OAK RIDGE NATIONAL LABORATORY

MARTIN MARIETTA

AD_____ ORNL/TM-11759

Characterization of Rocket Propellant Combustion Products

Chemical Characterization and Computer Modeling of the Exhaust Products from Four Propellant Formulations

R. A. Jenkins

C. W. Nestor C. V. Thompson B. A. Tomkins T. M. Gayle

5. 1711

C. Y. Ma R. L. Moody

MANAGED BY MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITED STATES DEPARTMENT OF ENERGY

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401, FTS 626-8401.

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

:This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ORNL/TM--11759

DE92 007799

CHARACTERIZATION OF ROCKET PROPELLANT COMBUSTION PRODUCTS

SUBTITLE: CHEMICAL CHARACTERIZATION AND COMPUTER MODELING OF THE EXHAUST PRODUCTS FROM FOUR PROPELLANT FORMULATIONS

Final Report

DOE Interagency Agreement No. 1016-1844-A1 Project Order No. 87PP8774

December 9, 1991

Principal Investigator: R. A. Jenkins Primary Contributors: C. W. Nestor, C. V. Thompson, T. M. Gayle, C. Y. Ma, B. A. Tomkins, and R. L. Moody

> Analytical Chemistry Division Oak Ridge National Laboratory P. O. Box 2008 Oak Ridge, Tennessee 37831-6120 (615) 576-8594

Ms. Karen Fritz Chief, Acquisition Management Liaison Office U.S. Army Biomedical Research and Development Laboratory, Fort Detrick, Frederick Maryland 21701-5010

COR: Major John Young

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

REPORT	DOCUM	1ENTATION	PAGE
--------	-------	-----------	------

1

Porm Abbroved OMB No. 0704-0138

1

REPORT C				OMB No. 0704-0138
Public reporting outpen for this (), ection of gathering and mixing the data preded, callection of information including budgeting avisituational Sale (224 Artimation 23 22)	ntermittion clust material to scarato collection and completions and reviewed the collection of ns ter reducts this ourgen of Characteristic 2024/302, and to the Office of this recement and	nsponsel or udica the time for revi of timetion. Send comments repard douarters services of technicate for i audiost Hisperwork Reduction Project	ewing instr ing this bur hinimation tip704-015	uttons searching neisting diffusioaries dan estimate or anviother ricout of this Operations and reports, 1,150 efferson 8), Washington IVC 2008
1. AGENCY USE ONLY (Leave bl	ank) 12. RÉPORT DATE December 31, 1990	3. REPORT TYPE AND Final Report	DATES	COVERED 3/87 - 4/1/90
4. TITLE AND SUBTITLE CHARA BUSTION PRODUCTS Subtitle: Chemical C of the Exhaust Produc 6. AUTHOR(S) R. A. Jenkins, C. W. C. Y.Ma, B. A. Tomkin	CTERIZATION OF ROCKET characterization and Co ts from Four Propellan Nestor, C. V. Thompson s, R. L. Moody	PROPELLANT COM- mputer Mödeling t Formulations , T. M. Gayle,	5. FUND APO 8 PE – PR – TA – WUDA3	ING NUMBERS 37PP8774 62720A 3M162720A835 00 314033
7. PERFORMING ORGANIZATION	NAME(S) AND ADDRESS(ES)	٤	B. PERFC	RMING ORGANIZATION
U.S. Deparment of En Oak Ridge Operations	ergy Office		ORN	L/TM-11759
P.O. Box 2001 Oak Ridge, Tennessee	37831-8622		DOE	IA No. 1016-1844-
9. SPONSORING/MONITORING A U.S. Army Medical Re Fort Detrick, Freder	GENCY NAME(S) AND ADDRESS(ES search and Development ick, Maryland 21702-50) Command 012	10. SPON AGEN	SORING/MONITORING ICY REPORT NUMBER
U.S. Army Biomedical Fort Detrick, Freder	Research and Developm	ent Laboratory		
Approved for publi	c release; distribution	n unlimited	120. 013	
13. ABSTRACT (Maximum 200 work firing of scaled down rocket the comparison of those resu and off-line sampling and a evaluated. CO levels ranged All of the airborne particles than 10 mg/m ³ . For the pre- than 100 ppm. Particulate particulate matter. The com- the predominantly inorganic essentially no hydrogen cyar formulations. A modification gases with ambient air broug experimentally.	was the determination of the c motors at the Army Signature alts with component levels pred nalysis approaches were emplo d from 85 - 350 ppm, while p were in the inhalable range. F edominantly perchlorate formul PAH levels were about a fac nputer model predicted mole fi formulation. The model corre- nide. The accuracy of the pred n of the model accomplished by ht the predicted CO/CO ₂ ratio i	hemical composition of Characterization Facilit icted by a selected comp byed. Four types of pro- article concentrations ra- or two of the propellant lation, hydrogen chlorid ctor of 10 lower than to ractions for CO were ty ctly predicted only mino- icted CO/CO ₂ ratios wa mathematically account nto greater agreement w	f exhaus ty at Re opellan anged fr ts, airbo le (HCl that in pically or amou s low fo ing for r with that	at products from the edstone Arsenal, and odel. Both real time t compositions were rom $30 - 100 \text{ mg/m}^3$. orne lead was greater) levels were greater outside ambient air 20 - 35%, except for ints of ammonia and or all but one of the nixing of hot exhaust t which was observed
14. SUBJECT TERMS Propellants; Chemmic Combustion Products;	al Characterization; C RA III; PO	omputer Modeling o	of	15. NUMBER OF PAGES
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICA OF ABSTRACT	TION	20. LIMITATION OF ABSTRA
Unclassified	Unclassified	Unclassified		Unlimited

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18 298-102

GENERAL INSTRUCTIONS FOR COMPLETING 15 108

he Report Documentation Page (RDP) is used in appoinding and cataloging reports. It is important hat this information be consistent with the rest of the report, particularly the cover and title page instructions for filling in each block of the form follow. It is important to stay within the lines to meet ptical scanning requirements.

lock 1. Agency Use Only (Leave blank).

lock 2. <u>Report Date</u>. Full publication date including day, month, and year, if available (e.g. 1 an 88). Must cite at least the year.

lock 3. Type of Report and Dates Covered. tate whether report is interim, final, etc. if pplicable, enter inclusive report dates (e.g. 10 un 87 - 30 Jun 88).

lock 4. <u>Title and Subtitle</u>. A title is taken from ne part of the report that provides the most reaningful and complete information. When a sport is prepared in more than one volume, speat the primary title, add volume number, and relude subtitle for the specific volume. On assified documents enter the title classification reparentheses.

lock 5. <u>Funding Numbers</u>. To include contract nd grant numbers; may include program ement number(s), project number(s), task umber(s), and work unit number(s). Use the pllowing labels:

C G	-	Contract Grant	PR TA	-	Project Task		
PE	-	Program Element	WU	-	Work Unit Accession No.		

Ock 6. <u>Author(s)</u>. Name(s) of person(s) sponsible for writing the report, performing research, or credited with the content of the sport. If editor or compiler, this should follow re name(s).

lock 7. <u>Performing Organization Name(s) and</u> <u>ddress(es)</u>. Self-explanatory.

lock 8. <u>Performing Organization Report</u> <u>umber</u>. Enter the unique alphanumeric report umber(s) assigned by the organization erforming the report.

lock 9. <u>Sponsoring/Monitoring Agency Name(s)</u> <u>nd Address(es)</u>. Self-explanatory.

iock 10. <u>Sponsoring/Monitoring Agency</u> <u>eport Number</u>. (If known)

lock 11. Supplementary Notes. Enter iformation not included elsewhere such as: repared in cooperation with...; Trans of...; To be ublished in.... When a report is revised, include statement whether the new report supersedes r supplements the older report. Block 12a. Distribution/Availability Statement. Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).

- DOD See DoDD 5230.24, "Distribution Statements on Technical Documents."
- DOE See authorities.
- NASA See Handbook NHB 2200.2.
- NTIS Leave blank.

Block 12b. Distribution Code.

- DOD Leave blank.
- DOE Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports.
- NASA Leave blank.
- NTIS Leave blank.

Block 13. <u>Abstract</u>. Include a brief (*Maximum 200 words*) factual summary of the most significant information contained in the report.

Block 14. <u>Subject Terms</u>. Keywords or phrases identifying major subjects in the report.

Block 15. <u>Number of Pages</u>. Enter the total number of pages.

Block 16. <u>Price Code</u>. Enter appropriate price code (*NTIS only*).

Blocks 17. - 19. <u>Security Classifications</u>. Selfexplanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.

Block 20. Limitation of Abstract. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.

AD____ ORNL/TM-11759

ARMY PROJECT ORDER NO: 87PP8774

DOE Interagency Agreement No. 1016-1844-A1

TITLE: CHARACTERIZATION OF ROCKET PROPELLANT COMBUSTION PRODUCTS

SUBTITLE: CHEMICAL CHARACTERIZATION AND COMPUTER MODELING OF THE EXHAUST PRODUCTS FROM FOUR PROPELLANT FORMULATIONS

PRINCIPAL INVESTIGATOR: PRIMARY CONTRIBUTORS:

CONTRACTING ORGANIZATION:

R. A. Jenkins C. W. Nestor, C. V. Thompson, T. M. Gayle C. Y. Ma, B. A. Tomkins, R. L. Moody

U.S. Department of Energy Oak Ridge Operations Office P. O. Box 2001 Oak Ridge, Tennessee 37831-8622

REPORTED DATE: December 9, 1991

TYPE OF REPORT: Final Report

- SUPPORTED BY: U.S.ARMY BIOMEDICAL RESEARCH AND DEVELOPMENT COMMAND Fort Detrick, Frederick, Maryland 21701-5010
- PREPARED FOR: Contracting Officer's Representative U.S. Army Biomedical Research and Development Laboratory Fort Detrick, Frederick, Maryland 21702-5010 Major John Young, Contracting Officer's Representative

DISTRIBUTION STATEMENT: Approved for public release: distribution unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized document.

Page intentionally left blank.

FORWARD

Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the U.S. Army.

X Where copyrighted material is quoted, permission has been obtained to use such material.

- $\underline{\times}$ Where material from documents designated for limited distribution is quoted, permission has been obtained to use the material.
- X Citations of commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement or approval of the products or services of these organizations.
- N/A In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Animal Resources, National Research Council (NIH Publication No. 86-23, Revised 1985).
- N/A For the protection of human subjects, the investigator(s) have adhered to policies of applicable Federal Law 45CFR46.

PI Signature December 20, 1991 Date

Page intentionally left blank.

.

ŧ

EXECUTIVE SUMMARY

The overall objective of the work described in this report is four-fold: to a) develop a standardized and experimentally validated approach to the sampling and chemical and physical characterization of the exhaust products of scaled-down rocket launch motors fired under experimentally controlled conditions at the Army's Signature Characterization Facility (ASCF) at Redstone Arsenal in Huntsville, Alabama; b) determine the composition of the exhaust products; c) assess the accuracy of a selected existing computer model for predicting the composition of major and minor chemical species; d) recommend alterations to both the sampling and analysis strategy and the computer model in order to achieve greater congruence between chemical measurements and computer prediction.

Analytical validation studies were conducted in small chambers at the Oak Ridge National Laboratory (ORNL), while the actual firings were conducted at Redstone Arsenal. Real time determination of selected species was performed by a variety of techniques, including non-dispersive infrared spectrometry, chemiluminescence, electrochemical monitoring, and Samples for analyses of trace constituents were collected from optical scattering. individual firings in the ASCF, and returned to ORNL for analysis, usually by gas chromatography/mass spectrometry. Four types of propellants were examined: a double base, a double base with 8% potassium perchlorate, one propellant which was predominantly ammonium perchlorate, and a minimum signature reduced smoke propellant, which was about two-thirds octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine Small, 2x2 motors, containing 25 - 75 g of propellant, produced significant (HMX). quantities of carbon monoxide (CO) and particles when fired into the 20 m³ chamber. CO levels ranged from 85 - 350 ppm. This is equivalent to reaching 2500 - 7500 ppm if a full scale motor was fired in a similarly sized enclosed environment. Particle concentrations ranged from $30 - 100 \text{ mg/m}^3$. All of the airborne particles were in the inhalable range. For two of the propellants (the double base and the minimum signature), airborne lead was greater than 10 mg/m³. No ammonia or hydrogen cyanide was detected above 1 ppm. For the predominantly perchlorate formulation, hydrogen chloride (HCl) levels were greater than 100 ppm in the ASCF chamber. Because of the relatively high background levels observed, trace organic vapor phase constituents were difficult to accurately quantify. While a wide variety of trace constituents were observed, only a few were present at levels greater than a few ppby. Compounds present at levels greater than 10 μ g/m³ included benzene, methyl crotonate, toluene, and cyanobenzene. A number of PAHs and nitrofluorene were observed in the airborne particulate matter. However, the levels were about a factor of 10 lower than that in outside ambient air particulate matter at a military installation.

Computer modeling was performed with the NASA-Lewis CET-86 version. This approach obtains estimates of equilibrium concentrations by minimizing free energy. Mole fractions of major and minor species were estimated for a range of exit/throat area ratios. The predicted mole fractions for CO were typically 20 - 35%, except for the predominantly inorganic formulation. The model correctly predicted only minor amounts of ammonia

3

and essentially no hydrogen cyanide. Predicted mole fractions did not vary a great deal with such input parameters as exit/throat area ratios or small changes in the heats of formation of the various compositions. The accuracy of the predicted CO/CO_2 ratios was low for all but one of the formulations. In general, if the model were to be used in its present state for health risk assessments, it would be likely to over-estimate exposure to CO.

Probably the greatest limitation of the model is its inability to account for reactions after hot exhaust gases leave the rocket motor nozzle. For example, the model predicted no significant quantities of NO would be produced, yet such was measured at ppm levels on every burn. A modification of the model accomplished by mathematically accounting for mixing of hot exhaust gases with ambient air brought the predicted CO/CO_2 ratio into greater agreement with that which was observed experimentally. It seems likely that with the appropriate modifications to account for the roles of kinetically governed processes and the afterburning of exhaust gases, the model could make a more accurate prediction of the amounts of the major products. However, it seems unlikely for the system to be modifiable to the extent to which accurate predictions of toxic or carcinogenic species present at the ppbv level could be made.

TABLE OF CONTENTS

) .

Forward
Executive Summary
Table of Contents 5
List of Tables
List of Figures
Acknowledgement
I. Objectives
II. Background
Part 1: Chemical Characterization Studies
Experimental
Results and Discussion
Summary and Recommendations - Part 1
Part 2: Modeling for Health Hazard Prediction
Introduction
Results and Discussion
Limitations and Modifications 46
Recommendations for Futher Work
References
Appendix A
Seleted Rocket Propellant Formulations
Appendix B
Trace Organic Vapor Phase Constituents Observed In Selected Rocket Exhaust Atmospheres

TABLE OF CONTENTS (Cont'd)

Appendix C	9
Output from Selected Runs of Computer Model NASA-Lewis CET-86	
Distribution List	1

<u>Table</u>	LIST OF TABLES Page
1	Summary of Sampling and Analysis Strategy for Kocket Exhaust Constituents at ASCF
2	Summary of Characterization Data Composition D Major Constituents
3	Summary of Characterization Data Composition H Major Constituents
4	Summary of Characterization Data Composition L Major Constituents
5	Summary of Characterization Data Composition Q Major Constituents
6	Mean Concentrations Achieved in ASCF Chamber
7	Particle Size Distribution Rocket Exhaust Particulate Matter Mean Values
8	Concentration of Selected Constituents in Chamber Blanks 27
9	Estimated Concentration of Trace Vapor Phase Constituents Composition D
10	Estimated Concentration of Trace Vapor Phase Constituents Composition H
11	Estimated Concentration of Trace Vapor Phase Constituents Composition L
12	Estimated Concentration of Trace Vapor Phase Constituents Composition Q
13	Non-Siloxane Vapor Phase Compounds Present in Motor Exhausts at Concentrations Greater Than 10 μ g/m ³ in ASCF Chamber
14	Concentrations (µg/g) of Nitro-PAH and PAH in Particulate Matter Collected on Course Filters at ASCF Compared with Outdoor Air Particulate at US Army Installation
15	Exit/Throat Area Ratio Ranges Test Motor Configurations
16	Predicted Mole Fractions as a Function of Exit/Throat Area Ratios Composition D 40

.

, di 🕠

LIST OF TABLES (Cont'd)

<u>Table</u> 17	Page Predicted Mole Fractions as a Function of Exit/Throat Area Ratios Composition H
18	Predicted Mole Fractions as a Function of Exit/Throat Area Ratios Composition L
19	Predicted Mole Fractions as a Function of Exit/Throat Area Ratios Composition Q
20	Effect of ± 5% Shift in Heat of Formation of Ammonium Perchlorate Composition L - Predicted Mole Fractions
21	Comparison of Observed and Predicted Carbon Monoxide: Carbon Dioxide Ratios
22	Comparison of Observed and Predicted Concentrations of Exhaust Constituents in ASCF Chamber
23	Effect of Choice Gaseous Equation of State on Computed Mole Fractions for Composition H
24	Influence of Exhaust Gas Mixing with Air on Carbon Monoxide/Carbon Dioxide Ratios. Composition D
A-1	Composition "D" Formulation 57
A-2	Composition "H" Formulation
A-3	Composition "L" Formulation 59
A-4	Propellant "Q" Formulation
B-1	Compositions "D and H" Concentrations
B-2	Composition "L" Concentrations
B-3	Composition "Q" Concentrations
C-1	Composition "D" Output
C-2	Composition "H" Output

LIST OF TABLES (Cont'd)

<u>Table</u>	<u>(ond</u>	Page
C-3	Composition "L" Output	100
C-4	Composition "Q" Output	112

Page intentionally left blank.

.

H

J

LIST OF FIGURES

.

Figure			Page
1	Time Course of Exhaust Products Post Firing.	Composition D	
2	Time Course of Exhaust Products Post Firing.	Composition H	19

ACKNOWLEDGEMENT

We wish to thank the following individuals for their assistance with this project:

Ms. B. J. McBride, of the NASA-Lewis Research Center, for provision of the computer model used in the project; Dr. Eli Freedman, for assistance with interpretation of the results of the computer modeling; Mr. L. B. Thorne and his staff, of the U.S. Army Redstone Arsenal, for the construction and firing of the 2x2 rocket motors, the provision of samples of the various propellants, and the use of the Signature Characterization Facility and chamber; Dr. Steve Hoke, of the U.S. Army Biomedical Research and Development Laboratory, for the use of the on-line hydrogen chloride measurement system, and Major John Young, of the U.S. Army Biomedical Research and Development Laboratory, for his patience, support, and technical assistance in a number of the aspects of this project.

