MICROSCOPIC CALCULATIONS OF Λ SINGLE PARTICLE ENERGIES

Q.N. Usmani and M. Sami
Jamia Millia Islamia, Jamianagar, New Delhi-110025, India
and
A.R. Bodmer
Department of Physics, University of Illinois at Chicago, IL-60680, U.S.A.
and
Physics Division, Argonne National Laboratory, Argonne, IL 60439-4843, U.S.A.

We analyze the Λ single particle energies B_Λ, obtained from (π^+, K^+) and (π^-,K^-) reactions\(^1\)
for hypernuclei from $A=11$ to $A=89$, in terms of phenomenological two and three body ΛN and ΛNN interactions which were obtained earlier from studies of Λp scattering, the s-shell hypernuclei and the Λ-binding to nuclear matter\(^2\). We show that the B_Λ values can be very well explained by use of the local density approximation based on calculating the Λ-binding to nuclear matter D as a function of density ρ, and the Λ momentum k_Λ. Thus, we calculate $D \equiv D(\rho,\varepsilon,k_\Lambda)$, where ε is the space-exchange parameter in the ΛN potential (for details see ref. 2 & 3). The various expectation values are evaluated using the Fermi Hypernetted Chain Approximation. To take into account the fringing field the D was fitted with density dependent effective ΛN potential of the following form

$$V_{\Lambda N}(\rho,\varepsilon,r) = V_0(\rho,\varepsilon)T_2^N(r)$$

where T_2^N corresponds to a 2π exchange mechanism with cutoff\(^2\).

To obtain the Λ single particle potential the empirical nuclear density $\rho(r_N)$ for the appropriate core nucleus is folded with $V_{\Lambda N}(\rho,\varepsilon,r)$:

$$U_\Lambda(\varepsilon, r_\Lambda) \equiv \int V_{\Lambda N}(\rho,\varepsilon,\vec{r}_\Lambda - \vec{r}_N)\rho(r_N) dr_N$$

For the Λ effective mass m_Λ^*/m_Λ, we calculate the difference $D(\rho,\varepsilon,k_\Lambda) - D(\rho,\varepsilon,0)$ which is then fitted with a quadratic momentum dependence. The B_Λ values corresponding to the Λ in the s, p, d and f orbitals are obtained by solving the appropriate Schrödinger equation.

We find that ΛN and ΛNN potentials, which give a consistent account of s-shell hypernuclei, of D, and of the Λp scattering data, explain very well the data (see fig.). The B_Λ values are consistent with a purely dispersive density independent ΛNN potential and with one...
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
which also has a 2π exchange component. We find a strong correlation between ε and the ΛNN potentials; $\varepsilon \approx 0.15 \pm 0.02$ with only a dispersive ΛNN potential and $\varepsilon \approx 0.30 \pm 0.02$ with a dispersive $\Lambda NN + 2\pi$ potential. From scattering data, $\varepsilon \approx 0.13$ to 0.38

As expected, we find m^*/m_Λ is proportional to ε. For $\varepsilon \approx 0.15$, we find $m^*/m_\Lambda \approx 0.90$, whereas for $\varepsilon \approx 0.30$, $m^*/m_\Lambda \approx 0.82$. In the phenomenological fits of ref. 4), based on a zero range approximation, the $m^*/m_\Lambda \approx 0.76 - 0.80$. These small values of m^*/m_Λ may be attributed to the use of zero range approximation.

The value of D which we obtain is quite well determined and insensitive to the particular form of potential used; $D \approx 27.9 \pm 0.4$ MeV.

This work is supported in part by NSF grant INT 9011045 and the U.S. Department of Energy, Nuclear Physics Division, under contract W-31-109-ENG-38.

References
END

DATE FILMED

01/24/92