hanford Formation	A.2.23
A.14	Slackwater Facies of the Hanford Formation	A.2.27
A.15	Photomosaic (A) and Trace (B) of the North Wall of the 218-E-12B Burial Ground	A.2.29
A.16	Comparison of Outcrop Exposed Along Southern Wall of 218-E-12B Burial Ground with Borehole 299-E34-7	A.2.33
A.17	Comparison of Outcrop Exposed Along Eastern Wall of 218-E-12B Burial Ground with Borehole 299-E35-1	A.2.34
A.18	Structural Elements of the Yakima Fold Belt	A.2.36
A.19	Structure Map of Top of Columbia River Basalt Group	A.2.37
A.20	Structure Map of Top of Columbia River Basalt Group, central Hanford Site	A.2.38

A.21	Structure Map of Shallow Slackwater Deposit of Hanford Formation	A.2.40
A.22	Topographic Map of Study Area	A.2.42
A.23	Presumed Ground-Water Gradients and Flow Directions in 200 Areas	A.2.44
A.24	Top of Water Table, June 1991	A.2.45
A.25	Saturated Thickness of Unconfined Aquifer	A.2.46
A.26	Geologic Map of Bedrock Surface	A.2.47
A.27	Finite-Element Grid for the CFEST Model of the Unconfined Aquifer	A.4.2
A.28	Finite-Element Grid for the Postclosure 0.5 cm/yr Recharge Case	A.4.5
A.29	Distribution of Transmissivities from Case 3 of the Inverse Application	A.4.7

Plate Geologic Map of the 218-E-12B Burial Ground Showing Mapped Units and 1 location of Samples Obtained for Laboratory Analysis Inside Back Cover

TABLES

A.1	Boreholes in the Vicinity of the 218-E-12B Burial Ground A.2.5
A.2	Samples from the 218-E-12B Burial Ground Taken for Laboratory Analysis
A.3	Samples from Borehole 299-E35-1 Taken for Laboratory Analysis . A.2.11

۸

.

GLOSSARY

Modified from Gary et al. (1974).

Aggradation: The building of the Earth's surface by deposition.

<u>Air-fall tuff</u>: A compacted deposit of volcanic ash that settled from the air.

<u>Alluvial fan</u>: A low, outspread, relatively flat to gently sloping mass of loose rock material, shaped like an open fan or a segment of a cone, deposited by a stream at the place where it issues from a narrow mountain valley upon a plain or broad valley.

<u>Anastomosing</u>: Braided stream channel geometry.

<u>Anticline</u>: Folded rock that convexes upward.

<u>Bar</u>: A ridge-like accumulation of sand or gravel formed in a channel, along the banks, or at the mouth, of a stream where a decrease in velocity induces deposition.

<u>Basalt</u>: Dark volcanic rock erupted upon the surface of the Earth.

<u>Clay</u>: A rock fragment or particle smaller than 1/256 mm.

<u>Conglomerate</u>: A coarse-grained sedimentary rock composed of larger fragments (>2 mm) set in a fine-grained matrix of sand and silt.

<u>Cross-bed</u>: A single, thin-bedded, often lenticular layer of homogeneous or gradational lithology, deposited at an angle to the original surface of deposition.

<u>Diagenetic</u>: Pertaining to the chemical, physical, and biologic changes undergone by a sediment after its initial deposition and during and after its transformation into a rock.

<u>Dip</u>: The maximum angle that a surface makes with a horizontal plane.

<u>En echelon</u>: Geologic features that are in a staggered arrangement.

<u>Epiclastic</u>: Pertaining to sedimentary rock whose fragments are derived by weathering or erosion.

<u>Facies</u>: The sum of all primary rock characteristics exhibited by a sedimentary rock and from which its origin and environment of deposition my be inferred.

Fanglomerate: Sedimentary rock deposited by an alluvial fan.

GLOSSARY (Continued)

u

....

<u>Foreset bed</u> :	A gently inclined layer of material deposited upon an advancing and relatively steep frontal slope of a sand wave.
<u>Fluvial</u> :	Pertaining to, produced by, or formed in a river.
<u>Glaciofluvial</u> :	Pertaining to the meltwater streams flowing from a glacier.
<u>Grading</u> :	The gradual reduction, in a progressively upward direction within an individual stratification unit, of the upper particle-size limit.
<u>Interbed</u> :	A thin bed on one kind of rock occurring between beds of another kind.
Isopach:	A line drawn on the map connecting points of equal thickness.
<u>Lacustrine</u> :	Pertaining to, produced by, or formed in a lake.
<u>Lamination</u> :	Sedimentary layer less than 1 cm thick.
<u>Mud</u> :	A mixture of silt- and clay-size particles.
<u>Overbank</u> :	Fine-grained sediment deposited from suspension on a flood plain by floodwaters that can not be contained within the stream channel.
<u>Overturned</u> :	Pertaining to the limb of a fold that has tilted beyond perpendicular.
<u>Paleocurrent</u> :	An ancient current whose direction is inferred from sedimentary structures.
<u>Plunge</u> :	The inclination of the axis of a fold.
<u>Shale</u> :	A fissile, laminated rock formed by consolidation of clay, mud, and silt.
<u>Silt</u> :	A rock fragment having a diameter between $1/256$ and $1/16$ mm.
<u>Suprabasalt</u> :	Sedimentary strata that overlie the Columbia River Basalt Group.
<u>Syncline</u> :	Folded rock that concaves upward.
<u>Tectonic</u> :	Pertaining to the forces involved in deforming the earth.
<u>Tholeiitic</u> :	Silica-rich basalt.
<u>Tuffite</u> :	A compacted deposit of volcanic ash and detrital material.

APPENDIX A

TECHNICAL BASIS FOR A GROUNDWATER TRANSPORT ANALYSIS AT THE HANFORD SITE 218-E-12B BURIAL GROUND

A.1 INTRODUCTION

This appendix describes the technical basis for a groundwater transport analysis that was conducted to evaluate migration of potentially hazardous materials from the Hanford Site 218-E-12B burial ground. The analysis characterized the geologic, chemical, and hydrologic properties of the disposal site, and used that information to perform a screening analysis for transport of materials from the burial ground to downgradient groundwater locations and to the Columbia River. Subsequent sections of the appendix describe the geologic setting, geochemistry, and hydrology of the disposal site and their relationship to the transport analysis.

A.2 <u>GEOLOGIC STRUCTURE AND PHYSICAL-HYDRAULIC PROPERTIES OF SEDIMENTS BENEATH</u> <u>THE HANFORD SITE 218-E-12B BURIAL GROUND</u>

This section of the appendix presents the results of a geologic and hydrologic study of the 218-E-12B Burial Ground, located within the 200-East Area of the Hanford Site in south-central Washington State (Figure A.1). It includes a description of the burial ground, discussions of the local geologic and hydrologic settings, and the geohydrology of the saturated and unsaturated zones beneath the site. A key task in this project was the collection of outcrop and borehole samples for physical analysis. These data are presented in Appendix B, along with as-built diagrams and well history sheets for the two groundwater monitoring wells adjacent to the 218-E-12B Burial Ground. The geohydrology in the vicinity of the 218-E-12B Burial Ground is influenced primarily by unsaturated flow within the vadose zone; generally only a few feet of unconfined aquifer is present above the top of basalt.

A.2.1 <u>STRATIGRAPHY</u>

Four principal stratigraphic units are represented near the 218-E-12B Burial Ground (from oldest to youngest): 1) the Miocene Columbia River Basalt Group (Saddle Mountains Basalt), interbedded with 2) sedimentary deposits of the Ellensburg Formation; 3) the Mio-Pliocene fluvial-lacustrine Ringold Formation; and 4) the glacio-fluvial Hanford formation (Figure A.2). This stratigraphy is based on hundreds of boreholes drilled in the area. Stratigraphic information for this report was compiled from regional studies (Tallman et al. 1979; Last et al. 1989; DOE 1988; Lindsey et al. 1992), as well as ongoing local studies used to characterize and monitor several site-specific Resource Conservation and Recovery Act (RCRA) projects that are close to the burial ground (within 1 to 2 mi). These latter sources of data include the Low-Level Burial Grounds (Last et al. 1989; Barton 1990), 216-B-Pond, the Liquid Effluent Retention Facility (Doremus and Pearson 1990), and 216-B-63 Trench (Bjornstad and Dudziak 1989). Stratigraphic sections used in this report were gathered from the previous reports. Their interpretations were updated, where necessary, based on a combination of drillers' and geologists' logs, gross gamma geophysical logs, and particle-size/ CaCO₃ data

FIGURE A.1. Location Map of the 218-E-12B Burial Ground Study Area

from the ROCSAN database (WHC 1991). The wells used and the characterization data associated with each well are listed in Table A.1. Figure A.3 is a location map of the boreholes in the vicinity of the burial ground. Cross sections, located in Figure A.3, that show the interpreted subsurface stratigraphy based on the data from these wells are presented in Figures A.4 and A.5.

٩

In addition to borehole studies, detailed observations were made and samples were collected from the excavated exposures of the 218-E-12B Burial Ground itself. A geologic map (Plate A.1) of the exposed burial ground wall was prepared and samples of the different lithologic types present were collected for a variety of laboratory analyses. These analyses include grain-size distribution, moisture content, porosity, permeability, bulk density, clay mineralogy, and bulk geochemistry. The analyzed samples are listed in Tables A.2 and A.3 and were collected from locations shown in Plate A.1 and Figures A.6 and A.7. Data from the completed analyses are provided in Appendix B (Parts 1-5). For comparison with outcrop samples, similar analyses were performed on selected samples of borehole cuttings obtained from two wells immediately adjacent to the 218-E-12B Burial Ground (299-E35-1 and 299-E34-7, Figure A.4). Completed analyses are reported in Appendix B (Parts 4-6).

A.2.1.1 Columbia River Basalt Group

The Columbia River Basalt Group is an assemblage of tholeiitic, continental flood basalt flows of Miocene age. These flows cover much of the Columbia Plateau, which includes an area greater than $163,700 \text{ km}^2$ ($63,000 \text{ mi}^2$) in Washington, Oregon, and Idaho, and have an estimated volume of about $174,000 \text{ km}^3$ ($40,800 \text{ mi}^3$) (Tolan et al. 1989). Isotopic age determinations indicate that basalt flows were erupted from approximately 17 to 6 million years before present (Ma). More than 98% of this volume was erupted in a 2.5million-year period between 17 and 14.5 Ma (Reidel et al. 1989). The youngest basalt flows in the vicinity of the 218-E-12B Burial Ground belong to the Elephant Mountain Member of the Saddle Mountains Basalt, which is about 8.5 Ma (McKee et al. 1977).

		GEOGRI	APHIC INFOF	MATION				HYDROLOG	BIC INFOR	IMATION	
Borehole	Plant Coon	dinates	Date	Total	Casing	Brass Cap	Open	Elevation	Saturated	MEASURED AQUIF	ER
	Northing	Westing	Completed	Depth	Elevation	Elevation	Interval	Water Table	Thickness		
								(June 1991)			
2-E26-01	44774	48025	5/48	248	617.25	NAV	217-227	404.05	12	Hanford Formati	u
2-E26-09	44779	46960	06/6	203	602.90	599.89	190-201	404.03	S	Hanford Formati	o
2-E26-10	44420	46919	8/90	207	601.49	598.49	190-201	404.01	10	Hanford Formati	ы
2-E26-11	44779	44979	06/6	206	599.70	596.72	200-206	405.81	7	Ringold Fm?	
2-E27-08	44496	49742	9/87	257	637.83	634.64	226-246	403.25	22	Hanford Formati	o
2-E27-09	44484	49122	8/87	245	629.21	627.31	219-239	403.49	19	Hanford Formati	on
2-E27-10	44520	48522	8/87	240	624.47	622.42	213-233	403.73	20	Hanford Formati	u
2-E27-11	44558	49990	10/89	265	643.29	640.34	230-251	403.16	22	Hanford Formati	v
2-E34-01	45129	50023	6/61	245	629.42	626.79	215-230	403.66	10	Hanford Formati	U
2-E34-02	45076	50048	9/87	242	630.80	629.03	220-240	403.44	13	Hanford Formati	u
2-E34-03	45337	48488	8/87	214	611.52	609.48	193-213	403.96	ŝ	Hanford Formati	u
2-E34-04	46791	49419	8/87	177	587.56	585.17	157-177	NA	£	£	· · · · · · · · · · · · · · · · · · ·
2-E34-05	46791	50014	8/87	192	590.79	589.01	121-191	404.26	2	Hanford Formati	u
2-E34-06	46784	50609	8/87	196	597.83	596.56	175-195	403.29	-	Hanford Formati	u
2-E34-07	45520	47949	10/89	206	604.25	601.14	194-205	403.47	7	Hanford Formati	u
2-E35-01	45870	47339	12/89	194	598.30	595.25	181-192	403.92	-	Hanford Formati	
2-E35-02	45180	46959	8/90	202	602.12	599.15	191-201	404.03	S	Hanford Formati	u o
6-47-46A	47039	45994	8/61	207	580.14	NAV	168-181	404.52	-	Hanford Formati	
6-47-50	47266	49508	6/80	295	583.87	581.6	260-295	405.51	39	Rattlesnake Ridge Ir	terbed
6-47-51	47481	50969	10/59	167	583.45	NAV	¥	NA	0	Å	
6-48-48A (DC-1)	48000	48200	12/72	5661	572.10	NAV	¥	NA	NA	NA	
6-48-48B (DC-2)	47968	48255	9/77	3300	572.14	NAV	¥	AK.	NA	NA	
All data in feet											

IABLE A.1. Boreholes in the Vicinity of the 218-E-12B Burial Ground

,

.

.

•

NR=not reached; NP=not present, NA=not applicable, NAV=not available

Y=yes, N=no

Boreholes in the Vicinity of the 218-E-12B Burial Ground (cont.) TABLE A.1.

.

		STRUC	STURAL INFOR	MATION		DATA SC	DURCES	
Borehole	Depth	Elevation	Depth	Elevation	ROCSAN	Gross	Drillers	Geologists
	801	80	Slackwater Beo	I Slackwater Bed		Gamma	fog	fog
2-E26-01	225	392	40	577.25	7	7	>	۲
2-E26-09	201	399	40	562.90	z	۲	≻	7
2-E26-10	204	394	27	574.49	z	۲	۲	7
2-E26-11	198	399	53	546.70	v. few	۲	≻	7
2-E27-08	257	381	50	587.83	۲	≻	۲	~
2-E27-09	245	384	50	579.21	۲	۲	≻	7
2-E27-10	240	384	40	584.47	≻	۲	۶	7
2-E27-11	262	381	58	585.29	z	۲	≻	7
2-E34-01	235	394	49	580.21	۲	۲	۲	z
2-E34-02	241	390	å	d Z	۲	۲	≻	7
2-E34-03	213	399	2	2	≻	۲	۲	7
2-E34-04	176	412	Ŷ	£	7	7	۲	7
2-E34-05	189	402	34	556.79	۲	۲	۲	~
2-E34-06	194	403	568 or 562	568 OR 562	۲	۲	≻	7
2-E34-07	205	396	45	559.27	z	۲	≻	7
2-E35-01	192	403	2	0 Ž	0-80	۲	≻	7
2-E35-02	200	399	39	563.12	v. few	۲	7	7
6-47-46A	174	404	35	545.14	7	۲	7	z
6-47-50	215	367	50	533.87	265-295	۲	≻	z
6-47-51	159	424	Ŷ	£	z	۲	۲	z
6-48-48A (DC-1)	205	365	2	â	z	z	z	z
6-48-48B (DC-2)	205	365	2	₽	z	7	>	z
All data in feet								

NR=not reached; NP=not present, NA=not applicable, NAV=not available

Y=yes, N=no

. •

North-South Geohydrologic Cross Sections Near the 218-E-12B Burial Ground FIGURE A.5. Samples from the 218-E-128 Burial Ground Taken for Laboratory Analysis (The location of samples and map units are shown in Plate 1 and Figures A.6 and A.7) TABLE A.2.

		MAPPED	PARTICLE		BULK		BULK	CLAY
SAMPLE 4	# DESCRIPTION	UNIT	SIZE	PERMEAMETER	DENSITY	POROSITY	GEOCHEMISTRY	MINERALOGY
-	Sandy Gravel	о <mark>н</mark> с О						
8	Sandy Foreset	Qhb d		×	×	×		
e	Sand	Oha	×	×	×	×		
4	Gravelly Sand Foreset	Oha						
5	Upper Silt	Oha						
9	Upper Silt	Oha		×	×	×		
2	Sandy Gravel	đ	×					
89	Gravelly Sand	С Р С						
თ	Slightly Muddy Gravelly Sand	Qhb Q	×					
10	Sandy Gravel	đ	×					
	Fine Sand	Oha	×					
12	Very Fine Sand to Silt	Oha	×					
13	Clay	Oha					×	×
14	Lower Sandy Mud	Qha	×	×	×	×	×	×
15	Plane Laminated Sand	Oha	×	×	×	×	×	
16	Clay	Oha					×	
17	Clay	Oha					×	×
18	Fine Gravelly Sand	4 D		×	×	×	×	
19	Coarse Gravelly Sand	a de la compo		×	×	×	×	
20	Coarse Sandy Gravel	Oha		×	×	×	×	
21	Sandy Mud from 299-E27-11	Oha (?)		×	×	×	×	

Samples from Borehole 299-E35-1 Taken for Laboratory Analysis (Map Units refer to Plate 1 and are described in Figures A.6 and A.7.) TABLE A.3.

DEPTH	PARTICLE	BULK	CLAY	MAP	DRILL
(FT)	SIZE	GEOCHEMISTRY	MINERALOGY	UNIT	METHOD
10		×		quo	H
20		×	×	quo	Н
30		×		quo	H
35	×	×	×	Oha	8
45		×		Oha	8
49	×	×	×	<u>O</u> ha	8
60	×				F
65	×				H
75	×	×	×		H
06	×	×			H
115		×	×		노
180	×	×	X		노
HT-Hard Tool					
DB-Drive Ban	rel				

[.]

A.2.1.2 <u>Ellensburg Formation</u>

The Ellensburg Formation consists of all sedimentary interbeds that separate the basalt flows of the Columbia River Basalt Group in the central Columbia Basin (DOE 1988). The frequency and thickness of these interbeds increase stratigraphically upward within the basalt sequence, reflecting an increasing time span separating the younger flows. Interbeds in the vicinity of the 218-E-12B Burial Ground generally consist of fine-grained fluvial and overbank deposits. The uppermost interbed beneath the burial ground is the Rattlesnake Ridge Interbed (see Figure A.2). Regionally it has been divided into four facies (in ascending order): 1) a clayey basalt conglomerate, 2) an epiclastic fluvial-floodplain unit, 3) an air-fall tuff, and 4) a tuffite composed of reworked tuff and epiclastic detritus (Graham et al. 1984).

A.2.1.3 <u>Ringold Formation</u>

The Ringold Formation consists of interbedded clays, silts, sands, and gravels deposited by the ancestral Columbia and Salmon-Clearwater Rivers subsequent to basaltic volcanism (DOE 1988). The Ringold Formation is restricted to topographic and structural basins of south-central Washington. Within the Pasco Basin, it is subdivided into a number of facies associations, including fluvial gravel; fluvial sand; and overbank, lacustrine, and alluvial fan facies associations (Lindsey 1991).

The Ringold Formation is present to the south and east of the study area but is not present within the study area or to the northwest (Figure A.8). During the late Pliocene, several hundred feet or more of Ringold Formation filled this portion of the Pasco Basin. At the end of Ringold time, however, a period of downcutting ensued, first by the Columbia River and later by a series of cataclysmic floods. These erosional episodes removed much of the Ringold Formation from the center of the basin and locally stripped away the entire Ringold Formation, as well as the underlying Elephant Mountain Member.

A.2.1.4 <u>Hanford Formation</u>

The Hanford formation (informal name) is the principal suprabasalt unit in the study area, averaging about 61 m (200 ft) in thickness (Figure A.9). The Hanford formation was deposited intermittently during periods of cataclysmic floods, unmatched by any others on Earth, that inundated the Pasco

....

Basin dozens or more times during the Pleistocene epoch. The earliest floods occurred prior to 800,000 years ago (Bjornstad and Fecht 1989), and the last flood took place approximately 13,000 years ago (Mullineaux et al. 1978). The floodwaters were derived from huge ice-dammed lakes situated along the northern and eastern boundaries of the Columbia Plateau (Baker and Nummedal 1978; Waitt 1980). These lakes discharged at intervals ranging from tens to hundreds of thousands of years and coursed through the Pasco Basin forming a series of anastomosing flood channels. The 200-East Area and the 218-E-12B Burial Ground lie along the margin of one of the principal flood channels. Adjacent to this channel, within the study area, huge levee-type bar deposits (Cold Creek Bar, Figure A.10) composed of mostly coarse-grained sand and gravel were deposited.

Facies Distribution and Sedimentary Structures

The Hanford formation is divided into three facies associations principally on the basis of texture: 1) gravel dominated, 2) sand dominated, and 3) slackwater. While all three facies are present within the study area, the gravel-dominated facies is predominant. Characteristics of the gravel-dominated facies, in contrast to the other facies, include a generally higher basalt content, poorer sorting, and characteristic large-scale foreset bedding (Figure A.11). Less commonly, the flood gravels show horizontal bedding. The beds are usually discernible by minor gradations in particle size, of which maximum sizes range from perbles to boulders greater than 1 m in diameter. Sediments in the subsurface generally are finer grained to the south and west of the 218-E-12B Burial Ground, as a result of the decrease in current energy away from the flood channel axis. This gradation is apparent in the regional geologic cross section (Figure A.12), where the proportion of sand-dominated facies increases to the south of the burial ground. A similar gradation occurs with increasing distance to the west toward the interior of Cold Creek Bar, as shown in cross sections A-A' and B-B' (see Figure A.4).

Although sand-dominated facies are not common in the study area, a well exposed sand-dominated sequence is preserved in the northeast wall of the 218-E-12B Burial Ground (Figure A.13). Sand-dominated facies are better sorted than the gravel-dominated facies and have a "salt and pepper" appearance resulting from a relatively high percentage (30 to 50%) of dark

FIGURE A.11. Gravel-Dominated Facies of the Hanford Formation -- Close-up photo (A) shows the coarse-grained, poorly sorted nature of this sedimentary type. Large-scale foreset bedding [indicated by dashed lines in (B)], is common in the gravel-dominated facies.

(A)

(B)

FIGURE A.13. Sand-Dominated Facies of the Hanford Formation -- Slackwater beds above and below the sand-dominated facies are indicated by arrows. Mappable units (Qha, Qhb, and Qhc) within the pit are indicated in the lower photograph.

basaltic grains. Structurally, the sand-dominated facies generally display planar subhorizontal laminations; less commonly, these facies have large-scale tangential cross bedding. Both types of sedimentary structures, planar lamination and tangential cross bedding, are represented in Figure A.13.

Slackwater facies (predominantly silt- to fine sand-sized particles) compose a relatively small proportion of the Hanford formation in the study area. Slackwater deposits, however, are no less significant because they tend to concentrate and control vadose-zone transport of moisture as a result of their higher moisture-retention capacity. In the study area, slackwater deposits represent late-flood sedimentation during the final, waning stages of flooding as currents lost energy. Elsewhere (south of the 200-East Area, for example), slackwater flood deposits are the predominant facies because of less vigorous currents throughout flood duration.

Two thin (a few feet or less) beds of slackwater sand and mud (undifferentiated silt- and clay-sized particles) occur in the exposed upper 15 m (50 ft) of the 218-E-12B Burial Ground and are traceable around most of the excavation (see Plate A.1). Characteristics of these slackwater beds, besides their fine-grained texture, are small-scale climbing ripples or horizontal laminations, grading, and a relatively low percentage of basaltic particles (<10%). These deposits generally contain more moisture than do adjacent coarser-grained deposits of sand and gravel. The lower slackwater bed is shown in Figure A.14, the upper bed in Figure A.15.

Several interesting structural features are displayed in the exposed north wall of the 218-E-12B Burial Ground (see Figure A.15). Of particular interest is a set of three giant current waves composed of coarser-grained (i.e., higher-energy) sand and gravel. Wave crests are approximately 45 m apart and preserved approximately 10 m below the undisturbed surface. Draped over the tops of these waves are slackwater deposits whose thicknesses vary significantly over relatively short distances. The deposits are thinner toward the crest of the wave and thicker in the troughs, especially on the lee sides of the waves. The measured axis of one of the waves strikes N20E, a direction consistent with other paleoflow indicators that suggest deposition by floodwaters moving from northwest to southeast. Waveforms of similar scale

Slackwater Facies of the Hanford Formation. An approximately I-ft-thick bed of slackwater sand and silt (arrow) lies between foreset-bedded gravels (below) and cross-bedded sand (above). Slackwater deposit formed during the waning stages of flooding associated with the underlying gravels. FIGURE A.14.

A.2.29

 $QP \to 0$

and origin, left behind by the most recent flood (approximately 13,000 years ago), are well documented at the surface within the Pasco Basin and Channeled Scabland (Baker 1978).

<u>Heterogeneity</u>

Unlike conditions within the Ringold Formation, lateral continuity and correlation of individual strata within the Hanford formation are more difficult. Correlations within the Hanford formation are uncertain because 1) multiple floods occurred that inundated the Pasco Basin from different directions, 2) sedimentation occurred rapidly under an extremely complex and constantly changing system of flood channels and bars, and 3) samples collected during drilling may be unrepresentative. Interpretations based on borehole cuttings and geophysical logs of varying relevance and quality are open to question because drilling with a hard-tool bit tends to homogenize samples, thus obscuring heterogeneities.

Heterogeneity within the Hanford formation occurs at such a scale that strata identified in one borehole often cannot be correlated to adjacent boreholes, partially as a result of the complex history of flooding. Dozens of floods, or more, probably have occurred during the last million years (Waitt 1980) with the floodwaters coming from many directions. The last flood(s) appear to have inundated the Pasco Basin from the northwest, but good evidence suggests that other floods also entered the Pasco Basin from the north (Baker and Nummedal 1978; Waitt 1980) and the east (Malde 1968; Scott et al. 1983). Successive floods tended to destroy or cloud the evidence from previous floods, particularly near high-energy flood channels. This is true for boreholes near the 218-E-12B Burial Ground, with the possible exception of a slackwater bed located 10 to 15 m below the surface. (This bed will be discussed further in the structure section of this report.) Another complicating factor is the extremely rapid rate of sedimentation and lack of reworking of the sedimentary deposits. Often, the end result of erosion and backfilling in proximity to the flood channels is a single sequence of undifferentiated gravels (i.e., gravel-dominated facies) with occasional lenses of sand or gravelly sand (i.e., sand-dominated facies).

Limitations and Uncertainties Related to Using Some Data

As indicated previously, hard-tool samples may not be representative of the formation. Unlike samples collected via the drive-barrel tool,which provide relatively representative samples, those collected with a hard tool may be significantly altered during drilling; commonly they are pulverized. The degree of pulverization varies inconsistently, depending on the driller and formation characteristics. Thus, physical properties such as grain-size distribution, sorting, and structure are altered or destroyed in the process of hard-tool drilling. Another limiting factor is that hard-tool samples represent a homogenization of several or more feet of formation so that thinner strata often go unnoticed. Therefore, more credence should be applied to those interpretations based on core-barrel samples versus those from hard-tool samples. The sampling methods are identified on the geologic cross sections (see Figures A.4 and A.5).

Gross gamma geophysical logs are sometimes useful for differentiating slackwater facies from coarser-grained facies. However, their utility is limited by the lack of contrast in natural radioactivity between the slackwater beds and the coarser facies. Under these conditions, the slackwater beds must be several feet thick to be detected, a criterion which is not often satisfied.

As a test to determine how borehole cuttings compare to in situ samples from outcrop exposures, characterization samples were collected from two boreholes immediately adjacent (within a few tens of feet) to the 218-E-12B Burial Ground and from the burial ground walls themselves. Results, based on available data, indicate significantly more variability and heterogeneity in the outcrop than can be deciphered from borehole cuttings, or from the present generation of gross gamma geophysical logs collected at Hanford (Figures A.16 and A.17).

WELL 299-E35-1

A.2.2 <u>STRUCTURE</u>

A.2.2.1 <u>Regional Structure</u>

The Hanford Site lies along the eastern margin of the Yakima Fold Belt (DOE 1988). The fold belt is characterized by long narrow anticlines, generally capped by basalt, separated by broad synclines filled with fluvial and lacustrine sediments. The anticlines trend west or northwest. They are typically asymmetric with one steep, commonly overturned limb; the opposing limb is gently deformed. The Umtanum Ridge structure is one of these anticlines. Its eastern terminus is marked by a series of doubly plunging, en echelon anticlines. Gable Mountain, north of the study area (Figure A.18), lies along the easternmost end of this structure. The southern limb of the Gable Mountain Anticline dips gently (average 2 degrees), to the south (Fecht 1978) toward the axis of the Cold Creek Syncline. The 218-E-128 Burial Ground lies on this southern limb.

A.2.2.2 Local Structure

In the study area, the tectonic structure at the top of the Columbia River Basalt Group is dominated by a plunging anticline and a pothole. Tectonic structures within the Hanford formation, if any are present, are difficult to discern because of its relatively young age with respect to folding and the lack of correlatable units.

A probable anticline at the top of the basalt occurs within the northwestern part of the study area (Figure A.19). It strikes northwest and plunges to the southeast, directly toward the 218-E-12B Burial Ground. Up to 20 m of the basalt flow has been removed locally by erosion during the cataclysmic Hanford flooding (Graham et al. 1984). Nevertheless, this anticline and another larger one to the northeast (Figure A.20) both persist after restoration to a pre-erosion thickness of 30 m. Within the study area, the smaller fold has an amplitude, measured on eroded basalt, of around 6 m.

Several small plunging anticlines occur adjacent to the Gable Mountain and Gable Butte structures (see Figure A.18). Fecht (1978) considered these structures to be parasitic to the eastern extension of the Umtanum Ridge

Structural Elements of the Yakima Fold Belt (from BWIP 1982) FIGURE A.18.

FIGURE A.20. Structure Map of Top of Columbia River Basalt Group, Central Hanford Site (modified from Graham et al. 1984)

structure. The presence of Ringold fanglomerates along the southern flank of Gable Mountain suggests that these structures were present during Ringold time. It is not possible to determine whether the Hanford formation has been folded by these structures. However, such a situation is unlikely because the Hanford formation near the channels is probably late Pleistocene (<30,000 years ago).

A distinctive depression forms the northeastern boundary of the anticline within the study area (see Figure A.19). Well control for the shape of the depression is weak toward its northwest; however, it appears to be circular and steep sided, with a maximum diameter of 490 m and a minimum depth of 10 m. The maximum depth is around 30 m. The shape and size are similar to those of potholes, geomorphic features formed during the cataclysmic floods.

The mechanics of pothole formation within the Channeled Scabland are not well understood. Potholes probably developed from macroturbulent flow -- very large-scale turbulent flow typified by the development of secondary circulation, flow separation, and birth and decay of vorticity around obstacles and along irregular boundaries (Baker 1978). The most important form of erosion in macroturbulence is the "kolk" (Matthes 1947), an intense energy dissipation by upward vortex action that can produce phenomenal hydraulic lift forces. These forces would be capable of plucking out large pieces of basalt from irregular surfaces to form potholes.

Potholes would be expected in zones of very high fluid flow and relatively low sediment content (Baker 1978). The flow of the floodwaters within the study area was probably initially confined to the pre-existing main channel of the ancestral Columbia River (see Figure A.20). As the floodwaters eroded downward, the top of the basalt was encountered and erosion continued. In the region near the study area, the channel was localized by small anticlines, and this initial confinement of the floodwaters probably promoted the local development of potholes (see Figure A.20).

A single slackwater sand and mud bed similar to the two exposed within the 218-E-12B Burial Ground was traced from the burial ground to many of the wells within the study area (Figure A.21). This bed was recognized from a combination of geologists' logs, drillers' logs, moisture content data, and

drill-penetration data. The bed was not recognized in some wells drilled with a hard tool; either the bed was not present at these locations or the drilling process obliterated any evidence.

The variability of thickness of the slackwater beds within the 218-E-128 Burial Ground suggests it is highly unlikely that a single bed occurs continuously throughout this region. However, the well evidence suggests that bed continuity cannot be dismissed. The aggradational nature of the overlying sands and gravels, in concert with the cohesiveness of the shale within the slackwater bed, may have protected it from erosion.

The structure at the top of the slackwater bed dips gently to the northeast and mimics the local topography (Figure A.22). This is consistent with the aggradational nature of the Hanford formation expressed along Cold Creek Bar, and the lack of erosion at its surface subsequent to deposition of the Hanford formation.

A.2.3 <u>HYDROLOGY</u>

Regional hydrology will be discussed in a separate section of this appendix. Several published reports also cover this subject (Newcombe et al. 1972; LaSala and Doty 1975; Gephart et al. 1979; Graham et al. 1981). The present discussion will be limited to hydrology of the study site.

Groundwater in the vicinity of the study area exists under both unconfined and confined conditions. The unconfined aquifer is generally contained within the Hanford formation, the lower confining layer being the Elephant Mountain Member of the Saddle Mountains Basalt (see Figures A.4, A.5, and A.12). A generalized stratigraphic column of these units was shown in Figure A.2. Although the Elephant Mountain flow generally acts as a confining layer between the unconfined and uppermost confined aquifers, there are areas where these aquifers are hydrologically or physically connected (see the section on aquifer intercommunication). Saturated hydraulic conductivities for the Hanford formation, based on aquifer tests, range from 25 to 27,500 m/day (80 to 90,000 ft/day) (Graham et al. 1981; Last et al. 1989, Borghese et al. 1990). The highest hydraulic conductivities are associated with matrixdepleted bouldery gravels, which are generally not present beneath the

A.2.41

218-E-12B Burial Ground. In contrast, the saturated hydraulic conductivity of basalt underlying the unconfined aquifer is less than 1 m/day in the horizontal direction and 3 x 10^{-5} m/day in the vertical direction (Lum et al. 1990).

Confined aquifers exist beneath the study area within sedimentary interbeds and/or interflow zones between basalt flows of the Columbia River Basalt Group. The uppermost confined aquifer is the Rattlesnake Ridge Interbed. It is bounded by the Elephant Mountain flow interior and the Pomona Member of the Saddle Mountains Basalt. Saturated hydraulic conductivities for the Rattlesnake Ridge Interbed range from 0.01 to 10 m/day (0.03 to 30 ft/day) (BWIP 1982; Graham et al. 1984).