I. OBJECTIVES

The overall objective of the work described in this report is four-fold: to a) develop a standardized and experimentally validated approach to the sampling and chemical and physical characterization of the exhaust products of scaled-down rocket launch motors fired under experimentally controlled conditions at the Army's Signature Characterization Facility (ASCF) at Redstone Arsenal in Huntsville, Alabama; b) determine the composition of the exhaust products; c) assess the accuracy of a selected existing computer model for predicting the composition of major and minor chemical species; d) recommend alterations to both the sampling and analysis strategy and the computer model in order to achieve greater congruence between chemical measurements and computer prediction.

II. BACKGROUND

Upon initiation of the Army's Health Hazard Assessment Program in 1983, the lack of information on the potential health hazards from weapons combustion products, to include rockets and missiles, became evident. Research to elucidate significant health effects of rocket and missile combustion products has been limited. Experiences with weapons systems such as ROLAND, VIPER, HELLFIRE, STINGER, and MLRS have resulted in the development of specific medical issues by the U.S. Army. Presumably, these issues will be addressed, in order to enhance the effectiveness of soldiers using such weapons. Requisite to addressing these issues is defining the chemical and physical nature of the combustion products.

Evaluation of rocket exhaust toxicity from Army missile and rocket systems has been directed towards a limited number of combustion products. Chemical species such as carbon monoxide, carbon dioxide, nitrogen, oxides of nitrogen, hydrogen chloride, sulfur dioxide, ammonia, lead, and copper are among those frequently evaluated. A USAMRDC study¹ has demonstrated more than one hundred chemical species in the combustion products of selected propellants. Many of the species represent potential health hazards even though the majority of those identified were at low levels. During the study, data were obtained for the Multiple Launch Rocket System's (MLRS) propellant by computer prediction and laboratory analyses. The combustion product was generated by burning the propellant in a small test motor. When the exhaust plume was vented into a chamber with an inert atmosphere, good quantitative data was obtained for twelve chemical species, and was in excellent agreement with theoretically computed values. In excess of fifty trace gas species also were qualitatively identified.

Various investigators have examined propellant and related combustion products generated in a variety of ways to include directly from a weapon or other equipment system¹⁻⁵, burning in a calorimeter or bomb⁶⁻⁹, personal and general area sampling in indoor firing ranges^{10,11}, and detonation or combustion in chambers or microcombustors^{2,14-17}. The methods of sampling and characterization also have been varied. Sampling has been done under atmospheric^{1,2,4,5,12,16}, and less than atmospheric^{1-3,8,9,13-15} conditions which provide a basis for comparing the relation between variables, such as, pressure and available

oxygen, on the composition of the combustion product. Sampling methods have been either direct and continuous, e.g., the method used by Goshgarian^{13,14} where the exhaust products of solid propellants were introduced directly into a mass spectrometer for analysis immediately following combustion, or by collection in a container or on a medium for subsequent analysis. The latter has involved cryogenic trapping, evacuated glass or stainless steel cylinders, and sorbent cartridges, filters, and condensation trains. Analytical methods to detect organics, gases, metals, and particulates have included gas chromatography (GC), gas chromatography-mass spectroscopy (GC-MS), titration, optical and infrared spectroscopy, scanning electron microscopy (SEM), x-ray emission and diffraction, and particle size analysis. Because of limitations with each sampling and analytical technique, several techniques must be employed simultaneously to optimize qualitative and quantitative characterization.

Computer models have been used to predict propellant ballistic properties to include the identity of the major chemical species contained in the combustion products^{1,3,5,17-19}. When compared with laboratory derived empirical data, the models tend better to predict the major species than the minor ones both qualitatively and quantitatively^{1,5,19}. The models predict the chemical species that occur at the nozzle of the rocket as the exhaust exits; however, afterburning changes the chemical content of the combustion product. Afterburning and incomplete combustion effects are not predicted by the models.

The approach taken in this study was to carefully validate real time analytical methods in chamber studies at Oak Ridge National Laboratory (ORNL) for as many of the major constituents as practical. The instrumentation for real time monitoring would then be transported to the ASCF for the firing of the scaled-down test motors. Vapor and particle phase samples for determination of trace organics and metal species would be returned for analysis. The Army Signature Characterization Facility (ASCF) has been used to determine the concentrations of major toxic species in propellant exhaust, e.g., carbon monoxide, carbon dioxide, hydrogen chloride, lead, aluminum oxide, and other nuisance particles²⁰. The facility is a 19.6 m^3 walk-in, climatic chamber with temperature limits of -40° to 140°F and humidity control in the range of 20 to 100% relative humidity (RH). Typical operating parameters are 70°F and 60% RH. Designed as a smoke measurement facility, the ASCF has been adapted for the measurement of rocket motor signature and exhaust constituents. The facility serves as a large gas cell in which the exhausts of standard 2 x 2 motors can be measured by infrared spectroscopy (Fourier Transform Infrared Spectroscopy, FTIS). Ports in the ASCF allow sampling and measurement by other methods, e.g., air sampling pumps and direct reading instruments.

The results of the characterization studies were then to be compared with values predicted using the most recent version of a computer model developed by the Lewis Research Center of the National Aeronautics and Space Administration (NASA-Lewis). The model was then to be refined to the extent of available resources, in order to improve the predictive capability of the system.

Results of these studies are described in two parts. In Part 1, results of the chemical and physical characterization studies are described and discussed. In Part 2, results of the

computer modeling work are described. Comparisons with characterization data are performed, and recommendations for model improvement are made.

PART 1: CHEMICAL CHARACTERIZATIONSTUDIES

EXPERIMENTAL

The sampling and analysis methods used in this study have been described in detail in a previous report²¹, and are summarized in Table 1. An assortment of real-time analytical instrumentation was employed. However, resources were not available for the use of online mass spectrometric measurement, as such would have required periodic transport to the ASCF. Essentially, the approach taken was to first validate candidate analytical methods in small chambers (0.4 and 1.4 m³) at ORNL. Analytical measurements using real time instrumentation were made of target species in the presence of well defined quantities of other species. The extent to which these materials altered the response to the target species was noted, and corrections made when appropriate. For species which could not be determined in real time (usually trace organic vapor phase and particle phase species), samples would be taken at the actual burns to be conducted at the ASCF, and returned to ORNL for detailed chemical analysis. Following method validation for the propellant composition of interest, the sampling and analysis instrumentation was transported to the ASCF at Redstone Arsenal, and deployed for monitoring and sampling. Typically, between 2 and 3 firings of a test motor could be conducted during each 8-hour shift. Burns of the various propellant formulations took place between August, 1987 and December, 1989.

RESULTS AND DISCUSSION

The compositions of the various propellant formulations tested in this project are listed in Appendix A. Briefly, Composition D was a double-base propellant, comprised of approximately 50% nitrocellulose and about 40% nitroglycerine. Composition H was also a double base system, with approximately 8% by weight of potassium perchlorate added. Composition L was a formulation comprised of nearly 75% ammonium perchlorate, with the remainder being polyvinylchloride plastic and di (2-ethylhexyl) adipate. Composition Q was a minimum signature propellant, comprised of 66% HMX, and about 11% each of nitroglycerine and butane triol trinitrate. (A fifth motor, referred to as Composition X was fired only one time, and no modeling studies were applied to it.) (Note that the linkage between the propellant and the weapon systems for which they may be used is considered CLASSIFIED information. Those having need of this information should contact the COR listed on the title page of this document.) All of the propellants contained small amounts of metals. The motor size tested varied between ca. 24 - 75 g. This compares to a typical launch motor weight on an anti-tank weapon system of ca. 560 g.

Sampling of the exhausts was not without its difficulties. For example, for the first run of Composition D, the high volume particulate collector was placed inside the ASCF

chamber. However, the shock wave from the firing was sufficient to blow the filter media out of the holder. Thus, for subsequent runs, the sampler was placed outside the chamber and

.

TABLE 1 Summary of Sampling and Analysis Strategy for Rocket Exhaust Constituents at ASCF

Component

Carbon Monoxide Carbon Dioxide Oxides of Nitrogen Hydrogen Cyanide Ammonia Hydrogen Chloride Total Suspended Particulate Matter photometer

Metals

Particle Size Distribution

Trace Vapor Phase Organics

Trace Particle Phase Organics

Sampling and Analysis Method

Real Time, non-dispersive infrared analyzer Real time, non-dispersive infrared analyzer Real time, chemiluminescence analyzer Real time, electrochemical analyzer Real time, electrochemical analyzer Real time, ion selective electrode Real time: forward scattering infrared

Off line: two-stage high volume filter, gravimetric analysis

Low volume collection on membrane filter, followed by inductively coupled plasma or atomic absorption analysis.

Cascade impaction, optical comparison of stages

Collection on multi-sorbent traps, followed by thermal desorption gas chromatography/mass spectrometric analysis.

Collection on two-stage, high volume filter, analysis by high performance liquid chromatography and/or gas chromatography/mass spectrometry. connected to it with the flexible plastic pipe. Also, on a latter run with "D,"the force of the shock wave buckled the main chamber access door on the ASCF. For the final firing of "D," the mozzle was changed to force the propellant to burn over a longer period of time. This resulted in a considerable alteration in the exhaust composition (see Table 2).

Major Constituents

The observed exhaust major constituent concentrations in the ASCF are reported in Tables 2 - 5, along with various physical characteristics of the motors. The data is summarized in Table 6.

It is important to note that for those constituents determined in real time (ie, the gases), the concentrations listed represent peak concentrations. For gases, maxima were typically achieved within 30 seconds of the firing of the rocket motors. Presumably, maxima were achieved as the chamber contents were mixed by the fan mounted inside the chamber. Such was not always the case for the particulate phase species. For example, in Figures 1 and 2 are compared the time courses for some of the major exhaust products for firings of Composition D and H motors, from about 30 seconds following the firing onward. For Composition D, immediately after following the achievement of maximum concentrations, the constituent levels slowly decreased. While the same happened for Composition H vapor phase species, the particles were very slow to reach a maximum. Although particle

Figure 1. Time course of exhaust products post firing. Composition D.

Figure 2. Time course of exhaust products post firing. Composition H.

size differences between the two products were minimal (see below), it was speculated that the action of the fans could have stirred up larger agglomerates which settled immediately after firing, which eventually broke up to form smaller primary particles. Concentration reductions seemed most likely due to leaking of the chamber contents through door seals, bulkheads, etc. Particle concentrations decreased somewhat more rapidly than those of vapor phase constituents, probably due to settling.

No attempt was made to determine the concentrations of methane, hydrogen gas, or water vapor. For the former two species, quantitative measurements would be very difficult without the use of an on-line mass spectrometer, and such was not available for this work. Water vapor is one of the major components of the motor exhaust. The mole fraction predicted by the NASA-Lewis computer program typically is in the range of 20% (see below). However, the difficulty of making accurate determinations of water vapor concentration in a large chamber is considerable. For example, the maximum amount of hydrogen in any of the formulations listed in Tables A-1 - A-4 is sufficient to produce only 15 g of H_2O in the 20 m³ ASCF chamber. This is comparable to increasing the concentration by at most 0.75 g/m³, to a concentration of ca. 11 g/m³ at 60% relative humidity at 21° C. The addition of this amount of water vapor would increase the RH by 4%, as long as no change in the temperature occurred. Given that such small changes would be difficult to measure accurately, and that water vapor represents no health hazard,

TABLE 2

SUMMARY OF CHARACTERIZATION DATA COMPOSITION D MAJOR CONSTITUENTS

RUN NUMBER	1	2	3	4	5	6 ^d
DATE	8-25-87	8-25-87	8-26-87	8-26-87	6-23-88	6-23-88
QUANTITY OF PROPELLANT, g	75	71	75	75	67	NR
EXIT DIAMETER, inches ^a	1.0	1.0	1.0	1.0	1.0	1.0
THROAT DIAMETER, inches	0.55	0.707	0.50	0.50	0.50	NR
ASCF CHAMBER TEMPERATURE, •F	71	78	71	71	68	71
ASCF RELATIVE HUMIDITY, %	76	60	60	60	69	87
INTERNAL PRESSURE OF MOTOR, psia	2200	2500	3000	2500	2500	2500
CARBON MONOXIDE ^b , ppm	292	367	340	325	282	139
CARBON DIOXIDE ^{b,c} , ppm	2200	2500	3000	2500	1245	1505
NITRIC OXIDE ^b , ppm	4.2	3.0	3.6	3.5	2.2	43.0
NITROGEN DIOXIDE ^b , ppm	ND	ND	ND	ND	ND	ND
HYDROGEN CYANIDE ^b , ppm	ND	ND	ND	ND	ND	ND
AMMONIA, ppm	ND	0.2	ND	ND	ND	ND
TOTAL SUSPENDED PARTICULATE MATTER, mg/m ³	71	63	71	70	67	NR
LEAD mg/m ³	18	35	73	40	36.9	41.8
COPPER mg/m ³	2.0	3.8	9.1	4.4	4.0	4.8
ALUMINUM (as AL ₂ O ₃) mg/m ³	ND	ND	ND	ND	ND	ND
CHROMIUM mg/m ³	ND	ND	ND	ND	ND	ND
ZIRCONIUM OXIDE mg/m ³	ND	ND	ND	ND	ND	ND

^a Nominal exit diameter was 1.0 inches. Howover, this was an estimate only. Actual diameters could have varied between 0.75 and 1.25 inches.
 ^b Maximum observed concentrations.
 ^c Determined in Runs 1-4 using Dreager Tubes, Runs 5 and 6 using NDIR analyzer.
 ^d Special nozzle used which increased burn time. See text. Data may not be representative.

NR: Not Recorded

-

-

ND: Not Detected

TABLE 3

SUMMARY OF CHARACTERIZATION DATA COMPOSITION H MAJOR CONSTITUENTS

RUN NUMBER	1	2	3	4
DATE	6-22-88	6-22-88	6-22-88	6-23-88
QUANTITY OF PROPELLANT, g	25	25	24	24
EXIT DIAMETER, inches ^a	1	1	1	1
THROAT DIAMETER, inches	0.261	0.261	0.261	0.261
ASCF CHAMBER TEMPERATURE, °F	70	70	70	72
ASCF RELATIVE HUMIDITY, %	NR	68	57	63
INTERNAL PRESSURE OF MOTOR, psia	5000	5000	5000	5000
CARBON MONOXIDE ^b , ppm	290	C	300	298
CARBON DIOXIDE ^b , ppm	250	с	270	290
NITRIC OXIDE ^b , ppm	4.5	С	1.7	5.0
NITROGEN DIOXIDE ^b , ppm	ND	c	ND	ND
HYDROGEN CYANIDE ^b , ppm	ND	с	ND	ND
HYDROGEN CHLORIDE, ppm	<1		<1	1
AMMONIA ^b , ppm	ND	c	ND	ND
TOTAL SUSPENDED PARTICULATE MATTER, mg/m ³	87	c	73	176
LEAD mg/m ³	0.771	c	0.618	0.486
COPPER mg/m ²	0.726	c	0.897	0.508
ALUMINUM (as AL ₂ O ₃) mg/m ³	ND	c	ND	ND
CHROMIUM mg/m ³	ND	c	ND	ND
ZIRCONIUM OXIDE mg/m ³	ND	c	ND	ND
MOLYBDENUM, mg/m ³	1.41	с	0.309	0.088
MAGNESIUM, mg/m ³	0.261	C	0.224	0.250
TIN, mg/m ³	0.348	с	0.397	0.177

Nominal exit diameter was 1.0 inches. However, this was an estimate only. Actual diameters could have varied between 0.75 a and 1.25 inches.

Maximum observed concentrations. Sample Acquisition failure. Not Recorded ь

c

NR:

Not Detected ND:

Table 4

SUMMARY OF CHARACTERIZATION DATA COMPOSITION L MAJOR CONSTITUENTS

RUN NUMBER	1	2	3	4
Date	1-18-89	1-18-89	1-19-89	1-19-89
Quantity of Propellant, g	24	24	24	24
Exit Diameter, inches	1.0	1.0	1.0	1.0
Throat Diameter, Inches	0.28	0.28	0.28	0.28
ASCF Chamber Temperature, *F	69	70	71	70
ASCF Relative Humidity, %	NR	68	49	48
Internal Pressure of Motor, psia	2500	2500	2500	2500
Carbon Monoxide ^b , ppm	298	337	371	371
Carbon Dioxide ^b , ppm	164	137	164	150
Nitric Oxide ^b , ppm	1.5	0.5	0.5	0.5
Nitrogen Dioxide ^b , ppm	ND	ND	ND	ND
Hydrogen Cyanide ^b , ppm	ND	ND	ND	ND
Ammonia ^b , ppm	ND	ND	ND	ND
Hydrogen Chloride, ppm	112	112	108	122
Total Suspended Particulate Matter, mg/m ³	50	33	38	51
Lead mg/m ³	2.73	2.71	1.52	1.50
Copper mg/m ³	5.74	4.43	3.98	3.80
Aluminum (as AL ₂ O ₃) mg/m ³	4.33	3.62	3.35	3.14
Chromium mg/m ³	0.64	0.52	0.52	0.46
Zirconium Oxide mg/m ³	ND	ND	ND	ND
Cadmium, mg/m ³	0.15	0.13	0.12	0.11

Nominal exit diameter was 1.0 inches. However, this was an estimate only. Actual diameters could have varied between 0.75 and 1.25 inches.
 Maximum checkershold conservations.

Maximum observed concentrations.

NR: Not Recorded

.

