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Squeezing dip moveout for depth-variable velocity

Dave Hale and Craig A rtley

ABSTRACT

Iii dip moveout (DMO) processing, velocity variations with deI)th can l)e hall-
dled approximately by squeezing a constant-velocity DMO opcrator to narrow its
impulse response. This squeezed DMO approximation provides a computationallv
efficient and reasonably accurate method of DMO correction for depth-varialfl,'
velocity.

DMO is squeezed by two modifications to constant-velocity DMO. Oac nxodifi-
cation is a squeezing function of time that depends only oa simple time averag,'._ (_t'
velocity that are likely to be known before DMO is applied. This squeeze fum't.i,_ll
ensures that squeezed DMO accurately handles moderately steep reflections, a_,(l
can be incorporated with simple time stretching before and after DMO, wit lice,lt
any changes to existing constant-velocity DMO me'_hods. The second nxo(iiti,'_-
tion is a constant squeezing factor, which may be used to tune squeezed Dkl()
to better handle steep reflections. This factor requires only trivial (:hang,'s l(_
constant-velocity DMO methods.

Tests with both synthetic and recorded seismic data suggest that squccz,,(l
DMO is an effective method for handling velocity variations with depth. These
tests also show that the differences between constant-velocity DMO and squeezed
DMO ca',_ be significant.

INTRODUCTION

Although velocity variations are routinely honored in normal movcout (NM())
and migration processing of seismic data, velocity variations are often ignored in ¢lil)
moveout (DMO) processing. Constant-velocity DMO processing is often used in ar_'_L_
where velocity is known to increase significantly with depth.

i

One reason for the popularity of constant-velocity DMO may be that precis(_ ill('tl,-

ods tbr handling velocity variations in DMO processing arc computati()nally incffi_'i(,l_t
or difficult to implement. Another may be that the rrrors in collst;_l_t-v(,lo_'it)" [)._I()
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processing are less significant than other errors in seismic data processing. Further-
more, Lynn et al. (1991.) suggest that errors in assuming constant velocity in DMO
processing may, in:some areas, compensate for errors due to assuming isotropic wave
propagation.

Effects such as anisotropy are today significant, in part, because of increasing de-
mands on the precision of seismic imaging. To improve the precision of DMO process-
ing, several authors (e.g., Artley, 1991; Meinardus and Schleicher, 1991; Witte, 1991)
have described methods for precise DMO correction where velocity varies with depth.
However, these algorithms for exactly handling depth-variable velocity tend to be
less efficient and more complex than their constant-velocity counterparts. Constant-
velocity DMO is a relatively simple process, and may be performed with a variety
of computationally efficient algorithms (e.g., Biondi and Ronen, 1987; Notfors and
Godfrey, 1987; Barry and Drecun, 1989; Hale, 1991).

In this paper, we describe a method for approximately handling velocity variations
with depth through simple and efficient modifications to constant-velocity DMO.
Briefly, we derive a time-variable scaling function that we use to squeeze a constant-
velocity DMO operator so that it approximates an exact DMO operator for a wide
range of offsets and reflector dips. This approach was first proposed by Rocca (1982,
personal communication), was developed by Rocca and others (Hale, 1983, 1988;
Bolondi and Rocca, 1985; Deregowski, 1985, 1987), and has been used in various
forms in the seismic processing industry. In this paper, we summarize and enhance
this approach, and demonstrate its effectiveness with applications to synthetic and
recorded seismic data.

To illustrate the effect of squeezing DMO, we applied both constant-velocity DMO
and squeezed DMO to data recorded near a salt dome, and obtained the stacks shown
in Figures la and lb, respectively. Identical NMO velocities were used to obtain
both stacks; the differences between the steep salt reflections of these two sections
are due entirely to differences in DMO procp'_sing. Time-variable squeezing of the
DMO operator has enabled steep reflections and horizontal reflections to be enhanced
simultaneously by CMP stacking.