A.2.3.1 Groundwater Flow Direction

Figure A.23 is a regional water-table map with presumed flow directions for the area surrounding the 200 Areas. A mound in the water table beneath 216-B-Pond (B Pond) causes the predominant westward direction of groundwater flow within the study area. B Pond is a series of unlined, interconnected waste water disposal ponds that receive effluent from the 200-East Area. In the northern part of the study area, groundwater appears to flow south to southeast through the divide between the two basalt highs south of Gable Mountain. Figure A.24 presents a more detailed water-table map for the 218-E-12B Burial Ground.

The saturated thickness of the unconfined aquifer is shown in Figure A.25. Beneath the 218-E-12B Burial Ground, this thickness ranges from 0.6 to 1.3 m (2 to 4.2 ft). Adjacent to the northern boundary of the 200-East Area, the saturated thickness of the unconfined aquifer increases sharply, to a maximum of at least 15 m. This circular area corresponds to an erosional "hole" in the underlying Elephant Mountain Member (Figure A.26) that was filled with flood deposits of the Hanford formation.

Maps of the elevation of the potentiometric surface of the Rattlesnake Ridge Interbed in Graham et al. (1984), Jensen (1987), Poston et al. (1991), and Kasza et al. (1991) show a dominantly westward direction of groundwater flow. Also, comparison of potentiometric surfaces with the corresponding water-table maps of the unconfined aquifer in these four reports indicates a

A.2.43

A.2.46

slight upward potential from the uppermost confined aquifer to the unconfined aquifer in the study area.

A.2.3.2 <u>Aquifer Intercommunication</u>

Strait and Moore (1982) and Graham et al. (1984) have investigated aquifer intercommunication at the Hanford Site near the study area and identified an area of possible downward flow from the unconfined aquifer to the confined aquifer. They also mapped areas where the Elephant Mountain Member has been completely eroded, including three erosional holes aligned along the axis of a probable paleochannel (see Figure A.20) and an area west of Gable Mountain that includes West Lake.

One of these holes between the confined and unconfined aquifers is believed to occur just north of the 218-E-12B Burial Ground (see Figure A.26). Low barometric efficiencies calculated by Graham et al. (1984) for well 699-47-50 suggest local intercommunication between the two aquifers. A potentiometric map by the same authors calculates an upward potentiometric gradient, indicating that the confined aquifer should flow upward into the unconfined aquifer. Furthermore, the water table atop the pothole is higher than for any other region on the local water-table map (see Figure A.24) and directs groundwater flow to the south, toward the burial ground.

A.2.3.3 <u>Groundwater Chemistry</u>

The two groundwater-monitoring wells nearest to the 218-E-12B Burial Ground are designated 299-E34-7 and 299-E35-1. These wells are part of the RCRA monitoring network for the 200-East Area Low-Level Burial Grounds. Analytical results from groundwater samples collected from these two wells and several other nearby wells are available in RCRA quarterly reports (DOE 1990a, 1990b). Other sources of groundwater analyses include annual reports of the Hanford Sitewide Monitoring Project (Bryce and Gorst 1990; Evans et al. 1990). Reports containing information on the hydrochemistry of the uppermost confined aquifer in the study area include Strait and Moore (1982), Graham et al. (1984), and Jensen (1987).

A.2.4 <u>SUMMARY OF GEOLOGICAL FEATURES</u>

Within the 218-E-12B Burial Ground the vadose zone is comprised exclusively of the Hanford formation. It consists predominantly of transmissive sands and gravels. There are some slackwater deposits, composed of fine-grained sands, silts, and clays, that are barriers to the downward movement of moisture. They typically have higher moisture contents and lower hydraulic conductivities (see Appendix B). Within the study area, these deposits may be laterally continuous (Figure A.21), and they could provide a pathway for migration of contaminants. Excavation of the trench removed the slackwater deposits, thus removing this barrier to transport of materials buried in the trench.

Groundwater transport in the 218-E-12B Burial Ground area is dominated by discharge to B Pond and the inferred intercommunication between the confined and unconfined aquifers within the pothole (Figures A.23, A.24, and A.26). Presently, there are no groundwater wells that can discriminate between contamination introduced into the pathway between the two aquifers and that introduced by the 218-E-12B Burial Ground.

A.3 CONCEPTUAL MODELS OF CONTAMINANT ADSORPTION

Solute (including contaminar) transport in the subsurface is controlled by advection, hydrodynamic dispersion, molecular diffusion, and geochemical interaction. Advection and hydrodynamic dispersion refer to movement of solute at a rate dependent on the various water pathways and velocities. Molecular diffusion refers to the gradual mixing of molecules of two or more substances as a result of random motion and/or a chemical concentration gradient. Diffusion disperses solute via the concentration gradient (i.e., Fick's law). Diffusion is generally only important in the absence of advection, and is usually a negligible transport mechanism when water is being advected in response to various forces. Variability in the advection process gives rise to the transport process called hydrodynamic dispersion. Hydrodynamic dispersion is a result of variability in travel paths, or velocities, taken by the advected solute. Geochemical interactions cover all reactions that are driven by chemical and biochemical forces.

Once contaminants are leached from the buried wastes, they may chemically interact with the soils and sediments. The major processes affecting transport include the following: dissolution/precipitation, adsorption/desorption, filtration of colloids and small suspended particles, and diffusion into micropores within mineral grains. The former two processes are considered more important. Furthermore, for Hanford Site low-level waste (LLW) disposal applications, precipitation is likely to be important only for cases where significant pH and/or redox changes occur when leachates migrate away from the wastes. In most Hanford Site LLW situations, it is assumed that adsorption processes are the key to contaminant migration, especially outside areas where the waste has dramatically altered the sediment's natural chemical environment.

Adsorption reactions have been identified as the most important contaminant retardation process in far-field transport analyses for hazardous waste disposal options. Adsorption processes are known to increase the travel times for some contaminants by 10^3 to 10^6 times relative to the groundwater. Sufficiently long travel times allow many radionuclides to decay before reaching the accessible environment (i.e., the biosphere).

A.3.1

A.3.1 DISTRIBUTION COEFFICIENT

To predict the effects of retardation using safety-assessment computer codes, adsorption processes must be described in quantitative terms. An empirical parameter, the distribution coefficient (often called R_d or K_d), is readily measured by laboratory experimentation and allows a quantitative estimate of nuclide migration. Knowledge of the R_d and of media bulk density and porosity (for porous flow), or of media fracture surface area, aperture width, and matrix diffusion attributes (for fracture flow), allows calculation of the retardation factor, R_f . The retardation factor is defined as

$$R_{f} = \frac{V_{w}}{V_{n}}$$
(A.3.1)

where V_w is the velocity of water through a control volume and V_n is the velocity of the contaminant.

For one-dimensional advection-dispersion flow with chemical reaction, the transport equation can be written as:

$$\frac{\partial C_{i}}{\partial t} = \left[\begin{array}{c} D_{x} \frac{\partial^{2} C_{i}}{\partial x^{2}} - v_{x} \frac{\partial C_{i}}{\partial x} \end{array} \right]$$
(A.3.2)
$$R_{fi}$$

where C_i = concentration of a particular radioactive species (i) in solution (mass/unit volume)

 D_x = dispersion coefficient of species (i) (length²/time)

 v_{y} = pore velocity of groundwater (distance/time)

 R_{fi} = retardation factor for species (i).

(For simplicity, radioactive decay has not been included in this formula.)

The retardation factor is a function of all contaminant retardation mechanisms: 1) chemical precipitation/dissolution of bulk solid phases, 2) chemical substitution of one element for another in a solid phase, 3) exchange *•* of a stable nuclide of an element with a radioactive nuclide in solution, 4) physical filtration of colloids, 5) cation and anion exchange, and 6) adsorption (Muller et al. 1983). Typically, all these mechanisms are folded into a single empirical distribution coefficient that implicitly assumes that the reactions go to equilibrium and are reversible, and that the chemical environment along a solute flow path does not vary in either space or time. The limitations associated with this assumption are well known to investigators, but the paucity of site-specific geochemical data at most disposal sites usually precludes a more rigorous conceptual model, especially for bounding or preliminary performance assessment calculations such as presented in the final report. Geochemical processes may also be irreversible or at least directionally dependent (e.g., adsorption and desorption may be represented by different model parameters), and yet the assumption of reversibility and single values for model parameters are generally employed, with the justification that the approach builds conservatism into the analysis.

2.1

. . .

In the constant R_d model, the distribution of the contaminant of interest between solution and the solid adsorbent is assumed to be a constant value. There is no explicit accommodation of dependence on characteristics of the sediments, groundwater, or contaminant concentration. Typically, an R_d value for a given contaminant is determined in the laboratory using sediment from the study area and actual or simulated groundwater to which a radioactive tracer is added at low concentration. Then,

$$R_{d} = \frac{\text{amount of radionuclide adsorbed on solid per gram}}{\text{amount of radionuclide in solution per milliliter}}$$
(A.3.3)

The term "tracer" typically denotes that a low mass is added; however, the final activity in soil and solution must be sufficient to facilitate good counting statistics. The experiments are often equilibrated by contacting the solid with several aliquots of water before adding the radiotracer, in an attempt to approach the condition expected in the field. Several standardized laboratory techniques (ASTM 1984; Serne and Relyea 1983) are commonly used to determine this ratio. In experiments where a radioactive tracer is not used, the R_d value can be calculated using chemical analysis of the influent and effluent solutions in the following equation:

A.3.3

$$R_{d} = \frac{(C_{inf} - C_{eff})}{C_{eff}} \frac{V}{W} = \frac{C_{Soil}}{C_{Solution}} \frac{V}{W}$$
(A.3.4)

where C_{inf} = contaminant concentration or tracer activity in influent solution (g/mL or counts/mL) = contaminant concentration or tracer activity in effluent Ceff solution (g/mL or counts/mL) C_{soil} = contaminant concentration or tracer activity in soil (g contaminant/g soil or counts tracer/g soil) C_{solution} = contaminant concentration or tracer activity in solution (g/mL or counts/mL) ۷ = volume of solution used (mL) W = weight of soil used (g).

Because it is an empirical measurement, the R_d value does not necessarily denote an equilibrium value or imply some of the other assumptions inherent in the more rigorous use of the term " K_d ." The term " R_d " will be used to represent the observed distribution ratio of nuclide between the solid and solution. The term " K_d " is reserved for true equilibrium reactions that show reversibility. Furthermore, it is customary with the constant R_d model to measure the total concentration or radioactivity of the tracer and thus to treat the tracer as being one chemical species. This assumption is not an inherent requirement, but it is generally applied for convenience. If one knows that the tracer distributes among several species and one can measure or predict the distribution, separate R_d values can be, and should be, calculated for each species.

The constant R_d model is mathematically very simple and readily incorporated into transport models and codes via the retardation factor term. That is, for porous flow

$$R = 1 + \frac{\rho_b}{\phi_e} R_d \qquad (A.3.5)$$

$$R = 1 + \frac{1 - \phi_{\epsilon}}{\phi_{\epsilon}} \rho_{p} R_{d}$$
(A.3.6)

A.3.4

where R = the retardation factor v_w/v_n (velocity of water + velocity of solute)

- $\rho_{\rm b}$ = porous media bulk density (mass/unit volume)
- ϕ_{ϵ} = effective porosity at saturation of media or volumetric moisture content for unsaturated media (dimensionless)
- R_d = distribution coefficient (mL/g)
- ρ_n = particle density (mass/unit volume).

A large R_d value leads to a large retardation factor, which signifies that the contaminant is not very mobile compared with water percolating through the soil. An R_d value of zero means there is no adsorption and the equivalent retardation factor equals 1. That is, no adsorption leads to no retardation, R = 1, and the contaminant travels at the same velocity as the pore water through the sediment (see Bouwer 1991 for more discussion).

For the constant R_d model, the retardation factor (R_f) is a constant for each layer of geologic media; each layer is assumed to have a constant bulk density and saturated effective porosity or volumetric moisture content for unsaturated sediments. Thus, this transport equation does not require knowledge of any other parameters such as pH or surface area, and it is easily solved to determine the solution concentration as a function of time and at any given point.

A.3.2 ISOTHERM ADSORPTION MODELS

The results of a suite of experiments evaluating the effect of nuclide concentration on adsorption while other parameters are held constant are called an "adsorption isotherm." Two adsorption isotherm models used frequently are the Langmuir and Freundlich models.

The Langmuir model has been used to describe adsorption of gas molecules onto homogeneous solid surfaces (crystalline materials) that exhibit one type of adsorption site (Langmuir 1918). Many investigators have tacitly extended the Langmuir adsorption model to describe adsorption from solution onto solid adsorbates including heterogeneous solids. The Langmuir model for adsorption is

11 11 1

$$X = \frac{bX_{m}C}{1 + bC}$$
(A.3.7)
A.3.5

where X = amount of solute adsorbed per unit weight of solid

b = a constant related to the energy of adsorption

 X_m maximum adsorption concentration of the adsorbate

C = equilibrium solution concentration of the adsorbate.

Substituting 1/B for b, we obtain

$$X = \frac{X_m C}{B + C}$$
(A.3.8)

A plot of values of X (y-axis) versus values of C (x-axis) passes through the origin and is nearly linear at low values of C. As C increases, X should approach X_m . One can rearrange Equation (A.3.8) by taking its reciprocal and multiplying both sides by X· X_m , to yield X = -B(X/C) + X_m . Then by plotting X on the y-axis and (X/C) on the x-axis, we can determine the value for -B from the slope of the best-fit line and the value of X_m from the intercept. For radionuclide adsorption onto heterogeneous soils and sediments, the Langmuir model is typically a weak predictor of actual adsorption events, although Salter et al. (1981a) cite several instances where the Langmuir isotherm has successfully fit adsorption of trace solutes on natural substrates. Furthermore, Salter et al. (1981b) discuss recent modifications of the Langmuir model to accommodate two distinct sites and competition of two adsorbates (the nuclide and the ion it replaces on the adsorbent), which should further extend this conceptual model's usefulness on natural substrates.

The Freundlich isotherm model (Freundlich 1926) is defined as

$$X = KC^{N}$$
(A.3.9)

where X = amount of solute adsorbed per unit weight of solid

C = equilibrium solute solution concentration

and K, N = constants.

The Freundlich model does not account for finite adsorption capacity at high concentrations of solute, but when considering trace constituent adsorption, ignoring such physical constraints is usually not critical. The Freundlich isotherm can be transformed to a linear equation by taking the logarithms of both sides of Equation (A.3.9):

$$\log X = \log K + N \log C.$$
 (A.3.10)

When log X is plotted on the y-axis and log C on the x-axis, the bestfit straight line has a slope of N, and log K is its intercept. When N = 1, the Freundlich isotherm represented by Equation (A.3.9) reduces to a linear relationship, and because X/C is the ratio of the amount of solute adsorbed to the equilibrium solution concentration (the definition of R_d), the Freundlich K is equivalent to the value of R_d .

Because adsorption isotherms at very low solute concentrations are often linear, either the Freundlich isotherm or the Langmuir isotherm (when the product bC is much smaller than 1) can be used to fit data at low solute concentrations. The value of N for the adsorption of many radionuclides is often significantly different from 1. In this case, K_d values are not constants, but are functions of the solute concentrations.

Both isotherm models can be compared to data from experiments that systematically vary the mass of trace constituent or radionuclide while holding all other parameters as constant as possible. It is important to consider the total mass of the element present, including all stable and other radioactive nuclides, when evaluating isotherms. It is incorrect to calculate isotherms based on only one nuclide if the system includes several nuclides (both stable and radioactive) for a particular element. For convenience, isotherm experiments generally consider only the total concentration or radioactivity for a given contaminant, combining all species present in the system.

The isotherm concept is a step up in sophistication over the constant distribution coefficient (R_d) model. It must be stressed that isotherm models as expressed by Equations (A.3.8), (A.3.9), and (A.3.10) explicitly consider dependency of the distribution coefficient only on the concentration of the contaminant of interest in a solution. Isotherm models do not consider other solid and solution parameters that can influence adsorption. Serne and Muller

A.3.7

ļ

(1987) describe additional detailed adsorption conceptual models that are rarely used in scoping performance assessment activities.

A.4 ADAPTATION OF THE GROUNDWATER FLOW MODEL

The Coupled Fluid, Energy, and Solute Transport (CFEST) code (Gupta et al. 1982, 1987) was applied to model groundwater flow in the unconfined aquifer at the Hanford Site under post-closure conditions for dry- and wetclimate scenarios. Results from the model for this study are described in Sections 2.3 and 4.3 of the main report and consist of groundwater streamlines and travel times from the 218-E-12B Burial Ground to a 100-m well, a 5000-m well, and finally to the Columbia River. This information is used as input to the transport model. Evans et al. (1988) and Jacobson and Freshley (1990) developed a model of the unconfined aquifer at the Hanford Site using CFEST and described construction and calibration of the model in detail. They selected CFEST because the code allows simulation of groundwater flow and contaminant transport in two or three dimensions, including steady-state or transient conditions, recharge and discharge from the aquifer, and radioactive decay of transported species. The present study of lead migration is based on this earlier model. The following sections describe modifications to the finite-element grid, boundary conditions, and aquifer transmissivity that were required to simulate dry- and wet-climate scenarios for Hanford Site performance assessments.

A.4.1 CFEST MODIFICATIONS TO GRID AND BOUNDARY CONDITIONS

The CFEST finite-element grid of Jacobson and Freshley (1990) for the unconfined aquifer is shown in Figure A.27. They based their calibration on water levels for the year 1979. The finite-element model grid was designed with high resolution in areas of high waste-water discharge and areas of rapid changes in hydraulic conductivity and hydraulic gradient. The finite-element grid design was based on the distribution of transmissivity and other hydraulic property data from a previous model of the unconfined aquifer (referred to as the Variable Thickness Transient or VTT model, Kipp et al. 1972; Reisenauer 1979a, 1979b, 1979c; DOE 1987). The VTT model utilized a finite-difference approach with a constant grid spacing of 2000 ft (610 m). The VTT-model grid was designed to ensure that the distribution of hydraulic conductivity was adequately represented (i.e., values were not averaged over

FIGURE A.27. Finite-Element Grid for the CFEST Model of the Unconfined Aquifer

large elements in areas of rapid change). Although the spatial resolution provided by the CFEST grid in some locations is much coarser than 2000 ft, all known variations in hydraulic conductivity are well represented. Larger elements were used where spatial resolution was not required.

Boundary conditions were specified for two specific postclosure cases used in analysis of the 218-E-12B Burial Ground: a drier climate case (0.5cm/yr recharge rate) and a wetter climate case (5.0-cm/yr recharge rate). Present-day boundary conditions are the same as those applied to the VTT model; they are described here because some of the boundary conditions are common to the two postclosure cases.

Boundary conditions for the postclosure cases were developed iteratively. Because operational discharges to the ground were not included, and overall recharge was reduced for the 0.5 cm/yr recharge case, lower water levels reduced the volume and area occupied by the aquifer. Areas in the model with zero aquifer thickness do not contribute to groundwater flow. Prescribed head conditions are specified along the Columbia River and Yakima River boundaries of the model. The prescribed heads are equal to the yearly average river level at each boundary node during 1979, generally ranging from about 400 ft to 350 ft above mean sea level through the Hanford Reach.

Prescribed flux distributions were different for the two postclosure cases and will be described in detail. Prescribed fluxes were specified along the Cold Creek and Dry Creek valleys to incorporate inflow of groundwater from these valleys to the study area. The contribution from spring discharges along the northeast side of Rattlesnake Mountain was also accounted for by specified flow rates. No-flow conditions were assumed in areas where the aquifer is bordered by basalt outcrops and subcrops (where the basalt surface intersects the water table) near Gable Mountain and Gable Butte. The locations of the no-flow boundary conditions varied between the two postclosure cases.

The finite-element grid used for the simulations of postclosure conditions with 5.0-cm/yr recharge is similar to the present-day grid (Figure A.27), with the exception of two additional elements located near Gable Mountain. The addition of these two elements was necessary because of

the higher water table elevations in this area. The flux values used for Cold Creek were generated based on the volume of water entering the aquifer from a watershed with an area of 140 km² with 5.0 cm/yr recharge. A flux of 19,200 m³/d (677,000 ft³/d) was distributed across three nodes. The flux for Dry Creek was calculated in a similar manner. The watershed area for Dry Creek is 260 km², providing a flux of 35,600 m³/d (1.26 million ft³/d), also distributed across three nodes.

Figure A.28 shows the finite-element grid used for the simulations of postclosure conditions with 0.5-cm/yr recharge. Because of the small volume of recharge, the water table drops considerably, leaving a larger portion of the basalt exposed in the area of Gable Mountain and Gable Butte, including the vicinity of the 218-E-12B Burial Ground. The additional area of exposed basa¹⁺ is assumed to be removed from the aquifer system and is not modeled as part of the aquifer. The fluxes for Cold Creek and Dry Creek were calculated in the same manner as for the 5-cm/yr recharge case. Because the finite-element grid for the low recharge scenario was different from that in the 5.0 cm/yr case, the flux from Cold Creek (1920 m³/d or 67,700 ft³/d) was distributed across four nodes and that from Dry Creek (3560 m³/d or 126,000 ft³/d) was distributed across three nodes.

A.4.2 AQUIFER TRANSMISSIVITY DISTRIBUTION

An early model of groundwater flow in the unconfined aquifer was developed during the 1970s. The model was calibrated with an iterative routine developed by Cearlock et al. (1975). Calibration generally consists of adjustments in transmissivity and other hydraulic properties in order to best reproduce measured hydraulic heads (water-level elevations) in the aquifer. The iterative technique was based on numerical integration of the unconfined groundwater flow equation along streamlines in the unconfined aquifer drawn on a hand-contoured water-table map for 1973. A transmissivity value obtained from aquifer field-test data was required in each stream tube, defined by bounding streamlines. For streamtubes where no aquifer test data were available, transmissivity values were estimated by interpolation.

The transmissivity distribution from the VTT model was transferred directly into the CFEST model. However, an attempt to improve the calibration was made by application of an inverse method developed by Neuman (1980) and modified by Jacobson (1985). This method requires use of steady-state information about the aquifer being modeled. Review of waste-water discharge information at the major disposal facilities within the 200-East and 200-West Areas suggested that, compared with other time periods, the discharges remained relatively constant from 1976 through 1979 (Jacobson and Freshley 1990). Application of the inverse method required both hydraulic-head measurements and previous estimates of transmissivity. The water levels for the unconfined aquifer measured during December 1979 were used for the calibration. The transmissivity distribution from the VTT model calibration was used to provide prior estimates of the transmissivities. Application of the inverse method with prescribed head conditions in the Cold Creek Valley (Case 3 in Jacobson and Freshley 1990) yielded a reasonable calibration. The transmissivity distribution from the inverse calibration is shown in Figure A.29.

The calibrated transmissivity distribution was used as the basis for investigation of the dry- and wet-climate scenarios for analysis of groundwater flow from the 218-E-12B Burial Ground. Application of the CFEST model required that the transmissivities in the model be separated into aquifer thicknesses and hydraulic conductivities. The separation was made in order to adjust aquifer thicknesses for the two different recharge rates that were simulated for the dry- and wet-climate conditions. As the hydraulic heads in the unconfined aquifer increased or decreased in response to variations in recharge, the simulated aquifer thicknesses changed with corresponding changes in the areas of the saturated and unsaturated regions.

The hydraulic head distributions for both the 0.5-cm case and the 5.0-cm case and the resulting streamlines are described in detail in Sections 2.3 and 4.3 of the final report. The detailed breakdown of groundwater travel time through the vadose zone (Section 4.2) and then in the aquifer to a 100-m well, a 5000-m well, and to the Columbia River are also described.

FIGURE A.29. Distribution of Transmissivities from Case 3 of the Inverse Application (from Jacobson and Freshley 1990)

A.5 SOFTWARE VERIFICATION AND VALIDATION

The following section addresses quality assurance activities conducted to verify or validate software used for the analysis described in this report. The current version of each computer code is briefly described, including the quality assurance requirements applied during the development of each package (if any) and efforts to verify and validate the models implemented in the software.

A.5.1 MINTEO

Estimates of lead and nickel solubility, and the chemical forms of these elements that are expected to be stable in Hanford groundwater, were obtained by application of the computer code MINTEQA2 version 3.0 (Allison et al. 1991). This code is a U.S. Environmental Protection Agency adaptation of the original MINTEQ computer code (Felmy et al. 1984a). Two test cases, a seawater test case and a river-water test case, were run to verify the original version of the code as described in Felmy et al. (1984b). The MINTEQ output was benchmarked against the published results from several other geochemical models (Nordstrom et al. 1979). A discussion of the comparison, including an explanation of any differences between the MINTEQ results and those from other codes, appears in Felmy et al. (1984b).

A.5.2 <u>CFEST</u>

The CFEST code (Coupled Fluid, Energy, and Solute Transport code, Gupta et al. 1987) was developed to analyze coupled hydrologic, thermal, and solute transport processes. It treats single-phase Darcy ground-water flow in a horizontal or vertical plane, or in fully three-dimensional space under nonisothermal conditions. The code has the capability to model discontinuous and continuous layering, time-dependent and constant sources/sinks, and transient as well as steady-state ground-water flow. The version of the code used to develop the Hanford Site hydrologic model for this application was CFEST Version SC-01, an adaptation of the original code for use on supercomputers.¹

The CFEST code was developed in accordance with NUREG-0856 (Silling 1983) for development, improvement, verification, validation, and documentation of performance-assessment computer codes. Verification tests have been conducted for the major processes modeled by the CFEST code. The code has a proven track record; ten applications to national and international problems are discussed in Gupta et al. (1987). In addition, the CFEST code was benchmarked, verified, and partially validated using test cases identified by HYDROCOIN (Hydrologic Code Intercomparison), an international project organized by the Swedish Nuclear Inspectorate. The objectives of HYDROCOIN were 1) to verify the numerical accuracy of codes by code intercomparison and by comparison with analytical solutions, 2) to compare model predictions with experimental results, and 3) to investigate the importance of different phenomena and uncertainties inherent in the modeling and site-characterization process through sensitivity and uncertainty studies.

A.5.3 TRANSS

The TRANSS code (Simmons et al. 1986) was designed as a simplified ground-water transport model to estimate the migration rate of radionuclides and other inorganic contaminants that are subject to sorption governed by a linear isotherm. Transport is modeled as a contaminant mass transmitted along a collection of streamlines constituting a streamtube, which connects a source release zone with an environmental arrival zone. The probability-weighted contaminant arrival distribution along each streamline is represented by an analytical solution of the one-dimensional advection dispersion equation with constant velocity and dispersion coefficient. The appropriate effective constant velocity for each streamline is based on the exact travel time required to traverse a streamline with a known length. An assumption used in

¹Cole, C. R., S. B. Yabusaki, and C. T. Kincaid. 1988. <u>CFEST-SC</u>, <u>Coupled Fluid, Energy, and Solute Transport Code, SuperComputer Version:</u> <u>Documentation and User's Manual</u>. Battelle, Pacific Northwest Laboratories, Richland, Washington. the model to facilitate the mathematical simplification is that transverse dispersion within a streamtube is negligible.

Release of contaminant from a source is described in terms of a fraction-remaining curve provided as input information. However, an option included in the code is the calculation of a fraction-remaining curve based on four specialized release models: 1) constant release rate, 2) solubility-controlled release rate, 3) adsorption-controlled release, and 4) diffusion-controlled release from beneath an infiltration barrier. To apply the code, a user supplies a minimal number of parameters: a probability-weighted list of travel times for streamlines, a local-scale dispersion coefficient, a sorption distribution coefficient, total initial radionuclide inventory, radioactive half-life, a release model choice, and the size dimensions of the source. The code is intended to provide scoping estimates of contaminant transport and does not predict the evolution of a concentration distribution in a ground-water flow field. Moreover, the required travel times along streamlines must be obtained from a separate groundwater flow simulation code.

The TRANSS code contains a wide variety of options and models. The model has been tested against a variety of problems and has been used in a wide variety of performance-assessment evaluations at Hanford. Because the code contains a wide variety of release options, results of specific applications are generally checked by hand calculation to ensure correct conceptualization of the problem and correct application of the code. Hand calculations for applications in the 281-E-12B Burial Ground evaluation were consistent with the TRANSS results.

A.6 <u>REFERENCES</u>

Allison, J. D., D. S. Brown and K. J. Novo-Gradac. 1991. <u>MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems: Version 3.0 User's Manual</u>. EPA/600/3-91/021, Environmental Research Laboratory, Office of Research and Development, U. S. Environmental Protection Agency, Athens, Georgia.

American Society for Testing Materials (ASTM). 1984. "Standard Test Method for Distribution Ratios by the Short-Term Batch Method." D4319-83. In <u>Annual</u> <u>Book of ASTM Standards</u>, Vol. 04.08, pp. 766-773. American Society for Testing Materials, Philadelphia, Pennsylvania.

Baker, V. R. 1978. "Paleohydraulics and Hydrodynamics of Scabland Floods." In <u>The Channeled Scabland</u>, eds. V. R. Baker and D. Nummedal, pp. 59-79. National Aeronautics and Space Administration, Washington, D.C.

Baker, V. R., and D. Nummedal. 1978. <u>The Channeled Scabland</u>. National Aeronautics and Space Administration, Washington, D.C.

Barton, K. R. O. 1990. <u>Borehole Completion Data Package for the Low-Level</u> <u>Burial Grounds - 1990</u>. WHC-MR-0205, Westinghouse Hanford Company, Richland, Washington.

Basalt Waste Isolation Project (BWIP) Staff. 1982. <u>Site Characterization</u> <u>Report for the Basalt Waste Isolation Project</u>. DOE/RL 82-3, U. S. Department of Energy, Richland, Washington.

Bjornstad, B. N., and K. R. Fecht. 1989. <u>Pre-Wisconsin Glacial-Outburst</u> <u>Floods: Pedogenic and Paleomagnetic Evidence from the Pasco Basin and Adjacent</u> <u>Channeled Scabland</u>. Cordilleran/Rocky Mountain Sections, Spokane, Washington.

Bjornstad, B. N., and S. Dudziak. 1989. <u>40 CFR 265 Interim Status</u> <u>Indicator-Evaluation Ground-Water Monitoring Plan for the 216-B-63 Trench</u>. PNL-6862, Pacific Northwest Laboratory, Richland, Washington.

Borghese, J. V., D. R. Newcomer, W. E. Cronin, and S. M. Goodwin. 1990. <u>Hydrologic Testing at the Low-Level Burial Grounds, 1989</u>. PNL-7333, Pacific Northwest Laboratory, Richland, Washington.

Bouwer, H. 1991. "Simple Derivation of the Retardation Equation and Application to Preferential Flow and Macrodispersion," <u>Ground Water</u> 29:41-46.

Bryce, R. W., and W. R. Gorst. 1990. <u>Hanford Site Environmental Data for</u> <u>Calendar Year 1989 - Ground Water</u>. PNL-7390, Pacific Northwest Laboratory, Richland, Washington.

Cearlock, D. B., K. L. Kipp, and D. R. Friedrichs. 1975. <u>The Transmissivity</u> <u>Iterative Calculation Routine - Theory and Numerical Implementation</u>. BNWL-1706, Pacific Northwest Laboratory, Richland, Washington.

A.6.1

10

0.1.1

Doremus, L. A., and A. W. Pearson. 1990. <u>Borehole Completion Data Package</u> <u>for the Liquid Effluent Retention Facility</u>. WHC-MR-0235, Westinghouse Hanford Company, Richland, Washington.

Evans, J. C., D. I. Dennison, R. W. Bryce, P. J. Mitchell, D. R. Sherwood, K. M. Krupka, N. W. Hinman, E. A. Jacobson, and M. D. Freshley. 1988. <u>Hanford Site Groundwater Monitoring for July Through December 1987</u>. PNL-6315-2, Pacific Northwest Laboratory, Richland, Washington.

Evans, J. C., R. W. Bryce, D. J. Bates, and M. L. Kemner. 1990. <u>Hanford Site</u> <u>Ground-Water Surveillance for 1989</u>. PNL-7396, Pacific Northwest Laboratory, Richland, Washington.

Fecht, K. R. 1978. <u>Geology of Gable Mountain--Gable Butte Area</u>. RHO-BWI-LD-5, Rockwell Hanford Operations, Richland, Washington.

Felmy, A. R., D. C. Girvin, and E. A. Jenne. 1984a. <u>MINTEO: A Computer</u> <u>Program for Calculation of Aqueous Geochemical Equilibria</u>. EPA/600/3-84-032 (NTIS PB84-157148), Prepared for the U.S. Environmental Protection Agency (Athens, Georgia) by Battelle, Pacific Northwest Laboratories, Richland, Washington.

Felmy, A. R., S. M. Brown, Y. Onishi, S. B. Yabusaki and R. S. Argo. 1984b. <u>MEXAMS--The Metals Exposure Analysis Modeling System</u>. EPA-600/3-84-031 (NTIS PB84-157155), Prepared for the U.S. Environmental Protection Agency (Athens, Georgia) by Battelle, Pacific Northwest Laboratories, Richland, Washington.

Freundlich, H. 1926. <u>Colloid and Capillary Chemistry</u>. Methuen, London.

Gary, M., R. McAfee, Jr., and C. L. Wolf. 1974. <u>Glossary of Geology</u>, American Geological Institute, Washington, D. C.

Gephart, R. E., R. C. Arnett, R. G. Baca, L. S. Leonhart, F. A. Spane, Jr., D. A. Palombo, and S. R. Strait. 1979. <u>Hydrologic Studies Within the Columbia</u> <u>Plateau, Washington: An Integration of Current Knowledge</u>. RHO-BWI-ST-5, Rockwell Hanford Operations, Richland, Washington.

Graham, M. J., M. D. Hall, S. R. Strait, and W. R. Brown. 1981. <u>Hydrology of the Separations Area</u>. RHO-ST-42, Rockwell Hanford Operations, Richland, Washington.

Graham, M. J., G. V. Last, and K. R. Fecht. 1984. <u>An Assessment of Aquifer</u> <u>Intercommunication in the B Pond-Gable Mountain Pond Area of the Hanford Site</u>. RHO-RE-ST-12P, Rockwell Hanford Operations, Richland, Washington.

Gupta, S. K., C. T. Kincaid, P. R. Meyer, C. A. Newbill, and C. R. Cole. 1982. <u>A Multi-Dimensional Finite Element Code for the Analysis of Coupled</u> <u>Fluid, Energy, and Solute Transport (CFEST)</u>. PNL-4260, Pacific Northwest Laboratory, Richland, Washington.
Gupta, S. K., C. R. Cole, C. T. Kincaid, and A. M. Monti. 1987. <u>Coupled</u> <u>Fluid, Energy, and Solute Transport (CFEST) Model: Formulation and User's</u> <u>Manual</u>. BMI/ONWI-660, Office of Nuclear Waste Isolation, Battelle Memorial Institute, Columbus, Ohio.

