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ABSTRACT 
This final report summarizes the progress during the three years of a project on 
Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is 
divided into three sections: 

(i) reservoir description 
(ii) Scale-up procedures 
(iii) Outcrop investigation 

The first section describes the methods by which a reservoir can be described in 
three dimensions. In this section we apply the technique of simulated annealing to 
incorporate dynamic information. Dynamic information includes any information 
which is a result of flow performance of the reservoir. The two types of dynamic 
information included are well test data and production data. To include the dynamic 
data more efficiently, we first convert the information into equivalent static 
information. For well test data, we show that, using an analytical solution for 
radial geometry and combining it with the Cartesian coordinate system, we can 
generate reservoir description which honors the well test pressure data as well as 
the pressure derivative data. The technique is also extended to include the porosity 
heterogeneities as well as permeability anisotropy. When applied to multiwell well 
testing problem, we observe that the constructed reservoir description is superior to 
the description created using only conventional univariate and spatial constraints. 
For inclusion of production data, we develop equivalent static constraints for 
primary recovery as well as secondary recovery. We observe that primary 
constraints which have the most influence on reservoir flow performance are the 
near well permeability value and near well bore pore volumes. For secondary 
recovery performance, the connectivity between injectors and producers is a 
significant parameter in determining the flow performance. The developed 
technique is extended to a full field scale simulation to show its effectiveness in 
capturing the overall field as well as individual well performance. 

The next step in reservoir description is to scale up reservoir properties for flow 
simulation. The second section addresses the issue of scale-up of reservoir 
properties once the spatial descriptions of properties are created. A new analytical 
method is proposed to estimate a permeability tensor based on small scale 
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permeability variations. In the previous report, a method which captures the scale 
of small scale permeabilities in two dimensions was proposed. This report extends 
the method to three dimensions. The method has been validated by comparing the 
results with the numerical results. 

An ideal environment to test many of these techniques is to use outcrop data. One 
of the reasons is that we can collect detailed information on a smaller scale. The last 
section describes the investigation of an outcrop. The outcrop is an analog of 
Bartlesville sandstone. We collected extensive data on the outcrop. The collected 
data were analyzed and interpreted. We observe that geologically the data can be 
divided into four discrete genetic interval (DGI) units. Three of these units (channel 
fill) are further divided into three subfacies - upper, middle and lower. Using the 
geological description, a three dimensional description of the outcrop was created 
which honors the observed geological information as well as the petrophysical data. 
Preliminary flow simulation results indicate that the large scale geological 
description has a stronger impact on the flow performance than the small scale 
variations in petrophysical properties. Further, collection of vertical connectivity is 
very critical in honoring the reservoir performance. 
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EXECUTIVE SUMMARY 
This final report contains three sections related to Reservoir Characterization of 
Pennsylvanian sandstone reservoirs. The first section discusses the reservoir 
description process of including dynamic information. The second section describes 
the scale up of reservoir properties generated by reservoir description process. The 
last section explains the investigation of an analogous outcrop. 

Chapter One, titled "Inclusion of Production Data for Reservoir Description," 
describes a method to incorporate the production data in the simulated annealing 
process to generate the reservoir descriptions. Production data are readily available 
compared to many other types of data. It is critical that dynamic information such 
as production data should be included as part of the reservoir description process. 
In this section, we describe a method of incorporating two types of dynamic data: 
well test data and production data. The approach for including the two types of data 
is the same. First convert the dynamic information into equivalent static 
information; then include the static information as part of the constraint in reservoir 
description process. We use a method of simulated annealing to include these static 
constraints. Although computationally demanding, this method is chosen because 
of its flexibility and robustness. 

One of the most important constraints in reservoir description process is the well 
test data. To define the proper constraint for incorporating the well test data, we 
first need to identify a proper averaging technique which represents the well test 
data. We have observed that Oliver's approach (SPEFE, Sept. 1990, pp. 319-24) 
is adequate to determine the proper averaging functions to describe the well test 
data. If the reservoir is divided into several concentric rings, and we calculate the 
geometric averages of permeability values within each ring, we can then apply 
Oliver's weighting functions to estimate instantaneous permeability value 
represented by the pressure transient data. This method can be applied at many 
different times so that the pressure transient characteristics can be reproduced when 
the generated description is used to simulate the well test data. We have observed 
that the inclusion of this constraint can successfully reproduce the pressure as well 
as pressure derivative characteristics of the well data. We have investigated the 
synthetic data over a wide range of heterogeneities and have observed that the 



method works for wide ranging conditions. In addition to using Oliver's method, 
we have investigated the method proposed by Feitosa et al. (1993). The results 
indicate that this method can also be used to properly incorporate the well test 
permeability data. An added advantage of using this method is that the computation 
speed of simulated annealing method is also enhanced. 

In addition to investigating variations in permeability values, we also investigate the 
variations in porosity on well testing performance. We observe that the effect of 
porosity on the pressure response is secondary and can be ignored. We also 
investigate the effect of permeability anisotropy on pressure response. We develop 
a method which, by transforming the grid dimensions to reflect the anisotropy, can 
appropriately account for the permeability anisotropy. 

In the second part of the section, we discuss the inclusion of production data during 
both primary and secondary recovery processes. No methods currently exist which 
will allow incorporation of production data in reservoir description. To decide an in 
fill well location, it is very important to understand thp reservoir continuities. More 
continuous the reservoir, less is the need to drill an additional well. The type of 
information typically available is oil rates, gas oil ratio as well as water oi1 ratio, oil 
production and water injection rates during secondary oil recovery. We present a 
method to incorporate the production information related to both primary and 
secondary production. Based on several numerical experiments, it is observed that 
the primary production rate is closely tied to the near well bore permeability values. 
Also, over the life of the primary production, the pore volume drained by the well 
can also play a significant role in deciding the future performance. During 
secondary oil recovery, the connectivity between injector and producer is important 
for properly defining the inter well distributions of reservoir properties. By 
including these parameters, the uncertainty in the production performance can be 
significantly reduced. We extend this work to a full scale field study and show that 
the technique is equally useful for the field scale simulation as well. Essentially, all 
the producing curves from different realizations collapse into a single curve. In 
addition, with the help of these constraints, uncertainties with respect to inter well 
distributions of reservoir properties are considerably reduced. This should help us 
in better planning of in fill wells. 

Chapter Two, titled "Effective Properties of Reservoir Simulator Grid Blocks," 
presents the analytical method to upscale the small scale distributions in three 
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dimensional grid blocks. First, we briefly describe that small scale permeabilities 
present within two dimensional grid can be effectively up scaled through 
permeability tensor. The results are validated through both single phase and two 
phase reservoir simulations and comparing the results of detailed simulations with 
the simulations using up scaled properties. Although useful, in field scale 
simulations, we need an ability to describe the effective permeability tensor for a 
three dimensional gird block. This report presents preliminary results on up scaling 
procedure in three dimensions. As a first step, we have only considered small scale 
permeability values to be isotropic with the non diagonal elements to be zero. 
Following the method for the two dimensional grid blocks, an analytical procedure 
is established by considering the flow in one direction at a time and assuming no 
flow in any other two directions. Under steady state conditions, with some 
additional assumptions with respect to cross flow, an analytical solution can be 
established for a full permeability tensor which includes nine elements. A 
comparison between the analytical and numerical results is very encouraging for 
this case. We believe that the method can be easily extended to other complex 
permeability distributions for a proper up scaling in three dimensions. 

In Chapter Three, titled "Outcrop Studies," we discuss in great detail the 
investigation of Bartlesville outcrop which involved both geological and 
engineering studies. Data were collected on the surface of the outcrop as well as by 
drilling ten wells behind the outcrop. Wells were cored, logged and scanned using 
gamma ray logs. Permeability measurements were taken using minipenneameter as 
well as conventional core analysis methods. Using all the available data, first, the 
geological description was created. This description identified four distinct 
geological units, three channel fill and one splay. These four units were mapped 
using facies biased procedure. The channel fill was further divided into three 
subfacies - upper, middle and lower. The analysis of vertical variograms revealed 
that part of the geological description can be quantified using the variogram 
structure, especially, the hole effect and periodic behavior of the data. Using the 
geologic information, a two step conditional simulation procedure was used to 
construct petrophysical properties description which honors both the geological and 
engineering data. The description was used to study the flow performance in this 
simulated reservoir. We observed that the geological description has a bigger 
impact on the flow performance than the variations in the petrophysical properties. 
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Also, one of the biggest uncertainties in reservoir descriptions, which has a 
significant impact on the flow perfomance, is observed to be vertical permeability. 

To summarize the conclusions based on this project, we have accomplished all the 
tasks we intended to complete. We developed a procedure to generate a three 
dimensional description of the rock properties using a simulated annealing 
procedure. We were able to incorporate dynamic data as part of the reservoir 
description. This allowed us to better describe the interwell distributions of 
reservoir properties, and hence potential in fill well locations. We tested the 
application of fractal methods for characterizing the reservoir properties. We 
established a method to scale up permeability for a two as well as a three 
dimensional grid blocks. Finally, we investigated the application of the outcrop 
data for detailed reservoir description. 
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CHAPTER 1 

Inclusion of Production Data for Reservoir Description 
R. Sagar, K.  Hird and M .  Kelknr 

Reservoir description requires inclusion of various types of qualitative and 
quantitative information in assigning reservoir properties at unsampled locations. 
One of the most difficult types of data to incorporate is dynamic data. Incorporation 
of dynamic production data for describing reservoir properties and parameters 
requires an inverse modeling technique. Primary and secondary production 
parameters and the pressure response during a well test are measures of dynamic 
properties of a reservoir. A dynamic property of a reservoir that most influences its 
performance is the permeability and the distribution of permeability is a measure of 
heterogeneity of the reservoir. It is easier to effectively incorporate production 
information, specifically primary and secondary performance and the pressure 
response during a well test, if it can be converted into equivalent static information. 
This chapter discusses the procedures of incorporating the well test and the 
production data as part of the reservoir description. In the first section, we present 
the forward problem - how can production performance parameters (such as water- 
oil ratios and break through times) and the pressure response of a reservoir/well be 
represented as equivalent static information. 1 - 1 9  1.2 This will allow us to describe 
the permeability heterogeneity consistent with the production data. In the second 
section, we discuss the method used for incorporating production data as part of the 
reservoir description. The method used is simulated annealing which has the 
flexibility to incorporate various constraints. In the last section, we present the 
results of incorporating dynamic information as part of the reservoir description. A 
significant improvement in reservoir description is observed after the dynamic 
information is incorporated. This will allow us to better describe inter well 
distributions of reservoir properties, which will further help in deciding in fill well 
locations. 



1.1 Forward Problem 

In this section, we describe the procedures used for transforming dynamic 
information into equivalent static information. In the first part, we describe the 
transformation of well test data into equivalent permeability distribution. In the 
second part, we present transformation of primary and secondary data into 
equivalent static information. 

1.1.1 Well Test Permeability 

The effective radial permeability calculated by well test analysis is based on a 
classical analytical solution to the diffusivity equation. The solution for the infinite- 
acting or transient flow period can be written as: 1*3 

(1.1) 
1 
1 log t + log (A) - 3.2275+. 86859s 

162.6qBp [ 
k,,h 1 @ W ? W  

Pw/ = Pi - 

where the symbols used are standard and defined in the nomenclature. The slope 
(m) of the semilog straight line plot of pressure vs. time determines the well test 
permeability, 

kwt = -162.6- 4BP 
mh 

This solution is based on the assumption that the reservoir is homogeneous; 
however, no reservoir is homogeneous and the degree of heterogeneity is a 
function of the lithology, and the depositional and post-depositional environment of 
the reservoir. For practical purposes, it is assumed that the permeability determined 
by well test analysis is an effective permeability representing some average within a 
radius of investigation or drainage radius, which is influenced by the producing 
well. The classical definition of radius of influence is given by Van P001en.l.~ In 
physical terms it defines the radius over which all the reservoir properties have 
influenced the well flowing pressure.l-5 It is given by the following equation: 
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Various authors have derived different values for the coefficient, A .  be la5  defines 
A to be 0.03248. As the time of the test increases more of the reservoir is 
influenced by the well and the radius of drainage increases. However, this 
definition of radius of drainage is questionable in the presence of heterogeneities. 1.6 

In order to effectively incorporate well test data for the purpose of description of 
small scale permeability heterogeneities, one must first address the forward problem 
- what kind of average does the well test derived permeability represent and over 
what region of the reservoir is this average valid? 

The analytical solutions for a heterogeneous reservoir begin by addressing the 
forward problem, e.g., for a well producing a single-phase fluid in an infinite 
acting reservoir. First we present a mathematical solution of the diffusivity 
equation for heterogeneous reservoirs. 

In this work we consider the mathematical solutions presented by 
Feitosa. 

and 
The analytical solutions are based on the following assumptions: 

*constant rate production, 
*uniformly thick reservoir with closed upper and lower boundaries, 
*areally infinite reservoir, 
*negligible wellbore storage and skin effect, 
*constant porosity, thickness and rock compressibility, 
*single phase fluid with constant viscosity and compressibility, 
*uniform initial pressure throughout the reservoir, 
*negligible gravity and capillary pressure effects, 
*fully penetrating well, and 
*rock and fluid properties independent of pressure. 

The governing equations describing the forward problem of the pressure response 
in an areally heterogeneous reservoir producing a slightly compressible fluid 
through a single well are given by the following’.’ Initial Boundary Value Problem: 

3 



where the dimensionless terms are defined as: 

dimensionless radius, T D  : 

r rD = - 
r w  

dimensionless time, t, : 

0. 006328kreft 
t, = 

4Fd 

dimensionless pressure drop, p ,  : 

krefh [Iz: - p(r,  e,t>] 
= 141.2qBp 

and 

(1.11) 

(1.12) 

(1.13) 

(1.14) 

where the time is measured in days and kref is an arbitrary reference value of 

permeability. 
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Oliver's Solution 

Oliver'.' investigated the averaging process of permeability variations in r and 
6 coordinates. He solved the diffusion equation for the pressure response of a well 
situated in an infinite reservoir where permeability is an arbitrary function of 
position, he assumed small permeability variations about some mean. Some type of 
averaging is inherently present when an effective permeability is determined from 
the slope of the semilog plot; therefore, the averaged permeability of the small scale 
permeabilities within the area of investigation is determined from the slope of the 
semilog plot at any instant. Oliver's solution only allows for small variations about 
a mean value since the overall solution is determined by a first order perturbation 
technique to the generalized problem. Neglecting wellbore storage and skin, the 
dimensionless pressure derivative for a heterogeneous reservoir is given in a 
dimensionless radial'** form by: 

(1.15) 

For our investigation, we consider only the transient flow period for which this 
solution is valid, and analyze the appropriate time versus pressure data. Note that 
for a homogeneous reservoir kD(rD,8) = 1, and Eq. 1.15 gives the dimensionless 

pressure derivative for a homogeneous reservoir, i.e., plWD= -. It can be shown 

that the integral over a region is a normalized form of the harmonic average of 
permeabilities over a region. K(rD,tD) is the weighting or kernel function and is 
given b y  

1 
2 

(1.16) 

Eq. 1.16 is valid for dimensionless times greater then 100 and W,,,,,, is the 
Whittaker function defined in Reference 1.9. For further details on this solution see 
Reference 1.7. Of more importance, i s  the physical significance of the weighting 
function. The shape of this function (Fig. 1.1) is used to determine the area of 
investigation. The inner and outer radii of the area of investigation are defined as 

5 

I). - 



. .  

Figure 1.1: Weighting or kernal function defining the radii of investigation, after 
Oliver. 1.7 
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the minimum and maximum radii at which the weighting function becomes so small 
that the permeabilities outside the region do not contribute to the slope of the 
semilog plot. A normalized plot of the weighting function (Fig. 1.1) shows that 
98% of the contribution of the weighting function comes from the area 
encompassed by the dimensionless radii of rD = 0.12& and 2.34&. Thus, 
the kernel function gives the weighted average of the well test permeability within 
these radii. Oliver claims that by using the appropriate weighting function, the 
average radial permeability can be estimated and that the area under the curve is a 
measure of the cumulative contribution to the permeability estimate. 

' Reference 1.8 has shown that Eq. 1.15 can be represented as: 

r rw 1 

where, k A ,  is the instantaneous permeability defined by: 

- 1  k = -  
2 

and the instantaneous pressure derivative is: 

JAPW Apk = - 
d In t 

(1.17) 

(1.18) 

(1.19) 

and the pressure drop is, 

A P ~  = Pi - Pw/ (1.20) 

E( rDj) is some arbitrary permeability average of grid block permeabilities within an 
annular region around r D j  for j = I,.. .. Nr.  Eq. 1.17 is important and fundamental 

to the preceeding work because it explicitly relates the instantaneous well test 
permeability, k^, to the kernel function and a radially-distributed arbitrary 
permeability average in the theta-direction. It implies that the area under the kernel 
function represents the weight applied to each of the permeability averages in the 



... . 

annular regions (r,-, + r j ) ,  and the weighted harmonic average of the effective 

radial permeability averages is a measure of the cumulative contribution to the 
instantaneous well test permeability, k^ .  

The Inverse Solution Algorithm (ISA) 

Feitosa’.* extended Oliver’s solution and developed an Inverse Solution Algorithm 
(ISA) to estimate the equivalent radial permeability distribution as a function of 
distance from the well. The ISA algorithm has the advantage over Oliver’s solution 
in that it can be applied to large radial variations in permeability. Instead of using a 
reference permeability, k,,, to define the dimensionless time, to, it is defined in 

terms of an instantaneous permeability determined from instantaneous pressure 
derivative: 

A 0.006328Lt 
t, = +Wt 

where, 

and 

(1.21) 

(1.22) 

ISA sequentially determines the equivalent radial permeability distribution for each 
zone using the following relationships: 

(1.24) 

%D 

where, 
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and 

?jD = g 

(1.25) 

(1.26) 

(1.27) 

(1.28) 

Once A( l/&,,,) is calculated the permeability at zone n is determined by: 

(1.29) 

The radius of investigation for the solution at zone n is defined as: 

( 1.30) 

Comparisons of simulation results using the calculated radial permeability 
distribution and actual permeability distribution have resulted in excellent agreement 
between computed pressures, pressure derivatives, and permeability 
distri butions.l.8 

Feitosa also presented analysis of the solution to areally heterogeneous reservoirs, 
where penyeability varies in (7; 6) and (x ,  y ) . He analyzed the pressure derivatives 
of such distributions and determined equivalent radial permeability distributions that 
honor the original pressure behavior of the reservoir during a well test. 

To effectively use a well test derived permeability in a stochastic conditional 
simulation method, the well test permeability must impose a deterministic constraint 
on the distribution of surrounding small-scale permeabilities within the area of 
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investigation. Therfore, an averaging model that defines the permeability 
distribution within the annulus of investigation has to be developed. The pressure 
bahavior of numerous permeability fields, with varying degrees of heterogeneity are 
used along with analytical solutions proposed by Oliver'*7 and Feitosa'** to 
determine the averaging process and the region of investigation. 

The Base Case 

The first step is to generate synthetic permeability distributions and numerically 
simulate pressure drawdown tests. We assume that these distributions and pressure 
responses are the truth or base cases. A two dimensional permeability field is 
generated using the Turning Bands Method (TBM). '-'O* '.'' TBM generates an 
unconditional correlated distribution. The distribution is unconditional since there 
are no available data at grid blocks that must be honored. The specified univariate 
and spatial statistics of the distribution are honored. For simplicity a square 
reservoir with square grid blocks is considered. An example of a permeability field 
generated using this method is shown as a greyscale map in Fig. 1.2. In order to 
draw general conclusions, we generate numerous base cases with varying degrees 
of heterogeneity. A summary of the univariate and spatial statistics of the generated 
distributions is given in Table 1.1. Using this permeability field, a numerical fluid 
flow simulation of a drawdown is performed on the reservoir. It is assumed that 
all other reservoir properties are constant and only the distribution of permeabilities 
is varied. The reservoir properties are given in Table 1.2. 

A well producing at a constant rate is placed at the center of the grid block at the 
center of the reservoir. A finite difference numerical fluid flow simulation of the 
reservoir is performed using ECL 100,'.'2 a commercial reservoir simulation 
package. ECL 100 corrects grid block pressures to well flowing pressures using 
Peaceman's approximation. '.13 

The pressure and pressure derivative responses for the permeability field shown in 
Fig. 1.2 are shown in Fig. 1.3. To draw general conclusions, numerous base 
cases are investigated. Our objective is to generate a reservoir description such that 
the univariate and spatial statistics, and the simulated pressures and pressure 
derivatives are reproduced to match the base case study. 
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Figure 1.2 Base case permeability distribution generated by Turning Bands 
(range = 600 feet, oLk = 0.92, mean = 20 md). 
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I Absolute relative error Turning Bands input Measures of Relative error I 

where, 
Seed = turning bands seed number 

5. p, $ 2 4nk =standard devation on a log normal scale 
a -  3 g. HI = Heterogeneity Index = (&,ym?ge/ bx x Ny) 

3 E l m  

,uk mean permeaility 

V = Dykstra Parsons coefficient = 1 - I/exp( oL) 



Number of grid blocks (x,y,z) 
Block dimensions (Ax,Ay,Az) 
Porositv 

115x1 15x1 
35ft x 35ft x lo$ 
0.3 

Wellbore radius 
Total compressibility 
Oil formation volume factor 

Negligible well bore storage and skin 
Negligible gravity and capillary effects 
Fully penetrating well 

0 . 5 p  
4.9~10-~ psr" 
1.2 bbI/STB 

Table 1 .2  Reservoir properties 

Oil viscosity 
Oil rate 
Initial pressure 

0.4 cp 
106.3 STBD 
2000 psia 
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Figure 1.3: Pressure and pressure derivative response for the permeability field 
shown in Figure 1.2. 
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Application of Oliver's Solution to an Areallv (x-v) Heterogeneous Reservoir 

In this section, we consider the application of Oliver's solution (in specific Eq. 
1.17) to an areally (x - y) heterogeneous reservoir. A method that discretizes EQ. 
1.17 and applies the radial solution to an equivalent areal (x - y) reservoir is 

presented. 

For a dimensionless time, t ,  , the kernel function is non-negligible between the 
dimensionless radii, r, = 0.12& and 2.34&, where, 

k t  t ,  = 2 6 3 7 ~  lo4"' w?.: (1.31) 

and E,, is the permeability calculated from the best fit semilog straight line equation. 

In order to discretize Oliver's solution, the reservoir is divided into annular rings 
defined by grid: 

i ri = a r,, j = 1,2, ..... .. ,N,  ( 1.32) 

where, 

r, In a (AxxN, AyxN, 
(a - 1)' , 2  

r, = - a =(r,/r,)" and re = min\ 

For our study we assumed N, to be 50. 

It should be noted that for a heterogeneous reservoir, there is no clear transition 
between the transient and pseudo-steady state flow period. Heterogeneous systems 
exhibit permeability streaks. The resulting fluid flow through the reservoir causes 
one or more of the boundaries that are closer to high permeability streaks, to be felt 
sooner than others. This would be especially evident in anisotropic permeability 
fields. The equipotential lines are not circular as they are in homogeneous 
reservoir. For the isotropic case studies investigated, we assume that transient flow 
ends when for a given flow period (time), the maximum radius of investigation 
defined by Oliver's solution, r, max , is approximately equal to the outer radius, re , 
of the reservoir, i.e., the end of the transient period is defined by: 
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r,,, = 2.34& s - r e  
r w  

( 1.33) 

At each time value, an annulus of investigation is defined based on the non 
negligible region of the kernel function. le7 Since the reservoir annular rings have 
been pre-defined by Coats' grid, we define the minimum and maximum radii for the 
annulus of investigation at each t ,  by the following criteria: 

rDma = rDj,  rDj-l < 2 . 3 4 6  s rDj 
(1.34) 

Note that since the kernel function is negligible at r, < 0.12&, it  must also be 
negligible at the Coats radius rDj. A similar argument is valid for the upper limit. 

A numerical integration of the kernel function using Simpson's rule'.'5 gives the 
area under the curve between r, and r, ,,. The weight of each annular region is 
given by: 

(1.35) w .  = 'I4 
J ' D m a r  s K ( r D 9 t D )  ' 

mmi. 
\ 

where, rjmin and rim, correspond to the minimum and maximum radii defined by 

Eq. 1.34. 

A single well draining a reservoir imposes radial flow and consequently a radial 
solution to this problem. Permeability or reservoir properties, however, are not 
distributed radially but areally ( x  - y) . Thus we must impose the radial solution on 
an areal permeability distribution. We need to first evaluate the correct type of 
averaging of grid block permeabilities within the annular rings. Note that in 
Oliver's solution this averaging is harmonic. In our work we test alternate 
averaging methods for grid block permeabilities in the 6 -direction. 

An area-based power averaging scheme is considered. 
grid blocks that only partially lie within the annulus 
equation to calculate this average permeability, k , is: 

It accounts for segments of 
under consideration. The 
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(1.36) 

where, s' is the location vector of the grid block, 4 is the radial area between the 
rl-l and 7;. interval and As is the area of the grid block that falls in between these 

radii. The procedure used to calculate the area of such a grid block is given in 
Appendix A of Reference 1.1. The nomenclature is clearly illustrated in Fig. 1.4. 
For o = 1 the arithmetic average is calculated and when o = -1 the harmonic 
average, Le., the average suggested by Oliver's solution, is calculated. However, 
when o = 0 the geometric average cannot be calculated by Eq. 1.36; instead, the 
following area-based geometric averaging equation is used: 

( 1.37) 

Note that if the grid block permeability, k3 , is 0 the permeability average cannot be 

defined; therefore, we constrain our distribution such that permeability values are 
greater than 0. Eq. 1.17 shows that the instantaneous permeability, k" ,  can be 
represented by an integral of the inverse of the radial permeability distribution 
within the annulus of investigation, i.e., a harmonic average of the 8-averaged 
radial permeability average within an annular region weighted by the function 
defined in Eq. 1.35. In order to represent the discrete form of Eq. 1.17, for an 
areal ( x  - y) heterogeneous reservoir, the instantaneous permeability, k , i s 
replaced by the equivalent permeability, le. Therefore, the discrete form of Eq. 
1.17 is written as: 

* 

(1.38) 

where lj is an area based permeability average in the theta direction and determined 
in the next part of this report. wj is weight contribution of each radial permeability 

distribution defined by Eq. 1.35. 



Figure 1 . 4  Illustration of the nomenclature used to calculate the area based 
power average of grid block permeabilities in annular rings. 
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Numerical Experiments to Determine the Best Averaging Techniaue in the 8- 
Direction for Oliver’s Solution 

In Oliver’s solution the averaging process in the theta direction is defined as a 
harmonic mean for small permeability variations about a base value. This is done 
so that the perturbation theory technique facilitates a solution to the generalized 
problem (Eq. 1.4 through Eq. 1.10). However, in the areal permeability 
distributions, permeability is log-normally distributed with varying degrees of 
heterogeneity and does no? vary slightly about a base value. We, therefore, 
investigate different averaging techniques in the @direction using Eq. 1.36 or Eq. 
1.37. The instantaneous well test permeability, k ^ ,  (Eq. 1.18) is compared to the 
equivalent permeability, le, (Eq. 1.38). Numerical experiments on the synthetic 
permeability distribution and pressure data have shown that a geometric average of 
grid block permeabilities in the theta direction, followed by a harmonic average, 
weighted by the kernel function, in the radial direction give a good approximation 
of k ^ .  Fig. 1.5, Fig. 1.6, and Fig. 1.7 show the comparisons between harmonic, 
geometric, and arithmetic averaging methods in the theta direction to the 
instantaneous well test permeability, respectively. The results are summarized in 
Table 1.1. The errors are defined as: 

, N. 
(1.39) 

where Ehe is the equivalent Permeability calculated by averaging harmonically in the 

8 -direction (Eq. 1.36) and harmonically in the radial direction (Eq. 1.36). 

where f g b  is the equivalent permeability calculated by averaging geometrically in the 

8 -direction (Eq. 1.37) and harmonically in the radial direction (Eq. 1.36). 
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Figure 1.5 Grid block permeabilities averaged harmonically in 8 and 
harmonically in r compared to the instantaneous well test 
permeability, k ^ .  
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(1.41) 

where ce is the equivalent permeability calculated by averaging arithmetically in the 
8-direction (Eq. 1.36) and harmonically in the radial direction (Eq.  1.36). The 
absolute relative errors are calculated by: 

and 

(1.42) 

(1.43) 

Note that the harmonic average underpredicts the instantaneous well test 
permeability and the arithmetic average overpredicts the permeability. A geometric 
average in the 8-direction and a harmonic average in the radial direction best 
approximates the instantaneous well test permeability, i . Therefore, Eq. 1.38, in 
which an area-based geometric average represents the 8 -direction permeability 
average, is the best approximation for the discretized form of Q. 1.17. 

To develop his Inverse Solution Algorithm (ISA), FeitosalS uses the instantaneous 
permeability, k^ , to calculate an "instantaneous" dimensionless time & (Eq. 1.21). 
His numerical experiments show that by using these "instantaneous" parameters a 
more accurate evaluation of the kernel function is obtained which reproduces the 
pressure response and permeability distribution. In this method, a pressure 
derivative which has large variations may result in a kernel function whose 
minimum radius is not guaranteed to shift forward in the domain of the reservoir for 
successive pressure derivative values. 

Based on numerical experiments, we observed that using i ,  instead of the 
permeability derived from the best fit of the semi-log straight line to calculate the 
dimensionless time, tD , made no noticeable improvements in our results. This is 



probably due to the fact that the pressure derivatives of our base cases do not vary 
extremely. The comparison results are summarized in Table 1.3. 

Application of ISA to Areallv (x-v) Heterogeneous Reservoir 

For the pressure response showm in Fig. 1.3, ISA (Eq. 1.21 through Eq. 1.30) 
generates an equivalent radial permeability distribution. The permeability 
distribution, generated by ISA is a piecewise linear polynomial (Fig. 1.8). In our 
application to an areal permeability field, we must define the equivalent ISA 
permeability within an inner and outer radius of investigation. We define kiSAn as  
the permeability which is linearly interpolated between klSAn-l and klsAn, for the 
inner and outer radius of investigation, rn-l and rn, respectively (see Fig. 1.8). 
Therefore, for each annular region over which kiSAn is defined, the minimm radius, 
is defined by rn-l and the maximum radius is defined by r,. 

Feitosa showed an example in which permeability is varied in r and 8. A 
numerical fluid flow simulation is performed using a r - 8 flow simulator. He 
observed that if he replaces the areally (r - 8) heterogeneous reservoir with a radial 
reservoir where the permeability in each Coat's grid annulus was computed as the 
geometric average of the grid block permeabilities within the annulus, he obtained a 
pressure derivative that best matches the pressure derivative from the areally 
heterogeneous reservoir. 

Numerical Experiments to Determine the Best Averaging - -  Technique in the 8 
-Direction for ISA 

We study the application of ISA-derived radial permeabilities to our areal 
( x  - y) permeability distribution. A procedure similar to the one used to determine 
the best type of average for Oliver's solution is used. Eq. 1.36 and Eq. 1.37 are 
used to calculate the arithmetic, harmonic, and geometric permeability averages 
within the ISA defined radii of investigation. Fig. 1.9 through Fig. 1.11 compare 
the different averaging techniques to the ISA permeability distribution. The errors 
are defined as: 
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Figure 1.8 Equivalent radial permeability distribution determined by ZSA for the 
pressure response shown in Figure 1.3. 
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Figure 1.10: Grid block permeabilities averaged geometrically in 8 compared to 
the ZSA well test permeability distribution, k,s. 
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(1.45) 

where 
(Eq. 1.36) between the inner and outer radii of investigation. 

is the harmonic average of grid block permeabilities in the 8-direction 

- 1 N r -  

err( k,) = -E k,, - kIuj 
.Nr j - 1  

where 5 is the geometric average of grid block permeabilities in the 6 -direction 

(Eq. 1.37) between the inner and outer radii of investigation. 

( 1.47) 

where 6 is the arithmetic average of grid block permeabilities in the 8 -direction 
(h. 1.36) between the inner and outer radii of investigation. The absolute relative 
errors are calculated by: 

and 

( 1.49) 

Note that both harmonic and geometric averaging in the 8 -direction of the areal 
permeability field give good approximations to the ISA radial permeability 
distribution. The best averaging technique for ISA is studied further in Section 1.3, 
where the inverse problem is solved; i.e. an areal permeability distribution honoring 
geostatistical and ISA equivalent permeabilities is generated. The pressure response 
of permeability fields honoring ISA by performing both harmonic and geometric 
averaging in the 8 -direction are compared to the base case pressure response. 
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To summarize the findings, the well test data can be represented by equivalent static 
permeability distribution. Both Oliverl-7 and Feitosal-8 provide appropriate 
solutions for representing dynamic well test data as radially heterogeneous 
permeability distributions. 