In the following section, we describe tile squeezed DMO algorithm used to obtain
the stack of Figure lb, and show how time-variable squeezing can be incorporated
easily into several popular constant-velocity DMO methods to appro'_'imately handle
velocity va,riations with depth. Then, we ll,_,strate the effectiveness of _his squeezed
approximation with a synthetic data. example and a more thorough discussion of ti:e

recorded data example shown in Figure 1.

SQUEEZING DMO

The effect of constant-velocity DMO on reflection times is concisely summarized
by the well-known DMO ellipse (e.g., Deregowski and Rocca, 1981; Deregowski, 1986):

(:r2) '/_to=t , (1)
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FIG. 1. Stacked sections near a salt dome with (a) constant-velocity DMO and (b)
DMO squeezed to approximately handle velocity variations with depth. Squeezing
DMO for depth-variable velocity enables horizontal reflections and the steep reflection
off the salt dome to be enhanced with the same N:_'[O velocities.
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where to is zero-offset time (after DMO), tn is NMO-corrected time (before DMO),
x is horizontal distance measured from the source-receiver midpoint, and h is half
the source-receiver offset. Some DMO methods ("Kirchhoff" or "integral" methods)
use this expression directly to map each sr,mple of NMO-corrected seismic data to its
appropriate zero-offset time to and position x before CMP stacking. Others methods,
such as Fourier transform methods, perform the same mapping in a less direct way.
We use the term constant-velocity DMO to refer to all of these methods.

To approximately handle velocity variations with depth, we propose the following
squeezed version of the DMO mapping:

[ x211/2to= tn(l- S) + tns i- S_i(t,,)h2 (2)i,

As derived by Hale (1983, 1988), 7(t) is a time-variable squeeze function defined by

3 V44(t) 1 t dV2

-y(t)- 2 - - v,2(t----jd---T' (3)
where

and

are averages of the interval velocity fimetion of time v(t). The average V2(t) is the
familiar root mean square (rms) velocity. We will refer to the constant factor S in
equation (2) as the DMO squeeze factor. Note that squeezed DMO becomes constant-
velocity DMO for 7(t) = S = 1.

The effect of ?(t) and S

The effect of squeezing DMO via equation (2) is illustrated in Figure 2, for a
subsurface in which velocity increases linearly with depth. The dotted curve plotted
in Figure 2 represents the exact DMO mapping for this velocity function. (See, for
example, Popovici, 1990, or Artley, 1991, for a discussion of this exact mapping.) The
gray curve corresponds to the constant-velocity DMO mapping of equation (1), which
is significantly different from the exact DMO mapping. The black curve corresponds
to the squeezed DMO mapping of equation (2), and is a much better fit to the exact

curve, at least up to the cusps in the exact mapping. For this example, the squeeze
function "7(t) was computed via equation (3) for the known velocity function, and the
squeeze factor S in equation (2) was set to 0.6.

From equation (2), it is easy to show that the curvature of the squeezed DMO
mapping at its mflfimum (at x = 0) is

02to] = t,,0"_"2_-=o _,(t,,)h_'
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FIG. 2. Zero-offset time to as a function of distance x, for NMO time t, = 2.4 s
and half-offset h = 1.5. Times are plotted for three DMO methods: (gray) constant-
velocity DMO, (black) squeezed DMO, and (dotted) exact DMO. Squeezed DI_IO
closely approximates exact DMO up to the cusps in the exact curve. In this example,
velocity v varies with depth z according to t,(z) = 1.5 + 0.Sz.
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which is independent of the squeeze factor S. The effect of the squeeze function 7(t)
given by equation (&)is to match the curvature of the exact DMO mapping at x = 0.

• . , .

For a typical increase in velocity with depth, we find that this curvature matching
with _/(t) yields a DMO mapping that is narrower than the constant-velocity DMO
ellipse. To understand why, recall that the Cauchy-Schwarz inequality implies V4(t) >_
V2(t), so that the first two terms in equation (3) satisfy the inequality

3v2(t) 1 >1,
2 i (t) 2 -

where equality occurs only when velocity is constant. The third term in equation (3),
-t/V2. dV2/dt, is negative for velocity increasing with depth, so its effect is to push
the factor 7(t) back towards unity. Therefore, ?(t) could be less than or greater
than unity, depending on which terms are dominant. However, because the first term
consists of velocity averages over time t, the third term (with its velocity derivative)
has a more immediate effect on 7(t). For typical increases in velocity with depth, the
third term dominates, and 7(t) tends to be less than unity. This is why we refer to
equation (2) as a "squeezed" rather than "stretched" DMO mapping.