ND: Not Detected

Table 5

SUMMARY OF CHARACTERIZATION DATA COMPOSITION Q MAJOR CONSTITUENTS

RUN NUMBER	1	2	3
Date	12-1-89	12-5-89	12-5-89
Quantity of Propellant, g	65	64	60
Exit Diameter, inches ^a	1.125	1.125	1.125
Throat Diameter, inches	0.188	0.190	0.197
ASCF Chamber Temperature, *F	66	63	64
ASCF Relative Humidity, %	34	46	40
Internal Pressure of Motor, psia	1580	1480	1100
Carbon Monoxide ^b , r.pm	84	84	93
Carbon Dioxide ^b , ppm	1350	1324	1194
Nitric Oxide ^b , ppm	2	1	1
Nitrogen Dioxide ^b , ppm	ND	ND	ND
Hydrogen Cyanide ^b , ppm	ND	ND	ND
Ammonia ^b , ppm	ND	ND	ND
Total Suspended Particulate Matter, mg/m ³	31	28	29
Lead mg/m ³	18.6	1.5	14.1
Copper mg/m ³	0.002	0.00	0.01
Aluminum (as AL ₂ O ₃) mg/m ³	ND	ND	ND
Chromium mg/m ³	0.0	0.02	0.02
Zirconium Oxide mg/m ³	<0.1	<0.1	0.06
lron, mg/m ³	0.33	0.06	0.06

۰ Nominal exit diameter was 1.0 inches. However, this was an estimate only. Actual diameters could have varied between 0.75 and 1.25 inches. b

Maximum observed concentrations.

NR: Not Recorded

1

ND: Not Detected

23

TABLE 6					
MEAN CONCENTRATIONS ACHIEVED IN ASCF CHAMBER					
Constituent	Pro	Propellant Formulations (approximate motor size)			
	D (75 g)	H (25g)	L (22 g)	Q (63 g)	X (25 g)
CO, ppm	330	295	344	85	195
CO ₂ , ppm	1375	270	154	1250	561
NH ₂ , ppm	BMDL	BMDL	BMDL	BMDL	BMDL
NO, ppm	3.5	4	0.75	1.3	5.0
NO ₂ , ppm	BMDL	BMDL	BMDL	BMDL	BMDL
HCN, ppm	BMDL	BMDL	BMDL	BMDL	BMDL
HCL, ppm	BMDL	<1	114	BMDL	BMDL
Particles, mg/m ³	70	100	43	30	45
Pb, mg/m ³	40	0.6	2	16	0.18
Cu, mg/m ³	4	0.7	4	0.01	0.45
Al ₂ 0 ₃ , mg/m ³	BMDL	BMDL	3.5	BMDL	BMDL
Cr, mg/m ³	BMDL	BMDL	0.5	0.01	1.3
Cd, mg/m ³	BMDL	BMDL	0.13	BMDL	BMDL
Sn, mg∕m ³	BMDL	0.3	BMDL	BMDL	BMDL

,

* BMDL: Below method detection limit.

it was decided that determination of water vapor would be omitted from the measurements.

A determination of the carbon balance for the chamber indicates that the analytical measurements account for approximately 60% of the carbon in the formulation. For example, using the data in Table A-1 for Composition D, there are ca. 2.06 moles of carbon in the motor. Data from Run 5 of the "D" test indicates ca. 1.2 moles of C tied up as the oxides of carbon (CO and CO_2). The analysis of the vapor and particle phase organic constituents (see below) indicates that only a very tiny amount of C is tied up in the trace species. And even if all the non-metal material collected as particulates was pure carbon, such would only add ca. 26 mg/m^3 of carbon, or about 0.043 moles. Thus, it would appear that a significant fraction of the carbon present in the motor itself (ca. 33%) is present in some form which is not amenable to conventional analyses. Without confirmatory data, the composition of such material would be highly speculative.

All of the formulations, despite the relatively small quantities of propellant fired in the chamber (ca. 1/7 to 1/20 of a typical size launch motor) produced substantial concentrations of carbon monoxide, ranging from a low of about 300 ppm/100 g of propellant for Composition Q, to a high of nearly 1400 ppm/100 g for Composition L. The amounts of carbon dioxide produced varied considerably, from more than a factor of 10 greater than the CO produced, to only about half the amount of CO produced. Only very small quantities of nitric oxide were produced, and no measurable amounts of nitrogen dioxide were produced. The latter is not surprising, since the production of NO₂ is dependent on the square of the NO concentration²². If the concentration of NO is low, significant amounts of the dioxide will not be produced in the first 10 minutes following the firing of the motor (the duration of time for which the ASCF was sampled for the oxides of nitrogen). Essentially, no ammonia or hydrogen cyanide was found at levels greater than 1 ppm. In the two formulations which contained perchlorates, measurable levels of hydrogen chloride were found. However, the observed levels were not proportionate to amount of perchlorate present. For example, while Composition L had about 8x more perchlorate in the formulation than Composition H, the levels observed in the chamber were about 100x larger. There were a number of metals found in the airborne particles resulting from motor firings. Copper, aluminum (as the oxide), lead, tin, chromium, and cadmium were all found in measureable amounts. Probably the lead and cadmium are of the greatest concern from a health risk standpoint. For both Compositions D and Q, lead was found to be present in the diluted exhaust at levels greater than 10 mg/m^3 .

In Table 7 are listed the particle size distributions of the exhaust products for the formulations studied. The mass median aerodynamic diameters (MMAD) were all less than 2 μ m, indicating that the particles remaining airborne long enough to be collected by the sampling method were capable of being inhaled. Although Composition D had a measurably bimodal distribution, the higher of the two MMADs was still less than 5 μ m. Particles from Composition L had a somewhat smaller MMAD than of the other formulations, but the breadth of the distribution was larger.

TABLE 7

Particle Size Distribution Rocket Exhaust Particulate Matter Mean Values

Mass Median Aerodynamic Diameter	(MMAD) and Geometric Sta	andard Deviation (σ_g)
Composition	<u>MMAD (μm)</u>	<u>g</u>
D ^a	1.46	1.86
Н	1.44	1.77
L	0.807	2.14
Q	0.96	2.4
^a Composition I large particles small particles	D had a definite bimodal dist had a MMAD of 3.6 micron had a MMAD of 0.47 micro	ribution: s, with $\sigma_g = 1.8$; ns, with $\sigma_g = 1.7$.

Trace Constituents

Trace organic vapor phase constituents present in the exhaust atmospheres were determined by collection of samples on multi-sorbent traps, followed by analysis by thermal desorption GC/MS. Because of the sensitivity of the method, collection of sufficient sample was not difficult. However, the background levels of vapors in the chamber were very high, and as a result, made it very difficult to discern quantities of vapors arising from the firing of the rocket motor. Despite the fact that the chamber was flushed with clean air between most firings, background levels of collected constituents on chamber blanks were substantial (see Table 8). This suggests that there may be significant off-gassing of volatiles from materials adsorbed on the surfaces inside the chamber. Accurate quantitative determination of the constituents identified was exceedingly difficult, because it required determining the difference between two large values. Also, the largest peak

in many of the samples was determined to be a mixture of hydrocarbons that were not resolved, even by high-resolution chromatography. These may be unburned, volatilized waxes used in the manufacture of the test motors. In Appendix B, in Tables B-1 through B-4, are listed the various trace organic vapor phase components identified and quantified in the exhaust. The data is summarized in Tables 9 - 12. In this case, mean quantities were reported only if the compound was observed in two or more of the traps analyzed from the firing of a specific composition and if the compound was present at a level 50% greater than the highest level reported for any blank collected during the series of firings. Several comments are in order. First, as stated above, it was very difficult to obtain a truly "clean" chamber atmosphere into which to fire the motors.

Table 8

CONCENTRATION OF SELECTED CONSTITUENTS IN CHAMBER BLANKS

ua/m^3	Concentration		Concentration A	
<u> </u>			C ₃ -cyclopentane	52.4
	Methylene chloride	119	C_{12} -cyclohexasiloxane	8.2
	Methyl crotonate	2.1	C_{12} -cyclohexasiloxane	4.4
	C ₆ -cyclotrisiloxane	23.9	C_3 -cyclopentane	7.4
	C ₈ -cyclotetrasiloxane	7.5	Diethylphthalate	19.1
	C ₃ -cyclopentane	254	Pentadecane	2.1
	Terpinene	8.8	Nonadecane	2.6
	C_{10} -cyclopentasiloxane	129	Trimethylcyclobutanone	3.5
	Naphthalene	8.8		

Originally, it was believed that the siloxane compounds may have resulted from contamination of the multi-sorbent traps with a soap bubble solution which was used in measuring the sample flow rates in some of the earlier studies. (This potential for contamination has been confirmed by subsequent experiments in the laboratory). However, the siloxanes were also present in the blanks which were acquired in later experiments, in which only instrumental calibration of the flow rates were made. Thus, the siloxanes may be off-gassed byproducts of the detergents used to clean the chamber prior to the motor firings, or they may be true products of the propellant combustion. Significant amounts of siloxane have been seen in the vapor phases of several of the exhausts from various motors. In general, there appeared to be a greater variety of trace organics present in the vapor phase of the composition D and H exhausts. The fact that Composition L is predominantly inorganic probably contributes to this observation.

Table 13 summarizes the maximum observed concentrations of non-siloxane compounds found in the ASCF atmospheres for those constituents with levels greater than $10 \ \mu g/m^3$ (ca. 3 ppbv for benzene). For example, the average concentration for benzene was 17.6

 μ g/m³ or 5.4 ppb. Overall, the concentrations of these species were several orders of magnitude below the levels at which they are regulated for workplace exposures. One may conclude table 9

н. н.

1 .

х I

. .

1 I N

т. д.

.

TABLE 9 ESTIMATED CONCENTRATION OF TRACE VAPOR PHASE CONSTITUENTS COMPOSITION D

CONSTITUENT	APPROXIMATE CONCENTRATION*, µg/m³
Trichloroethane	0.4
Benzene	13.5
Trichloroethylene	2.0
Methyl crotonate	15.3
Toluene	10.5
C _e -cyclotrisiloxane	11
C ₂ -benzene	5.7
Phenylacetylene	2.7
Styrene	4.7
C ₃ -benzene	2.7
C ₃ -benzene	3.9
Decane	1.5
Decane	0.9
Terpinene	0.7
C _e -cyclotetrasiloxane	15
Teripene	1.1
Undecane	0.8
Naphthalene	6.1
C ₃ -cyclopentane	1.3
Dodecane	0.7
C ₁₂ -cyclohexasiloxane	17.8
Hexadecane	1.1

* Estimated by determination of mean value for at least 2 of traps analyzed, which must be at least 50% greater than the highest blank level observed. Levels have been corrected for blanks.

TABLE 10 ESTIMATED CONCENTRATION OF TRACE VAPOR PHASE CONSTITUENTS COMPOSITION H

CONSTITUENT	APPROXIMATE MEAN CONCENTRATION ⁴ , µg/m ³
-	
Trichlorofluoromethane	9.8
Trichloroethane	0.4
Benzene	17.6
Methylcrotonate	7.0
Toluene	2,2
Phenylacetylene	2.4
C₂-benzene	0.7
Heptene	8.4
Cyanobenzene	18.0
C3-penzene	1.4
C ₃ -cyclopentane	16.1
C14-cycloheptasiloxane	2.2

* Estimated by determination of mean value for at least 2 of traps analyzed, which must be at least 50% greater than the highest blank level observed. Levels have been corrected for blanks.

TABLE 11 ESTIMATED CONCENTRATION OF TRACE VAPOR PHASE CONSTITUENTS COMPOSITION L

CONSTITUENT	APPROXIMATE MEAN CONCENTIZATION [®] , µg/m ³
	0.5

Octamethyl-cyclotetrasiloxane Octamethy-cyclotetrasiloxane 3.5 2.6

* Estimated by determination of mean value for at least 2 of traps analyzed, which must be at least 50% greater than the highest blank level observed. Levels have been corrected for blanks.

TABLE 12 ESTIMATED CONCENTRATION OF TRACE VAPOR PHASE CONSTITUENTS COMPOSITION Q

CONSTITUENT

APPROXIMATE MEAN CONCENTRATION^a, µg/m³

trichlorofluromethane	0.6
hexamethyl cyclotrisiloxane	0.2
trimethyl-cyclobutanane	23.5
octamethyl-cyclotetrasiloxane	0.3
phthalate	8.5

* Estimated by determination of mean value for at least 2 of traps analyzed, which must be at least 50% greater than the highest blank level observed. Levels have been corrected for blanks.

TABLE 13NON-SILOXANE VAPOR PHASE COMPOUNDS PRESENT INMOTOR EXHAUSTS AT CONCENTRATIONS GREATER THAN 10 μ g/m³ in ASCFCHAMBER

$\frac{\text{Component}}{\text{Concentration, } \mu g/m^3}$	<u>Composition</u>	<u>Maximum</u>
Benzene	D,H	17.6
Methylcrotonate	Н	15.3
Toluene	Н	10.5
Cyanobenzene	Н	18.0
C ₃ -cyclopentane	н	16.1
tri methyl-cyclobutanone	Q	23.5

^a Composition only listed if present at $> 10 \mu g/m^3$ in that particular exhaust atmosphere.

from this that the levels of trace organic vapor phase constituents are probably not of concern from a health risk standpoint under most conceivable use scenarios. Only by repeated firings from an enclosed space could these materials reach toxic levels. And before toxic levels of the organic vapor phase species was reached, CO levels would probably be lethal.

Determination of the higher molecular weight particulate-phase constituents proved difficult for the samples from the initial runs of Composition D (the first propellant studied). Because of filter clogging immediately following the firing of the test motors, the number of particles collected was very small. For example, the largest amount of sample collected on any of the initial runs was 40 mg. This was dispersed over a 4"-diameter Teflon-coated glass fiber filter. Initial GC analysis of the extracts indicated very low levels of hydrocarbons. Next, the extracts were subjected to GC/MS analysis with selected ion monitoring (SIM). SIM has the advantage of identifying species from selected characteristic ions, as opposed to using the entire ionic fragmentation pattern. Due to the small amounts of material collected on the filters, quantities detected in the particulate filter extracts were considerably below our normal detection limits for the target constituents. For that reason, in the preceding studies, the particulate collection system was modified to be a two-stage filter. This approach proved to be much more successful at collecting greater amounts of particles. In Table 14 are listed the polynuclear aromatic hydrocarbons (PAH's) determined in the exhaust particles collected from the firings of Compositions D, H, L, and Q. In addition, a comparison is also made between these levels and those determined for outside air at a military base. A few comments are in order. First, only data for particles collected in the coarse filters are reported. The fine filters collected very few particles (1 - 5 mg), and thus many of the levels determined are at or near the instrumental limits of detection. Nitro-PAHs were determined only for Composition D and H exhausts. The levels

٠,

Table 14

Concentrations (μ g/g) of Nitro-PAH and PAH in Particulate Matter Collected on Coarse Fitters at ASCF: Comparison with Outdoor Air Particulate Collected at U.S. Army Installation

					Propellant Edu	Ţ				Fr. Carson ^a
	Compo	sition ()		Composition I	-	Compo	sition L	Compo	sition Q	Outside Air Particulates
Constituent	Run 5	<u>Bun 6</u>	Run 1	Run 3	Run 4	Run 1	Run 2	Run 1	Run 2	
2-nitrofluorene	BMDL	BMDL	0.039	0.061	0.032	QN	ÛN	QN	QN	BMDL
9-nitroanthracene	0.14	BMDL	BMDL	BMDL	BMDL	DN	QN	QN	QN	BMDL
1-nitropyrene	BMDL	BMDL	BMDL	BMDL	BMDĩ	DN	QN	QN	QN	BMDL
benz(a)anthracene	0.22	0.19	0.19	0.15	0.15	0.22	0.19	1.40	0.81	4.9
chrysene	0.26	0.83	0.55	0.61	0.40	0.05	BMDL	4.70	2.28	11.5
ber.zo(b+j+k)fluoranthrene	0.47	1.7	1.1	1.4	1.1	0.04	0.13	1.60	0.75	15.7
benzo(e)pyrene	0.26	0.66	0.62	0.92	0.86	1.18	0.44	1.40	0.54	9.4
benzo(a) pyrene	0.39	0.31	0.59	0.52	0.37	0.05	BMDL	1.30	0.41	8.0
3-methylcholanthrene	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	BMDL	0.54	BMDL	BMDL
dibenz(a.j)anthracene	0.13	1.9	0.51	0.52	0.15	0.24	0.14	2.10	1.06	3.7
indeno[1,2,3-cd]pyrene	0.47	0.83	1.4	0.69	0.69	1.74	0.64	1.70	1.06	17
dibenz(a,h)anthracene	0.13	BMDL	0.23	0.16	0.14	0.13	0.31	5.80	1.63	3.0
benzo(g,h,i)perylene	2.0	BMDL	3.2	3.2	BMDL	5.17	1.39	3.80	1.87	21.8

ND: Not detected

1.1

BMDL: Below method detection limit

^a Data from Griest, et al., 1988

determined in these earlier studies were so low that a repeat of the complex analyses did not seem warranted. Despite the very low levels of PAH found in the particulates, the results are fairly consistent from sample to sample. The concentrations of a few selected PAHs in the particles of the Q exhaust were somewhat higher, but not by more than an order of magnitude. The only nitro-PAH which was identified consistently in the exhausts of the motors was 2-nitrofluorene, in the exhaust of Composition H. Its concentration ranged from ca. 30 - 60 ng/g. Most of the other PAHs identified and quantified in the exhausts were present at levels less than 1 $\mu g/g$. The outdoor air particulate sample with which a comparison is made was acquired outside a large motor pool building at Fort Carson, Colorado, in the mid-1980's as background data for another project supported by the USABRDL²³. A major contributor to the particulates in this sample was expected to be diesel- and gasoline-powered motor vehicle exhaust. The comparison indicates that, with the exception of 2-nitrofluorene, the PAH content of the rocket exhaust particulate is substantially less than (usually by a factor of 10 or so) that of outdoor air particulate matter found in a semi-urban setting at a military base. Also, the BaP content of the exhaust particulates is about half that of cigarette smoke particulate matter²⁴. Because of the relatively low concentrations of the PAH in the particle phase, the airborne concentrations of the PAHs are very low. For example, at the maximum particle concentration of 70 mg/m³ in the ASCF chamber (as a surrogate for human exposure conditions), the highest observed airborne benzo(a)pyrene concentrations would be approximately 0.09 μ g/m³, and that of benzo(g,h,i)perylene would be 0.36 μ g/m³. At these levels, the airborne PAHs and nitro-PAHs in the rocket exhaust probably do not represent an additional health hazard above that of normal urban air particulates for the troops using such weapon systems.