1.1.2 Incowration of Production Performance Constraints 

In this section the primary and secondary performance parameters are investigated 
to identify the quatifiable spatial charateristics of petrophysical propeties which 
impact performance. These indirect performance constraints are identified by 
studying synthetic heterogeneous reservoirs and the flow simulation results of 
primary and seccondary recovery. In Section 1.2 we show how some of these 
constraints are included in the simulated annealing algorithm. 

Primarv Performance Constraints 

The correlation between primary well performance parameters and spatial 
distributions of porosity and permeability is investigated. In reservoir modeling, it 
is advantageous to identify as early as possible well performance characteristics 
which are influenced by heterogeneities. Such information can be used to better 
define internal reservoir architecture and optimize operating and development plans 
early in the life of a reservoir. With synthetic data sets, we show that the primary 
production performance is closely related to the near-well bore permeability 
distribution. 

Flow Simulation Coinparisom 

To understand the relationship between the primary performance and static 
parameters, we used synthetic permeability distributions. Conventional simulated 
annealing, (discussed in Section 1.2) without near well bore permeability 
constraints, was used to generate 21 areal distributions of permeability. A log 
normal distribution was used having a mean log (k ), plOdk), of 2.0 (100 md) and a 
standard deviation, o,,,~(~~, of 0.40. For this ,ulodk) and AD, 68% of the values lie 

between 1.6 (40 md) and 2.4 (250 md). The Dykstra-Parsons coefficient is 0.60. 
An omnidirectional spherical variogram model having a relative nugget of 20% and 
a range of 1,200 feet was used for all conditional simulations. The 5,280 feet x 
5,280 feet system was discretized into a 60 x 60 grid mesh, each grid block having 



88 feet side lengths. Well grid blocks were distributed on regularly spaced 80 acre 
patterns, resulting in a 13 well system (Fig. 1.12). A dimensionless correlation 
length, A, , of 0.643 is obtained when the variogram range (1,200 feet) is divided 
by the drainage area side length (1,867 feet). Well block permeabilities were 
considered as conditioning data and remained unchanged for all 21 conditional 
simulations. 

Flow simulations were performed for each of the 21 permeability realizations. The 
only parameter varied between flow simulations was the permeability field. 
Reservoir porosity and thickness were assumed to be constant and equal to 25% 
and 30 feet, respectively. A uniform initial pressure of 1200 psi was used; bubble 
point pressure of the black oil was 1024 psi. The wells were operated at a 200 psi 
constant bottomhole pressure; well flow rates were dictated by the reservoir. A 
total of ten years of primary production was simulated. A finite-difference fluid 
flow simulator was used. 1.16 Flow simulation input parameters are summarized in 
Table 1.4. 

Flow simulation results for all 21 cases are summarized in Fig. 1.13. Note the 
wide spread in rates and gas-oil ratios (GOR's). Initial rates vary from 1100 
STB/D to 3100 STB/D. The large spread in producing rates at early times 
continues to grow throughout the ten year period. Although all 21 cases have equal 
pore volumes and permeability frequency distributions, cumulative recoveries at the 
end of 10 years vary significantly. The permeability fields, although having the 
same conditioning data and spatial correlation structure, have enough significant 
differences to result in a wide spread in well performance. It is obvious that 
additional conditional simulation constraints are required before realizations can be 
generated which are "equally probable" from a well/reservoir performance 
viewpoint. Considering that the majority of the performance differences develop at 
the very start of the simulation, it is reasonable to infer that variations in near well 
permeability may be the primary reason for the wide variations. 

The impact of near well permeability on well performance is further illustrated in 
Fig. 1.14. Here, the initial producing rate (average rate for the first month) of the 
central producer for each of the 21 flow simulations is plotted as a function of the 
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Figure 1.12 Schematic of 13 well, 80 acre well spacing reservoir system. 
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we of Simulation 2D Primary 

Well spacing 80 Ac 
Initial pressure 1200 psi 
Bottomhole producing pressure 200 psi 
Bubble point pressure 1024 psi 
Initial gas saturation 0% 
Formation thickness 30 ft 
Porosity 0.25, variable 
Permeability 100 md, variable 

c 

Table 1 . 4  Primary production flow simulation data. 
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effective near-well permeability, k,, . The effective near-well permeability was 
computed using a geometric average of the well block and the adjacent eight grid 
blocks (3 x 3 region). As shown in Fig. 1.14, the correlation is excellent with the 
correlation coefficient being 0.98. Effective neanvell permeability was calculated 
for a variety of near-well areas ranging from 3 x 3 grid blocks (264 feet x 264 feet, 
or 1.6 acres) to 27 x 27 grid blocks (2,376 feet x 2,376 feet, or 130 acres). The 
correlation coefficient of initial producing rate vs. k,, is plotted as a function of 
fractional drainage in Fig. 1.15, where the fractional drainage area is the area 
included in the computation normalized by the well drainage area (80 acres). The 
correlation coefficient exceeds 0.95 for fractional drainage areas less than 0.30. 
The above results are sufficient to conclude that k,, has a strong impact on well 
performance and thus should be implemented as a constraining parameter. 

Secondarv Performance Constraints 

The above analysis indicates that primary performance is closely related to near-well 
bore permeability distribution. In this section, we examine the impact of secondary 
recovery (water flooding) performance on relevant static parameters. The following 
case studies assume sufficient secondary performance data is available to make 
accurate estimates of the secondary performance constraints. We would like to 
define the constraints such that they incorporate the connectivity between the 
injector and the producer. 

Waterflood Coirstraiiits 

As shown before, primary performance is rather insensitive to areal reservoir 
heterogeneities, the exception being the near-well region (and fauMfractures). 
There are several differences between primary and secondary recovery regarding 
well-to-well interactions. Primary individual well recoveries cannot be improved 
by placement of offset primary wells - only reduced as a result of interference (this 
does not imply that primary field recovery is not improved by infill drilling). Fluid 
recovery is strictly dependent on the rock properties existing between the location of 
the fluid and each offset well (i.e., well "fluid pulling" characteristics). These 
characteristics of primary recovery do not apply to secondary recovery operations. 
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Figure 1.15 Correlation coefficient of initial oil production rate vs. near well 
effective permeability as a function of fractional drainage area. 
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Intenvell reservoir characteristics become much more important. Secondary 
recovery efficiency is strongly influenced by local reservoir connectivity between 
each injector/producer pair (Le., well "fluid pulling and pushing" characteristics). 

The importance of interwell reservoir connectivity on secondary performance is the 
primary consideration in defining static parameters. Reservoir connectivity 
measures will be defined based on the spatial arrangement of permeability. This 
approach is used since permeability typically has a stronger influence on flow 
characteristics than any other variable. The techniques developed in this study 
quantify reservoir connectivity relative to specific well locations. Although existing 
definitions of connectivity may be used to improve predictions of overall field rates 
and recoveries, local measures of connectivity are required to better predict 
interactions between specific wells. 

Fractwnul Connectivity Fuixtwn 

For the first method, connectivity is defined by a functional relationship between 
fractional area connected and permeability percentile cutoffs. Both connectivity of 
high permeabilities and low permeabilities are considered. A description of the 
procedure used to define the connectivity function for a given permeability field 
follows. Grid block permeability values are transformed to binary indicators (i.e., 
0's and 1's) depending on whether they are equal to or greater than the cutoff 
values (1's) or less than the cutoff values (0's). For the connectivity of high 
values, two adjacent grid blocks are considered as being "connected" if their 
permeability indicators are both 1's. Conversely, adjacent blocks having 0's as 
permeability indicators are defined as being "connected" for the connectivity of low 
values. For both cases, a "connected path" is defined as a series of connected 
blocks which extend from an injector to an offset producer (or vice versa). The 
"fractional area connected" is obtained by dividing the number of connected grid 
blocks by the total number of grid blocks. Only horizontal and vertical directions 
(not diagonal) are considered for connectivity computations in this study. The 
relationship behveen permeability percentile cutoff and fractional area connected for 
both high permeabilities, C,,, and low permeabilities, C,, is considered to 
completely define the connectivity characteristics of the injector/producer pair. 



An example is presented to illustrate this concept. Fig. 1.16 is a greyscale image of 
permeability for one-quarter of a five-spot pattern generated using conventional 
simulated annealing. The 1st through 6th permeability deciles of this image are 61 
md, 142 md, 165 md, 215 md, 374 md and 445 md, respectively. Fig. 1.17 
displays the indicator greyscale maps corresponding to the six percentile cutoffs. 
The grid blocks with permeabili ties exceeding each respective cutoff are shaded 
black. Assuming the injection well is located in the lower left corner and the 
producer is in the upper right corner, the connectivity of high values is determined 
by computing the fraction of blocks which have an indicator value of 1 and are part 
of a connected path (defined above) extending between the injector and the 
producer. The upper limit of connectivity is equal to the fraction of blocks having 
an indicator of 1 while the lower limit is 0. The existence of isolated or  
unconnected grid blocks of value 1 will result in the percentage of connected blocks 
being less than the cutoff percentile. Fig. 1.18 shows the connected (shaded 
black), isolated (shaded gray) and dead end (unshaded) grid blocks for these six 
percentiles. The fractional connectivity function shown in Fig. 1.19 is obtained by 
evaluating the connectivity of highs and lows at each percentile. The permeability 
percentile at which connectivity is first reduced to zero is defined as the permeability 
percentile threshold, p r .  In Fig. 1.19, the thresholds for the connectivity of high 
values, p H ,  and low values, p a ,  are the Sth percentile (400 md) and the 76th 
percentile (621 md), respectively. Note that whereas most of the previously 
published definitions of connectivity refer to global reservoir connectivity 
characteristics, the fractional connectivity function defined above is dependent on 
the locations of the injector and producer. A different connectivity function would 
be obtained if the wells were located elsewhere. 

The determination of the connectivity function can be computationally intensive and 
cannot be easily updated. Fortunately, it was found that the characteristic of the 
connectivity function which most strongly influences waterflood performance for 
the cases considered is pIH . This value represents the largest minimum permeability 
value of all paths which connect the injector to the producer. Other paths may 
contain more higher permeability values, but in each case contain at least one 
permeability which falls below the permeability represented by p H .  The 
determination of p H  is much easier than computing the entire connectivity function; 
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Figure 1 .16  Example permeability field for one-quarter of a five-spot pattern. 
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Figure 1.17: Connectivity indicators at various permeability percentile cutoffs. 
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Figure 1.19: Fractional connectivity function for simulated annealing example. 
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only one path rather than all possible paths needs to be identified. Systematically 
searching for a connected path was found to be more efficient than using a random 
walk approach. Beginning at one of the wells, the perimeter of the connected area 
between a injector/producer pair is traced. Connectivity exists if the second well is 
visited prior to revisiting the first well. If connectivity doesn't exist, pIH has been 
exceeded, thus the actual threshold is a smaller value. 

Flow Pattern Permeability CoefJicient 

The second connectivity parameter investigated incorporates curvilinear fluid flow 
geometry. Idealized unit mobility streamlines for a homogeneous five-spot pattern 
were used to determine the effective permeability of the flow pattern segments (i.e., 
streamtubes). This second parameter, referred to as CV,, , represents the coefficient 
of variation (standard deviation divided by the mean) of a distance-normalized flow 
pattern segment permeability, k *: 

(1.51) O k  

k* 
cv,, = - 

where k * is defined for the nrh flow pattern segment as 

and 

1 N' k(n)  

n-1 

(1.52) 

(1.53) 

(1.55) 

The variables k ( n )  and Z(n) represent the effective permeability and average length, 
respectively, of the nfh flow pattern segment. Note that a value for the permeability 
parameter k* is obtained for each flow pattern segment. The mean and standard 
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deviation of k* are then used to compute CV,,. The effective permeability k(n) is 
calculated from the grid block permeabilities located within the nrh flow pattern 
segment. The line bisecting the nrh flow pattern segment is used to estimate Z(n). 

The total number of segments used for each one-quarter of a five-spot pattern was 8 
( N, = 8). As indicated by Eq. 1.55, flow pattern segment lengths are normalized 
by the interwell diagonal length, lo .  High permeability streaks existing directly 
between the injector and the producer influence waterflood response more so than 
indirect high permeability paths. This effect was accounted for by normalizing the 
flow pattern segment permeabilities by the square of the dimensionless flow pattern 
length, ZD(n). This measure of connectivity has an advantage over the fractional 
connectivity function in that the intensity of high andlor low permeability streaks 
can be accounted for. Flow pattern segment permeabilities were estimated using a 
geometric average of the grid block permeabilities. The geometric average was 
selected because it can be updated easily and it gives acceptable results. Similarly, a 
more rigorous method of computing flow pattern segment geometry could have 
been used instead of assuming idealized ones. This would have required costly 
recomputations during the annealing process. Considering the high quality of the 
results obtained using idealized flow pattern segments, it was decided not to pursue 
the rigorous approach. 

Thus, the process for determining CV,, for each injector/producer one-quarter five- 
spot pattern is as follows. Idealized unit mobility streamlines are determined given 
the injectorlproducer locations. Grid block permeability values are assigned to all 
flow pattern segments for which the grid blocks are members. The effective 
permeability parameter k* is then computed (using Eq. 1.52) for each of the n flow 
pattern segments comprising the injectorlproducer one-quarter five-spot pattern. 
The value of CV,, can then be determined from the standard deviation (using Eq. 
1.53) and mean (using Eq. 1.54) of k* . This process is repeated until a value of 
CV,, is obtained for each injectorlproducer one-quarter five-spot pattern. 

Procediire 

Based on previous results, it was decided to investigate only the effect of areal 
permeability heterogeneities on secondary well performance; reservoir porosity and 
thickness are assumed to be constant. Permeability is assumed to be a stationary 
random function with a known log-normal frequency distribution and spatial 
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correlation structure. Two permeability frequency distributions were investigated. 
The first is the same as was used in the primary performance work, i.e., ploLLk) and 
olosli) are 2.0 (100 md) and 0.40, respectively. The second permeability frequency 
distribution is characterized by plod'k) and ologi) values of 2.5 (250 md) and 0.2, 

respectively. As previously mentioned, 68% of the permeabilities lie between 40 
md and 250 md for the first distribution. For the second, less heterogeneous 
distribution, 68% of the values lie between 200 md and 500 md. These two 
distributions will be referred to as the less heterogeneous permeability distribution 
( olodi) = 0.2) and the more heterogeneous permeability distribution ( alodk) = 0.4) 

throughout the remainder of this section. The variogram model used was an  
omnidirectional spherical model having a relative nugget of 20% and a correlation 
length of lo00 ft. This represents a hD of 0.536 for 80-acre well spacing. All 
permeability fields were generated using simulated annealing. 

Waterflood response for one-quarter, full and extended five-spot patterns were 
simulated using the black-oil option of a finite-difference fluid flow simulator.1.16 
In each case, 80-acre well spacing and 160-acre five-spot patterns were used. Grid 
block dimensions were 40 ft for the one-quarter and full five-spot patterns cases 
and 88 f t  for the extended five-spot simulations. Initial conditions of all flow 
simulations assumed depleted primary conditions with a uniform initial reservoir 
pressure of 300 psi and a uniform initial gas saturation of 20%. Injection wells and 
producers were pressure-constrained at 2000 psi and 200 psi, respectively. A 
slightly favorable mobility ratio of 0.96 was used. Pertinent flow simulation data 
are summarized in Table 1.4. 

To understand the effectiveness of the various constraints we compared simulated 
waterflood performance of 20 flow simulations to "truth" case results. The truth 
case permeability field and corresponding simulated reservoir performance were 
considered to be the actual permeability distribution and performance of the 
reservoir. The permeability field was the only input variable changed for each flow 
simulation. The same well block permeabilities were assumed to be conditioning 
data for all cases. The waterflood performance of 20 flow simulations obtained 
using conventional simulated annealing constraints was assumed to represent the 
base case, Le., they represent typical results using a conventional approach. Five- 



spot segment synthetic case studies were performed using both of the permeability 
frequency distributions described previously. 

One-Quarter Five-Spot Paltern 

Producer and injector grid block permeabilities were assumed to be 250 md and 125 
md, respectively, for the more heterogeneous permeability distribution. For the 
second, less heterogeneous permeability frequency distribution, respective producer 
and injector grid block values were 250 md and 355 md. Base case and truth case 
results for both permeability frequency distributions will be presented. 

Base Case Results 

A total of 21 permeability realizations were generated using the conventional 
simulated annealing algorithm (described in Section 1.2) and the variogram model 
described previously. A greyscale map of the realization selected as the first "truth" 
case is depicted in Fig. 1.20. The permeability fields were used to simulate 
waterflood performance over a 20-year period. Waterflood performance for the 21 
flow simulations, based on water injection rates, oil producing rates, water 
producing rates and WOR's is presented in Fig. 1.21. Performance is seen to vary 
significantly between flow simulations. For example, initial water injection rates 
vary from 410 to 1200 STBID, water breakthrough times range from 2.0 years to 
5.1 years and peak oil responses vary from 170 to 600 STBID. At the end of the 
20-year simulation period, WOR's range from 19 to 50 STBISTB. It is obvious 
that additional constraints are required before these reservoir descriptions can be 
considered as being "equally probable." Note that the performance of the first truth 
case has been highlighted (using x's). Its permeability spatial characteristics and 
waterflood performance will be used to test the effectiveness of connectivity and 
near-well effective permeability constraints. 

This particular permeability realization was selected to represent the first truth case 
because it has an anomalous WOR trend. A large increase in WOR occurs 
approximately two years after water breakthrough. Also, the near-well effective 
permeability surrounding the injector (approximately 400 md) is significantly 
greater than that surrounding the producer (approximately 200 md). However, as 
previously stated, the injection well grid block permeability (125 md) is less than 
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the producer grid block value (250 md). This anomaly is apparent in the 
performance data, with the initial injection rate for the first truth case being greater 
than any other run. Perhaps even more of an anomaly is the existence of a low 
permeability region just offset to the high permeability near-well region surrounding 
the injector. 

Base case permeability realizations and corresponding waterflood performance were 
also generated using the second, less heterogeneous permeability distribution. The 
permeability realization selected to be the second truth case is shown in Fig. 1.22. 
Note that the permeability surrounding the injection well (approximately 600 md) is 
greater than the permeability surrounding the producer (approximately 350 md). 
This is consistent with the well block permeability relationships. Fig. 1.23 depicts 
the flow rates and WOR trends based on flow simulations using the second truth 
case and the other 20 permeability realizations. The variations in waterflood 
performance are less than that observed for the first base case because of the smaller 
degree of heterogeneity, but are still much greater than the desirable range. Note 
that the initial injectivity of the second truth case is greater than any other base case 
run. 

It is obvious that conventional constraints are not enough to capture the 
performance of the "truth" case. Additional constraints are needed to capture the 
dynamic performance. In Section 1.3.2, we discuss the effectiveness of pH , CVk, 
and kNw in capturing the dynamic performance of the reservoir. 

To summarize, conventional static constriants such as variogram and univariate 
statistics may not be enough to capture the production data adequately. Additional 
static parameters such as p H ,  C V k ,  and kNw are defined which may be more 
effective in capturing produciton data. 

1.2 Simulated Annealing 

In this section, we present the method used for generating reservoir description. 
The desirable characteristics of any method are: the ability to generate alternate 
descriptions to quatify uncertainty, computational efficiency, and flexibility to 
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Figure 1.22 Permeability field for the second one-quarter five-spot pattern truth 
case. 
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Figure 1.23: Simulated waterflood performance of the second truth w e  and the 
20 second base case flow simulations; one-quarter five-spot pattern 
system. 
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incorporate multiple constraints. We have selected the method of simulated 
annealing which is a conditional simulation method. 

Stochastic conditional simulation methods are used to generate possible descriptions 
of reservoir properties. The methods are stochastic since reservoir properties are 
represented by random variables; they are conditional since available data are 
honored at sampled locations; and the methods simulate several equiprobable 
distributions of a property in the reservoir. There are several conditional simulation 
techniques available in the literature. The methods range from Sequential Indicator 
Simulation (SIS), '*17 Sequential Gaussian Simulation (SGS), '-'* Fractal 
 technique^,'.'^ Turning Bands Method (TBM),'.''* l . l land combinatorial 
optimization algorithms. 1.1, 1.2, 1.20-1.25 

In recent years, combinatorial optimization techniques for the purpose of reservoir 
description have become extremely popular as evidenced by the large number of 
studies performed and papers presented on this subject. Although these techniques 
are computationally demanding, the methods show promise in their robustness and 
flexibility to allow the incorporation of multiple constraints that can be imposed on a 
reservoir description when data is obtained from many sources. The methods are 
listed below with appropriate references for petroleum engineering applications: 

*Genetic Algorithms 1.21, 1.22 

1.1. 1.2. 1.20, 1.21-1.25 *Simulated Annealing 
*Maximum A Posteriori (MAP) 1-26 

*Stochastic Hill Climbing'.20 
*Neural Networks (applications are restricted to pattern recognition in well testing 

and log interpretations) 

HuanglS2l and Sen et al. 1-22 studied and compared some of the combinatorial 
optimization methods for the purpose of reservoir description. This study will 
focus on the method of simulated annealing. 

Simulated annealing is an algorithmic approach to solving optimization problems 
and has its origins in the area of statistical rnechan ic~ .~**~  As the name implies, 
simulated annealing simulates the physical process of annealing, Le., a metal is 
cooled from a state of high temperature or energy to a lower temperature. The 
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application of method for reservoir description was first proposed by Farmer. 

descriptions that honor static information (log and core data) and/or dynamic 
information (production and well test data). 

The method was extended by others 1.1, 1.2, 1.20, 1.24, l . z t o  develop reservoir 

In this section we present a general outline of the simulated annealing algorithm to 
solve the inverse problem of describing reservoir properties constrained to static 
and/or dynamic information. We first describe the calculation of important 
components of the simulated annealing algori thm. Then the actual simulation 
process is described. 

1.2.1 Generation of the Simulation Grid 

A simulation grid with N, grid blocks in the x-direction, N y  grid blocks in the y -  
direction and N ,  grid blocks in the z-direction is defined. The size of each grid 
block is Ax x Ay x Az . The coordinates of the center of the grid block (xi.yj,zk) are 

x i = 0 , + i &  f o r i = l ,  2,... N, (1.56) 

y, = Oy + jAy, fo r j=  1,Z ... N,,, (1.57) 

and 

z k  -0, +&Z, f o r k = l ,  2,... N , ,  (1.58) 

where, (0,. Oy,O,) are the coordinates of the origin of the simulation grid. 

In the simulated annealing algorithm, the grid block location vector, s’ = ( x i ,  yj,zk), 

is referenced by a single index, I ,  which defines the grid-block location index 
(i, j ,k) in the algorithm: 

1 I - (k - i ) ~ ,  N~ - 1 
j =  l+INT 

and 

i = I-(k- 1) N,Ny - ( j  - l ) N ,  

(1.59) 



where, l = l , 2  ... N, and N,  is the total number of simulation points, Le., 
N, x N,, x N,, . INT truncates the number in brackets to an integer value. 

The simulation variable is defined at the location vector, s', as V, . The value of 
each grid block permeability is assigned by sampling the cumulative distribution 
function (cdf). The discrete cdf can be represented as C j  classes, for j =  1, ..., N f  

class intervals. By sequentially visiting each grid block in the domain, the 
simulation variable value at each grid block is assigned 

vi = c, - (c, - c,-,)[NI riR - " I N f  1 

where 

iR = INT( A x N, ) + 1 (1.61) 

and R is a random number sampled from a uniform distribution between [O,l]. 
The above equations form the constraint for the cdf. 

The conditioning data constraint is specified by assigning the simulation variable at 
specified locations, i.e., 

(1.62) 

where V( c), is the sampled variable at the conditioning point location. The values 
of the conditioning points remain fixed throughout the simulation. 

This procedure yields an initial uncorrelated distribution that honors the cdf and the 
conditioning data. 

1.2.2 Sample Variogram 

The sample variogram of the distri,ution is calculated by: 

(1.63) 
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where & i  is the lag distance vector (or separation distance between points), iVp(&) 

is the number of pairs within the simulation grid corresponding to the lag , Ti is 
the location vector of the grid block. The index i refers to the direction and the 
index I refers to the lag distance considered for a given direction. Spatial relations 
can be defined in the three principle directions and anisotropy is considered such 
that three-dimensional anisotropic realizations are generated. 

A variogram model,y,, is defined by fitting one of the conventional models (e.g., 
spherical, exponential, Gaussian, etc.) to the available data. 

1.2.3 Obiective Function 

Simulated annealing is an optimization algorithm. The basic goal of the simulated 
annealing algorithm is to describe a configuration of variables such that a global 
minimum of the objective or energy function is obtained. 

The objective function defines the difference between a function of sample data and 
a desired model that the sample data must fit. The objective function can have 
several components depending on the constraints imposed in describing the 
reservoir properties. For example, a component can be the difference between the 
sample and model variograms or the difference between the permeability derived 
from pressure transient data and some averaging process of permeabilities. When 
multiple constraints are imposed on the reservoir description the objective function 
is divided into principle components that describe each imposed constraint. In our 
study, the objective functions or energies for the following constraints are defined: 
(i) the energy of the variogram component and/or (ii) the energy of the constraint 
imposed by the production information. 

Energv Function - Variogram Constraint 

The variogram energy function, , is calculated as the square root of the sum in 
Nd directions and for N,, lags of the normalized difference between the model 
variogram and sample variogram at the k f h  iteration step of the algorithm: 
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ySk(&) is the variogram of the permeability distribution at the iteration level k 

calculated by Eq. 1.62. y o ( & )  is the model variogram that the sample variogram 

must ultimately match. 

A normalizing constant of the variogmm energy function, E,, is also defined. It is 
the normalizing constant of the variogram constraint and is determined in the initial 
part of the algorithm. It is determined by calculating the energy of the variogram at 
initial conditions: 

(1.65) 

yso( &) is the variogram of the simulation variable for the initial uncorrelated 

distribution. 

Energv Function - Production Information 

The second energy function component 4 describes the well test constraint or the 
production performance constraint. The components, E,, the normalizing 
constants, EO2, for the respective components are described in the following 
section. 

Energy Fiinctioii - Well Test Coilstrniiit (Oliver's Method) 

In Section 1.1.1 we concluded that for Oliver's solution the equivalent 
permeability, Le, (Eq. 1.38) is approximately equal to the instantaneous well test 
permeability, (Eq. 1.18). Based on this observation, if we simulate the 
annealing procedure until Le =i for each t , ,  we should be able to reproduce the 
pressure response of the reservoir. For our sets of pressure derivative data, we 
compute N, associated regions of investigation. Each region is defined in the limits 
of rDmin = 0.12& and rDm, = 2.34&. Note that since r,- for the current 
pressure derivative data point may be less than rDm for the previous pressure 
derivative data point, Le., rDmini < rDm,i-l for i = 1,2 ... N,, there may be some 
overlap between the different radii of investigation. 
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The energy function of the well test constraint imposed by Oliver's method is 
calculated by: 

where E: is the equivalent permeability determined by Eq. 1.38 at the krh iteration 
level of the simulation. k̂  is the instantaneous permeability derived from the 
instantaneous pressure derivative. 

The initial energy function for Oliver's method 
component, Eo2, is defined as: 

incorporating the well test 

(1.67) 

where Leo is the equivalent permeability for the initial uncorrelated distribution 
calculated by Eq. 1.38. 

Energy Function -Well Test Constrailit (ISA) 

In Section 1.1.1 we observed that the ISA equivalent permeability, klm, (Eq. 1.21 
through Eq. 1.30) is best approximated by either the area-based geometric (Eq. 
1.37) or harmonic average (Eq. 1.36) of grid block permeabilities between the 
annulus of investigation. The component of the energy function incorporating the 
equivalent ISA radial permeability distribution is given by: 

where is either the area-based geometric (Eq. 1.37) or harmonic (Eq. 1.36) 

average of grid block permeabilities within the pre-defined annular regions at the 
kth iteration level of the simulation and k,sA is the equivalent ISA radial permeability 
distribution given by Eq. 1.21 through Eq. 1.30. 

The normalizing coefficient of the energy function incorporating ISA is given by: 



(1.69) 

where i; is either the area-based geometric or harmonic average of grid block 

permeabilities for the initial uncorrelated distribution. 

Energy Function -Production Perforinnizce Constriants 

In addition to using conventional spatial statistics, we observed that near well bore 
permeability is very important in honoring primary production data. 

We assume that the geometric mean of near-well bore values represents the effective 
permeability. Although more sophisticated approaches give better results for 
anisotropic, spatially-correlated permeable mediums, such approaches cannot be 
updated - a highly desirable characteristic for simulated annealing applications. 

The geometric averaged effective permeability, ke,  is defined as: 

( 1.70) 

where , is the fine-scale permeability of the Nb ,xations comprising the large- 
scale region. Frequently, stochastic modeling of permeability is performed based 
on the spatial correlation of the logarithmic permeability transform, log (ke). In that 

case, the geometric average is simply the arithmetic average of the permeability 
logarithms: 

(1.71) 

The objective function which includes the local permeability can be defined as: 

( 1.72) 
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where k k  G. and k , ,  represent the effective peremeability at kth iteration and true 
effective permeabilities, respectively, and E,, is the initial objective function of the 
effective permeability function: 

(1.73) 

Similar equations can also be written when connectivity constraints are included as 
part of the objective function.1.2 

1.2.4 Obiective Function Weights 

Combinatorial optimization techniques allow us to incorporate additional constraints 
into the objective function. This is done by dividing the objective function into 
components describing each constraint that must be honored. In order to 
simultaneously honor the variogram and the production information constraints, the 
energies of the two components are weighted and added together, to yield the 
overall energy function: 

( 1.74) 

E,, (Eq. 1.65) and E,, (Eq. 1.67 or Eq. 1.69 or Eq. 1.73) are the normalizing 
constants of the variogram and production components of the energy function, 
respectively. (Eq. 1.64) and E; (Eq. 1.66 or Eq. 1.68 or Eq. 1.72) are the 
energy functions of the variogram and production information components, 
respectively. 

$, and $ , are the weights assigned to each component of the energy function. The 
weights may be defined arbitrarily such that one component is weighted more than 
the other or  they may be weighted such that on average each component contributes 
equally to the change in the overall objective function. For equal weighting of 
component energy functions, the weights are computed numerically in the initial 
phase of the algorithm by performing sufficient, M ,  interchanges such that stable 
estimates of the weights are obtained. The equation to calculate the weight for the 
production constraint, $,, is given by: 



$2 = 

The weight for the first (variogram) constraint, , is similarly determined: 

( 1.75) 

(1.76) 

In order to achieve a general value of the minimum number of iterations to achieve a 
stable estimate of the weighting functions, the iterations are normalized by dividing 
the iterations by the total number of simulation points, N, , to determine the number 
of cycles. 

Fig. 1.24 shows the example for which the variogram and well test component of 
the energy function are considered. Note that after 0.06 cycles of iterations, 
weights which converge to a stable value are obtained. Note that the weight for the 
well test energy function is less than that for the variogram. 

The simulated annealing algorithm must simultaneously satisfy the variogram, the 
conditioning data constraints, and the production data information. The overall 
energy function (Eq. 1.74) must converge to a value of 0 within some tolerance. 

1.2.5 The Interchange Mechanism 

In order to allow for convergence of the objective function, perturbations are made 
to the simulation domain. The perturbation can be a two-point or single-point 
swap. 

For the two-point swap the exchange points in the reservoir are randomly selected 
as follows: 

Il = 1 + INT(N,RJ (1.77) 

and 
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Figure 1.24: Estimated objective function weights for a different number of 
iterationa cycles and realizations. 



z2 = 1 + INT(NP,) ( 1.78) 

where Rl and 8 are random numbers generated from a uniform distribution in the 
range [0,1] and INT truncates the number in brackets to an integer. The two 
permeability values located at these two random locations are swapped. For the 
single-point swap only one exchange point is randomly selected by using either of 
the above equations. The algorithm also ensures that the selected swap point or 
points do not coincide with any of the conditioning d d k  

For the single-point swap a possible new permeability value is determined by 
sampling the original cdf. Eq. 1.60 and Eiq. 1.61 are used to calculate the new 
value of the simulation variable. Since the variable at the exchange point must make 
a significant change on the objective function, the algorithm also ensures that the 
value of the variable at the selected grid block is significantly different from the 
original permeability. This is achieved by ensuring that the difference between the 
original permeability value and the new permeability value at the swap point is 
greater than the smallest magnitude of the difference between consecutive class 
limits, i.e., 

(1.79) 

A similar criterion can be defined for the single-point swap. 