The purpose of the squeeze factor S is to improve the fit to the exact DMO
mapping for the steeper slopes away from x = 0. This factor is analogous to the
so-called "W f_ctor" used to handle depth-variable velocity with constant-velocity
Stolt migration (Stolt, 1978). For S < 1, the effect of this factor is to further squeeze
the DMO operator.

For typical velocity increases with depth, we have observed that the accuracy of
squeezed DMO depends less on S than on 7(t). For the example of Figure 2, we
found that choosing S = 0.4 (result not shown) would make the squeezed DMO curve
virtually identical to the exact DMO curve (up to the cusps in the exact curve).
However, for typical velocity gradients (less than the gradient of 0.8s -1 used here),
we find that S = 0.6 is often a reasonable choice, and the example in Figure 2
confirms that using S = 0.6 instead of the more accurate S = 0.4 yields an acceptable
approximation.

Squeezing DMO by Fourier transform

The squeezed DMO mapping of equation (2) may be used directly in integral
methods for DMO correction. A similar modification can be used to squeeze DMO
by Fourier transform. For constant velocity, DMO may be performed by the following
change of Fourier integration variable ft'ore NMO time t_ to zero-offset time to:

k,2h21/2to = t. l + _:ot.] (4)

(Hale, 1984), where k is wavenumber and _'0 is zero-offset frequency. (The ratio/,:/w0
is equivalent to reflection slope in a zero-offset section,) For depth variable velocity,
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we replace this mapping with

" [ 7(ta)k2h211/2to=t,,(1-S)+t,,S 1+ _ .] . (5)

Using the method of stationary phase (e.g., Liner, 1990), one can analytically evaluate
the impulse response of squeezed DMO by Fourier transform implied by equation (5).
The shape of that impulse response is approximately elliptical and is given by the
squeezed DMO mapping of equation (2).

Squeezing DMO via time stretching

The simplest implementations of DMO by Fourier transform, based on either

equation (4) or (5), are computationally inefficient. To improve the computational
efficiency of DMO by Fourier transform, Notfors and Godfrey (1987) proposed a
logarithmic time stretching. This stretching first maps NMO time t, to a stretched
NMO time _-, via the nlapping

7, = Tc lh(rhTc), (6)

where T'c is a time constant. After logarithmic time stretching, DMO can be approx-
imated by an efficient multiplication in the frequency domain with the factor

exp iw, Tc 1 +-_2--_7 - 1 , (7)

where wr denotes stretched frequency corresponding to stretched time v. The result-
ing DMO-corrected data are then unstretched back to zero-offset time to. Liner (1990)
provides a thorough discussion of this coustant-velocity DMO method, including an
analysis of its accuracy.

Unfortunately, logarithmic time stretching is appropriate for constant-velocity
DMO only. Therefore, we now derive a new (non-logarithmic) time stretching function
that can be used beforeand after any constant-velocity DMO method to enable that
method to approximately handle velocity variations with depth. For the particular
method of DMO by Fourier transform, this new time stretching and the logarithmic
time stretching can be combined to account for depth-variable velocity.

Recalling that the squeeze function 7(t) in equation (2) was derived to match the
curvature (second derivative) of the exact DMO time mapping at x = 0, we seek a
time stretching function that will enable constant-velocity DMO to produce this same
curvature. For small x, we approximate the DMO mapping of equation (2) with

thz 2

to _ tn 27(t,)h2. (8)

Again, note that the squeeze factor S does not appear in this approximation. We
then seek a time stretching function u(t) such ti,_t

u(t")x (9)
u(t0)_u(t.) 2h 2 .
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The motivation behind equation (9) is that, in the stretched time coordinate u, we
can use constant-velocity DMO because the squeeze function 7(tn) does not appear
in this equation.