SUMMARY AND RECOMMENDATIONS - PART 1

The exhaust products from the firing of 2x2 rocket motors in a 20 m³ test chamber have been characterized. The data indicated that of all of the toxic and/or carcinogenic species present, most were present at very low levels. Of the major toxic constituents, carbon monoxide was the most universally present. Interestingly, the formulation with the greatest fraction of inorganic material (Composition L) yielded the highest concentration of CO in the ASCF chamber per 100 g of propellant. Nitric oxide was present in all of the exhausts, but typically at levels less than 5 ppm in the 20 m³ chamber. No ammonia or hydrogen cyanide was observed at levels greater than 1 ppm. Levels of HCl were observed in the Composition L exhaust which were very high (>100 ppm), and it seems likely that firing of this propellant in an enclosed space would produce very high concentrations of this toxic species. However, no data was obtained as to whether the HCl was present in the particle or the vapor phase.

Particles were present at substantial levels in all of the exhaust atmospheres ($\geq 30 \text{ mg/m}^3$). Particle size distributions indicated that for those particles which could be collected under the sampling conditions employed, virtually all of the material was within an inhalable size range ($< 10 \,\mu\text{m}$ mass median diameter). A large fraction of the airborne particles were comprised of metallic species. Copper and lead (especially the latter) were present in the ASCF atmospheres of many of the motor types at levels above those regulated by OSHA.

However, the levels of FAHs and nitro-PAHs in the particulates were very low. Comparison with airborne particulate matter collected at a military installation indicated that the PAH content of the particles was about 1/10 that of outdoor air particles.

Quantitative determination of the organic varor phase constituents was very difficult due to both the very low levels at which they were present and the presence of large amounts of other species in the background samples. The latter included a large number of cyclosiloxanes, probably from the off-gassing of the chamber walls following cleaning. Only a few exhaust components were found at levels greater than a few ppb. These included benzene, toluene, methylcrotonate, and cyanobenzene. These were typically present at levels less than 10 ppb in the chamber.

From the standpoint of follow-on studies, recommendations depend on the goal of such efforts. If the goal is to refine the comparison between the observed chemistry and the predicted compositions, then the determination of methane (CH_4) and molecular hydrogen (H_2) would be very desirable. Such is a very difficult task, and would likely require a dedicated real time mass spectrometer to make such measurements. However, the determination of such constituents would not significantly further the understanding of potential health risks of the exhaust products, since neither are toxic species.

Since these experimental studies were performed, there have been two developments in the field of analytical chemistry which, if applied to these studies, could significantly improve the quality of the data generated, especially with regard to the determination of volatile organics. First, a number of carbon based adsorbents are now commercially available which have many fewer artifacts than the Tenax used in these studies. Were the sorbent traps used in these studies replaced with the new systems, it is likely that the number of artifacts present in the samples would be significantly reduced, minimizing the complexity of the interpretation of the data. Also, the recent development of direct sampling ion trap mass spectrometry (DSITMS) for the determination of airborne vapor phase constituents is significant. DSITMS could be used to provide determination of a number of volatile species of toxicologic interest in real time, much like an NDIR analyzer provides real time measurement of CO or CO_2 . Transportable DSITMS systems are now under development at ORNL for air toxics monitoring at environmental remediation sites, and such technology could be useful for other scenarios.

Finally, the most important recommendation for future work is the determination of the exhaust product composition under actual field conditions, firing full scale motors. There are two important reasons for this. First, the data in this study indicates that changes in the physical properties such as burn time can have a radical effect on exhaust composition. This suggests that it will be difficult to obtain highly realistic data unless true field measurements can be made. Secondly, firing of the test motors in an enclosed chamber causes significant run-to-run background contamination problems. Perhaps the firing of motors in single use, disposable structures, such as large nylon tents, would eliminate much of the contamination problem.

PART 2 - MODELING FOR HEALTH HAZARD PREDICTION

INTRODUCTION

Over the past 30 years, several digital computer programs have been developed at the National Aeronautics and Space Administration's Lewis Research Center to carry out the considerable numerical calculations involved in the determination of the equilibrium composition of complex chemical mixtures at high temperatures^{25, 26,27}. Updates to these programs have incorporated improved computational methods and adaptations to improvements in computer speeds and capacities. In accordance with a suggestion from project management, we have used the 1986 version²⁸ of the program described in Reference 27 to obtain estimates of the composition of the exhaust gases from four different solid propellants. This was referred to as the NASA-Lewis model, version CET-86. The program obtains estimates of the equilibrium composition of a mixture of several components by minimizing either the Gibbs function or the Helmholtz function. If temperature and volume are constant, the Helmholtz function of a system decreases during an irreversible process, becoming a minimum at equilibrium; if temperature and pressure are constant, the same is true of the Gibbs function²⁸. All gases are assumed to be ideal. even if small amounts of condensed species are present. Calculations can be done for any one of six combinations of assigned state parameters (e.g., temperature, pressure, density, entropy, and enthalpy); additionally, theoretical rocket performance data can be obtained. The assumptions involved in the calculation of rocket performance parameters are listed in Ref. 3. Briefly, they are: (1) validity of the one-dimensional form of the continuity, energy, and momentum equations; (2) zero velocity (no gas movement) in the combustion chamber; (3) complete combustion (in the sense that all reactants are converted to products); (4) adiabatic combustion; (5) isentropic (adiabatic and reversible) expansion; (6) homogeneous mixing; (7) ideal gas law; and (8) zero temperature and pressure lags between condensed and gaseous species. An extensive discussion of these assumptions and their validity can be found in Reference 30.

The program first determines combustion properties in the rocket motor chamber and then determines exhaust composition and properties at various stations in the nozzle. Since our propellants were fired in motors having a range of exit diameters, we used the feature of the program that allows estimation of exit compositions for a set of several exit to throat area ratios. (In this case, the throat of the motor is considered to be the choke point, or opening of the smallest diameter. The exit is the exit of the motor nozzle. Using these definitions, the ratio of the exit:throat areas, A_e/A_t , must always be larger than 1.0.) In Table 15 are listed the ranges of exit/throat area ratios possible for each motor. In each of the predictions, we used the design pressure as the combustion chamber pressure. The throat pressure is defined to be the pressure at which the flow velocity is equal to the velocity of sound.

The iterative procedures used by the program are discussed in detail in Reference 27. Briefly, combustion temperature and equilibrium compositions are determined for an TABLE 15

EXIT/THROAT AREA RATIO RANGES TEST MOTOR CONFIGURATIONS

COMPOSITION	MINIMUM THROAT DIAMETER, INCHES	MAXIMUM THROAT DIAMETER, INCHES	NOMINAL EXIT [®] DIAMETER, INCHES	MINIMUM	MAXIMUM AJA	NOMINAL
D	0.50	0.707	1.0	1.125	6.25	4
Т	0.261	0.261	1.0	8.26	22.94	14.7
Ļ	0.28	0.28	1.0	7.17	19.93	12.76
٥	0.188	0.197	1.125	14.49	44.21	35.06

These are estimated exit diameters. Actual exit diameters varied between 0.75 and 1.25 inches.

assigned chamber pressure and the reactant enthalpy. From the combustion compositions and temperature, the combustion entropy can be determined. Assuming isentropic expansion, the program then obtains a first estimate for the ratio of chamber pressure to throat pressure; from the throat pressure and the entropy, the actual gas velocity, the speed of sound, and the Mach number can be calculated; if the Mach number is not sufficiently close to unity, the pressure ratio is corrected and a further calculation of Mach number is done. Exit conditions for assigned exit-to-throat area ratios are also obtained from an initial estimate of the ratio of the chamber pressure to the exit pressure, followed by iterative correction. The converged value of pressure ratio for each area ratio is used as the initial estimate for the next area ratio.

We obtained the program, test case input, and output from the NASA Lewis Research Center²⁸. We were able to compile the program on our VAX 6000-420 computer and were able to reproduce the test case output with no problems. In our series of calculations the program has performed in a very reliable manner; we have had no difficulties with any of the iterative procedures failing to converge.

RESULTS AND DISCUSSION

In Tables 16 - 19 are listed the predicted mole fractions of various exhaust components over the range of potential ratios of exit areas to throat areas. (The full computer printouts for selected runs for each composition are included in Appendix C.) Note that there have been two independent checks of these computations³¹. First, CET86 computations of mole fractions of Composition H were checked against the "Blake" code and found to be in excellent agreement. (See discussion regarding Table 23, below). Secondly, the calculations were verified by running MUCET, a modified version of CET86 prepared by Eli Freedman & Associates for use with microcomputers. Results were identical to those reported here.

The model has a cut-off feature. Essentially, it can predict the levels of over 100 compounds, but will only report out those mole fractions which are larger than a user-specified value. For this work, a mole fraction of 5×10^{-7} was employed. The rationale for using this value was as follows. If it is assumed that there are about 2 moles of exhaust products in the ASCF chamber following a firing, a mole fraction of 5×10^{-7} would be equivalent to 1×10^{-6} moles of the particular product in the chamber. This assumption was in fact supported by the chemical characterization data (see above). For a compound with a nominal molecular weight of 100 g/mole, this translates to a concentration of $5 \mu g/m^3$, or 1.5 ppbv, in the 20 m³ ASCF chamber. Few airborne compounds are considered to be a significant health risk at such low concentrations. In addition, unless a very large sample is acquired, it is usually difficult to confidently quantify such species at these low levels.

Using this criterion, with the exception of the metals in the exhaust products, the only compounds which were predicted to be present in the exhaust were carbon monoxide, carbon dioxide, hydrogen, water vapor, ammonia, and methane. In none of the cases did the model predict significant quantities of nitric oxide, despite the fact that NO was observed at levels near to or greater than 1 ppm on each burn.

				Table 16				
Predicted	Mole	Fractions	as	a Function	n of	Exit/Throat	Area	Ratios
			Co	mposition	D			
		Chambe	я р	ressure =	250	10 psia		

	1		1			
A _e /A _t	1.1300	1.8600	2.2500	3.1300	5,1700	6.2500
Exit T,•K	2256.4	1894.1	1788.5	1626.8	1419.6	1355.0
		.	Mole fraction	S		
со	.37059	.35871	.35390	.34478	.32876	.32241
CO2	.14561	.15759	.16241	.17154	.18756	.19391
H₂	.11245	.12448	.12931	.13844	.15445	.16080
H₂O	.23930	.22754	.22273	.21362	.19760	.19126
Cu(Total)	2.3949x10 ⁻³	2.4058x10 ⁻³	2.4062x10 ⁻³	2.4063x10 ⁻³	2.4063x10 ⁻³	2.4062x10 ⁻³
Pb(Total)	2.2823x10 ⁻³	2.3222x10 ⁻³	2.3276x10 ⁻³	2.3325x10 ⁻³	2.3352x10 ^{.3}	2.3363x10 ⁻³
NH3	1.1109x10 ⁻⁵	8.7647x10 ⁻⁸	8.4223x10 ⁻⁶	8.2080x10 ⁻⁶	8.6068x10 ⁻⁶	8.8299x10 ⁻⁶
CO/CO2	2.545	2.276	2.179	2.010	1.753	1.663
NH ₃ /CO ₂	7.629x10 ⁻⁵	5.562x10 ⁻⁵	5.562x10 ⁻⁵	4.785.x10 ^{.5}	4.589x10 ⁻⁵	4.554x10 ^{.5}
		Chaml	ber pressure =	3000 psia		
A _e /A _t	1.1300	1.8600	2.2500	3.1300	5.1700	6.2500
Exit T,∙K	2256.8	1893.7	1788.1	1626.4	1420.8	1355.7
	·····		Mole fractions	3		
со	.37061	.35869	.35388	.34475	.32888	.32248
CO2	14560	.15761	.16243	.17156	.18744	.19384
H ₂	.11245	.12450	.12933	.13846	.15433	.16073
H₂O	.23933	.22752	.22271	.21359	.19772	.19133
Cu(Total)	2.3968x10 ⁻³	2.4059x10 ⁻³	2.4062x10 ⁻³	2.4634x10 ^{·3}	2.4062x10 ⁻³	2.4063x10 ⁻³
Pb(Total)	2.2819x10 ⁻³	2.3219x10 ⁻³	2.3274x10 ⁻³	2.3322x10 ⁻³	2.3355x10 ^{.3}	2.3365x10- ³
NH3	1.3315x10 ⁻⁵	1.0519x10 ⁻⁵	1.0110x10 ⁻⁵	9.8554x10 ⁻⁶	1.0279x10 ⁻⁵	1.0565x10 ^{.5}
CO/CO2	2.545	2.276	2.179	2.010	1.755	1.664
NH ₃ /CO ₂	9.145x10 ⁻⁵	6.674x10 ⁻⁵	6.224x10 ⁻⁵	5.745x10 ⁻⁵	5.484x10 ⁻⁵	5.450x10 ^{.5}

 $A_{\!_{0}}\!/A_{\!_{t}}\!\!:$ Ratio of the exit area to throat area

Table 17 Predicted Mole Fractions as a Function of Exit/Throat Area Ratios

Composition H

Chamber pressure = 5000 psia

A.	8.3000	10.000	15.000	23.000
Exit T,⁰K	1575.0	1507.1	1372.2	1251.4
		Mole fraction	S	
CO	.25795	.25360	.24311	.23079
CO2	.25776	.26229	.27332	.28608
H₂	8.5609x10 ⁻²	9.0087x10 ⁻²	.10095	.11357
H₂O	.24704	.24278	.23242	.22018
НСІ	4.5892x10 ⁻⁴	3.4824x10 ⁻⁴	1.8022x10 ⁻⁴	8.1443x10 ^{.5}
ксі	1.3356x10 ⁻²	1.2799x10 ⁻²	1.0928x10 ⁻²	7.7913x10 ^{·3}
KCI(I)ª	0.0000 0	0.0000 0	0.0000 0	1.5516x10 ^{·3}
NH₃	2.5247x10 ⁻⁸	2.5729x10 ^{-®}	2.7684x10 ^{-€}	3.0523x10 ⁻⁸
CO/CO ₂	1.0007	.9669	.8895	.8067
HCI/CO2	1.7804x10 ⁻³	1.3277x10 ⁻³	6.5937x10 ⁻⁴	2.8469x10 ^{.4}
NH _{3/} CO ₂	9.7947x10 ⁻⁸	9.8094x10 ⁻⁶	1.0129x10 ^{,8}	1.0669x10 ^{.5}

A. A. Ratio of the exit area to throat area *: Liquid

Table 18 Predicted Mole Fractions as a Function of Exit/Throat Area Ratios

Composition L

Chamber pressure = 2500 psia

A _e /A _t	7.2000	10.000	15.000	20.000
Exit T, °K	1281.3	1175.4	1059.3	986.5
		Mole fractio	ns	
со	.14681	.13536	.11945	.10732
CO2	.11988	.13129	,14697	.15895
HCI	.20072	.20084	.20139	.20167
H₂O	.25903	.24758	.23169	.21983
Al ₂ O ₃	4.5708x10 ^{.3}	4.5704x10 ⁻³	4.5672x10 ⁻³	4,5669x10 ⁻³
BaCl ₂ (Total)	4.6571x10 ⁻⁴	4.6849x10 ⁻⁴	4.6850x10 ⁻⁴	4.6849x10 ⁻⁴
Cr ₂ O ₃ (a)	8.1900x10 ^{.4}	8.1892x10 ⁻⁴	8.1835x10 ⁻⁴	8.1831x10 ⁻⁴
Cu(a)	0.0000 0	1.3842x10 ⁻⁴	8.3239x10 ⁻⁴	1.1224x10 ^{·3}
NH3	9.6149x10 ^{-#}	1.0736x10 ⁻⁵	1.2947x10 ^{∙⁵}	1.5182x10 ⁻⁵
CO/CO2	1.225	1.031	0,813	0.675
HCI/CO2	1.674	1.530	1.370	1,269
NH ₃ /CO ₂	8.020x10 ^{.5}	8.177x10 ^{.5}	8,809x10 ^{.5}	9.551x10 ⁻⁵

A_e/A_t: Ratio of the exit area to throat area *****: Solid

Table 19 Predicted Mole Fractions as a Function of Exit/Throat Area Ratios

COMPOSITION Q

CHAMBER PRESSURE = 1480 psia

Ae/At	32,600	35.100	35,800
Exit T, °K	918.9	904.4	900.7
	Mole Fraction	ns	
со	2.1030x10 ^{.1}	2.0683x10 ⁻¹	2.0590x10 ⁻¹
CO2	1.8391x10 ⁻¹	1.8732x10 ⁻¹	1.8823x10 ⁻¹
H₂O	1.0248x10 ⁻¹	9.9504x10 ⁻²	9.8735x10 ⁻²
NH ₃	1.5108x10 ⁻⁵	1.5668x10 ^{.5}	1.5810x10 ^{.5}
ZrO ₂ (Total)	2.3203x10 ^{·3}	2.3216x10 ⁻³	2.3220x10 ^{·3}
Pb	1.0228x10 ⁻³	1.0234x10 ^{.3}	1.0236x10 ⁻³
CH4	7.2073x10 ⁻⁴	1.0005x10 ⁻³	1.0889x10 ^{.3}
Ві	1.0055x10 ⁻⁵	1.3159x10 ⁻⁵	1.3826x10 ^{.5}
CO/CO ₂	1.143	1.102	1.094
NH ₃ /CO ₂	8.215x10 ⁻⁵	8.364x10 ^{.5}	8.399x20 ^{·5}

 A_{p}/A_{t} : Ratio of the exit area to throat area

For many of the input parameters, the model was not particularly sensitive to substantial changes. For example, for Composition H, a nearly 3-fold change in the exit/throat area ratios decreased the predicted mole fraction of CO by less than 12%. The ratio of major components was not significantly altered. For Composition D, a 5-fold change in the A_e/A_t reduced the CO/CO₂ ratio by 35%. The ratios of minor to major components were typically affected to a greater degree. In many cases, mistakes made in the original entry of data into the model were difficult to identify, since the mistaken or modified entry resulted in such a small change in the data output. For example, considerable effort was place into obtaining or calculating the best heats of formation for compounds present in the formulations. However, an exact value may not be particularly critical to the modeling projections. For example, in Table 20 are compared the mole fractions predicted by the model for a ±5% change in the heat of formation of ammonium perchlorate, which comprises nearly 75% of the starting formulation. The results of the manipulation show only minor changes in the predicted mole fractions. For example, only in the fourth decimal place.