1.2.6 MetroDolis Condition 

Variables in the system are iritercharzged or swapped until the objective function is 
minimized. Variations of the simulated annealing algorithm as applied to reservoir 
description exist in the literature. The differences are based on the acceptance 
criteria of a swap. These include the greedy algorithm, the heat bath algorithm, and 
the Metropolis condition. 1.203 1.22 In this work only the Metropolis acceptance 

will be considered and are described as follows. The exchange of two 
points or the swap is accepted if the value of the energy function is reduced. The 
exchange may also be accepted if the energy function is increased. The Metropolis 
condition calculates the probability of the transition between two states of the 
objective function: 
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(1.80) 

where the index k denotes an iteration within a step, represented by index r . The 
change in the objective function, AEk , due to one interchange is: 

where E' is the updated value after the perturbation (see Eq. 1.94). T' is the 
control parameter calculated by: 

a is the convergence rate factor and is a constant value in the range 0 c a c 1. 

If AEk s 0 the exchange is always accepted according to Eq. 1.80. However, if 
AEk 2 0, then a random number, R ,  from a uniform distribution in the range [0,1] 
is compared to P(AEk ,T' ) (Eq. 1.80). If R s P(AEk ,T' ) the proposed interchange is 

accepted. 

The use of the Metropolis condition ensues the convergence of the algorithm to a 
global rather than a local minimum. 

1.2.7 The Initial Control Parameter 

The effect of the control parameter, T, , is evident from the Metropolis condition; if 
the value of the control parameter is high then more of the iterations proposed by 
the interchange mechanism will be accepted. The initial control parameter, To, is 
determined for the first step ( r  = I ) ,  numerically in the initial phase of the algorithm. 
The value of the initial control parameter determines the performance and efficiency 
of simulated annealing. If the control parameter is too high then most of the swaps 
are accepted leaving the simulation variable esscntially uncorrelated. If its value is 
too low, then the simulation may converge to a local minimum. An appropriate 
value for To is derived by Aarts and Korst.1-29 It is determined in the initial phase 
of the algorithm and is given by: 



. . .- 

- mLitiaf is the mean of m2 positive changes in the objective function 

represents a positive change in the energy function. This is numerically 
determined by performing sufficient iterations in the initial phase of the algorithm. 
The change in the objective function at each iteration is given by: 

for k = 

of iterations there are in, iterations for Efnitiafs 0 and nz2 iterations for AE&itial> 0. 
where E" is the initial objective function. For the total number 

By performing numerical experiments, Pkrez1.20 determined that Minit,, = 0.25 is 
sufficiently large to allow for a stable estimate of the mean change in the objective 
function. He also defines the initial acceptance ratio, xinitial, to be 0.99 which is 
sufficiently large such that most of the proposed exchanges are accepted. 

1.2.8 Maximum Number of Iterations Per Step 

The method developed by Pkrez1-20 to calculate the maximum number of total 
iterations per step is outlined. The method calculates the maximum number of 
iterations per step by estimating the acceptance ratio for the subsequent step. The 
maximum number of steps defined by Pdrez is 
subsequent step is observed to be: 

for r =  1, 2,... 1000 and for r =  1, x 1  e l .  

1000. The acceptance ratio for 

The maximum number of iterations per step are qlculated by: 
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where the recommended value for Ma is 5.0Ns. Numerical experiments 
recommend the coefficient value of 5.0 is idcal and allows for sufficient iterations 
per step. 

1.2.9 Energv Function Udate Mcchanism 

In the simulated annealing algorithm most of the computational effort is spent on 
updating the constraints imposed by the variogram and well test information, once a 
pcrturbation or swap has bcen made. Thus the update code must be efficient with 
minimum computations to rcducc the ovcrall computational cost. The permeabilities 
at the swap points, f,' and;,,, result in a change in the energy function for each 
component. We prcscnt thc update formulations for thc two point swap for the 
variogram and wcll tcst componcnts of the cncrgy function and the update 
formulations for the singlc point swap for only thc variogram component. The 
update formulations prcscntcd hcre allow us to dctcrminc the new variogram and 
permeability avcrage cfficicntly with minimal computational cost. 

Variogram Encrgv _ -  Function Urxlate 

The update rncchanism for thc variogram componcnt of the encrgy function was 
dcscribcd by P&czl.*o and prcscntcd hcrc for thc sake of complctcness. The new 
sample variogram, y :( ia), alculatcd at an arbitrary lag distance, h, is 

- 
where y , ( B )  is thc original variogram valuc at 11,. A('a) is the variogram 

corrcction tcrm which consists of rcmoving thc contribution to thc variogram of thc 
pcrmcability at onc cxchangc point and adding thc contribution of pcrmeability at 
thc othcr cxchangc point for thc two point swap or thc pcrmcability samplcd from 
thc cdf for the singlc point swap. 

- 
The correction tcrm at thc lag distancc, tia is 



( 1.89) 

where, N p  is the numbcr of pairs for the lag, 6. For the single point swap A;2 - 0 
and Ai2 = 0. 

For the exchange at SI, the corrcction components are: 

A;, = -d,,k(S,, + a) + q2 

A;, = -d,,2k(.;l - iQ) + q 2  
and 

For the cxchange at SI, thc corrcction componcnts arc: 

and 

where 

(1.91) 

(1.92) 

and 

4 . 2  = &/I - 4 / 2 1  (1.93) 

Note that for the singlc point swap, k,, is substitutcd by the value sampled from 

the cdf. 

Most of thc computational cost in thc simulatcd anncaling algorithm is duc to the 
updatc of thc cncrgy function. Sincc thc numbcr of computations for the single 
point swap are lcss than that of thc two point swap, the single point swap 
formulation spccds up thc algorithm. Howcvcr, notc that for the single point swap 
thc cdf constnint of thc algorithm is no longcr satisfied. 

Thc ncw variogram objcctivc function duc to thc swap is writtcn as: 



(1.94) 

Well Test Commnent Uudate 

The correction term for the well test component is a correction to the geometric 
permeability average in the theta direction, 4j, for each pressure derivative data 

point considered. The correction removes the contribution of permeability at one 
exchange point and adds the contribution of permeability to the other exchange 
point. This equation can be written to account for the change of two exchanged 
locations S,, and & on the geometric permeability average, <j: 

(1.95) 

where j = 1,Z,3, ... N,. 
If the grid block at 3 falls completely outside the annular region between j -  1 and 
j ,  then since = 0, the contribution of the permeability k3, to the permeability 

average is 0. We then calculate the equivalent permeability, 6,  for the correction 
term: 

(1.96) 

For Oliver's method the well test component of the energy function is calculated by 
the following equation: 

If the harmonic average is used to approximate the ISA permeability distribution 
then the following update equation is used: 
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For ZSA the well test component of the energy function is calculated by: 

where ff is either the area-based geometric or harmonic average of grid block 
permeabilities in annular rings defined by Eq. 1.37 or Eq. 1.36, respectively. 

Update of Production Performance Energv Function Constraint 

In the context of simulated annealing, the logarithm of effective permeability can be 
updated after a swap as follows: 

N, log(ke) -log(k,)+ log(k,.) 
log(k:) = 

Nb 
(1.100) 

where log (k , )  is the value prior to the swap and log (IC:) represents the updated 
value after replacing log (ki) with ( k i . ) .  The new energy function ( E l )  is then 
calculated by: 

(1.101) 

1.2.10 Simulation Process 

In this section we present a step by step outline of the simulated annealing 
algorithm. The algorithm is summarized in the flow chart shown in Fig. 1.25. 
Numbers in the flow chart indicate steps in the algorithm below. 

1. Generate the initial uncorrelated permeability distribution by the method 
described in Section 1.2.1. 

2. Calculate the sample variogram (Section 1.2.2) and the initial well test 
information for the initial distribution. The initial well test information 
includes (i) the area of each grid block within the predefined radial grid (ii) 
the area-based geometric or harmonic grid block permeabilities within each 
annular region and/or (iii) for Oliver's method only, the equivalent 
permeability and corresponding weights determined by the kernel function. 

70 



- variogram 
- well test permeabilities 

- Update energy function 
components - Calculate new overall 
objective hct ion 

5 

6 -F =F 

v 
&led Exchange Points 7 

8 

* Numbers indicate a step of the 
simulation process described 
in Section 1.2 

update 13 

-Well Test 14 
- Objective hction 

-variogram 

Figure 1.25 Simulated annealing flow chart, incorporating geostatistical and well 
test information. 
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3. Calculate each of the normalizing constants for each of the component 
objective functions (Section 1.2.3). 

4. 

5 .  

6 .  

7. 

8. 

9. 

10. 

11. 

12. 

Calculate the component objective function weights by the procedure given 
in Section 1.2.4. 

Calculate the value of the initial control parameter, T o  (Section 1.2.7) and 
set T' = T O .  

For the first step, set the maximum number of iterations per step equal to 
Ma, Le., M,, = Ma (Section 1.2.8). 

Using the interchange mechanism described in Section 1.2.5 select two 
random locations in the simulation domain, S;, and&. 

Calculate the update of each component of the energy function (variogram 
and well test) using the procedure outlined in Section 1.2.9 and calculate the 
new overall energy function (Section 1.2.4). 

By the procedure outlined in Section 1.2.6 check if the Metropolis condition 
accepts the proposed interchange. 

If the interchange is not accepted return to step 7. 

If the interchange is accepted, then permanently exchange the permeabilities 
at the two selected swap points by assigning the original permeabilities at 
the swap points to temporary variables, Le., TV, = kSrl andTV, = ki12. Then 
assign the permeability values at the new location: k311 = TV,  andkS12 = TV,. 

Check for convergence; if the tolerance condition of the objective function is 
satisfied. For Oliver's method this convergence criterion is, 

(1.102) 

For ISA the convergence criterion is 
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(1.103) 

Similarily the convergence criteria for the near well-bore permeabiltity, for 
the production performance can be defined as: 

(1.104) 

E ,  is a convergence tolerance close to 0. If the convergence criteria are 
satisfied, then the simulation is stopped. 

Update the sample variogram and corresponding variogram energy function 
for the next iteration level: 

- k + l  - yr ( I l l , * ) =  ~ : ( h ~ , ~ )  forZ=l. ... Nhi andi=l ,  ... Nd 

and 

( 1.105) 

(1.106) 

14a. For Oliver's method, update the area-based geometric average of the grid 
block permeabilities within annular regions, the equivalent permeability and 
the corresponding energy function: 

-k+1 - 
kg,j = k i . j ,  forj= 1 ,..., Nr 

1;;' E fori=l, ... N, 

and 

k + l  E2 = E ;  

(1.107) 

( 1.108) 

(1.109) 

14b. For ISA update the area-based geometric or harmonic average of the grid 
block permeabilities within annular regions and the corresponding energy 
function: 

forj= 1, ..., Nr - k + l  -I kg,j kg,j 9 
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or 

and 

E;+' = E; 

14c. For near-well permeability constraint, k,,, the updated values are: 

k:+' = k:, forj= 1. ..., N, 

and 

(1.111) 

( 1.1 12) 

(1.113) 

(1.1 14) 

15. Check if the number of iterations is less than the maximum number of 
allowable iterations, if m > M ,  go to 17 or if m s Ma go to 16. 

16. Check if the number of iterations in a step r does not exceed the maximum 
number of total iterations per step, k(. If k 2 a then go to step 17. I f  
k c then go to step 7. 

17. Check the acceptance ratio tolerance for the current step. The acceptance 
ratio is the fraction of the total iter.ations in a step which were accepted by 
the Metropolis condition (Section 1.2.6) and is given by 

r m  x =- 
k 

(1.115) 

where m is the number of accepted iterations in the step T and k is the total 
number of iterations. The convergence criteria is 

(1.116) 

E ,  is a convergence tolerance close to 0. If the convergence criterion is 
satisfied the simulation is stopped. This convergence does not imply a 
convergence of the objective function but ensures the algorithm does not run 
for extremely long times. 
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18. Calculate the control parameter for the next step using the procedure 
outlined in Section 1.2.6. 

19. Calculate the maximum number of iterations for the next step as described in 
Section 1.2.7. 

20. Proceed to step 7. 

1.3 Inclusion of Dynamic Data in Reservoir Description - Results 

In this part of the report, we apply the simulated annealing algorithm to develop 
reservoir descriptions that simultaneously honor the spatial statistics (variogram) 
and the well test information or the production performance constraints. 

For the production performance constraints we investigate synthetic inverted 5-spot 
heterogeneous reservoirs and demonstrate the importance of the identified 
parameters in improving our ability to predict reservoir performance. We show the 
importance of near-well bore permeability in predicting primary and secondary 
recovery performance and the importance of CV,. and threshold connectivity 
functions for improving the prediction of secondary recovery performance. 

W e  also show that porosity heterogeneties are not crucial for improving 
performance prediction. 

Finally an actual field case under primary and secondary recovery is investigated 
and it is demonstrated that by including the additional constraints the performance 
prediction of the field is greatly improved. 

From the pressure transient response of a single well producing during a drawdown 
test in a heterogeneous reservoir, both Oliver's method and ISA are used to 
reproduce the permeability distribution. The reproduced reservoir images and their 
pressure and pressure derivatives are compared to their respective base cases. We 
also investigate the efficiency, in terms of computational cost, for both methods. 

The effect of porosity variations on the pressure response for a single well 
producing in a heterogeneous porous medium is also investigated. 
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We consider the effect of anisotropy on the pressure response during a drawdown 
test. A gridding scheme for simulated annealing is developed; it allows for the 
incorporation of the pressure response due to anisotropy into an equivalent isotropic 
domain. 

1.3.1 Incorporation of Well Test Data 

Using the simulated annealing algorithm described in Section 1.2, permeability 
fields are reproduced such that the spatial and univariate statistics and tlie pressure 
transient data of the synthetic base case are honored. A numerical fluid flow 
drawdown simulation of the regenerated permeability field is performed using ECL 
100. The reservoir properties are the same as in the base cases and are summarized 
in Table 1.2. The pressures and pressure derivatives are compared to the base case 
pressure responses. The input parameters for the simulated annealing algorithm are: 

*the univariate statistics (cdf), 
*the spatial statistics (variogram), 
*the conditioning data, 
*the instantaneous permeability, k  ̂, for Nt time steps for Oliver's solution, or 
*the equivalent radial permeability distribution, Gm , determined by ISA. 

Each distribution is conditioned such that the center grid block permeability where 
the well is located is the permeability of the base distribution. It should be noted 
that Turning Bands does a poor job of reproducing the input variogram. Therefore, 
the variogram of the base distribution was recalculated using the Xgam program in 
GSLIB. '." We present both the Oliver's solution and ISA results. 

Oliver's Solution Results 

Example I 

In the first example, we consider the permeability field shown in Fig. 1.2 and cor- 
responding pressure response shown in Fig. 1.3 as the truth case. From a 
qualitative global radial perspective we observe that the permeability field in this 
example exhibits a region of higher permeability near the flowing well located at the 
center of the reservoir and reduced permeability nearer the outer no-flow 
boundaries. This effect is also shown by the prekure derivative which has a lower 
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value at early times and a higher value at later times. Typical well test interpretation 
of the pressure derivative would indicate the behavior of two-zone composite 
reservoir. 

The input parameters for the simulated annealing algorithm are summarized in Table 
1.5. Multiple realizations, honoring the same constraints, are generated by 
changing only the seed value to generate random numbers. Fig. 1.26a is the base 
case permeability distribution and Fig. 1.26b through Fig. 1.26f are multiple 
realizations honoring the same constraints. A comparison between the pressures 
and pressure derivatives of the base case and simulated cases are shown in Fig. 
1.27. 

The match between the pressures and the pressure derivatives of the base case and 
simulated cases show a good agreement. The simulation statistics also show an 
excellent match between the input and simulated variogram. Fig. 1.28 shows the 
pressures and pressure derivatives of realizations generated by constraining them 
only to the univariate and spatial statistics, but not to pressure transient data. Note 
that for these cases the pressure response is reproduced poorly. 

Example 2 

We also present a second case study, where the permeability has a higher variance 
indicating a higher degree of heterogeneity. The base case permeability field is 
shown in Fig. 1.29a and the reproduced permeability distributions are shown in 
Fig. 1.29b through Fig. 1.29~. Fig. 1.30 shows the fluid flow simulation results 
of the pressure responses compared to the base m e  pressure response. Fig. 1.31 
shows pressure responses of reproduced permeability fields that do not honor the 
well test constraint. Once again, we observe that the pressure response is more 
effectively reproduced when the well test constraint is taken into consideration. 

Example 3 

Fig. 1.32a shows the base case permeability field for this example and Fig. 1.32b 
through Fig. 1.32~ show simulated permeability fields honoring the spatial statistics 
and well test information constraints. Note that for this particular example the 
correlation range of the variogram is 2100 ft which is half the length of one side of 
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Figure 1.26a: Base case permeability distribution generated by Turning Bands 
(range = 600 feet, crik = 0.92). 

Figure 1.26b (seed = 107935). 
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Figure 1.26~: (seed - 1079602). 

Figure 1.26d: (seed = 1079623). 
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Figure 1.26e: (seed = 1079635). 

Figure 1.26f: (seed - 1079602). 

Figure 1.26b-f: Simulated permeability distributions honoring variogram and 
well test constraints (Oliver's solution). 
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Figure 1.27: Pressures and pressure derivatives of simulated permeability 
realizations honoring variogram and well test constraints compared 
to the base case response for Example 1. 
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Figure 1.28: Pressures -and pressure derivatives of simulated permeability 
realizations honoring only the variogram constraint compared to the 
base case response for Example 1. 



Figure 1.29a: Base case permeability distribution generated by Turning Bands 
(range = 310 feet, akk = 1.61). 

Figure 1.29b (seed = 1079601). 
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Figure 1.29~: (seed - 1079616). 
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Figure 1.30 Pressures and pressure derivatives of simulated permeability 
realizations honoring variogram and well test constraints compared 
to the base case response for Example 2. 
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Figure 1.3 1: Pressures and pressure derivatives of simulated permeability 

realizations honoring only the v a r i o g m  constraint compared to the 
base case response for Example 2. 
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Figure 1 . 3 k  Base case permeability distribution generated by Turning Bands 
(range = 2100 feet, oik = 0.92). 

Figure 1.32b (seed = 1079613). 

Figure 1.3%: (seed - 1079608). 
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Figure 1.33: Pressures and pressure derivatives of simulated permeability 
realizations honoring variogram and well test constraints compared 
to the base case response for Example 3. 
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Figure 1.34 Pressures and pressure derivatives of simulated permeability 
realizations honoring only the variogram constraint compared to the 
base case response for Example 3. 



the reservoir. From a qualitative perspective the permeability values near the center 
of the reservoir appear to be lower than those further away and the distribution of 
permeabilities have a radial characteristic. A comparison of pressures and pressure 
derivatives to the base case are shown in Fig. 1.33. Fig. 1.34 shows pressure 
responses for the same case for which the well test information is not honored and 
only the variogram is honored in regenerating the distribution. The pressure 
response for these cases is reproduced poorly. 

The heterogeneity parameters for the three examples are given in Table 1.6. 

The heterogeneity index is defined in Reference 1.31 as: 

a12, ,range 
h N x  

H.I.= 

Reference 1.30 defines the Dykstra Parson's coefficient, V , as: 

1 V = l -  
exD( 4 " k )  

( 1.1 17) 

(1.118) 

Note that for examples 1 and 3 the multiple realizations generated consistently 
reproduce the pressures and pressure derivatives that match the base case pressure 
response. However, in example 2, the pressure responses of the simulated cases 
are not as consistent in reproducing the base case response. Note that, in example 2 
the variance of the distribution is high and the range is low. For practical purposes, 
the pressure derivative shown in Fig. 1.30, for this example may be considered as 
that of a homogeneous reservoir. The "homogeneous" pressure response is also 
observed for reservoirs in which the permeability distribution is completely 
random, Le., the permeability distribution has no spatial correlation. This effect 
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may apply to example 2 - the base case permeability distribution with the low 
correlation range shown in Fig. 1.29a results in a relatively constant instantaneous 
well test permeability, i ,  as shown in Fig. 1.35. The equivalent permeability, &, 
calculated by Oliver's method i-lso relatively constant as shown in Fig. 1.35. 
The overall effect is that the pressure response is that of a homogeneous or 
completely random heterogeneous reservoir. This can be attributed to the low 
correlation range of the variogram used to develop the description and the reservoir 
image can interpreted to be that of a permeability distribution that is completely 
random (see Fig. 1.29a). 

ISA Results 

In Section 1.1.1, it was observed that both the area-based geometric average, 1'. 
and the area-based harmonic average, E,, , give reasonable approximations to the 
ISA radial permeability distribution, klsA. We consider examples in which both 
averaging techniques are used to generate the areal permeability distribution using 
the simulated annealing procedure given in Section 1.2. The equivalent radial 
permeability distribution derived by ZSA, k,sA , the conditioning data, and the 
univariate and spatial statistics are honored in the annealing algorithm. 

The input parameters for the first example are given in Table 1.8. The truth case is 
the areal permeability distribution shown in Fig. 1.2 with the pressure response 
shown in Fig. 1.3. 

Fig. 1.36b and Fig. 1.36~ show the reproduced permeability fields honoring the 
input constraints. Fig. 1.36a shows the base case for this example. The area based 
geometric average, k7p, is used to approximate the ISA equivalent permeability, kIu. 

Fig. 1.37 compares the pressure responses of the multiple realizations to the base 
case pressure response. 

Fig. 1.38a through Fig. 1.3% shows the reproduced permeability distributions, 
where the area-based harmonic average, E,, , is used to approximate kIsA. The base 
case permeability field is shown in Fig. 1.36a. Fig. 1.39 compares the pressure 
response of the multiple realizations to the base case pressure response. 
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Figure 1.36a: Base case permeability distribution generated by Turning Bands 
(range = 600 feet, oik = 0.92). 
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Figure 1.36b (seed = 1079607). 
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Figure 1.36b-c: Simulated permeability distributions honoring variogram and ISA 
permeability distribution with a geometric area based permeability 
average. 
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Figure 1.37 Pressures and pressure derivatives of simulated permeability fields 
honoring variogram and well test constraints compared to the base 
case response. k,sA is approximated by Eg. 
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Figure 1.3%-c: Simulated permeability distributions honoring the variogram and 
the ISA radial permeability distribution with an area based 
harmonic permeability average. 
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Figure 1.39 Pressures and pressure derivatives of simulated permeability 
realizations honoring variogram and well test constraints compared 
to the base case response. kIm is approximated by Eh. 



For this example, we observe that when we perform harmonic averaging of grid 
block permeabilities within our radii of investigation to produce our distribution, the 
resulting pressure response matches the base case pressure response better than 
geometric averaging of grid block permeabilities. 

Fig. 1.40 shows the pressure and pressure derivative response compared to the 
base response for a second example. In this case geometric averaging of grid block 
permeabilities was used. Fig. 1.41 shows the pressure response for the same 
example, where harmonic averaging of grid block permeabilities is used. When 
harmonic averaging is used the pressure derivative is better reproduced; however, 
the geometric averaging reproduces the pressure better. 

In general, for all the realizations generated by the two methods to incorporate well 
test information (Oliver or ZSA procedure), we observe that the reproduced images 
of the permeability distribution do not agree with the base case images. We also 
observe that the reproduced permeability images are characteristically radial in 
appearance. This is expected, since the simulated annealing algorithm is 
constrained only to the variogram and a radial permeability distribution. In order to 
generate a more realistic image we would have to include more constraints, such as 
more conditioning data and production data. 

Computational Cost of Each Method 

The advantage of using the ZSA algorithm is that the simulated annealing procedure 
considering ZSA is faster than that considering the Oliver procedure. This is clearly 
illustrated in Fig. 1.42; for the same convergence tolerance, the Oliver procedure 
requires greater CPU time. We also observe that for the ISA procedure the update 
of the well test component of the energy function consumes less time than the 
update of the variogram component, where as in the Oliver method the well test 
update consumes the most time. This is because ISA defines an equivalent 
permeability within an inner and outer radius of investigation and there is no 
overlap of the different radii of investigation. 
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Figure 1.40: Pressures' and pressure derivatives of simulated permeability 
realizations honoring variogram and well test constraints compared 
to the base case response. kIm is approximated by Eg. 
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Figure 1.41: Pressures and pressure derivatives of simulated permeability 
realizations honoring variogram and well test constraints compared 
to the base case response. k,u is approximated by zh. 
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Figure 1.42 Illustration of the CPU consumption of the simulated annealing 
algorithm for the ISA and Oliver method. 
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Effect of Porositv Variation 

So far, we have presented cases in which we have studied heterogeneous reservoirs 
with variations in permeability only. In this section, we investigate the effect of 
porosity variations on the pressure response of a reservoir during a drawdown test. 
In our analysis we consider a procedure similar to that outlined by Feitosa. 1.8 He 
considered permeability and porosity heterogeneities for an r - 8 distribution. We 
consider permeability heterogeneities for an x-y areal distribution. 

We generate two base case heterogeneous systems. For the first case, we generate 
a heterogeneous reservoir with variable permeability and porosity. The base case 
permeability distribution is shown in Fig. 1.43 and the histogram of the distribution 
in Fig. 1.44. A permeability-porosity transform is performed using the following 
equation given in Reference 1.32: 

( 1.1 19) 

where sWi is the irreducible water saturation, which in our case is assumed to be 
0.3. 

In the second case, we consider the same permeability distribution shown in Fig. 
1.43 with a constant porosity of 0.144. This is the average porosity of the 
transformed porosity distribution determined by Eq. 1.1 19. 

For both cases a fluid simulation is performed in the heterogeneous medium using 
ECL 100. The resulting pressures and pressure derivatives are shown in Fig. 1.45. 
Observe that the differences in the pressure and pressure derivative between the two 
simulations are relatively small. 

We also consider an example in which we examine heterogeneities in porosity and a 
constant permeability of 20 md. The fluid simulation of a drawdown in this 
heterogeneous medium is shown in Fig. 1.46. Note that the pressure derivative is 
approximately constant. 
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Figure 1.43: Base case permeability distribution, for investigating the effect of 
porosity. Generated by Turning Bands (seed = -18, range = 960 
feet, qak = 0.92, k' = 20 md). 2 
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Figure 1.44: Permeability - porosity transformations. 

- 
- 
- 

I I 1 I I I l l  I 1 I I 1 1 1 1  

104 



- 
- 

0.0001 0.001 0.01 0.1 1 
Time (days) 

Figure 1.45 Comparison of pressures and pressure derivatives between 
heterogeneious distributions with a variation in permeability and 
porosity, and only permeability. 
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Figure 1.46: Pressures and pressure derivatives of a heterogeneous medium with 
variable porosity and a constant permeability of 20 md. 
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We solve the inverse problem of describing the permeability distribution assuming 
that univariate and spatial statistics, and the pressure response during a drawdown 
of the reservoir are known. We use the pressure response of the reservoir in which 
both the permeability and porosity vary. 

The method of simulated annealing using Oliver's solution is used to develop the 
permeability distribution. The input parameters to the simulated annealing 
algorithm are given in Table 1.8. The resulting permeability field is shown in Fig. 
1.47. Porosity values are assigned to corresponding grid blocks using the 
transform equation (Eq. 1.119). A fluid flow simulation is then performed in the 
heterogeneous porous medium. The results of the pressure responses for the case 
in which both permeability and porosity vary and also the case for which only 
permeability varies and porosity is constant at 0.144 are shown in Fig. 1.48. These 
are compared to the base case pressure response. 

From our analysis, we can conclude that, for practical purposes, porosity variations 
have a minimal effect on the pressure response of a reservoir. This is important, 
since reservoir descriptions must not only describe heterogeneities in permeability 
but also in porosity; therefore, the effect of porosity in the use of describing 
reservoir heterogeneity with well test information must be minimal. 

Effect and Incorporation of Anisotropv 

The application of anisotropy to geostatistics is defined by the variogram model. 

zonal anisotropy is one in which the sill value changes in direction and the range 
remains constant. In geometric anisotropy, the sill remains constant and the range 
varies - see Fig. 1.49. Variogram anisotropy may be observed in river channel 
deposits, where the spatial continuity of reservoir properties is greater in one 
direction than another. The effect of anisotropy on the fluid flow in a reservoir will 
affect the pressure response of a well test. In this study we consider an anisotropic 
reservoir drained by a single well producing at a constant rate at the center of the 
reservoir. In order to incorporate the effect of anisotropy on the pressure response, 
we develop a gridding scheme for the simulated annealing algorithm which allows 
for the incorporation of anisotropy in an isotropic domain. 1.1 

Variogram models define zonal and/or geometric anisotropy (Fig. 1.49). 133 A 



n 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Number of grid blocks (x,y,z) 
Block dimensions (Ax,Ay,Az) 
variogram type 

Range vi> 
Sill 

t (days) 
1.67 x1~-3 

3.06 x1~-3 

5.62 x1~-3 

1.24 xlo-2 

4.95 xlo-2 

2.56 x ~ O - ~  

9.38 x ~ O - ~  

1.54 x10" 

2.35 x10-I 

3.33 x10-' 

5.45 x10-' 

4.42 x10" 

Conditioning Data 

115x115~1 

359 x 35f) x 103 

Spherical - isotropic 
263.0 

600.0 

Well Test Information 
fmir! rmu 
5.4 106.1 

7.4 143.7 

10.0 195.0 

14.8 288.8 

21.4 418.2 

29.7 578.2 

40.8 796.2 

52.3 1019.4 

64.6 1259.2 

77.0 1501.1 

88.6 1727.4 

98.4 1919.1 

xvt) Yvz) 
2012.5 2012.5 

zvt) 
17.5 

i 
6.14 

6.21 

5.98 

5.52 

5.14 

5.09 

5.57 

6.52 

7.90 

9.15 

9.43 

8.87 

kz (md) 
6.95 

Table 1.8: Simulated annealing input data - example considering heterogeneous 
medium in porosity and permeability. 
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Figure 1.47 Simulated permeability distribution honoring the constraints given in 
Table 1.8. 
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Figure 1.48: Comparison of the pressure response between the base case and 
simulated heterogeneous systems. 
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lag distance, h 

Figure 1.49: Variogram'models illustrating zonal and geometric anisotropy. 



Base Cases 

Base case reservoir descriptions, considering geometric anisotropy, are developed 
using the simulated annealing algorithm. The reservoir dimensions and anisotropic 
variogram models for base case permeability distributions are given in Table 1.9. 

Table 1.9 
Summary of Variogram Parameters used to Generate 
the Base Case Anisotropic Permeability Distributions 

Range in Range in Sill Sill 
x-direction (ft) y -direction (ft) x-direction y-direction 

Example 1 1500 550 350 350 
Example 2 3200 550 400 400 
Example 3 3200 420 150 150 

We consider only geometric anisotropy in these examples. In order to be able to 
incorporate the permeability information from a well test into the simulated 
annealing algorithm, we consider a variogram model in which the range in the x- 
direction is greater than that in the y-direction (ax > aY).  This simplifies the inverse 

problem. The base case permeability distributions for the three examples are shown 
in Fig. 1.50. The corresponding pressure and pressure derivative response for 
these examples are shown in Fig. 1.51. For these examples, the reservoir 
descriptions are created by forcing a permeability streak along the x-direction such 
that the producing well lies within the streak. This was achieved by using high 
permeability values along the location of the streak as conditioning values. The 
resulting permeability distribution resembles that of a channel sand reservoir. Fig. 
1.52 and Fig. 1.53 show equipotential contours of the flow simulation, for example 
1, at 0.15 days and 0.29 days, respectively. Note that the equi-potential pressure 
profile in the reservoir is approximately circular closer to the center of the reservoir 
and elliptical further away. The major axis of the ellipse is along the x-direction. 
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Figure 1.50: Base case anisotropic permeability distributions. 
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Figure 1.51: Pressures and pressure derivative for the anisotropic permeability 
fields shown in Figure 1.50. 
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Figure 1.52 Pressure cbntours for the permeability field shown in Example 1 at a 
time step of 0.15 days during the flow simulation. 

.- . . 



0 ABOVE 
19%- 
1986 - 
1979 - 
1972 - 
1965 - 
1958 - 
1944- m 1937 - 
1930- m BELOW 

Ip 1951 - 

2000 
2000 
1993 
1986 
1979 
1 972 
1965 
1958 
1951 
1944 
1937 
1930 

Figure 1.53: Pressure contours for the permeability field in Example 1 at a time 
step of 0.29 days during the flow simulation. 
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Reservoir Description Incorporating Anisotropy 

The method of simulated annealing along with Oliver's solution is used to develop 
reservoir descriptions that honor anisotropy. The method must honor the 
anisotropic variogram models and the permeability information obtained from the 
pressure response of an anisotropic reservoir. 

In order to facilitate a solution to the problem, we only consider anisotropy defined 
in two principle directions: x and y.  Fig. 1.52 and Fig. 1.53 show that a reservoir 
drained by a single well, in which the range of the variogram in the x-direction is 
greater than that in the y-direction causes the equipotential profile to be elliptical. 
The major axis of the drainage ellipse is along the variogram direction of higher 
range. 