Jacobson, E. A. 1985. <u>A Statistical Parameter Estimation Method Using</u> <u>Singular Value Decomposition With Application to Avra Valley Aquifer in</u> <u>Southern Arizona</u>. Dissertation, Department of Hydrology and Water Resources, University of Arizona.

Jacobson, E. A., and M. D. Freshley. 1990. <u>An Initial Inverse Calibration of the Groundwater Flow Model for the Hanford Unconfined Aquifer</u>. PNL-7144, Pacific Northwest Laboratory, Richland, Washington.

Jensen, E. J. 1987. <u>An Evaluation of Aquifer Intercommunication Between the</u> <u>Unconfined and Rattlesnake Ridge Aquifers on the Hanford Site</u>. PNL-6313, Pacific Northwest Laboratory, Richland, Washington.

Kasza, G. L., M. J. Hartman, F. N. Hodges, and D. C. Weekes. 1991. <u>Ground</u> <u>Water Maps of the Hanford Site, June 1991</u>. WHC-EP-0394-3, Westinghouse Hanford Company, Richland, Washington.

Kipp, K. L, A. E. Reisenauer, C. R. Cole, and L. A. Bryan. 1972. <u>Variable Thickness Transient Groundwater Flow Model: Theory and Numerical Implementation</u>. BNWL-1703, Pacific Northwest Laboratory, Richland, Washington.

Langmuir, D. 1918. "The Adsorption of Gases on Plane Surfaces of Glass, Mica, and Platinum." <u>J. Am. Chem. Soc</u>. 40:1361-1403.

LaSala, A. M., Jr., and G. C. Doty. 1975. <u>Geology and Hydrology of</u> <u>Radioactive Solid-Waste Burial Grounds at the Hanford Reservation, Washington</u>. U. S. Geological Survey Open File Report 75-625, U.S. Government Printing Office, Washington, D.C.

Last, G. V., B. N. Bjornstad, M. P. Bergeron, D. W. Wallace, D. R. Newcomer, J. A. Schramke, M. A. Chamness, C. S. Cline, S. P. Airhart, and J. S. Wilbur. 1989. <u>Hydrogeology of the 200 Areas Low-Level Burial Grounds--An Interim</u> <u>Report</u>. PNL-6820, Pacific Northwest Laboratory, Richland, Washington.

Lindsey, K. A. 1991. <u>Revised Stratigraphy for the Ringold Formation, Hanford Site, South-Central Washington</u>. WHC-SD-EE-004, Westinghouse Hanford Company, Richland, Washington.

Lindsey, K. A., B. N. Bjornstad, J. W. Lindberg, and K. Hoffman. 1992. <u>Geologic Setting of the 200 East Area: An Update</u>. WHC-SD-EN-TI-012, Westinghouse Hanford Company, Richland, Washington.

Lum, W. E., J. L. Smoot, and D. R. Ralston. 1990. <u>Geohydrology and Numerical</u> <u>Model Analysis of Groundwater Flow in the Pullman-Moscow Area, Washington and</u> <u>Idaho</u>. Water-Resources Investigations Report 89-4103, U. S. Geological Survey, Tacoma, Washington.

.

. . . .

.

Malde, H. E. 1968. <u>The Catastrophic Late Pleistocene Bonneville Flood in the Snake River Plain, Idaho</u>. U.S. Geological Survey Professional Paper 596, U.S. Government Printing Office, Washington, D.C.

Matthes, G. H. 1947. "Macroturbulence in Stream Flow." <u>American Geophysical</u> <u>Union Transactions</u> 28:255-262.

McKee, E. H., D. A. Swanson, and T. L. Wright. 1977. <u>Duration and Volume of the Columbia River Basalt Volcanism: Washington, Oregon, and Idaho</u>. <u>Geological Society of America, Abstracts with Programs</u>, pp. 463-464.

Muller, A. B., D. Langmuir, and L. E. Duda. 1983. "The Formulation of an Integrated Physicochemical-Hydrologic Model for Predicting Waste Nuclide Retardation in Geologic Media." In <u>Scientific Basis for Nuclear Waste</u> <u>Management VI</u>, Proceedings of Materials Research Society Symposia, ed. D. G. Brookings, pp. 547-564. North Holland, New York.

Mullineaux, D. R., R. E. Wilcox, W. F. Ebaugh, R. Fryxell, and M. Rubin. 1978. "Age of the Last Major Scabland Flood of the Columbia Plateau in Eastern Washington." <u>Quaternary Research</u> 10:171-180.

Neuman, S. P. 1980. "A Statistical Approach to the Inverse Problem of Aquifer Hydrology: 3. Improved Solution Method and Added Perspective." Water Resour. Res. 16(2):331-346.

Newcombe, R. C., J. R. Strand, and F. J. Frank. 1972. <u>Geology and</u> <u>Groundwater Characteristics of the Hanford Reservation of the U.S. Atomic</u> <u>Energy Commission, Washington</u>. U.S. Geological Survey Professional Paper 717, U.S. Geological Survey, Denver, Colorado.

Nordstrom D. K., L. N. Plummer, T. M. L. Wigley, T. J. Wolery, J. W. Ball, E. A. Jenne, R. L. Bassett, D. A. Crerar, T. M. Florence, B. Fritz, M. Hoffman, G. R. Holdren, Jr., G. M. Lafon, S. V. Mattigod, R. E. McDuff, F. Morel, M. M. Reddy, G. Sposito and J. Thrailkill. 1979. "A Comparison of Computerized Chemical Models for Equilibrium Calculations in Aqueous Systems." In: <u>Chemical Modeling in Aqueous Systems</u> (E. A. Jenne, ed.), ACS Symposium Series 93. American Chemical Society, Washington, D. C.

Poston, T. M., K. L. Price, and D. R. Newcomer. 1991. <u>An Evaluation of the Chemical, Radiological, and Ecological Conditions of West Lake on the Hanford Site</u>. PNL-7662, Pacific Northwest Laboratory, Richland, Washington.

Reidel S. P., K. R. Fecht, M. C. Hagood, and T. L. Tolan. 1989. "The Geologic Evolution of the Central Columbia Plateau." In <u>Volcanism and</u> <u>Tectonism in the Columbia River Flood-Basalt Province</u>, eds. S. P. Reidel and P. R. Hooper, pp. 247-264. Special Paper 239, Geological Society of America, Boulder, Colorado.

Reisenauer, A. E. 1979a. <u>Variable Thickness Transient Ground-Water Flow</u> <u>Model: Volume 1. Formulation</u>. PNL-3160-1, Pacific Northwest Laboratory, Richland, Washington.

A.6.4

Reisenauer, A. E. 1979b. <u>Variable Thickness Transient Ground-Water Flow</u> <u>Model: Volume 2. Users' Manual</u>. PNL-3160-2, Pacific Northwest Laboratory, Richland, Washington.

Reisenauer, A. E. 1979c. <u>Variable Thickness Transient Ground-Water Flow</u> <u>Model: Volume 3. Program Listings</u>. PNL-3160-3, Pacific Northwest Laboratory, Richland, Washington.

Salter, P. F., L. L. Ames, and J. E. McGarrah. 1981a. <u>The Sorption Behavior</u> <u>of Selected Radionuclides on Columbia River Basalts</u>. RHO-BWI-LD-48, Rockwell Hanford Operations, Richland, Washington.

Salter, P. F., L. L.Ames, and J. E. McGarrah. 1981b. <u>Sorption of Selected</u> <u>Radionuclides on Secondary Minerals Associated with the Columbia River</u> <u>Basalts</u>. RHO-BWI-LD-43, Rockwell Hanford Operations, Richland, Washington.

Schatz, A. L., and J. J. Ammerman. 1988. <u>Ground-Water Maps of the Hanford</u> <u>Site Separations Area-December 1987</u>. WHC-EP-0142, Westinghouse Hanford Company, Richland, Washington.

Scott, W. E., W. D. McCoy, R. R. Schroba, and M. Rubin. 1983. "Reinterpretation of the Exposed Record of the Last Two Cycles of Lake Bonneville, Western United States." <u>Quaternary Research</u> 20:261-285.

Serne, R. J. and A. B. Muller. 1987. "A Perspective on Adsorption of Radionuclides Onto Geologic Media." In <u>The Geological Disposal of High Level</u> <u>Radioactive Wastes</u>, pp. 407-443. Theophrastus Publications, S. A., Athens, Greece.

Serne, R. J., and J. F. Relyea. 1983. "The Status of Radionuclide Sorption-Desorption Studies Performed by the WRIT Program." In <u>The Technology of High-</u> <u>Level Nuclear Waste Disposal</u>, Vol. 1, pp. 203-254. DOE/TIC-621, Technical Information Center, U.S. Department of Energy, Oak Ridge, Tennessee.

Silling, S. A. 1983. <u>Final Technical Position on Documentation of Computer</u> <u>Codes for High-Level Waste Management</u>. NUREG-0856, Division of Waste Management, Office of Nuclear Material Safety and Safeguards, U. S. Nuclear Regulatory Commission, Washington, D. C.

Simmons, C. S., C. T. Kincaid, and A. E. Reisenauer. 1986. <u>A Simplified</u> <u>Model for Radioactive Contaminant Transport: The TRANSS Code</u>. PNL-6029, Pacific Northwest Laboratory, Richland, Washington.

Strait, S. R., and B. A. Moore. 1982. <u>Geohydrology of the Rattlesnake Ridge</u> <u>Interbed in the Gable Mountain Pond Area</u>. RHO-ST-38, Rockwell Hanford Operations, Richland, Washington.

Tallman, A. M., K. R. Fecht, M. C. Marratt, and G. V. Last. 1979. <u>Geology of the Separation Areas, Hanford Site, South-Central Washington</u>. RHO-ST-23, Rockwell Hanford Operations, Richland, Washington.

.....

n n

Tolan, T. L., S. P. Reidel, M. H. Beeson, J. L. Anderson, K. R. Fecht, and D. A. Swanson. 1989. "Revisions to the Extent of and Volume of the Columbia River Basalt Group." In <u>Volcanism and Tectonism in the Columbia River</u> <u>Flood-Basalt Province</u>, eds. S. P. Reidel and P. R. Hooper, pp. 1-20. Special Paper 239, Geological Society of America, Boulder, Colorado.

U.S. Department of Energy (DOE). 1987. <u>Disposal of Hanford Defense High-</u> <u>Level, Transuranic and Tank Wastes.</u> Final Environmental Impact Statement. DOE/EIS-0113, Vol. 1-5, Assistant Secretary for Defense Programs, Washington, D.C.

U. S. Department of Energy (DOE). 1988. <u>Consultation Draft, Site</u> <u>Characterization Plan, Reference Repository Location, Hanford Site,</u> <u>Washington</u>. DOE/RW-0164, v. 1, U.S. Department of Energy, Washington, D.C.

U. S. Department of Energy (DOE). 1990a. <u>Quarterly Report of RCRA</u> <u>Groundwater Monitoring Data for Period April 1, 1990 Through June 30, 1990</u>. DOE/RL-90-36, prepared by the Geosciences Group, Westinghouse Hanford Company, for the U.S. Department of Energy, Richland, Washington.

U. S. Department of Energy (DOE). 1990b. <u>Quarterly Report of RCRA</u> <u>Groundwater Monitoring Data for Period July 1, 1990 Through September 30,</u> <u>1990</u>. DOE/RL-90-46, prepared by the Geosciences Group, Westinghouse Hanford Company, for the U.S. Department of Energy, Richland, Washington.

Waitt, R. B., Jr. 1980. "About Forty Last-Glacial Lake Missoula Jokulhlaups Through Southern Washington." <u>Journal of Geology</u> 88:653-679.

Westinghouse Hanford Company (WHC). 1991. <u>Hanford Environmental Information</u> <u>System (HEIS) Operators' Manual</u>. WHC-SP-0660, Westinghouse Hanford Company, Richland, Washington.

APPENDIX B

FIELD AND LABORATORY DATA

.

.

.

CONTENTS - APPENDIX B

HYDRAULIC CONDUCTIVITY, MOISTURE CONTENT, AND BULK DENSITY ANALYSES OF SAMPLES FROM THE 218-E-12B BURIAL GROUND	B.1
CLAY MINERAL IDENTIFICATION OF SELECTED SAMPLES FROM THE 218-E-12B BURIAL GROUND	B.2
PARTICLE SIZE DISTRIBUTION BY HYDROMETER OF SELECTED SAMPLES FROM THE 218-E-12B BURIAL GROUND	B.3
PARTICLE SIZE DISTRIBUTION BY SIEVING OF SELECTED SAMPLES FROM THE 218-E-12B BURIAL GROUND AND WELLS 299-E34-7 AND 299-E35-1	B.4
BULK GEOCHEMICAL ANALYSES OF SELECTED SAMPLES FROM THE 218-E-12B BURIAL GROUND AND WELL 299-E35-1	B.5
AS-BUILT DIAGRAMS AND WELL COMPLETION REPORTS FOR WELLS 299-E34-7 AND 299-E35-1	B.6
BATCH ADSORPTION DATA FOR 7- TO 10-DAY AND 26-DAY EXPERIMENTS	B.7

н

. .

the second second

1 I I I

9

APPENDIX B Part 1

HYDRAULIC CONDUCTIVITY, MOISTURE CONTENT, AND BULK DENSITY ANALYSES OF SAMPLES FROM THE 218-E-12B BURIAL GROUND

20-FEB-92 15:20 Page 1

WATER_BD 9R x 3C

SAMPLE	IIYDRAULIC CONDUCTIVITY	(cm/sec)	FIELD WATER CONTENT (9/9)	BULK DENSITY	(g/cm**3)
#2 (horiz)		0.001570	0.1239		
#2 (vert)		0.000539			1.46
#3		0.003500	0.1606		1.37
#6		0.022200	0.0525		1.36
#14		0.014200	0.2937		1.54
#15		0.033100	0.0289		1.68
#18		0.019300	0.0518		1.30
#19		0.030700	0.0368		1.84
#20		0.010000	0.0154		1.84

B.1.1

• •

1 Ji

APPENDIX B Part 2

.

.

•

CLAY MINERAL IDENTIFICATION OF SELECTED SAMPLES FROM THE 218-E-12B BURIAL GROUND

2

.

Mineralogical/Textural Analyses of Sediment Samples

. Amonette

24-Feb-92

						Sample Identi	fication				
			Trench Samp	le Number				Well 2	99-E35-1		
Mineral	13	14	16	17	21	20 Ft	35 Ft	49 Ft	75 Ft	115 Ft	180 F
TXTURE OF SHIM FRACTION						wt * -					
Gravel (I-8 mm)	50	*	17	2	< 1	33	è	< 1	10	23	35
Sand (53-2000 im)	32	81	62	43	51	48	61	76	56	53	43
Silt (2-53 um)	16	16	18	52	46	16	22	21	28	20	19
Clay (<2 um)**	2	4	3	3	4	3	8	3	7	4	3
AY FRACTION MINERALOGY						wt * -			•••••		
lllite	13	8	16	20	13	4	5	9	3	4	3
Talc		1						1	••		
Hornblende	1	i	1	< 1		2	2	1	2	2	1
Kaolinite	2	3	4	4	10	< 1	< 1	2	1	<]	1
Chlorite	2	2	3	4	1	2	2	2	3	3	2
Vermiculite	6	8	5	2	5	2	2	4	3	2	4
Smectite	49	53	45	36	64	35	49	63	41	38	35
Quartz	8	5	8	12	3	15	10	7	12	11	14
Plagioclase	20	20	19	23	3	40	31	11	36	39	41
Layer Silicates Only						wt 4 -					
Illite	18	11	22	31	14	10	9	11	6	8	6
Talc		2						1			
.aolinite	3	4	· 5	5	10	1	1	3	1	1	2
hlorite	2	3	4	7	1	6	4	3	6	5	5
ermiculite	9	11	7	2	5	. 4	3	5	6	5	9
mectite	59	71	62	55	69	ėù	ė1	- ç	•1	υi	و r

i

= none detected viculated by difference (100-%Gravel-%Sand-%Silt = %Clay)

B.2.1

1 0 1 1

. .

1.10

1

H

110.00

APPENDIX B Part 3

٠

.

PARTICLE SIZE DISTRIBUTION BY HYDROMETER OF SELECTED SAMPLES FROM THE 218-E-12B BURIAL GROUND

. •

.

**

18-FEB-92 16:48 Page 1

.

•

4

.

.

NSP3 33R x 15C

,

Model for Computation of Particle Size Ordinates

	AMH	2 T11	e B	Temp	4 Soil and Sieve Wt	5 Sieve Wt	ية م	oil or eading	7 Blank or Soil Sum	α	thow fe n	.	Theta
49.71	2.73			; ; ; ; ;	F F F F F F F F F	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+ 	 	0.00	1.00	3150	t 1 1	
	5.00				144.69	134.98		9.71	9.71				
					125.00	118.45		6.55	16.26				
					102.84	101.11		1.73	17.99				
					106.05	104.97		1.08	19.07				
					115.89	96.42		19.47	38.54				
					103.56	100.08		3.48	42.02				
					92.10	90.65		1.45	43.47				
		1	0	23.3				9.50	4.00	0.00	9261		51.64
		ω.	0	23.3				8.90	4.00	0.00	9261		51.81
		10.	0	23.3				8.00	4.00	0.00	19261		52.07
		29.	5	23.3				7.65	4.00	0.00	19261	-	52.17
•		60.	0	23.3				7.20	4.00	0.00	9261	•••	52.30
		.06	0	23.3				7.00	4.00	0.00	9261	•••	52.35
		120.	0	23.3				7.00	4.00	0.00	19261		52.35
	•	1440.	0	23.5				6.80	4.20	0.00	9218		52.41
				0.0									
49.71	2.73								0.00				
					144.69	134.98		9.71	9.71				
					125.31	118.45		6.86	16.57				
					103.14	161.11		2.03	18.60				
					106.58	104.97		1.61	20.21				
					115.53	96.42		19.11	39.32				
					103.38	100.08		3.30	42.62				
					92.29	90.65		1.64	44.26				
			0	23.3				10.00	4.00	0.00	9261		51.50
		m.	0	23.3				8.90	4.00	0.00	9261		51.81
		10.	0	23.3				8.00	4.00	0.00	9261		52.07
		29.	S	23.3				7.20	4.00	0.00	9261	-	52.30
		60.	0	23.3				6.80	4.00	0.00	9261		52.41
		90.	0	23.3				6.80	4.00	0.00	9261	u 1	52.41
	··	120.	0	23.3				6.80	4.00	0.00	9261	¥n	52.41
		1440.	0	23.3				6.80	4.20	0.00	9261	un	52.41

-

NSP3 33R x 15C

18-FEB-92 16:48 Page 2

.

•

Model for Computation of Particle Size Ordinates

0 sample weight	10 C	11 X. Part Size	12 P (1 <)	13 X. Àvg	14 P. Avg	15 TEXTURE ANALYSIS
1 49.71						878 SAND
2 A		2000.000	80.470000	2000.000	80.470	88 SILT
3 SAMPLE		1000.000	67.290000	1000.000	66.980	58 CLAY
4		500.000	63.810000	500.000	63.200	LOAMY SAND
5		250,000	61.640000	250.000	60.490	
6		106.000	22.470000	106.000	21.690	
7		75.000	15.470000	75.000	14.870	
80		53.000	12.550000	53.000	11.760	
6	5.50	51.640	11.064172	51.570	11.570	
10	4.90	29.910	9.857172	29.910	9.857	
11	4.00	16.470	8.046671	16.470	8.047	
12	3.65	9.605	7.342587	9.617	6.890	
13	3.20	6.752	6.437337	6.759	6.035	
14	3.00	5.518	6.035003	5.521	5.834	
15	3.00	4.779	6.035003	4.782	5.834	
16	2.60	1.381	5.230336	1.381	5.230	
17						
18 49.71						
19 B		2000.000	80.470000			
20 SAMPLE		1000.000	66.670000			
21		500.000	62.580000			
22		250.000	59.340000			
23		106.000	20.900000			
24		75.000	14.260000			
25		53.000	10.960000			
26	6.00	51.500	12.070006			
27	4.90	29.910	9.857172			
28	4.00	16.470	8.046671			
29	3.20	9.629	6.437337			
30	2.80	6.766	5.632669			
31	2.80	5.524	5.632669			
32	2.80	4.784	5.632669			
33	2.60	1.381	5.230336			

.

DEASN

Ì

Particle Size (micrometers)

DCT X NEE LASN		Mode	for Comp	utation of P	article Size	Ordin	ates				
0 sample weight 1	Ps & IMP	2 Time	Temp	4 Soil and Sieve Wt	5 Sieve Wt	6 Re	il or ading	7 Blank or Soil Sum	8 rho £ n	о 33	Theta
						 	ł 	0.00	1.00315	0	
8.62C I	5.00			624.78	134.98	4	89.80	489.80			
2 A 3 CANADE)))			124.46	118.45		6.01	495.81			
3 SMIPLE				106.87	101.11		5.76	501.57			
0 * L				112.25	104.97		7.28	508.85			
n v				103.28	96.42		6.86	515.71			
, م				101.45	100.08		1.37	517.08			
				91.49	90.65		0.84	517.92			
× 0		0	5 56				16.20	4.00	0.00926	-	49.68
6		0.1	C.C3				15.30	4.00	0.00926	1	49.94
10		0.0					14.20	4.00	0.00926	-	50.27
11		10.0					12.50	4.00	0.00926	-	50.77
12		c. 62	6.62				12.00	4.00	0.00926	1	50.92
13 .		60.U	6.67 5 55				11.50	4.00	0.00926	1	51.06
14		0.021					11.00	4.00	0.00926	1	51.21
15		1440 0	5.62				8.90	4.20	0.00921	8	51.81
16		0.0FF1									
17			•					0.00			
18 529.8	2.13			624.78	134.98	•	189.80	489.80			
19 B				124.36	118.45		5.91	495.71			
20 SAMPLE				106.86	101.11		5.75	501.46			
21				112.32	104.97		7.35	508.81			
22				103.52	96.42		7.10	515.91			
23				101.37	100.08		1.29	517.20			
24				91 47	90.65		0.82	518.02			
25		•					16.80	4.00	0.00920	51	49.50
26		1.0	C . C 7				16.00	4.00	0.00920	51	49.74
27		0.0	6.62				15.00	4.00	0.0092	51	50.03
28		10.0	23.3				13.00	4.00	0.0092	61	50.62
29		29.5	23.3				12.50	4.00	0.0092	61	50.77
30		60.0	5.52 C CC				11.00	4.00	0.0092	61	51.21
31		0.06	6.67 C CC				11.00	4.00	0.0092	51	51.21
32		120.0	23.3				00.6	4.20	0.0092	61	51.78
33		1440.0	6.62				r F				

B.3.4

· · . .

Ĩ

18-FEB-92 16:50 Page 1

:

NSP7 33R x 15C

18-FEB-92 16:50 Page 2

•

.

Model for Computation of Particle Size Ordinates

0 sample weight	10 C	11 X. Part Size	12 P (1 <)	13 X. Avg	14 P. Avg	15 TEXTURE ANALYSIS
1 529.8	6 7 7 7 7 7	L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				98% SAND
2 8		2000.000	7.550000	2000.000	7.5500	18 SILT
3 SAMPLE		1000.000	6.416000	1000.000	6.4260	11 CLAY
4		500.000	5.328000	500.000	5.3390	SAND
		250.000	3.954000	250.000	3.9580	
. 10		106.000	2.659000	106.000	2.6410	
		75.000	2.401000	75.000	2.3900	
8		53.000	2.242000	53.000	2.2330	
6	12.2	49.680	2.302756	49.590	2.3590	
10	11.3	28.830	2.132880	28.780	2.1990	
11	10.2	15.900	1.925255	15.860	2.0010	
12	8.5	9.348	1.604379	9.334	1.6520	
13	8.0	6.574	1.510004	6.564	1.5570	
14	7.5	5.382	1.415629	5.390	1.3680	
15	7.0	4.675	1.321253	4.675	1.3210	
16	4.7	1.365	0.887127	1.365	0.8966	
17						
18 529.8						
19 B		2000.000	7.550000			
20 SAMPLE		1000.000	6.435000			
21		500.000	5.349000			
22		250.000	3.962000			
23		106.000	2.622000			
24		75.000	2.378000			
25		53.000	2.223000			
26	17,8	49.500	2.416006			
27	12.0	28.720	2.265006			
28	11.0	15.820	2.076255			
29	9.0	9.320	1.698754			
30	8.5	6.554	1.604379			
31	7.0	5.398	1.321253			
32	7.0	4.675	1.321253			
55	4.8	1.365	0.906002			

B.3.5

1

18-FEB-92 16:51 Page 1

DLASN

I

ŋ

Particle Size (micrometers)

.

in u

			Mode	l îo	: Compu	tation of F	article Size	Ord	inates			•		
0 sample weight 1	Ps & IIMP	5	Time	Ē	Temp	4 Soil and Sieve Wt	5 Sieve Wt	9	Soil or Reading	7 Blank or Soil Sum	8 rhov & n	6 1	Theta	-
1 100.88	2.73		1				8			0.000	1.003150		 	
2 A 2000	5.00					195.860	134.98		60.880	60.880				
3 SAMPLE	•					131.010	118.45		12.560	73.440				
4						110.190	. 101.11		9.080	82.520				
ı זע						113.640	104.97		8.670	91.190				
						101.580	96.42		5.160	96.350				
						100.690	100.08		0.610	96.960				
- a						90.890	90.65		0.240	97.200				
			1.0		23.3				9.000	4.000	0.009261		51.78	_
			0.0		23.3				9.000	4.000	0.009261		51.78	_
11			10.0		23.3				9.000	4.000	0.009261		51.78	_
C 1			29.5		23.3				8.500	4.000	0.009261		51.93	_
2T 2T			60.0		E. E2				8.000	4.000	0.009261	_	52.07	
			90.06		23.3				8.000	4.000	0.009261		52.07	_
15			20.0		23.3				8.000	4.000	0.009261		52.07	_
51		` `	140.0		23.5				7.200	4.200	0.009218	~	52.30	_
17					0.0									
18 100 BR	2.73									0.000				
						195.860	134.98		60.880	60.880				
JO CAMPLE						133.430	118.45		14.980	75.860				
						109.360	101.11		8.250	84.110				
12						113.156	104.97		8.186	92.296				
47 57						100.820	96.42		4.400	96.696				
						100.570	100.08		0.490	97.186				
24						90.830	90.65		0.180	97.366				
C 7			1		23.3				9.000	4.000	0.00926	_	51.78	~
07			9.0		23.3				9.000	4.000	0.00926	_	51.78	~ .
28			10.0		23.3				9.000	4.000	0.00926		51.78	~ .
20			29.5		23.3				8.800	4.000	0.00926		51.84	
			60.0		23.3				8.800	4.000	0.00926	لعمد	51.84	_
			0.06		23.3				8.200	4.000	0.00926	_	52.01	
10 CC			120.0		23.3				8.200	4.000	0.00926		52.01	_
35		1	440.0		23.3				7.800	4.200	0.00926	-	52.13	-

18-FEB-92 16:51 Page 1

•

•

!

NSP9 33R x 15C

.

_]

.

B.3.7

.

. 17

NSP9 33R x 15C

18-FEB-92 16:51 Page 2

Model for Computation of Particle Size Ordinates

ſ
-
c
2
Δ
4
-
5
2
×
3
-
_
V
2
4
2
-
H
đ
×.
_
-
C
10
μĘ
ġ
м.
Ð
D]
an
ø
0

15 TEXTURE ANALYSIS	96% SAND	18 SILT	31 CLAY	SAND																													
14 P. Avg		39.650	26.000	17.410	9.057	4.319	3.774	3.566	4.956	4.956	4.956	4.609	4.362	4.064	4.064	3.271																	
13 X. Avg		2000.000	1000.000	500.000	250.000	106.003	75.000	53.000	51.780	29.900	16.370	9.553	6.708	5.486	4.751	1.376																	
12 P (% <)		39.650000	27.200000	18.200000	9.605000	4.490000	3.886000	3.648000	4.956384	4.956384	4.956384	4.460745	3.965107	3.965107	3.965107	2.973830			39.650000	24.800000	16.620000	8.509000	4.148000	3.662000	3.483000	4.956384	4.956384	4.956384	4.758128	4.758128	4.163362	4.163362	3.568596
11 X. Part Size		2000.000	1000.000	500.000	250.000	106.000	75.000	53.000	51.780	29.900	16.370	9.561	6.722	5.489	4.753	1.378			2000.000	1000.000	500.000	250.000	106.000	75.000	53.000	51.780	29.900	16.370	9.545	6.693	5.482	4.748	1.374
10 C									5.0	5.0	5.0	4.5	4.0	4.0	4.0	э.0										5.0	5.0	5.0	4.8	4.8	4.2	4.2	3.6
sample weight	100.88	A	SAMPLE															100.88	B	SAMPLE													
0	1	CN.	m	4	S	9	5	æ	σ	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33

B.3.8

...

. . .

18-FEB-92 16:52 Page 1

B.3.9

ĮĮ.

Г	
Page	
16:36	
18-FEB-92	

Model for Computation of Particle Size Ordinates

ļ

NSP10 33R x 15C

,

0 sample weight 1	Pa & HMP	2 Tin	е 3	Temp	4 Soil and Sieve Wt	5 Sieve Wt	6 Soi Rea	l or ding	7 Blank or Soil Sum	8 rhot & n	0 7	Theta
1 489.6	2.73				+ 					1 003150		
2 A	5.00				584.58	134.98	44	9.60	449.60	ICTCON'T	_	
3 SAMPLE					123.15	118.45		4.70	454.30			
т ц					106.23	101.11		5.12	459.42			
n 4					112.33	104.97		7.36	466.78			
0 .					102.93	96.42	-	6.51	473.29			
~ 0					101.48	100.08		1.40	474.69			
Ď					91.58	90.65)	0.93	475.62			
		-	0	23.3			11	8.00	4 00	0 009761		10 01
		э.	0	23.3				7.00	4.00	0.009261		VV DV
- (10.	0	23.3			Ĩ	5.20	4.00	0.009261		000
		29.	ۍ د	23.3			1	3.80	4.00	0.009261		20.2
		.09	0	23.3			1	2.50	4.00	0.009261		50.77
		- 06	0	23.3			1:	2.00	4.00	0 009261		50.03
		120.	0	23.3			1	1.50	4.00	0.009261		51.06
		1440.	0	23.5			5.	9.00	4.20	0.009218		51.78
180 6				0.0								
0.005	61.2								0.00			
					584.58	134.98	445	9.60	449.60			
SAMPLE					124.50	118.45	Ť	5.05	455.65			
					106.37	101.11		5.26	460.91			
					111.97	104.97		7.00	467.91			
					102.85	96.42	Ţ	5.43	474.34			
					101.22	100.08	1	1.14	475.48			
					91.43	90.65	3	0.78	476.26			
		1.(~	23.3			17	7.90	4.00	0.009261		49.17
		Э.(~	23.3			16	5.20	4.00	0.009261		49.68
		10.(~	23.3			15	5.50	4.00	0.009261		49.88
		29.5		23.3			13	1.30	4.00	0.009261		50.54
		60.(-	23.3			12	.50	4.00	0.009261		50.77
		90.0	-	23.3			12	.00	4.00	0.009261		50.92
			-	23.3			11	.90	4.00	0.009261		50.95
		1.UPP1	_	23.3			δ	00.00	4.20	0.009261		51.78

B.3.10

. . .

.

1

18-FEB-92 16:36 Page 2

NSP10 33R x 15C

Model for Computation of Particle Size Ordinates

•

ŧ,

I5 TEXTURE ANALYSIS	2% SILT 2% SILT SAND SAND
14 P. Avg 1	8.1700 7.0720 6.0120 4.5460 2.9650 2.9650 2.9650 2.5740 1.7360 1.5730 0.9804 0.9804
13 X. Avg	2000.000 500.000 500.000 75.000 49.160 15.790 15.790 9.292 6.554 4.656 1.365
12 P (8 <)	8.170000 6.164000 6.164000 3.331000 3.331000 2.855000 2.855000 2.85529 2.287582 2.287582 2.287582 2.287582 2.287582 1.736111 1.633987 1.531863 4.430000 6.934000 6.934000 5.860000 4.430000 2.725000 6.934000 2.7250000 3.117000 2.888656 1.899510 1.736111 1.736111 1.633652 0.9803923 0.980393 0.98039 0.980393 0.980393 0.980393 0.980393 0.980393 0.980393 0.980393 0.980393 0.980393 0.980393 0.980393 0.980393 0.980393 0.980393 0.99030000000000
11 X. Part Size	2000.000 1000.000 550.000 75.000 53.000 53.000 53.000 53.000 53.000 5.367 4.661 1.365 5.367 4.661 1.365 5.367 4.661 1.365 5.367 75.000 500.000 500.000 51.770 9.305 6.554 6.554 1.365
10 C	114.0 113.0 11.2 11.2 4.8 8.5 4.8 8.5 4.8 8.5 4.8 8.5 4.8 8.5
0 sample weight	1 489.6 2 A 4 4 5 5 6 6 7 7 8 8 9 9 10 11 13 13 13 13 13 13 13 13 13 13 13 13

B.3.12

×,

			Mode	l for	Compu	tation of P	article Size	OLO	linates					
0 sample weight 1	Ps & NMP	7	Time	m	lemp	4 Soil and Sieve Wt	5 Sieve Wt	9	Soil or Reading	7 Blank or Soil Sum	Յ ւհ «	Moi N	6	Theta
40.08	2.73									0.00	1.0031	50		1 1 1 1 1 1 1
2 A	5.00					135.06	134.98		0.08	3° 08				
3 SAMPLE						119.54	118.45		1.09	1.17				
4						103.57	101.11		2.46	3.63				
2						110.86	104.97		5.89	9.52				
6						116.18	96.42		19.76	29.28				
- _						104.66	100.08		4.58	33.86				
. 8						92.80	90.65		2.15	36.01				
- 6			1.0		23.3				8.50	4.00	0.0092	61		51.93
10			3.0		23.3				8.00	4.00	0.0092	61		52.07
11			10.0		23.3				8.00	4.00	0.0092	19		52.07
12			29.5		23.3				7.20	4.00	0.0092	19		52.30
			60.0		23.3				7.00	4.00	0.0092	19		52.35
			90.06		23.3				7.00	4.00	0.0092	19		52.35
15			120.0		23.3				7.00	4.00	0.0092	: 61		52.35
16		Ч	440.0		23.5				7.20	4.20	0.0092	. 81		52.30
17					0.0									
18 40.08	2.73									0.00				
19 B						135.06	134.98		0.08	0.08				
20 SAMPLE						119.61	118.45		1.16	1.24				
21						103.16	101.11		2.05	3.29				
22						111.25	104.97		6.28	9.57				
23						116.59	96.42		20.17	29.74				
24						104.05	100.08		3.97	33.71				
25						92.52	90.65		1.87	35.58				
26			1.0		23.3				8.50	4.00	0.0092	:e1		51.93
27			3.0		23.3				8.20	4.00	0.0092	:61		52.01
28			10.0		23.3				8.20	4.00	0.0092	:61		52.01
29			29.5		23.3				7.80	4.00	0.0092	i61		52.13
06			60.0		23.3				7.20	4.00	0.0092	:61		52.30
			90.06		23.3				7.20	4.00	0.0092	i61		52.30
			120.0		23.3				7.20	4.00	0.0092	:61		52.30
33		-	440.0		23.3				7.20	4.20	0.0092	191		52.30

18-FEB-92 16:40 Page 1

B.3.13

·- ·

1

ľ

NSP11 33R x 15C

NSP11 33R x 15C

18-FEB-92 16:40 Page 2

•

Model for Computation of Particle Size Ordinates

•

,

:

.