From the standpoint of predicting the composition of the exhaust products in the chamber, the model was not particularly effective. As stated previously, in no case did the model predict NO to be present at levels above 10 ppb, even though NO levels were experimentally observed near 1 ppm. In Table 21 are compared the ranges of observed and predicted ratios of carbon monoxide to carbon dioxide in the ASCF chamber. For Composition H, the predicted values were very close to those observed. For Composition L, the model was accurate to within a factor of 2 - 3. For the other two formulations tested, there was substantial disparity between observed and predicted values. In both of these cases, the model predicted a much higher fraction of CO to be present than that which was observed. If the model had been used to make a health risk projection, the risk from CO exposure would have been considerably overestimated.

The comparison of observed and predicted absolute concentration levels in the ASCF chamber is a much more complex task. Briefly, the moles of the elements present in the formulation were computed. Since we did not determine water vapor or hydrogen gas in the chemical characterization studies, it was assumed that all of the H present in the formulation was converced to water vapor. (From a functional standpoint of predicting the concentrations of other species, it makes no difference if the H present existed as water vapor or H₂ gas.) Next, the total number of moles measured in the chamber was calculated, assuming 100% efficiency of conversion of H to water in the chamber. Finally, the mole fractions of the various species were multiplied by the total number of moles present, and divided by the chamber volume, in order to estimate chamber concentrations of the target species. The results of these calculations are summarized in Table 22. In general, the model was very good at predicting the concentrations of metallic species. In the case of zirconium oxide for Composition Q, and copper for Composition D, there was substantial over-estimation of the concentrations. This may be due to settling of particulates containing

TABLE 20
Effect of ± 5% Shift in Heat of Formation of Ammonium Perchlorate
Composition L

	H ₁ = -741	09. cal/mole		
A _e /A _t	7.2	10.0	15,0	20.0
Predicted Temperature, °K	1248.8	1146.3	1033.7	963,8
со	,14393	,13194	.11561	.10325
CO2	,12259	,13431	.15041	.16255
CO/CO2	1.17	.98	.77	.64
H₂O	.25526	.24320	.2,2699	.21523
H ₂	,19284	.20402	.21948	.23066
НСІ	.19924	.19992	.20044	.20076
N ₂	7.833x10 ^{.2}	7.826x10 ^{.2}	7.822x10 ⁻²	7.823x10 ⁻²
Cu(s)	1.583x10 ⁻³	2.442x10 ^{.3}	3.070x10 ^{.3}	3.331x10 ^{.3}
NH3	1.143x10 ^{.5}	1.284x10 ^{.⁵}	1.566x10 ^{.8}	1.836x10 ^{.5}
	$H_{1} = -670$	51. cal/mole		
A _o /A _t	7.2	10.0	15.0	20.0
Predicted Temperature, °K	1300.9	1194.0	1075.7	1001.2
со	.14912	.13778	.12215	.11017
CO2	.11748	.12854	.14394	.15578
CO/CO2	1.27	1.07	,85	.71
H ₂ O	.26048	.24902	.23337	.22157
H ₂	.187 9 4	.19841	,21330	.22469
HCI	.19898	.19975	.20032	.20059
N ₂	7.836x10 ⁻²	7.827x10 ^{.2}	7.821x10 ⁻²	7.820x10 ⁻²
Cu(s)	1.257x10 ^{.3}	2.240x10 ⁻³	2.958x10 ^{.3}	3.260x10 ^{.3}
NH₃	8.885x10 ⁻⁸	9.774x10 ⁻⁸	1.169x10 ^{.5}	1.367x10 [™]

Predicted Mole Fractions

A./A: Ratio of the exit area to throat area

these species before they could be collected. For Compositions D and Q, the model substantially over-predicts CO and underestimates the amount of CO_2 produced. In the cases of the formulations which were expected to produce measurable amounts of HCl, the model predicted more HCl than was measured in both cases: It could be that in this case, the acquisition of the sample could be suspect. First, some of the HCl or potassium chloride could have been adsorbed on particulate matter which settled very rapidly in the chamber. In this case, the material would not reach the input to the continuous HCl analyzer. In addition, some of the HCl may have been lost in the short lengths of Teflon tubing leading from the chamber atmosphere to the analyzer.

TABLE 21 COMPARISON OF OBSERVED AND PREDICTED CARBON MONOXIDE: CARBON DIOXIDE RATIOS

	Obser	ved	Predi	cted
Propellant Composition	<u>Minimum</u>	<u>Maximum</u>	Minimum	Maximum
D	0.0924	0.2265	1.663	2.545
Н	1.028	1.160	0.8067	1.0007
L	1.817	2.473	0.675	1.225
Q	0.0622	0.0779	1.094	1.143

In terms of the trace organic vapor and particle phase constituents, the model correctly predicts that the concentrations of these species will be low. In fact, the observed levels of such species as benzene and benzo(a)pyrene were much less than 100 ppbv, or $1 \mu g/m^3$, respectively. However, the number of toxic species which the model considers is limited, and it is certainly conceivable that a compound not considered by the model could be present at sufficiently high levels to warrant some health risk consideration

LIMITATIONS AND MODIFICATIONS

In addition to not considering all of the toxic species likely to be produced by the ignition of a predominantly organic matrix, the model does have several limitations. First, it is an equilibrium based system, and does not take into account those synthesis pathways which

may be governed predominantly by kinetic processes. Secondly, it assumes ideal gas behavior on the part of all of the gases produced. This assumption is not likely to be accurate over the entire range of conditions existing inside the rocket motor. However, from a practical standpoint, this may not be a severe limitation. For example, the magnitude of non-ideal gas effects depends primarily on the density and the temperature in the system. For the system in question, the largest densities occur in the chamber. Interestingly, the most dense gas (H), has a density of only 0.037 g/mL, which is not sufficiently large to induce substantial deviations from the ideal gas law. To illustrate this point, Freedman³¹ has used the "Blake" code to compute chamber concentrations (at 340.23 atmospheres pressure and a temperature of 3167° K) assuming both ideal and real gas equations of state. This was performed for Composition H, whose exhaust products were capable of reaching some of the higher temperatures in the study. The results are listed in Table 23. It is clear that the differences between the real and the ideal gaseous equations of state are very small. And although there are differences between the NASA-Lewis results and those from the "Blake" code, the differences are negligible from a practical standpoint and are due to differences in the thermodynamic data bases themselves.

Finally, and probably most importantly, the model assumes that all of the chemical processes are frozen at the point at which the exhaust gases exit the motor. There is a considerable body of evidence to suggest that this is not the case. For example, the model predicts that no significant production of NO will occur for any of the formulations tested. However, NO was in fact observed. We believe that its presence is due to the effect of the heated exhaust gases on the ambient air in the chamber. That is, the heat from the motor firing causes the formation of nitrogen monoxide. The production of NO is probably proportional to the duration of the flame contact with the air. For example, during run No. 5 for Composition D, the shock wave from the firing of the motor caused some damage to the chamber. A different nozzle was installed on the test motor used for burn #6. This lengthened the burn time, and reduced the pressure of the burn. Such resulted in some substantial differences between burns #5 and #6 for the Composition D motors. The change in the NO concentration is considerable. Probably, the increase in time that the flame is in contact with the air causes much more NO to be produced. Note also the change in the CO concentration from Run No. 5 to Run No. 6.

Following consultations with Dr. Eli Freedman, we decided to test the hypothesis that including a step in the computer calculations which would determine the influence of mixing the predicted exhaust gases with ambient air would lead to a more accurate prediction of the observed gas concentrations in the chamber. The model was revised to mix the exhaust gases with the ambient air at fixed ratios and at varying pressures and temperatures. As an example, the exit composition from propellant D (a formula which had initially yielded a relatively inaccurate prediction of the observed CO/CO₂ ratio) was selected as a "fuel" which could be mixed with air. Initial exit pressure and temperature were set at 39.5 atmospheres and 1837 °K, respectively. The "fuel" was mixed with ambient air in the ratios given in Table 24 to yield equilibrium compositions at two arbitrarily selected lower pressures. As indicated in Table 24, there was a substantial decrease in the CO/CO₂ ratio. The resulting ratio is much closer to that which was

observed experimentally than the ratio predicted by the unmodified model, suggesting that there is considerable mixture with ambient air and conversion of carbon monoxide to carbon dioxide between the vicinity of the motor exit and the analysis train. That the model does not consider the influence of mixing with ambient

_

TABLE 22

ł -

COMPARISON OF OBSERVED AND PREDICTED[®] CONCENTRATIONS OF EXHAUST CONSTITUENTS IN ASCF CHAMBER

CONSTITUENT	COMPOS	ITION D	COMPOS	SITION H	COMPOS	SITION L	COMPOS	SITION Q
	Observed ^a	Predicted	Observed ^b	Predicted	Observed ^c	Predicted	Observed ^d	Predicted
Carbon Monoxide, ppm	282	943	296	240	154	171	84	542
Carbon Dioxide, ppm	1245	538	270	248	344	188	1324	491
NO, ppm	2.2	0°	3.7	0"	0.75	0	1	0
KCI/HCI, ppm	BMDL	0	<1	14	114	270	BMDL	0°
Cu, mg/m³	4.0	17	BMDL	0	4.5	3.6	0.02	0
Al ₂ O ₃ , mg/m ³	BMDL	0	BMDL	0	6.8	6.1	BMDL	0
Pb, mg/m ³	37	55	BMDL	0	16	21.9	BMDL	0
ZrO, mg/m ³	BMDL	0	BMDL	0	<0.1	29.5	BMDL	0

Bun #5

^b Average of Runs 1,3, & 4 ^c Average of Runs 1 - 4

^d Gaseous components means of Runs 1, 2, 3; Particle component means of Runs 1 & 3
 Predicted using assumption that all H in formulation of H₂O during burn. See Text.
 Predicted mole fraction of component less than 0.5 x 10⁻⁶ cut off.
 BMDL: Below Method Detection Limit

TABLE 23

Effect of Choice of Gaseous Equation of State on Computed Mole Fractions for
Composition H ^a

	BLA	KE	NASA-Lewis
NAME	IDEAL.	REAL	IDEAL
со	0.2928486	0.2932262	0.29422
H₂O	0.2679565	0.2685877	0.27100
CO2	0.2183805	0.2180917	0.21722
N ₂	0.1346118	0.1346414	0.13459
H₂	4.927155 x 10 ⁻²	4.886758 x 10 ⁻²	4.8588 x 10 ⁻²
HCI	8.636553 x 10 ⁻³	8.599959 x 10 ⁻³	
кон	7.785912 x 10 ⁻³	7.757804 x 10 ^{.3}	
KCI	7.232547 x 10 ⁻³	7.278343 x 10 ^{.3}	
NO	1.281355 x 10 ⁻³	1.270143 x 10 ⁻³	
0 ₂	5.792795 x 10 ⁻⁴	5.639095 x 10 ⁻⁴	
NH_3	8.57131 x 10 ⁻⁶	8.776596 x 10 ⁻⁶	
CH ₂ O	2.823712 x 10 ⁻⁶	2.871074 x 10 ⁻⁶	
HCN	2.529327 x 10 ⁻⁶	2.631338 x 10 ⁻⁶	
Cl ₂	2.863636 x 10 ⁻⁷	2.811794x10 ^{.7}	
COCl ₂	2.512875 x 10 ⁻¹⁰	2.628192 x 10 ⁻¹⁰	
к	1.164592 x 10 ⁻³	1.15023 x 10 ⁻³	8.4006 x 10 ⁻⁴
COCI	1.79761 x 10 ⁻⁶	1.84523 x 10 ⁻⁶	
ОН	6.396093 x 10 ⁻³	6.222507 x 10 ⁻³	
ко	5.224935 x 10 ⁻⁵	5.182151 x 10 ⁻⁵	
Н	3.155921 x 10 ⁻³	3.057469 x 10 ⁻³	
0	2.448266 x 10 ⁻⁴	2.370879 x 10 ⁻⁴	
N	1.259862 x 10 ⁻⁶	1.24317 x 10 ⁻⁶	
СНО	2.055275 x 10 ⁻⁵	2.080149 x 10 ^{.5}	
CI	3.638269 x 10 ⁻⁴	3.574871 x 10 ⁻⁴	

From Reference No. 30

-

50

Ξ

air on the products of propellant firing has been observed by other investigators³². Snelson, et al. reported that double base propellants fired in Argon atmospheres produced mole fractions of CO which were much closer to those predicted by thermodynamic modeling than when the same propellants were fired in ambient air.

Table 24

Influence of Exhaust Gas Mixing with Air on Carbon Monoxide/Carbon Dioxide Ratios

		Fuel/Air =	5*
Pressure, atm	39.5	5.0	1.0
Temperature, °K	1837	1300	1000
CO/CO ₂	1.44	1.08	0.74
		Fuel/Air =	3*
Pressure, atm	39.5	5.0	1.0
Temperature, °K	1837	1300	1000
CO/CO ₂	1.16	0.88	0.61
		Fuel/Air =	1*
Pressure, atm	39.5	5.0	1.0
Temperature, °K	1837	1300	1000
CO/CO ₂	0.31	0.25	0.17

Composition D

* Considers exhaust gases from motor nozzle as "fuel."

RECOMMENDATIONS FOR FURTHER WORK

It would be interesting to compare these results with other computer models. Software is available with similar, but not identical methods of computation and data fitting³³.

It may be possible to extend the NASA Lewis model to account for nonideal gas equations of state for some of the major components, without involving major modifications to the program. However, any revision is not to be undertaken lightly; the program is some 5000 lines of Fortran and represents a very large investment of time and effort. The development of a new model would require a similar investment.

A thorough review of the thermal and transport property data base may seem to be desirable, in order to incorporate any new information available since the 1986 revision, and to have some additional assurance that the data have been entered correctly. However, there have only been 8 changes to the data base, and none have practical significance for this study³¹. And since transport properties are not a significant factor in this work, any changes should not have an effect on the conclusions.

It would be useful to model the chemical kinetics of these processes, using the software described in Reference 34. It should be noted, however, that a considerable amount of effort would be required to elucidate the reactions occurring in these events and to make estimates of the necessary rate constants. The Arrhenius constants and the activation energies for the hundreds of conversions processes are not available. In contrast, modeling the flow processes may be useful, since it could lead to a better understanding of the amount of air entrained with the exhaust during combustion.

It might be useful to do some experimental firings of the motors into inert atmospheres, such as argon, in order to test the air mixing hypothesis. However, such in and of itself would not aid in the refinement of the model.

Finally, alternatives to the "air entrainment" explanation as the source of disagreement between experiment and computation should be explored. For example, calculations described in this report were carried out for two possible cases: either the chemical reactions in the expanding flow from the combustion chamber maintain complete equilibrium from throat to the nozzle exit, or else the flow is completely frozen once it leaves the nozzle throat. But the intermediate case is also possible. That is, the flow may freeze somewhere between the throat and the exit. This could provide a possible explanation for the discrepancy between experiment and computation without requiring the assumption of entrained air. To implement such an approach, an adiabatic expansion calculation should be run. Initial estimates provided to the authors of this report suggest that this approach is feasible³¹. However, to take full advantage of such an approach, careful experimental determination of hydrogen and methane would have to be performed. Because of the complexities of such real time analyses, these measurements could not be performed.

REFERENCES

- 1. FM 6-20 (with C1), Fire Support in Combined Arms Operations, 30 Sep 1977.
- 2. FM 71-101, Infantry, Airborne, and Air Assault Division Operations, 26 Mar 1980.
- 3. AR 40-10, Health Hazard Assessment Program in Support of the Army Materiel Acquisition Decision Process, 15 Oct 1983.
- 4. AR 1000-1, Basic Policies for Systems Acquisition, 1 June 1983.
- 5. Characterization of Combustion Products from Military Propellants, IIT Research Institute, USASMRDC Contract DAMD17-80-C-0019.
- 6. Short-Term Intermittent Exposure to HCl (Draft Final Report), Enviro Control, Inc., USAMRDC Contract DAMD17-79-C-9125.
- 7. Hoke, S.H. and J.W. Carroll, Development and Evaluation of Atmospheric HCl Monitors, in Toxic Vapor Detection Technology (Propellants and Related Items) S&EPS Workshop, CPIA Publication 386, October 1983.
- 8. Letter, SGRD-UBG-M, 30 April 1984, subject: Medical Research Issues Associated with Stinger.
- 9. Letter, SGRD-UBG-M, 18 Oct 1984, subject: Development of a Coordinated Methodology Investigation/Medical Research Program for Evaluation of Gun and Rocket Combustion Products.
- 10. Letter, (2nd End), SGRD-UBG-M, 24 Feb 1984, subject: Stinger Exhaust Gas Measurement, TECOM Project No. 3-M1-000-MAN-031.
- 11. MFR, DASG-PSP, 28 Jan 1982, subject: RC1 Health Hazard Assessment, Multiple Launch Rocket System.
- 12. Minutes of Meeting, Standardization of Test and Evaluation Procedures for Chemical Hazards in New Material, 13-14 Octo 1982, DASG-PSP, dated 15 Oct 1982.
- 13. Letter, SGRD-PLC, 15 Jul 1981, subject: HELLFIRE Human Factors Engineering Analysis.
- 14. Letter, SGRD-OP, 4 April 1979, subject: US ROLAND, Health Hazard Assessment, ASARC III.
- 15. Letter, DRXHE-MI, 31 Oct 1980, subject: US ROLAND, Health Hazard Assessment, ASARC III.b.