For a steady state anisotropic problem, Muskat1.34 considers an anisotropic 
medium in which k, ;t ky . Muskat claims that the effect of anisotropy in a porous 

media can be replaced by an equivalent shrinking or expansion of the coordinate 
system, for which the transformed coordinates from ( x ,  y) to (x ' ,  y') are defined by: 

(1.120) 

By analogy we hypothesize that a similar transformation of coordinates should 
apply to an areally heterogeneous anisotropic medium. For our study we consider 
geometric anisotropy in which the range of the x-direction variogram (a,) i s  
different from the range of the y-direction variogram (a,). Note that for our 
example in which a, > ay results in the elliptical drainage profile. This effect will 
also be observed if k, > ky . Although on a local scale (individual grid blocks) we 

have an isotropic medium, on a larger scale, due to variogram anisotropy, we have 
an apparent anisotropic permeability medium. We hypothesize that this variogram 
anisotropy ratio is representative of the apparent large scale permeability anisotropy. 
By analogy to Eq. 1.120 we assume the following transformation of grid block 
dimensions: 
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For our study since Ax = Ay the anisotropy factor can be defined as: 

(1.122) 

In order to incorporate the anisotropy effect, due to the pressure response, the grid 
dimensions are modified as illustrated in Fig. 1.54 and are redefined by: 

Ax' = Ax and Ay ' = a Ay (1.123) 

The grid dimension modifications are only for permeability averaging within 
annular regions, and do not apply when the spatial statistics are honored. Fig. 1.54 
shows that if the major axis of the ellipse is along the x-direction and the minor 
axis of the ellipse is along the y-direction, then the reservoir, for the purpose of 
radial permeability averaging, is elongated in the y -direction. The overall effect is 
the incorporation of an elliptical drainage of the reservoir. 

Results mid Discicssiom on tlze Incorporation of Anisotropy 

The grid dimensions modifications in permeability averaging are incorporated with 
Oliver's procedure in the simulated annealing algorithm to reproduce permeability 
distributions. We present one example in this report (Example 1 in Table 1.9). The 
details regarding other examples can be found elsewhere. 1-1 

Eq. 1.122 is used to calculate the anisotropy factor. For example 1 (a, - 1500 and 
ay = 550) af = 1.65. In the simulated annealing procedure the grid dimensions for 

the purpose of radial permeability averaging are modified by Eq. 1.123. Fig. 1.55 
shows examples of permeability fields generated honoring the anisotropic 
variogram and pressure response of the anisotropic reservoir in example 1. In Fig. 
1.56 the pressures and pressure derivatives of the simulated cases are compared to 
the base case pressure. We also consider the pressure response of simulated 
permeability fields where anisotropy in permeability averaging is not considered, 
i.e., an anisotropy factor of 1.0 is used. The pressure responses of these 
simulations are shown in Fig. 1.57. 
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Figure 1.54: Transformation of areal grid to incorporate anisotropy from well-test 
information. 
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Figure 1.55a: Base case permeability distribution a, = 1500 feet, ay = 550 feet. 

Figure 1.55b (seed = 1079614). 
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Figure 1.55a-c: Base case and simulated permeability distributions incorporating 
well test and variogram anisotropy for Example 1. 
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Figure 1.56: Comparison of pressure and pressure derivatives between the base 
case and simulated distributions honoring anisotropic variogram and 
radial anisotropy well test information (af = 1.65) for Example 1. 
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Figure 1.57: Comparison of pressure and pressure derivatives between the base 
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radial anisotropy well test information ( ar = 1.0) for Example 1. 
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For the example studied, we observe that the pressure response is consistent from 
simulation to simulation. Note from the example that, when the anisotropy effect 
due to the pressure response is considered in permeability averaging, the pressure 
response matches the base case pressure response better than when anisotropy is 
not considered. The improvement in the match is especially noticeable at later 
times, before pseudo steady-state flow occurs. This implies that, for this and other 
examples, we were better able to capture the elliptical flow phenomena due to 
anisotropy by considering the defined anisotropy ratio in the radial permeability 
averaging. 

Overall, for the three examples investigated, the inclusion of anisotropy in 
permeability averaging during the simulated annealing process improves the 
reproduction of the pressure response. Therefore, the effect of variogram 
anisotropy on the pressure response can be properly accounted for. 

1.3.2 Incorpomtion of Production Performance 

Primary Production Performance 

The synthetic example studied is the same as that given in Section 1.1.2 of this 
report. The reservoir properties and dimensions are given in Table 1.4. The 
simulated annealing objective function was modified to include both effective near- 
well permeability and the Permeability variogram as constraints. 

Twenty-one permeability realizations were generated, all honoring conventional 
constraints (well block permeabilities, the permeability frequency distribution and 
variogram) and the additional kNw constraint. The permeability fields were then 
used to simulate 10 years of primary performance for the 13-well system previously 
defined. The resulting performance of the central producer, for all 21 cases, is 
shown in Fig. 1.58. A comparison of Fig. 1.13 and Fig. 1.58 demonstrates the 
impact of khrw on well performance. Inclusion of kNw as a conditional simulation 
constraint is seen to result in permeability fields which have essentially the same 
primary performance characteristics. These permeability realizations truly can be 
referred to as "equally probable" since they honor all of the existing data. 
Uncertainty in future reservoir performance has been minimized, thus a more 
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realistic reservoir modeling study can be performed for quantifying uncertainty. 
Fortunately, not only can good estimates of kNw be obtained via well tests, but such 
information is typically available early in the life of a well. 

Porosity Heterogeneities 

The impact of porosity heterogeneities on well performance was also investigated. 
Heterogeneous porosity fields were generated by transforming the two sets of 21 
permeability fields described above using the following information: 

log  [ k (  i, j ) ]  - 0.667)1 
6.667 q(i, j )  = ( 1.124) 

where q ( i , j )  and k( i , j )  represent the porosity and permeability, respectively, for 
the i th column and j th row. This normal distribution has a mean of 0.20 and a 
standard deviation of 0.060; 68% of the values lie between 0.14 and 0.26. 

Analogous to the k,, study, flow simulations were performed for each of the 21 
porosity fields. A uniform permeability of 100 md was used in each case. The 
central producer oil rate and GOR vs. time profiles for all 21 flow simulations are 
presented in Fig. 1.59. The spread in primary performance between each case is 
very small - certainly not large enough to be able to quantify porosity 
heterogeneities from well performance characteristics. It can be concluded that a 
porosity heterogeneity constraint cannot be developed because of the insensitivity of 
primary well performance to porosity heterogeneities. 

A global multiplier of 1.20 was applied to each q(i , j )  for all 21 porosity fields to 
increase the average porosity from 0.20 to 0.24. Flow simulations were once again 
made using the revised porosity fields. Fig. 1.60 compares the primary 
performance of the central producer for both sets of porosity fields (average 
porosities of 0.20 and 0.24). It can be seen that there is significant difference 
between the two sets of runs, but an insignificant difference within each set. 
Although porosity heterogeneities cannot be identified from primary performance, 
an estimate of drainage area average porosity/pore volume is often obtainable from a 
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historical rate profile and thus should be used as a conditioning parameter. Pore 
volume estimates via material balance or volumetric calculations are often obtainable 
early in the life of a well using rate and pressure data. 

Summary of Results - Primary Production 

The effective permeability of the near-well region was found to be a dominating 
reservoir characteristic during primary production. This was illustrated analytically 
for radially homogeneous and composite reservoir systems and numerically for 
heterogeneous solution gas drive reservoirs. The correlation coefficient of initial 
producing rate vs. near-well effective permeability for the central producer in a five- 
well heterogeneous system was found to be 0.98. The spread in simulated primary 
performance between Permeability realizations was greatly reduced when near-well 
effective permeability was combined with conventional conditional simulation 
constraints. A geometric mean was found to be a sufficient estimate of effective 
permeability for the near-well region. It was not possible to identify other spatial 
permeability distribution characteristics from primary performance data. 

Porosity heterogeneities were found to have an insignificant impact on primary 
production characteristics. Hence, porosity heterogeneities cannot be quantified 
from primary performance. The benefit of including pore volume conditional 
simulation constraints was demonstrated. 

Fortunately, both near-well effective permeability and drainage area pore volume 
often can be estimated from well test and/or production data. 

Secondarv Production Performance 

Coirrrectivity Tliresliold Coristroirit Results 

The value of p M  for the first truth case was determined to be 0.319; (discussed in 
Section 1.1.2) i.e., the largest minimum permeability value of all connected paths 
between the injector and producer is greater than or equal to 31.9% of all 
permeability values. The simulated annealing with connectivity algorithm was used 
to generate 20 permeability realizations, all having a p M  of 0.319. Although all 
permeability realizations have the same intenvell connectivity, inspection of their 
spatial structures shows that the locations of high and low permeability regions vary 
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from realization to realization. Waterflood performance for the first truth case and 
the 20 flow simulations are included in Fig. 1.61. A comparison of Fig. 1.21 and 
Fig. 1.61 indicates that although the inclusion of the connectivity constraint reduced 
the spread in waterflood performance, the results appear to be biased. None of the 
20 flow simulations reproduced the WOR trend exhibited by the first truth case. 
This biased behavior is evident also in the producing oil rate history. 

The value of pH for the second truth case is 0.298. This value was used to 
generate 20 additional permeability realizations using the simulated annealing with 
connectivity algorithm. Once again, although connectivity is preserved, the location 
of high and low permeability regions change from realization to realization. Many 
of the realizations exhibit a region of high permeability surrounding the injector 
because of its high wellblock permeability. Inspection of the corresponding 
performance plots (Fig. 1.62) shows that the resulting trends are unbiased with 
respect to the second truth case. Also, the spread in performance has been reduced 
somewhat in comparison to the base case results (Fig. 1.23). These variations in 
performance could be reduced if the initial injectivity and productivity were better 
constrained. 

kNw and pIH Constraints Resrtlts 

The simulated annealing with connectivity algorithm was extended to include the 
additional constraint of kNw (near-well bore permeability). Two more synthetic 
case studies were performed, using properties from the two previously discussed 
truth cases as the specified constraints. 

For the first truth case, the producer kNw(k%) and the injector kNw(kNwi) are 190 md 

and 370 md, respectively. Once again, 20 permeability realizations were 
generated, this time using kNw constraints in addition to the pH and conventional 
constraints. Waterflood performance plots of the corresponding flow simulations 
(and the first truth case) are illustrated in Fig. 1.63. The improvement resulting 
from including kNw as a constraint can be observed by comparing the performance 
curves shown in Fig. 1.63 with the base case curves (Fig. 1.21) and the results 
obtained when excluding the kNw constraint (Fig. 1.61). It can be seen that the 
spread in waterflood performance is significantly reduced, especially during early 
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Figure 1.61: Simulated waterflood performance comparing the first trugh case 
and 20 flow simulations based on pur = 0.319; one-quarter five- 
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Figure 1.63: Simulated waterflood performance comparing the first truth case and 
20 flow simulations based on k,, = 190 md, k,, = 370 md and 
pIH = 0.3 19; one-quarter five-spot pattern system. 
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waterflood performance. However, the results are still biased compared to the truth 
case performance. Examination of the permeability realizations shows that the low 
permeability regions are located mostly in the diagonal comers of the pattern, as far 
as possible from the high permeability region surrounding each well. This is not 
true of the first truth case which has a region of high permeability surrounding the 
producer, quickly degrading into a low permeability region. This is the primary 
reason for the discrepancy between the truth case and all attempts to reproduce it. 

The near-well permeabilities of the second, less heterogeneous truth case were used 
as additional constraints to generate 20 permeability realizations. The values of kNw 
for the producer and injector for the second truth case are 340 and 575 md, 
respectively. Corresponding waterflood performance plots are illustrated in Fig. 
1.64. An extremely good comparison is obtained between the second truth case 
and the other 20 flow simulations. Not only is performance from the second truth 
case reproduced very well, but the scatter between the 20 simulated waterflood 
performances is very small. This represents a significant improvement over the 
results obtained using just the connectivity threshold constraint. Unlike the first 
truth case, the regions of low permeability for the second, less heterogeneous truth 
case are located in the diagonal comers (see Fig. 1.22). This spatial distribution of 
permeability is a much more likely outcome and therefore is easier to reproduce. 

kNw and CV,. Coitstraiiits Resrrlts 

A total of 20 permeability fields were generated using simulated annealing, the more 
heterogeneous permeability frequency distribution and additional constraints of k,, 
(kNwp = 190 md and kNwi = 370 md) and CV,, (0.186). These values are 
characteristic of the first truth case. Inspection of the permeability images shows 
that the CV,. constraint has reduced the connectivity between the injector and the 
producer by forcing the low permeability region to be spread out between the two 
wells, much like the first truth case permeability field (see Fig. 1.20). The 
corresponding waterflood performance is illustrated in Fig. 1.65. Variations in 
waterflood performance have been greatly reduced. Unlike previous attempts, the 
anomalous characteristics of the truth case waterflood performance are reproduced. 
The additional constraint of CV,. has reduced the domain of possible solutions to a 
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Figure 1.64: Simulated waterflood performance comparing the second truth case 
and 20 flow simulations based on k,, = 340 md, k,, = 575 md 
and pIH = 0.298; one-quarter five-spot pattern system. 
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Figure 1.65 Simulated waterflood performance comparing the first truth case and 
20 flow simulations based on kNwp = 190 md, k,, = 370 md and 
CV,, = 0.186; one-quarter five-spot pattern system. 
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set with flow characteristics similar to the first truth case. 

Analogous results, but based on characteristics of the second truth case, are shown 
in Fig. 1.66. Values of k,,, kNwi and cV,. for the second truth case and the other 
20 permeability fields are 340 md, 575 md and 0.300, respectively. The locations 
of the low permeability regions for all 20 permeability fields compare very 
favorably with the second truth case. As a result, the waterflood performance of all 
21 flow simulations also compare very well, especially oil rates. The reduction in 
the variation of waterflood performance in comparison to the base case results (Fig. 
1.23) is significant. 

Coiritectivity Estiiiintioir fioiii Waterfood Perforinairce 

The above two synthetic case studies were performed with the assumption that the 
values of pM and CV,. were known a priori. Since they cannot be measured 
directly, a correlation between waterflood performance parameters and the 
connectivity measures must be developed for estimation purposes. Sensi tivi ties of 
cV,. were performed over a wide range of values to illustrate the strong 
relationship between CV,. and waterflood performance. Values of CV,. were 
varied from 0.05 to 0.40 with five permeability realizations generated at each value 
of CV,.. All other constraints were characteristic of the first truth case and were 
held constant. One-quarter of a five-spot pattern flow simulations were then 
performed using each permeability field. Fig. 1.67 contains waterflood 
performance plots for the CV,. sensitivity flow simulations and the first truth case. 
For clarity, only one result per CV,, value has been included in Fig. 1.67. The 
effect of varying CV,. results in a decrease in water breakthrough time. Although 
not shown, flow simulations with equal values of CV,. have similar waterflood 
performance behavior. The performance of the first truth case (highlighted) is 
about average compared to the other cases. This is expected since its value of CV,. 

is approximately mid-range. 

Fig. 1.68 better demonstrates the correlation between water breakthrough time and 
CV,. . Data from all 21 flow simulation sensitivities have been plotted in Fig. 1.68. 
Note that as CV,. is increased, the spread in breakthrough times for the same CV,. 

is reduced. Larger values of CV,. reflect stronger trends between the two wells. 
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Figure 1.66: Simulated waterflood performance comparing the second truth case 
and 20 flow simulations based on kNwp = 340 md, kNwi = 575 md 
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Figure 1.67 Simulated waterflood performance showing the sensitivity of 
waterflood response to CV,, ; one-quarter five-spot pattern system 
(first trugh case highlighted). 
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Figure 1.68: Sensitivity.of water breakthrough time to CV,, . 
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The effect of CV,, on waterflood efficiency is illustrated in Fig. 1.69. Here, 
waterflood efficiency is represented by the cumulative WOR after one hydrocarbon 
pore volume of water injected (HCPVI). These results demonstrate that CV,. does 
have a strong effect on waterflood performance. Hopefully, its value can be 
estimated by performing a sensitivity study. 

Of course, the waterflood response of a producer is impacted by all neighboring 
injection wells. Therefore, the cV,, estimated from water breakthrough time and 
cumulative WOR’s is an average of the four associated one-quarter five-spot 
patterns. Sensitivity studies would have to account for the possibility of varying 
C&,’s within a five-spot pattern. More work is required to determine the best 
approach for estimating each injector/producer CV,, . 

The correlation between C& and reservoir connectivity is also apparent when 
examining the 21 permeability fields generated for the sensitivity study. A 
permeability image representing each value of CV,, investigated is depicted in Fig. 
1.70. It can be seen that as CV,. is increased, the high and low permeability trends 
become more aligned with the direction of fluid flow. Thus, higher values of CV,, 

result in more continuous/conductive paths, decrease water breakthrough time and 
increase WOR trends, thereby decreasing waterflood efficiency. 

Probability of Exceednirce Maps 

As more local reservoir constraints are defined, the variation in the spatial 
distribution of permeability between realizations is reduced. As a result, the 
uncertainty in defining regions of high and low permeability is also reduced. This 
becomes important when evaluating a reservoir for alternative operating strategies, 
e.g., infill drilling. Probability of exceedance maps can be used as a tool to 
quantify uncertainty. These maps are used to display the probability of exceeding a 
cutoff value at each grid block location. The probability of exceeding a cutoff at a 
grid block is calculated by determining the percentage of simulated values that 
exceed the cutoff at the particular grid block. This calculation is repeated for each 
grid block. A comparison of probability of exceedance maps representing the first 
truth case, the first base case and the corresponding results using kNw and CV,, 
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Figure 1.69 Sensitivity.of cumulative water-oil mtio to CV,, . 
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Figure 1.70: One-quarter five-spot pattern permeability realizations for various 
values of cv,, . 
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constraints is presented in Fig. 1.71. For this particular case, a low permeability 
percentile of 30% was used so that the regions which are most likely to have low 
permeability (but still floodable) would be highlighted. Such regions would most 
likely be good candidates for infill drilling in a mature waterflood. Since the 
permeability field for the truth case is known (Le., deterministic), its grid blocks are 
either unshaded or darkly shaded, indicating a 100% certainty of their permeability 
values. On the other hand, the grid blocks for the other two cases are shades of 
gray, indicating some degree of uncertainty. Note that the regions exhibiting a low 
probability of exceedance for the connectivity constrained cases are consistent with 
the truth case. This is not true of the base case probability of exceedance map. The 
kNw and CV,, constraints are shown to reduce the uncertainty in identifying high 
and low permeability regions, and thus, potential infill drilling locations. 

Extended Five-SDot Pattern - Less Heterogeneous Permeability Distribution 

Base Case Results 

The permeability field used for the first extended five-spot pattern truth case is 
shown in Fig. 1.72. The less heterogeneous permeability distribution ( plogk) = 
2.5, crIodk) = 0.2) was used to generate this truth case. The permeability correlation 
length was increased from 1000 ft to 1500 ft (AD = 0.803). All other pertinent 
data remain unchanged from the full five-spot pattern study. As before, 20 
additional permeability fields were generated using conventional simulated 
annealing. The waterflood performance of the inner five-spot producer and four 
injectors are illustrated in Fig. 1.73 and Fig. 1.74. These base case results 
represent the typical range in simulated waterflood performance using conventional 
conditional simulation constraints for the given system. As expected, the variability 
exhibited by the flow simulation results is less than that obtained for the full five- 
spot pattern cases due to the reduced permeability variance. The injection rates vary 
more than production rates between simulations because the injectors have a much 
greater differential pressure (relative to the average reservoir pressure) than the 
producers. 
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Figure 1.71: Comparison of one-quarter five-spot pattern permeability probability 
of exceedance maps, 30rh percentile. 
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Figure 1.72 Truth case permeability field for extended five-spot pattern study; 
less heterogeneous permeability distribution. 
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Figure 1.73: Base case waterflood performance for the inner five-spot pattern 
wells; extended five-spot patte-rn study using the less heterogeneous 
permeability distribution. 
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Figure 1.74 Base case .waterflood performance for the inner five-spot pattern 
injection wells; extended five-spot pattern study using the less 
heterogeneous permeability distribution. 
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The k,, of each well and C&, of each injector/producer pair representing the truth 
case were used as constraints in generating 20 additional permeability fields. 
Waterflood performance of the inner five-spot wells are included in Fig. 1.75 and 
Fig. 1.76. A comparison of these two figures to their counterparts, Fig. 1.73 and 
Fig. 1.74, indicates that the inclusion of the constraints kNw and CV,. significantly 
increases the probability of generating a reservoir description. with waterflood 
performance similar to the truth case. Several of the permeability fields have spatial 
characteristics very similar to the truth case (see Fig. 1.77). This is not the case for 
the 20 base case permeability fields. However, there are a few performance curves 
which do differ noticeably from the truth case performance. Probably of most 
concern is the tendency of the WOR curves of the inner five-spot producer (Fig. 
1.75) to fall below the truth case WOR curve--two significantly more so than the 
others. 

The permeability fields responsible for the anomalously-low WOR trends are 
shown in Fig. 1.78. Note that these two permeability fields are very similar. Also 
note that-the most significant difference between these two permeability fields and 
the truth case (Fig. 1.77) is the spatial distribution of permeability between the 
central producer and the northeast injector. Although all three permeability fields 
have identical values of cV,. for this injector/producer pair, the average 
permeability of the corresponding area of influence for the truth case is considerably 
higher. As a result, the truth case area of influence of these two wells is processed 
much faster. It should be noted that CV,. represents the standard deviation of a 
permeability normalized by its mean. Therefore, two injector/producer pairs may 
have the same CV,. but vastly different k * means. 

It is concluded that whereas kNw constrains early time injectivity/productivity and 
cV,. constrains reservoir connectivity, (relative) estimates of the average 
permeability between an injector/producer pair may be required to reproduce time- 
dependent variations in historical waterflood performance. This additional 
waterflood constraint, referred to as kpAT, becomes significant only when large 
variations in average permeability of neighboring injector/producer areas of 
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Figure 1.75 CV,, and kNw contraints case waterflood performance for the inner 
five-spot pattern wells; extended five-spot pattern study using the 
less heterogeneous permeability distribution. 
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Figure 1.76 CV,, and k,, contraints case waterflood performance for the inner 
five-spot pattern injection wells; extended five-spot pattern study 
using the less heterogeneous permeability distribution. 
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Figure 1.77 Comparison of truth case permeability field and an indirect 
performance contraints case permeability field; extended five-spot 
pattern study using the less heterogeneous permeability distribution. 

151 



.. . .* 

k, md 
,000 

630 

400 

250 

160 

100 

Figure 1.78 Permeability fields generated using indirect performance contraints 
and characterized by anomalous water-oil ratio trends; extended five- 
spot pattern study using the less heterogeneous permeability 
distribution. 
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influence exist. Otherwise, the parameter kpAT has no more than a secondary effect. 
Although this study has studied the significance of kpAT , it is not known how this 
parameter can be obtained from field data. 

Extended Five-Spot Pattern - More Heterogeneous Permeability Distribution 

The more heterogeneous permeability distribution was used to further investigate 
the impact of large variations in the average permeability for  adjacent 
injector/producer pairs. I t  was felt that the large range in permeabilities would 
increase the potential of having large variations in the average permeability of 
injectorlproducer pairs. This would increase the likelihood of requiring kpAT as a 
constraint. As before, base case results using conventional constraints are 
presented first. Subsequently, the results obtained when additional constraints are 
imposed are compared to the base case results to determine the degree of 
improvement. 

Recall that the more heterogeneous permeability distribution is log-normally 
distributed having a mean log@) of 2.0, or 100 md, and a standard deviation of 
0.6. Consequently, 68% of the permeabilities lie between 40 and 250 md. The 
same 13-well, 80-acre well spacing, 160-acre five-spot waterflood pattern system 
will be used. All permeability realizations were generated using an omnidirectional 
spherical variogram having a 20% relative nugget and a correlation length of 1200 
ft, or A, of 0.643. 

Base Case Results 

Conventional simulated annealing was used to generate 21 permeability realizations, 
all having the same permeability frequency distribution, variogram and wellblock 
permeability values. One of the permeability realizations was arbitrarily selected to 
represent the actual reservoir permeability field, i.e., to be the truth case 
permeability field. The truth case permeability field is shown in Fig. 1.79. Some 
of the more prominent features of the truth case permeability field are: 1) a high 
permeability zone surrounding the central producer, 2) a rim of low permeability 
surrounding the central producer high permeability zone, 3) a high permeability 
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Figure 1.79: Truth case permeability field for the more heterogeneous 
permeability distribution; extended five-spot pattern. 
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streak connecting the central producer and the injection well offset to the southeast 
and 4) a high permeability connectivity streak running nortldsouth along the west 
side. 

Waterflood performance plots for the inner five-spot pattern wells are presented in 
Fig. 1.80 and Fig. 1.81. As expected for a highly heterogeneous system, 
performance varies considerably from realization to realization. For the central 
producer, water breakthrough time varies from less than 2 years to more than 4 
years. The initial oil production rate for the central producer varies from 25 STB/D 
to 70 STB/D. The wells' WOR after 20 years ranges from 13 to 33 STB/STB. 
Similar variations are evident in the rate profiles of the four inner five-spot pattern 
injection wells (Fig. 1.81). Such large variations would result in extremely broad 
waterflood performance probability distributions. Additional information must be 
integrated into the reservoir description before realistic probability distributions can 
be obtained. 

Variations in the spatial distribution of permeability between realizations are 
illustrated in Fig. 1.82. Three of the 20 permeability realizations generated using 
conventional simulated annealing are compared to the truth case image. Although 
the same degree of heterogeneity (permeability frequency distribution and spatial 
correlation) exists in all four realizations, local well-to-well heterogeneities differ 
greatly. This, of course, is the reason for the large variation in waterflood 
performance depicted in Fig. 1.80 and Fig. 1.81. For example, the central 
producer is surrounded by a high permeability region for both the truth case and 
Realization 3. However, the high permeability streak connecting the central 
producer to the northeast injection well does not exist for the truth case. As a 
result, the pore volume connecting these two wells will be processed much faster 
and less efficiently for Realization 3 than the truth case. Such adverse discrepancies 
exist throughout the 13 well area for all 20 realizations when compared to the truth 
case. 

kNw, CV,. and kpAT Results 

For comparison, 20 additional permeability realizations were generated using the 
conventional constraints and the three indirect performance constraints - kNw , CV,. 
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Figure 1.80: Base case waterflood performance for the inner five-spot pattern 
wells; extended five-spot pattern study using the more 
heterogeneous permeability distribution. 
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Figure 1.81: Base case waterflood performance for the inner five-spot pattern 
injection wells; extended five-spot pattern study using the more 
heterogeneous permeability distribution. 
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Figure 1.82: Comparison of extended five-spot pattern truth case permeability 
field to three permeability fields generated using conventional 
conditional simulation constraints. 
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and k p A T .  The waterflood performance of these 20 permeability realizations are 
depicted in Fig. 1.83 and Fig. 1.84. Also included in these figures are the results 
for the truth case. A comparison of these results to those obtained using 
conventional constraints (Fig. 1.80 and Fig. 1.81) shows the added benefit of 
including the indirect performance constraints. The permeability realizations 
generated with the indirect performance constraints have waterflood performance 
characteristics very similar to the truth case. This is true for the central producer 
and the four offset injection wells. All available data - geological, petrophysical and 
production--are now being integrated into the reservoir description. 

Three permeability realizations obtained using the three indirect performance 
constraints are compared to the truth case permeability field in Fig. 1.85. Close 
inspection of these permeability images shows that most of the truth case high and 
low permeability regions are correctly reproduced by the three realizations. 
However, as would be expected considering the large number of unknowns, all 
three realizations do not perfectly reproduce the truth case permeability field. A 
probabilistic approach is still required to quantify uncertainty. 

kNw and CV,. Resrilts 

It was previously concluded that inclusion of the kpAT constraint would reduce the 
spread in simulated waterflood performance when large variations in the effective 
permeability of injectorlproducer regions of influence existed. To further examine 
this, permeability realizations were generated using the conventional constraints and 
the indirect performance constraints kNw and CV,. (not k p A T ) .  The corresponding 
waterflood performance of the inner five-spot pattern wells are depicted in Fig. 
1.86 and Fig. 1.87. When comparing these results to those obtained using all three 
indirect performance constraints, there are many similarities. The only significant 
difference is the increased spread in water breakthrough times as a result of not 
including k p A T .  Water breakthrough times for the central producer range from 2.5 
to 4.5 years when kpAT is not included as a constraint (Fig. 1.86) and from 2.5 to 
3.2 years when kpAT is included. Because of the difficulty in estimating k p A T ,  it is 
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Figure 1.83: Conventional and kNw, CV,, and kpAT indirect performance 
contraints case waterflood performance for the inner five-spot 
pattern wells; extended five-spot pattern study using the more 
heterogeneous permeability distribution. 
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Figure 1.84: Conventional and kNw, CV,, and kpm indirect performance 
contraints case waterflood performance for the inner five-spot 
pattern injection wells; extended five-spot pattern study using the 
more heterogeneous permeability distribution. 
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Figure 1.85 Comparison of extended five-spot pattern trugh case permeability 
field to three permeability fields generated using conventional and 
indirect performance constraints kNw, CV,, and kpAT. 
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reassuring to observe that the effect of kpAT is not significant. 

Indirect Performance Constraints Results Without Varwgram Comtrainl 

Considering the significant improvement obtained when including indirect 
performance constraints when generating permeability realizations, the necessity of 
the v a r i o g m  constraint could be questioned. Realizing the difficulties involved in 
quantifying spatial correlation, especially for distances less than intenvell distances, 
it would be of great benefit to eliminate its need. The time and money invested in 
acquiring and processing seismic data, studying outcrops and variogram analysis 
are very significant. The ability to extract spatial correlation characteristics from 
production.data would greatly simplify reservoir characterization methodologies. 

With this in mind, another synthetic case study was performed with all conventional 
and indirect performance constraints applied except for the permeability variogram 
constraint. As in previous case studies, the truth case properties were used to 
generate an additional 20 permeability realizations. Waterflood performance for the 
inner five-spot pattern wells for each realization and the truth case are shown in Fig. 
1.88 and Fig. 1.89. Note the extremely small spread in each performance curve 
and the good reproduction of the truth case performance. These results are actually 
better than any of the previous results (see Fig. 1.80, Fig. 1.81, Fig. 1.83, Fig. 
1.84, Fig. 1.86 and Fig. 1.87). The best reproduction, which is of obvious 
importance, is the oil production rate profile. It can be concluded from these results 
that waterflood performance can be simulated and predicted into the future using the 
indirect performance constraints without the aid of the permeability variogram 
constraint. This assumes that operating conditions are not altered during the course 
of the waterflood. 

Three of the 20 corresponding permeability realizations aredepicted in Fig. 1.90 
and compared to the truthcase permeability field. The absence of spatial correlation 
is obvious in each of the three realizations. In fact, the realizations appear almost to 
be completely random in nature. It is very surprising that these permeability fields 
are characterized by essentially the same waterflood performance as the truth case. 
This synthetic case study is a good example of the problem of non-uniqueness 
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Figure 1.86: Conventional and lcNw and CV,, indirect performance contraints 
case waterflood performance for the inner five-spot pattern wells; 
extended five-spot pattern study using the more heterogeneous 
permeability distribution. 
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Figure 1.87: Conventional and kNw and CVk, indirect performance contraints 
case waterflood performance for the inner five-spot pattern injection 
wells; extended five-spot pattern study using the more 
heterogeneous permeability distribution. 
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Figure 1.88: kNw, CV,, and kpAT indirect performance contraints without 
variogram constraint case waterflood performance for the inner five- 
spot pattern wells; extended five-spot pattern study using the more 
heterogeneous permeability distribution. 
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Figure- 1.89 kNw, CV,, and kpAl indirect performance contraints without 
variogram constraint case waterflood performance for the inner five- 
spot pattern injection wells; extended five-spot pattern study using 
the more heterogeneous permeability distribution. 

167 



Truth Case Realization 1 

k, md 

Realization 2 Realization 3 

.Ooo 

400 

160 

63 

25 

10 

Figure 1.90: Comparison of extended five-spot patter truth case permeability field 
to three permeability fields generated using indirect performance 
constraints kNW, CV,, and kPAT but not including variogram 
constraint. 
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encountered in history matching simulation studies. An unlimited number of 
permeability fields, similar to the three included in Fig. 1.90, can be generated 
having the same waterflood performance as the truth case but possessing extremely 
different spatial properties. 

An important point to make is that these results all assume there aren't any changes 
in the operating conditions. If the above approach (Le., no variogram constraint) 
was used to obtain a reservoir description via history matching waterflood 
performance, the success of the study would be totally dictated by the objectives. 
For example, if the study was bcing pcrformcd just to predict future waterflood 
rates and recoveries undcr existing opcrating conditions, it appears that the above 
approach should give realistic results. However, if the above approach was being 
used to develop a reservoir description for determining the optimum recovery 
scheme for future operations, the resulting conclusions could be misleading. 