0 sample weig	ht 10	C 11 X. Part Size	12 P (% <)	13 X. Avg	14 P. Avg	15 TEXTURE ANALYSIS
1 40.	08	4 1 1 1 1 1 1 1 1 1	1 6 7 7 7 7 8			908 SAND
2 A		2000.000	99.800000	2000.000	99.800	28 SILT
3 SAMPLE		1000.000	97.080000	1000.000	97.000	B & CLAY
4		500.000	90.940000	500.000	91.370	SAND
۰ u		250.000	76.250000	250.000	76.190	
9		106.000	26.950000	106.000	26.380	
7		75.000	15.520000	75.000	15.710	
- 60		53.000	10.150000	53.000	10.690	
6	4.	5 51.930	11.227545	51.930	11.230	
10	4.	0 30.060	9.980040	30.050	10.230	
: =	4.	0 16.470	9.980040	16.460	10.230	
12		2 9.629	7.984032	9.614	8.733	
13		0 6.758	7.485030	6.755	7.735	
1 d		0 5.518	7.485030	5.516	7.735	
15		0 4.779	7.485030	4.777	7.735	
16		0 1.378	7.485030	1.378	7.485	
17	1					
18 40.	08					
19 B		2000.000	99.800000			
20 SAMPLE		1000.000	96.910000			
21		500.000	91.790000			
22		250.000	76.120000			
23		106.000	25.800000			
24		75.000	15.890000			
25		53.000	11.230000			
26	4.	5 51.930	11.227545			
27	4.	2 30.030	10.479042			
28	4.	2 16.450	10.479042			
29	.е	8 9.598	9.481038			
30	з.	.2 6.752	7.984032			
31	з.	2 5.513	7.984032			
32	м.	2 4.774	7.984032			
33	Э.	0 1.378	7.485030			

•

.

•

NSP11G

B.3.15

-
Page
16:42
18-FEB-92

Model for Computation of Particle Size Ordinates

NSP12 33R x 15C

1 40.57 2.73 5.00 115.55 134.98 0.57 0.07 1.001150 5 100 110.11 1.57 1.48 0.57 0.57 0.67 6 110.11 1.57 1.48 104.97 13.48 0.00 1.001150 1 1.0 23.13 95.42 114.95 0.57 0.09251 52.0 1 1.0 23.13 97.72 90.65 1.11.49 0.002561 52.0 1 1.0 23.13 97.72 90.65 1.11.49 52.0 52.0 1 1.0 23.13 97.72 90.65 1.11.49 52.0	0 sample weight 1	P.s. & IIMP	2 Time	3 Temp	4 Soil and Sieve Wt	5 Sieve Wt (5 Soil or Reading	7 Blank or Soil Sum	8 rhoW £ n	6	Theta
3 SMPLK 1.0 2.1 1.25 1.25 1.24 1 1.0 21.3 101.11 1.67 3.48 1 1.0 21.3 96.42 11.49 28.13 1 1.0 21.3 90.65 3.07 3.43 2 1.0 21.3 91.72 90.65 3.07 3.42 2 1.0 21.3 91.72 90.65 3.07 3.42 2 1.0 21.3 91.72 90.65 3.07 3.42 2 2.9.3 29.3 90.05 21.3 90.05 52.0 2 100.00 21.3 90.05 21.3 90.05 52.0 3 2.03 21.3 90.05 21.3 90.05 52.0 3 1.00 23.5 114.06 0.09261 52.0 120.0 21.3 114.96 0.57 100.361 52.0 120.0 21.11 117.4 11.74 157 52.0 120.0 21.3 11.43 10.74 157 52.0 120.0 21.3 11.49 0.57 0.00261 52.0 110.0 21.3 11.74 11.74	1 40.57 2 A	2.73		- - - - - - - - - - - - - - - - - - -	136.66			0.00	1.003150		
A 1.24 1.24 1.9 118.33 101.11 1.6 3.49 118.33 101.11 1.6 3.49 118.33 100.65 3.07 31.14 10.0 23.13 99.65 3.07 31.14 10.0 23.13 99.77 90.65 3.07 31.14 10.0 23.13 99.77 90.65 3.07 31.14 10.0 23.13 90.0 23.13 90.05 3.07 31.14 29.5 23.13 90.0 23.13 90.05 3.07 31.14 20.0 23.13 90.0 23.13 9.00 4.00 0.092561 20.0 23.13 90.0 23.13 8.00 4.00 0.092561 90.0 23.13 9.00 4.00 0.092561 52.0 90.0 23.14 8.00 4.00 0.092561 52.0 90.0 23.13 119.65 118.48 0.57 0.092561 52.0 90.0 23.14 11.77 11.77 3.51 11.77 91.0 112.65 118.48 0.57 0.09 10.75 91.0 23.13 90.65 11.77	3 SAMPLE					84.94	0.57	0.57			
0 101.11 1.67 3.48 107.91 96.42 11.36 16.31 107.91 96.42 11.36 16.31 107.91 96.42 11.36 16.31 107.91 96.42 11.36 16.31 107.91 90.65 3.01 31.21 107.91 90.65 3.01 31.21 107.91 90.65 3.01 41.00 0.009561 251.3 29.5 21.3 90.65 3.01 100.0 231.3 91.72 90.65 3.01 90.05 21.3 90.06 4.00 0.009561 90.05 21.3 90.06 4.00 0.009561 90.05 21.3 9.00 4.00 0.009561 90.05 1120.0 23.3 8.00 4.00 0.009561 91.01 112.0 23.3 91.71 91.65 11.74 91.01 112.0 23.3 91.71 91.65 11.74 91.02 119.65 110.06 2.00 0.009561 52.07 91.01 101.06 2.06 0.00 1.77 10.91 91.02 23.33 91.71 91.65 11.74	4				119.69	118.45	1.24	1.81			
7 101.97 11.36 16.67 11.0 21.3 104.97 11.36 16.68 10.0 21.3 90.65 3.07 31.13 10.0 21.3 90.65 3.07 31.13 10.0 21.3 90.65 3.07 31.23 10.0 21.3 90.65 21.3 90.65 10.0 21.3 90.0 21.3 90.05 10.0 21.3 90.0 21.3 90.05 10.0 21.3 90.0 21.3 90.05 10.0 21.3 90.0 21.3 90.05 10.0 21.3 90.0 21.3 90.05 1120.0 21.3 90.0 4.00 0.009261 90.0 21.3 8.00 4.00 0.009261 91.0 0.0 110.0 21.3 8.00 4.00 1120.0 21.3 113.65 114.45 11.77 9.05 1120.0 21.3 113.65 114.45 11.77 11.77 1120.0 21.3 91.71 90.65 21.40 0.009261 110.0 21.3 91.71 90.65 11.77 1.77 110.0	5				102.78	101.11	1.67	3.48			
107.91 96.42 11.49 20.3 1.0 23.3 91.72 90.65 3.01 41.01 1.0 23.3 91.72 90.65 3.01 41.01 91.72 29.5 23.3 91.72 90.65 3.01 41.00 0.009261 52.0 29.6 23.3 91.0 23.3 91.72 90.65 3.00 41.00 0.009261 52.0 29.6 23.3 91.0 23.3 8.00 4.00 0.009261 52.0 90.0 23.3 91.0 23.3 8.00 4.00 0.009261 52.0 91.0 23.3 8.00 4.00 0.009261 52.0 8.00 4.00 0.009261 52.0 90.0 23.3 8.00 4.00 0.009261 52.0 8.00 4.00 0.009261 52.0 91.0 23.13 9.06 23.13 9.06 4.00 0.009261 52.0 91.0 1116.19 101.41 11.71 11.74 15.1 11.20 10.01 10.0 23.3 91.71 90.65 11.20 10.01 10.01 110.1 11.49 11.20 11.40 10.09	0				118.33	104.97	13.36	16.84			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- -				107.91	96.42	11.49	10.01 11 BC			
1.0 23.3 93.72 90.65 3.07 31.71 29.6 23.3 99.72 90.65 3.07 31.1 29.6 23.3 90.05 23.3 8.00 4.00 0.093261 52.0 29.6 23.3 90.0 23.3 8.00 4.00 0.093261 52.0 90.0 23.3 8.00 4.00 0.093261 52.0 91.0 23.3 8.00 4.00 0.093261 52.0 91.0 23.3 8.00 4.00 0.093261 52.0 91.0 23.5 134.98 0.57 0.093261 52.0 91.0 23.5 134.98 0.57 0.093261 52.0 91.0 1120.0 23.3 1135.55 134.98 0.57 0.093261 52.0 91.0 1120.0 23.3 1135.55 134.98 0.57 0.093261 52.07 92.05 113.16 11.20 1.70 1.70 1.70 1.77 112.65 114.45 1.72 0.093261 52.07 92.0 23.3 102.94 100.08 2.06 34.05 92.0 23.3 92.07 10.00 0.003261 <td></td> <td></td> <td></td> <td></td> <td>102.89</td> <td>100.08</td> <td>2.81</td> <td>AL 15</td> <td></td> <td></td> <td></td>					102.89	100.08	2.81	AL 15			
1.0 23.3 8.00 4.00 0.09261 52.0 10.0 23.3 8.00 4.00 0.09261 52.0 10.0 23.3 8.00 4.00 0.09261 52.0 10.0 23.3 8.00 4.00 0.09261 52.0 90.0 23.3 8.00 4.00 0.09261 52.0 110.0 23.3 8.00 4.00 0.09261 52.0 90.0 23.3 8.00 4.00 0.09261 52.0 110.0 23.3 8.00 4.00 0.09261 52.0 110.0 23.3 8.00 4.00 0.09261 52.0 110.0 23.3 9.00 23.3 9.00 4.00 0.09261 52.0 110.0 113.65 114.98 0.57 0.00 4.00 0.09261 52.0 102.0 119.65 119.46 1.20 0.09261 52.0 9.2 9.2 103.0 102.0 23.3 102.0 11.20 1.7 1.7 1.7 1.2	5		•		93.72	90.65	3.07	34.21			
1 10.0 23.3 8.00 4.00 0.003261 52.0 20.5 23.3 8.00 4.00 0.003261 52.0 90.0 23.3 8.00 4.00 0.003261 52.0 90.0 23.3 8.00 4.00 0.003261 52.0 90.0 23.5 23.3 8.00 4.00 0.003261 52.0 90.0 23.5 8.00 4.00 0.003261 52.0 120.0 23.5 8.00 4.00 0.003261 52.0 120.0 23.5 1140.0 23.5 8.00 4.00 0.003261 52.0 8 0.0 4.00 0.003261 52.0 9.00 4.00 0.003261 52.0 9 119.65 118.45 11.20 1.77 1.77 1.77 1.77 119.15 101.11 11.74 1.77 1.77 1.77 1.77 100.00 23.3 9.01.11 107.82 96.42 11.40 0.003261 51.05 100.0108 23.3 91.71 90.65 2.06 1.77 1.77 1.77 100.02 23.3 93.71 90.65 1.77 1.77 1.	0		0.1	23.3			8.00	4.00	0.009261		57 07
29:5 23:3 8:00 4:00 0:003261 52:0 90:0 23:3 8:00 4:00 0:003261 52:0 120:0 23:3 8:00 4:00 0:003261 52:0 120:0 23:3 8:00 4:00 0:003261 52:0 120:0 23:5 8:00 4:00 0:003261 52:0 120:0 23:5 8:00 4:00 0:003261 52:0 140:0 23:5 134.98 0:57 0:002 52:0 119:65 118:45 1:20 0:002 4:00 0:003261 52:0 119:65 118:45 1:20 1:77 1:77 1:77 52:07 119:65 118:45 1:20 1:77 1:77 1:77 119:65 118:45 1:20 1:77 1:77 1:77 118:19 104:11 1:17 1:17 1:17 1:17 10:0 23:3 96:42 1:17 1:17 1:17 10:0 23:3 96:42 1:17 1:17 1:17 10:0 23:3 96:42 1:17 1:17 1:17 10:0 23:3 91:71 90:05 2:06 <	I		0.01	1.11			8.00	4.00	0.009261		50.07
40.57 2.73 8.00 4.00 0.00261 52.0 90.0 23.3 9.00 23.3 8.00 4.00 0.00261 52.0 120.0 23.3 8.00 4.00 0.00261 52.0 120.0 23.3 8.00 4.00 0.00261 52.0 120.0 23.3 8.00 4.00 0.00261 52.0 120.0 23.3 8.00 4.00 0.00261 52.0 120.0 23.3 8.00 4.00 0.00261 52.0 119.65 119.65 118.49 0.57 0.57 0.57 119.65 118.45 102.06 1.77 1.74 3.151 119.65 118.45 104.97 13.22 16.73 100 23.3 93.71 90.65 3.06 4.00 101 23.3 93.71 90.65 3.06 34.00 100 23.3 93.71 90.65 3.06 4.00 0.092561 100 23.3 93.71 90.65 3.06 34.00 4.00 0.092561 100.0 23.3 93.71 90.65 3.06 34.00 4.00 0.09251 100.0 </td <td>2</td> <td></td> <td>10.01</td> <td>6.62 C CC</td> <td></td> <td></td> <td>8.00</td> <td>4.00</td> <td>0.009261</td> <td></td> <td>52 07</td>	2		10.01	6.62 C CC			8.00	4.00	0.009261		52 07
40.57 23.3 8.00 4.00 0.002561 52.0 120.0 23.5 134.98 0.57 4.00 0.002261 52.0 120.0 23.5 135.55 134.98 0.57 0.002261 52.0 120.0 23.5 135.55 134.98 0.57 0.002261 52.0 120.0 23.5 134.98 0.57 0.002261 52.0 119.65 119.65 118.45 1.27 0.57 0.57 119.65 118.45 1.27 0.57 0.57 0.57 119.65 118.45 1.74 3.51 1.77 3.51 118.19 107.82 96.01 1.74 3.51 1.77 10.0 23.3 90.05 3.06 34.05 31.67 10.0 23.3 91.71 90.65 31.06 34.05 10.0 23.3 91.71 90.65 31.05 31.67 10.0 23.3 93.71 90.65 34.05 91.93 10.0 23.3 91.01 1.74 21.67 51.64 10.0 23.3 91.71 90.65 34.05 91.93 10.0 23.3 91.01 <			0.03	6.62 C CC			8.00	4.00	0.009261		52 07
B 40.57 2.73 8.00 4.00 0.002461 52.0 1440.0 2315 1135.55 1134.98 0.57 0.002218 52.0 B 40.57 2.73 1135.55 1134.98 0.57 0.002218 52.0 B 119.65 119.65 1184.98 0.57 0.00 4.00 0.009218 52.0 119.65 119.65 118.19 101.11 1.74 3.51 32.0 100.782 102.94 100.68 101.11 1.74 3.51 100.782 102.94 100.68 11.70 3.51 100.782 102.94 100.68 28.0 30.99 100.0 23.3 93.71 90.65 3.06 4.00 0.009261 51.64 100.0 23.3 93.71 90.65 3.06 4.00 0.009261 52.07 100.0 23.3 93.71 90.65 3.06 4.00 0.009261 52.07 100.0 23.3 90.0 4.00 0.009261 52.07 100.0 23.3 90.0 4.00 0.009261 52.07 120.0 23.3 8.00 4.00 0.009261 52.07			0.09	5.62			8.00	4.00	0.009261		52.07
I440.0 23.5 8.00 4.00 0.09261 52.0 B 40.57 2.73 0.00 4.20 0.09218 52.0 B 10.57 135.55 134.98 0.57 0.57 52.0 119.65 118.45 1.20 1.77 3.51 119.65 118.45 1.20 1.77 3.51 119.65 101.11 1.74 3.51 119.265 104.97 11.22 16.73 107.82 96.42 11.74 3.51 118.19 104.97 11.22 16.73 100.08 2.86 30.99 3.0 23.3 93.71 90.65 3.06 4.00 0.009261 51.63 120.0 23.3 8.00 4.00 0.009261 29.5 23.3 8.00 4.00 0.009261 120.0 23.3 8.00 4.00 0.009261 120.0 23.3 8.00 4.00 0.009261 120.0 23.3 8.00 4.00 0.009261 120.0 23.3 8.00 4.00 0.009261 120.0 23.3 8.00 4.00 0.009261 1440.0 </td <td></td> <td></td> <td>120.0</td> <td>6.62</td> <td></td> <td></td> <td>8.00</td> <td>4.00</td> <td>0.009261</td> <td></td> <td>52.07</td>			120.0	6. 6 2			8.00	4.00	0.009261		52.07
40.57 2.73 0.00 4.20 0.09218 52.0 B 40.57 2.73 0.00 4.20 0.09218 52.0 B 119.65 118.45 1.20 1.77 0.57 0.57 0.57 III9.65 118.45 1.20 1.77 102.94 101.11 1.74 3.51 III8.19 104.11 1.74 3.51 111.74 3.51 117.73 III8.19 100.111 1.74 3.51 107.14 3.51 116.73 III.0 23.3 96.42 111.40 28.13 107.82 96.42 11.74 3.51 II.0 23.3 90.65 3.06 34.05 30.99 90.99 4.00 0.09261 51.63 10.0 23.3 90.65 23.3 90.65 3.06 4.00 0.09261 52.04 10.0 23.3 90.0 23.3 90.0 4.00 0.09261 52.04 10.0 23.3 91.0 23.3 91.0 4.00 0.09261 52.07 1			1440 0	2.62			8.00	4.00	0.009261		52.07
40.57 2.73 0.00 0.00 B 119.65 118.45 1.20 1.77 119.65 118.45 1.20 1.77 119.65 118.45 1.20 1.77 119.65 118.45 1.20 1.77 119.65 104.97 113.22 16.73 107.82 96.42 111.40 28.13 107.82 96.42 111.40 28.13 107.82 96.42 111.40 28.13 107.82 96.42 111.40 28.13 107.82 96.42 111.40 28.13 100.08 2.86 30.95 91.91 100.05 3.1.6 3.0.65 91.90 100.02 23.3 92.71 90.65 3.0.65 29.07 90.05 3.0.65 4.00 0.009261 52.07 90.09 4.00 0.092261 52.07 92.07 92.07 92.07 100.02 23.3 8.00 4.00 0.099261 52.07 100.02 23.3 8.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>8.00</td><td>4.20</td><td>0.009218</td><td></td><td>52.07</td></t<>							8.00	4.20	0.009218		52.07
B SANFLE 135.55 134.98 0.57 0.57 0.57 119.65 118.45 1.20 1.77 1.74 102.85 101.11 1.74 3.51 107.82 96.42 11.40 2.813 107.82 96.42 11.40 2.813 107.92 96.42 11.40 2.813 102.94 100.08 2.86 30.99 93.71 90.65 3.06 34.05 4.00 0.09261 51.84 8.00 4.00 0.09261 51.84 8.10 4.00 0.09261 52.04 8.00 4.00 0.09261 52.04 8.00 4.00 0.09261 52.07 8.00 4.00 0.09261 52.07 8.00 4.00 0.09261 52.07 8.00 4.00 0.09261 52.07 8.00 4.00 0.09261 52.07	40.57	2.73		•							
SAMFLE 119.65 118.45 1.20 1.77 1.20 1.77 10.59 104.91 1.1.20 1.77 102.95 101.11 1.20 1.77 15.1 12.0 1.77 15.1 12.0 104.97 13.22 16.73 10.7.82 96.42 11.40 28.13 10.294 100.08 2.86 30.99 14.05 30.99 14.05 30.99 14.05 30.99 14.05 30.99 14.05 30.99 14.05 30.99 14.05 30.99 14.05 15.1 8.10 14.00 0.009261 51.84 10.0 10.092261 52.07 120.0 23.3 31.3 8.00 4.00 0.009261 52.07 120.0 23.3 1440.0 23.3 8.00 4.00 0.009261 52.07 120.0 23.3 1440.0 1400.0 1440.0 1400.0 1440.0 1400.0 1450.0 1450.0 1450.0 1450.0 1450.0 1450.0 1450.0 1450	B				135 55	00 111	i.	0.00			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SAMPLE				110 65	06.8CT	10.0	0.57			•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					10.05	CB.011	1.20	1.77			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					C8.201	101.11	1.74	3.51			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					118.19	104.97	13.22	16.73			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					107.82	96.42	11.40	28.13			
1.0 23.3 93.71 90.65 3.06 34.05 3.0 23.3 93.71 90.65 3.06 34.05 3.0 23.3 9.90 4.00 0.009261 51.52 3.0 23.3 8.80 4.00 0.009261 51.84 10.0 23.3 8.20 4.00 0.009261 52.01 29.5 23.3 8.20 4.00 0.009261 52.01 20.0 23.3 8.10 4.00 0.009261 52.01 90.0 23.3 8.00 4.00 0.009261 52.07 91.00 23.3 8.00 4.00 0.009261 52.07 91.00 23.3 8.00 4.00 0.009261 52.07 120.0 23.3 8.00 4.00 0.009261 52.07 1440.0 23.3 8.00 4.00 0.009261 52.07 1440.0 23.3 8.00 4.00 0.009261 52.07					102.94	100.08	2.86	30.99			
1.0 23.3 9.90 4.00 0.009261 51.52 3.0 23.3 8.80 4.00 0.009261 51.84 10.0 23.3 8.20 4.00 0.009261 52.01 29.5 23.3 8.20 4.00 0.009261 52.01 20.0 23.3 8.10 4.00 0.009261 52.01 90.0 23.3 8.10 4.00 0.009261 52.01 90.0 23.3 8.00 4.00 0.009261 52.01 120.0 23.3 8.00 4.00 0.009261 52.07 120.0 23.3 8.00 4.00 0.009261 52.07 1440.0 23.3 8.00 4.00 0.009261 52.07 1440.0 23.3 8.00 4.20 0.009261 52.07			-		93.71	90.65	3.06	34.05			
10.0 23.3 8.80 4.00 0.009261 51.84 10.0 23.3 8.20 4.00 0.009261 52.04 29.5 23.3 8.10 4.00 0.009261 52.04 60.0 23.3 8.10 4.00 0.009261 52.04 90.0 23.3 8.00 4.00 0.009261 52.07 120.0 23.3 8.00 4.00 0.009261 52.07 120.0 23.3 8.00 4.00 0.009261 52.07 120.0 23.3 8.00 4.00 0.009261 52.07 8.00 4.00 0.002261 52.07 8.00 4.00 0.009261 52.07 8.00 4.20 0.009261 52.07 8.00 4.20 0.009261 52.07			0.1	23.3			9.90	4.00	0.009261		51.52
29.5 23.3 8.20 4.00 0.009261 52.01 60.0 23.3 8.10 4.00 0.009261 52.04 90.0 23.3 8.00 4.00 0.009261 52.01 90.0 23.3 8.00 4.00 0.009261 52.07 120.0 23.3 8.00 4.00 0.009261 52.07 120.0 23.3 8.00 4.00 0.009261 52.07 1440.0 23.3 8.00 4.00 0.009261 52.07 8.00 4.20 0.009261 52.07 8.00 4.20 0.009261 52.07			0.01	6.62			8.80	4.00	0.009261		51.84
23.3 23.3 8.10 4.00 0.009261 52.04 60.0 23.3 8.00 4.00 0.009261 52.07 90.0 23.3 8.00 4.00 0.009261 52.07 120.0 23.3 8.00 4.00 0.009261 52.07 120.0 23.3 8.00 4.00 0.009261 52.07 1440.0 23.3 8.00 4.00 0.009261 52.07 8.00 4.20 0.009261 52.07			20.01	6.62			8.20	4.00	0.009261		52.01
90.0 23.3 8.00 4.00 0.009261 52.07 90.0 23.3 8.00 4.00 0.009261 52.07 120.0 23.3 8.00 4.00 0.009261 52.07 1440.0 23.3 8.00 4.00 0.009261 52.07 8.00 4.20 0.009261 52.07			0.03	5.52 C CC			8.10	4.00	0.009261		52.04
120.0 23.3 8.00 4.00 0.009261 52.07 120.0 23.3 8.00 4.00 0.009261 52.07 1440.0 23.3 8.00 4.20 0.009261 52.07			0.00	5.52 5.52			8.00	4.00	0.009261		52.07
1440.0 23.3 8.00 4.00 0.009261 52.07 8.00 4.20 0.009261 52.07 8.00 4.20 0.009261 52.07			0.06	6.67 C CC			8.00	4.00	0.009261		52.07
8.00 4.20 0.009261 52.07			1440 0	(.() (.()			8.00	4.00	0.009261		52.07
				6.62			8.00	4.20	0.009261		52.07

• •

•

18-FEB-92 16:42 Page 2

.

Model for Computation of Particle Size Ordinates

NSP12 33R x 15C

1

0 sample weight	: 10 C	11 X. Part Size	12 P (\$ <)	13 X. Avg	14 P. Avg	15 TEXTURE ANALYSIS
1 40.57						848 SAND
2 A		2000.000	98.600000	2000.000	98.600	68 SILT
3 SAMPLE		1000.000	95.540000	1000.000	95.590	10% CLAY
4		500.000	91.420000	500.000	91.390	LOAMY SAND
5		250.000	58.490000	250.000	58.630	
9		106.000	30.170000	106.000	30.420	
7		75.000	23.240000	75.000	23.430	
8		53.000	15.680000	53.000	15.880	
6	4.0	52.070	9.859502	51.800	12.200	
10	4.0	30.060	9.859502	30.000	10.850	
11	4.0	16.470	9.859502	16.460	10.110	
12	4.0	9.587	9.859502	9.584	9.983	
13	4.0	6.722	9.859502	6.722	9.860	
14	4.0	5.489	9.859502	5.489	9.860	
15	4.0	4.753	9.859502	4.753	9.860	
16	3.8	1.372	9.366527	1.372	9.367	
17						
18 40.57	_					
19 B		2000.000	98.60000			
20 SAMPLE		1000.000	95.640000			
21		500.000	91.350000			
22		250.000	58.760000			
23		106.000	30.660000			
24		75.000	23.610000			
25		53.000	16.070000			
26	5.9	51.520	14.542766			
27	4.8	29.930	11.831403			
28	4.2	16.450	10.352477			
29	4.1	. 9.581	10.105990			
30	4.0	6.722	9.859502			
31	4.0	5.489	9.859502			
32	4.0	4.753	9.859502			
33	3.8	1.372	9.366527			

•

18-FEB-92 16:43 Page 1

8.3.18

-
Page
16:46
18-FEB-92

,

•

.

Model for Computation of Particle Size Ordinates

0 sample weight		Ps & 2 IIMP	£	ime 3	Temp	4 Soil and Sieve Wt	5 Sieve Wt	6 Soil or Reading	7 Blank or Soil Sum	8 rhoW 6 n	6	Theta
1 40		2.73			1 1 1 1 1 1	1 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			00000	1 003150		
Z A	-'	5.00				134.987	134.98	0.007	0.007	001000.1		
J SAMPLE						118.710	118.45	0.260	0.267			
5 1						101.430	101.11	0.320	0.587	۰.		
<u>م</u> ر						105.370	104.97	0.400	0.987			
۰,						104.040	96.42	7.620	8.607			
- 0						107.440	100.08	7.360	15.967			
Σ α						96.510	90.65	5.860	21.827			
י ע			-	0.1	23.3			19.500	4.000	0.009261		48 68
- C			(T) (0.	23.3			13.000	4.000	0.009261		50.62
				0.0	23.3			10.800	4.000	0.009261		51.26
2 6			25	.5	23.3			9.000	4.000	0.009261		51.78
			90	0.0	23.3			8.500	4.000	0.009261		51.93
7 L			96	0.0	23.3			8.200	4.000	0.009261	•	52.01
0,1			120	0.0	23.3			8.000	4.000	0.009261		52.07
0 -			1440	0.0	23.5			7.200	4.200	0.009218	•	52.30
8 40	2	.73										
8 9		•							0.000			
O CANDI F						134.980	134.98	0.000	0.000		•	
1						118.690	118.45	0.240	0.240			
						101.450	101.11	0.340	0.580			
4 r						105.330	104.97	0.360	0.940			
						103.880	96.42	7.460	8.400			
.						107.270	100.08	7.190	15.590			
0						96.400	90.65	5.750	21.340			
ρ.			1	0.	23.3			20.000	4.000	0.009261		48.53
_			m	0.	23.3			14.000	4.000	0.009261		50.33
			10	•	23.3			11.000	4.000	0.009261		51.21
~ ~			29	5.	23.3			9.200	4.000	0.009261		51.73
			60	0.	23.3			9.000	4.000	0.009261		51.78
			06	0.	23.3			8.900	4.000	0.009261		51.81
2			120	0.	23.3			8.500	4.000	0.009261		51.93
n			1440	0.	c. EZ			7.500	4.200	0.009261		52.21

.

•

B.3.19

NSP14 33R x 15C

!

18-FEB-92 16:46 Page 2

ļ

Model for Computation of Particle Size Ordinates

NSP14 33R x 15C

....

1

15 TEXTURE ANALYSIS	55 \$ SAND 36 \$ SILT 9 \$ CLAY	SANDY LOAM																													
14 P. Avg	066.99 076.99	98.540	97.590	78.740	60.560	46.040	39.380	23.750	17.250	12.750	11.880	11.370	10.630	7.875																	
13 X. Avg	2000.000	500.000	250.000	106.000	75.000	53.000	48.610	29.150	16.200	9.529	6.695	5.472	4.747	1.377																	
12 P (8 <)	99.98 55.00	98.53	97.53	78.48	60.08	45.43	38.75	22.50	17.00	12.50	11.25	10.50	10.00	7.50			100.00	99.40	98.55	97.65	79.00	61.03	46.65	40.00	25.00	17.50	13.00	12.50	12.25	11.25	8.25
11 X. Part Size	2000.000	500.000	250.000	106.000	75.000	53.000	48.680	29.230	16.210	9.533	6.704	5.482	4.753	1.378			2000.000	1000.000	500.000	250.000	106.000	75.000	53.000	48.530	29.060	16.190	9.524	6.685	5.461	4.741	1.376
10 C	1 1 1 1 1						15.5	9.0	6.8	5.0	4.5	4.2	4.0	3.0										16.0	10.0	7.0	5.2	5.0	4.9	4.5	3.3
0 sample weight	1 40 2 A	3 SAMPLE	7 17	n va	2	. aa	o 0	10	11	: :	21		15	16	17	18 40	19 B	20 SAMPLE	21	22	23	24	25	26	27	28	90	02	31	32	33

B.3.20

n - 1

n

18-FEB-92 16:47 Page 1

NSP14G

_
Page
4
-
<u> </u>
-
2
9
1
8
1
-
ά
-

Model for Computation of Particle Size Ordinates

0	sample weight	 Ps ƙ IIMP	2	Time	J Te	đua	4 Soil and Sieve Wt	5 Sieve W	ور	Soil or Reading	7 Blank or Soil Sum	80	rhoW & n	6	Theta
1	A 60.66	2.73 5.00			1 1 1 1	! ! !	145.640	134.9		10.660	0.000	1.00	3150		
س ،	SAMPLE						142.570	118.4	1.00	24.120	34.780				
97 L							117.030	101.1	_	15.920	50.700				
ົ່							110.240	104.9		5.270	55.970				
ο ι			•				98.880	96.4	6 3	2.460	58.430				
- 0							100.380	100.08	~	0.300	58.730				
20 0							90.770	90.65	10	0.120	58.850				
י י				1.0	23					6.900	4.000	0.00	9261		52.38
7				о.е	23	.				6.900	4.000	0.00	9261		52.38
11				10.0	23					6.900	4.000	0.00	9261		52.38
22				29.5	23	.				6.800	4.000	0.00	9261		52.41
-				60.0	23	e.]				6.800	4.000	0.00	9261		52.41
5 I				90.06	23	.				6.800	4.000	0.00	9261		52.41
<u>, 1</u>		•	-	120.0	23	ŗ.				6.800	4.000	0.00	9261		52.41
9 ; -			14	140.0	23	.5				6.800	4.200	0.00	9218		52.41
1 1					0	0.									
	00.00 D	2.13									0.000				
2 5							145.640	134.98		10.660	10.660				
2 4	SAPPLE						142.780	118.45		24.330	34.990				
1, 5							116.340	101.11		15.230	50.220				
9 r 9 r							110.420	104.97	_	5.450	55.670				
5	-						99.130	96.42		2.710	58.380				
F 7							100.456	100.08		0.376	58.756				
25							90.840	90.65		0.190	58.946				
97				1.0	23	۳.				6.800	4.000	0.002	9261		52.41
17				3.0	23	۳.				6.800	4.000	0.00	9261		52.41
87				10.0	23	۳.				6.800	4.000	0.005	9261		52.41
27				29.5	23	۳.				6.800	4.000	00.0	9261		52.41
2				60.0	23	e.				6.800	4.000	0.002	9261		52.41
5			•	90.0	23	ņ				6.800	4.000	0.002	9261		52.41
7				20.0	23	m.				6.800	4.000	0.005	9261		52.41
r r			F T	40.0	23	ŗ.				6.800	4.200	0.005	9261		52.41

B.3.22

. .

. . . .

,

. .

NSP15 33R x 15C

٠

ì

٠

÷

.

•

.