Take the ratio of equations (9) and (8) to obtain

u(to) - u(tn) u(t,)7(tn)
to -tn t_

For small x, to _ t,,, and this equation becomes a differential equation for the time
stretching function u(t)'

du uT(t)
dt- t '

or

d(ln u) 7(t)
dt t '

with solution

u(t) = Tc exp ds . (10)

For any velocity variation with depth, we can evaluate the squeeze function 7(t), and
then use equation (10) to evaluate the time stretching function u(t). After stretch-
ing time with this function, we can use any constant-velocity DMO method, and
afterwards unstretch time using the same function. The result of this stretching and
unstretching is that we will have enabled constant-velocity DMO to approximately
handle velocity variations with depth.

In the special case of DMO by Fourier transform, we may combine the new stretch-
ing defined by equation (10) and the logarithmic stretching defined by equation (6)
to obtain

f o°. T.(tn) = Tc dsa. (11)s

For constant velocity, 7(t) - 1, and this combined time stretching function becomes
the logarithmic stretching function of equation (6).

Time stretching before and unstretching after constant-velocity DMO will produce
a DMO operator with the correct curvature at x = 0, but it does not account for

the squeeze factor S in equations (2) and (5). Recall that this factor does not _ffect
the curvature at x = 0, but that it enables the squeezed DMO operator to better
approximate the exact DMO operator for steep reflection slopes away from x = 0.

Fortunately, because we have assumed that the factor S is constant, it can be

easily incorporated into any constant-velocity DMO method. For example, after time
stretching according to equation'(li), we would modify Notfors and Godfrey's (1987)
DMO method by replacing the phase-shifting factor in equation (7) with

exp iw_T_S 1 + S_T;2 - 1 . (12)
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This modification is trivial, and requires no significant increase in computational
cost. Furthermore, this modification may be used even when velocity is constant to
improve the accurac3/of Notfors and Godfrey's approximation. As shown by Liner
(1990), equation (7) yields an approximate DMO operator that is wider than the
constant-velocity DMO ellipse. We found that using S _ 0.6 in equation (12) all but
eliminates the error in this approximation for constant-velocity DMO. Combining
this factor of 0.6 with an additional factor of 0.6 to handle depth-variable velocity,
we found empirically that S _ 0.6 x 0.6 _ 0.4 provides a good approximation to
the exact DMO operator when using Notfors and Godfrey's method with the time
stretching of equation (11).

SYNTHETIC DATA EXAMPLE

To test squeezed DMO, and to empirically determine a reasonable value for the
squeeze factor S, we applied squeezed DMO to synthetic seismograms computed for
a subsurface model in which velocity increases linearly with depth z_ according to
v(z) = 1.5 + 0.Sz km/s. The model, shown in Figure 3, contains five reflectors, each
with a dipping and horizontal segment. Dips for the dipping segments ranged from
30 to 90 degrees in 15 degree increments.

One of the CMP gathers from this synthetic seismic survey is plotted in Figure
4a. This CMP gather contains ten distinct events, five of which exhibit the normal
moveout expected for horizontal reflectors. The other five events, including the last
three events in this gather, which correspond to dips of 60, 75, and 90 degrees, exhibit
the decreased moveout associated with dipping reflectors. NoPe that the last event in
Figure 4a exhibits no moveout (no change in reflection time _ !th offset), as expected
for a reflector dip of 90 degrees.

NMO correction of the CMP gather of Figure 4a, using the known rms velocity
function V2(t), yields the CMP gather plotted in Figure 4b. Five of the events in
this gather, those corresponding to horizontal reflectors, have been well aligned by
NMO. As expected, the five events corresponding to the dipping reflectors have been
over-corrected. A typical mute has been applied to zero events at early times und far
offsets that are stretched significantly by NMO correction.