This particular synthetic waterflood case study emphasizes the value of geological 
information when characterizing a reservoir. Geological information, as 
represented by the variogram, is essential if the objective is to obtain a realistic 
spatial description of rcscrvoir propertics. This sort of information cannot be 
extracted from production data alone. 

Summarv of Results 

Waterflood performance was shown to be more sensitive to reservoir 
heterogeneities than primary rccovcry. The rcscrvoir characteristic identified as 
having the biggcst impact on watcrflood recovery efficicncy was reservoir 
connectivity. Two rcscrvoir conncctivity paramctcrs wcre dcfined, pur and CV,, . 
The latter connectivity paramcter was found to give bctter results when used as a 
conditional simulation constraint. The parameter CV,, was determined to correlate 
strongly with watcr breakthrough time and cumulative water-oil ratio. 

One-quarter five-spot pattcrn flow simulations were used to show that so-called 
"equally probable" rcalizations of pcrmeabili ty generated using conventional 
conditional simulation constraints wcrc found to rcsul t in widcly varying simulated 
well performance. Whcn thc CV,. constraint was combined with conventional 
constraints and a ncar-wcll cffective pcrmcability constraint (rcfcrred to as "indirect 
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performance constraints"), the resulting permeability realizations exhibited very 
similar simulated waterflood performance. The indirect performance constraints 
were shown to significantly reduce the uncertainty in identifying high and low 
permeability regions. 

Extended five-spot pattern simulations were performed to evaluate the effectiveness 
of the indirect performance constraints given the interaction of mu1 tiple 
injector/producer pairs. I t  was discovered that an additional indirect performance 
constraint, kPAT, may be requircd for multiple injector/producer systems. This 
parameter becomes important whcn the average permeability for neighboring 
injector/producer arcas of influcnce varies significantly. Permeability realizations 
generated using convcntional constraints were found not to provide any assistance 
in  identifying low and high pcrmcability regions. Inclusion of the indirect 
performance constraints greatly reduccd the uncertainty in spatial properties. An 
interesting discovery was that permcability fields could be generated having very 
similar waterflood performance by using the indirect performance constraints 
without including the variogram constraint. Howcver, the resulting permeability 
realizations were nearly spatially random and ,poorly reproduced the desired spatial 
distribution of high and low permeabilities. It was concluded that spatial correlation 
structures cannot be infcrrcd from production data; such information must be 
obtaincd from geological infcrcnccs. 

Two-Dimensional Full-Ficld Studv 

The previous section investigated the impact porosity and permeability 
hetcrogcnci ties have on primary and sccondary performance for an extended five- 
spot pattcrn. Only onc pctrophysical paramctcr was vaned at a time; all others were 
assumcd to be constant. Simulations wcrc pcrformcd for limited areal coverage. 
Thus, only local spatial hctcrogcnci tics wcre considcrcd. The impact of global 
trends supcrimposcd on local variations wcre not addressed. The work included in 
this section has bccn pcrfonncd to invcstigatc thcsc additional complications. 

After summarizing thc proccdurc uscd to gcncratc the two-dimensional (2D) full- 
field truth case, its exhaustive rcscrvoir properties will be described. Univariate 
and spatial statistical propcrtics of the exhaustive data set will be compared with 
well values to idcntify importunt differences which directly impact conditional 
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simulation rcsults. Truth cast ficld and wcll pcrformancc arc then compared to 
rcsults obtaincd using varying dcgrccs of availablc wcll pcrformance data, most 
notably primary pcrformancc constraints vcrsus primary and secondary 
performance constraints. Such a comparison illustratcs thc rclative importance of 
the various constraints. This is important information considering certain 
pcrformance constraints arc obtainablc only during spccific phases of a well's life 
and are known with diffcrcnt dcgrccs of ccrtainty. 

Procedure 

This scction bricfly dcscribcs thc dcvclopmcnt of a thrcc-dirncnsional rescrvoir 
dcscription and corrcspcmding llow simulation rcsults. Wcll and field data collcctcd 
from thc Burbank Ficld locatcd in Osagc County, Oklahoma, wcrc used in 
dcvcloping thc rcscrvoir dcscription. Thc rcilSon for using thc Burbank Ficld data 
was to construct a ficld dcscription as closc to rcality as possiblc. The dctails 
rcgarding thc thrcc dimcnsional, cxhaustivc dcscription arc providcd in the prcvious 
DOE rcport. 135 

Thc fluid propcrtics, gas-oil rclativc pcrmcability curvcs and watcr-oil rclativc 
pcrmcability curvcs uscd in thc Ilow simulation arc shown in Tablc I .  10 and Fig. 
1.91 and Fig. 1.92, rcspcctivcly. Although thc fluid propcrtics arc bascd on 
publishcd Burbank Ficld dah, thc rclativc pcrmcability curvcs arc typical black oil, 
wdtcr-wct curvcs. A uniform initial prcssurc of 1200 psi was uscd. Thc bubblc 
point prcssurc of thc black oil is 1024 psi. A uniform initial connatc watcr 
saturation of 20% was assunicd. 

In that rcportl-35 wc havc discusscd a dclailcd IO-laycr dcscription of thc rcscrvoir 
bascd on thc Burbank rcscrvoir. Thc 2D full-ficld rcscrvoir dcscription was 
gcncratcd by combining propcrtics from Flow UniLs 3,4 and 5 of thc 3D truth caw 
dcscribcd in that rcport. Thcsc thrcc Ilow units rcprcscnt thc main sand kxly and 

.thus dominatc thc rcscrvoir pcrl'ormancc for thc 3D truth casc. Thc spatial 
distribution o f  sand thickncss was obtaincd by summing thc thickncss of Flow 
Units 3, 4 and 5. Porosity valucs wcrc obtiaincd using thickncss-wcightcd 
arithmctic avcragcs I'rom thcsc saiiic thrcc I'low uni  Is. Pcrmcabilitics wcrc 
dctcrmincd using a pcrmcabil ity-porosi ty corrclation. Ex haustivc rcscrvoir 
propcrtics wcrc not dcfincd on thc I'inc-scalc, but using llow simulation. Grid 
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Figure 1.91: Gas-oil relative permeability curves used in flow simulations. 
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Figure 1.92: Water-oil relative permeability curves used in flow simulations. 
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blocks were 3888 (108 by 36) for the 4.5 mile by 1.5 mile system. Each block was 
220 ft. x 220 ft. in size. Conditional simulations were performed using large grid 
blocks to make the study more manageable considering the large number of 
realizations and flow simulations generated. 

Fig. 1.93 shows the location of the 59 wells used in the flow simulation. The wells 
were "drilled" on 80 acre spacing. These well locations do not correspond with the 
actual location of wells in the Burbank Field. All of the wells were operated at a 
constant bottomhole pressure of 200 psi. A total of 10 years of primary production 
was simulated. Following primary production, 32 of the producers were converted 
to water injection wells to form 27 five-spot patterns (Fig. 1.94). The injection 
pressure for all injection wells was set at 2000 psi. Water injection was continued 
for 10 years, resulting in a total simulation time of 20 years. 

The study assumed conditioning data included well grid block porosities and sand 
thicknesses. Variogmms for these two variables were estimated from the well data. 
It was also assumed that the grid block-scale permeability-porosity correlation was 
known. The spatial distribution of sand thickness was obtained using the well data- 
derived variogram and kriging. Unlike the spatial distributions of permeability and 
porosity, kriged sand thickness results were assumed to adequately represent the 
actual reservoir, i.e., the sensitivity of reservoir performance on alternative sand 
thickness relations was not investigated. Either well block porosities or  
permeabilities could be specified as conditioning data since a unique correlation 
between the two parameters was assumed. Swapping of paired values during the 
simulated annealing process required updating each objective function component 
because of the interdependency of porosity and permeability. The simulated 
annealing algorithm used for the full-field study is discussed in Section 1.2. 
Additional information regarding the conditional simulation program developed for 
performing this case study is given somewhere else. 1.2 

Univariate and Bivariate Dktributiois 

Grid block thicknesses range from 14 to 72 feet with the mean thickness equaling 
36.4 feet. Thickness values are essentially normally distributed having a standard 
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Figure 1.93: Location of producers during simulated primary recovery. 
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Figure 1.94 Location of producers and injectors during simulated waterflooding. 
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deviation of 10.4 feet. Half of the thickness values fall between 29 and 44 feet. 
Grid block porosities range from 0.12 to 0.28. Porosities are also normally 
distributed having a mean of 0.204 and a standard deviation of 0.027. The porosity 
interval 0.185 to 0.224 includes the middle 50 percent of the overall range. The 
linear regression coefficient of Flow Unit 3 log (permeability) vs. porosity core data 
were used to generate permeability values. The log-normally distributed 
permeabilities range from less than 1 md to more than 300 md. Approximately 
75% of the permeability values are 100 md or less. 

Spatial Correlutioizs 

The experimental variogram for sand thickness of the truth case grid block values is 
shown in Fig. 1.95. Two directional variograms are illustrated - one a N9OOE, the 
major direction, and the other along the minor direction of NOOE. The sand 
thickness correlation length along the major direction is about 12,000 feet. This is 
about three times the correlation length of the minor direction. The nugget effect is 
essentially zero. Directional experimental porosity variograms are contained in Fig. 
1.96. A correlation length in excess of 12,000 feet exists in the major direction of 
N900E. The porosity variogram has an anisotropy ratio of about 5 with the minor 
direction of NWE having a correlation length of only 3,000 feet. A nugget of about 
20 percent exists for the variogram. 

Spatial Properties 

Fig. 1-97 contains a map of pay thickness for the full-field truth case. Locations of 
the 59 wells are also included in the figure. Sand thickness is seen to be the 
greatest in the northwest and thinnest to the southwest and east-central. Although 
the strong east-west correlation is evident in many areas of the field, some areas 
(e.g., the southeast region) is more isotropic. The exhaustive porosity field is 
depicted in Fig. 1.98. Note the strong east-west directional trend. The average 
porosity on the west side is approximately 0.23, decreasing to about 0.17 on the 
east side. The strong porosity trend branches off to the northeast and southeast 
near the east end of the field. Since permeabilities are derived directly from 
porosities, the spatial distribution of permeability is very similar to porosity. The 
exhaustive permeability field has similar characteristics as porosity. 
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Figure 1.95: Variogram for sand thickness; full-field truth case. 
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Figure 1.96: Variogram for porosity; full-field truth case. 
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Figure 1.W. Exhaustive pay thickness map for the full-field truth case. 
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Figure 1.98 Exhaustive porosity field for the full-field truth case. 
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Well Derived Reservoir Properties 

The 2D full-field case study was performed assuming that well block porosity, 
permeability and sand thickness values are statistically representative of the 
exhaustive properties. The porosity and sand thickness variograms used as  
constraints in the conditional simulations were based on analysis of the well data 
only. Therefore, many of the discrepancies between the exhaustive data set and the 
simulated reservoir properties are due to errors introduced by assuming exact 
statistical representation of the exhaustive properties by the well data, and not the 
inadequacies of the methodology. However, such an approach was selected 
because of its realistic nature. The amount of error introduced by assuming 
statistical representation by the well data can be estimated, or at least appreciated, by 
comparing field and well statistics. Such a comparison follows. 

Univariute and Bivarikte Distributions 

When the histogram based on well grid blocks was compared to the exhaustive 
sand thickness histogram, the biggest discrepancy is in the disproportionate fraction 
of high values in the well data. Whereas only about 7 percent of the exhaustive 
sand thicknesses exceed 52 feet, this cutoff is exceeded by about 13 percent for the 
well data. A close comparison for porosity values indicates that the exhaustive 
porosity histogram is slightly positively skewed and the well porosity histogram is 
slightly negatively skewed. For the permeability data, the well block permeabilities 
do not contain the extreme high and low values existing in the exhaustive data set. 

Spatial Correlations 

The experimental variogram of well block sand thickness is depicted in Fig. 1.99. 
The correlation length in the major direction of N900E is 9,OOO feet, somewhat less 
than that of the exhaustive data set (Fig. 1.95). The minor direction sand thickness 
variograms of the well and exhaustive data are very similar. Based on the 
comparison of Fig. 1.95 and Fig. 1.99, it appears that little error is introduced by 
assuming the well-based thickness variogram is representative of the full-field. For 
porosity, variograms based on well data compare extremely well with the 
exhaustive porosity direction variograms. 
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Figure 1.99: Inverse covariance for sand thickness based on the full-field truth 
case well data. 
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Spatial Properties - Kriged Sand 77iicknes.s 

The sand thickness histogram and variogram derived from the well data were used 
to krige sand thickness. Although resulting thickness map does not capture many 
of the local variations exhibited by the exhaustive sand thickness map, most of the 
important sand thickness trends are honored. 

Primary Constraints Results 

Similar to previously-described synthetic case studies, the effectiveness of the 
performance constraints will be measured by the ability of resulting alternative 
reservoir descriptions to 1) simulate well performance which is similar to the truth 
case well performance and 2) have spatial characteristics which are similar to the 
truth case. In each case, ten alternative reservoir descriptions were generated using 
the same constraints. Well configurations, well operating conditions, rock 
properties and fluid properties are the same as previous case studies. Pertinent data 
are listed in Table 1.11. Flow simulations were performed assuming 10 years of 
primary production followed by 10 years of waterflooding. A total of 32 producers 
were converted to injection wells upon initiation of the waterflood, resulting in 27 
five-spot patterns. 

kNw Constraint 

Since large grid blocks (220 feet by 220 feet) were used for conditional simulation 
and well blocks were used as conditioning data, the base case results are equivalent 
to including a near-well effective permeability constraint. A comparison of the 
exhaustive permeability field to one of the permeability realizations generated using 
conventional and khul constraints is displayed in Fig. 1.100. Although many of the 
truth case global trends are captured using the khul constraint, this one performance 

constraint is not sufficient to identify local heterogeneties. Note the large 
permeability discrepancies in the northwest and northeast comers. These regions 
have estimated permeabilities which are in error by an order of magnitude or more. 
Similar results are also observed for porosity data. These results show that the khul 
constraint is not sufficient to accurately identify the location of high and low 
porosi ty/permeability regions. 



Type of Simulation 

Waterflood pattern type 

Well spacing 

Waterflood pattern size 

1 Areal grid dimensions I 220 ft by 220 ft 

2D Primary & Waterflood 

1:l five-spot 

80 Ac 

160 Ac 

~~ ~ 

Areal grid density 

Thickness, porosity & permeability 

108 by 36 

variable 
~~ ~ 

Number of primary wells 

No. of waterflood pmducerdinjectors 

Mobility ratio 

Table 1.11: Pertinent data used in two-dimensional full-field simulations. 
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32/27 

0.96 
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Initial/bubble point pressures 

Producinghjecting pressures 

1200/1024 psi 

300/2000 psi 



Exhaustive 

Conventional & k m  Constraints 

Figure 1.100: Comparison of full-field exhaustive permeability field to 
permeability field obtained using conventional and kNw contraints. 
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The truth case and the 10 reservoir descriptions based on the kNW constraint were 
flow simulated for comparison. The resulting field performances are illustrated in 
Fig. 1.101. The k,, constraint is seen to do an excellent job in generating 
reservoir descriptions which behave similar to the truth case in terms of total field 
primary performance. These results show that it is possible to match historical total 
field primary performance by honoring near-well effective properties, univariate 
frequency distributions and general spatial variability characteristics. Also included 
in Fig. 1.101 is the waterflood performance for the truth case and the 10 kNw 

constrained reservoir descriptions. The secondary total field oil rate curves are all 
fairly similar. The most noticeable discrepancies are the water breakthrough times 
and secondary water production rates. All of the realizations predict water 
breakthrough later than the truth case. One realization predicts water breakthrough 
approximately one year too late. At this time, actual water production had already 
increased to about 3000 STB/D. As expected, the kNw constraint results in 
significant improvement in primary performance characteristics but is inadequate as 
a waterflood constraint. 

Matching individual well performance is considerably more important than 
reproducing total field performance from a reservoir management viewpoint. Being 
able to make appropriate operational changes on a well-by-well basis is more 
economically effective than implementing global operational changes. Well 
performance for 8 producers distributed throughout the field were plotted to 
evaluate the effectiveness of the various performance constraints. The location of 
the 8 wells is depicted in Fig. 1.102. The corresponding performance plots for the 
wells are included in Fig. 1.103 and Fig. 1.104. Primary well performance for all 
reservoir descriptions compares favorably with the truth case performance. Such is 
not the case for individual well performances during water injection. Significant 
variability and truth case discrepancies exist for all of the wells during the 10 years 
of waterflooding. Note that the realizations can greatly overpredict (Well P50) and 
underpredict (Well P51) secondary response compared to the truth case 
performance. These well performance comparisons substantiate the conclusions 
reached based on comparing the spatial distributions of porosity and permeability, 
i.e., local reservoir characteristics are not captured using just the kw constraint. 
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Figure 1.101: Comparison of full-field truth case performance vs. performance of 
10 reservoir descriptions generated using conventional and khrw 
constraints. 



Figure 1.102: Location of selected full-field procedures. 
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Figure 1.103: Performance plots for Wells P33, P44, P51 and P54; full-field 
reservoir descriptions based on conventional and kw constraints. 
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Near-well permeability is frequently the first well performance characteristics that 
can be estimated from field data (well tests). As more primary production data is 
collected, pore volume estimates can be made through material balance calculations. 
Sometimes volumetric calculations can be made from structure and fluid contact 
contours even before any significant production has occurred. With this in mind, 
additional reservoir descriptions were generated assuming total field pore volume 
and individual well drainage area pore volume estimates were available as 
constraints, in addition to conventional and kM constraints. For simplicity, these 
constraints will be referred to as primary (production) constraints. 

The truth case permeability field is compared to a permeability realization generated 
using all of the primary constraints in Fig. 1.105. This comparison is significantly 
better than previous results based on the kN,  constraint by itself. The global 
permeability trends are reasonably reproduced. There is still r m m  for improvement 
in honoring local high and low permeability regions. 

Full-field performance comparisons are made in Fig. 1.106. When compared to 
Fig. 1.101, the most obvious improvement is to more consistently predict water 
production rates during secondary recovery. For this case study, predicting total 
field performance during primary and secondary recovery is not a problem when all 
primary constraints are employed. The performance of the same 8 wells previously 
illustrated for the kNw constraint results are depicted in Fig. 1.107 and Fig. 1.108. 
Consistent with the improvement in the estimation of spatial properties, individual 
well performance results are also better than when just including the kNw constraint. 
However, significant spread in waterflood performance still exists for several of the 
wells. Much of the improvement in waterflood performance is due to assuming the 
direct one-to-one correlation between porosity and permeability; i.e., specifying 
each well's pore volume also specifies the average permeability of the region 
drained by the well. This average permeability has some commonality with the 
effective permeability of nearby injector/producer areas of influence. 
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Figure 1.105: Comparison of full-field exhaustive permeability field to 
permeability field obtained using conventional, kNw, PV, and 
PV, constraints. 
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Figure 1.106: Comparison of full-field truth case performance vs. performance of 
10 reservoir descriptions generated using conventional, km, PV, 
and W ,  constraints. 
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Primary and Secondary Constraints Results 

The above results were based on the use of conventional and primary performance 
constraints only. As expected, the resulting field and well performance behaved 
very similar to the truth case performance during primary production; however, 
some discrepancies existed during waterflooding. The following case studies 
assume sufficient secondary performance data is available to make accurate 
estimates of the secondary performance constraints CV,, and k p A T .  These two 
constraints relate to connectivity between wells and pattern permeability between 
wells respectively. 

Primary, C V,. and kpAT Constraints 

All conventional, primary and secondary performance constraints have been utilized 
in the particular study. Fig. 1.109 contains a comparison of the truth case 
permeability field and one of the resulting permeability fields. Both global and local 
spatial characteristics of the truth case are well reproduced in both figures. It 
appears that a sufficient number of constraints have been imposed to allow the 
generation of realistic reservoir descriptions. It should be noted that the simulated 
annealing objective function contains 327 components for this particular case study: 
1 PvT constraint, 59 PvDA constraints, 59 kNw constraints, 96 CV,, constraints, 96 
kpAT constraints and 16 variogram constraints (2 directions, 8 lags each). It is 
highly unlikely that this much information would be available for a real field study; 
however, these results emphasize the flexibility and robustness of the method. 

Total field performance for the 10 alternative reservoir descriptions and the truth 
case are shown in Fig.  1.110. The responses for all cases are nearly 
indistinguishable. The only inconsistency is in the GOR curve during part of 
primary production. The reason for this GOR anomaly is unknown. Nearly as 
impressive is the individual well performances shown in Fig. 1.111 and 1.112. 
The most difficult waterflood parameters to match, water breakthrough time and 
WOR trend, are well reproduced for each well; extremely well reproduced for some 
wells. The total field and individual well performance results are consistent with 
the spatial distribution results, i.e., the primary and secondary performance 
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Figure 1.109: Comparison of full-field exhaustive permeability field to 
permeability field obtained using conventional, kM, PV, , PV, , 
CV,, and.k, constraints. 
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Figure 1.110: Comparison of full-field truth case performance vs. performance of 
10 reservoir descriptions generated using conventional, kNw, W ,  , 
W,, CV,, and k ,  constraints. 
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Figure 1.111: Performance plots for Wells P33, P44, P51 and P54; full-field 
reservoir descriptions based on conventional, kW, PVT , PV, , 
CV,, and k ,  constraints. 
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Figure 1.112: Performance plots for Wells P37, P48, P50 and P58; full-field 
reservoir descriptions based on conventional, kNw, W,  , PV, , 
CV,, and k ,  constraints. 
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constraints are sufficient for the purpose of generating reservoir descriptions which 
are very similar to the actual reservoir description and have very similar well 
performance. 

Primary and CV,, Constraints 

One additional case study was made, this time all primary and secondary constraints 
were included except k p A T .  The spatial distribution maps for permeability (not 
shown) indicate that there are a few more local inconsistencies between the truth 
case spatial distributions and the resulting realizations when compared to the results 
obtained when all performance constraints are included. 

Total field and individual well performance plots are included in Fig. 1.113 through 
Fig. 1.114. Although the total field performance for the 10 alternative reservoir 
descriptions compare as favorably with the truth case as the previous case study (no 
CV,. constraint) did, some of the individual well performances do  not compare as 
favorably. These results support the conclusion that the relative importance of the 
two secondary performance constraints, CV,, and kpAT , is case-dependent. In 
some cases it is more important to honor the effective permeability level of an 
injectodproducer area of influence than the connectivity between the two wells. In 
other cases, it is more important to honor the connectivity. This will depend not 
only on the reservoir properties directly between two wells, but will also be 
dependent on the properties of adjacent wells since the effect of an injector/producer 
kpAT value is dependent on offset injector/producer pair kpAT values. 

Summarv of Results 

This two-dimensional full-field study used the results from previous sections and 
reports to develop and test an integrated conditional simulation approach. 
Conventional and indirect performance constraints were used to simultaneously 
generate porosity and permeability fields. Sensitivities were performed to 
determine the relative contribution of the various indirect performance constraints. 
The results were evaluated by comparing simulated primary and waterflood 
performance and spatial distributions of porosity and permeability to the "truth 
case" results. Probability of exceedance maps were used to quantify the degree of 
spatial distribution uncertainty. 
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Figure 1.113: Comparison of full-field truth case performance vs. performance of 
10 reservoir descriptions generated using conventional, kNw, W ,  , 
PV, and CV,, constraints. 
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Figure 1.114 Performance plots for Wells €33, P44, P51 and P54; full-field 
reservoir descriptions based on conventional, km, PV, , PV, and 
CY,, constraints. 



Well data were found to provide reasonable estimates of the exhaustive univariate 
statistics and spatial correlation structures of pay thickness, permeability and 
porosity. The spatial distributions of permeability and porosity and simulated well 
performance compared extremely well with the truth case when all conventional and 
indirect performance constraints were applied. Considering the large number of 
constraints (327 objective function components), this particular evaluation 
underscores the flexibility and robustness of the developed methodology. 

The various combinations of indirect performance constraints investigated were 
consistent with the order in which the appropriate information would typically 
become available. The results obtained when just conventional and the near-well 
effective permeability constraint were imposed were sufficient for honoring primary 
performance but inadequate for reproducing waterflood performance and spatial 
distributions of porosity and permeability. Total field performance was well 
reproduced in each case, indicating that it is only necessary to honor global spatial 
characteristics if the objectives do not include matching individual well 
performances. The addition of pore volume constraints greatly reduced the spread 
in individual well waterflood performance and the correctness of the porosity and 
permeability realizations. It was noted that this improvement was greatly influenced 
by the assumed one-to-one correlation between porosity and permeability. The 
relative importance of the two waterflood constraints, CV,. and kPAT, was found to 
be case- and well-dependent. Injector/producer pairs which have unusually high or 
low reservoir connectivity would require a CV,, constraint and those pairs which 
have anomalously high or low kPAT values would require a kpAT constraint. In  
either case, the inclusion of at least one of the waterflood indirect performance 
constraints improves results compared to when only primary indirect performance 
constraints are used. 
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Nomenclature 

Symbol 

ar = anisotropy ratio 

A = radius of investigation coefficient 
4 =area of grid block in the annular ring at location vector S , $2 

A,= area of annular region, $2 

B = formation volume factor, bbllSTB 
C =class interval for the sample cdf 
cr =total compressibility psi-1 
E = objective or energy function 
E = objective function after an update 
E, = normalizing constant for objective function 
h =thickness, ft 
h' =lag distance vector for variograms 
HI =heterogeneity index 
k' =average permeability, md 
E =arithmetic permeability average within an annular region, nul 
kD =dimensionless permeability 

=equivalent permeability, md 
& =geometric permeability average within an annular region, nul 

& =harmonic permeability average within an annular region, md 
k,sA = ISA derived equivalent radial permeability, md 
k( r, 0) =permeability at location (r, 6) for a radial heterogeneous reservoir 
k,, = arbitrary reference permeability, md 

kj = grid block permeability, md 
iwt =well test- permeability from the semilog straight line, md 
f = instantaneous well test permeability, md 
K( rD,tD) =weighting or kernel function 
C = index defining the transformed grid block at, S I, for the muti-well study 
rn = semilog straight line slope 
A4 = number of iterations 
N, =number of conditioning data 
Nd =number of variogram directions 
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Nf =number of classes for distribution function 
Nh =number of variogram lag distances 
No =number of constraints for a conditional simulation 
N p  =number of pairs in a variogram 
N, = number of grid blocks in the simulation domain 
N, =number of radial divisions in the simulation grid 
N,  =total number of time points valid for Oliver's solution 
N, =total number of well test constraints 
N, =number of grid blocks in x 
Ny =number of grid blocks in y 
0, = coordinate of x-origin of the reservoir, ft 
Oy = coordinate of y -origin of the reservoir, ft 
p ,  =dimensionless pressure 
pi = initial reservoir pressure, psia 
po =central grid block pressure, psia 
pwf =well flowing pressure, psia 
pwd = dimensionless well flowing pressure 
p' wd = dimensionless pressure derivative 
q =rate, STBID 
r =radius, ft 
rCm = radius from the well to furthest comer of the gridblock, ft 
rcfin = radius from the well to closest comer of the grid block, ft 
rD =dimensionless radius 
r ,  max = maximum dimensionless radius defined by the weighting function 
rD M'n = minimum dimensionless radius defined by the weighting function 
re = reservoir radius to nearest no flow boundary, ft 
r, = wellbore radius, ft 
R = random number 
s =skin 
S = grid block location vector 
S' = transformed grid block location vector for the multi-well study 
Swi = initial water saturation 
t =time, days 
t ,  =dimensionless time 
& = instantaneous dimensionless time 
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T' =temperature control parameter 
T"=initial temperature control parameter 
V = simulation variable 
V = Dykstra-Parson's coefficient 
w, =weight of annular region 
W112112 = Whitaker function 
x = x-direction grid block coordinate, ft 
y = y -direction grid block coordinate, ft 
Q =convergence rate factor 
E, =convergence tolerance based on acceptance ratio 
s,, =convergence tolerance based on objective function 

yo =specified variogram model for a conditional simulation 
ys =sample variogram of simulation variable 
A = variogram correction term 
o =power for permeability averaging 
+ =porosity 
'IC, =weight of objective function component 
ufnk =variance of the logarithm of the permeability distribution 
p =viscosity, cp 
p k  =mean permeability, md 
A E k  =change in objective function at iteration k 
ApL =instantaneous logarithmic pressure derivative, psi 
Ax =grid block dimension in x ,  ft 
Ay =grid block dimension in y , ft 

y =variogram 
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CHAPTER 2 

Effective Properties of Simulator Grid Blocks 
J. Lee, E. Kasap arid M. Kelkur 

H 2.1 Summarv 

The purpose of this study is to develop an analytical method to calculate an effective 
permeability tensor for a coarse-scale grid block in three dimensions. An analytical 
method to estimate the effective permeability in both two- and three-dimensions is 
presented. The results from this method are compared with numerical results 
based on a finite element simulator. The results compare favorably. For two- 
dimensional upscaling, additional flow simulation results are presented which show 
the superiority of the proposed method over the other methods. Since the work 
related to two-dimensional upscaling has been presented in the prior reports, only a 
brief description is provided. A detailed upscaling procedure for three-dimensional 
grid block is presented. Future work will include improvement of the analytical 
solution for three-dimensional upscaling. Additional flow simulation will also need 
to be conducted in 3 dimensions. 

H 2.2 Introduction 

For a successful field development and reservoir management, field-scale large 
numerical simulations are required. Reservoir performance simulators require input 
data on a scale that is.much larger than the scale of inter-well laminations and cross 
beddings. Small-scale heterogeneities in the reservoir have been observed to 

. influence reservoir performance. To properly account for their effect, permeability 
upscaling is often performed. The general form of permeability is  as a tensor and 
consequently the effective-upscaled-permeabili ty is also a tensor. Tensorial 
representation of permeability becomes important when the driving force is not 
aligned with one of the principal directions of the permeability2.1 thereby the 
velocity vector along each principal axis is affected by transverse pressure 
gradients. 



White and Horne2-2 showed the necessity of the permeability tensor in the case of 
local permeability variations. Kasap and Lake23 calculated an effective tensor for a 
rectangular system with a perturbation. The perturbation is a region with a 
different permeability value from the rest of the system. Aasum2a4 developed an 
analytical tensor method which calculates the effective permeability of a two- 
dimensional simulator grid block under generalized anisotropic conditions. The 
method divides the grid block into four local blocks to account for the location of 
heterogeneity and uses the cross flow concept in calculating effective permeability 
for the entire grid block. The method showed good agreement with numerical 
simulation results and handles complex permeability heterogeneities efficiently. 

This procedure can be extended to three-dimensional grid blocks. Instead of 
dividing the entire grid block into four local blocks, we are dividing the three- 
dimensional block into eight blocks. The purpose of doing this is to incorporate the 
local permeability variation and location of heterogeneities within the simulation 
block. The results of this analytical method are compared with finite element 
numerical results. 

In the next section, some of the previous work are reviewed along with application 
results. These results have been presented in detail in previous DOE 
Next, the procedure for the development of analytical method in three dimensions is 
presented along with the numerical calculation procedure. Preliminary results are 
compared and discussed. Finally, future work for the improvement of analytical 
method is included. 

2.3 Review 

2.3.1 Develoument Of Analvtical Method In Two Dimensions 

The analytical method developed for a two-dimensional system combines the 
advantages of numerical and analytical methods. Complex permeability 
heterogeneities are handled at a relatively high computational speed. The location 
and size of small-scale heterogeneities within a simulator grid block and the 
orientation of anisotropic permeability structures are accounted for using the 
developed method. The method estimates effective coarse-scale permeability 
yielding a tensorial form of effective permeability. 
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The procedure for developing an effective permeability can be described by 
following steps. Since the detailed procedures for the equations follow were 
already reported in the previous annual reports2e7, the final form of the equations 
are presented. 

1. Divide the grid block containing small-scale permeability heterogeneities 
into four quadrants or local blocks as shown in Fig. 2.1. The next step is to 
determine the effective permeability tensor in each of the four quadrants. T o  
calculate the effective permeability for each quadrant, we determine the 
permeabilities along the principal directions by sweeping the directions between 
-90 and 90 relative to the horizontal x-axis. When a sweep is performed, we 
calculate permeabilities along the specified direction ( E , )  and the direction 
perpendicular to that direction (V,) and determine the principle directions (x' and 
y') in which direction k; / 

0 0 

is the largest. 

After calculating the permeabilities along the principal directions we perform 
coordinate rotation to obtain the effective permeability tensor for each local block. 
Since k = ,  I%, and the orientation angle, a, were determined, the effective 

permeability tensor for the simulation coordinate system are calculated by following 
equations. 

k, = (cosa)' k', +(sins)' V ,  

kv = sinacosa(k', - K,) 

kF = sinacosa(l%, - K w )  

k, = (sin a)' K, + (cos a)'k', 

(2.3) 

(2.4) 

where k,, kv , kF , a d  kw are the effective permeability tensor elements in the 
original x ,  y - coordinate system. a is the angle by which the x' -, y'-coordinates 
are rotated from the x- ,  y -coordinate system. 