Model for Computation of Particle Size Ordinates

0 sample weig	ght i0 c	11 X. Part Size	12 P (\$ <)	13 X. Avg	14 P. Avg	15 TEXTURE ANALYSIS
1 60.	.66					
2 A		2000-000	000054 58			97% SAND
3 SAMPLE		1000 000	000068.20	2000.0002	82.430	-18 SILT
4		100.001	42.660000	1000.000	42.490	48 CLAY
• د		500.000	16.420000	500.000	16.820	CAND
ר. נ		250.000	7.732000	250.000	7 979	
0,		106.000	3.676000	106.000		
- 0		75.000	3.182000	75 000		
жо с		53.000	2.984000	53 000	101.0	
י ע	2.9	52.380	4.780745	52 400		
0	2.9	30.240	4.780745	30 250	0/0.F	
-	2.9	16.560	4.780745	16 570	4.078	
7	2.8	9.649	4.615892	0 640		
,	. 2.8	6.766	4 615807		910.5	
4	2.8	5.524	4 615807	00/00	4.616	
2	2.8	A 79A		B20.0	4.616	
6		50/·F	768CT0.8	4.784	4.616	
	0.7	1.381	4.286185	1.381	4.286	
8 60.4	66					
9 B	2	000 000L				
		2000.000	82.430000			
U SAMPLE		1000.000	42.320000			
		500.000	17.210000			
2		250.000	8.226000			
~ 1 ·		106.000	3.759000			
<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>		75.000	3.139000			
		53.000	2.826000			
	2.8	52.410	4.615892			
	2.8	30.260	4.615892			
80.	2.8	16.570	4.615892			
.	2.8	9.649	4.615892			
0	2.8	6.766	4.615892			
	2.8	5.524	4.615892			
	2.8	4.784	4.615892			
-	2,6	1.381	4.286185			

•

B.3.23

18-FEB-92 16:45 Page 1

j

NSP15G

APPENDIX B Part 4

PARTICLE SIZE DISTRIBUTION BY SIEVING OF SELECTED SAMPLES FROM THE 218-E-12B BURIAL GROUND AND WELLS 299-E34-7 AND 299-E35-1

SUBPIT' 100R × 17C

13-FEB-92 16:22 Page 1

1

.

Model for Computation of Sieve Analysis

Name	Sample & Total Wt	Mesh Size	Sieve Wt	Sieve & Soil Wt	Soil Wt	Cumultiv Soil Wt	Percent Less Than
		4.000	460.56	477.26	16.70	16.70	98.30
		2.000	440.17	446.47	6.30	23.00	97.66
	#2	1.000	322.01	333.04	11.03	34.03	96.53
	981.03	0.500	289.75	321.65	31.90	65.93	93.28
		0.250	260.20	390.95	130.75	196.68	79.95
		0.125	242.82	405.11	162.29	358.97	63.41
		0.063	246.10	562.50	316.40	675.37	31.16
		0.045	243.20	304.89	61.69	737.06	24.87
			286.15	510.55	224.40	961.46	1.99
						0.00	
		4.000	460.56	460.41	-0.15	-0.15	100.02
		2.000	440.17	440.25	0.08	-0.07	100.01
	118	1.000	322.01	322.09	0.08	0.01	100.00
	677.52	0.500	289.75	318.61	28.86	28.87	95.74
		0.250	260.20	616.85	356.65	385.52	43.10
		0.125	242.82	462.55	219.73	605.25	10.67
		0.063	246.10	302.74	56.64	661.89	2.31
		0.045	243.20	253.34	10.14	672.03	0.81
			286.15	290.94	4.79	676.82	0.10
						0.00	
		4.000	460.56	2164.82	1704.26	1704.26	17.08
		2.000	440.17	600.99	160.82	1865.08	9.25
	#20	1.000	322.01	388.89	66.88	1931.96	6.00
	2055.23	0.500	289.75	357.75	68.00	1999.96	2.69
		0.250	260.20	297.81	37.61	2037.57	0.86
		0.125	242.82	251.50	8.68	2046.25	0.44
		0.063	246.10	249.01	2.91	2049.16	0.30
		0.045	243.20	244.51	1.31	2050.47	0.23
			286.15	289.87	3.72	2054.19	0.05
						0.00	
		4.000	460.56	501.57	11.01	41.01	94.76
		2.000	440.17	554.94	114.77	155.78	80.10
	# 5	1.000	322.01	469.30	147.29	303.07	61.28

B.4.1

13-FEB-92 16:22 Page 2

•

• • • • •

SUBPIT 100R × 17C

.

Model for Computation of Sieve Analysis

.

	j olumco	Moch	cieve	Sieve k	Soil	Cumultiv	Percent
Name	Total Wt	Size	Wt	Soil Wt	Wt	Soil Wt	Less Than
	782.67	0.500	289.75	360.12	70.37	373.44	52.29
		0.250	260.20	295.44	35.24	408.68	47.78
		0.125	242.82	312.05	69.23	477.91	38.94
		0.063	246.10	387.71	141.61	619.52	20.85
		0.045	243.20	288.23	45.03	664.55	15.09
			286:15	400.99	114.84	779.39	0.42
						0.00	
		4.000	460.56	543.65	83.09	83.09	83.68
		2.000	440.17	453.27	13.10	96.19	81.10
	e34-7 5'	1.000	322.01	341.14	19.13	115.32	77.34
	509.01	0.500	289.75	315.05	25.30	140.62	72.37
	 	0.250	260.20	292.68	32.48	173.10	65.99
		0.125	242.82	319.08	76.26	249.36	51.01
		0.063	246.10	129.34	183.24	432.60	15.01
		0.045	243.20	283.19	39.99	472.59	7.16
			286.15	320.44	34.29	506.88	0.42
						0.00	
		4.000	460.56	931.78	471.22	471.22	33.42
		2.000	440.17	482.86	42.69	513.91	27.39
	01 7-10'	1.000	322.01	349.95	27.94	541.85	23.44
	707.73	0.500	289.75	326.49	36.74	578.59	18.25
		0.250	260.20	301.99	41.79	620.38	12.34
		0.125	242.82	270.01	27.19	647.57	8.50
		0.063	246.10	265.00	18.90	655.47	5.83
		0.045	243.20	251.29	8.09	67¢.56	4.69
			286.15	318.14	31.99	70¢.55	0.17
						0.00	
		4.000	460.56	737.98	277.42	277.42	68.38
		2.000	440.17	504.70	64.53	341.95	61.02
	e34-7 15'	1.000	322.01	367.38	45.37	387.32	55.85
	877.22	0.500	289.75	346.36	56.61	443.93	49.39
		0.250	260.20	402.60	142.40	586.33	33.16
		0.125	242.82	371.66	128.84	715.17	18.47

•

B.4.2

13-FEB-92 16:22 Page 3

٠

•

•

ļ

1

•

4

•

SUBPLT 100R × 17C

•

Model for Ccmputation of Sieve Analysis

Name	Sample & Total Wt	Mesh Size	Sieve Wt	Sieve & Soil Wt	Soil Wt	Cumultiv Soil Wt	Percent Less Than
		0.063	246.10	312.98	66.88	782.05	10.85
		0.045	243.20	268.62	25.42	807.47	7.95
			286.15	353.44	67.29	874.76	0.28
						0.00	
		4 . 000	460.56	612.24	151.68	151.68	80.83
		2.000	440.17	545.67	105.50	257.18	67.49
	100 C-850	1,000	322.01	404.96	82.95	340.13	57.00
	791.03	0.500	289.75	372.61	82.86	422.99	46.53
		0.250	260.20	381.41	121.21	544.20	31.20
	•	0.125	242.82	356.67	113.85	658.05	16.81
		0.063	246.10	303.63	57.53	715.58	9.54
		0.045	243.20	267.97	24.77	740.35	6.41
			286.15	331.06	44.91	785.26	0.73

B.4.3

.

SUBPITIL_3 100R x 17C

.

06-FEB-92 18:20 Page 1

.

Model for Computation of Sieve Analysis

NAME	Sample & Total Wt	Mesh Size	Sieve Wt	Sieve & Soil Wt	Soil Wt	Cumultiv Soil Wt	Percent Less Than
		4.000	460.56	460.56	0.00	0.00	100.00
		2.000	440.17	441.10	0.93	0.93	99.80
	#11	1.000	322.01	330.82	8.81	9.74	97.94
	473.85	0.500	289.75	320.01	30.26	40.00	91.56
		0.250	260.20	343.12	82.92	122.92	74.06
		0.125	242.82	472.47	229.65	352.57	25.59
		0.063	246.10	344.86	98.76	451.33	4.75
		0.045	243.20	253.52	10.32	461.65	2.57
			286.15	297.80	11.65	473.30	0.12
						0.00	
		4.000	460.56	462.28	1.72	1.72	17.00
		2.000	440.17	446.93	6.76	8,48	98.59
	#12	1.000	322.01	332.82	10.81	19.29	96.80
	602.37	0.500	289.75	333.71	43.96	63.25	89.50
		0.259	260.20	537.10	276.90	340.15	43.53
		0.125	242.82	386.47	143.65	483.80	19.68
		0.063	246.10	334.87	88.77	572.57	4.95
		0.045	243.20	263.90	20.70	593.27	1.51
			286.15	295.36	9.21	602.48	-0.02
						0.00	
		4.000	460.56	2908.81	2448.25	2448.25	8.25
		2.000	440.17	458.90	18.73	2466.98	7.55
	1.#	1.000	322.01	348.57	26.56	2493.54	6.55
	2668.42	0.500	289.75	320.34	30.59	2524.13	5.41
		0.250	260.20	309.14	48.94	2573.07	3.57
		0.125	242.82	284.56	41.74	2614.81	2.01
		0.063	246.10	267.27	21.17	2635.98	1.22
		0.045	243.20	250.91	7.71	2643.69	0.93
			286.15	311.64	25.49	2669.18	-0.03
						0.00	
		4.000	460.56	973.74	513.18	513.18	59.04
		2.000	440.17	683.09	242.92	756.10	39.65
	6#	1.000	322.01	501.41	179.40	935.50	25.34

.

. •

B.4.4

SUBPITIL_3 100R x 17C

06-FEB-92 18:20 Page 2

.

ļ

i

1

•

•

.

. . .

Model for Computation of Sieve Analysis

NAME	Sample & Total Wt	Mesh Size	Sieve Wt	Sieve ƙ Soil Wt	Soil Wt	Cumultiv Soil Wt	Percent Less Than
	1252.94	0.500	289.75	412.46	122.71	1058.21	15.54
		0.250	260.20	397.06	136.86	1195.07	4.62
		0.125	242.82	285.20	42.38	1237.45	1.24
		0.063	246.10	255.85	9.75	1247.20	0.46
		0.045	243.20	244.76	1.56	1248.76	0.33
			286.15	289.34	3.19	1251.95	0.08
						0.00	
		4.000	460.56	2209.31	1748.75	1748.75	9.38
		2.000	440.17	463.52	23.35	1772.10	8.17
	#10	1.000	322.01	341.55	19.54	1791.64	7.16
	1929.75	0.500	289.75	308.96	19.21	1810.85	6.16
		0.250	260.20	294.17	33.97	1844.82	4.40
		0.125	242.82	271.39	28.57	1873.39	2.92
		0.063	246.10	266.86	20.76	1894.15	1.84
		0.045	243.20	250.90	7.70	1901.85	1.45
			286.15	309.86	23.71	1925.56	0.22
						0.00	
		4.000	460.56	518.00	57.44	57.44	93.60
		2.000	440.17	558.15	117.98	175.42	80.46
	#3	1.000	322.01	439.02	117.01	292.43	67.42
	897.63	0.500	289.75	335.15	45.40	337.83	62.36
		0.250	260.20	294.53	34.33	372.16	58.54
		0.125	242.82	597.03	354.21	726.37	19.08
		0.063	246.10	379.36	133.26	859.63	4.23
		0.045	243.20	259.12	15.92	875.55	2.46
			286.15	310.18	24.03	899.58	-0.22
						0.00	
		4.000	460.56	739.56	279.00	279.00	73.80
		2.000	440.17	691.19	251.02	530.02	50.23
	#4	1.000	322.01	611.52	289.51	819.53	23.04
	1064.94	0.500	289.75	477.82	188.07	1007.60	5.38
		0.250	260.20	304.99	44.79	1052.39	1.18
		0.125	242.82	249.66	6.84	1059.23	0.54

B.4.5

•

06-FEB-92 18:20 Page 3

•

. 1

ļ

SUBPITI1_3 100R x 17C

.

•

Model for Computation of Sieve Analysis

NAME	Sample & Total Wt	Mesh Size	Sieve Wt	Sieve & Soil Wt	Soil Wt	Cumultiv Soil Wt	Percent Less Than
		0.063	246.10	248.56	2.46	1061.69	0.31
		0.045	243.20	244.27	1.07	1062.76	0.20
			286.15	287.93	1.78	1064.54	0.04
		•				0.00	
		4.000	460.56	486.37	25.81	25.81	98.06
		2.000	440.17	647.99	207.82	233.63	82.43
	#15	1.000	322.01	927.93	605.92	839.55	36.86
	1329.62	0.500	289.75	635.27	345.52	1185.07	10.87
		0.250	260.20	355.27	95.07	1280.14	3.72
		0.125	242.82	275.27	32.45	1312.59	1.28
		0.063	246.10	256.17	10.07	1322.66	0.52
		0.045	243.20	245.78	2.58	1325.24	0.33
			286.15	290.47	4.32	1329.56	0.00

.

19-FEB-92 15:44 Page 1

.

•

٠

•

.

SUBPIT_3 100R x 17C

. . . .

Model for Computation of Sieve Analysis

Name	Sample & Total Wt	Mesh Size	Sieve Wt	Sieve & Soil Wt	soil Wt	Cumultiv Soil Wt	Percent Less Than
	 	4.000	460.40	497.46	37.06	37.06	94.38
		2.000	440.27	605.73	165.46	202.52	69.28
	e34-7 25'	1.000	322.09	537.64	215.55	418.07	36.58
	659.25	0.500	289.75	388.36	98.61	516.68	21.63
		0.250	260.21	307.66	47.45	564.13	14.43
		0.125	242.81	277.34	34.53	598.66	9.19
		0.063	246.15	266.46	20.31	618.97	6.11
		0.045	243.22	251.38	8.16	627.13	4.87
			286.14	312.58	26.44	653.57	0.86
	-					00.00	
		4,000	460.40	545.77	85.37	85.37	86.95
		2.000	440.27	591.62	151.35	236.72	63.82
	105 6-250	1,000	322.09	414.98	92.89	329.61	49.62
	654.24	0.500	289.75	360.84	71.09	400.70	38.75
		0.250	260.21	325.33	65.12	465.82	28.80
		0.125	242.81	303.75	60.94	526.76	19.49
		0.063	246.15	291.14	44.99	571.75	12.61
		0.045	243.22	262.73	19.51	591.26	9.63
			286.14	347.31	61.17	652.43	0.28
						0.00	
		4,000	460.40	490.38	29.98	29.98	95.68
		000.0	440.27	524.00	83.73	113.71	83.63
	014-7 35'	1.000	322.09	409.42	87.33	201.04	71.06
	694.63	0.500	289.75	368.34	78.59	279.63	59.74
		0.250	260.21	369.80	109.59	389.22	43.97
		0.125	242.81	345.15	102.34	491.56	29.23
	• *	0.063	246.15	334.68	88.53	580.09	16.49
		0.045	243.22	277.21	33.99	614.08	11.60
			286.14	355.29	69.15	683.23	1.64
						0.00	
		4.000	460.40	644.24	183.84	183.84	62.67
		000.0	440.27	562.33	122.06	305.90	56.73
	e34-7_40'	1.000	322.09	407.21	85.12	391.02	44.68
	•						

•

B.4.7

19-FEB-92 15:44 Page 2

٠

•

•

Model for Computation of Sieve Analysis

Name	Sample & Total Wt	Mesh Size	Sieve Wt	Sieve & Soil Wt	Soil Wf	Cumultiv soil we	Percent
							Less Than
	706.88	0.500	289.75	365.46	75.71	466.73	33.97
		0.250	260.21	331.47	71.26	537.99	23.89
		0.125	242.81	303.13	60.32	598.31	15.36
		0.063	246.15	289.86	43.71	642.02	9.18
		0.045	243.22	259.19	15.97	657.99	6.92
			286.14	333.18	47.04	705.03	0.26
						0.00	
		4.000	460.40	537.37	76.97	76.97	90.15
		2.000	440.27	585.85	145.58	222.55	71.52
	e34-7_45'	1.000	322.09	435.76	113.67	336.22	56.98
	781.49	0.500	289.75	398.34	108.59	444.81	43.08
		0.250	260.21	341.36	81.15	525.96	32.70
		0.125	242.81	311.39	68.58	594.54	23.92
		0.063	246.15	310.97	64.82	659.36	15.63
		0.045	243.22	275.68	32.46	691.82	11.47
			286.14	374.54	88.40	780.22	0.16
						0.00	
		4.000	460.40	574.58	114.18	114.18	83.24
		2.000	440.27	560.07	119.80	233.98	65.65
	e34-7_50'	1.000	322.09	422.33	100.24	334.22	50.93
	681.10	0.500	289.75	375.32	85.57	419.79	38.37
		0.250	260.21	326.34	66.13	485.92	28.66
		0.125	242.81	307.21	64.40	550.32	19.20
		0.063	246.15	290.35	44.20	594.52	12.71
		0.045	243.22	274.84	31.62	626.14	8.07
			286.14	339.66	53.52	679.66	0.21
	•					0.00	
		4.000	460.40	616.10	155.70	155.70	76.85
		2.000	440.27	535.14	94.87	250.57	62.74
	e34-7_55'	1.000	322.09	393.86	71.77	322.34	52.07
	672.47	0.500	289.75	366.43	76.68	399.02	40.66
		0.250	260.21	322.23	62.02	461.04	31.44
		0.125	242.81	294.82	52.01	513.05	23.71

.

SUBPIT_3 100R x 17C

SUBPIT_3 100R x 17C

. .

Model for Computation of Sieve Analysis

Name	Sample & Total Wt	Mesh	Sieve	Sieve &	Soil	Cumultiv	Percent
				SOLL WE	WC	SOLL WE	Less Than
		0.063	246.15	299.09	52.94	565.99	15.83
		0.045	243.22	265.35	22.13	588.12	12.54
			286.14	365.85	79.71	667.83	0.69
		•				0.00	
		4.000	460.40	683.87	223.47	223.47	70.97
		2.000	440.27	602.33	162.06	385.53	49.92
	e34-7_60'	1.000	322.09	417.63	95.54	481.07	37.51
	769.78	0.500	289.75	356.20	66.45	547.52	28.87
		0.250	260.21	308.97	48.76	596.28	22.54
		0.125	242.81	290.53	47.72	644.00	16.34
		0.063	246.15	291.07	44.92	688.92	10.50
		0.045	243.22	262.21	18.99	707.91	8.04
			286.14	348.56	62.42	770.33	-0.07

...

B.4.9

20-FEB-92 16:25 Page 1

Model for Computation of Sieve Analysis

erclin	Sieve & Soil Wt
	Sieve Wt
	Mesh Size
	ample & otal Wt

Name 	Sample & Total Wt	Mesh Size 	Sieve Wt	Sieve & Soil Wt	Soil Wt	Cumultiv Soil Wt	Percent Less Than
		4.000	460.34	464.75	4.41	4.41	
	01E 1.7E	2.000	439.96	479.54	39.58	43.99	92.26
	- Cf-T cca	1.000	321.88	428.20	106.32	150.31	73.55
	PC.00C	0.500	289.48	417.78	128.30	278.61	50.98
		0.250	260.18	337.53	77.35	355.96	37.37
		0.125	242.80	302.72	59.92	415.88	26.83
		0.063	246.13	306.09	59.96	475.84	16.28
		0.045	243.14	274.39	31.25	507.09	10.78
			286.09	347.34	61.25	568.34	0.00
						0.00	
		4.000	460.34	790.23	329.89	329.89	51.62
	016 1_60/	2.000	439.96	466.89	26.93	356.82	47.67
	.0C-T CCA	1.000	321.88	352.92	31.04	387.86	43.12
	CB.180	0.500	289.48	429.64	140.16	528.02	22.56
		0.250	260.18	333.60	73.42	601.44	11.79
		0.125	242.80	275.36	32.56	634.00	7.02
		0.063	246.13	271.88	25.75	659.75	3.24
		0.045	243.14	250.11	6.97	666.72	2.22
			286.09	301.48	15.39	682.11	-0.04
						0.00	
		4.000	460.34	679.54	219.20	219.20	72.00
	103-1-50	2.000	439.96	573.99	134.03	353.23	54.88
	.00-1 .00	1.000	321.88	426.48	104.60	457.83	41.52
	20.201	006.0	289.48	354.28	64.80	522.63	33.24
		062.0	260.18	309.21	49.03	571.66	26.97
		621.0	242.80	290.24	47.44	619.10	20.91
		0.063	246.13	295.90	49.77	668.87	14.56
		0.015	243.14	271.91	28.77	697.64	10.88
			286.09	361.73	75.64	773.28	1.22
						0.00	
		4.000	460.34	470.09	9.75	9.75	98.11
	01E 1 CE/	2.000	4.39.96	511.86	71.90	81.65	84.19
	. C0 - 1 - CC2	1.000	321.88	429.35	107.47	189.12	63.37

SUBPIT_4 100R x 17C

B.4.10

20-FEB-92 16:25 Page 2

•

•

.

۱

SUBPIT_4 100R x 17C

•

.

•

Model for Computation of Sieve Analysis

Name	Sample & Total Wt	Mesh Size	Sieve Wt	Sieve & Soil Wt	Soil Wt	Cumultiv Soil Wt	Percent Less Than
	516.33	0.500	289.48	372.68	83.20	272.32	
		0.250	260.18	325.00	64.82	337.14	02.15
		0.125	242.80	305.11	62.31	399.45	22.64
		0.063	246.13	289.59	43.46	442.91	14.22
		0.045	243.14	259.88	16.74	459.65	10.98
			286.09	343.41	57.32	516.97	-0.12
						0.00	
		4.000	460.34	464.07	3.73	3.73	99.26
		2.000	439.96	479.70	39.74	43.47	91.36
	e35_1-75'	1.000	321.88	448.72	126.84	170.31	66.16
	503.32	0.500	289.48	385.53	96.05	266.36	47.08
		0.250	260.18	309.14	48.96	315.32	37.35
		0.125	242.80	298.61	55.81	371.13	26.26
		0.063	246.13	308.12	61.99	433.12	13.95
		0.045	243.14	271.01	27.87	460.99	8.41
			286.09	325.18	39,09	500.08	0.64
						0.00	
		4.000	460.34	519.44	59.10	59.10	90.51
		2.000	439.96	495.37	55.41	114.51	81.61
	e35_1-90'	1.000	321.88	381.54	59.66	174.17	72.03
	622.72	0.500	289.48	358.32	68.84	243.01	60.98
		0.250	260.18	338.69	78.51	321.52	48.37
		0.125	242.80	344.29	101.49	423.01	32.07
		0.063	246.13	321.83	75.70	498.71	19.91
		0.045	243.14	266.74	23.60	522.31	16.12
			286.09	381.90	95.81	618.12	0.74
						0.00	
		4.000	460.34	509.72	49.38	49.38	90.31
		2.000	439.96	518.71	78.75	128.13	74.86
	e35_1-180'	1.000	321.88	389.45	67.57	195.70	61.61
	509.72	0.500	289.48	357.66	68.18	263.88	48.23
		0.250	260.18	316.31	56.13	320.01	37.22
		0.125	242.80	288.23	45.43	365.44	28.31

.

B.4.11

20-FEB-92 16:25 Page 3

•

SUBPIT_4 100R x 17C

.

:

Model for Computation of Sieve Analysis

ame 	Sample & Total Wt	Mesh Size	.Sieve Wt	Sieve & Soil Wt	Soil Wt	Cumultiv Soil Wt	Percent Less Than
		0.063	246.13	296.23	50.10	415.54	18.48
		0.045	243.14	267.24	24.10	439.64	13.75
			286.09	355.73	69.64	509.28	0.09
						0.00	
		4.000	460.34	460.34	0.00	0.00	100.00
		2.000	439.96	439.96	0.00	0.00	100.00
		1.000	321.88	321.88	0.00	0.00	100.00
	1.00	0.500	289.48	289.48	0.00	0.00	100.00
		0.250	260.18	260.18	0.00	0.00	100.00
		0.125	242.80	242.80	0.00	0.00	100.00
		0.063	246.13	246.13	0.00	0.00	100.00
		0.045	243.14	243.14	0.00	0.00	100.00
			286.09	286.09	0.00	0.00	100.00

•

APPENDIX B Part 5

,

.

.

.

.

.

. 🛋 👘 👘

BULK GEOCHEMICAL ANALYSES OF SELECTED SAMPLES FROM THE 218-E-12B BURIAL GROUND AND WELL 299-E35-1

J

	F 11.7		NON	NON	NON	NON	HC+N	NON	NCIN	AI.	AL	AI.	AL	AL	AL	AL.	ΥΓ	AMC.	AMC	AIIC	AHC:	ANC	AMC	ANC	ANC	AMC	MAC	ANC	AMC	ANC	AMC	AMC	ANC	AMC	AMC	AMC	AMC	AMC.	AMC	MHC.	AHC.	
	CONCENTRAT I ON	Mdd	19214.	23047.	148356.	585468.	5628.	.191.	638.	15191.	43491.	0.	15651.	265.	25.	1474.	88521.	36.	.11.	21.	108.	23.	2.	10.	8.	0.	78.	335.	12.	.136	17.	8.	50.	43.	101.	102.	148.	1119.	6 .	0.	9.	949976.
	OXIDE		Na2O	Юд	E021A	5102	P 205	5 03	CI	K20	CaO	Sc203	Tio2	V02	Cr 203	MnO2	Fe203	Co203	NIO	CuO	2 nO	Ga203	GeO2	As205	Se 03	Вг	Rb20	SIO	Y 203	2102	ND203	HoO3	CdO	11,203	S1102	Sb203	I	Bath	Ta205	EOW	FDO	DE SUM =
								CONCN BELOW DET LIM				ELEMENT NOT DETECTED		CONCN NEAR DET LIM	CONCN BELOW DET LIM			CONCN BELOW DET LIM	CONCH BELOW DET LIM	CONCH NEAR DET LIM			CONCN BELOW DET LIM	CONCH NEAR DET LIM	CONCN NEAR DET LIM	ELEMENT NOT DETECTED			CONCN NEAR DET LIM		CONCN BELOW DET LIM	CONCH BELOW DET LIN	CONCN BELOW DET LIM	CONCH NEAR DET LIM	CONCN BELOW DET LIM	ELEMENT NOT DETECTED	CONCN BELOW DET LIN	IXO				
	XRY YIELD	- CTS/PFM -	E7E1.	.3262	.5445	.6908	.4260	.5170	.5721	1.2220	1.3272	.0000	1.8039	1.8327 **	1.7700 ****	1.5685	1.3851	2.9201 ****	4.8916 ****	7.0835 **	1 6 0 5 . 9	10.5016	11.1414 ****	** 8661.11	10.3362 **	.0000 .	7.1403	6.0172	5.0340 AA	4.1020	3.3390 ****	2.6554 AAAA	.5953 ***	.4550 ****	.3421	.2582	.1469	.0609 AA	3.0328 ****	.0000.	5.5842 AAAA	
EIds Salt	PK AREA	CTS	1956.	4534.	42757.	189048.	1046.	40.	365.	15613.	41251.	.0	16926.	300.	31.	1460.	85757.	76.	39.	122.	808.	182.	28.	71.	51.	0.	513.	1708.	127.	1067.	45.	12.	26.	16.	27.	22.	22.	61.	15.	0.	45.	
SUB PIT SAME	DET LIMIT		1589.	.1111.	938.	575.	1048.	251.	219.	129.	.193.	249.	178.	139.	58.	92.	499.	263.	36.	10.	10.	٦.	٦.	5.	5.	5.	10.	19.	14.	29.	15.	25.	64.	81.	.601	134.	219.	616.	27.	29.	10.	
ANALYSIS ON	ERROR	HJ4	755.	521.	555.	677.	456.	109.	100.	117.	227.	0.	105.	61.	25.	46.	302.	114.	15.	5.	5.	з.	з.	Э.	2.	0.	5.	10.	٦.	15.	٦.	12.	29.	36.	47.	59.	98.	293.	12.	0.	5.	
RESULTS OF PIXE	CONCENTRATION		14254.	13898.	78516.	273673.	2456.	76.	638.	12777.	.1083.	0.	9383.	163.	. 11.	931.	, 61916.	25.	8.	17.	87.	17.	2.	٦.	5.	.0	71.	283.	25.	260.	14.	5.	44.	36.	60.	85.	148.	1002.	5.	0.	.8	
	ELEMENT		NA	DM	AL.	IS	A 1	ŝ	CL	×	CA	sc	TI	>	CR	NH	FE	8	IN	CU	NZ	GA	GE	NS	SE	BR	RB	SR	Y	ZR	NB	NO	G	IN	NS	SB	I	BA	TAL.	١٢	101	

.

REPORT | 0798 Results of Pixe Analysis

.

e

•

•

	RESULTS OF PIXE	ANALYSIS ON	I SUB PIT SAME	LES SPI4					
ELENENT	CONCENTRATION	ERROR	DET LIMIT	PK AREA	XRY VIELD				
		PPM		CTS	- CTS/PPM -		OXIDE	CONCENTRATION	FILT
N.N	18527.	674.	1361					W44	
MG	10726.	466.	1016.	.0216	.1687		Na 2U	24974.	N/ YI
AL	60194.	506.	858.	51607	996C.		NgO	17788.	NOH
IS	294727.	632.	512.	246019	. 9696 3118		1120J	151526.	Hill
۵.	.0961	438.	1011.	697	CI19.		S1 02	630510.	114.41
Ø	0.	0	218.			CONCN NEAR DET LIN	P205	3207.	NCH
CL CL	612.	.69	195.			ELEMENT NOT DETECTED	503	.0	HOH
х	12838.	106.	115.	18490	9699.		C]	612.	нон
CA	25108.	191.	.100	BELDE			K20	15465.	AI.
sc	0.	.0	204.		1000		CaO	35132.	AL.
1.1	5117.	74.	127.	10995	3446 5	" ELEMENT NOT DETECTED	Sc203	.0	AI.
>	54.	42.	.66		C001.2		T102	8536.	AL
СЯ	76.	21.	47.	161	1091.2	CONCN BELOW DET LIN	V02	87.	AL.
HH	786.	37.	74.	.101	8611.2	CONCN NEAR DET LIM	Cr 203	112.	PI.
3	40888.	225.	372.	67472	80/8-T		HnO2	1244.	AI.
8	44.	83.	194.	166	Theat		fe203	58458.	AI.
IN	23.	θ.	20.		3.3349 mmm	CONCN BELOW DET LIN	Co203	62.	ALIC:
9	16.		9			CONCN NEAR DET LIN	NIO	29.	AIK:
ZN	66.			138.	8.6543 AA	CONCN NEAR DET LIM	CuO	19.	AIIC
GA	11	; ,		.96/	11.3399		2n0		
GE		• •	.9	152.	12.7770 **	CONCH NEAR DET LIN	64203		
NS N			6.	6.	13.5349	* ELEMENT NOT DETECTED	Gen3	<u>.</u>	
3	. .	'n.	9 .	41.	13.5089 ****	CONCN BELOW DET 1.1M	1-205		NIC.
20		η.	4 .	.66	12.5287 ****	CONCN BELOW DET LIN	()260	.	ANC
		١.	4.	.11	11.5910 ****	CONCN BELON DET 114	7020		NIC
RD	59.	•	8.	516.	8.6367	CONCH DECOM DEL LIN		٦.	ANC:
SH	335.	10.	17.	2442.	7.2748		07(1)	65.	ANC
¥	23.	6 .	11.	138.	6.0817 44		SIO	396.	ANC:
ZR	274.	14.	27.	1362.	4.9557	COPLA REAK DET LIN	£02¥	29.	ANC:
en e	10.	6 .	14.	4 2.	4.0328 ****		2102	170.	AMC
NO N	0.	0.	24.	0.	.0000	CONCH BELOW DET LIN	E OZ (IN	12.	ARC:
CD	•	0.	48.	0.	0000 .	LICENT NOT DELECTED	HOON	.0	AIK'
N	52.	.11	68.	28.	5490 0012	CONSTRUCTION DEFECTED	CdO	.0	ANC:
SN	54.	.8(85.			CONCH BELOW DET LIN	11,203	63. /	NIC.
SB	96.	46.	105		0714	CONCH BELOW DET LIN	5h02	68. /	AHC:
-	112.	75	165	. oc	•••• • • • • • • •	CONCN BELOW DET LIN	Sb203	115. /	AHC ⁻
ВЛ	000.	228.		70. 2	[77].	CONCN BELOW DET LIM	I	112. 1	MIC
TAI.	0			. KC	•• 5670.	CONCN NEAR DET LIM	BaO	893.	VIC.
HI.				0.	.0000.	ELEMENT NOT DETECTED	Ta205		
F.81.	11.				0000.	ELEMENT NOT DETECTED	EOM	0.0	VIC.
				/b.	6.7767 ••	CONCN NEAR DET LIM	PLO	12. A	, Li
						OXID	E SUM =	950003.	

REFORT | 0792 RESULTS OF PIXE ANALYSIS ONI

•

	REP
	\$F14
	SAMPLES
	PIT
	SUB
	:NO
	ANALYSIS
16	PIXE
6	0F
REPORT	RESULTS

•

•

•

•

.

FILT		нон	NOH	нон	нон	HOH	HOH	нон	AL	AL	AL	AL	H.	AL.	ЧЧ	M.	HIC.	AHC:	AIK.	NIC	NIC	AHC	NIC	NIC	ANC	NIC	NIC	ANC	MIC	MIC	MIC	ANC	AIIC	AHC	AMC	AHC	NIC	AHC	MIC	AIIC	
CONCENTRATION	Hdd	21775.	18487.	149484.	642943.	3904.	.0	715.	15115.	.03556	0	6009.	72.	82.	1023.	53127.	9.	27.	15.	11.	14.	• •	5.	9.	2.	66.	367.	15.	344.	15.	.		0.	0.		132.	709.	0	о.	.	949981.
OXIDE		Na2O	мдо	E0218	S102	P205	S 03	ច	K20	CaO	Sc203	T102	V02	Cr 203	MnO2	Fe203	Co203	NIO	CuO	2 nO	Ga203	GeO2	As 205	Se02	Br	Rb20	SrO	¥ 203	2102	Nb203	MoO3	cdo	1n203	Sn02	Sb203	I	BaO	Ta205	E OM	Pbo	DE SUM *
						CONCN NEAR DET LIM	ELEMENT NOT DETECTED				ELEMENT NOT DETECTED		CONCN BELOW DET LIN	CONCN NEAR DET LIH			CONCN BELOW DET LIN	CONCN BELOW DET LIM	CONCH NEAR DET LIM		CONCH NEAR DET LIM	ELEMENT NOT DETECTED	CONCN BELOW DET LIN	CONCN NEAR DET LIM	CONCN BELOW DET LIM			CONCN NEAR DET LIM		CONCN BELOW DET LIM	ELEMENT NOT DETECTED	CONCN BELOW DET LIM	CONCN NEAR DET LIM	ELEMENT NOT DETECTED	ELEMENT NOT DETECTED	ELEMENT NOT DETECTED	1X0				
XRY YIELD	- CTS/PPH -	.1567	.3716	.6238	.7847	.4588	.0000	.6170	1.3544	1.4740	.0000 AAAAA	2.0248	2.0547 ****	1.9920 **	1.7626	1.5544	3.3035 ****	5.6127 AAAA	8.1006 **	10.6104	11.9513 **	0000.	12.6304 ****	11.7119 **	10.8339 ****	8.0710	6.7978	5.6844 **	4.6302	3.7677 ****	0000.	0000.		0000.	0000.	.1655 ****	.0686 **	3.4686	.0000	0000.	
PK AREA	CT3	2531.	4143.	49353.	235834.	782.	•	.141.	16994.	35131.	0.	9832.	90.	111.	1141.	57763.	21.	118.	.99.	653.	129.	•	45.	64.	.61	491.	2110.	72.	1179.	46.	0.	0.	0.	0.	°.	22.	44.	2.	0.	0.	
DET LIMIT	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1448.	1051.	.006	535.	1072.	235.	206.	112.	.113.	204.	126.	100.	50.	74.	367.	195.	26.	. 6	9.	6.	ę.	5.	5.	5.	9.	18.	12.	27.	14.	24.	56.	70.	92.	114.	209.	538.	24.	24.	9.	
ERRUR	PPM	701.	483.	526.	660.	465.	0.	95.	108.	.191.	.	73.	42.	23.	30.	221.	83.	.11	5.	5.	э.	•	2.	2.	2.	5.	.11	6.	14.	6.	0.	0.	0.	0.	•	94.	250.	.11.	0.	0.	
CONCENTRATION		16154.	11148.	79113.	300539.	1704.	0.	715.	12548.	23835.	0.	4855.	44.	56.	647.	37160.	6.	21.	12.	62.	11.	0.	э.	و .	2.	61.	310.	12.	254.	12.	.0	0.	0.	0.	0.	132.	615.	0.	0.	0.	
ELENENT		NN	MG	AL	SI	G 1	S	CL	ж	CA	SC	TI	>	СR	NIN	FE	S	IN	CG	NZ	GA	GE	AS	SE	BR	RB	SR	Y	Z.R	NB	110	CD	IN	NS	SB	1	BA	TAL	ЛН	FB1.	