By applying constant-velocity DMO to the entire set of NMO-corrected synthetic
traces (not just the CMP gather shown here), we obtained the CMP gather plotted
in Figure 4c. In this example, constant-velocity DMO fails to align the reflections
from the dipping reflectors, particularly for the steeper dips, corresponding to the

- last three events in this gather. In effect, constant-velocity DMO has gone too far in
correcting for the errors in NMO correction seen in Figure 4b. Here, the increase in
velocity with depth implies that we need less DIVlO correction than that provided by
constant-velocity DMO.

Squeezed DMO, with 7(t) < 1 computed accordil_g to equation (3), results in
the CMP gather shown in Figure 4d. The alignment of reflections corresponding
to dipping reflectors has been improved significantly, with only slight errors visible
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Distance (km)
0 1 2, 3

i
i

FIG. 3. Subsurface model used to generate synthetic seismic traces. The CMP
gathers shown in Figure 4 correspond to the surface location marked here with ;t
triangle. The five reflectors, each consisting of a dipping _nd horizontnl segment,
yield a total of ten reflections in each of those CMP gathers.
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FIG. 4. (a) CMP gather for the model shown in Figure 3. (b) After NMO correction,
(c) After constant-velocity DMO. (d) After squeezed DMO. The five reflections in (li)
that are misaligned by NMO correspond to dipping reflectors. The last reflection _n
each gather corresponds to a dip of 90 degrees.
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for the steeper dips. In this test, squeezed DMO was performed using Notfors and
Godfrey's (1987) DMO by Fourier transform, but with the modified time stretching
defined by equation ('11) and the modified phase-shifting factor of equation (12). As
discussed above, we used a squeeze factor of S _ 0.4 for this DMO method. •

RECORDED DATA EXAMPLE

Like the synthetic data results of the previous section, the example of squeezed
DMO applied to recorded data shown in Figure lb was obtained with our modified
version of Notfors and Go_f_.y's Fourier transform method. In this example, how-
ew_r, we did not know a priori the velocity averages required to compute the squeeze
fimction ?(t). Therefore, we estimated the rms velocity function V2(t) by performing
a typical NMO-based v,_locity analysis at several CMP locations. The resulting es-
timates of V2(t) were then averaged and smoothed to obtain the function plotted in
Figure 5.

RMS velocity (km/s)

OI 1.5 2i0 2i5 3i01

FIG. 5. The rms velocity function used to determine the squeeze function ?(t) in
DMO processing for the stack shown in Figure lb.

We constrained the rms velocity function to be smooth for two reasons. First,

the derivative with respect to time t of V)(t) and, hence, ?(t) in equation (3) should

12
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more detailed vel_)city function would likely be inconsistent with the approximations
used to derive equation (3). From this smooth estimate of V2(t), we computed the
average V4(t) and the squeeze function 3'(t).

To determine those times for which squeezed DMO is most likely to yield signifi-
cant improvement, we used the computed squeeze function ?(t) and equations (4) and
(5) to estimate the difference in the zero-offset times to predicted by constant-velocity
DMO and squeezed DMO. Assuming that this difference is sign:.',_cant when it exceeds
half the dominant period in the recorded data, we define significance of the squeeze
function 7(t) as the difference between squeezed DMO and constant-velocity DMO,
expressed in units of half-cycle time shifts. Significance is plotted in Figure 6 as a
function of time, for a reflection slope (k/cOo) of 0.7 s/km, a source-receiver offset (2h)
of 3 km, and a dominant frequency of 30 Hz. These parameters correspond roughly
to the steep reflection in Figure 1 and to the length of the recording cable.

Significance
0 1 2 3 4 5

1 ...........,...........i...........i......... i ..........

2 ...........i..........

......-i....................i...........i...........

FIG. 6. Significance of the squeeze functioa ^t(t) as a function of time t, for the
velocity function shown in Figure 5, a reflection slope of 0.7 s/km, an offset of 3
km, and a dominant frequency of 30 Hz. The squeeze function is likely to be most
significant for those reflections that just survive the mute, just below 2 s for a 3 km
offset.

Ignoring times less than about 2 s, which would typically be muted for an offset
of 3 km, Figure 6 shows that the squeeze function -/(t) is most significant for times

13
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between 2 and 3.5 s. We chose the range of times shown in Figure 1 specifically to
highlight the differences between constant-velocity DMO and squeezed DMO where
those differences are most significant.