2. Determine the effective permeability tensor for the entire grid block. The 
physical system consists of four grid blocks or quadrants as shown in Fig. 2.2. 
Each of the four blocks may have different, but possibly full permeability tensors 
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Figure 2.1: Field of small scale heterogeneities divided into four quadrants 
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I 

Figure 2.2 System containing four blocks and four permeability tensors 



. .. 

obtained from the previous step. Permeability anisotropy and varying block sizes 
are also permitted and accounted for in the determination of the elements of the 
effective permeabili ty tensors. The elements of the effective permeability tensors 
are obtained from the following equations: 

(2.7) 

- 
In Eq. 2.5 through Eq. 2.8, kxapp  and Eyapp are the apparent permeabilities along 
the x -  and y-axis, respectively. Apparent permeabilities are used as effective 
permeabilities if the numerical simulator is not equipped to handle a tensor 
formulation of permeability. The pressure gradient ratio is defined as the ratio of 

transverse to longitudinal pressure gradient. (z)y/($)y is the pressure 

gradient ratio induced from injection along y-axis whereas (9) /iz\ is the 
JY), ( a x ) ,  

pressure gradient ratio induced from injection along x-axis. 
boundaries transverse to the principal direction of fluid injection are closed. 

In both cases, 

The apparent permeabilities and the pressure gradient ratios in Eq. 2.5 through Eq. 
2.8 must be determined to obtain the elements of the effective permeability tensor. 
The detailed procedures for those two terms can be found in the previous annual 
report2.7. 
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2.3.2 ComDarisons Between Analvtical and Numerical Effective 
Permeabilities 

- Case 1 

This case is presented to illustrate the effect on effective permeability of a low 
permeability region ("perturbation") located off-center in a permeability field. The 
local grid blocks contain anisotropic permeabilities with non-zero off-diagonal 
elements in their permeability tensors. Fig. 2.3 shows the arrangement of the local 
permeability tensors. 

Local anisotropy exists and the analytical method yields a good prediction of the 
effective permeability tensor. Notice that the off-diagonal elements of the effective 
permeability tensor are non-symmetric using both analytical and numerical 
methods. This phenomena is a result of anisotropic and full local permeability 
tensors. The two methods agree in both form and existence of non-symmetry of 
the effective permeability tensors, as shown in Fig. 2.3. 

Case 2 

The cross-bedded permeability distribution shown Fig. 2.4 is analyzed where the 
light and the dark grid blocks initially have isotropic permeabilities of 10oO md and 
20 md, respectively. Fig. 2.4 also shows the effective permeability obtained from 
the numerical and analytical methods. The results agree well. Both methods 
predict isotropic diagonal elements of the effective permeability tensor, which is 
correct since the cross-beds are oriented at a -45' angle from the horizontal x axis. 
The off-diagonal elements are correctly predicted to be negative and symmetric. 
For this particular permeability distribution, the exact effective permeability tensor 
can be obtained through simple coordinate rotation since the permeabilities along the 
principal axes are simple arithmetic and harmonic averages of the two permeability 
values in this distribution, lo00 md and 20 md, and the angle of the cross-beds, 
45', is known. The analytical method agrees exactly with the tensor obtained from 
simple coordinate rotation. This results show that the directional search for 
k',lI%, is successful in determining the principal axes of permeability. Therefore, 

the directional search method may also be a useful tool in detecting permeability 
structures in minipermeameter-measured permeability data from outcrops. 



1 0.1 

0.1 0.1 

1000 100 

100 100 

1000 100 

100 100 

1000 100 

100 100 

495 36 

Analytical Method: c c Numerical Method: 

50 1 34 

Figure 2.3: Effective permeability tensors calculated by analytical and numerical 
methods for anisotropic and full local permeability tensors (units: 
md) 
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Light Blocks: 1000 md; Dark Blocks: 20 md 

Analytical Method: 

275 -235 

-235 275 

Numerical Method: 

27 1 -224 

-224 27 1 

Figure 2.4 Effective .permeability tensors calculated by analytical and numerical 
methods for cross-bedded permeability distribution (units: md) 

223 



Case 3 

In this case, the effective permeability is determined from minipermeameter- 
measured permeability data from a small section of a San Andres carbonate outcrop 
in Algerita, New Mexico. The distribution of these data is shown in Fig. 2.5. 
Comparing the permeability distributions of Fig. 2.4 and Fig. 2.5, it is evident that 
the permeabilities in Fig. 2.5 have less structure or correlation. In Fig. 2.4, there 
are complete high and low permeability layers whereas the outcrop data in Fig. 2.5 
appear to be more random in their distribution. This observation is supported by 
the analytical and numerical effective permeabilities calculated for the outcrop data. 
The off-diagonal elements in the permeability tensor are small compared to their 
respective diagonal elements. The ratios of ky/kx and k;x/k,.y are indications of the 
sizes of the transverse-to-longitudinal pressure gradient ratios. Both numerical and 
analytical methods show ratios ranging from about 0.0 to 0.08. In Fig. 2.4 
however, the ratios are -0.83 and -0.85. In other words, the cross-bedded 
heterogeneities in Fig. 2.4 induce much higher transverse pressure gradients than 
the more random heterogeneities in Fig. 2.5. There appears to be a difference in 
the prediction of ky in Fig. 2.5 but the difference is negligible considering the low 
pressure gradient ratios obtained both numerically and analytically. 

2.3.3 CornDansons Between Resul ts From Field Flow Simulations 

Case 1 - Miscible Displacements 

In this case the result from unit-mobility-ratio miscible-displacement simulation is 
presented. The convection-dispersion equation is solved for an incompressible 
fluid using a finite element simulator. 

Fig. 2.6a shows the permeability distribution used in the simulation. It is 
essentially the same distribution as in Fig. 2.4, except that in Fig. 2.6a the aspect 
ratio is 8 to 1 rather than 1 to 1 as in Fig. 2.4. The following boundary conditions 
are used: a constant pressure potential of 2.5 atm is specified along the entire left 
vertical boundary; 1.0 atm is specified along the entire right vertical boundary; both 
horizontal boundaries are closed to flow. 
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Section of Alcrerita Outcrop Data 

120. 

108. 

96.0 

84.0 

72.0 

60.0 

48.0 

36.0 

24.0 

12.0 

0.0 

Analytical Method: 

11.9 0.0 

0.1 1.7 

Numerical Method: 

11.8 0 -9 
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Figure 2.5 Effective permeability tensors calculated by analytical and numerical 

methohs for minipermeameter measured permeability data from the 
Algerita outcrop (units: md) 
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Figure 2.6: Initial permeability distribution (dark 20 md; light: loo0 md) and 
0.5 concentration contours after 49.7 days of injection using the 
initial permeability distribution and the permeability distributions 
obtained using various upscaling methods 
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Fig. 2.6b through Fig. 2.6e show 0.5 concentration contours of the flood fronts 
after 49.7 days of injection. Fig. 2.6b shows the location of the front using initial 
permeability distribution. This figure is used as the base case. The analytical 
effective permeability tensor method (Fig. 2.6~) yields the best prediction of the 
location of the flood front. The geometric mean predicts a flood front which is 
advancing too fast (Fig. 2.6d). Thus, the geometric mean overpredicts the effective 
permeability. The renormalization method (Fig. 2.6e) also predicts a flood front 
which is advancing too fast, although the overprediction of the effective 
permeability is not as severe as when using the geometric mean. 

Case 2 - Waterfloods 

This case involves a comparison of results from simulating a waterflood using 
initial permeability distributions and upscaled effective permeability distributions 
generated based on the analytical effective permeability method, and the geometric 
average. A two-phase oil and water system is simulated. The simulator used is a 
point-centered finite difference simulator which has the option of inserting 
separate1 y-computed transmissi bilities2**. 

This case represents waterflooding in a quarter of a 5-spot pattern. The 
permeability distribution is anisotropic and oriented at a 4 5 O  angle to the horizontal 
x-axis. In other words, the orientation of the anisotropic permeability structures is 
parallel to the general flow direction from the injector in the southwest comer and 
the producer on the northeast comer of the field. The dimensionless correlation 
lengths are AD, = 1.0 and A& = 0.025 along the layers and transverse to the layers, 
respectively. The Dykstra-Parsons coefficient is V =  0.7. There are 64 x 64 
permeability values in the initial permeability distribution shown in Fig. 2.7. 
Injection pressure is 3000 psi and production pressure is 100 psi. 

The water saturation fronts after 20 days of injection are shown in Fig. 2.8. Fig. 
2.8a shows the water saturation front using the initial, generally anisotropic 
permeability distribution.. Water breakthrough has already occurred because of the 
preferential flow paths created by the cross-bedded arrangement of the permeability 
values in the field. The microscale permeability distribution is upscaled or  
homogenized from 64 x 64 to 8 x 8 permeability values. Comparing to Fig. 2.8b 
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AnisotroDic Initial Permeabilitv Distr. 
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Figure 2.7: Anisotropic (cross-bedded) stochastic permeability distribution 
(A,, = 1.01, A,, = 0.025, V = 0.7, 4 5 O  structure orientation, &I x 

64 values) 
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Figure 2.8: Water saturation maps after 20 days of water injection using (a) the 
initial permeability distribution (b) the effective permeability tensor 
and (c) the geometrically averaged permeability 



and Fig. 2.&, it is evident that using the effective permeability tensor, the water 
saturation front agrees better in terms of shape and amount of water broken through 
(Fig. 2.8b) than using the geometric average of permeability values (Fig. 2 . 8 ~ ) .  
The geometric average method is not able to capture the anisotropic nature of the 
initial permeability distribution. 

In Fig. 2.9, the cumulative oil recovery is plotted as a function of pore volumes of 
water injected for waterflooding through the microscale and the upscaled 
permeability distribution. From this figure, it can be observed that the recovery 
curve related to the effective permeability tensor shows excellent agreement with the 
recovery curve associated with the initial microscale permeability distribution. The 
recovery curve associated with the geometric average of the initial permeability 
distribution is too optimistic. 

To summarize the results obtained in two-dimensional medium, the effective tensor 
upscaling method work well in simulating the flow behavior compared to the other 
upscaling methods which do not account for the non-diagonal elements in a 
permeability tensor. 

H 2.4 Approach 

For this section, we extend our approach to three-dimensional grid blocks. 

2.4.1 Part 1 - Analytical Method 

This section contains the procedures used for the analytical method. The system 
consists of eight blocks as shown in Fig. 2.10. Extending the procedure 
presented by Aasum2-4, we arrive at following apparent effective permeability for 
homogenized system in three dimensions. 

(2.10) 
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Figure 2.9: Cumulative oil recovery versus pore volumes injected for waterflood 
in a 114 of a 5-spot. Anisotropic (cross-bedded) initial permeability 
distribution. Effect of permeability upscaling. 
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Figure 2.10: System containing 8 blocks 
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Figure 2.11: No communication along the y and z directions, flow in the x 
direction 
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(2.11) 

Exapp ,  E p p p  and E s a p j  are calculated in the following procedures. 

Since the procedure for each apparent permeability is same, only the one for Exapp  

is presented. The details can be found in Appendix A. 

1. We divide the entire system into four two-block systems allowing no 
communication along the y -  and z-directions (Fig. 2.1 1) and calculate two-block 
effective permeability for each two-block system using Darcy's law applying 
constant pressure gradient in the x-direction. Then, we get i k p p 1 2 ,  k x a p p 3 4 ,  k X a p p s 6  

, and Exapp78 .  The subscripts represent the block numbers and this notation will be 
used through out this report. Since these blocks are parallel to each other, we take 
an arithmetic average of the results for top and bottom two-block systems to get 
k-ppr,  krvlppb.  Then, Ernpp is calculated as an arithmetic average of those two 
effective permeabilities. 

- - 

- - 

2. We divide the system into four two-block systems assuming perfect 
communication along the y -direction (Fig. 2.12) and calculate two-block effective 
permeability to get E x a p p t j ,  k m p p z 4 ,  kxapp57 and k x a p p 6 8 .  By taking the harmonic 
average of those, we calculate effective permeabilities of top and bottom two-block 
systems which are in series, Exyappt and kxyappb. We combine these two effective 
permeability in parallel to get ExyapRs . By taking arithmetic average, we calculate 
effective permeability of the left and right two-block systems which are in parallel, 
k q d p p i  and k g a p p r ,  to get kxyapflp . Then, we take a weighted average of kxyapns 

and k q a p B p  to get k q a p p .  

- - - 

- 

- - - - 
- - 

3. We divide the system into four two-block systems assuming perfect 
communication along the z-direction (Fig. 2.13) and calculate two-block effective 
permeability to get l m p p i s ,  kxapp26, kxaPp37 and k x a p p 4 8 .  By taking the harmonic 
average, we calculate effective permeabilities of the first and second two-block 
systems which are in series, Exzappjand z x m p p s .  We combine these two effective 
permeabilities in parallel to get EXmPRS . By taking the arithmetic average, we 
calculate effective permeabilities of the left and right two-block systems which are 

- - 
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Figure 2.12: Communication along the y direction, flow along the x direction 
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Figure 2.13: Communication along the z direction, flow along the x direction 
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- 
in parallel, zaoppi and zxulppr , to get k x m p R p  . Then, we take a weighted average of 
kxmpBs and kxulppp toget kxulpp . - - - 

The final step involves the calculation of Exapp from the weighted average of 
kmPR k v a p p  and kxmpp . I y a p p  and & a p p  are calculated by following the same steps 
described above, and changing the direction of the applied pressure gradient. The 
equation for Empp is given MOW. 

- - - 

where 

- L q -  Lz,- 
k u a p p e - k x r t  + - k x r b  

Lz Lz 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

We manipulate Darcy's law applying constant pressure at the inlet and outlet with 
closed boundary conditions at transverse directions to the principal direction of flow 
to get the expressions for Zu, & , Eyz ,  and Ezy . 

I---- I I(&!\ (&!\ (dp\ 1 
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(2.16) 



i x z  
- 
kn 

(2.17) 

(2.18) 

EYY 

E z z  

(2.19) 

(2.20) 
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EZY - I  
I 
I 

i 
(2.21) 

Substituting Eq. 2.16 and Eq. 2.17 in Eq. 2.9 and rearranging the equation, we 
have an expression for 

Substituting J2q. 2.18 and Eq. 2.19 in Eq. 2.10 and rearranging the equation, we 
get an expression for E,,, 

\ 
I 

(2.22) 

S a P P  - 



Substituting Eq. 2.20 and Eq. 2.21 in Eq. 2.11 and rearranging the equation, we 
get an expression for L. 

To complete the calculation of these permeability tensors we need to find the 
following six terms for transverse pressure gradient ratios. 

Injection along the x -direction: 

\ J Y l ,  

(g)x 
Injection along the y -direction: 

Injection along the z -direction; 

and 

and 

and 

(2.25) 

(2.26) 

(2.27) 
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For the cases tested in this report, the off-diagonal elements of the permeability 
tensor are assumed to be zero. Therefore the pressure gradient ratio due to 
permeability contrasts between the eight grid blocks are considered. The 
procedures for calculating these pressure gradient ratios are presented in Appendix 
B. 

2.4.2 Part 2 - Numerical Method 

This part of the study is carried out using a finite element simulator to check the 
validity of the analytical method. The simulator can handle simple heterogeneities 
such as single or multiple disturbances in the system. The system shown in Fig. 
2.14 was simulated. In each simulation, pressure distribution and three 
components of the velocity vector, v, v, and vz , were calculated. After getting 
that information, pressure gradients in each direction were calculated and then Eq. 
2.28 through Eq. 2.36 were solved for the nine components of the permeability 
tensor, in& r ~ X L , z F 7 ~ Y , ~ y z , k L l , k L y  and iZz. 

- -  

- -  

Injection along the x direction: 

Injection along the y -direction: 

- - ap - ap - a:\ vx = - I - ( k n - + k l v - + k x z -  aY 
dZ )y = o  P 

= o  vZ - = - L [ k L l - + k L y - + k z z -  - a; - ap - a;\ 
Y ax ay a z l ,  
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(2.28) 

(2.29) 

(2.30) 

(2.3 1) 

(2.32) 

(2.33) 



Injection along the z -direction; 

(2.34) 

(2.35) 

(2.36) 

For each case study, we have to run the simulator three times changing the 
direction of injection. Changing the injection direction was extremely complex 
when we worked with large a number of elements in each block because we have to 
define the elements which are at flow the boundary. Instead of changing the 
injection direction, we decided to rotate the location of the disturbance k,eeping the 
x-direction as the injection direction for all cases. Calculated pressure gradients 
and velocity vectors were re-rotated to assign the calculated values to the original 
place which gives the same effect as changing injection direction. A system which 
is equivalent to injection along the y-direction for a system shown in Fig. 2.14 is 
depicted in Fig. 2.15. Fig. 2.16 is an equivalent system to a case of injection along 
the z -direction. 

To minimize the constraining effect of the boundary conditions, we tested the 
simulator by increasing the number of elements in each block up to 15 x 15 x 15 
elements resulting in a total of 3375 elements. By doing this, the effect of the 
boundary on transverse pressure gradient can be reduced. 

2.5 Preliminarv Results 

2.5.1 Part 1 - Numerical Results 

To test the simulator, we assigned permeability to each block and recalculated the 
effective penneabili ty from the simulation results. The difference between input 
and calculated permeabilities was 0.04% for the diagonal tensor element and 3.4% 
for the off-diagonal elements when 8 x 8 x 8 elements for each block were used. 
For a case of calculating effective permeability with a disturbance in the system, we 
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Figure 2.14 Disturbance at block #3. Injection along the n direction. 

Figure 2.15 Disturbance at block #8. Equivalent to injection along the y 
direction. 

Figure 2.16 . Disturbance at .block #5. Equivalent to injection along the z 
direction. 



ran the simulator several times increasing the number of elements expecting our 
results will converge to the exact solution based on the concept of convergence of a 
sequence of approximate s o l ~ t i o n ~ 2 ~ .  Whereas the magnitude of diagonal effective 
permeability element changed little, the magnitude of off - diagonal elements 
changed significantly as shown in Fig. 2.17. In this case the block #3 in Fig. 2.14 
has k ,  = kyy= kLL = 1 md, the other seven blocks have k ,  = kn- kzr  = loo0 md. 
Local off - diagonal penneabilities are assumed to be zero. From the graph, we see 
that the slope is progressively decreasing which means that the difference between 
two successive runs is getting smaller and the results are converging to the exact 
solution. The actual dimension of the system in Fig. 2.14 is 20 cm in each direction 
and the disturbance is 10 x 10 x 10 cm. The pressure distributions at three 
different locations: x = 5.0 cm which is the center line of disturbance, x =10 cm 
which is the boundary line of disturbance and x =15 cm which is the center line of 
neighboring homogeneous block are depicted in Figs. 2.18 through Fig. 2.20. In 
these examples, an isotropic permeability of 1 md is assigned to a disturbance and 
loo0 md is assigned to the other seven blocks. This permeability configuration is 
maintained through out this report. These figures show pthe ressure distribution 
according to the presence of disturbance which induces transverse pressure gradient 
ratio resulting in cross-flow. On the contrary, the system shown in Fig. 2.21 
which is a two-layer case, shows no transverse pressure gradient, see Fig. 2.22. 
The calculated effective permeability for a system containing a disturbance results 
in a symmetric matrix with different signs depending on the location of 
disturbance. The obtained results are as follows: 

- - -  - - -  

i =  

Disturbance at block #1= Disturbance at block #8, 

0.818 -0.053 -0.053 
-0.053 0.818 0.053 
-0.053 0.053 0.818 

I =  

Disturbance at block #2 = Disturbance at block #7, 

0.818 0.053 0.053 
0.053 0.818 0.053 
0.053 0.053 0.818 
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5.OE-002 

4.5E-002 

4.OE-002 

Figure 2.17 Changes in magnitude of off-diagonal elements with the number of 
simulator elements. 
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Figure 2.18: Pressure distribution (atm) at x = 5 cm, at the center line of the 
disturbance. 
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Figure 2.19 Pressure distribution (atm) at x = 10 cm, at the boundary line of 
disturbance. 
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0 0  

Figure 2.20: Pressure distribution (atm) at x = 15 cm, at the center line of the 
neighboring block. 
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Z 

Figure 2.21: System containing disturbances at top four blocks (two layer case). 



0- -0 

Figure 2.22: Pressure distribution (atm) at x = 10 cm for two layer case. 
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Disturbance at block #3 = Disturbance at block #6, 

- 
k -  

0.818 -0.053 0.053 
-0.053 0.818 -0.053 
0.053 -0.053 0.818 

Disturbance at block #4 = Disturbance at block #5, 

- 
k -  

0.818 0.053 -0.053 
0.053 0.818 -0.053 
-0.053 -0.053 0.818 

2.5.2 Part 2 - Analvtical Results 

The system in Fig. 2.21 is analyzed, the following results are obtained. 

.500 0.000 0.000 
k =  .OOO 0.500 0.000 - E  -000 0.000 0.002 

The numerical results for the corresponding system are as follows 

.500 0.000 0.000 
k =  .OOO 0.500 0.000 E .ow 0.000 0.002 

These two results show that when there is no transverse pressure gradient, both 
methods match very well. In this system kxapp = k ,  ,kyapp= kyy and kzapp = kLL. 

- - -  - - - 

A system with a disturbance is analyzed. A disturbance is placed at block #1 with 
a small permeability of 1 md and the analytical method yields the following 
permeability tensor. 

- 
k =  

0.822 -0.060 -0.060 
-0.060 0.822 0.060 
-0.060 0.060 0.822 



Comparing with the numerical results presented in part 1, the diagonal elements are 
very close, the relative difference which is defined by Aasum et al.2.6 is OS%, but 
the off-diagonal elements are not as close as the main diagonal terms, with a relative 
difference of 11.7%. When a disturbance is located at block #3, the analytical 
method yields following permeability tensor; 

k =  
0.822 -0.060 0.060 

-0.060 0.822 -0.060 
0.060 -0.060 0.822 

This case also shows same results as the previous example when compared with the 
numerical results. Even though the magnitude of the off-diagonal elements do not 
match well, the signs are identical which means that the flow directions are properly 
determined by the analytical method. These results indicate that the magnitude of 
transverse pressure gradient to the principal flow direction is not correctly 
determined by the current analytical method. At this stage, we think that the 
transverse pressure gradient computation in three dimensions needs to be modified 
compared to the values calculated in two dimensions. 

2.6 Future Work 

The next step in this study will be to investigate the correct way to calculate 
transverse pressure gradients by which we can match the numerical results. Also a 
more complex case, such as a block containing an anisotropic permeability 
distribution, will be tested. To be applicable to an outcrop study, the method to 
determine the principal directions of permeability from field data such as 
minipermeameter measurements will be also developed. In addition, the finite 
element simulator will be revised in order to handle more general and complex 
permeability systems. 
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Nomenclature 

Symbol 
k = permeability (Darcy) 
q = flow rate (cm%ec) 
p = pressure (atm) 
v = Darcy velocity (cmlsec) 
p = fluid viscosity (cp) 
Q , Lx, = Length of system block in the x-direction (cm) 
Lyl , Ly, = Length of system block in the y-direction (cm) 
Lq, Lz, = Length of system block in the z-direction (cm) 

Subscripts 
x = x-direction 
y = y-direction 
z = z-direction 
NC = no communication along transverse direction to the direction of flow 
VE , Y = vertical equilibrium along the y -direction 
W2 , 2 = vertical equilibrium along the z-direction 
t = top layer 
b = bottom layer 
f =firstcolumn 
s = second column 
T = right column 
I = left column 
1,2,3,4,5,6,7,8 = number of blocks 
appl, app2, .... = effective apparent permeability of each block 
appl2, app34, .... = effective apparent permeability of two-block system 
app , s = effective apparent permeability combined in order of serial - parallel 
app , p = effective apparent permeability combined in order of parallel - series 
xxapp , xyapp , m p p  = effective apparent permeability of the system, flow in the 

x -direction, communication only in the x ,  y and z direction respectively 
yxapp , yynpp , yzapp = effective apparent permeability of the system, flow in the 

y -direction, communication only in the x , y and z direction respectively 
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Wapp, ZYapp, zzapp = effective apparent permeability of the system, flow in the 
z -direction, communication only in the x ,  y and z direction respectively 
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Appendix A 

- 
This section contains the procedures to calculate lulpp, kyappand zmPp which are 
calculated by following similar steps. Fig. A.1 shows a schematic of the system 
considered. This system is divided into four two-blocks depending on the flow 
direction and effective permeabili ties for two-block systems are calculated, and then 
combined to yield the apparent permeability for each direction. 

Calculation procedure for k x a p p :  

A. 
no communication in the y - and z -directions as shown in Fig. A.2. 

The system in Fig. A.l is divided into four two-block systems considering 

Velocity components along the x -direction for blocks 1 and 2: 

Velocity components along the x-axis for block 1 and 2 combined: 

Velocity components along the y-axis for blocks 1 and 2 are zero because of closed 
boundah conditions. 



L z  

L x  

Figure A. 1: 

1111) 

System containing 8 blocks 

L 

Lz2 

L z l  

Lxl L x 2  

111) 

Figure A . 2  No communication in the y and z directions, flow in the x 
direction 
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Velocity components along the y-axis for blocks 1 and 2 combined: 

Velocity components along the z-axis for blocks 1 and 2 are zero because of closed 
boundary conditions. 

Velocity components along the z-axis for blocks 1 and 2 combined: 

Rearranging Eq. A. 1 through Eq. A.9: 

(A. 10) 

(A. 11) 

(A. 12) 

(A. 13) 

(A. 14) 

(A. 15) 
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Total pressure gradient is: 

(A. 16) 

InsertEg.A.lOandEq.A.13intoEq.A.l,Eq.A.llandEq.A.l4intoEq. A.2, 
and EQ. A.12 and Eq. A.15 into Eq. A.3. After rearranging the equations, we get 

v,, = - 

1 vx2 = -- 
CC 

- 
vx12 = 

(A. 17) 

(A. 18) 

* 
(A. 19) 

Substituting Eq. - A.17, Eq. A.18 and Eq. A.19 in Eq. A.16 and rearranging the 
equation that vx12 = vxl = v,, , we get: 

One block effective apparent permeability is 
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(A.20) 

(A.21) 

(A.22) 



Following the same procedures, Eq. A. 1 through Eq. A.23, for blocks 3 and 4 

where 

For blocks 5 and 6 

where 

For blocks 7 and 8: 

where 

(A.24) 

(A.25) 

(A.26) 

(A.29) 

(A.30) 
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Since these four two-block systems are in parallel with respect to the direction of 
flow, the effective apparent permeability of the top and bottom blocks are calculated 
as a weighted arithmetic average: 

(A.33) 

(A.34) 

Top and bottom two-blocks are in parallel, so the overall effective apparent 
permeability for a system shown in Fig. A.2 is the weighted arithmetic average of 
Eq. A.33 and Eq. A.34. 

Lz, - L4 - 
Lz Lz 

- 
k - p p  = - kxappt i- - k x a p p b  (A.35) 

B. 
communication only in the y-direction as shown in Fig. A.3. 

The system in Fig. A . l  is divided into four two-blocks considering 

Using calculated effective apparent permeability for one block, calculate effective 
apparent permeability for two-block systems (block 1 and block 3). The total 
pressure gradient for blocks 1 and block 3 are the same as for the individual blocks. 

Velocity for two-block systems in terms of local velocities: 

(A.36) 

(A.37) 

Using Eq. A.36 and velocity components, such as Eq. A. 17 through Eq. A. 19 with 
changing subscripts, we get this expression for blocks 1 and 3. 

(A.38) 



. .- . . ...- . 

For blocks 2 and 4 

For blocks 5 and 7 

For blocks 6 and 8: 

(A.39) 

(A.41) 

There are two combinations. First, combine the top and bottom two blocks in 
series then combine the results in parallel. Second, combine the left and right two- 
blocks in parallel then combine the results in series. The outcome of the two 
combinations were different. It is decided, therefore, to calculate both 
combinations and take weighted average of them as an effective apparent 
permeability for the system shown in Fig. A.3. 

First combination: 

- Lzi - Lz, - 
kxyapAs - kxyappb i- - kxyappt 

Lz Lz 

Second combination: 

Lz, - Lz, - - 
k x y a p p l e  - k a y a p p ~ 7  + -kayapp13 

Lz Lz 

Lz, - Lz, - 
k r y a p p r  = -kayapfis  + - k x y a p p ~  

Lz Lz 
- 

(A.42) 
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(A.47) - LX E XyOpprE xyappl 
kxraPBP = LX, Exyappr + L X ~  kxyappl 

Taking a weighted average of Eq. A.44 and Eq. A.47 for effective apparent 
permeability of this system: 

C. 
communication only in the z-direction as shown in Fig. A.4. 

System in Fig. A . l  is divided into four two-blocks considering 

Calculate the effective apparent permeability of the two-block system, blocks 1 and 
5. The total pressure gradient for blocks 1 and 5 is same as for individual blocks. 

Velocity for the two-block system in terms of local velocities is: 

LZ, 
v x s  + X V X l  

- Lz, 
Lz 

VXIS = - 

(A.49) 

Using Eq. A.49 and velocity components, such as Eq. A. 17 through Eq. A. 19 with 
changed subscripts, we get this expression for blocks 1 and 5. 

For blocks 2 and 6 

For blocks 3 and 7 

(A.51) 

(A.52) 

(A.53) 



4 
L 

L z 2  

L z l  

4 

L x l  L x 2  

Figure A.3: Communication only in the y direction, flow in the x direction 

LY 

L 2 2  

L z l  

L x l  L x 2  

Figure A.4: Communication only in the z direction, flow in the x direction 

262 



For blocks 4 and 8: 

There are two combinations here as well. The first permeability is obtained by 
combining the first and second two-blocks in series, then combining the results in 
parallel. The second is obtained by combining the left and right two-blocks in 
parallel, then combining the results in series. The effective apparent permeability 
for the system shown in Fig. A.4 is: 

First combination: 

Second combination: 

(A.57) 

(A.58) 

(A.59) 

Take a weighted average of Eq. A S 7  and Eq. A.60 for effective apparent 
permeability of this system. 
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The effective apparent permeability of the x-direction is calculated as a weighted 
average of Eq. A.35, Eq. A.48 and Eq. A.61. 

kxapp  + k yapp + k zapp 
(A.62) 

Following similar procedures for the y - and z-directions, we have nine non-linear 
equations corresponding to three equations for each direction. 

For flow along the x-direction: 

- Zxapp  E x y a p p  - + E z a p J x y a p n p  - 
kxy0PP = 

k x a p p  + k z a p p  

- -  - 
k x a p p  = - -... - ExxapJxapp + kxyappkyapp  + lxzopp&zapp 

k x a p p  + k y a p p  + k z a p p  

For flow along the y-direction: 

- - - 
kYaPP = 

k y - v J x a p p  - + k y y a p p l y a p p  + I y zoppEzapp  

k x a p p  + E yapp + k z a p  p 

For flow along z-direction: 

(A.63) 

(A.64) 

(A.65) 

(A.69) 

(A.70) 

(A.71) 
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These equations are solved by a successive substitution method. 

Let 

These variables are initially assumed as: 
- - 

AC, = k,PP ,AC;=---andAC;=- k W P P  L P P  

kYYaPP kYY0PP kWPP 

Rearranging Eq. A.63 and Eq. A.64. Using Eq. A.72: 

Rearranging Eq. A.66 and Eq. A.67. Using Eq. A.72  

Rearrange Eq. A.69 and Eq. A.70. Using Eq. A.72: 

Eq. A.65, Eq. A.68 and Eq. A.71 become: 

- 
kmpp = 

E-ppA C, + Evapp + EmP/ C, 
AC, + 1 + AC, 

(A.72) 

(A.73) 

(A.74) 

(A.76) 

(A.78) 

(A.79) 



- 
kYWP = 

EymppACl + Eyyapp + 5zop/C,  
AC, + 1 + AC, 

- - 
k zapp = 

kunppA C, + EzyaPp + EmP# C, 
AC,+l+AC, 

Divide Eq. A.79 and Eq. A.81 by Eq. A.80: 
- - 

AC,= k-pp - AC,+ Exyapp + krzopp AC2 
kympp AC, + kyyapp  + Lyzopp AC, 

(A.80) 

(A.81) 

(A.82) 

Solve Eq. A.82 for AC, and using the assumed value of AC, and solve Eq. A.83 
for AC, using the assumed value of AC,. Denote the solution values as C, and 

c2- 

- 
Calculate x m p p ,  k y a p p  and kzapp using C, and C, then recalculate AC,, AC, and AC, . 
Compare with the assumed values. This completes the successive substitution 
loop. 
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Appendix B 

Here the procedure for calculating pressure gradient ratios is presented. Two 
pressure gradient ratios for each direction will be calculated. Each pressure gradient 
ratio consists of two components, with and without vertical equilibrium along one 
of the transverse directions, and combined as a weighted average of those two. The 
derivations of pressure gradient ratios when the flow direction is along the x- 
direction are shown only. Two pressure gradient ratios for the x-direction follow. 