- 16. Letter, SGRD-OP, 15 Feb 1979, subject: Health Hazard Assessment, US ROLAND, ARARC III.
- 17. Letter, DRSTE-CM-A, 15 Oct 1980, subject: Safety Release (Limited) for RAM Demonstration of US ROLAND at Ft. Lewis, WA.
- 18. Letter, STEWS-TE-MF, 2 Aug 1982, subject: Exhaust Gas Measurements on STINGER Firings.
- 19. Letter, STEWS-TE-MF, 21 June 1983, subject: STINGER Exhaust Gas Measurements Test Plan (TECOM Project 3-M-OCO-MAN-031, and endorsements (2) thereto.
- 20. Letter, STEWS-TE-RE, 14 Feb 1983, subject: HCl Gas From STINGER Firings.
- 21. Keith J. Laidler, <u>Chemical Kinetics</u>, McGraw-Hill Book Company, New York, 1965, (pp138)
- 22. R. A. Jenkins, C. V. Thompson, T. M. Gayle, C. Y. Ma, and B. A. Tomkins, Interim Report, "Characterization of Rocket Propellant Combustion Products -Description of Sampling and Analysis Methods for Rocket Exhaust Characterization Studies," ORNL/TM-11643, June 7, 1990.
- 23. W. H. Griest, R. A. Jenkins, B. A. Tomkins, J. H. Moneyhun, R. H. Ilgner, T. M. Gayle, C. E. Higgins, and M. R. Guerin, Final Report, "Sampling and Analysis of Diesel Engine Exhaust and the Motor Pool Workplace Atmosphere," ORNL/TM-10689, March 1, 1988. DTIC No. AD-A198464
- 24. B. A. Tomkins, R. A. Jenkins, W. H. Griest, R. R. Reagan, and S. K. Holladay, "Liquid Chromatographic Determination of Benzo(a)pyrene in Total Particulate Matter of Cigarette Smoke," J. Assoc. Off. Anal. Chem. 68(5), 935-940 (1985).
- 25. F.J. Zeleznik and S. Gordon, Calculation of Complex Chemical Equilibria, Ind. Eng. Chem. 60, 27-57(1960).
- 26. F.J. Zeleznik and S. Gordon, A General IBM 704 or 7090 Computer Program for Computation of Chemical Equilibrium Compositions, Rocket Performance, and Chapman-Jouguet Detonations, NASA TN D-1454, 1962.
- 27. S. Gordon and B.J. McBride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations, NASA SP-273, 1971; interim revision, 1976.
- 28. B.J. McBride, personal communication.

- 29. M.W. Zemansky, <u>Heat and Thermodynamics</u>, Fifth Edition, McGraw-Hill Book Company, New York, 1968. (pp. 279-281, 557-606).
- 30. D. Straub, Thermofluiddynamics of Optimized Rocket Propulsions, Extended Lewis Code Fundamentals, Birkhaeuser Verlag, Basel, 1989.
- 31. Eli Freedman, Personal communication to Steve Hoke, USABRDL, February 12, 1991
- 32. A. Snelson, P. Ase, W. Bock, and R. Butler; "Characterization of Combustion Products of Military Propellants, FINAL REPORT, Volume II," AD-A167417, March, 1983
- 33. R.J. Kee, personal communication.
- 34. R.J. Kee, J.A. Miller, and T.H. Jefferson, CHEMKIN: A General-Purpose, Problem-Independent, Transportable Fortran Chemical Kinetics Code Package, Sandia National Laboratories Report SAND 80-8003, March 1980; A.E. Lutz, R.J. Kee, and J.A. Miller, SENKIN: A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis, Sandia National Laboratories Report SAND 87-8248, February 1988.

Appendix A

Selected Rocket Propellant Formulations

COMPOSITION "D" FORMULATION

.

Abbreviation	Constituent	Formula	% W	ΔH [°] (kcal/moie)
NC	Nitro Cellulose (12.6% N)	C ₆ H _{7.55} O _{8.9} N _{2.45}	49.0 ± 1.5	169.17
NG	Nitroglycerine	C ₃ H ₅ N ₃ O ₆	40.6	-88.60
DNPA	Di-n-propyl adipate	C ₁₂ H ₁₂ O	3.0	
NDPA	2-Nitrodiphenyl amine	C ₁₂ H ₁₁ N ₂ O ₂	2.0 ± 0.05	-16.71
	LC-12-6 ⁴	See note	5.3	
Wax	Candelilla wax	C ₂₅ H ₄₆ O	0.1	

• LC-12-6 is a mixture, consisting of 11.4% Copper, 36% Lead, 40.1% β -resorcylic acid (C, H₆ O₃) (Δ H₇° = 190 kcal/mole), and 12.5% 2-hydroxybenzoic acid (C, H₈ O₃, Δ H₇° = -141 kcal/mole)

. Heat of formation unavailable

.

,

Abbreviation	Constituent	Formula	Wt %	∆H [°] (kcal/mole)
KCI04	Potassium perchlorate	KCIO4	7.8-8.05	-103.43
NC	Nitrocellulose	C12H15N5O20	54.60	169.17
NG	Nitroglycerine	C ₃ H ₅ N ₃ O ₄	35,50	-88.6
EC	Ethyl Centralite	C ₁₇ H ₂₀ N ₂ O	0,9 - 0,8	-25.1
С	Carbon Black	С	1.20	Ref.

COMPOSITION "H" FORMULATION

.

The entry "Ref." in the heat of formulation column means that this is a reference element in the NASA-Lewis program.

COMPOSITION "L" FORMULATION

Abbreviation	Constituent	Formula	W1. %	∆H _t • (kcal/mole)
AP	Ammonium Perchlorate		73,93	-70.58
PVC	Polyvinyl Ohloride	(O ₂ H ₃ OI)	11.67	8.41
DEHA	Di (2-ethyl hexyl) adipate	0 ₂₂ H ₄₂ O ₄	11.67	-308,0
CUCR	Copper chromite	Ou ₂ Or ₂ O ₄	0,97	Ref.
A1	Aluminum Powder	Al	0,99	Ref.
С	Carbon Black	С	0.05	Ref.
BACD	Stabilizer (Barium/Cadmium)	Ba-Cd	0.47	Ref.
SDSS	Sodium dioctyl sulfo succinate	C ₂₀ H ₃₇ O ₇ SNa	0.083	*
GMO	Glycerol monooleate	C ₂₁ H ₄₀ O ₄	0.083	*
PTD	Pentaerythrital dioleate	C ₄₁ H ₇₆ O ₅	0.084	*

+ Heat of formation unavailable

PROPELLANT "Q" FORMULATION

	Constituent	Formula	Weight %	∆H∙, (Kcal/mole)
NG	Nitroglycerine	C₃H₅N₃O₀	11.36	-88,60
BTTN	Butane triol trinitrate	C ₄ H ₇ N ₃ O ₉	11.36	-93.07
НМХ	Cyclotetramethylene tetranitramine	C₄H ₈ N ₈ O ₈	66.00	17.93
PGA	Polyglycol adipate	0 ₁₀ H ₁₆ O ₅	4,83	-282.9
N-100	Tri-functional isocynate	C ₂ H ₃ NO	1,68	-23.55
MNA	N-methyl-p-nitroaniline	C7H8N2O2	0.75	*
4-NDPA	4-nitrodiphenylamine	C ₁₂ H ₁₁ N ₂ O ₂	0,40	15.4
POP	Polycaprolactone polyol	C ₆ H ₈ O ₇	0.34	-655.1
NC	Nitrocellulose	C12H15N8O20	0.34	169.17
	Lead Citrate	Pb ₃ (C ₆ H ₅ O ₇) ₂ *3H ₂ O	1,50	*
ZrC	Zirconium Carbide	ZrC	1,00	-48.5
С	Carbon Black	C	0.40	Ref.
ТРВ	Triphenyl bismuth	BI(C ₆ H ₅) ₃	0.04	*

The entry "Ref." in the heat of formulation column means that this is a reference element in the NASA-Lewis program

* Heats of formation unavailable

Appendix B

Trace Organic Vapor Phase Constituents Observed In Selected Rocket Exhaust Atmospheres Table B-1

Concentration of Trace Organic Vapor Phase Constituents in ASCF Chamber

Compositions D and H

					Concentral	ions, µg/m ³			,	
		U	Composition	-	-		Compos	sition D		
CONSTITUENTS	Blank 1	No. 1A	No. 2C	No. 2D	Blank 2	No. 1A	No. 2A	No. 2B	No. 3B	Biank 3
Trichiorofluoromethane						17.7	11.2		10.1	
Methylene chloride				8.91	11.9	9.29	6.39		2.11	
Trichloroethane	0.42	0.79		0.93		0.3	0.4			
Benzene	0.82	12.1	16.6	14.4	0.57	3.95	3.79	49.2	15.8	
Trichloroethylene		0.94		3.14						
Methylcrotonate			3.32	31.4	2.09	6.04	4.39	19.7	3.82	0.75
C[1]-benzene		7.16		17	1.57	1.86	2.44	6.66	2.94	1.02
C[3]-cyclopentane				0.85						
Chlorobenzene		2.9								
C[6]-cyclotrisiloxane	3.7	10.6	34.9	58.2	23.9	15.3	14	1.22	6.59	18.4
C[2]-benzene	0.7		3.85		1.27	1.25	0.48			
C[2]-benzene		4.15		7.22			1.6			
Phenylacetylene		1.62	2.13	4.24				3.03	1.71	
Styrene		2.9	3.49	7.64						

Table B-1 (Page 2) Compositions D and H Īī

					Concentratic	ns, µg/m ³				
			0	omposition	Н			C	omposition	D
CONSTITUENTS	Blank 1	No. 1A	No. 2C	No. 2D	Blank 2	No. 1A	No. 2A	No. 2B	No. 3B	Blank 3
C[2]-benzene						0.56	0.76			
Octane		1.28								
Nonene				2.33						
Nonane				1.15						
Terpinene	1.7			4.67	1.19	0.79				
Terpinene				2						
C[2]-benzene								10.6		
C[3]-benzene		1.17		4.24		0.6				
C[3]-benzene		1.36		6.37						
C[1]-sytrene				1.91		0.56				
Heptene							12		4.83	
Cyanobenzene								28	7.91	
Octene			7.11							
C[3]-benzene		1.09		1.66	0.9	0.51	0.56			
Decene		0.91	1.07	2.5		0.56				

63

	T
ଳ	Z
8	a
, a	0
e	8
	<u>8</u> .
	ΪØ
Į,	ğ
۳	5
	Δ

					Concentrat	ions, µg/m ³				
		Ū	Composition 1	Ŧ			Compos	ition D		
CONSTITUENTS	Blank 1	No. 1A	No. 2C	No. 2D	Blank 2	No. 1A	No. 2A	No. 2B	No. 3B	Blank 3
Decane		0.38		1.49			0.48			1.29
Terpinene		1.02	1.84	2.59	1.12	0.98	0.8			
C[8]-cyciotetrasiloxane	6.22	6.03	30.2	50	0.97	4.65	5.19	18.2	6.15	7.48
Teripene		0.87		1.36				4.24		
C[3]-cyclopentane	2.67	6.03	3.26	4.67	25.4	9.75	5.99		0.66	
C[8]-cyclotetrasiloxane			2.31							
C[3]-benzene								1.89	88.0	
C[3]-benzene		0.72								
C[4]-benzene				0.89						
C[3]-cyclopentane				1.87			1			8.16
Terpinene										8.84
Undecane		1.06	1.6	1.91	0.68	0.6	0.56		0.53	1.56
C[1]-cyclohexanol	2.07	1.28	2.96	4.67	2.39	1.72				1.02
C[4]-benzene		1.47								
C[3]-cyclopentane					1.19			8.32		0.75
C[10]-cyclopentasiloxane		6.41	1.3	25.9	8.21	5.57	5.19	12.1	3.51	12.9

Table B-1 (Page 4) Compositions D and H

					Concentrati	ons, #g/m ³				
		0	Composition F	-			Compoe	ition D		
CONSTITUENTS	Blank 1	No. 1A	No. 2C	No. 2D	Blank 2	No. 1A	No. 2A	No. 2B	No. 3B	Blank 3
Naphthalene		2.79	4.44	11		1.49	1.2		7.91	8.84
C[10]-cyclopentasiloxane		2.04								
C[3]-cyclopentane			0.77	1.91						
Dodecane		0.26		1.23						
C[3]-cyclopentane	1.7		1.24	2.16	1.87		5.99	29.5		1.22
C[3]-cyclopentane	7.41	4.9	11.2	2.38						52.4
C[12]-cyclohexasiloxan				0.51	38.8		1.92			
Tridecane				1.4				35.6		
C[12]-cyclohexasiloxane	0.89	0.91	16.6	44.1	4.4	1.35			1.71	8.16
Tetradecane	1.26		0.95	1.66		0.38			0.57	0.75
C[8]-benzoquinone	1.41			1.83						1.91
C[9]-aminophenol	2.3		1.36	2.29				1.89		
Penthdecane										0.68
C[12]-cyclohexasiloxane	4.74	0.64	5.92	21.2	1.72		3.2			4.42
Diethylphthalate					4.18					
C[14]-cycloheptasiloxane						4.04			0.29	

65
Table B-1 (Page 5) Compositions D and H

-

					Concentrat	ions, #g/m ³				
		5	Composition	T			Сотро	sition D		
CONSTITUENTS	Blank 1	No. 1A	No. 2C	No. 2D	Blank 2	No. 1A	No. 2A	No. 2B	No. 3B	Blank 3
Hexadecane		1.17		1.1					0.75	
Diethylphthalate										19.1
Diphenylamine								1.89		1.43
Hexadecene	2.74	0.83	3.97			1.07				
Actadecane	8.15		2.84	1.02						
Heptadecane	1.48		1.18	0.64		0.88				0.95
Nonadecane	2		- 37	1.1						2.65

Missing values denote compound at levels below method detection limits

Table B-2

Concentration of Trace Organic Vapor Phase Constituents in ASCF Chamber

Composition L

	RETENTION TIME (min)	SYSTEM BLANK (#g/m ³)	BLANK 1 (#9/m ³)	SAMPLE 1 (#g/m ³)	SAMPLE 2 (#g/m ³)	SAMPLE 3 (#g/m ³)	BLANK 2 (#9/m ³)
argon	0.2	2.420	2.330	4.210	13.200	14.390	
carbon dioxide	3.4	0.720	2.730		7.381	13.460	15.180
trichlorotrifluoroethane	10.1		0.270				
octamethyl-cyclotetrasiloxane	21.0	1.490	0.066	8.570		1.540	
mono- or di-subs. benzene	21.8			0.530			
hydroxy-N-phenyl-acetamide or isomers	24.6			1.290			
trimethylsilane compd	24.7	0.580					
octamethyl-cyclotetrasiloxane	25.8		0.106	5.820	0.217	2.050	0.149
hexamethyl-cyclotrisiloxane	27.9			1.370			
octamethyl-cyclotetrasiloxane	28.5			0.312			
decamethyl-cyclopentasiloxane	29.6			1.926		0.569	
dodemethyl-cyclohexasiloxane	33.4			0.496			
hexamethyl-cyclotrisiloxane	34.0	0.930					
hexamethyl-cyclotrisiloxane	42.3	4.680					

Missing values denote compound at levels below method detection limits

Table B-3 Trace Organic Vapor Phase Constituents in ASCF Chamber

Composition Q

					Concentral	ions, µg/m ³			
Constituents	FIET TIME, min	system Blank	BLANK- 1	TSTAA -1	151AA- 2	TSTAB- 2	TSTAB-	TSTAA- 3	TSTABL
argon	0.2	2.420	1.898		0.750	0.071	1.787		2.581
carbon dioxide	3,4	0.720			1.654				
trichlorotrifluoroethane	10.1					0.018		1.217	
octamethyl-cyclotetrasiloxane	21.0	1.490							
hexamethyl-cyclotrisiloxane	21.3				0.061	0.036	1.168		0.207
hexamethyl-cyclotrisiloxane	22.7						0.043		
hexamethyl-cyclotrisiloxane	23.6						0.044		
trimethylsilane compd	24.7	0.580							
octamethyl-cyclotetrasilcxane	25.8	_	0.024			0.050	0.508		0.406
hydrocarbon	27.3					0.057			0.402
alkylalcohol	27.3			2.175					
hexamethyl-cyclotrisiloxane	27.9						0.080		
decamethyl- cyclopentasiloxane	29.6					0.012	0.074		0.277
naphthalene	31.8						0.072		
trimethyl-cyclobutanone	31.8		0.058	59.62 5		0.436		20.924	3.504
hexamethyl-cyclotrisiloxane	34.0	0.930							
octamethyl-cyclotetrasiloxane	36.6						0.080	0.423	
phthalate	39.2			18.20 0			0.084	7.122	
hexamethyl-cyclotrisiloxane	42.3	4.680							
phthalate	43.9				0.061				

Appendix C

Output from Selected Runs of Computer Model NASA-Lewis CET-86 Table C-1 NASA - Lewis CET - 86 Output Composition D

fri Dec 6 10:32:42 EDT 1991

 L 4/85 1 2 4 CO KETRE ETWIENE ETWIENE CME RAD CME RAD CME RAD CME RAD CTELOPADIENE I-PROPANDIENE CTELOBUTADIENE FORMALDENYDE CM4 298.150 298.150 298.150 298.150 298.150 298.150 298.150 298.150 298.150 , 8 ****** 3 3/61 1 5/84 1 5/84 1 8/8 1 8/8 8/8 8/8 1 3/67 1 1/85 1 1 -169170.00 -88600.00 -28600.00 -16710.00 -16710.00 -16710.00 -141000.00 -141000.00 CM2 METHILOXIDE CMM RAD CMM RAD CMTLENE CM2CHO RAD ETHIL RAD ETHIL RAD ETHIL RAD CM3 RAD CM3 RAD FAOFANE FAOFA 49.50000 3.00000 2.000000 2.400000 0.600000 0.600000 1.900000 112/72 1 9/85
 SPECIES BEING COMSIDERED IN THIS SYSTEM
 313

 3 V/70 C
 312/67 CM
 312/67 CM

 3 6/69 CM
 1 9/89 WUDRDIFWEINFLEWE
 3

 3 6/69 CM
 3122/67 CM
 31

 3 6/69 CM
 3122/67 CM
 3

 3 6/69 CM
 3127/07 MCM RAD
 3

 3 6/69 CM
 3127/07 MCM RAD
 3

 3 122/67 CM
 3127/07 MCM RAD
 3

 3 1212/69 CZ
 3 3/67 CZM RAD
 3

 3 1212/69 CZ
 3 3/67 CZM RAD
 3

 3 9/66 CCD RAD
 3122/69 CS
 908

 3 9/66 CCD RAD
 3122/69 CS
 908

 3 9/66 CCD RAD
 3122/69 CS
 908

 1 9/86 MCD RADE
 3122/69 CS
 908

 1 9/86 MCD RADE
 3127/69 CS
 908

 1 9/86 MCD RADE
 3127/69 CS
 908

 1 9/86 MCD RADE
 1 9/85 MCP RADE
 1 1

 3 9/66 CCD RADE
 3127/69 CS
 908

 1 9/86 MCD RADE
 908
 908

 1 9/86 MCD RADE
 1 9/85 MCP RADE
 1 1
 2.4500 3.0000 0.0000 2.0000 0.0000 0.0000 0.0000 0.0000 MAMELISIS SIMPTZ TASE TASE TASE TASE FINE FINE TASE FINE TASE NO IMPT2 VALUE GIYEN FOR OF, EQRAT, FA, OR FPCT ZZ z 7.5500 5.0000 22.0000 11.0000 6.0000 6.0000 0.0000 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 REACTANTS C 6.0000 0 C 12.0000 0 C 12.00000 0 C 12.00000 0 C 12.0000000000 0 C 12.00000000