.

	SAMPLES
	PIT
	SUB
	: NO
	ANALYSIS
197	PIXE
6	OF
REPORT	RESULTS

.

.

	RESULTS OF PIXE	ANALYSIS ON:	SUB BIT SAMP	LES SP15					
ELEMENT	CONCENTRATION	ERROR	DET LIHIT	PK AREA	XRY YIELD				
	****	PPM		CTS	- CTS/PPH -		UXIDE	CONCENTRATION	FILT
MA	24854.	686.	1342.	4454				WAA	
НС	10047.	464.	1019.	4204	3011		Na20	.10366	NON
AL	85518.	497.	823.	60227			Ю	16661.	NON
IS	286501.	612.	507.	251165.	2501.		E0218	161587.	HCH
۵.	1568.	417.	962.	B2B	10/0/ 5007 • 5		S102	612911.	HOH
Ø	57.	.68	205.	37.		CONCN NEAR DET LIN	P205	3592.	NON
ปี	1308.	.06	186.	929.	3016	CONCN BELOW DET LIN	SO3	142.	HOH
×	11675.	.99	107.	18329.	1 560A		5	1308.	NON
CA	26186.	184.	320.	44779.	0012 1		K20	14064.	AL
SC	0.	.	200.	0			CaO	36639.	AL.
II	5072.	68.	117.	11866.	0000.	ELEMENT NOT DETECTED	Sc203	.	AL.
>	0.	0.	92.	0			T102	8460.	AL
CR	۰.	0.	44.	i c		ELEMENT NOT DETECTED	V02	0	AL
NM	615.	34.	68.	1253.	E360 C	- ELEMENT NOT DETECTED	C1 20 J	.	АІ.
FE	. 40548.	214.	356.	72871	1 2060		MII02	974.	AL.
8	27.	79.	182.	101	1 DEDE 1111		Fe203	57972.	AL.
IN	10.	10.	25.		COCD.C	CONCN BELOW DET LIN	Co203	38.	ALIC
CG	12.		-			CONCN BELOW DET LIM	NIO	13.	AIK.
NZ	62.	-	i e	. 101	9.448] **	CONCN NEAR DET LIM	CuO	15.	ANC:
GA	.61				12.3797		2110	.11	ALIC.
GE	-			176.	13.9481		Ga203	17	
AS	i u			•	.0000	ELEMENT NOT DETECTED	GeO2		
35		. .	5.	97.	14.7468 **	CONCN NEAR DET LIM	A=205		1
	÷ .		÷	18.	13.6765 ****	CONCH BELOW DET LIN	Sec.1		
			₽.		.0000	A ELEMENT NOT DETECTED	Ĩ	; ;	Ę
	49.	÷	.	457.	9.4278				MIC
5,	. coł	10.	18.	3215.	7.9412		0704		210
- 1	15.	5.	10.	106.	6.6408 **	CONCN NEAD DET 114	016	4/9.	MIC
ZR	117.	12.	25.	635.	5.4045	CONCH NEAR DET LIN	F071	20.	MIC
RB .	-	5.	.61	17.	4.4021 ****		2r02	159.	NIC
NO N	0.	.0	18.	0		HIT LIGHT DEFON DEL TH	E OZAN	5 .	NIC
9	.	.	49.	.0		ELEMENT NOT DETECTED	Hoo)	.0	NIC
IN	0.	0.	63.	ć	0000	ELENENT HOT DETECTED	CLO	.	NIC
SN	0.	.0	83.	; c	0000-	ELEMENT NOT DETECTED	11,203		AHC
SB	31	48.	100	;		" ELEMENT NOT DETECTED	SnO2	0.	MIC
I	85.				9399	CONCN BELOW DET LIN	Sb203	.16	NIC:
BA	1045.	221		-9 j	.1933	CONCN BELOW DET LIM	I	85.	AHC.
TAL				84.	.0802		BaO	1167	Ab1C
NI,		. .	21.	0.	.0000.	" ELEMENT NOT DETECTED	Ta205	C	AMC
PBL			.22	0.	.0000	ELEMENT NOT DETECTED	EOM		
			в.	.0	.0000	ELEMENT NOT DETECTED	PLO		
						OXID	E SUM =	.066990	2

•

.'

	FILT		нон	нон	NCAR	HCH	нон	NCIN	NCAN	AL	AL	AL	T	4.L	AL	ЧЧ	Ы	MIC	JIII	ALIC	PPIC	AHC	AMC	AMC	MIC	AMC	AMC	MHC	NIC	NHC	AMC	AHC.	MIC	AMC	AMC	AMC	PHC.	AMC	AHC	NIC	AHC	
	CONCENTRATION	HAA	22499.	25580.	156097.	581294.	4116.	с.	(32.	13665.	41057.	0.	14505.	278.	0.	. 1424.	86599.	22.	15.	16.	100.	18.	0	4.	4	Э.	62.	294.	30.	355.	10.	0	23.	35.	.	76.	.0	1011.	э.	ر .	.6	950003.
	ΟΧΙΦΕ		Na2O	ыдо	A1203	S102	P205	S 03	C]	K20	CaO	Sc203	Tio2	V02	Cr 203	MnO2	Fe203	Co203	NÍO	CuO	2n0	Ga203	GeO2	As205	Se03	Br	Rb20	SIO	¥203	Z1 02	ND203	HoUJ	cdo	In203	Sn02	Sb203	I	BaO	Ta205	103	640	DE SUM =
							CONCN NEAR DET LIM	ELEMENT NOT DETECTED				ELEMENT NOT DETECTED		CONCN NEAR DET LIM	ELEMENT NOT DETECTED			CONCN BELOW DET LIM	CONCH BELOW DET LIH	CONCN NEAR DET LIM			ELEMENT NOT DETECTED	CONCH BELOW DET LIM	CONCN BELOW DET LIN	CONCN BELOW DET LIN			CONCN NEAR DET LIM		CONCN BELOW DET LIN	ELEMENT NOT DETECTED	CONCN BELOW DET LIN	CONCH BELOW DET 1	ELEMENT NOT DETECTED	CONCN BELOW DET LIN	ELEMENT NOT DETECTED		CONCN BELOW DET LIM	CONCH BELOW DET LIM	CONCN NEAR DET LIM	IXO
	XRY YIELD	- CTS/PPM -	.1434	2955.	.5650	.7112	** 6199.	.0000	. 5935	1.5509	1.6887	.0000	2.2989	2.341 **	.0000 AAAAAA	1.9974	1.7630	3.6662 ****	6.1451 AAAA	8.8953 AA	11.6790	13.1804	0000.	13.9688 AAAA	12.9664 ****	12.0047 ****	8.9548	7.5458	6.3125 **	5.1436	4.1867	.0000	.7464	.5705 ****	0000.	7235.	.0000 .	.0764	3.8085 ****	4.3709 ****	7.0062 **	
PLES SP16	PK AREA	CTS	2394.	5237.	46674.	193252.	852.	0.	256.	17594.	49550.	•	19991.	398.	•	1797.	106786.	56.	72.	.161	930.	178.	. 0.	45.	25.	24.	508.	1875.	148.	1352.	33.	0	14.	17.		21.	0	.67	10.	17.	56.	
SUB PIT SAM	DET LIMIT		1539.	1050.	908.	549.	1000.	230.	205. :	109.	.756	214.	150.	110.	51.	80.	438.	222.	24.	9.	8.	5.	5.	5.	+	4.	9.	14.	12.	25.	13.	22.	50.	62.	78.	105.	171.	468.	22.	24.	в.	
ANALYSIS ON	ERROR	Mdd -	745.	499.	546.	662.	435.	٥.	92.	97.	196.	0.	.69	51.	.	41.	264.	96.	11.	4	4.		0.	з.	١.	з.	÷	9.	5.	.61	5.	0.	22.	28.	.0	47.	0.	230.	9.	11.	•	
RESULTS OF PIXE	CONCENTRATION		16691.	15425.	82613.	271721.	1927.	0.	432.	11344.	29343.	.0	8696.	171.	0.	.006	60572.	16.	12.	14.	80.	13.	0.	з.	э.	Э.	57.	249.	24.	263.	8.	0.	20.	29.	0.	63.	0.	959.	з.	4.	.9	
	ELEMENT		NN	MG	VL	SI	4	S	CL	х	CA	SC	TI	>	CR	NH	FE	9	IN	ß	ZN	CA	GE	A S	SE	BR	RB	SR	¥	ZR	BN	Ю	9	NI	SN	SB	Ι	BA	TAL	Πŀ	PBL	

REPOKT | 0782

•

.

•

•

•

.

REPORT # 0800 Results of Pixe Analysis on: sub Pit Samples SP17

:

.

FILT	NON	HOH	NOH	нхн	нхн	NON	HOH	AL.	Ы.	н. Н.	Ы.	ΥT	AI.	A.L.	AI.	AIIC	AIIC	NIC	AIIC	MIC	NIC	ANC	MIC	NIC	ANC	NIC	ANC	AHC:	ANC	NIC	AIC	NIC	MIC	AMC	ANC	NIC	AIC:	AIIC	ANC	
CONCENTRATION	16808.	24521.	167641.	581143.	4771.	670.	1442.	20027.	40258.	0.	12354.	135.	36.	1268.	76951.	24.	18.	25.	106.	21.	0	12.	9.	э.	103.	266.	33.	271.	17.	0.	21.	0	°.	0.	0.	1000.	.0	ę.	10.	949972.
OXIDE	Na20	обы	A1203	sio2	P205	SO3	ច	K20	CaU	Sc203	T102	V02	Cr 203	MnO2	Fe203	Co203	NIO	CuO	2n0	Ga203	GeO2	As 205	Se02	Br	Rb20	SrO	¥203	Zr02	Nb203	HoO3	cdo	1n203	Sn02	Sb203	1	BaO	T'a 205	EOW	PD0	DE SUN =
						CONCN NEAR DET LIM				ELEMENT NOT DETECTED		CONCN BELOW DET LIM	CONCN BELOW DET LIN			CONCN BELOW DET LIM	CONCN BELOW DET LIM				ELEMENT NOT DETECTED	CONCN NEAR DET LIM	CONCN NEAR DET LIM	CONCN BELOW DET LIN			CONCN NEAR DET LIM		CONCN BELOW DET LIM	ELEMENT NOT DETECTED	CONCN BELOW DET LIM	ELEMENT NOT DETECTED	ELEMENT NOT DETECTED	ELEMENT NOT DETECTED	ELEMENT NOT DETECTED	CONCN NEAR DET LIN	ELEMENT NOT DETECTED	CONCN BELOW DET LIM	CONCN NEAR DET LIM	IXO
XRY YIELD - cts/ddm -	.1517	.3618	.6027	1747.	.4636	.5626 **	.6222	1.3369	1.4433	.0000	1.9716	2.0036	£6£6.1	1.7183	1.5170	3.2416 ****	5.4564 AAAA	7.8937	10.3590	11.6860	.0000	12.3778 **	11.4872 **	10.6333 ****	7.9297	6.6813	5.5888 **	4.5536	3.7062 ****	.0000	.6605	.0000	.0000	AAAAA 0000.	.0000	.0676 **	.0000	3.8179 ****	6.2086 **	
PK AREA	1891.	5349.	53471.	202938.	965.	151.	.998	22226.	41525.	.0	14604.	165.	50.	.7761	81649.	55.	76.	154.	882.	188.	0	97.	65.	30.	746.	1502.	143.	. 609	49.	.0	.61	0.	0.	0.	0.	60.	0	18.	54.	
DET LIMIT	1529.	1083.	880.	549.	.689.	231.	205.	126.	373.	230.	153.	119.	54.	83.	445.	234.	25.	9.	9.	6.	.9	6.	5.	6.	11.	15.	14.	25.	15.	23.	62.	11.	102.	.661	216.	561.	26.	28.	9.	
ERROR	717.	509.	539.	647.	430.	102.	100.	123.	214.	0.	.69	52.	23.	42.	268.	100.	11.	5.	5.	з.	0.	э.	2.	э.	6.	9.	ę.	12.	6.	0.	28.	.	0.	0.	0.	267.	.0	12.	5.	
CONCENTRATION	12469.	14787.	88723.	271651.	2082.	268.	1442.	16625.	28772.	0	7407.	83.	26.	801.	, 53823.	17.	14.	20.	85.	15.	0.	в.	6.	з.	94.	225.	26.	200.	.94.	0.	18.	0.	0.	0.	0.	.995.	.0	5.	9.	
ELEHENT	NA	НС	AL	SI	۵.	S	CL	х	CA	sc	TI	>	CR	NH	FE	ខ	IN	cn	ZN	GA	GE	AS	SE	BR	RB	SR	Y	2R	ИВ	Ю	CD	IN	SN	SB	I	BA	TAL	ML.	PBL	

•

۰.

.

•

	RESULTS OF PIXE I	ANALYSIS ON:	SUB PIT SAMP	LES 3P17 REP					
TEMENT	CONCENTRATION	ERROR	DET LIMIT	PK AREA	XRY YIELD		OXIDE	CONCENTRATION	FILT
		M44		CTS	- CTS/PPM -			MJ4	
NA	12645.	742.	1501.	1797.	.1421		Na2O	17045.	NON
МС	14951.	505.	1069.	5066.	.3388		оби	24794.	NON
AL	67665.	540.	858.	49591.	.5643		A1203	166059.	NON
SI	269973.	667.	563.	189245.	.7010		S1 02	577554.	NCH
۵.	1945.	409.	939.	849.	.4365		P205	4457.	NON
S	239.	.111	251.	127.	.5296 ****	CONCN BELOW DET LIN	S 03	597.	HOH
CI.	1426.	107.	221.	.359	.5859		C1	1426.	NON
К	17100.	130.	134.	21422.	1.2527		K20	20598.	AL
CA	29837.	224.	.191.	40307.	1.3509		CaO	41748.	AI.
sc	0.	0.	241.	.	0000.	ELEMENT NOT DETECTED	Sc203	.0	ЧT
TI	7789.	94.	160.	14359.	1.8432		T102	12992.	Ы.
>	124.	54.	125.	232.	1.8736 ****	CONCN BELOW DET LIN	V02	201.	Ы.
CR	0.	0.	56.	.	0000.	ELEMENT NOT DETECTED	Cr 203	0.	AL
NM	800.	43.	86.	1286.	1.6072		Nn02	1266.	AL.
FE	, 55719.	282.	469.	79075.	1.4192		Fe203	79661.	AI.
8	15.	104.	243.	43.	3.0125 ****	CONCN BELOW DET LIM	Co203	21.	APIC.
IN	12.	12.	26.	62.	5.0653 ****	CONCN BELOW DET LIN	NIO	15.	ALC:
cu	15.	5.	10.	108.	** 00EE.7	CONCN NEAR DET LIM	CuO	19.	MHC:
NZ	.96.	5.	10.	827.	9.6213		2110	107.	MAC.
GA	15.	з.	٦.	159.	10.8558		Ga20J	20.	ANC:
GE	0.	0	٦.	0.	.0000	ELEMENT NOT DETECTED	GeO2		AHC
AS	.8	э.	٦.	94.	11.5016 **	CONCN NEAR DET LIM	As205	.61	ANC
SE	J.	2.	5.	33.	10.6751 ****	CONCN BELOW DET LIM	Se03	5.	AHC
BR	0.	0	٦.	•	.0000 AAAAA	ELEMENT NOT DETECTED	Br	•	AHC
RB	96.	٦.	12.	711.	7.3706		Rb20	105.	AMC
SR	233.	10.	16.	1448.	6.2106		SrO	275.	NHC
Х	15.	٦.	15.	80.	5.1952 **	CONCN NEAR DET LIM	£02Y	19.	MC
ZR	193.	.61	26.	816.	4.2330		2r02	261.	AHC
NB	13.	7.	15.	44.	3.4454 ****	CONCN BELOW DET LIM	Nb203	17.	MIC
ЮН	0.	0.	23.	0.	.0000.	ELEMENT NOT DETECTED	100 M	0.	AHC
G	0.	0.	63.	0.	.0000.	ELEMENT NOT DETECTED	CdO	ο.	NIC
IN	0.	0.	81.	0.	.0000 .	ELEMENT NOT DETECTED	1n203	0.	AMC
SN	0.	0.	107.	0.	.0000	ELEMENT NOT DETECTED	Sn02		AMC
38	0.	.0	137.	0.	.0000	ELEMENT NOT DETECTED	Sb203	•	NIC
I	0.	0.	231.	0.	.0000	ELEMENT NOT DETECTED	I	.	AMC:
BA	665.	262.	563.	42.	.0629	CONCN NEAR DET LIM	BaO	742.	MC
TAL	0.	0.	26.	0	0000	· ELEMENT NOT DETECTED	Ta205	.	NIC
ΑΓ	0.	0.	28.	٥.	.0000.	 ELEMENT NOT DETECTED 	EOM	•	MIC
r DL	٦.	5.	10.	38.	5.7690 AAAA	CONCN BELOW DET LIN	643	٦.	AMC

950023.

MIDE SUM =

. REPORT | 0799

	3P18
	SAMPLES
	PIT
	SUB
	:10
	ANALYSIS
96	PIXE
6	QF
REPORT	RESULTS

FILT		NĊN	NON	NCIN	NON	NON	NON	NON	AL	AL.	AL	AL	AL	AL	AL	AL	PPIC	AUC	AIC	AIC	AHC	AMC.	AHC	MC	AHC	AMC	MC	AHC	MIC	AHC	AHC	AHC	AMC	AMC	AIC	AHC	ANC	AMC	AHC	MC	
CONCENTRATION	HAA	22841.	20140.	137889.	584825.	5047.	609.	579.	17009.	49990.	0.	16244.	151.	o	1469.	.1600	38.		12.	109.	17.	0.	5.	.	2.	65.	355.	24.	190.	16.	.0		39.	101.	116.	140.	1011.	8.	0.	14.	949992.
OXIDE		Na20	оби	A1203	Si02	P205	S O3	C1	K20	CaO	Sc203	T102	V02	Cr 203	Mn02	Fe 203	Co203	NIO	CuO	2110	Ga203	Gu02	A#205	Se03	Br	Rb20	SrO	¥203	2102	ND203	HoO3	cqo	11,203	Su02	Sb203	I	BaO	Ta205	WO3	PLO	DE SUM *
							CONCN NEAR DET LIM				ELEMENT NOT DETECTED		CONCH BELOW DET LIN	ELEMENT NOT DETECTED			CONCH BELOW DET LIN	ELEMENT NOT DETECTED	CONCN NEAR DET LIN		CONCN NEAR DET LIM	ELEMENT NOT DETECTED	CONCN BELOW DET LIN	CONCN NEAR DET LIM	CONCN BELOW DET LIM			CONCN NEAR DET LIM		CONCN BELOW DET LIM	ELEMENT NOT DETECTED	ELEMENT NOT DETECTED	CONCN BELOW DET LIM	CONCN BELOW DET LIN	CONCN BELOW DET LIM	CONCN BELOW DET LIN	CONCN NEAR DET LIM	CONCN BELOW DET LIM	ELEMENT NOT DETECTED	CONCN NEAR DET LIM	IXO
XRY YIELD	- CTS/PPM -	.1436	.3396	.5693	1167.	.4499	.5458 **	. 6036	1.2929	1.4005	0000.	1.8930	1.9253 ****	0000.	1.6501	1.4580	3.1048 ****	0000	7.5304 **	9.8935	** E171.11	11.8548	11.8489 ****	11.0018 **	10.1883 ****	7.6025	6.4072	5.3606 **	4.3684	3.5560 ****	0000.	0000.	.4847 ****	.3644	.2750 ****	.1564	.0649	3.2241 ****	.0000	5.9427 **	
PK AREA	CTS	2433.	4126.	41541.	199867.	.166	.661	350.	18255.	50036.	0.	18434.	179.	0.	1532.	92728.	85.	0.	76.	870.	139.	θ.	32.	46.	17.	454.	1923.	101.	615.	44.	0.	0.	15.	29.	27.	22.	59.	22.	0	.17	
DET LIMIT	* * * * * * *	1514.	1072.	917.	531.	1014.	241.	212.	129.	408.	260.	175.	.764	59.	93.	494.	250.	33.	10.	10.	6.	ę.	6.	5.	5.	10.	18.	13.	26.	14.	21.	59.	75.	.99.	126.	219.	557.	26.	27.	10.	
ERROR	PPM	735.	498.	533.	652.	442.	105.	96.	118.	238.	0.	104.	59.	0.	46.	298.	108.	0.	5.	5.	з.	э.	э.	2.	2.	5.	10.	6.	13.	ę.	0.	0.	33.	45.	57.	99.	266.	11.	0.	5.	
CONCENTRATION		16944.	12145.	12976.	273372.	2203.	244.	579.	14120.	35727.	0.	9738.	93.	.0	928.	· 63601.	27.	0.	10.	86.	13.	0.	з.	5.	2.	59.	300.	19.	140.	.61	0.	0.	32.	BO.	97.	140.	.906	6.	0.	13.	
ELEMENT		ИЛ	DM	AL	IS	a	S	CI,	Ķ	CA	sc	TI	>	CR	MN	FE	S	IN	CU	ZN	GA	GE	AS	SE	BR	RB .	SR	X	ZR	NB	Ŷ	CD	IN	SN	SB	I	BA	TAL	TM	PBL	

	3F 19
	SAMPLES
	PIT
	SUB
	:NO
	ANALYSIS
784	PIXE
•	OF
REPORT	RESULTS

The second secon

Í

and the second second

.

FILT		HON	нон	H: H	нон	нж	N: W	HCH	AL	14	FI.	AL.	1.1	AL	AL.	н.	AIC	AUC	ALC:	ALIC	MIC	ALIC	AHC	AHC	AHC	AMC	MIC	AMC	AIIC	ANC	ANC	AIC	AHC	AMC.	AIIC	AMC	ALC	AIC:	ANC	MIC	
CONCENTRATION	Wdd	27439.	27420.	150455.	534807.	4508.	702.	592.	14638.	57656.	0.	18082.	315.	12.	1816.	109392.	37.		16.	125.	17.	.0	2.	÷	0.	67.	. <i>11</i> E	. 32.	250.	.11.	.0	0.	49.	46.	78.	120.	919.	0.	0.	9.	949996.
OXIDE		Na20	MgO	A1203	\$102	P205	5 03	ប	K20	CaO	Sc:203	T102	202	Cr 203	Mn02	Fe203	Co203	Nic	CuO	2n0	Ga203	GeO2	As 205	Se03	Br	Rb20	510	¥203	2r02	Nb203	MoO3	cdo	1n203	Sn02	Sh203	I	BaU	Ta 205	EOW	PbO	- MUS 30
							CONCN NEAR DET LIM				ELEMENT NOT DETECTED		CONCN NEAR DET LIM	CONCN BELOW DET LIN			CONCN BELOW DET LIM	CONCN BELOW DET LIM	CONCN NEAR DET LIM		CONCN NEAR DET LIM	ELEMENT NOT DETECTED	CONCH BELOW DET LIN	CONCN BELOW DET LIM	ELEMENT NOT DETECTED			CONCN NEAR DET LIM		CONCN BELOW DET LIN	ELEMENT NOT DETECTED	ELEMENT NOT DETECTED	CONCN BELOW DET LIM	CONCN BELOW DET LIN	CONCN BELOW DET LIN	CONCN BELOW DET LIM	CONCN NEAR DET LIM	ELEMENT NOT DETECTED	ELEMENT NOT DETECTED	CONCN NEAR DET LIM	0411
XRY YIELD	- CTS/FPM -	.1612	1976.	.6296	.8021	.5190	.6294 **	.6954	1.4590	1.5842	.0000	2.1225	2.1595 **	2.0856 4444	1.8506	1.6357	3.4326 ****	5.7032 ****	8.2754 **	10.8863	12.3050 **	.0000.	13.0713 ****	12.1437 ****	.0000.	8.4014	7.0824	5.9267 **	4.8306	3.9329 ****	.0000	.0000 .	.5365 ****	.4033 .403.	.3044	.1732	.0718	0000.	0000.	6.5551 **	
PK AREA	CTS	3283.	6269.	50136.	200511.	1021.	177.	412.	17730.	65280.	0.	23009.	419.	18.	2123.	125153.	91.	٦.	102.	1085.	158.	0.	22.	42.	0.	. 509.	2262.	152.	894.	31.		0.	21.	15.	20.	21.	59.	0.	0.	51.	
рет LIMIT		1454.	984.	838.	503.	B 77.	209.	187.	124.	405.	265.	147.	138.	57.	92.	510.	263.	28.	10.	16.	٦.	6.	6.	6.	.9	10.	18.	.61	25.	14.	21.	52.	68.	86.	107.	194.	503.	25.	28.	8.	
ERROR	PPM	718.	472.	507.	599.	.186	92.	85.	106.	238.	0.	104.	60.	25.	46.	308.	.611	13.	4.	6.	э.	.	э.	э.	0.	4	.01	9.	13.	6.	0.	0.	31.	39.	49.	88.	241.	0.	0.	4 .	
CONCENTRATION		20355.	. 16535.	79627.	249992.	1967.	281.	592.	12152.	41207.	.0	10840.	194.	.8	1147.	. 76514.	26.	η.	13.	100.	13.	0.	1.	з.	0.	61.	319.	25.	105.	9.	0.	0.	40.	38.	65.	120.	823.	0.	0.	8.	
ELEMENT		НА	МС	AL.	IS	4	S	IJ	х	CA	SC	II	>	CR	NM	FE	8	IN	CU	ZN	GA	GE	AS	SE	BR	RB	SR	Y	ZR	НВ	110	G	NI	SN	SB	I	BA	TAL	ЧГ	PBL	

B.5.9

.

т. т. не т

	RESULTS OF PIXE	NO SISTAN	SUB PIT SAMPI	LES 3P20					
FI FMENT	CONCENTRATION	ERROR	DET LIMIT	PK AREA	XRY YIELD		OXIDE	CONCENTRATION	FILT
		PPM		CTS	- CTS/PPM -			Hgg	
	00110	682.	1351.	4282.	1691.		Na20	31529.	нон
	14907	452.	957.	6386.	.4284		ођи	24720.	NCN
PIC I	87601.	488.	790.	62517.	LELT.		A1203	165522.	нон
15	258232.	579.	492.	230121.	1169.		sio2	552436.	ROH
- -	1807.	372.	855.	1027.	.5688		P205	4140.	ECH
, <i>0</i> 1	174.	.96.	196.	120.	0069.	CONCN BELOW DET LIM	SU3	434.	NON
c r	1599.	.69	178.	1220.	.7630		CI	1599.	NCH
:4	10592.	94.	.611	17503.	1.6524		K20	12759.	-1-4
CA .	36345.	209.	357.	65437.	1.8004		CaO	50854.	FI.
sc	0.	0.	232.	.	.0000	ELEMENT NOT DETECTED	Sc203	.0	F.I.
TI	8180.	.95.	.691	19848.	2.4266		T102	13644.	F.I.
	187.	. 69.	.611	463.	2.4663 **	CONCN NEAR DET LIM	VU2	. 201	17
, 1	ر، ا	.0	50.	.0	.0000	ELEMENT NOT DETECTED	Cr 203	0.	AL
NH	920.	4 0.	79.	1947.	2.1152		Mu02	1456.	14
E	. 62418.	260.	432.	116501.	1.8677		Fe203	89239.	Η
2 3	26.	92.	215.	105.	4.0577 ****	CONCN BELOW DET LIM	Co203	36.	AIIC
IN	16.	12.	28.	110.	6.7946 ****	CONCN BELOW DET LIM	NiO	20.	AIK
G	16.	÷	.6	153.	9.8394 AA	CONCN NEAR DET LIM	CuO	20.	HIC
ZN	78.	•	.6	1000.	12.9227		2n0	97.	ыс
V D	16.	2.	5.	231.	14.5876		Ga203	21.	ANC
: 3	0.	.0	5.	.0	****** 0000°	ELEMENT NOT DETECTED	Ge02	о.	AMC
A9	0.	0	5.	.0	AAAAA 0000.	ELEMENT NOT DETECTED	As205		ANC
SE	2.	2.	÷	38.	14.3583 ***	CONCN BELOW DET LIM	Se03	÷.	AMC
88	2.	2.	÷	35.	13.2949 AAAA	CONCN BELOW DET LIM	Ъſ	2.	AHC
RB	41.		٦.	409.	9.9168		Rb20	45.	Анс
SB	294.	9.	15.	2451.	8.3588		SrO	348.	MIC
	21.	5.	10.	146.	6.9928		¥ 203	26.	AMC
2.R	141.	11.	22.	800.	5.6983		2102	191.	AMC
NB	12.	5.	11.	58.	4.6383 **	CONCN NEAR DET LIM	NL203	15.	AHC
OH	5.	٦.	11.	20.	3.6888 ***	CONCN BELOW DET LIN	M003	٦.	AHC
9	0.		44.	0.	.0000	ELEMENT NOT DETECTED	CdO	0.	AHC.
IN	.0	0	58.	0.	.0000	ELEMENT NOT DETECTED	11,203	.0	ANC
NS	.0	.	11.	0.	0000.	ELEMENT NOT DETECTED	Sn02	0.	AHC
85	0.		98.	.0	***** 0000°	ELEMENT NOT DETECTED	Sb203	0.	AIIC
-	.0	.0	168.	0.	0000	ELEMENT NOT DEFECTED	I	0.	ANC
A A	474.	197.	423.	40.	.0846 **	CONCN NEAR DET LIM	BaO	529.	ANC
TAL	0.	.0	22.	0.	.0000	ELEMENT NOT DETECTED	T'a 205	0.	MIC
, M	6.	10.	23.	28.	4.8354 AAAA	CONCN BELOW DET LIM	504	в.	AMC
PBL	٦.	÷	٦.	58.	1.7570 **	CONCN NEAR DET LIM	1:00	8.	ANC
						OXI	DE SUM	950015.	

000

B.5.10

•

	RESULTS OF PIXE 1	NO SISTIN	SUB PIT SAMP	LES SP21					
EI.EMENT	CONCENTRATION	ERROR	DET LIMIT	PK AREA	XRY YIELD		OXIDE	CONCENTRATION	FILT
		PPPM		CTS	- CTS/PPM -			Hdd	
	11707.	654.	1368.	2292.	.1672		Na2O	18477.	нон
UN UN		448.	983.	3455.	13984		обн	14385.	ЮН
2	. EEIEB	511.	865.	55892.	.6723		A1203	157079.	HOH
1	308027.	647.	524.	257396.	.8356		sio2	658962.	NON
5 A	1147.	457.	1058.	553.	.4819 AA	CONCN NEAR DET LIM	P205	2629.	NON
4 U.	0.	0.	224.	.0	.0000 AAAAA	ELEMENT NOT DETECTED	503	0	NON
5	1486.	98.	198.	. 964.	.6484		C1	1486.	NOH
ש נ	17047.	120.	116.	24536.	E9E4.I		K20	20534.	AI.
4	16336.	161.	292.	25410.	1.5555		CaO	22857.	AL
	0.	0.	166.	.0	.0000	ELEMENT NOT DETECTED	Sc203	0.	ЧЧ
3 5	3776.	64.	112.	8169.	2.1632		T102	6298.	Η
; ,		38.	88.	59.	2.1942	CONCN BELOW DET LIM	V02	44.	AL.
		18.	42.	69.	2.1282 ****	CONCN BELOW DET LIM	Cr 203	48.	AI.
1	487.	.16	62.	908.	1.8821		Mii02	762.	HL.
5		195.	323.	51521.	1.6590		Fe203	44400.	Ϋ́Γ
e 6	18.	72.	167.	65.	3.5505 4444	CONCN BELOW DET LIN	Co203	26.	5114
		7.	18.	53.	6.0539 4444	CONCN BELOW DET LIN	NiO	11.	ANC
. 5	14.		8.	119.	8.7298 **	CONCN NEAR DET LIM	CuO	18.	AINC
N.S.	62.		8.	718.	11.4265		2110	78.	AIC
	11.	л.	6.	155.	12.8634 AA	CONCN NEAR DET LIM	Ga203	15.	NIC
UE I	0.	0.	+	.0	.0000	ELEMENT NOT DETECTED	GeO2		ANC
AS AS	0	ч.	6.	86.	13.5829 AA	CONCN NEAR DET LIM	As205	9.	AMC
3			÷	39.	12.5914 ****	CONCN BELOW DET LIM	Se03	5.	AHC
BR		.0	÷	.0	0000.	ELEMENT NOT DETECTED	Ъг	0.	ANC
R.B.	88.	6.	10.	755.	8.6716		RD20	96.	AHC
SR	280.	10.	16.	2051.	7.3027		SrO	332.	AHC
7	18.	6.	13.	.111	6.1058 **	CONCN NEAR DET LIM	Y203	23.	AMC .
ZR	228.	.61	25.	.7611	4.9730		2r02	308.	NIC
NB	-	6.	.61	18.	4.0463 ****	CONCN BELOW DET LIM	Nb203	5.	AHC
QĐ	0	0.	23.	0.	.0000 AAAAA	ELEMENT NOT DETECTED	Hu03	0.	AHC
9	0	.0	54.	.	.0000 AAAAA	ELEMENT NOT DETECTED	CNO	.0	AHC
IN	0	0	68.	0.	.0000	ELEMENT NOT DETECTED	1n203		AMC
SN	44.	41.	92.	18.	.4138	CONCN BELOW DET LIM	Su02	56.	ANC
SB	0.	0.	110.	. 0	.0000 AAAAA	· ELEMENT NOT DETECTED	Sb203		AHC
T	74.	76.	170.	.61	.1776 ****	CONCN BELOW DET LIM	I	74.	ANC
BA	646.	237.	489.	62.	** 9136	CONCN NEAR DET LIM	BaO	947.	AHC
TAL	٦.	10.	21.	25.	3.7380 ****	CONCN BELOW DET LIM	Ta205	9.	AMC
ML	0	0.	23.	.0	.0000	· ELEMENT NOT DETECTED	EUN	.	ANC
PBL	17.	÷	8.	.611	6.8144 A.	CONCN NEAR DET LIM	614	18.	ANC
						XO	IDE SUM =	949988.	