The stack of the steep reflection in Figure la, obtained with constant-velocity
DMO, could be improved by modifying the velocities used in NMO correction. Tests
with the synthetic data illustrated in the example above suggest that decreasing the
NMO velocities might compensate for the error in constant-velocity DMO. However,
tuning NMO velocities to account for errors in constant-velocity DMO may degrade
the stack of horizontal reflections.

Figure 7 illustrates this point with a comparison of constant-velocity stacks com-
puted with constant-velocity DMO and squeezed DMO. These stacks correspond to
a small window extracted from the center of the stacks in Figure 1. With squeezed
DMO (Figure 7b), both the horizontal and steep reflections at about 2.6 s are best

stacked with a velocity somewhere between 2.10 and 2.15 km/s. With constant-
velocity DMO, the steep reflections are best stacked with a lower velocity, between
2.00 and 2.05 km/s. In this example, squeezed DMO has enabled both the horizontal
and steep reflections to be optimally stacked with the zame NMO velocity.

The effect illustrated in Figure 7 may not always be consistent. For example, Lynn
et al. (1991) suggest that ignoring anisotropy may, in some areas, compensate for
the errors in constant-velocity DMO. In such areas, if we ignore anisotropy, we may
observe that constant-velocity DMO enables both horizontal and steep reflections to
be stacked with the same velocity, and that squeezed DMO does not.

CONCLUSION

Testswithbothsyntheticand recordedseismicdatashow thata simplesqueezed

versionofconstant-velocityDMO may be usefulwhen imagingsteepreflectorsina
subsurfacewhere velocityincreaseswithdepth.In thesimplestimplementationof

squeezedDMO, we simplystretchtimebeforeand unstretchtimeafterperforming

constant-velocityDMO. The timestretchingfunctionmay be easilycomputed from
a squeezefunction7(t),which,inturn,dependson velocityaveragesthatarelikely

tobe available.To furtherimprovesqueezedDMO forsteepdips,we havealsointro-
duced a squeezefactorS,whichrequiresonlytrivialand inexpersivemodifications
toconstant-velocityDMO algorithms.

\VeweremotivatedtosqueezeDMO bythesuccessthatother,_havehad withtime

stretchingin$tolt's(1978)constant-velocitymigration,inordertoapproximately,but

efficie:'21y,handlevelocityvariationswithdepth.BecauseDMO correctiongenerally
moves seismiceventslessthanmigration,errorsinDMO correctiontendtobe less
significantthanthoseinmigration.Therefore.evenwhere theerrorsinStolt._tret(:h

migrationaresignificant,we may expectsqueezedDMO to providean adequat_
approximation.

In thispaper,we haveomitteda thoroughdiscussionofthedifferencesbetweon

squeezedDMO and DMO methods thatareexactfordepth-variablevelocity.This

= 14
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Velocity (km/s)
1.95 2.'00 2.05 2.10 2.15 2.20
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(a)
Velocity (km/s,

1.95 2.00 2.05 2.10 2.15 2.20
I = .I..... t ............... I. ,,,, ,,, I ...............J ..........

2.4
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(b)
FIG. 7. Constant-velocity stacks computed after (a) constant-velocity DMO and (b)
squeezed DMO. For each velocity, the stack shown here corresponds to a small window
taken from the center of the corresponding section in Figure 1. With squeezed DMO,
the steep reflection and the horizontal reflections at about 2.6 s are best stacked with
the same velocity, between 2.10 and 2.15 km/s.
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discussion will be provided in a separate paper. One important difference that is too
important to omit here is that squeezed DMe cannot account for crossline reflection
point smear in 3-D seismic surveys. As shown by Perkins and French (1990), velocity
variations with depth imply a 3-D DMe operator that is not confined to lie in the
inline plane containing the source and receiver locations. Time stretching before
and unstretching after constant-velocity 3-D DMe cannot approximate the crossline
component of the exact 3-D DMe operator.
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