Here NC means no communication along the transverse direction to the direction of 
flow and VE, 2 (or W, Y) means vertical equilibrium in specified direction. Each 
of these terms follows. 

B.1 
with no communication. 

The system shown in Fig. B.l is considered for the pressure gradient ratio 

First, the pressures at the middle of each two-block are calculated. 

1. Blocks 1 and 2 

The flow rates for block 1 and 2 are: 
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where kxappl and kmpp2 are effective apparent permeability for blocks 1 and 2 

respectively. The effective flow rates for blocks 1 and 2 are combined: 

where 1 m p p ~ 2  is a weighted average of kxappl and kmpp2, the Eq. B.3 and Eq. B.4 

are rearranged. 

From the conservation of mass 
- 

4x1 = 4z2 = q x 1 2  

Using Eq. B.8, subtract Q. B.5 from q. B.4 and rearranging 

2. 

PI = 

Blocks 3 and 4 

The flow rates for block 3 and 4 are: 

(B. 10) 

(B. 11) 
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where kmpp and kmpH are effective apparent penneabilities of blocks 3 and 4 

respectively. The effective flow rates for blocks 3 and 4 are combined: 

(B. 12) 

where impp4 is a weighted average of kxap@ and kmPH. Eq. B. 10 and Eq. B 1 1 are 

rearranged. 

From the conservation of mass 
- 

4s = 4 x 4  = 4 x 3 4  

Using Eq. B. 15, subtracting Eq. B. 14 from Eq. B. 13 and rearranging 

3. Blocks 5 and 6 

The flow rates for blocks 7 and 8 are: 

where kmpfi anc 

(B. 13) 

(B. 14) 

(B. 16) 

(B. 18) 

k.P@ are effective apparent permeabilit,.s of blocks 5 and 6 

respectively. The effective flow rates for blocks 5 and 6 are combined: 

(B. 19) 



- 
where kmp@6 is a weighted average of kxapfi and kmpfi. Eq. B.17 and Eq. B18 are 

rearranged. 

From the conservation of mass 

Using Eq. B.22, subtracting Eq. B.21 from Eq. B.20 and rearranging 

4. Blocks 7 and 8 

The flow rates for blocks 7 and 8 are: 

(B.20) 

(B.21) 

(B.22) 

(B.23) 

(B.24) 

(B.25) 

where kxapp and kmpp are effective apparent permeabilities for blocks 7 and 8 

respectively. The effective flow rates for blocks 7 and 8 are combined 

(B.26) 

where kmpps is a weighted average of kxapp and kmpp. Eq. B.24 and Eq. B.25 

are rearranged. 
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From the conservation of mass 
- 

4 x 7  = 4 x 8  = 4 x 7 8  

Using Eq. B.22, subtracting Eq. B.28 from Eq. B.27 and rearranging 

(B.28) 

(B.29) 

(B.30) 

Using these mid-point pressures, the pressure gradient ratios are calculated. 

(( /( G\ ) is obtained following these procedures. 
J Y l ,  J-4 *C 

Pressure gradient ratio for top two-blocks, blocks 1-2 and 3-4 

Effective flow rate for top two-block is: 

(B.32) 

lwPpt  is an effective apparent permeability of top two blocks. Rearranging Eq. 
B.32 
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(B.36) 

Insert Eq. B.34 and Eq. B.36 into Eq. B.31: 

Using the relationship between the average and maximum pressure gradients6, 
APyayg = 1/2 APym , Eq. B.37 is rearranged: 

(B.38) 

Multiplying (Lx/Ly) APx by Eq. B.38, pressure gradient ratio in the top two-block 
is determined as follows: 

Pressure gradient ratio for the bottom blocks, blocks 5-6 and 7-8 
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Effective flow rate for the bottom two-blocks is: 

(B.41) 

Emppb is an effective apparent permeability of the bottom two-blocks. Rearranging 
Eq. B.41: 

Insert Eq. B.43 and Eq. B.45 into Eq. B.40: 

(B.42) 

(B.43) 

(B.46) 

Using the relationship between the average and maximum pressure gradient&, 
AP;oyg 1/2 .APy,-, Eq. B.46 is rearranged: 
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(B.47) 
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Pi 

/ Lx2 P4 

P3 

II) 

Figure B. 1: No communication along the y and z direction, flow along the x 
direction 

Po 

Pi -# 
L 

L z 2  

L z l  

L x l  

1111) ' Pvz2 

L x 2  

Figure B.2 Vertical equilibrium along the z direction, flow in the x direction 
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Multiplying (Lx/Ly)APx by Eq. B.47, the pressure gradient ratio in the bottom 

two-blocks is determined as follows: 

(($1 

(( 2) /( 2) ) is determined as a weighted average of pressure gradient ratio 

of the top and bottom blocks according to the thickness. 

J Y l ,  J x l ,  NC 

B.11 The system in Fig. B.2 is used in calculating 

Calculate mid point pressure of each combined block 

1. First, combine four blocks 3 , 4 , 7 , 8  

The flow rates for blocks 3,7  and 4,8 are: 

(B.50) 

(B.51) 

where zMpfi7 and krappls ?e the combined effective apparent permeability of blocks 
3, 7 and 4,8 respectively. The effective flow rates for blocks 3 , 7  and 4 , 8  are 
combined. 
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(B.52) 
- - - 

where kxzappf is a weighted average of k x a p @ 7  and k ~ a p ~ d s .  Eq. B.50 and Eq. B.51 
are rearranged. 

From the conservation of mass 

Using Eq. B.55, subtracting Eq. B.54 from Eq. B.53 and rearranging. 

2 .  Second, combine blocks 1,5,2,6 

The flow rates for blocks 1,5 and 2,6 are: 

(B.53) 

(B.56) 

(B.57) 

(B.58) 

- 
where kxOppfs and kulpp26 are the combined effective apparent permeability of blocks 
1, 5 and 2, 6 respectively. The effective flow rates for blocks 1, 5 and 2,6 are 
combined. 

(B.59) 
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- - 
where ixzapps is a weighted average of k x a p p l s  and kurpp26. Eq. B.57 and Eq. B.58 
are rearranged. 

From the conservation of mass 

Using Eq. B.62, subtracting Eq. B.61 from Eq. B.60 and rearranging 
- 

+ 
2 P"Z2 = 

(B.60) 

(B.61) 

(B.62) 

(B.63) 

Maximum pressure gradient along the y direction is determined as follows: 

Eq. (B.64) can be rearranged as follows, 

Average pressure gradient ratio is determined: 
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Multiplying (Lx/Lz) APx to Eq. B.66, pressure gradient ratio is determined as 
follows: 
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CHAPTER 3 

Outcrop Studies 
Geological and Engineering Interpretation 

I .  Azof, G. Martinez, N. Hyne, D. Kerr and M. Kelkur 

3.1 Summary 

Investigation of outcrops allows description of rock properties at a scale which is 
not otherwise possible in typical reservoirs. This description includes the detailed 
geological investigation of depositional units and subfacies as well as the 
measurement of petrophysical properties such as permeability and porosity. This 
report presents a detailed investigation of the Bartlesville sandstone outcrop based 
on the outcrop surface measurements as well as measurements of information at 
wells drilled behind the outcrop. The detailed geological investigation allows us to 
identify four discrete genetic units and the presence of three subfacies within three 
of these units. Based on the geological description, a three-dimensional 
petrophysical properties description of the outcrop was constructed which honors 
the geological information. Flow simulation studies in this "constructed" reservoir 
revealed that the large-scale geological description has a much more significant 
impact on the performance than the detailed description of the reservoir properties. 
Also, one of the important parameters, but which is hard to measure, which has a 
significant impact on flow performance is the vertical permeability. This indicates 
the need to honor the geological units as faithfully as possible in the description 
process. Also, better techniques need to be investigated to measure the vertical 
continuity in the reservoir. 

3.2 Introduction 

One of the missing links in describing reservoirs in a proper fashion is the 
information at intenvell scales. Typically, significant information can be collected 
at individual well locations. As a result we have an abundance of vertical 
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information. However, in the horizontal direction, we are limited by the well 
spacing. One way to circumvent the problem of limited horizontal data is to 
conduct an investigation of outcrop analogs of the reservoir. Outcrop analogs are 
the exposed rocks which were formed under the same depositional environment as 
the reservoir rock. Because of their exposure at the surface, it is much easier to 
study the outcrop at a very detailed scale. By studying the outcrop at a detailed 
level, we may be able to infer missing information, such as interwell distribution of 
properties, for an actual reservoir where such information is not available. 

In this section, we discuss a detailed investigation of an outcrop analog of the 
Bartlesville sandstone. In addition, to study the outcrop surface, we also drilled 
several wells behind the outcrop to study the rock characteristics further. We 
investigated both the geological and petrophysical properties of the outcrop to 
understand the reservoir rock a little better. 

The report is divided into several sections. Section 3.3 discusses the collection of 
data, including the surface properties as well as the information collected at the 
wells drilled behind the outcrop. Section 3.4 discusses the geological description 
and interpretation of the outcrop in three dimensions based on the surface and the 
well data. Section 3.5 discusses the procedure used to construct the three- 
dimensional description of the outcrop at very small scales. It involves the use of 
two conditional simulation methods. Section 3.6 presents preliminary flow 
simulation results based on the constructed three-dimensional description of the 
outcrop. The final Section is devoted to conclusions reached based on this 
investigation. 

W 3.3 DataCollection 

This section discusses the collection of data from cores and the outcrop face. The 
purpose of the data collection is to get detailed information about the reservoir 
properties and geologic description of the Bartlesville Sandstone in two and three 
dimensions. The location of the outcrop study is shown in Fig. 3.1. 

In order to complete the study, several tasks were undertaken. The first task was to 
drill wells behind the outcrop face. This psk  was completed during October and 
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LOCATION OF STUDY AREA 

1 mi. 

Figure 3.1: Location of outcrop study (from Berg, 1963). 
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November of 1991. Twelve of the proposed thirteen wells were drilled. The 
relative locations of these wells with respect to the outcrop are shown in Fig. 3.2. 

The second stage of the investigation was completed in late November. All the 
sandstone cores were scanned using a gamma ray scanner and slabbed. We took 
1388 permeability measurements using a minipermeameter and each core was 
photographed. 

Staying as close as possible to the point where the minipermeameter readings were 
taken, about 200 core plugs, each of 1 inch in diameter were taken. The Holeman 
#3 core was selected for the cutting of 119 core plugs, all in the horizontal position, 
while the remaining 81 core plugs were distributed among the following cored 
wells: Holeman #4, Holeman #6 and Brown #l. Included were some vertical 
plugs, whose locations depended on geologic description. Of the 81 core plugs, 52 
horizontal plugs and 21 of 29 planned vertical core plugs were taken. All the cores 
were measured for the porosity and permeability values. 

The second set of permeability readings were taken on the outcrop face. The 
permeability measurements were taken in the vertical and horizontal directions. In 
the vertical direction, the readings were taken for every 1 foot on the grid surveyed 
on the outcrop face locations #1, #13 and #2. The readings in the horizontal 
direction were taken on the grid surveyed over 87 D to 12 D (Fig. 3.3). The 
measurements on the outcrop face were very difficult, due to the wet conditions on 
the outcrop face. It was difficult to get a good sealing between the tip and the rock 
surface when measurements were conducted in wet conditions. 

The geological descriptions on the outcrop face and on the cores were aIso done. 
The geological data include the outcrop face description, the core description and 
the well log analysis. The detailed geological analysis is discussed next. 

3.4 Geologic DescnDtion 

In this study, the term facies is defined as a body of rock with specific 
characteristics, including texture, fossils, physical andlor biogenic structures and 
nature of contacts. It is considered here as a transferable entity, that with little 
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modification, can be present in a variety of depositional processes, and that is not 
necessarily restricted to a given geologic time period (Kerr, personal comm., 
1992).3.1 . 

A very important aspect in applying the term facies is scale. Since a body of rock 
can have just about any dimensions, its use should be governed by the objectives of 
the study and the available information. In this sense, one can see that a seismic 
facies can be 2-3 orders of magnitude larger than the facies defined on an outcrop 
study. After defining the dimensions or coverage of facies in a specific study, 
subdivisions maybe appropriate. Subdivisions must not be attempted before 
becoming familiar with the facies. The objective of the study should still be kept in 
mind. In this study, facies subdivisions are based on vertical variations of 
sedimentological patterns within a facies. 

The concept of a discrete genetic interval (DGI) is applied. Kerr and Jirik (l99O)3.2 
defined a discrete genetic interval as a collection of contiguous facies that are 
deposited in brief discrete increment of time. Two facies are identified in the 
Bartlesville Sandstone, in the study area: 1) channel-fill facies, and 2) splay facies. 
The channel-fill facies are further subdivided into 3 subfacies. 

3.4.1 Channel-Fill Facies 

In study area, the channel-fill facies are represented by upward-fining texture 
profile that ranges from medium sandstones to mudstones. The scale of 
sedimentary structures decreases also from internally thickly laminated (up to 1.1 
in; 3 cm.) through cross-stratification at the bottom to thin and ripple lamination at 
the top. 

Channel-fill facies average 16 feet (5 m) in thickness, with a range from 10 to 24 
feet (3 ’ t o 7  m) (Tables 3.1  and 3.3). Cross sections (Fig. 3.4 through Fig. 3.8) 

‘show the general thickness distribution of the channel-fill facies within the study 
area. Fig. 3.9 illustrates the facieshbfacies correlation, as exposed in the roadcut 
face. 

The upward differentiation of texture and sedimentary structures allows for the sub- 
division of the channel-fill facies into 3 sub-facies (Fig. 3.4 through Fig. 3.9, and 

285 



Figure 3.4 Stratigrapic cross section A-A'. Riffles are subenvironments where 
sandy deposits exist possibly connecting neighboring lateral 
accretion bars. 

286 



LEGEND 

Holeman Naf Transect No. I Holeman No.3 

SCALES 

_ - -  - 

--------- - - -- --- 

Figure 3.5 Stratigraphic cross section B-B'. 
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Figure 3.9: Facieshbfacies correlation along the roadcut face, showing 
geologic columns of transects. 
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Tables 3.1 to 3.3) that have been identified in this study in ascending order as the 
lower, middle and upper channel-fill subfacies. Successions are incomplete, 
because basal erosion of the overlying channel-fill presumably has removed part of 
underlying channel-fill deposits. This erosive character is less prominent on the 
uppermost channel-fill facies, which are overlain by splay facies. 

Lower channel-fill subfacies are made up of subangular to subrounded, moderately 
to wellsorted, medium- to fine-grained sandstone (Table 3.3). The basal contact, 
which is the same as that of the channel-fill facies, is erosive. It is represented by 
an abrupt upward increase in grain size between underlying and overlying rocks, 
and common channel-lag deposit. Usually porous rocks are found on both sides of 
the contact. 

The basal few inches (cm) of the lower channel-fill subfacies are characterized by 
poorly-developed stratification. Mud ripup clasts of variable sizes (up to 1 x 0.5 
in, 2 x 1 cm) and shapes are present. Transported siderite nodules (Fig. 3.10) are 
also present towards the base of this subfacies, specially in the lowermost channel- 
fill facies succession. Matrix content is relatively low. Intergranular porosity can 
easily be recognized with a binocular microscope. Sand grains appear loosely 
cemented by clay alone or clay and calcite. Calcite cementation is mostly found 
around the areas of high iron oxide concentrations and thicker stratification. The 
average thickness is 3.3 feet (1 m) and range from 2 feet (0.6 m) to 5 feet (1.5 m). 
It represents 19% of the total thickness of the channel-fill facies. 

Stratification is better developed in the overlying lower part of channel-fill 
subfacies. Trough cross-stratification is abundant (Fig. 3.10 and Fig. 3.11). 
Cross-strata are grouped in sets, with individual sets reaching up to 2.5 feet (0.76 
m) thick. Cosets are locally separated by mud drapes (Fig. 3.10) that in places, as 
observed on the road cut face, cojoin with the mud drapes of the middle channel-fill 
subfacies. Individual cross-strata reach up to 1.5 in (3 cm) thick, separated by thin 
(<0.04 in; <1 mm) mud drapes or by intervals of finer-grained sandstone. Cross- 
strata dip angles reach as high as 250. 
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Well No. Savana Fm. 

Holeman # 1 
Holeman # 2 
Holeman # 3 
Holeman # 4 
Holeman # 5 
Holeman # 6 
Holeman # 7 
Holeman # 8 
Holeman # 10 
Holeman # 11 
Brown # 1 
Brown # 2 

61.2 
61.1 
62.8 
62.3 
61.8 
61.0 
62.8 
62.4 
63.7 
63 .O 
95.0 
71 .O 

D G I  No. 1 
L M U  

56.8 50.5 49.0 
57.5 46.0 - -  
59.2 49.0 - -  
59.0 51.3 - -  
59.5 46.3 - -  
56.5 51.0 - -  
61.0 51.0 - -  
60.0 54.0 - -  
61.2 51.5 - -  - 49.1 - -  
93.5 84.3 83.8 
67.5 60.5 -- 

D G I NO.~ 
L M U  

42.0 32.0 30.0 
44.1 29.8 29.6 
48.5 32.5 31.5 
42.0 33.4 31.0 

47.0 29.5 - -  

48.3 29.0 - -  
43.5 30.0 - -  
49.0 33.0 - -  
43.5 28.8 - -  
46.0 31.5 - -  
79.0 65.4 - -  
52.0 36.0 -- 

D G I No. 3 
L M U  

25.5 17.0 16.0 
26.5 16.8 14.0 
27.0 18.8 17.2 
27.0 19.0 17.5 
28.0 20.6 14.7 
27 14.3 14.0 
28.0 15.3 15.0 
31.0 19.0 16.0 
26.8 15.7 14.3 
30.0 17.3 15.5 
63.5 49.5 48.5 
31.0 17.0 15.0 

DGI No.4 
SPL 

6.0 
6.0 
6.0 
6.0 
6.0 
6.0 
6.0 
6.0 
6.0 
6.0 

34.3 
5.0 

Table 3.1: Tops of Savanna Fm. and Bartlesville Sandstone facies/subfacies. 
Discrete Genetic Intervals (DGI) 1 - 3 are made up of channel-fill 
facies. DGI 4 is a splay facies. L, M and U refer to the 3 
subdivisions, lower, middle and upper subfacies of the channel-fill 
facies. Top of the lower channel-fill subfacies of DGI 1 is missing 
due to core losses, other missing data refer to the erosion of the 
upper channel-fill subfacies by the overlying splay unit. 
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Well No. 

Holeman # 
Holeman # 
Holeman # 
Holeman # 
Holeman # 
Holeman # 
Holeman # 
Holeman # 
Holeman # 
Holeman # 
Brown # 1 
Brown # 2 

D G I  No. 1 
L M U  

1 4.3 6.3 1.5 
2 3.6 11.5 0.0 
3 3.6 10.2 0.0 
4 3.3 7.7 0.0 
5 2.3 13.2 0.0 
6 4.5 5.5 0.0 
7 1.8 10.0 0.0 
8 2.4 6.0 0.0 
10 2.5 9.7 0.0 
11 - - 0.0 

1.5 9.3 0.4 
3.5 7.0 0.5 

Mean 3.0 8.4 1.0 

D G I No.2 
L M U  

2.0 17.5 
4.0 10.0 2.0 
4.9 14.3 0.3 
2.8 15.9 1.0 
4.3 8.6 2.4 
2.75 19.3 0.0 
7.5 13.5 0.0 
5.0 16.0 0.0 
8.0 14.7 0.0 
3.1 14.5 0.0 
4.8 13.6 0.0 
8.5 16.0 1.0 

4.2 14.5 1.5 

D G I  No. 3 
L M  U 

4.0 8.5 1.0 
3.5 9.7 2.8 
2.5 8.2 1.7 
4.7 8.0 1.5 
3.0 7.4 5.8 
2.0 12.7 0.0 
2.0 12.8 1.3 
2.0 12.0 3.0 
2.0 21.2 1.3 
1.5 12.7 1.8 
1.9 14.0 1.0 
5.0 14.0 2.0 

2.8 11.4 1.8 

DGI No.4 
SPL 

10.0 
8.0 

11.2 
11.5 
8.7 
8.3 
9.3 

10.0 
8.3 
9.5 

14.2 
10.0 

10.0 

Mean thicknesses for channel-fill facies and subfacies 
Subfacies th ickness  Channel-fill thickness  

Lower 3.3 DGI 1 12.4 
Middle 11.4 DGI 2 20.2 
Upper 1.4 DGI 3 16.0 

MEAN 16.0 

facies 

Table 3.2: Summary of Bartlesvill Ss. facieslsubfacies thickness (feet). The 
upper channel-fill subfacies are presumably eroded by the cutting 
process of the immediate overlying channel411 facies in places of 
zero thickness. Well drilling design did not recover the upper 6 feet 
of core in the Holeman array, thus DGI 4 is likely thicker than 
presented in the Table. For the Holeman No. 11 well, the thickness 
of the lower and middle channel-fill subfacies of DGI 1 and 2 are 
missing due to core losses. 
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Facies Texture 

C hannel-fill 
Lower Sbang to sbrndd, 

mod to wl srt, med-to 
f-gr Sst. Carb frag 
concentrated along 
x-strat forese t s, 
Transported sid nod 
are corn. 

Middle Sbang to sbrndd, 
mod srt, m-to very f- 
gr Ss. Carb frag 
concentrated along 
x-strat foresets. 

Poorly to mod srt, f 
to v f Sst. and slty 
Mdst. Infiltrated C1 
Mtrx. 

Sbang to sbrndd mod 
to wl srt, f-to v f-gr 
Sst. Evenly 
distributed CI Mtrx. 

Physical  Biogenic Cementation 
Structures s tructures  Pattern 

Erosional basal surf. Transported plt Sid nod in higher 
In t e rna l ly  casts. DGI's are ox. Fe-ox- 
structureless rich calc cmt 
channel lag. Med- accwnulates in 
scale trough x-strat. thicker strat. 
Mud drapes along 
foresets. 

Dominant low-angle Transported plt frag. Fe ox-rich cmt 
parallel, med-scale 
strat, and 
subordinate med 
scale trough x-strat. 
Mud drapes are corn 
also. 

increases upward 
through the DGI's. 
Thicker strat 
contain calc crnt 
also. 

Thinly lam Sst. In-place root casts 
intercal w/ Rpl and and root turbation 
thinly lam Mdst. are corn. 
Highly cntrt. 

Low-angle parallel Root turbation. 
thickly lam at base. 
Transi t ioning 
upwards to Rpl and 
thinly lam Sst., 
intercal with Mdst 
drapes at Tp. 

Fe Conc commonly 
have Galc rims. 

Fe ox corn to Mtrx 
rich Intvls. 

Table 3.3: Summary of sedimentary characteristics of the Bartlesville 
Sandstone facies and subfacies. 
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Figure 3.10: Lower channel-fill subfacies examples from cores. Scales are in 
inches. 
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Figure 3.11: Lower channel-fill subfacies exposed in the roadcut face near station 
l.E. (A) A general view shows an apparently structureless 
sandstones. (B) But at a closer view, abundance of trough cross 
stratification becomes evident. 
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Figure 3.12: General view of the roadcut face showing proportions of channel-fill 
subfacies, and vertical limits of some DGI's. Low-relief surfaces 
separating DGI's appear convex-up due to photo distortion. 
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Middle Channel-Fill Subfacies 

Middle channel-fill subfacies are composed of sub-angular to sub-rounded, 
moderately- to well-sorted medium- to very fine-grained sandstones with less 
common mudstone drapes (Table 3.3). Generally, sorting has improved from the 
lower subfacies, but finer grains also become more abundant. Intergranular 
porosity can still be recognized on the binocular microscope. 

Thickness averages 11.4 feet (3.5 m) and ranges from 8 to 21 feet (2.4 to 6.4 m). 
This subfacies makes up 70% of the total thickness of the channel-fill facies. Thus, 
it dominates the Bartlesville sandstone, which is evident in the exposure offered by 
roadcut face (Fig. 3.12). 

In this subfacie, medium to thin beds (0.3 to 1 feet, 10 to 30 cm) dip at low angle 
(average of less than 100) separated by: (1) thinly-laminated (4.04 in, <1 mm) 
silty mud drapes (Fig. 3.13A), that can be thick as 0.5 in (10 mm); or (2) ripple- 
laminated sets of similar thickness that are made up of very fine to silty sandstone 
stratification, thickly (0.5 in; 1 cm) to thinly parallel laminated (4.04 in; < 1 mm). 
Stratification sets are separated by intervals of higher clay matrix content or 
micaceous mud drapes, where carbonaceous can also be present. 

Commonly, high-angle trough cross-strata sets of thickness up to 1 feet (0.3 m), 
with stratification and texture patterns similar to those of the lower channel-fill 
subfacies and including basal lag deposits are grouped in cosets of 2 to 4 sets. 
These cosets appear as isolated units that cut across the lateral continuity of the 
middle subfacies (Fig. 3.13B). 

Upuer Channel-Fill Subfacies 

It is thought to be under-represented in its thickness, probably as a result of erosion 
by younger channel-cutting processes. General characteristics are hard to draw 
because of its erratic presence in the study area. Average thickness is 1.4 feet (43 
cm) and ranges from zero to 5 feet (1.5 m). It represents only 11% of the total 
facies thickness in the study area (Tables 3.1 to 3.3). 



c: 
0 
.d 0 

0 
0 
(d 

Figure 3.13: (A) Core example, and (B) outcrop view, between stations 3D and 
34D, of the middle channel-fill subfacies. 
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In the sandy interval, sand grains are better rounded than in the other subfacies, and 
better sorted. However, the matrix content has increased to the point that it is very 
difficult to detect intergranular porosity with the binocular microscope. In  the silty 
mudstones no intergranular porosity is observed with the binocular microscope. 

Its contact with the underlying middle channel-fill subfacies is gradational and 
difficult to pinpoint. Fig. 3.14A shows the abrupt change of the very fine 
sediments of an upper channel-fill facies succession has eroded, making i t  difficult 
to assess the original thickness. Usually this subfacie is represented by a transition 
of upward decreasing grain size, that makes very fine sandy to silty sediments more 
abundant, while becoming increasingly intercalated with mudstones. 

Bed contortion is abundant, and only relic structures can be observed in many 
cases. Stratification is parallel thinly-laminated to ripple- (~0.04 in; <1 mm) 
laminated. Water escape structures are also present. 

Root casts, common to these subfacies (Walker3.3) are related to tube-like 
horizontal ironstone concertinas' structures that are observed on the roadcut face 
(Fig. 3.14B). These root casts have a yellow silty core with concentric rings of 
outward increasing lateritic iron oxide concentration and some calcite rims. 

Wireline L o g  Character 

Wireline logs from the Holeman No. 1 well are typical of the log response for the 
channel-fill facies (Fig. 3.15). The upward-fining textural profile for each of the 
facies; especially the channel-fill facies, is still recognizable on the Gamma ray 
curve, but briefly interrupted at the middle of DGI 2 by chute cut and fill (42 feet in 
Fig. 3.15). 
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Figure 3.14 (A) Core examples of the upper channel-fill subfacies of DGI 2 and 
the lower channel-fill subfacies of DGI 3, and (B) outcrop views of 
the upper channel-fill subfacies of DGI 2 and the lower channel-fill 
subfacies of DGI 3 near station 12C. 
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Figure 3.15 Type well log (Holeman No. l), correlated with core graphic. Finer 
and coarser-grained sections on upper portion refer to relative grain 
size between the two sections. 
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At the bottom of the log, between 55 and 62 feet, calcite cementation and lag 
deposits, observed in the cores, appear to decrease porosity, while an intersecting 
fracture (between 56 and 58 feet) appears to increase porosity. Porosity log 
variations are not obviously correlative with channel-fill facies in the core. 

The general wireline character of the lower channel-fill subfacies is difficult to 
separate from middle channel-fill subfacies in the well cores, the road-cut face and 
well logs. Generally, this subfacies shows the lowest amount of API units on the 
gamma ray log, among the 3 channel-fill subfacies (Fig. 3.15), but its small 
thickness (a couple of feet) might be used. The common smoothing processes of 
well log curves do not provide much information for differentiation of this 
subfacies either. In some cases, like between 26 and 30 feet in Fig. 3.15, a sharp 
contrast in porosity exists. 

Generally, the middle channel-fill subfacies show an upward increase in API units 
detected by gamma ray tool, that is, it is usually more radioactive (argillaceous) than 
the lower subfacies. Closely-spaced radioactive deflections may be related to the 
lateral accretion surfaces, which are difficult to correlate from well to well due to 
tool resolution and curve smoothing. On the density porosity curve, there is not 
much difference when compared with the other channel-fill subfacies. 

A distinguishing well log character is not obvious for the upper channel-fill 
subfacies. Its limited thickness makes it difficult to asses thickness for this 
subfacies, based on well logs only. As shown in Fig. 3.15, these subfacies are 
represented on the gamma ray curve as a simple radioactive interval at the end of the 
channel-fill facies successions. 

Interpretation 

The lower channel-fill subfacies are interpreted as having been deposited over the 
basal surface (channel floor under the thalweg) of the channel-fill facies, as 
migrating subaqueous crescentic dunes. 

Typically, along the thalweg, a channel lag composed of the coarsest sediments 
being transported is deposited at the bottom of the channel-fill deposit (Reineck and 
Singh;3.4 Walker3.3). According to Reineck and Singh?.4 the channel-lag deposits 
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are not very thick and concentrate wood debris, large sediment blocks of 
unconsolidated sediments, mud pebbles and dead organism, whenever coarse grain 
sediments are not available at the lower reaches of the stream. The main direction 
of sediment transport and deposition is downstream. The main direction of 
sediments is bedload in the form of sinuous crested dunes (Walker3.3), this 
resulting in trough cross-stratification. 

The middle channel-fill subfacies is identified as the point bars described by 
Galloway and HobdayP.5 as being deposited by lateral accretion processes, on the 
inside of the meander bend of alluvial channels. Mud drapes that separated cross- 
strata sets dip at low angles and can be traced on the outcrop for tens of feet are 
regarded as lateral accretion surfaces. Chute channels cut across the point bar top. 
In the Bartlesville Sandstone, chute-cut and -fills are represented by isolated trough 
cross-stratified cosets that interrupt the lateral continuity. The middle channel-fill 
subfacies are, thus regarded as deposits of a chute-modified lateral-accretion bar. 

Depending on discharge and bank stability, a parameter used commonly for 
differentiation of meandering (unstable bank) and braided streams (stable banks) 
(an issue not entirely supported by Jackso&6), a meandering channel can migrate, 
laterally, downstream or both, by changing the amplitude or phase of its sinuous 
thalweg. When these migrations start, a process of lateral accretion deposition 
takes place in the inner side of the loop. Sediments that are separated from the 
streamflow during high flow stages tend to move upwards onto the inner banks of 
the stream. According to Walker?3 higher water elevations on the outer side of the 
loop can cause flow currents that go down towards the channel floor and up onto 
the opposite side of the channel. These flow currents drive sediments that can 
show an upward decrease in grain size, by lateral accretion, forming the typical 
point bar, so well known in the literature, and mostly referred to in this study as a 
lateral accretion bar. McGowen and Garner3-7 identified these deposits in 3 types 
of stratifications that suggest deposition under tranquil waters: trough-cross- 
stratification and foreset-cross-stratification are probably deposited under similar 
conditions. As water recedes from the lateral accretion bar, finer deposits are laid 
down as mud drapes. Accumulation of fine sediments closes the cycle of 
deposition of a single bar, forming mud layers, known as the lateral accretion 
surfaces (LAS). At times of aerial exposure, these drape deposits become cracked, 
showing desiccation marks, or become turbated by organic activity. Also, wind- 
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blown deposits can accumulate on top of the bar. Deposits between consecutive 
LAS dip towards the thalweg, perpendicular to stream flow, making up the epsilon 
cross-strata (ECS) of Allen.3-8 

During high flood stages, a secondary thread of maximum surface flow may cut 
across lateral accretion bar (McGowen and Garner,3.7 Walker3.3). Coarse 
sediments are then funneled through chutes that increase in depth as they erode 
towards the downstream side of the bar, where chute bars (Jackson3-9) are 
deposited (Fig. 3.16). Chute-fills interrupt the vertical preservation of lateral 
accretion deposits and show an erosive basal surface. Because chute-channels 
modify the depositional pattern of the lateral accretion bars, the term chute-modified 
lateral accretion bars is applied in such cases. 

The upper channel-fill subfacies as interpreted as having been deposited under 
condition of low energy, by the process of channel abandonment. The deposits are 
regarded here as a channel-abandonment fill, with pedogenic cementation and 
overprinting of primary sedimentary structures. 