-

BUR BA 1-BUTEME 1 4/85 TSCUDENTARE F12/55 FCTCLDFRIAME F12/54 DELZEME F12/54 DELZEME F12/54 DELZEME F12/54 DELZEME F12/54 DELZEME F12/52 1-DCTEME F12/52 1-A(G) F12/52 NAP F12/52 NAP F12/52 NAP F12/52 NAP F12/52 PE F12/52 PE F1		•	
DBUTENE BUTT NA BUTT NA BUTT NA S(CN)2245 5(CN)2245 5(CN)2245 5(CN)2245 5(CN)2245 5(CN)2245 100 100 100 100 100 100 100 100 100 10		F8 -16.842 -16.195 -16.220 -16.219	98 -15.621 -15.595 -15.595 -14.139 -14.139
BUF BA ISI P10/PS T11 P10/PS T11 P10/PS EN P112/PS EN	HIXTURE HIXTURE HSUBO -0.26761290E+ BG(I) 0.202786595E- 0.3916657E- 0.9226856E- 0.9152258E-	Cu -9.390 -8.126 -8.599 -8.599	Cu(L) - m.265 - m.251 - m.252 - 7.552 - 7.572 - 7.572
2-BUTENE CIS 8-BUTTL RAD 5-BUTTL RAD PTEKTL RAD PTEKTL RAD 7-PETTL RAD 8-HEPTTL RAD 150-DETANE	1000000000 1000000000 100000000 1100000000	N2 -24.954 -25.158 -25.165 -25.165	M2 -25.345 -25.352 -25.352 -25.717 -25.703 -25.703 -25.825
S Bur 12/0000 12/0000000000	00000 5.17000 5.17000 6.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000	HZ -17.641 -17.819 -17.827 -17.827	HZ -11.94 -11.94 -11.95 -11.95 -11.26 -11.26 -11.26 -11.26 -11.26 -12.26
2-BUTELE TAN 5-BUTELE TAN 5-BUTELEAD 5-BUTELEAD 5-BUTELEAD 1	00, 1.86000000 000000000000000 00000000000000	N20 -35.812 -37.064 -37.047 -37.048	H20 - 38.212 - 38.222 - 38.261 - 38.261 - 40.947 - 41.957 - 41.957
012 012 </td <td>00000000000000000000000000000000000000</td> <td>,495 1.236 1.231 1.231 1.231 2.231 2.231</td> <td></td>	00000000000000000000000000000000000000	,495 1.236 1.231 1.231 1.231 2.231 2.231	
1.3-8UTADIEF (acefic acii m-butadief 1.Penere Phend Phend Catesol Catesol Bibenyt Bibenyt Bibenyt Mid Mid Mid Mid Mid Mid Mid Mid Mid Mid	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	T C0 2731.78 -29 2465.72 -3(2469.21 -30 781478 T - 2469.07 -3(782040 T -	1 2264.33 -50 2256.33 -51 2256.41 -51 2256.41 -51 2256.41 -51 1894.08 -53 1894.08 -53 1894.08 -53
<pre>A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</pre>	FOR FOR FOR FOR FOR FOR FOR FOR	PDINT ITH 1 19 2 5 2 5 4 00 CU(L 2 5 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

-12.57\$ -10.842	-10.985 -10.985	P8 -10.862	P5 -10.849	-10.858	98 -10.851 -10.851
-6.996 -6.458	-6.461 -6.477	Cu(L) -6.314	-6.299 -6.299	-6.309	Cu(S) -6.303 -6.303
-26.01a -26.327	-26.324 -26.314	M2 -26.424	M2 -26.434	-26.443	N2 -26,436 -26,435
-18.502 -18.720	-18,723 -18,715	Н2 -18,795	H20 -47.695	-47.643	M2D -47,686 -47,683
- 43 , 707 - 48 , 699	-46.684 -46.587	COZ -64.817	CO2 -64.958	-64,876	E02 -64 945 -64,939
-33,938 -35,532	-35.526 -35.414	CO -36.013	C0 -36.065	-36.045	CO -36.061 -36.060
6 3 1626.83 7 6 1412.44 ADD PB(L)	7 3 1413.60 7 4 1419.58	POINT IIN I B a 1359.67	PDINT ITN T 8 3 1354.19 Add Cu(S)	E 2 1358.00 Remove cu(l)	POINT IIM I 8 2 1354.86 8 3 1355.04

,

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION

TEMP DFG K 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15

STATE

C = 2500.0 PSI	•									
ASE ND. 40	2						ï			
CHEMIC	AL FORMUL.	4					5	EE NOTE)	CAL/MOL	
UEL C 6.00	0 000	9.90000	H 7.550		2.45000		-	1.489217	-169170.000	s
UEL C 3.00	0 000	9.00000	M 5.000	N 00	3.00000		-	1.405351	-88600.000	s
UEL C 12.00	0 000	A.00000	H 22.000	00			-	1.029952	-246000.000	S
UEL C 12.00	0 000	2.0000	H 11.000	× 00	2.0000		-	1.019968	-16710.000	s
UEL C 7.00	0 000	A.00000	M 6.000	00				3.023962	-190000.000	s
UEL C 7.00	0 000	3.00000	N 6.0001	8			-	1.006587	-141000.000	s
UEL CU 1.00	000							0.005990	0.00	5
UEL PB 1.00	000							0.018970	0.000	N
٥	/F= 0.00	00 PERC	CENT FUEL	100.00	00 EQUI	VALENCE RI	ATID= 1.54	113 PHI	- 0.000u	
	CHANBER	THROAT	EXIT	EXIT	EXIT	EXIT	EXIT	EXIT		
5/P	1.0000	1.7820	2.9558	7.620	7 10.333	17.047	35.065	45.555		
. ATH	170.11	95.460	57.553	22.32	3 16.463	1616.6	A.3514	3.7343		
. DEG K	2731.8	2469.1	2256.4	1894.	1 1788.5	1626.8	1419.6	1355.0		
THD. 6/CC	1.9346-2	1.2031-2	7.9469-3	3.6746-	3 2.8701-3	1.9127-3	1.6658-3	8.6020-4		
I. CAL/G	-531.80	-648.71	-741.65	-894.0	4 -937.58	-1003.93	-1089.09	-1117.26		
I. CAL/G	-744.74	-840.86	-917.03	-1041.1	6 -1076.49	-1130.27	-1199.32	-1222.39		
. CAL/G	-6734.39	-6254.80	-5864.88	-5194.6	0 -4998.53	-4697.68	-4312.29	-4193.91		
. EAL/(G)(K)	2.2705	2.2705	2.2705	2.279	5 2.2705	2.2705	2.2705	2.2705		
1. HOL WT	25.493	25.535	25.566	25.58	5 25.586	25.587	25.392	25.613		
DLV/DLPJT	-1.00076	-1.00182	-1.00075	-1.0001	0 -1.00005	-1.00002	-1.00217	-1.00137		
DLV/DLT)P	1.0158	1.0294	1510.1	1.001	9 1.0009	1.0003	1.0333	1.0219		
P. CAL/(G)(K)	0.4505	0.4581	0. A3A7	0.413	1114.0 B	0.4088	0.4489	0.4375		
(S) AMMA (S)	1.2163	1.2168	1.2237	1.232	0 1.2334	1.2347	1.2233	1.2252		
SOM VEL.W/SEC	1041.0	989.1	947.6	870.	8 846.7	807.9	751.1	1.467		
IACH NUMBER	0.00	1.000	1.398	1.99	9 2.176	2.460	2.875	3.015		
REDRMANCE PARA	METERS									
1E/AT		1.0000	1.1300	1.860	0 2.2500	3.1300	9.1700	6.2500		
STAR. FI/SEC		4752	4752	475	2 4752	4752	4752	4752		
		0.683	0.915	1.20	2 1.272	1.372	1.491	1.528		
VAC.LB-SEC/LB		183.7	191.6	213.	6 220.1	229.8	242.0	246.0		
ISP. LB-SEC/LB		100.9	135.1	111.	5 187.9	202.7	220.2	225.7		

CF IVAC.LB-SEC/LB ISP. LB-SEC/LB

MOLE FRACTIONS	
FORMALDENYDE	3.8028-6 2.2758-6 1.8699-6 6.7396-7 5.3081-7 3.6196-7 2.1358-7 1.7672-7
FORMIC ACID	5.9694-6 3.2709-6 1.9430-6 7.4904-7 5.5563-7 3.4312-7 1.7469-7 1.3735-7
CHA	7.1355-E 7.D490-E E.0376-E 1.6105-7 2.2956-7 4.7519-7 1.E569-6 3.1490-6
50	3.7961-1 3.7529-1 3.7059-1 3.5871-1 3.5590-1 3.6478-1 3.2876-1 3.2241-1
C 0 2	1.3602-1 1.4075-1 1.4551-1 1.5759-1 1.6241-1 1.7154-1 1.8756-1 1.9391-1
CU	2.3248-3 1.4945-3 6.1020-4 6.7801-5 2.8684-5 5.8601-6 4.0357-7 1.4581-7
C U O	5.816 -6 1.266 -6 1.775 -7 1.808 -9 3.167-10 1.339-11 7.199-14 1.001-14
C U 2	3.630 -5 2.141 -5 5.333 -6 1.885 -7 5.166 -6 4.800 -9 8.982-11 1.973-11
r	1.5647-3 7.3076-4 3.3750-4 5.6252-5 2.8597-5 8.4045-6 1.1237-6 5.2840-7
N UN	5.3027-6 3.1758-6 2.0610-6 9.6146-7 7.6286-7 5.2932-7 3.2268-7 2.7087-7
HCD RAD	1.D486-5 3.8734-6 1.5055-6 2.D186-7 9.8602-8 2.8038-8 3.8333-9 1.8270-9
HNCO	1.9396-6 1.0240-6 5.8474-7 2.0366-7 1.4487-7 8.2590-8 3.6540-8 2.7185-8
HZ	1.0295-1 1.0757-1 1.1245-1 1.2448-1 1.2448-1 1.2931-1 1.3844-1 1.5445-1 1.6080-1
M 2 0	Z.4734-1 Z.4375-1 Z.3930-1 Z.2754-1 Z.2275-1 Z.1362-1 1.9760-1 1.9126-1
NH 2	1.073 -6 3.506 -7 1.213 -7 1.264 -8 5.637 -9 1.366 -9 1.446-10 6.268-11
NHS	1.7570-5 1.3476-5 1.1109-5 8.7647-6 8.4223-6 8.2080-6 8.6068-6 8.8299-6
01	8.964 -5 2.255 -5 5.633 -6 2.348 -7 7.134 -8 8.322 -9 2.473-10 6.607-11

₽

.

1.0005-3 ADDIIIONAL PAODUCTS MMICH WERE CONSIDERED BUT MMOSE MOLE FRACTIONS WERE LESS THAM 1 0157-3 313848-4 1.1135-4 8.4416-6 3.2454-6 5.6572-7 3.1121-8 2.4624-5 1.399-6 2.018-7 2.264-9 3.199-10 1.919-11 1.221-13 2.1624-3 2.2388-3 2.2225-9 2.2225-9 2.3222-9 2.3325-5 2.1450-7 1.6889-4 3.4675-5 5.2128-5 1.2092-5 7.7961-6 5.0866-6 6.1760-7 1.3451-6 1.1427-6 9.8653-7 7.7679-7 7.3149-7 6.7805-7 5.4996-7 1.3451-6 1.1427-6 9.8653-7 7.7679-7 7.3149-7 6.7805-7 5.4996-7 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 1.9223-4 0.0000 0 0.0000 0 0.0000 0 0.0000 0 0.0000 0 1.9223-4 268

100

SODDDE-D6 FOR ALL ASSIGNED CONDITIONS

•

**

J	CH	CH2	CH3	MYDROXYMETHYLENE	METHYLOXIDE	METHANDL
LN	NCN RAD	CNN RAD	C 2	C2H RAD	ACETYLENE	KETENE
C2H3 RAD	METHYL CYANIDE	CH3CO RAD	CH2CH0 RAD	ETHYLENE	ACETALDEHYDE	ACETIC ACID
(FORMIC ACID)2	ETHYL RAD	ETHYL OXIDE RAD	ETHANE	AZDMETHANE	ETHANDL	DIMETHYL ETHER
CHC RAD	CYANDGEN	CCC RAD	3	C3H3 RAD	CVCLOPROPENE	PROPVNE
ALLENE	C3H5 RAD	CYCLOPROPANE	PROPYLENE	PROPYLENE OXIDE	I-PROPYL RAD	N-PROPYL RAD
PROPANE	I-PROPANDL	CARBON SUBOXIDE	C.4	BUTADITKE	BUTAN-1EN-3TN	CYCLOBUIADIENE
2-8UTYNE	1.3-BUTADIENE	2-BUTENE TRANS	2-BUTENE CIS	ISOBUTENE	1-8UTENE	(ACETIC ACID)2
S-BUTYL RAD	N-BUTYL RAD	T-BUTYL RAD	I SOBUTANE	N-8UTANE	CARBGN SUBNITRID	C
CYCLOPENTADIENE	CTCLOPENTANE	1-PENTENE	N-PENTYL RAD	T-PENITL RAD	CH3C(CH3)2CH3	PENTANE
I SOPENTANE	MEXATRIYME	PHENYL RAD	PHENGXY RAD	BENZENE	PHENOL	CYCLONCXENE
N-HEXYL RAD	BENZALDEHYDE	TOLUENE	CRESOL	1-HEPTENE	N-HEPITL RAD	N-HEPIANE
1-DCTENE	N-DCTYL RAD	DCTANE	I 50-0C T ANE	N-NONTL RAD	NAPTHLENE	AZULENE
N-DECYL RAD	O-BIPHENYL RAD	BIPHENYL	JET-A(G)	BIBENZYL	ОМН	HND 2
HN03	H02	H2M2	H202	z	NCD	N I
NH 2 DH	ND 2	ND 3	N 2 H 2	NH 2 NO 2	MZHA	M 2 0
N 2 D 3	N20A	N205	и.5	NGH	03	C (C #)
BENZENE(T)	TOLUENE(L)	DCTANE(L)	JET-A(L)	CUCO3(S)	C U D (S)	CU02H2(5)
C U 2 D (S)	CU20(L)	H20(5)	H20(T)	PB(S)	PB0 (RD)	P80(7#)
PB0(L)	PB02(S)	PB304(S)				

NDTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF DXIDANT IN TOTAL DXIDANTS

• n

r I

TMEORETICAL ROCKET PERFORMANCE ASSUMING FROJEN COMPOSITION DURING FIFANNJON

77

CIA AC(1+154 AC(1+154 CIAAO(1+10 CIAAO(1+10 CIAAO(1+10 CIAAO(1+10 CIAO(1+10) CM3 CM3 AD CM3C0 AND CM3C0 AND CT3YL 0 21DC AAD CC0 AAD CC0 AAD CTCLOPADFAMC CTCLOPADFAMC CARONA SUBOLIDC CARONA SUBOLIDO CONTO CARONA SUBOLIDO CARONA SUBOLIDO CARONA SUBOLIDO CARONA SUBOLIDO CONTO CONT CHZ HCH RAD HCH HL CYANIDC CTHYL RAD CTHYL RAD CTHYL RAD CHANCCH CHAN SUT HCHAN CZN RAD CZNS RAD Cronte acid)2 CNC Rad Allen Padpane S-Buttne S-Bu C METNANOL KETENE ACETER CLID Dimeting Ether Proping CTLOBUTADENE CTLOBUTADENE CACETIC ACID)2 Fentane

i i i L

MC M HEFTEL MAD MAD MAPTHLEME 1 MAD MAD 1 MAD 1 MAD 20 20 20 20 20 20 20 20 20 20 20 20 20
1 - MCPTC M - 80971 M - 80
CMTSOL 155-0CTAMT 155-0CTAMT 150-4C5) 4202 4202 21-4(1) 21-4(1) 21-4(1) 21-4(1)
101UEME 061AME 061AME 1742 4242 4205 061AME(1) 06120(5) 00140
BEWZALDEHYDE - OCTYL AAD - BITHENYL AAD - D - BITHENYL AAD - D - BITHENE(L) - D - D - D - D - D - D - D - D - D - D
N-HEXTL RAD 1-OCTENE N-OCTENE N-OCTL RAD N-02
CYCLOMEXEME N-MEPTAME Azuleme HMD2 NM N20 C(GR) C(GR) PB(S)

NDIE. MEIGHT FRACTIOM OF FUEL IN TOTAL FUELS AND OF OXIDANT IM TOTAL OXIDAMTS

•

~ ~ ~ ~ ~ ~ ~ -169170.00 -86600.00 -246000.00 -16710.00 -140000.00 -141000.00 -141000.00 • 49.30000 40.59999 3.000000 2.000000 0.600000 0.600000 1.90000 2.4500 3.0000 0.0000 2.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ■ 26+0.0000006400. ■ 26+0.0000006400. ■ 5000.000 , 25+0.0000006+00. Y 26-0.000000E+00. RHO = 26-0.000000E+00. RAIO = 5000.000 . 25-0.000000E+00. Exaito = F. FPCT = F. 2 Z Z
 T
 26 - 1.000000

 T
 26 - 1.000000

 T
 26 - 1.000000

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 5

 T
 <t 7.5500 5.0000 22.0000 11.0000 6.0000 6.0000 0.0000 9,9000 4,0000 2,0000 4,0000 4,0000 3,0000 0,0000 0,0000 0,0000 0F = 0.00000 R ACTANTS C 6.0000 C 12.0000 C 12.0000 C 12.0000 C 7.0000 C 7.0000 C 1.0000 C 1.0000 C 1.0000 C 1.0000 MAMELISTS \$1NPT2 \$1NPT2 kase ta P P PSIA MMMG NSDM .

.