.

REPORT | 0785 Deguires of Dixe Ana

	EE10
	SAMPLES
	PIT
	SUB
	:NO
	ANALYSIS
0789	F PIXE
-	ō
REPORT	RESULTS

•

NEAR DET LIM P205 BELOM DET LIM P203 C1 K20 Ca0
NEAR DET L Below det
ONCH
97 88 88
.7197 1.5788 1.7248
384. 14722. 59240.
.701 .53.
90. 207.

950001.

OXIDE SUM =

.

	RESULTS OF PIXE	INALYSIS ON	SUB PIT SAMP	LES EE20					
ELEMENT	CONCENTRATION	ERROR	DET LIMIT	PK AREA	XRY YIELD		OXIDE	CONCENTRATION	FILT
		PPM		CTS	- CTS/PPM -			Hłł	
N N	19189.	551.	1121.	5152.	.2685		Na2O	25867.	NCH
MG	13346.	. 736	760.	8445.	. 6328		обм	22131.	нон
VL	73875.	392.	676.	76131.	1.0576	•	E0218	139587.	NON
SI	278211.	483.	391.	377033.	1.3552	•	Si02	595176.	HOH
۵.	1711.	326.	750.	1416.	.8275		P205	3921.	NCN
S	96.	76.	175.	96.	1.0040 AAAA	CONCN BELOW DET LIM	50 J	240.	NCH
CL	654.	71.	155.	726.	1.1106		CJ	654.	нсн
×	13236.	109.	117.	19166.	1.4480		K20	15944.	ЧY
CA	. 33567.	217.	.676	52751.	1.5715		CaO	46967.	Ϋ́
SC	0	0	237.	0.	.0000	ELEMENT NOT DETECTED	Sc203	0.	14
TI	.6618	90.	151.	17327.	2.1303		T102	13566.	H.
>	191.	52.	.011	413.	2.1654 **	CONCN NEAR DET LIM	V02	310.	HL.
CR	18.	23.	52.	38.	2.0950 4444	CONCN BELOW DET LIM	Cr 203	27.	Al.
MM	846.	41.	80.	1571.	1.8568		MII02	.9261	Ψľ
E	. 57623.	267.	442.	94487.	1.6398		Fe203	82383.	A.L
9	.0	•	229.	۰.	.0000	ELEMENT NOT DETECTED	Co203	٥.	ALIC
IN	.0	۰.	24.	0.	.0000 AAAAA	ELEMENT NOT DETECTED	NiO		AINC.
CU	32.	÷	10.	265.	8.3153		CuO	41.	AIIC
NZ	79.	÷	8.	863.	10.9168		2n0	98.	AIC
CA	13.	з.	6.	146.	12.3195		Ga203	11.	AIIC
GE	0.		6.	•	.0000 AAAAA	ELEMENT NOT DETECTED	Ge02	0.	ANC
AS	з.	э.	.	. 11.	13.0554 AAAA	CONCN BELOW DET LIM	As205	•	AIIC
SE		1.	4	45.	12.1183 **	CONCN NEAR DET LIN	SeO3	7.	AHC
BR	з.	١.	4.	27.	11.2192 ****	CONCN BELOW DET LIM	Br	э.	NIC
RB	45.	+	8.	374.	8.3685		Rb20	49.	MIC
SR	256.	9 .	16.	1804.	7.0517		SIO	302.	AHC
Y	18.	6.	11.	108.	5.8991 AA	CONCN NEAR DET LIM	Y 203	23.	MIC
ZR	136.	11.	23.	663.	4.8067		Zr02	187.	MIC
NB	8.	6.	14.	34.	3.9125 AAAA	CONCN BELOW DET LIM	Nb203	.11.	MIC
Ŷ	٥.	.	20.	0.	.0000	ELEMENT NOT DETECTED	MoO3	ō	AHC
G	0.	0.	52.	٥.	0000.	ELEMENT NOT DETECTED	CdO	0.	AIIC
NI	0.	0	69.	0.	0000.	ELEMENT NOT DETECTED	1n203	0.	AHC
SN	49.	11 .	92.	20.	4008	CONCN BELOW DET LIM	SII02	6).	MIC
SB	49.	52.	117.	15.	.3025 ****	CONCN BELOW DET LIM	Sb203	59.	MIC
1	.0		186.	°.	0000.	ELEMENT NOT DETECTED	I	0.	AIIC
BA	920.	246.	507.	66.	AA \$170.	CONCN NEAR DET LIM	BaO	1028.	AIC
TAL	э.	11.	28.	.11.	3.5602 ****	CONCN BELOW DET LIM	Ta205	э.	MIC
RL.	0.	0.	25.	0.	.0000	ELEMENT NOT DETECTED	EOM	0.	AIC
184	0	.	6.	0.	.0000	ELEMENT NOT DETECTED	PLO	0.	ANC
						ОХІ	DE SUM =	950007.	

B.5.13

REPORT | 0781

•

•

•

•

	EE30
	SAMPLES
	PIT
	SUB
	:NO
	ANALYSIS
187	PIXE
_	5
REPORT	RESULTS

•

			нон	HON	NON	RCH	NON	нж	NC+14	P.L	H.	Ь1.	A1.	Al.	4L	AL	4L	- NIK							AHC	AHC.	AHC	MIC	MIC	AMC	ANC	AMC	AMC	A.H.C.	AMC	ANC			2 0	5			MC	
CONCENTRATION	Not how and		27075.	25693.	144520.	.96719C	4//8.	547.	702.	12713.	50639.	٥.	13205.	219.	0.	1327.	86011.	19.	4	-				. .	,	• •		42.	306.	24.	164.	4.	•	0.	41.	0		i c		.110		· ·	· .	949977.
OXIDE			NAZU	ofiu	50214	2010		FOS	5	K20	CaO	Sc203	T102	V02	Cr 203	MnO2	Fe203	Co203	NIO	CuO	2110	Ga203	GH02	Ae 205		L Date	10	0704		F071	2102	ND203	Hu03	cdo	1n203	Su02	Sb203	-	Ba0	T:= 205	10781	014		E SUM =
								CONCIL BELION DET LIN				ELEMENT NOT DETECTED		CONCH NEAK DET LIM	ELEMENT NOT DETECTED			CONCN BELOW DET LIN	CONCN BELOW DET LIN	CONCN BELOW DET LIN		CONCN NEAR DET LIM	ELEMENT NOT DETECTED	CONCN BELOW DET 1.1M	CONCN NEAR DET LIN	ELEMENT NOT DETECTION			CONCN NEAD RET 111			CURCH BELOW DET LIN	ELEMENT NOT DETECTED	ELEMENT NOT DETECTED	CONCN BELOW DET LIN	ELEMENT NOT DETECTED	ELEMENT NOT DETECTED	ELEMENT NOT DETECTED	CONCN NEAR DET LIM	CONCH BELOW DET LIN	ELENENT NOT DETECTED	CONCN BELOW DET LIN		חואט
XRY YIELD	- CTS/PPM -	.1560	. 3672	.6111	<i>T911.</i>	.4829	.5858	.6480	0785 1	2013 1		0000 6	2, 2170 2			16//-1	01/01/	J.3629 AAAA	5.6391 AAAA	8.1640 AAAA	10.7200	12.0991 **	.0000	12.8245 ****	11.9049 **	.0000	8.2225	6.9289	5.7965 **	CL 27.1	T RAAF AAAA				.5239 ****	.0000 AAAAA	.0000 .	.0000	.0701 **	3.4954 ****	.0000	6.4323 AAAA		
PK AREA	CTS	3134.	5680.	46737.	211847.	1007.	128.	455.	14649.	54746.	Ċ	16149.	280.			04500			19.	67.	727.	120.	٥.	18.	54.	.	314.	1797.	112.	576.	13.	į	; ;	5	18.	•	о.		38.	28.	0.	32.		
DET LIMIT		1488.	1001.	.689.	518.	966.	229.	204.	121.	387.	251.	154.	121.	53.	84.	461			.0. 	10.	.6	e .	6.	٤.	.	4	9.	16.	12.	22.	13.	19.	ģ			.76	115.	200.	491.	24.	25.	9.		
ERROR	WAA	.134.	478.	519.	631.	420.	101.	93.	102.	228.	•	90.	52.	•	41.	280.	101			•	; ,	- -	•	١.	1.	0.	÷	9.	6.	10.	6 .	.0	.0	11		; ,			. 622	10.	0.	4.		
CONCENTRATION		20085.	15469.	76486.	271696.	2085.	219.	702.	10553.	36192.	0.	7917.	. 135.	0.	839.	. 60160.	13.		io					.	4.		38.	259.	19.	121.	з.	.0	0.	34.	0.					.	0	.		
ELEMENT		NA .	MG	7		. 6	a	5	×	CA	sc	II	>	CB	MM	FE	8	IN	CU	ZN	GA		3	24			2 3	¥2 :		ZR	AB	Ŷ	9	NI	SN	SB	I	T B	TAL	101	1	703		

	RESULTS OF PIXE	NO SISTINN	SUB PIT SAME	LES EEJ5					
		avaas	DET LIMIT	PK AREA	XRY YIELD		OXINE CO	DNCENTRATION	FILT
ELEMENT	CONCENTINATION	PPM		CTS	- CTS/PPM -			Hdd	
				VOUE	1668		Na2O	24991.	HOH
NA N	18539.	• • • • •	1006		8696.		обм	28292.	NON
щ	17061.	480.	.0001	61180	.6532		A1203	148086.	нан
AL	. 67687	. •nc			8299		5102	578931.	HC+H
SI	270617.	611.		ROR	.5153 A.	CONCN NEAR DET LIM	P205	3592.	NOH
a .	./961	•00•	.000		.6252	CONCN BELOW DET LIM	503	186.	HOH
ŝ	.67		-112	1060	6916		C1	1546.	HOH
ರೆ	1546.	. 16	118	15975.	1.4829		K20	12977.	4L
¥	10/13.			6055B	1.6155		CaO	52448.	H
CA	37484.	. 8 72			.0000	ELEMENT NOT DETECTED	Sc203	0.	AL.
SC				15750	2,1755		T102	12081.	TH
II	7243.	.ca		cot.	2.2120 **	CONCH NEAR DET LIM	V02	289.	H.
>	1/8.				AA 1641 C	CONCN NEAR DET LIM	Cr 203	146.	AI.
CR	100.	25.		1560	1 8007		Mn02	1375.	AL
NM	869.	41.	61. 	.0001	1663.1		Fe203	83516.	14
FE	, 50415.	266.	440.			CONCN BELOW DET LIN	0203	23.	AIK:
g	1.6.	93.	217.	.09 .01		CONCH BELOW DET LIN	NIO	21.	ANC
IN	16.	10.	23.	105.	0.1315 TIL	CONCN BELOW DEL PLA	0.0	7	MAG.
cn	25.	÷	10.	215.	8.8752				, in
ZN	70.	च	в.	808.	11.6527		0112		
T.	12.	д.	5.	160.	13.1507		Gazoj		
5		0.	5.	.0	.0000	ELEMENT NOT DETECTED	Ge02		MIC
		0	5.		.0000	ELEMENT NOT DETECTED	As 205	.	APAC
23	5		4	53.	12.9372 **	CONCN NEAR DET LIM	Se03	۲.	AHC
1 1 1	; .			.0	0000.	ELEMENT NOT DETECTED	Br	•	AHC
N RI				409.	8.9346		Rb20	51.	AHC
2 8			15.	2114.	7.5288		510	.166	NIC
E ,	.002			164.	6.2982		¥ 203	33.	ANC
-	-07 971		22.	685.	5.1319		2r02	181.	ANC:
47			12.	36.	4.1772	CONCN BELOW DET LIM	ND203	10.	MIC
	ic	.0	18.	0.	.0000	ELEMENT NOT DETECTED	M003		NIC
8 5	.0	0.	49.	0	0000.	LELEMENT NOT DETECTED	cdo	•	NIC
)]	. 1.6	29.	66.	23.	.5692 ****	CONCH BELOW DET LIM	1n203	50.	ANC.
27	-	Ō	79.	0.	.0000	A ELEMENT NOT DETECTED	Sn02	.	MIC
	; c		96.	0.	.0000.	A ELEMENT NOT DETECTED	Sb203	•	NIC
	; c		180.	0	.0000 .	ELEMENT NOT DETECTED	1	.0	AHC
-			. 674	48.	.0762 **	CONCN NEAR DET LIM	BaO	708.	A-IC
V9			26.	.0	.0000	 ELEMENT NOT DETECTED 	1.a 205	•	ANC
141		; ;	25.	2.	4.3610 *****	* ELEMENT NOT DETECTED	EOM	•	NIC
ML			đ	65.	6.9905 **	CONCN NEAR DET LIM	PLO	10.	AMC
FBL	10.	;	,	1		XO	= WNS 301	950017.	

OXIDE SUM =

REPORT | 0803

	ION FILT	:	HOH .C	6. NON	0. нон	9. NOH	Э. ион	3. ион	6. нон	7. AL	6. AL	0. AL	1. AI.	7. AL	0. AL	•. AL	•. AL	7. MIC	0. ANC	1. ANC	D. NIC	4. ANC	2. MIC	2. MIC	5. AHC	0. AHC	S. MIC	9. MIC	9. AMC	4. AHC	5. MIC	4. NIC	10. MIC	0. MIC	4. MIC	O. ANC	0. MIC	6. MIC	1. AMC	0. NHC	B. MIC
	CONCENTRAT		ICOL	066 t	15444	58854	•6•	33	84	1557	4409		0(11	-		114	2019	1		3	67	1					ŝ	9 9	ſ	17	T	-	•		s			147	1		
	OXIDE	i :	Na.20	Юĥ	A1203	S102	P205	503	CI	K20	Ca0	Sc203	1102	207	Cr 203	HnO2	F#203	C6203	NIO	CuO	2n0	Gá203	GeO2	¢02.≋V	Se03	Ыſ	kb2U	210	Y 203	2102	NL203	11003	CdU	11,203	SIIU2	Sb203	-	Bat	Ta205	EUM	P DO
								CONCN BELOW DET LIN				ELEMENT NOT DETECTED		CONCN BELOW DET LIN	ELEMENT NOT DETECTED			CONCN BELOW DET LIN	ELEMENT NOT DETECTED	CONCN NEAR DET LIM		CONCN NEAR DET LIM	CONCN BELOW DET LIM	CONCN BELOW DET LIN	CONCN BELOW DET LIN	ELEMENT NOT DETECTED			CONCN NEAR DET LIM		CONCN BELOW DET LIM	CONCH BELOW DET LIN	CONCH BELOW DET LIN	ELEMENT NOT DETECTED	CONCN BELOW DET LIN	ELEMENT NOT DETECTED	ELEMENT NOT DETECTED		CONCN BELOW DET LIN	ELEMENT NOT DETECTED	CONCN BELON DET LIN
	XRY YIELD		. 127.1	.6004	1.0789	1.4141	.8922	1.0986	1.2267	1.3440	1.4598	AAAAA 0000.	1.9835	2.0153 4444	.0000	1.7284	1.5256	3.2527 ****	.0000 .	7.9381 **	10.4126	11.7423 **	12.4477 ****	12.4309 ****	11.5342 ****	.0000 AAAAA	7.9590	6.7054	5.6086 44	4.5694	3.7189 ****	2.9572 ****	.6626 ****	.0000	.3806	.0000 AAAAA	.0000	.0678	3.3988 ****	0000.	6 715 4 400 A
PLES EE45	PK AREA		6156.	7207.	88187.	369040.	1691.	146.	. 1038.	17379.	46005.	0	.96961	60.	0	1250.	75118.	.96	.0	136.	743.	124.	.61	28.	40.	•	406.	2550.	. 88	586.	45.	27.	18.	0.	16.	o .	.	90.	. 11.	. 0	46
I SUB PIT SAN	DET LINIT		1322.	832.	668.	385.	712.	165.	144.	124.	377.	237.	147.	115.	51.	78.	424.	222.	29.	11.	9.	6.	6 .	5.	• 5.	5.	9.	20.	12.	26.	14.	20.	60.	11.	106.	139.	228.	587.	26.	26.	a
ANALYSIS ON	ERROR		663.	385.	.79E	472.	309.	72.	67.	112.	219.	°.	86.	49.	.	40.	256.	95.	ò	<u>.</u>	з.	э.	ŗ.	2.	2.	0.	5.	.11	5.	12.	6.	.6	26.	0.	47.	0.	°.	266.	11.	.0	v
RESULTS OF PIXE	CONCENTRATION		27111.	12004.	81736.	275113.	1895.	.661	846.	12931.	31515.	.0	6775.	29.	0	723.	. 49237.	12.	°.	11.	72.	11.	2.	2.	э.	0	51.	380.	15.	129.	12.	б	26.	0.	43.	0.	0.	1322.	.6	0.	a
	ELEMENT	:	NA	На	AL	SI	<u>0-</u>	S	다	×	CA	SC	TI	>	CR	HH	3	8	IN	CU	N2	GA	GE	AS	36	BR	RB	SR	X	ZR	NB	Q	G	IN	SN	SB	1	VR	TAL	ML	PHI.

.

.

REPORT | 0790

	RESULTS OF PIXE A	NO SISTIN	SUB PIT SAMP	LES EE49						
ELEMENT	CONCENTRATION	ERROR	DET LIMIT	PK AREA	XRY YIELG	•		301 XO	CONCENTRATION	FILT
		M44		CTS	- CTS/PPM	1			Mgg	
NA	18569.	738.	1504.	2715.	.1462			Na 20	.16022	нон
ĐW	10125.	511.	1120.	3502.	.3458			ођи	16790.	NCH
NL	84094.	554.	.769	49001.	.5827			E0218	150095.	NON
SI	298045.	677.	554.	220770.	.7407			S102	637607.	HOH
<u>0-</u>	1450.	456.	1051.	660.	.4556 *		CONCN NEAR DET LIM	P205	.6266	NON
Ś	.	•	243.	0.	• 0000 •		ELEMENT NOT DETECTED	SOJ	0	HCH
CL	2133.	109.	213.	.1304.	.6112			CI	2133.	NCH
К	12231.	107.	114.	16297.	1.3324			K20	14734.	AJ.
CA	23230.	192.	.166	33166.	1.4277			CaO	32503.	AI.
SC	0.		210.	.0	• 0000 *		ELEMENT NOT DETECTED	Sc 203	.0	A.I.
11	4341.	71.	123.	8375.	1.9291			T102	7240.	AL.
>	. 66	.61	98.	196.	1.9654 4	•	CONCN NEAR DET LIM	V02	162.	1.1
CR	.96	21.	47.	11.	1.9060 -		CONCN BELOW DET LIN	Cr 203	56.	AI.
MM	554.	35.	69.	936.	1.6914			Mii02	876.	41
EE	, 11911.	215.	357.	50732.	1.4952			Fe203	46511.	AI.
8	16.	B 0.	186.	49.	3.1770 •		CONCN BELOW DET LIN	Co203	22.	AUC:
IN	. 13.	. 0	21.	68.	5.3430 *		CONCN BELOW DET LIM	NIU	16.	MIC.
C	11.	5.	9.	.88	A 2167.1	•	CONCN NEAR DET LIM	cuo	14.	PMC.
ZN	54.	5.		539.	10.1623			2110	61.	AHC
GA	16.	э.	6.	175.	11.4718			Ga203	21.	AMC
GE	•		5.	•	• 0000 •		ELEMENT NOT DETECTED	Gu02	•	AHC:
AS	6.	2.	5.	86.	12.1629 4	•	CONCN NEAR DET LIM	As205	. 10.	ANC
SE	6.	2.	'n.	78.	11.2919 •	•	CONCN NEAR DET LIM	SeO3	10.	AHC
BR	0	•	5.		• 0000 •		ELEMENT NOT DETECTED	Ыr	•	AMC
RB	58.	5.	.6	452.	7.8007			Rb20	64.	AMC
SR	320.	11.	11.	2110.	6.5738			SrO	379.	MIC
Y	21.	5.	.61	109.	5.4996 4	•	CONCN NEAR DET LIM	£02X	26.	AHC
ZR	211.	14.	27.	945.	4.4814			21.02	286.	AHC
NB	.11.	6.	14.	43.	3.6479 *		CONCN BELOW DET LIM	Nb203	14.	ANC
Ŷ	5.	9.	24.	14.	2.9011 4		CONCN BELOW DET LIM	E UOUM	٦.	AHC:
8	.	•	55.	о.	0000.		ELEMENT NOT DETECTED	cdo	.	ANC
IN	0.		74.	0.	. 0000.		ELEMENT NOT DETECTED	1n203	.	AHC
SN	57.	11 .	101.	21.	. TETE.		CONCN BELOW DET LIM	SiiU2	72.	ANC
58	.	•	128. ⁵	0.	. 0000		ELEMENT NOT DETECTED	56203	0.	ANC
1	109.	.101	227.	17.	. 1604 .		CONCN BELOW DET LIN	_	109.	AMC.
BA	. 898.	256.	532.	60.	.0665 *	•	CONCN NEAR DET LIM	Bati	1002.	ANC
TAL	с.	•	24.	0.	. 0000		ELEMENT NOT DETECTED	Ta205	•	MIC
AL.	з.	9.	24.	.61	3.8025 4		CONCN BELOW DET LIM	E UM	÷	MIC
PBL.	о.		9.	0.	. 0000		ELEMENT NOT DETECTED	Pho	.0	AHC:
							OXI	DE SUM -	949985.	

REPORT | 0801

	REPCAT 0794 Results of Pixe A	NALYSIS ON	I SUB PIT SAMP	LES EE75					
TNEMENT	CONCENTRATION	ERROR	DET LIMIT	PK AREA	XRY YIELD		OXIDE	CONCENTRATION	FILT
		Mdd		CTS	- CTS/PPM -			Hdd	
NA NA	19177.	698.	1417.	3142.	.1638		Ná20	25850.	NON
DM	12421.	470.	1010.	.197.	. 3863		оби	20597.	нси
V	13004.	504.	873.	47214.	.6467		E021A	137942.	HON
12	285442.	625.	503.	236711.	.8293		S102	610646.	1444
۵.	1420.	.164	. 526	710.	.4996	CONCN NEAR DET LIM	P205	3254.	HOH
Ś	96.	97.	224.	58.	.6062 ****	CONCN BELOW DET LIM	503	239.	нон
5	845.	93.	201.	567.	.6708		5	845.	HOH
×	11653.	101.	114.	17118.	1.4690		K20	14037.	AL
CA	30953.	206.	355.	49508.	1.5995		CaO	43309.	AL.
SC	.0		226.	•	.0000	ELEMENT NOT DETECTED	Sc203	0.	F1.
TI	6659.	62.	139.	14482.	2.1747		T102	11106.	ЧЧ
>	80.	47.	109.	176.	2.2090 ****	CONCH BELOW DET LIM	V02	.161	ŁL.
CR	10.	22.	50.	21.	2.1396 ****	CONCH BELOW DET LIN	Cr 203	14.	AL
NH	740.	.96.	78.	1402.	1.8951		Mii02	1171.	EL.
FE	. 55323.	259.	4 30.	92526.	1.6725		Fe203	79095.	P .L
8	24.	96.	222.	63.	3.5770 ****	CONCN BELOW DET LIN	Co203	.66	MIC
IN	۲.	12.	29.	6.	6.0144 ****	CONCH BELOW DET LIM	NIG	2.	-MF
B	14.	÷	9.	121.	8.7006 **	CONCN NEAR DET LIM	CuO	17.	HIC
2N	76.	÷	8.	870.	11.4176		2110	95.	AIC
CA	. 11.	ч.	6.	179.	12.8800		10220	19.	MIC
GE	1.	ч.	6.	19.	13.6574 ****	CONCN BELOW DET LIM	GeO.2	2.	AIC
AS	٦.	э.	÷	96.	13.6420 **	CONCN NEAR DET LIM	As 205	. 11.	NIC
SE	э.	1.	÷	40.	12.6603 ****	CONCN BELOW DET LIM	SeO]	4.	NIC
BR	0.	°.	6.	۰.	.0000 .	· ELEMENT NOT DETECTED	Br	•	NIC
82	4 3.	+	в.	360.	8.7392		Rb20	47.	NIC
SR	249.	8.	15.	1832.	7.3635		Sro	295.	NIC
Y	19.	6.	.11.	122.	6.1594 **	CONCN NEAR DET LIM	¥ 203	25.	NIC
ZR	125.	11.	22.	626.	5.0184		2102	168.	NIC
BN	6.	6.	14.	22.	4.0846 AAAA	CONCN BELOW DET LIM	Nb203	٦.	NIC
<u>Q</u>	0.		19.	.	.0000 AAAA	 ELEMENT NOT DETECTED 	E OOM	.0	MIC
9	35.	22.	50.	25.	.7279	CONCN BELOW DET LIM	CdO	40.	NIC
NI	36.	28.	61.	20.	.5564 ****	CONCN BELOW DET LIN	10201	44.	NIC
SN	85.	37.	80.	35.	A. E819.	CONCN NEAR DET LIM	SII02	107.	AIIC
SB	0.	0.	94.	0.	AAAA 0000.	ELEMENT NOT DETECTED	SL203	.0	NIC
I	0.	0.	177.	0.	.0000	* ELEMENT NOT DETECTED	1		ANC:
BÂ	765.	238.	502.	57.	.0745	CONCN NEAR DET LIM	BaU	854.	NIC
TAL	0.	.	24.	0.	.0000	· ELEMENT NOT DETECTED	Ta205	.0	AIC
HL.	10.	.11.	25.	.96	4.2743	CONCN BELOW DET LIM	(OM	12.	AIC:
PBL	.0	.	8.	0.	.0000 AAAA	ELEMENT NOT DETECTED	1.10	·	NIC
						ТХО	= WNS 30	950020.	•

	RESULTS OF PIXE	ANALYSIS ON	: SUB PIT SAMP	0633 S31					
ELEMENT	CONCENTRATION	ERROR	DET LIMIT	PK AREA	XRY YIELD		OXIDE	CONCENTRATION	FILT
		PPH		CTS	- CTS/PPM -			PPM	
NA	18938.	699.	1421.	3110.	.1642		Na20	25529.	HOH
U.	12933.	459.	981.	5008.	.3872		ыус	21446.	NCH
VF	78335.	507.	857.	50733.	.6477		EU218	148013.	14 AI
15	276940.	621.	508.	227517.	.8215		Si 02	592459.	NON NON
	1829.	418.	960.	921.	.5037	CONCN NEAR DET LIM	P205	.1914	NON
. 01	309.	95.	213.	189.	.6112 .	CONCN NEAR DET LIM	SuJ	772.	нся
5	1407.	93.	191.	951.	.6760		5	1407.	NCH
×	11720.	102.	116.	17186.	1.4664		K20	14118.	1.A
CN	32156.	210.	362.	51309.	1.5956		CaO	44993.	14
sc	.0	0.	231.	•	.0000	ELEMENT NOT DETECTED	Sc203	0.	Н
II	7375.	85.	145.	15967.	2.1652		T 102	12302.	AL
>	149.	50.	114.	329.	2.2000 **	CONCN NEAR DET LIM	V02	242.	Υ
CR	22.	22.	50.	48.	2.1295 ****	CONCN BELOW DET LIM	Ct 203	33.	ЧY
NH	845.	6 0.	79.	1594.	1.8865		Mn02	.7661	Ы.
FE	, 56792.	263.	436.	94582.	1.6654		Fe203	81196.	ЧЧ
9	19.	.99.	231.	71.	3.5639 ****	CONCN BELOW DET LIM	Cu203	27.	EIK
IN	θ.	.61	29.	49.	5.9878 ****	CONCH BELOW DET LIN	NiO	11.	HIC
G	15.		10.	127.	8.6647 **	CONCN NEAR DET LIN	cuo	19.	NHC.
ZN	84.	*	8.	942.	6676.11		ZnO	104.	AHC
CA CA	15.	э.	6.	190.	12.8325		G4203	21.	MIC
GE	0	.0	6.	0.	0000.	ELEMENT NOT DETECTED	Ge02	•	MIC
NS.	.	э.	6.	55.	13.5958 ****	CONCN BELOW DET LIN	As205		AHC
SE	э.	1.	÷	38.	12.6188 AAAA	CONCN BELOW DET LIM	SeO3	•	AMC
BR	0.	.	4	•	0000.	ELEMENT NOT DETECTED	Ъſ		NHC
RB	54.		.	467.	8.7125		KL20	59.	ANC
SR	271.	10.	15.	1994.	6196.7		510	321.	MIC
X	21.	6.	11.	129.	6.1410 **	CONCN NEAR DET LIM	Y 203	27.	MIC
ZR	156.	11.	24.	780.	5.0037		2102	211.	MC
NB	.61	6 .	13.	51.	4.0727 **	CONCN NEAR DET LIM	Nb203	16.	AHC
0H	0.	0	19.	0.	.0000	A ELEMENT NOT DETECTED	HOUN	0.	MIC
6	25.	25.	56.	18.	.7259	CONCN BELOW DET LIM	cho	29.	AIC:
IN	0.	•	70.	.	.0000 .	· ELEMENT NOT DETECTED	1.1203		MIC
SN	36.	40.	92.	15.	.4172	CONCN BELOW DET LIM	Sn02	46.	MIC.
SB	о.		120.	0.	0000	· ELEMENT NOT DETECTED	SU203	0.	MIC
I	о.	0.	206.	.	.0000	A ELEMENT NOT DETECTED	1	.0	NHC
BA	955.	257.	539.	71.	6143	CONCN NEAR DET LIM	baO	1066.	AHC
TAL	0.	0.	24.	0	0000.	· ELEMENT NOT DETECTED	ta205	•	AHC:
ML	÷.	11.	25.	16.	4.2571 ****	CONCN BELOW DET LIM	Fivi	5.	ANC
PBL	٦.		9 .	47.	AAAA [618.3	CONCN BELOW DET LIM	PLO	٦.	MNC
						OXI	DE SUM -	950016.	

REPORT # 0788 Usquire of DIVE ANAL

.

•

4

•

	F117		HOH	нон	HOH	нон	HOH	NOH	HOH	Н.	Ы.	ЧГ	Ы.	AL.	AL	AL	YF	AIIC	PIR.	NIC.	ANC:	AHC	AMC	AMC	AMC	AHC	AHC	MC	MC	AMC	AHC	AMC	ANC:	AMC	AHC:	ALIC:	APIC.	AMC	AHC	NIC	ANC
	CONCENTRATION	H44	24132.	21101.	144425.	592531.	5151.	724.	2302.	.0091	46601.	0.	12539.	226.	.0	1292.	82036.	35.	6.	12.	93.	11.	٥.		5.	.	55.	308.	32.	227.	14.	.	34.	30.	67.	.0	.0	847.	0.	.0	12.
	OXIDE		Na 20	Ичјо	A1203	S102	P205	SOJ	5	K20	CaO	Sc203	Ti02	V02	C1 203	HIIO2	Fe203	Co203	NIC	CuO	2110	Ga203	GeO2	As205	SeO J	Ъr	RD20	SrO	Y203	2102	NL203	(Cum	00.0	111203	Sii02	51,203	1	BaO	Ta205	(UN)	100
								CONCN NEAR DET LIH				ELEMENT NOT DETECTED		CONCH NEAR DET LIM	ELEMENT NOT DETECTED			CONCN BELOW DET LIN	CONCN BELOW DET LIM	CONCN NEAR DET LIM		CONCN NEAR DET LIM	ELEMENT NOT DETECTED	CONCN BELOW DET LIM	CONCN BELOW DET LIM	ELEMENT NOT DETECTED			CONCN NEAR DET LIM		CONCN BELOW DET LIN	ELEMENT NOT DETECTED	CONCN BELOW DET LIM	CONCN BELOW DET LIM	CONCN BELOW DET LIM	ELEMENT NOT DETECTED	ELEMENT NOT DETECTED	CONCN NEAR DET LIM	ELEMENT NOT DETECTED	ELEMENT NOT DETECTED	CONCN NEAR DET LIM
	9	•						•						•						•		~ ~									* * * *		~ ~ ~					•			;
	XRY YIEI	- CTS/PPI	.1486	0136.	.5873	1111.	. 4573	.5548	.6136	1.3195	1.4339	.0000	1.9437	1.9755	.0000	1.6950	1.4965	3.1855	5.3501	2691.1	10.1649	11.4702	. 0000	12.1542	11.2014	. 0000	0061.1	6.5642	5.4911	4.4742	3.6418	. 0000	.6491	. 4962	0676.	.0000	.0000	.0664	.0000	3.8045	6.0962
LES EE90 REP	PK AREA	CTS	2660.	4467.	44894.	207104.	1068.	161.	1412.	. 16353.	47758.	.0	14610.	276.	0.	1385.	85871.	78.	29.	71.	753.	141.	•	31.	44.	•	366.	1707.	139.	750.	37.	•	19.	.61	20.	•	٥.	50.	.	.0	63.
SUB PIT SAMP	DET LIMIT		1554.	1075.	.609	533.	1018.	.162	209.	125.	388.	248.	154.	122.	55.	86.	463.	245.	.66	9.	6	6.	6.	6.	5.	5.	.6	17.	12.	25.	14.	22.	61.	76.	97.	125.	212.	566.	25.	26.	9.
NO SISTAN	ERROR	PPM	753.	500.	531.	650.	.613.	103.	109.	.111	226.	•	90.	53.	°.	42.	279.	106.	14.	5.	5.	э.	.0	э.	э.	0.	5.	.	•	12.			20.	33.	- 11	•	°.	265.	.0	11.	°.
REPORT 0793 Results of Pixe M	CONCENTRATION		17902.	12724.	76435.	276974.	2336.	290.	2302.	12394.	33306.	°.	7517.	140.	•	817.	. 57380.	25.	5.	9.	75.	12.	0.	Э.	э.	•	. 50.	260.	25.	106.	.11.	. ș	.n.	25.	53.		.0	759.	0.	.0	11.
	ELEMENT		NA	DM	AL	IS	Ω.	ø	C	×	CA	SC	11	>	CR	NM	55	8	IN	CU	ZN	GA	3D	AS	SE	BR	en (AR :	7	¥7	2	2 8	9 3	N	SN	RB .	Ι	BA	TAL	HL .	JBY

949992.