At late stages a stream can become abandoned by upstream channel piracy, avulsion 
or meander-neck cutoff (Galloway3.10). When this happens, the main source of 
deposits in the old channel course, is the overbank flooding from the main channel, 
that now foIlows a different course, and the main type of deposition is by vertical 
accretion (Walker3.3), of sediments of upward decreasing grain size, including 
mostly muds and silts that can be thick as the underlying lateral accretionary 
deposits (middle channel-fill subfacies). It represents a diminishing trend in 
depositional energy and stream competence. However, this is a depositional cycle 
that does not have to be completed in order for the next channel-fill to reoccupy the 
older channel course. Organic debris and coal deposits can be an important part of 
these sediments. 

These deposits tend to separate the sandy deposits of laterally-contiguous bars. 
However, Reineck and Singh3.4 identified areas of sand deposits of the shallower 
portions of the meander loop and referred to them as riffles. They are located on 
the upstream and down stream sides of the loop, the deepest part of the channel 
presents no sand deposition, separating the riffles. This area is referred by Reineck 
and Singh3-4as the pool. 
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L 
Loteral Accretion 

Figure 3.16 Schematic representation of fluvial deposits within a single discrete 
genetic interval (Galloway, 1985). 
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3.4.2 Sdav Facies 

DescriDtion 

In the study area, DGI 4 (Fig. 3.4 through Fig. 3.9) is made up of a subangular to 
subrounded, moderately- to well-sorted, fine- to very fine-grained sandstone 
(Tables 3.1 to 3.3). Average thickness is 10 feet (3 m), ranging from 8 to 10 feet 
(2.4 to 3 m) around the roadcut area. 

Stratification is not very clear at the base, where it appears as structureless, but 
usually it shows low-angle parallel, thick laminations (Fig. 3.17A). Mud ripup 
clasts are also common here (Fig. 3.17B). Mud drapes are erratic, but can be as 
thick as 1 in (2.5 cm) and thinly laminated. Ripple laminations become abundant 
mostly about mid-section, but are usually alternated by thinly horizontally-laminated 
deposits. Toward the top, bands and patches of highly cemented iron-oxide 
concentrations, appear with low angle to horizontal orientation and irregular shapes 
(Fig. 3.18A) 

On the roadcut face, the top portion is not complete and it grades into the modem 
soil cover, after becoming highly intercalated with fissile, soft, iron oxide-rich clays 
that show ripple to thin (0.04 in, e1 mm) laminations. Here also, pedogenic 
structures, like root turbation and dewatering structures are common (Fig. 3.18B). 

Wireline L o g  Character 

The wireline log character of this subfacie is very similar to the one of the channel- 
fill facies (Fig. 3.15). Clay content, however, is definitely higher. It shows a 
general upward-fining texture, but the gamma ray signal generally shows higher 
mud content than the channel-fill facies. 

In teruretati on 

The spIay facies, like the one identified in DGI 4, are the result of unconfined flow 
deposition outside the main channel course. Splay deposits originate at periods of 
high flood. They can be formed by overtopping the river banks or  by being 
funneled 
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through channels cut across the natural levees (Walker33). The channels are called 
crevasses, and the deposits of unconfined flow are referred to as splays. When 
overtopping the river banks, there is a potential that splay sediment would not be 
connected to the main channel after deposition. But, when the levee is broken, 
sediment left in the crevasse channel may connect splays and channel sediments. 
Splay deposits can reach tens of feet in thickness, and become thinner in the 
direction away from the main channel. Sedimentary structures include small-scale 
cross-bedding, climbing ripple lamination and horizontal bedding (Walker33). 

H 3.5 Petrophysical Data Analysis 

This section discusses the analysis of the collected petrophysical data. We have 
divided this section into three parts. The first part discusses the well data set, the 
second part discusses the univariate and bivariate statistical analysis of the data, and 
the third part discusses the spatial statistics through variograms of the data. In this 
part, we also present the applicability of the variogram in detecting geological 
information. 

3.5.1 Well Data Set 

We divide the data into two sets; they are: 1) 10-well data set and 2) 5-well data set. 
The 10-well data set consists of the all the Holeman well data; the 5-well data set 
consists of 5 Holeman well data, these are the Holeman #2, #4, #5, #7 and #lo. 
The purpose of dividing the data into two categories is to investigate the importance 
of data in quantifying the uncertainties. We do not use the Brown wells. Other than 
the distance between these well with the remaining wells, we have very limited 
information from the Brown #2 well. 

3.5.2 Univariate and Bivariate Statistics 

In this part, discussion about the permeability analysis of the sample data is divided 
into three categories. The first is the permeability of the entire Holeman well data 
set or 10-well data set, the second is the permeability data based on the geological 
unit description. The third is the permeability data based on the channel-fill 
subfacies. 



Permeabilitv Data Statistical Analvsis 

The univariate statistical parameters used in the analysis of permeability data are 
mean, variance, the coefficient of variation and the quartile distributions. Detailed 
permeability analysis is summarized in Table 3.4. 

From Table 3.4, we can see that the mean permeability of all categories is around 
50 md. The standard deviation for the overall data is similar to the standard 
deviation of individual discrete genetic intervals. The overall mean is also similar to 
the individual means of the geological units except the DGI 4 / unit 4. This 
indicates the DGI's represent the cyclicity in the system and reproduce the same 
petrophysical properties. Where the data are subdivided in terms of subfacies, the 
means are different for individual subfacies. Mean for the upper channel-fill 
subfacies is 45.6 md, and it increases to 56 md for the lower channel-fill subfacies. 
The standard deviations also increase as we move from upper to lower channel-fill 
subfacies. 

The coefficient of variation (relative variation in permeability values) increases as 
we move from the upper to the lower channel-fill subfacies. For individual DGI 1-3 
the coefficients of variation are similar to each other except the DGI 4 / splay. The 
discrepancy in DGI 4 may be due to a different geological environment. 

Relationship Between Permeabilitv and Porosi tv 

Using all the data collected from wirelogs and core plugs in Fig. 3.19, the porosity 
values are plotted against the log of permeability. The relationship is linear up to a 
porosity value of 19%. Beyond 19%, the permeability value is constant and is 
independent of the porosity values. Since the relationship is not different for 
individual channel-fill facies, the same relationship is used for all the sub-facies. 

Relationship Between Vertical Permeabili tv and Horizontal Permeability 

The relationship between vertical permeability and horizontal permeability is shown 
in the Fig. 3.20. We can see that the permeability data of the middle channel-fill 
subfacies show more variability than the others. Although data are limited, both the 
lower and upper subfacies indicate that the vertical permeability values are very 
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Name Number Mean(md) Variance CV median Q1 Q2 - 
10-well data 11 10 50.36 634.03 0.5 47.9 67 28 

DGI 1 336 54.68 747.47 0.5 47.9 67.7 37.8 
DGI 2 332 54.89 911.4 0.55 52 70.6 31.5 
DGI 3 3 13 45.66 653.8 
Splays 132 39.24 636.8 

0.56 42 63.6 25.8 
0.64 37.75 55.9 17.9 

Table 3.4: Summarized statistical analysis of permeability of channel-fill 
subfacies, facies and 10-well data set. 

I 8 

UPPW 70 45.6 474.43 0.47 48.2 67.9 24.6 
Medium 612 50.8 827.56 0.56 47.9 67.4 28.95 
Lower 232 56.04 762.86 0.49 49.2 71.5 37.9 
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similar to the horizontal permeability data. Overall, the log of vertical permeability 
values are close to the log of horizontal permeability values except for the middle 
subfacies, where the vertical permeability is lower than the horizontal permeability. 
However, there is a lot of variability in the data set to reach a definite conclusion. It 
is important to note that we could not collect vertical samples where we had thin 
(probably impermeable) laminations across horizontal planes. The effective vertical 
permeability for these cases may be very low. However, every time an attempt was 
made to collect a sample, the core plugs broke along the horizontal plane. If we had 
representative samples from these plugs, we may have seen smaller vertical 
permeability values that presented in Fig. 3.20. 

3.5.3 Spatial Statistics 

In this part, we first discuss the estimated variogram of permeability and gamma ray 
data. Next, we create synthetic variograms to understand the features observed in 
vertical variograms. Then we compare the synthetic variogram with the estimated 
variogram. Lastly, we model the variograms using the conventional methods. 

Estimated Varionram 

Spatial correlation and variability of the permeability of vertical and horizontal data 
are evaluated with the variogram analysis. The estimated variogram for horizontal 
data is shown in the Fig. 3.21. The horizontal data are collected from the outcrop 
face. Due to the difficulty in conducting measurements, some data at horizontal 
locations cannot be taken, so the estimated horizontal variogram values do not look 
smooth. 

The estimated variogram from vertical permeability data of Holeman #1 well is 
shown in Fig. 3.22. I t  can be seen in the Fig. 3.22 that the variogram shows a 
high nugget value. The variogram exhibits hole effects and the cycle repeats at 
approximately a 15 feet distance. A consistent observation of the hole effects in 
both the permeability and the gamma ray vertical variograms indicates that the hole 
effects are not simply an artifact. Rather, it is an indication of a particular 
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Figure 3.22 Estimated vertical permeability variogram of Holeman #1 well. 
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geological feature which may be captured by the variogram. To understand the 
impact of geological features clearly, variograms using synthetic data were created. 

Svnthetic Variogmm 

In many instances, the estimated variogram exhibits periodic behavior. As shown 
in the Fig. 3.22, this periodic behavior is expressed as hole effects. The hole effects 
are commonly found in variograms of the vertical data. It is believed that the hole 
effects occur because vertical data consist of several different layers having similar 
properties. 

Using simple synthetic data, one can simulate vertical data that are similar to real 
vertical data and using those data one can define the boundaries of a layer. Fig. 
3.23 shows the variogram and the synthetic data of two main layers. Each main 
layer consists of 3 sublayers. Sublayer "a" is assigned a value 1, sublayer "b" is 
assigned a value 2 and sublayer "c" is assigned a value 3. All the sublayers have 
the same thickness of 10 feet. The variogram changes the slope at  10 feet 
thickness, it reaches a maximum value at 20 feet which is the boundary of sublayer 
"b" and reaches a minimum value at 30 feet, which is exactly the thickness of the 
first main layer. In this variogram, we still can see very clearly the boundaries of 
the sublayers. 

In Fig. 3.24, we use the same synthetic data model as for Fig. 3.23 but we use 
different thicknesses; sublayer "a" is 10 feet, sublayer "b" is 20 feet, and sublayer 
"c" is 15 feet. The variogmm is different compared to the previous model. We see 
that the variogram reaches the maximum value at the boundary of sublayer "b" and 
reaches a minimum value at the boundary of sublayer "c". However, the evaluation 
of individual sublayers becomes increasingly difficult. 

/ 

In Fig. 3.25, we try different variation in values. Using synthetic data from Fig. 
3.23, we assign a value of 1 for sublayer "a" and a value of 0 for other sublayers. 
We repeat the procedure by assigning a value one to sublayers "b" and 'IC" 
respectively. Then the estimated variogram is obtained for each sublayer which is 
assigned a value of "1" to see the relationships between the sublayer to other 
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sublayers in the main unit. From Fig. 3.25, it can be seen that for sublayer ''a'', the 
variogram changes the value at 10 feet then reaches minimum at 30 feet which is 
exactly the boundary between main layers. In the variogram of sublayer "b", we 
can see the variogram reaches the maximum at 10 feet and can see the change in the 
variogram value at 20 feet which is the end of sublayer "b". The variogram reaches 
the minimum value at 30 feet which is the thickness of individual main layer. For 
sublayer "c", the only thing we can discern is the thickness of the main layer. 

In general, we can obtain the thickness of the sublayers in the variogram if the 
thickness of each sublayer is the same. We still can define the boundary of the 
sublayer if the thicknesses are different. However, we may obtain nonunique 
solutions if the thicknesses of individual sublayers are not known. In the following 
section, we compare the synthetic variogram with real data. 

Comparison Between Svnthetic vs. Estimated Variogram 

To compare synthetic and estimated variograms, we use the variogram of Holeman 
#1 in the Fig. 3.26. In the Fig. 3.26 it is shown that the variogram of synthetic 
data reaches the minimum value at a lag distance of 15 feet. This pattern is shown 
in the variogram of Holeman #l. In the variogram Holeman #1, the variogram 
reaches the minimum value at distance between 14 feet to 15 feet. Based on the 
conclusions from the previous section, the average thickness of a layer in Holeman 
1 is 15 feet. The information about the sublayers is difficult to observe. 

In general, the advantage of using synthetic variograms is that one can define the 
average thickness of the layers if the variogram shows the hole effects clearly. The 
cyclical unit thickness can be easily obtained. However, the individual sublayers 
are difficult to obtain using the existing technique. This technique needs to be 
refined further to obtain that additional information. 

Modeling of Varioprams 

Once the variogram is estimated based on the collected sample data, the next step is 
the modeling of the variogram using certain functions. In modeling the estimated 
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variogram, it is important to capture the basic features observed. 

We have already subdivided the channel-fill subfacies into three segments, they are 
the upper, middle and lower subfacies. The upper channel-fill subfacies are 
assigned a value of 1, middle channel-fill is assigned a value of 2 and a value of 3 
for the lower channel. Using these values, the variograms are estimated for all 
three subfacies, and are modeled using conventional methods. 

The analysis shown in this part will be used in simulating the reservoir properties 
description. The detailed procedure used for simulating the values of the variables 
is explained in the next section. 

3.6 Spatial Simulation Of Reservoir ProDerties 

Before discussing the detailed simulation of geologic and petrophysical properties, 
we first briefly discuss the simulation techniques used in this simulation. 

3.6.1 Background 

In this section, two conditional simulation methods are discussed in more detail: 1) 
the sequential indicator simulation technique used to generate geological unit 
description in the reservoir, and 2) the simulation annealing method that is used to 
create reservoir properties distribution. 

Sequential Indicator Simulation 

This method is based on indicator variables and the simulation takes place in a 
sequential manner. 

The sequential steps in this method are as follows: 

.define indicator variables 

.define univariate and bivariate statistics 

.conduct sequential indicator simulation. Indicator simulation is a procedure which 
eliminates some of the drawbacks present in conventional kriging method. The 
indicator function can be written as: 
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The value V f , k ,  is called a threshold value. The indicator variable is a binary 

function and takes only two values, 0 and 1. The number of values of indicator 
variables will depend on the number of threshold values chosen. Each random 
variable will be associated with an identical number of indicator variables. For 
example, if we choose three threshold values, each random variable will be defined 
in terms of three indicator values, one at each threshold.3.11 

Once the indicator values are defined for the sample data, the next step is to define 
the univariate and bivariate statistics. These are prior distribution function, non- 
centered covariance, covariance, and indicator variogram. 

The next step is sequential indicator simulation. In the simulation algorithm, the 
simulation takes place in a sequcntial manner, where all the unsampled locations are 
visited once by selecting a random path by which the sequence in which the points 
to be visited is established. In  simulating successive nodes the previously- 
simulated node is also used. Once a node to be simulated is selected, the value of 
indicator function for a given threshold can be estimated by solving the equations 
which are based on simple or ordinary kriging. The number of estimations will 
depend on the number of thresholds. All the samples are visited to estimate the 
indicator value. These indicator values represent the posterior probability 
distribution of the variable at that location. Using a random selection method, we 
can assign a value at that point using the posterior distribution function. For 
example, we can assign facies 1,2 or 3 at a particular location. 

This method is not restricted to variables which can take continuous values. It  can 
also be extended where a variable can only take finite number of values (such as 
facies distribution). For details, see Reference 3.11. 

Simulated Annealing 

To apply this technique requires that the system is divided into three categories: the 
objective function, which represents the "energy" of the system and is also the 
function to be minimized; the control parameter, which defines the rate at which the 
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system will reach equilibrium; and the interchange mechanism, which is a finite set 
of perturbations to the variables of the system which tends to result in a change in 
the objective function. 

The goal of simulated annealing is to find a configuration of variables that will yield 
a global minimum of the objective function. Changes are applied to the system 
through the interchange mechanism, and the objective function is then evaluated; an 
increase in the magnitude of the objective function may or may not be accepted 
according to the probability function proposed by Metropolis et al.3.12 Perez3-13 
presented a discussion of the use of Metropolis function. 

The specification constraints in the simulated annealing method are the conditioning 
data, the distribution function, and the semi-variogram models for several 
directions. In the first set of constraints, the conditioning data values are assigned at 
specific locations. The conditioning data remain fixed at the specific locations 
throughout the conditional simulation. Mathematically, the constraints 
corresponding to a number, N, , of conditioning data that can be expressed as, 

where V, is the value of the conditioning data and for I = 1, ..., Ne is the set 

locations corresponding to the conditioning data. The conditioning data are usually 
taken at a well location and are data such as wireline log values or core data. 

The specified discrete cumulative distribution function, F,, for the simulation 
should obey the following constraint3.13 

(3.3) 

For k = 1, ..., N f  . The cumulative distribution function represents the probability 

that the variable is smaller that a given value, and must be a strictly increasing 
function. In practice, the discrete cumulative distribution function is given by Eq. 
3.4. 

(3.4) 



where Nr is the number of classes used to discretize the cumulative distribution 

function. The third set of constraints is the semi-variograms. The semi-variogram 
models specified in the conditional simulations are denoted by y o  and require that 

where, as noted previously, i is the direction of the variogram and I is the lag 
distance for that particular direction. 

The objective function is the function to be minimized with the simulated annealing 
method. The objective function is defined as a function of the difference between 
the sample semi-variograms of the simulation variable and the required semi- 
variogram models. Thcrefore, by minimizing this objective function, the 
requirement in Eq 3.5 can be satisficd. 

The objective function, E ,  is dcfined as 

where, the index k rcfcrs to the iteration numbcr within a step and E, is a 
normalizing constant equal (03.13 

E, = (3.7) 

In Eq. 3.7, y S o ( i l a i )  are thc scmi-variograms of the simulation variable at initial 

conditions calculatcd from the initial distribution of the variable. The purpose of the 
normalizing constant uscd in Eq. 3.6 is to assign a value of one to the objective 
function at the initial conditions for any distribution or spccifications. In simulated 
annealing, the Mctropolis condition is used to calculate the probability of the 
transition between states of thc objcctive function at a given value of control 
parameter analogous to the tcmpcrature of the system. The Metropolis condition is 
given by 
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where, the index k refers to an iteration within a step represented by the index r . 
In Q. 3.9, the change of the objective function, AEk due to one interchange is 

A E ~  = E'-P (3.9) 

where E' is the new objective function after the interchange and E' is the objective 
function for iteration k within a step. The control parameter, Tr , in Eq. 3.8 is 
calculated according the following equation 

(3.10) 

where the index r is the step number, and a is the convergence rate factor. The 
convergence rate factor is a constant value in the range 0 < a < 1 throughout the 
simulation. 

Each interchange is accepted or rejected depending on the Metropolis condition. The 
temperature is lowered in a stepwise manner after a fixed number of swaps is 
accepted. The program terminates when the objective function reaches a certain 
minimum value. 

3.6.2 ProDertv Simulation 

The ultimate goal of this section is to generate the three-dimensional descriptions of 
reservoir properties which are constrained by both geological and petrophysical 
information. At present, we do not have a method which can simultaneously 
incorporate both the geological and petrophysical constraints. Therefore, as an 
approximation, we used a two-step process. In the first step, we created a geologic 
description which is consistent with the three channel-fill subfacies described in the 
previous chapter. In the second step, we created a three-dimensional petrophysical 
properties description by superimposing the petrophysical properties on the 
geological description. 



Geol oni c Descn u ti on 

Using Sisimpdf program from the GSLIB software?-11 we created the geological 
description. To create the geological description, we went through several steps 
discussed below. 

The first step is selecting the conditional data. The conditional data used in this case 
are a 10-well data set and a 5-well data set that are already selected based on 
channel-fill subfacies. The second step is obtaining the vertical and the horizontal 
estimated and model variograms for each subfacies. The parameters used and 
model variograms are shown in Table 3.5. We only have one horizontal 
permeability variogram at a particular horizontal location. It is also known that the 
actual correlation in the horizontal direction is longer than the correlation range 
along vertical direction. We use the same correlation length in the horizontal 
direction for lower and upper channel-fill subfacies. For middle channel-fill 
subfacies, the variogram range is inferred from geologic description. The 
individual parameters are adjusted to ensure that the anisotropic model for each 
subfacies satisfied the condition of positive definiteness. 

After all the data are input, the simulation is run for three realizations, two of three 
realizations are from IO-well data set as conditional data and the other for 5-well 
data set as conditional data. One of the realizations is presented in Fig. 3.27. Fig. 
3.27 shows a vertical cross section between Holeman #5 and Holeman #% wells. 

Descnution of Petrophvsical Properties. 

Penneability 

In generating the petrophysical properties, it is important that we honor the geologic 
description. To assure that the properties generated will be consistent with the 
facies description, we use a "filtering" process. In this process, we generate the 
petrophysical properties for each facies at every grid location. To achieve this, we 
will have to run the conditional simulation program to generate petrophysical 
properties for each facies separately. We use the simulated annealing program for 
this purpose. 
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Table 3.5 Summarized variogram models of the channel-fill subfacies. 
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Figure 3.27: Vertical facies cross section of Holeman #5 and Holeman #8 wells. 
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In our case, since we have used three channel-fill subfacies and splay facies for 
geologic description, we will have to run the simulated annealing program four 
times. The splay facies and each subfacies may have separate spatial relationships 
as well as a separate histogram function as explained in the previous section. Once 
the simulation is run for each of the facies separately, we have four permeability 
values at each grid point corresponding to each subfacies. When "filtering", we 
will accept only one value at a given grid point based on the simulated subfacies at 
that point. Fig. 3.28 shows the filtering process. This way, our subfacies 
description will be preserved. Also, the permeability distribution as well as the 
variograms for individual subfacies will be honored. The step to generate 
permeability distribution is the same as the step to generate the geological channel- 
fill subfacies distribution. We separate each channel-fill subfacies to obtain the 
estimated permeability variogram for each subfacies. For particular subfacies, we 
use the permeability value that already exists in that subfacies and assign a missing 
value for other subfacies. 

The estimated permeability variograms are modeled using conventional methods. 
To  generate the model of the horizontal permeability variogram, we used the same 
procedure as facies model. One difference is that in simulated annealing program, 
we do not need to satisfy the condition of positive definiteness. 

The simulated annealing conditional simulation is run for six different realizations, 
3 realizations are based on 10-well data set and 3 of the realizations are from 5-well 
data set. One of the realization results is presented in the Fig. 3.29. Fig. 3.29 
shows the results of the upper cross section of middle subfacies. 

By running the program separately for each subfacies, we can honor the histogram 
as well as the variogram for permeability distribution for each subfacies. After 
completing the four simulations, we will have four permeability values at each grid 
point corresponding to each of the subfacies. By "filtering" these four simulations 
through the base geologic description at each grid point, we will accept an 
appropriate permeability value depending on which facies are present at a particular 
grid block. For example at certain grid location, if medium channel-fill subfacies 
are present based on geologic description, we will accept the permeability value 
corresponding 
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Figure 3.28: Filtering process. 
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Figure 3.29: Upper cross section of middle channel-fill subfacies. 
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to that subfacies. After the assignment of permeabilities at each grid location is 
completed, we would have created a petrophysical properties description which is 
consistent with the underlying geologic description. 

Porosity 

The porosity data are collected from well logs and core plugs. Since the 
information collected is limited and we do not have enough data to generate porosity 
distribution using geostatistical techniques, we use the correlation between porosity 
and permeability to generate the porosity values. 

By using this method the porosity distribution is relatively narrow, but consistent 
with the observed data. By generating porosity values based on permeability data, 
we honor the local relationship between the two variables as observed based on the 
well data. The porosity and the filtered permeability values will be used in the next 
section in order to define the flow performance of reservoir. 

3.7 Flow Simulation 

In this section, we investigate the effect of uncertainties with respect to input data 
on the flow performance of the reservoir. For this purpose, we will treat the 
outcrop subsurface as a representation of the actual reservoir. We will use both the 
descriptions created using the 10-well data and 5-well data sets. This allows us to 
evaluate the impact of additional information on the reservoir description. 

Using the ECLIPSE 100 flow simulator, we obtained the model of oil production 
of the study area. The reservoir and flow properties data used for simulation 
purposes are based on typical data observed in Burbank field. The petrophysical 
properties are included in Table 3.6. The permeability and porosity values are 
generated using the method discussed in the previous section. 

The permeability data selected to be used to generate the flow performance models 
are realizations of the 10-well data set and the 5-well data set. Table 3.7 shows the 
realizations constructed for both well data sets. As shown in the Table 3.7, for l(r 
well data set, two realizations were constructed using facies description and one 
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The results of realization constructed of 10-well data set and 5-well 
data set. 
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realization for the Swell  data set. For each of the facies descriptions, we generated 
three realizations for varying petrophysical properties. Especially for realization 4 
of the 10-well data set, we also investigated vertical averaging of permeability for 
one (realization 4), two and three feet vertical intervals. The purpose of using the 
average permeability data for certain average distance is to observe the impact of the 
vertical averaging on oil production. We use the arithmetic average of both 
permeability and porosity values. In a typical reservoir simulation, we cannot use 
detailed vertical description. We wanted to investigate the impact of loss of vertical 
detail on the flow performance. In another case, we investigate the impact of 
vertical permeability on the flow performance by assuming that the permeability in 
the z-direction is one half of the permeability in the x- and y-directions. 

We conducted the simulation in two stages. In the first stage, the reservoir was 
produced using primary depletion. After the pressure reached close to the bottom 
hole pressure, water flooding was initiated. We set the bottomhole pressure at 500 
psia; then we injected water into reservoir to see the increase in oil production. The 
wells used as production wells are Holeman #1, #3, #6, #8, and #lo, and the wells 
used as injection wells are Holeman #2, #4, #5, #7 and #11. 

In our study, the oil from each production well was produced using the maximum 
flow capacity. Typical time required to produced all the oil, using ECLIPSE flow 
simulator, is only 35 days of production. The purpose of using the maximum oil 
flow was to limit the computation time. 

When the oil is produced during primary depletion the pressure dropped rapidly. 
When it approached close to 500 psia, the water flooding method was applied, and 
water flooding was conducted for additional 15 days of production. 

Fig. 3.30.a, Fig. 3.30.b, Fig. 3.31.a, Fig. 3.31.b and Fig. 3.32 show the plots of 
the total oil production vs. total liquid production, in which the x-direction is the 
normalized cumulative liquid production (production divided by 12,000 bbls 
maximum amount produced for all realization), where liquid means oil and water, 
and the y -direction is normalized cumulative oil production. 



0 Ql 02 03 a4 05 Q6 a7 Q8 Q9 1 
~ ~ l i q u i d p x d l & i m  

Figure 3.30a: Normalized cumulative oil production vs. normalized cumulative 
liquid production from two different facies description. 
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Figure 3.30b Normalized cumulative oil production vs. normalized cumulative 
liquid production from two different petrophysical properties. 
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Figure 3.3 la: Normalized cumulative oil production vs. normalized cumulative 
liquid production from two different facies description of 10-well 
data set. 
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Figure 3.3 lb: Normalized cumulative oil production vs. normalized cumulative 
liquid production from two different realizations of 1, 2 and 3 feet 
vertical averaging. 
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Figure 3.32: Normalized cumulative oil production vs. normalized cumulative 
liquid production from two different vertical permeability. 
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Fig. 3.30.a shows the impact of different realization for two different facies 
description. As can be seen, for a given well data set, the facies description does 
have an impact on reservoir performance. The performance after initiation of water 
flood is different for the two realizations. in contrast, figure 3.30.b shows the 
impact for the two different petrophysical properties realizations for the same facies 
description. Although there is a difference in the performance, it is not as 
significant as in Fig. 3.30.a. This indicates that the petrophysical properties 
description is secondary to the facies description in terms of impact on the flow 
performance. 

Fig. 331.a shows the effect of vertical averaging on the flow performance for a 
given realization. As expected, as the permeability is vertically averaged, the 
performance becomes more optimistic. Surprisingly, however, the effect of 2 and 
3 feet averaging is not significant. May be, additional averaging will eventually 
lead to further optimistic results. 

Fig. 3.31.b shows the importance of well information on the description. As can 
be seen, the difference between the two realizations is very small. It appears that 
even 5-well data set is sufficient for reservoir description purposes. Additional 
information from 5-well data set does not lead to further reduction in reservoir 
uncertainty with respect to reservoir description. 

Fig. 3.32 shows the effect of vertical permeability on the flow performance. As 
can be seen, the variation in the vertical permeability has the most impact on the 
reservoir performance. By reducing the vertical permeability, the effect of vertical 
heterogeneity is accentuated. Considering that vertical permeability may not be 
known, this effect points out the major uncertainty in the reservoir description 
process. 

It should be noted that simulation results are based on very limited number of 
simulations. Further validation is needed by conducting additional simulation runs. 
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3.8 Conclusions 

3.8.1 Geological In temretation 

A sedimentological characterization of the Bartlesville Sandstone is defined based 
on facies and subfacies subdivisions, which are identified as architecture elements 
arranged in an architectural hierarchy. Two facies are present in the study area: 
channel-fill facies and splay facies. The channel-fill facies are subdivided into 
lower, middle, and upper subfacies, each of which shows different patterns in grain 
size and sedimentary structures. Architectural elements are organized into a 
hierarchy of 5 scales. At the largest scale of rock volume the Bartlesville Sandstone 
in the study area is comprised of a group of 4 discrete genetic intervals (DGI). The 
second level is the individual DGI. The third level is represented by an individual 
facies within a DGI. Only one facies was encountered per DGI; three are channel- 
fill facies and one is a splay facies. Other contiguous genetically-related facies are 
not present in the study area because of its geographic limits. The fourth level is 
described here for the channel-fill facies only, and is represented by a subdivision 
of 3 subfacies, lower, middle and upper. The fifth level is represented by the 
different stratification patterns and scales within a channel-fill subfacies. 

Facies and subfacies do not show diagnostic signatures on well log patterns. 
Conventional well logs, by themselves, do not provide enough information for the 
identification of contacts between DGI's, facies or subfacies, but interpretations can 
be considerably improved when these logs are combined with cores, outcrop or 
microscaled-log information. 

Heterogeneities represented by mudstone drapes and intercalations can represent 
barriers at very small scales, but mostly they are the sites for baffles. It is possible 
that the Bartlesville Sandstone in the study area is one whole flow unit in the 
horizontal sense. After all, its average thickness represent one that is not 
uncommon to hydrocarbon reservoirs. 

3.8.2 Engineeri ng/In tegrated Intemretation 

In this study, we constructed a detailed outcrop description using appropriate 
geostatistical techniques. We developed a procedure for incorporating the 
geological and petrophysical information in constructing the reservoir description. 
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Using the generated reservoir description, we investigated the impact of reservoir 
heterogeneties on the flow performance. Based on the investigation, the following 
conclusions can be derived: 

Collection of detailed outcrop data is useful in understanding and supplementing 
detailed reservoir description. The univariate statistical analysis indicates that the 
permeability distribution for individual geological units is very similar to each other; 
however, the permeability distribution was different for individual subfacies. This 
indicates that the subfacies may have distinct properties; but the overall cyclical 
distribution is repeated in each cycle. 

.The vertical variograms for both permeability and gamma rays exhibit hole effects. 
These hole effects are consistent with the geological observation of cyclicity in the 
environment. This indicates that variogm may be a quantitative tool in identifying 
basic geologic features. 

.Analysis of synthetic variograms indicates that the average thickness of individual 
units can be quantified using the variograms; however, information about the 
sublayers may be difficult to quantify due to non-unique nature of variogram 
values. 

.A method was developed to capture both geologic and petrophysical features in a 
consistent manner. The method is a combination of facies generation followed by 
filtering of petrophysical properties consistent with underlying geologic description. 
The method preserves both the geologic and petrophysical features for individual 
su bfaci es. 

.Simulated annealing was able to reproduce the model variograms for petrophysical 
properties. The only exception was the upper subfacies. This may be due to 
limited conditional data for that upper subfacies. 

.Based on limited simulation runs, i t  was observed that: 

.The effect of facies description is more significant than the effect of petrophysical 
properties description. 

.Vertical averaging results in optimistic flow performance. 



. .~ ...... .. 

*The vertical permeability variation can significantly alter the flow performance. 
This may point out one of the most significant uncertainties in evaluating the 
reservoir behavior. 
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Nomenclature 

SpbOl 
C = correlation coefficient 
CnZ = conpesated neutron log 
DiZ = dual induction log 
DGI = discrete genetic interval 
E = objective function 
k = iteration number 
N p  = number of pairs 

F = cumulative distribution function 
Fms = formation micro scanner 
y,  = varigram at initial conditions 
T = control parameter 
V,  = conditioning data 
~ ( 6 )  = data at location 
V($, + &) = data at location ( Gj + &,i) 

0 

9 = porosity 
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