÷ NUS 30IXO

٠.

•

ŝ	
0	
8	
¢	
-	
C -1	
- 5	
\sim	

n i

	REPOAT # 0805 Results of Pixe A	NO SISTIN	: SÜB PIT SAM	ELIS EELIS					
ELEMENT	CONCENTRATION	ERROR	DET LIMIT	PK AREA	XRY YIELD		OXIDE	CONCENTRATION	FILT
		PPM		CTS	- CTS/PPM -			Mgg	
NA	21716.	688.	1376.	3869.	.1782		Na20	29273.	нсн
DM	14631.	451.	955.	6119.	.4183		ођи	24263.	NON
AL	81438.	492.	820.	56780.	.6972		A1203	153877.	нон
SI	271735.	594.	492.	239121.	.8800		Si02	581322.	HCAN
<u>م</u>	1614.	.193.	905.	682.	.5463 **	CONCN NEAR DET LIM	F205	3698.	NON
ø	179.	.98	203.	119.	.6629 ****	CONCN BELOW DET LIM	SOJ	448.	HOH
Ĵ	1629.	92.	183.	1195.	EEET.		C1	1629.	NON
ч	9956.	92.	110.	15864.	1.5934		K20	11993.	ÅL
су	32950.	203.	348.	57291.	1.7387		CaO	46103.	HL.
sc	.0		224.		. 0000 AAAAA	V ELEMENT NOT DETECTED	Sc203	. 0	ЧЧ
II	7056.	81.	136.	16612.	2.3545		T102	11769.	AL.
>	128.	47.	109.	305.	2.3917 **	CONCN NEAR DET LIM	V02	208.	٩r
CR	32.	21.	49.	74.	2.3150 ****	CONCN BELOW DET LIM	Cr203	46.	ЧЧ.
NM	838.	39.	.11.	1717.	2.0506		M1.02	1326.	A.I.
E	. 57473.	254.	421.	104017.	1.8099		Fe201	82169.	AL.
8	29.	.88	206.	.611	3.9400 ***	CONCN BELOW DET LIM	Co203	41.	HK.
IN	6.	.11.	27.	4 1.	6.6159 ****	CONCH BELOW DET LIN	NIO	в.	WINC.
CU	13.	4.	9.	126.	9.5737 **	CONCN NEAR DET LIM	CuO	16.	AHC
NZ	72.	4.	в.	.006	12.5665		2110	90.	AHC
GA	14.	э.	5.	199.	14.1789		Ga203	19.	NIC
GE	0.	.	5.	. 0	15.0373 AAAAA	ELEMENT NOT DETECTED	ი ლ 02		AMC.
AS	1.	з.	5.	13.	15.0223 ****	CONCN BELOW DET LIM	As205	. 2.	NHC
SE	4.	1.	+	55.	13.9428 **	CONCN NEAR DET LIM	Se01	6.	AMC
BR	0.	٥.	÷	0.	.0000	· ELEMENT NOT DETECTED	Br	о.	AMC
RB	40.	÷	8.	385.	9.6268		Rb20	44.	AMC
SR	. 278.	9.	15.	2260.	8.1116		S10	329.	AMC
X	19.	5.	10.	128.	6.7855 **	CONCN NEAR DET LIM	¥ 203	24.	MIC
2R	121.	10.	20.	672.	5.5208		2102	164.	AMC
NB	9.	5.	11.	41.	4.5001 ****	CONCN BELOW DET LIM	NL203	11.	AMC
Q	0.		16.	•	0000.	* ELEMENT NOT DETECTED	KOUM	0.	AMC
CD	.	0.	11 .	0.	0000.	* ELEMENT NOT DETECTED	cdo	0.	NIC
IN	.0	0.	56.	0.	, 0000	* ELEMENT NOT DETECTED	11,201	0.	AMC
SN	62.	37.	80.	28.	.4609	CONCN BELOW DET LIM	SII02	79.	MIC
SB	0.	.	97.	٥.	.0000	* ELEMENT NOT DETECTED	Sb203	о.	ANC
I	• •	٥.	173.	0.	.0000	· ELEMENT NOT DETECTED	-	0.	AMC
BA	939.	214.	430.	ות.	.0821		BaO	1048.	AHC
TAL	.0	•	, 21.	0.	.0000 .	· ELEMENT NOT DETECTED	Ta205		AMC.
ЧГ	0.		23.	0	.0000	· ELEMENT NOT DETECTED	EOM	0.	AMC
PBL	. 0	.	9	65.	7.5348 **	CONCN NEAR DET LIM	044	10.	AMC

950014.

OXIDE SUN -

B.5.21

	RESULTS OF PIXE !	INALYSIS ON:	SUB PIT SAME	LES EEIIS REF					
ELEMENT	CONCENTRATION	ERROR	DET LINIT	PK AREA	XRY YIELD		OXIDE	CONCENTRATION	FILT
		PPM		CTS	- CTS/PPM -			HJA	
N A	21270.	668.	1339.	. 1964 .	.1864		Na20	28672.	нсн
ĐM	14688.	440.	.010	6430.	.4376		орм	24357.	нсн
VI	81583.	478.	797.	59518.	.7295		A1203	154152.	нсн
IS	268532.	578.	479.	247386.	.9213		S102	574470.	нон
۵.	1488.	379.	873.	857.	.5757	CONCN NEAR DET LIN	P205	3410.	HCH
Ø	140.	85.	.194.	98.	.6986	CONCN BELOW DET LIN	SUJ	346.	нан
CL	1618.	88.	177.	1251.	T2TT.		5	1619.	нсн
м	10212.	91.	109.	. 17113.	1.6757		K20	12302.	AL
сA	.73957.	200.	343.	62062.	1.8277		CaO	47512.	ΥΓ
BC	0.	•	223.	.	.0000	ELEMENT NOT DETECTED	Sc203	0.	Ч
11	7281.	80.	136.	17994.	2.4715		T102	12144.	AL
>	179.	47.	107.	450.	2.5111 **	CONCN NEAR DET LIN	V02	291.	AL.
СR	31.	21.	50.	75.	2.4308 AAAA	CONCH BELOW DET LIM	Cr203	45.	AI.
NM	852.	38.	76.	1834.	2.1536		Mii02	1348.	A.I.
FE	. 61158.	255.	423.	116265.	1.9011		Fe203	87437.	Al.
S	44.	87.	202.	183.	4.1805 ****	CONCN BELOW DET LIN	Co203	62.	A.I.C.
IN	θ.	10.	21.	56.	7.0044 ****	CONCN BELOW DET LIN	NIG	.11.	-NIC
CU	18.	÷	8.	182.	10.1404		CuO	22.	ALIC:
N2	72.	÷	٦.	960.	13.3152		200	.69	AINC
GA	17.	2.	5.	255.	15.0280		Ga203	22.	AHC
GE	1.	2.	5.	19.	15.9416 ****	CONCN BELOW DET LIN	Ge02	2.	AHC
AS	4.	2.	5.	54.	15.9288 ****	CONCH BELOW DET LIN	As205		PHC
SE	4 .	1.	+	50.	14.7864 **	CONCN NEAR DET LIM	SeO3	.9	MC
BR	2.	2.	÷	35.	13.6903 AAAA	CONCH BELOW DET LIM	br	2.	AHC
RB	37.	÷	٦.	.676	10.2126		Kb2U	40.	AMC
SR	284.	.9	14.	2440.	8.6059		SrO	336.	AMC
Y	20.	5.	10.	142.	7.1994		Y 203	26.	AHC
ZR	.161	10.	20.	769.	5.8663		2r02	177.	NHC
NB	6.	5.	11.	29.	4.7751	CONCN BELOW DET LIN	Nb203	8.	AHC
ЮН	0	.	17.	.0	0000.	ELEMENT NOT DETECTED	100 J		AHC:
9	0.	0.	41.	0.	.0000 .	ELEHENT NOT DETECTED	CHO	о.	AMC
IN	23.	24.	52.	15.	.6508 ****	CONCH BELOW DET LIM	1n203	27.	AMC
SN	63.	33.	72.	31.	.4892 AAAA	CONCN BELOW DET LIN	SnO2	80.	AMC
SB	105.	1 3.	93.	39.	.3692 **	CONCN NEAR DET LIM	SL203	126.	AHC
I	.0	0.	161.	0.	0000.	ELEMENT NOT DETECTED	1	0.	AHC
BA	756.	208.	.551	66.	.0871	CONCN NEAR DET LIM	UpH	844.	AHC
TAL		0.	20.	0.	0000.	ELEMENT NOT DETECTED	Ta205	.	AMC
NL	2.	10.	21.	14.	4.9829 AAAA	CONCN BELOW DET LIM	EUM	з.	AHC
184	6.	+ .	٦.	44.	7.9893 AAAA	CONCN BELOW DET LIM	P LO	6.	AHC
						IXO	= MUS ∃U	950004.	

۰.

.

REPORT | 0806

•
	FILT		HOH	NON	Net	HOH	HOR	HCH	HOH	AL	ĿГ.	AI.	AL	AL.	Al.	AI.	AL	NIC .	ANC	ALIC:	ALIC:	ANC	MIC	AHC	ANC	ANC	AMC	AMC	AMC	AHC	ANC	AMC	AHC	AMC	AMC	AMC	AHC	ANC	AHC	AHC	AHC	
	CONCENTRATION	Hdd	20850.	19195.	140326.	591019.	5320.	1454.	2928.	15822.	50518.	о.	.70661	0	0	1367.	85981.	49.	7.	.11.	95.	21.	о.	. 80	14.	2.	60.	353.	.51	198.	٦.	о.		44.	64.	.	•	.315.	.	0.	0.	949988.
	OXIDE		Na2U	обы	A1203	S102	P205	Suj	5	K20	CaO	Sc2UJ	T102	V02	C1 203	MnO2	Fe203	Co203	NIC	CuO	2n0	Gá203	GeO2	As205	Se03	Br	Rb20	510	£ 02 Y	2102	Nb203	MGO3	OPO	1n203	S1102	Sh20J	1	OFR	402rL	[0H	buo	b£ sun ∗
												· ELEMENT NOT DETECTED		* ELEMENT NOT DETECTED	ELEMENT NOT DETECTED			CONCN BELOW DET LIN	CONCN BELOW DET LIN	CONCN BELOW DET LIM			ELEMENT NOT DETECTED	CONCN NEAR DET LIM	CONCH NEAR DET LIM	CONCN BELOW DET LIM			CONCN NEAR DET LIM		CONCN BELOW DET LIM	· ELEMENT NOT DETECTED	A ELEMENT NOT DETECTED	CONCN BELOW DET LIM	CONCH BELOW DET LIM	A ELEMENT NOT DETECTED	* ELEMENT NOT DETECTED	CONCN NEAR DET LIM	A ELEMENT NOT DETECTED	· ELEMENT NOT DETECTED	· ELEMENT NOT DETECTED	1XO
	XRY YIELD	- CTS/PPH -	.1126	.2670	4479	.5728	.3500	.4247	. 4694	1.1950	1.2967	.0000	1.7519	0000.	.0000	1.5294	1.3509	2.6006 ****	4.6971 ****	6.8016 AAAA	8.9327	10.0834	10.6976 AAAAA	10.6901 **	9.9243 **	9.1892 AAAA	6.8556	5.7773	4.8332 AA	3.9384	3.2058	AAAA 0000.	. 0000 AAAA	.4369 AAAA	.3284	.0000 AAAA	.0000 .	.0585 **	.0000 AAAAA	.0000 AAAAA	.0000.	
OBIJJ SJI	PK AREA	CT3	1741.	.1001	33263.	158245.	.619	247.	1375.	15695.	46820.	.0	13976.		٥.	1321.	81247.	97.	24.	64.	683.	158.	7.	63.	91.	12.	380.	1728.	122.	582.	19.	0.	.	16.	17.	.0	0.	49.	.	0.	0	
SUB PIT SAME	DET LIMIT		1726.	1215.	.1601	603.	1156.	266.	240.	136.	425.	273.	168.	130.	59.	93.	499.	257.	28.	10.	10.	٦.	٦.	5.	5.	5.	10.	19.	14.	28.	16.	24.	59.	79.	104.	.661	235.	568.	28.	29.	10.	
NALYSIS ON:	ERROR	PPM	829.	561.	603.	741.	503.	121.	130.	121.	247.	0.	98.	•	•	47.	301.	.111	12.	5.	5.	э.	э.	2.	2.	2.	5.	10.	٦.	14.	٦.	°.	•	36.	47.		0.	271.	°.	°.	°.	
REPORT 0783 Results of PIXE A	CONCENTRATION		15467.	11575.	74266.	276267.	2322.	582.	2928.	.36161	36105.	.0	7978.		.0	864.	, 60139.	35.	5.	9.	76.	16.	•	5.	.6	2.	55.	299.	26. _.	147.	5.	.	.	36.	50.	0.	•	838.		•	0.	
	ELEMENT		NN	MG	AL	SI	۵.	Ø	C	х	C	SC	II	>	СВ	NH	FE	8	IN	C	NZ	GA	GE	AS	SE	BR	8B	SR	Y	ZR	RB	0M	ទ	. NI	SN	SB	I	BA	TAL	HL.	PBL	

B.5.23

.

P I

11

. . .

п .

APPENDIX B Part 6

AS-BUILT DIAGRAMS AND WELL COMPLETION REPORTS FOR WELLS 299-E34-7 AND 299-E35-1

	AS-BU	ILT DI	AGRAM	
Well Number _299-E34-7	G	eologist	S. Brandenberg M. Chamness, I. Kennedy, R.	er, T. Gilmore, B. Biornstad. Page <u>1</u> of <u>2</u> Miller, E. Jensen
Reviewed by V.L. McGhan		10	0-10-89 Date	Well Started: 08/03/89 Well Completed: 10/17/89
Construction D	ata	Denth	G	eologic/Hydrologic Data
Description	Diagram	in Feet	Sample Type O Drive Jarrel O Hard Tool A Solt Spoon	Lithologic Description
Cement Pad (+0.5 - 2.0')		5	0	Gravelly Sand
12" dia. carbon steel casing		<u>10</u> <u>15</u>		Sandy Gravel
Cement Grout		20		Muddy Sandy Gravel
(2.0' - 20.2')		30		• • •
Casing Centralizer	HT	35	•	
Casing Joint		40		Sandy Gravel
8" dia. carbon steel casing		45	0.0000	• •
		50		
4° dia stainless steel final casing .		60		Muddy Sandy Gravel
(+1.5' - 193.9')		65	0	• • •
				Sandy Gravel
		<u>75</u> 80	9.9.9.9 9.9.9 9.9.9 9.9 9.9 9.9 9.9 9.9	• •
8 - 20 mesh bentonite crumbles -	DB	85	0.000	
(20.2' - 186.3')		90		• •
		95		• •
		100	80.008	Muddy Sandy Gravel
DB = Drive Barrel		110		Muddy Sandy Gravel
		115	• • • • • • • • • • • • • • • • • • •	Sandy Gravei
		120		
		125		Muddy Sandy Gravel
	62 53 🔶	130		Sandy Gravel

.

A-1800-186 (3/87)

Battelle	AS-BUI	ILT DI	AGRAM	
Well Number <u>299-E34-7</u> Reviewed by <u>V. L. McGhan</u>	G	s eologist <u> </u> 10-	i. Brandenberge M. Chamness, f Kennedy, R. M -10-89_ Date	ar, T. Gilmore, 3. Biomstad. Page <u>2</u> of <u>2</u> Miller, E. Jensen Well Started: 08/03/89 Well Completed: 10/17/89
Construction D	ata	Depth	G	eologic/Hydrologic Data
Description	Diagram	in Feet	Sompie Type O Onve Barrel O Hard Toes A Solit Socon	Lithologic Description
8° dia. carbon steel casing (0' - 205.5') - removed 4° dia. stainless steel final casing- (+1.5' - 193.9') 8 - 20 mesh bentonite crumbles - (20.2' - 186.3') DB = Drive Barrel HT = Hard Tool 3/8° Volctay pellets (186.3' - 189.3') 20 - 40 mesh Colorado silica sand (189.3' - 204.05') Static Water Table (195.2') - 8/22/89 - 4° dia. stainless steel Johnson continuous wrap, 10 slot screen (193.9' - 204.55') Bottom of well = 204.55' Bottom of well = 204.55' Bottom of well = 204.55' Bottom of well = 204.55' Well Completion Symbols (as per PNL-6392) Cement Grout Granular Bentonite Bertonite Pellets Sand Pack Backfill		135 140 145 150 155 160 165 170 175 180 185 190 195 200 205		Sandy Gravel Muddy Sandy Gravel Sandy Gravel Muddy Sandy Gravel Sandy Gravel Sandy Gravel Muddy Sandy Gravel Sandy Gravel Basait

A-1800-166 (3/87)

 11

WELL COMPLETION/	INSPECTION REPORT(governing procedure DO-1, RO)
Specification No. <u>WHC-S-014</u> Rev. No. <u>3</u> Project <u>W-013</u> <u>Law Level Burial Common</u>) tation <u>in factor in a</u> Drilling Co. <u>Barran</u> <u>Prillina</u> Driller <u>Distance</u> <u>Drillina</u> Driller <u>Distance</u> <u>Profee</u> Other (companies) <u>None</u> Geologist(s) <u>S. Branden under T. Gilmon</u> <u>M.</u> <u>Channess</u> <u>S. Biornand</u> <u>T. Kennety</u> <u>R. Miller E. Sensen</u>	Well No. 299 END 7 Temp. Well No. <u>Frankup</u> Coordinates Casing Elev. Ground Elev. DRILLING METHOD Rotary Air 2/A Mud 2/A Cable Tool D <u>Grig togs End</u> H <u>15'-60 to -30'35-205'</u> Drilling Fluid <u>200 End</u> Frank H 5 500 35-205' Drilling Fluid <u>200 End</u> Frank H 5 500 35-205' Other Nowe
GEOPHYSICAL LOGGING Sondes Interval Date Drilled Depth Gross camma 0 - 203 8/22/87 Date Started 6 Date Completed Depth Date Completed Static Water Le	ETION DATA AQUIFER TESTING Cos.s' Type_Slus Cos.s' Cos.s' Cos.s' Cos.s'
CLEANING Inspection Method Visual Acceptance Criteria As nor section 7.6 Accept Reject Date Drilling Tools/Rig 74 Temporary Materials 75 Permanent Materials 75 SCREEN Slot Type Length Size Joinus Joinus <td< td=""><td>MATERIAL STORAGE/PACKING Inspection Method 1/15 mal Acceptance Criteria 25 cer 5 - 10 m 7 3 Material Packing 3/20/21 UBRICANTS/ADDITIVES 3/20/21 Inspection Method 1/15 mal Accept Reject Date Material Packing 72 UBRICANTS/ADDITIVES 1nspection Method Inspection Method 1/15 mal Acceptance Criteria 72 certion 7 2 Identity Accept Reject Additives N/A N/A N/A Lubricants 2/20/21 STRAIGHTNESS TEST Inspection Method 23 low 7' champer bailer Accept Reject Date 3/20 g WELL PROTECTION Inspection Method Visual</td></td<>	MATERIAL STORAGE/PACKING Inspection Method 1/15 mal Acceptance Criteria 25 cer 5 - 10 m 7 3 Material Packing 3/20/21 UBRICANTS/ADDITIVES 3/20/21 Inspection Method 1/15 mal Accept Reject Date Material Packing 72 UBRICANTS/ADDITIVES 1nspection Method Inspection Method 1/15 mal Acceptance Criteria 72 certion 7 2 Identity Accept Reject Additives N/A N/A N/A Lubricants 2/20/21 STRAIGHTNESS TEST Inspection Method 23 low 7' champer bailer Accept Reject Date 3/20 g WELL PROTECTION Inspection Method Visual
stain loss stel	Acceptance Criteria Accept Reject Date Protective Posts MAC Locks BA/B AR SEAL Accept Reject Date Accept Reject Date Volume Accept Reject Date 1.24 213 MAC 1.25 40 1210 1.25 40 1210 1.26 210 1210 1.27 25 1210 1.29 40

٢

Battelle Partic Northwest Lacorsona	AS-BUI	LT DI	AGRAM					
S. Brandenberger, T. Gilmore, E. Well Number 299-E35-1 Geologist Jensen, B. Biornstad, M. Chamness, Page 1 of 2 L Kennedy, R. Blegan, R. Miller Well Started: 08/07/89								
Reviewed by V.L. McGhan 10-10-89 Date Well Completed: 12/14/89								
Construction Da	ata	Denth	G	eologic/Hydrologic Data				
Description	Diagram	in Feet	Semate Type O Onve Barrei Hard Tots A Stat Scenn	Lithologic Description				
Cement Pad (0.5' - 2.0')		5		Sandy Gravel				
12° dia, carpon steel casing				· ·				
(0' - 20.0') - removec				Muddy Sandy Gravel				
Cament Grout				• • •				
(2.0' - 20.0')	HT			Sandy Gravel				
8° dia, carpon steel casing				• •				
(0' - 191.55') - removed				Slightly Muddy Gravelly Sand				
			0	Sandy Gravel				
		45	0	Gravelly Sand				
4° dia. stainless steel final casing		50	0 100	Muddy Sandy Gravel				
(+2.03 - 181.43)			0					
Casing Centralizer		60		Sandy Gravel				
Casing Joint		65	•	Slightly Muddy Gravelly Sand				
J		70		Sandy Gravel				
		75	•	Slightly Muddy Gravelly Sand				
8-20 mesh bentonite crumbles -	НТ	80		Sandy Gravel				
(20.0' - 173.4')		85	• • • • • • • • • • • • • • • • • • •	• •				
		90		Gravelly Sand				
		95		• •				
		100	9.0.0.00	Sandy Gravel				
DB = Drive Barrel		105	P.0.0.0.00	Muddy Sandy Gravel				
SS = Split Spoon		110		• • •				
		115	6.30 A					
	НТ	120						
		125		Boulder @~125'-125' (No Sample)				
		130		Muddy Sandy Gravel				

. .

•.

.

.

.

A-1800-186 (2/57)

Battelle	AS-BU	ILT DI	AGRAM	
Well Number 299-E35-1	G	S. eologist Je Li	Brandenberger, Insen, B. Biorns Kennedy, R. Bie	, T. Giimore, E. tad. M. Chamness, Fage <u>2</u> of <u>2</u> gan, R. Miller Well Started: 08/07/89
Reviewed by <u>V. L. McGhan</u>		10-	10-89 Date	Well Completed: 12/14/89
Construction Da	ata	Depth	Ge	ologic/Hydrologic Data
Description	Diagram	in Feet	Sampie Type O Drive Barret O Hard Toti A Solt Steen	Lithologic Description
8" dia. carbon steel casing (0' - 191.55") - removed		<u>135</u> <u>140</u>		Muddy Sandy Gravel
4" dia. stainless steel final casing- (+2.03' - 181.45')		<u>145</u> 150		Sandy Gravei
8 - 20 mesh bentonite crumbles – (20.0' - 173.4')	HT	<u>155</u> <u>160</u>		Muddy Sandy Gravel
HT = Hard Tool		165		
3/8" Voiclay pellets		<u>175</u> <u>180</u>		• • •
20 - 40 mesh Colorado silica		<u>185</u> 190		
Static Water Table (189.02')		195		
4" dia. stainless steel Johnson continuous wrap, 20 slot screen (181.45 - 192.1)				
Bottom of well = 192.1' Backfill (192.1' - 193.8')				
Well Completion Symbols . (as per PNL-6392)				
Cement Grout				
Granular Bentonite				
Bentonite Pellets				
Sand Pack				
Backfill				

.

.

- -

A-1800-186 (3/87)

/ WELL COMPLETION	INSPECTION REPORT(governing	procedure DO-1, RO)
cification No. WHC-S-OIY Rev. Nc. 3 ject	Well No. <u>723-E35-1</u> Temp. W Coordinates Casing Elev Grou	ell No. <u>512-4010</u> nd E)ev
iling Co. <u>Tisin 2000</u> Ronz Drilling iler <u>Robert Porry</u> er (companies) logist(s) <u>S. Branach Derger</u> T. Gilmore, <u>E. Jensen</u> , <u>B. Eigenstad</u> <u>M. Chammers</u> <u>E. Sennedy</u> , <u>R. Bileran</u> , <u>R. Miller</u>	DRILLING METH Rotary Air N/A Mud N/A Cable Tool D_{2-3} 35-55 Hg Drilling Fluid Z22 $= 22 - 722$ Other S_{pli} soon (101-107)	0D
GEOPHYSICAL LOGGING COMP ondes Interval Date Drilled Depth <u>sprime 0'- 19; 3/27/29</u> Completed Dept Date Started Date Completed Static Water L	LETION DATA /93.8' 8-25-89 Type_ 1.2/14/94 Lengtr Volume volume Joint /89.02/ Drawdx Jazé of TION RESULTS	QUIFER TESTING
		104097110
CLEANING spection Method <u>//sincl</u> ceptance Crite.1a <u>A new section 7.4</u> Accept Reject Date illing Tools/Rig <u>A</u> moorary Materials <u>A B</u> SCREEN <u>giu/se</u> <u>screen</u> <u>slot</u> <u>screen</u> <u>screen</u> <u>screen</u> <u>screen</u> <u>screen</u> <u>screen</u> <u>screen</u> <u>screen</u> <u>screen</u> <u>screen</u> <u>screen</u> <u>screen</u> <u>screen</u> <u>screen</u> <u>screen</u> <u>screen</u> <u>screen</u> <u>scre</u>	MATERIAL STORAGE Inspection Method <u>Vis</u> Acceptance Criteria <u>Acceptance</u> Material Packing <u>Acceptance</u> LUBRICANTS/AD Inspection Method <u>Vis</u> Additives <u>Nonc</u> Lubricants <u>Statescode</u> <u>vil</u> STRAIGHTNESS Inspection Method <u>20'/o</u> Acceptance Criteria <u>Acceptance</u> Acceptance Criteria <u>Acceptance</u> MELL PROTEC Inspection Method <u>Vis</u> Acceptance Criteria <u>Acceptance</u> Acceptance Criteria <u>Acceptance</u> Protective Posts <u>Mac</u> Locks <u>Acceptance</u>	/PACKING Aal Section 7 3 pt Reject Date 2 3/31/54 5/31/54 DITIVES J Accept Reject Date Accept Reject Date
ANN Inspection Method Measured with start Land	ULAR SEAL Acceptance CriteriaAcceptance 2	A ALCLION M.2.6 - 7 2.9
Type Interval 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 10.0	$ \begin{array}{c} $	<u> </u>
√/A Well Abandonment 0	THER (initial if performed) Inspection Complete A Driller's/	s-Built Diagram, Geologist's Logs
Finenced 2. 71- Marchan 10-10-39	· For all blanks mark	ava ii noc appiiC3D

APPENDIX B Part 7

.

.

BATCH ADSORPTION DATA FOR 7- TO 10-DAY AND 26-DAY EXPERIMENTS

.

.

Table B.7.1. Data from 7- to 10-day Batch Adsorption Experiments

Mase Mach Jack Ad Mad 10 Day	
Minisal M.C.Tb. 75 M. M.C.Tb. 75 <th></th>	
Image Image <th< td=""><td></td></th<>	
Image Image <th< td=""><td></td></th<>	
All All <td></td>	
Image Image <th< td=""><td></td></th<>	
Image Image <th< td=""><td></td></th<>	
Image Solution Solution <t< td=""><td></td></t<>	
Ann Sel Kd CPb JD Mail Table 6.255 01 75 010 5.715 01 75 010 010 5.715 01 75 010 010 010 5.715 01 75 010 <t< td=""><td></td></t<>	
A 16 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	
A CT D D C C D D C C C D D C C C D D C C C D D C	
A 555 01 5 715	
5.716 01 5.716 01 5.716 01 5.716 01 5.716 01 5.716 01 5.716 01 5.716 01 5.716 01 5.916 01 <td></td>	
1 255 01 5 715 01 5 715 01 5 715 01 5 715 01 5 715 01 5 715 01 5 715 01 5 715 01 5 715 01 6 7 7 7 7 7 7 7 7	
With Interational Interational and a second se	
X.	
<u> </u>	+++
85	
ŽZ	
87.010 80.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
- 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	
╔╦╗ ╱┼╓╷ ╶┼╶╎╴╎╴╎╴╎╴╎╴┥╸┼┑┥┑┥┑┥┑┥╸┼╸┥╼┼╸┥╸┼╸╎╸╎╸╎╸╎╸╎╸╎╸╎╸╎╸╎╸╎╸╎╸╎╸╎╸╎╸╎╸╎╸╎╸	
A 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Ample A Sample A GIA-7 C2A-7 C	
Sample M Sample M <t< td=""><td>5-9-6</td></t<>	5-9-6

B.7.1

Column definitions for Table B.7.1

- A Sample identification.
- B Initial weight of sediment in grams.
- C Weight of solution left in contact with sediment after equilibration steps.
- D Weight of added solution.
- E Initial solution concentration of lead in non-radioactive experiments $(\mu g/L \text{ or } ppb)$.
- F Initial solution concentration of ²¹⁰Pb in tracer experiments (μ Ci/mL).
- G Seven-day equilibrium solution concentration of lead in non-radioactive experiments (μ g/L or ppb).
- H Ten-day equilibrium solution concentration of 210 Pb in tracer experiments (μ Ci/mL).
- I Ten-day equilibrium soil concentration of ²¹⁰Pb in tracer experiments $(\mu Ci/g)$.
- J Lead R_d values determined for non-radioactive experiments using equation (A.3.4), (mL/g).
- K Lead R_d values determined for tracer experiments using equation (A.3.4), (mL/g).
- L Lead R_d values determined for tracer experiments using equation (A.3.3), (mL/g).

DISTRIBUTION

No. of <u>Copies</u>

<u>OFFSITE</u>

2 DOE/Office of Scientific and Technical Information

> U.S. Department of Energy -Headquarters R. Martinez EM-322, HQ

EPA Region 10 Hazardous Waste Division U.S. Environmental Protection Agency; 1200 Sixth Avenue Mail Stop HW-111 Seattle, WA 98101

Randall Smith, Acting Director

Golder Associates, Incorporated S. Eipert, Librarian 4104 148th Avenue N.E. Redmond, WA 98052

- 2 U.S. Navy J. Steele Naval Sea Systems Command, Code OBR; James K. Polk Bldg., Room 3W 62; 2521 Jefferson Davis Highway, Bldg. NC2 Arlington, VA 22202
- 5 Puget Sound Naval Shipyard R. J. Benze, Code 2300
 M. French, NRRO
 G. D. Kirk, Code 2300
 B. S. Koch, Code 100E
 M. G. Wentink, Code 2300.1
 Puget Sound Naval Shipyard Bremerton, WA 98314

No. of <u>Copies</u>

> 4 R. Dayal Ontario Hydro 800 Kipling Ave. Toronto, Ontario M8Z 5S4 CANADA

> > M. Fuhrmann Brookhaven National Lab Upton, NY 11973

Mr. Elmer Wilhite Westinghouse Savannah River Co. Savannah River Site Aiken, SC 29808-0001

Mr. Frank E. Goodwin International Lead Zinc Research Organization, Inc. 2525 Meridian Parkway P.O. Box 12036 Research Triangle Park, NC 27709-2036

. . .

1.11

DISTRIBUTION

No. of <u>Copies</u>

ONSITE

8

U.S. Department of Energy Richland Field Office J. M. Hennig R. M. Carosino A5-22 A4-52 C. E. Clark A5-19 R. M. Gordon (3) A6-55 R. D. Izatt A5-19 R. F. Guercia A5-21 31 Westinghouse Hanford Company

B. J. Broomfield	N3-13
C. K. Disibio	B3-03
G. C. Evans (5)	H4-57
K. R. Fecht	H4-56
C. J. Geier	B2-19
R. J. Giroir	R2-97
W. H. Hamilton	N3-13
D. G. Hay	T3-21
K. M. Hoffman	H5-29
D. G. Horton	H4-56
G. W. Jackson	· B2-35
G. L. Kasza	H5-29
R. E. Lerch	B2-35
K. A. Lindsey	H5-29
P. J. Mackey	B3-15
B. K. Olson	T3-02
R. D. Pierce	N3-13
S. M. Price	H4-57
R. J. Roberts	N3-13
G. S. Robinson	B2-19
J. W. Shade	R4-03
J. A. Voogd	R4-03
M. I. Wood	N3-13
EDMC (2)	H4-22
Central Files	L8-15
Environmental	
Technical	
Library	H4-56

No. of Copies

64 Pacific Northwest Laboratory

J. E. Amonette	K6-81
M. P. Bergeron	K6-77
B. N. Biornstad (5)	K6-96
R. W. Brvce	K6-96
K. J. Cantrell (5)	K6-81
M. A. Chamness	K6-96
L. J. Criscenti	K6-81
P. G. Doctor	K6-96
R I Frikson	K6-81
J. W. Falco	K6-78
A R Felmy	K6-81
M D Freshlev	K6-77
W. F. Kennedy Jr	K3-54
C. T. Kincaid	K6-77
G V Last	K6-96
$R = L_{PWis}(3)$	K6-96
S P Luttroll	K6-96
F M Murnhy	K3-61
B A Nanior	K3-54
W F Nichols	K5-34
K Phoads (5)	K3-5/
L H Sawyon	K3-54
$P = \frac{1}{2}$ Source (10)	NJ-34 VG 01
P I Skage	NU-01 VG 77
I I Smoot (E)	NU-11 VG 77
D. L. SHOOL (5)	NU-//
F. J. JLANSDURY	K3-33
$\begin{array}{cccc} 5 & 5 & 1 \\ 5 & 5 & 5 \\ 5 & 5 \\$	NO-90
R. E. Westerman	P8-44
J. K. WURStner Dublighing	K0-//
Publishing	W1 65
	K1-02
lechnical Report	D0 55
Files (5)	P8-55

<u>Plate 1.</u> Geologic Map of the 218-E-12B Burial Ground Showing Mapped Units and location of Samples Obtained for Laboratory Analysis

à.

•

. . .

.

ու այդ պետոն ծնվագեցներ և 24 մ. է. է. Ս.Ս.Ս.

DATE FILNED 4/1/93

· · ·