-

ENTHALPY (KG-MOL)(DEG K),	ענ	EFFECTIVE FJEL HPP(2) -0.26761290E+03	EFFECTIVE 0 HPP(1) 0.0000000	XIDAN1 E+D0	MIXTURE HSUBO -0.26761290E+03	
КС- ТОРМ. ИТ. / КС С С 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		80%(1,2) 0.202274356-01 0.393165955-01 0.294869516-01 0.294866616-02 0.915525866-04 0.915525866-04	507 (1,1) 0.00000000 0.000000000 0.000000000000	12 12 12 12 12 12 12 12 12 12 12 12 12 1	80(1) 0.20224856-01 0.393166376-01 0.293089516-01 0.2926864616-02 0.91552366-04	
POINT ITN T I IN 2733.1(CD - 29.310	н20 -35.626	H2 -17.460	N2 -28.775	CU -9.221	FB -16.663
2 5 2464.05 ADD CU(L) 2 3 2471.06	-30.054 -30.047	~36.061 -36.059	-17.638 -17 647	-24.976 -24.985	-7.957 -8.402	-16.013
PC/PT= 1.781950 2 3 2470.75 PC/PT= 1.783035	1 = 247	71.06 -36.061 70.79 -36.061		-24.986	N C 99 - 60 -	-16,046 -16,046
POINT ITN T 3 a 2264,62	CD 729	HZ0 -36,026	HZ -17,600	N2 -25.164	CU(L) -8.266	PB - 15 AA3
3 4 2256.71 3 2 2256.80	1 -30.754	-38.078	-17.806	-25.171	-8.252	-15.41
4 6 1880 5	-32.323	- 40.85	-18.097	-23.334	-7.551	-15.80
4 2 1893.61	-32.259	-40.768	-10.007	-25.520	-1.578	-13.95
5 5 1782.29 5 4 1788.13	-32.832 -32.800	-41.816 -41.758	-18.180 -18.175	-25.642 -25.636	-7.345 -7.358	-13.361 -13.401
6 5 1627.31 6 3 1626.43	1 -33.752	-43.518 -43.529	-18.318 -18.319	-25.830 -25.832	-6,995	-12.395
7 6 1411.95 ADD PB(L)	15.35.	- 46.524	- 13. 531	-26.140	-6.457	-10.65
7 3 1414.45 7 4 1420.83	1 -35.340 5 -35.285	-46,492 -46,388	-18.544 -18.555	-26.145 -26.133	-6, 464 -6, 481	196.01- 100.11-
POINT ITM T 8 A 1360.71	CO -35.824	CO2 -64.611	Н2 -18.614	NZ - 26.242	CU(L) -6.317	FB(L) -10.864
POINT ITN T B 3 1354.84	ED -35.079	CO2 -64.762	H20 -47.504	N2 -26.253	-6.300 -6.300	PB(L) -10.85
REMOVE CU(L)	35.862	-64.693	-47.461	-26.260	- ē , 309	-10.85
POINT ITH T	0	C02 227	H20	N2 - 26 266	CU(S)	PB(L)
B 3 1355.70	-35.874	-64.742	164.74-	-26.254	-6.305	-10.80

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITIOM DURING EXPANSION

TEMP DEG K 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15

PC = 3000 0 PSIA Case No. 403

STATE		ŝ	U1	ŝ	s	5	S	s	s																	
ENERGY	CAL/MDL	169170 000	-83600,000	246000 000	-16710.000	190000,000	141000.000	0.000	0.000	0,000																
FRACTION	E NOTE)	. 489217 -	.405351	- 224952	.019968	. 023962 -	. 006589	.005990	018970	13 PHI-	E # 1 1	45.558	A. A808	1355.7	1.0319-3	-1117.36	-1222.52	-4176.24	2.2563	25.619	-1.00115	1.0165	0.4331	1.2264	734.6	3.013
,	(SE	•	•	•	0		8	•	•	FID= 1.54	Ex17	35.056	5.8231	1420.8	1.2786-3	-1089.14	-1199.43	-4295.02	2.2563	25.601	-1.00164	1.0282	0.4426	1.2248	151.8	2.873
										ALENCE RA	E x 1 1	17.059	11.967	1626 4	2.2943-3	-1004.10	-1130.41	-4673.83	2.2563	25.587	-1.00002	1.0003	0.4087	1.2347	807.8	2.461
		45000	00000		00000					£011 V	EXIT	10.341	19.741	1786.1	3.4425-3	-931.17	-1076.65	-4972.36	2.2563	23.586	-1.00005	1.0008	0.4109	1.2335	846.6	2.177
		0 14 2.	0 8 3.		0 × 2.					100.000	ExIT	7.6264	26.767	1893.7	4.4072-3	-894.25	-1041 33	-5167.01	2.2363	25.585	-1.00009	1.0016	0.4134	1.2321	870.8	2.000
		H 7.5500	H 5.0000	H 22.0000	H 11.0000	H 6.0000	H 6.0000			ENT FUEL.	EXIT	2.9579	410.69	2256.8	9.5289-3	-741.86	-917.26	-16.5515-	2.2563	25.569	-1.00064	1.0112	0.4320	1.2245	947.9	1.399
		00006	00000	00000	00000	00000	. 00000			D PERCI	THROAT	1.7830	114.49	2470.8	1.4423-2	-648.87	-841.10	- 6223.77	2.2363	25.542	-1.00157 -	1.0253	0.4528	1.2181	989.8	1.000
	L FORMULA	• • •	• 0 00	• 0	0 0 2	• 0 00	0 00	8	00	F= 0.000	CHANBER	1.0000	204.14	2733.1	2.3207-2	-531.80	-744.82	-6698.33 -	2.2563	25.496	-1.00072	1.0146	0.4482	1.2170	1041.5	0 0 0 0
. 403	CHEMICA	C 6 000	C 3.000	C 12,000	C 12.000	C 7.000	C 7.000	CU 1.0001	PB 1.000	10	_			×	5	5	5		(2)(4)	*1	- 1(-	1)P	/(C)(K)	s)	.H/SEC	MBER
CASE NO		FUEL	FUEL	FUEL	FUEL	FUEL	FUEL	FUEL	FuEr			PC/P	P. ATM	1, 056	RHD, G/	H. CAL/	UL CAL/	C. CAL/	S. CAL/	M, MOL	(DLV/DL	(DLV/DL	CP. CAL	GANNA (SON VEL	MACH NU

AE/AT CSTAR, FT/SEC Cf Ivac.lb-sec/lb Isp. lb-sec/lb

PERFORMANCE PARAMETERS

6.2500 4755 1.528 246.0 225.7

5.1700 4755 1.491 242.0 220.2

3.1300 4753 1.372 229.8 202.7

2.2500 4753 1.272 220.1 187.9

1.8600 4753 1.202 213.6 177.6

1.1300 4753 0.915 191.6 135.2

1.0000 4755 0.683 183.8 100.9

DIF FRAC.

MOLE FRACTIONS														
FORMALDEHYDE	4.5635-6	~	7288-6	-	1627-6	-	0834-7		3620-7	4.34	19-7	2.5603-7	2.1192-7	
FORMIC ACID	7.1642-6	n	9-2526	~	3304-6	-	9820-7	•	. 6629-7	4.11	1-64	2.0968-7	1.6481-7	
CHA	1.0228-7	-	0063-7	-	1539-7	~	3234-7	n	1-1416.	6.86	54-7	2.6250-6	4.4849-6	
C 0	3 7966-1	-	7534-1	'n	7061-1	m	5869-1	n	1-1025.	3.44	75-1	3.2888-1	3.2248-1	
C 0 2	1.3603-1	-	1-2704	-	4560-1	H	5761-1	-	1-2429.	1.71	1-95	1.8744-1	1.9384-1	
CU	2.3119-3	-	2588-3	•	1025-4	\$	6-316-5	~	.3804-5	4.85	9-06	3.4421-7	1.2324-7	
CUD	5.813 -6	-	075 -6	-	487 -7	-	497 -9	~	01-619	1.10	5-11	6.231-14	8.549-15	
C U 2	4.290 -5	-	10 -5	4	868 - 6	-	563 -7	•	280 -8	3.97	• •	7.732-11	1.677-11	
r	1.4354-3	9	7233-4	'n	0883-4	~	1223-5	N	. 6023-3	7.64	43-6	1.0426-6	A.8691-7	
HCM	6.3624-6	5	8083-6	~	\$714-6	-	1532-6	•	1504-7	6.34	1-16	3.8682-7	3.2478-7	
HCO RAD	1.1526-5	•	2647-6	-	6511-6	2	2061-7	-	7-2770.	3.06	20-B	4.2486-9	2.0146-9	
HNCO	2.3289-6		2291-6	٦.	0136-7	~	4417-7	-	. 7369-7	96.4	24-1	A.3901-B	3.2639-8	
н2	1.0296-1	-	1756-1	-	1245-1	-	2450-1	-	1-2933-1	1.38	46-1	1.5433-1	1.6073-1	
H20	2.4747-1	2.2	1-2824	2	3933-1	2	2752-1	~	1-1/22.	2.13	1-65	1.9772-1	1.9133-1	
2 H N	1.180 -6	5	864 -7	÷	330 -7	-	381 -8	۰	156 -9	1.49	1 -9	1.605-10	6.918-11	
NH 3	2.1066-5	-	6133-5	٦	3315-5	-	0519-5		-0110-5	9.85	54-6	1.0279-5	1.0565-5	
ND	8.246 -5	2.1	084 -5	\$	160 -6	2	134 -7	•	478 - E	7.55	•••	2.319-10	6.125-11	

1.2667-1 1.2679-1 1.2684-1 1.2686-1 1.2687-1 1.2687-1 1.2687-1 1.2687-1 1.2687-1 1.2687-1 1.2687-1 1.2687-1 1.2687-1 1.2687-1 1.2687-1 2.712-18 9.3335-4 3.1220-6 1.1970-7 2.395-9 4.477.10 2.26011 1.764-13 2.712-18 9.3315-4 3.1220-1 1.0129-1 7.1875-9 3.432-10 1.387-11 1.079-13 1.356-18 7.931-6 1.187-6 1.691-7 1.875-9 3.432-10 1.387-11 1.079-13 1.356-18 7.611-6 7.280-3 2.2819-3 2.2219-9 2.2274-3 2.5274-3 1.2020-4 1.210-7 1.8600-7 1.672-7 1.202-6 9.3201-7 8.7782-6 8.3026-7 4.5115-7 1.7706-7 1.672-8 1.3666-6 1.1820-6 9.3201-7 8.7782-7 8.1506-7 4.5115-7 1.7706-7 0.0000 0 1.0000 0 0.0000 0 0.0000 0 0.0000 0 2.4662-8 0.0000 0 1.1071-1 1.8620-5 2.3496-3 2.4029-3 0.0000 0 2.4662-8 0.0000 0 1.1071-1 1.8620-6 2.3249-3 2.3124-3 2.4019-4 1.2147-5

M2 0 04 02 788 7880 7881 7881 7881 78(L)

. 508 80 1005 c THAN 1555 1018 ADDITIONAL PRODUCIS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS

L	:					
L		CH 2	CH3	NYDROXYMETKYLENT	METHVIDTIOE	
	NCM RAD	CNN KAD	L 7			
EZHS RAD					ALEFTLAR	KETENE
		LTJLU RAU	CHZCHO RAD	ETHYLENE	ACETALDENYDE	ACFIC AFID
LEURNIC ACID)2	ETHTL RAD	ETHYL DXJDE RAD	ETHANE	A70MFTHAKF	FT WAND.	
CNC RAD	CYANDGEN					UINCINTL EINEN
ALLENT				LJHJ RAU	CYCLOPROPENE	PROPYNE
		LILLURGUANE	FRUPTLENE	PROPYLENE DXIDE	I-PROPYL RAD	N-PROPYI BAD
LAULANE	1-FROPANOL	CARBON SUBGXIDE	5	RUTADIVES	211 4 1 1 C 1 2 4 1 1 2	
2-BUTYNE -	1.3-BUTADIFWF	2.Butfwf Johns	010 UNUTED			LILLUBUIADILME
C-BUIVI BAD			210 JUJ:00-7	1 SUBUIENE.	1-BUTENE	(ACETIC ACID)2
	R-BUITL RAU	T-BUTYL RAD	ISOBUTANE	N-BUTANE	CARRON SURWITETO	
CYCLOPENTADIENE	CTCLOPENTANE	1-PENTENE	N-FENTY: BAD			
I SOPENTANE	NETATATAN				LTJL(LTJ)ZCH3	PENTANE
			THERUXT RAD	BENZENE	PMENOL	CYCLONEXEME
R-REATE RAU	BENZALDEMYDE	TOLUENE	CRESOL	1 - 8 5 7 5 8 5	CAS STORAGE	
1-0CTENE	N-DETYL RAD	DETANE	1.0.071.041			N-HEFIANL
N-DTTV BAD					MAPTHERE	AZULENE
	U-ULTRENTE RAU	BIFHENTL	JET-A(G)	BIBENZYL	UND.	MMU 2
	H02	H2N2	H 2 D 2	3		
NH 20M	MD 2	1 U I				IZ
1044			7 5 7 5	2 D M Z M N	NZHA	NZO
	4 N 7 H	<pre>CD2W</pre>	N.)	N.N.N.	03	rice)
BENZENE(1)	TOLUEME(L)	DCTANE(L)	(T)V-13C	C.I.C.D.S.(S.)	runte.	
Cu20(S)	CU20(1)	H20151				CUU282(5)
PB0(1)			171074	10(2)	F50(#D)	P80(YW)

NDTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF DXIDANT IN TOTAL OXIDANTS

THEORETICAL ROCKET PERFORMANCE ASSUMING FROLEN COMPOSITION DURING EXPANSION

PSIA	•03
3000.0	, OM
PC -	CASE

ł

							T A	FRACTION	ENERGY	STATE	TEMP
CHENIC	AL FORMULA	_					35)	E NOTE)	CAL/MOL		DEG K
JEL C 6.30	0 000	. 90000	H 7.55001	0 N 2.	45000			. 489217	-169170.000	S	298.15
IEL C 3.00	0 000	00000.4	H 5.0000	о ж 3.	00000		0	.405351	-88600.000	Ś	298.15
EL C 12.00	0 000	1.00000	M 22.0000	_			0	.029952	-246000.000	Ś	298.15
EL C 12.00	0 000	00000	H 11.0000	1 N 2.	00000		0	1.019968	-16710.000	S	298.15
EL C 7.00	0 000	00000	H 6.00001	_			0	294520.1	-190000.000	Ś	298.15
EL C 7.00	0 000	00000	M 6.0000	_			0	.006589	-141000.000	s	298.15
EL CU 1.00	000						0	066500.1	0.000	s	298.15
EL PB 1.00	000							.018970	000.0	Ś	298.15
•	/F* 0.000	00 PEAC	ENT FUEL=	100.000	E Q U I V	ALENCE R	VTID= 1.54	H3 611	(= 0.0000		
	CHAMBER	THEGAT	EXIT	E x 1 1	EXIT	Ex17	EXIT	EXIT			
•	1.0000	1.7914	2.9813	7.7330	10.512	17.440	36.334	47.631			
ATH	204.14	113.96	68.471	26.398	19.419	11.705	5.6184	A. 2858			
DEG K	2733.1	2450.6	2225.0	1850.6	1141.9	1574.3	1354.7	1280.3			
0. G/CC	2.3207-2	1.4449-2	9.5616-3	4.4322-3	3.4638-3	2.3102-3	1.2886-3	1.0401-3			
CAL/G	-531.80	-649.46	-742.22	-893.24	-936.22	-1001.59	-1085.24	-1113.04			
CAL/G	-744.82	-840.46	-915.64	-1037.48	-1071.98	-1124.29	-1190.83	-1212.82			
CAL/G	-6698.53	-6178.70	-5762.58 -	-5068.76	-4666.50	-4553.61	-4141.91	-4001.69			
CAL/(G)(K)	2.2563	2.2563	2.2563	2.2563	2.2563	2.2563	2.2363	2.2563			
MOL WT	25.496	25.496	25.496	25.496	25.496	25.496	25.496	25.496			
CAL/(G)(K)	0.4190	0.4138	0.40\$6	0.397A	0.3934	0.3863	0.3754	0.3711			
(S) (N)	1.2286	1.2321	1.2357	1.2440	1.2471	1.2527	1.2621	1.2658			
A VEL.W/SEC	1046.4	992.3	946.9	866.4	841.7	801.9	746.7	727.0			
NUMBER	0.000	1.000	1.401	2.007	2.186	2.472	2.882	3.034			
FORMANCE PARA	METERS										
/ N T A		1.0000	1.1300	1.8600	2.2500	3.1300	5.1700	4.2500			
TAR. FI/SEC		4733	4733	4733	A733	4733	\$733	£ 5 7 8 3			
		0.688	0.920	1.205	1.275	1.374	1.492	1.529			
AC.LB-SEC/LB		183.3	191.1	212.7	219.1	228.6	240.4	244.2			
P. L8-SEC/L8		101.2	135.3	177.3	187.6	202.2	219.4	224.9			

ADDITIONAL PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN D.50000E-D6 FOR ALL ASSIGNED CONDITIONS FORMALDENTDE Cu Hcn H20 M2 PB

0.13603 0.00144 0.10296 0.00008 0.00008

0,37966 0,00004 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000

0 00001 0 00001 0 00000 0 00000 0 00000 0 00000 0 00000 0 00000 0 00000 0 00000 0 00000 0 00000

FORMIC ACID Cud HCG Rad MH2 PB0 PB0

0.00000 0.00231 0.00001 0.24747 0.12667 0.02216

MOLE FRACTIONS

CN NCN RAD C2H3 RAD NETHYL CYANIDE (fornic acid)2 Einyl Rad CNC Rad Cyangen Allene	CMN RAD CMJCD RAD Ethyl Oxide Rad CCO Rad	C2 CH2CH0 RAD Ftwarf	C2H RAD	
CZM3 RAD METHTL CYANIDE (fomic acid)2 Ethtl Rad cmc rad cyndgen alefne cyngrad	CH3CD RAD Ethyl Gxide Rad CCO Rad	CH2CH0 RAD Fimamf		
(FORMIC ACID)2 ETHYL RAD CNC Rad Ctanogen Allene C3H5 Rad	ETMYL OXIDE RAD CCO Rad	FTHANF	ETHVLENE	ACETALDEMTDE
CINC RAD CHANGEN Allene C3H5 RAD	CCO RAD		AZOMETMANE	ETHANDL
ALLENE C3H5 RAD		C3	C3H3 RAD	CYCLOPROPEME
	CYELOPHGFANL	PROPYLENE	PROPYLENE OXIDE	I-PROPYL RAD
PROPANE 1-PROPANDL	CARBON SUBOXIDE	C.A.	BUTADITME	BUTAN-IEN-SYN
2-RUTYNE 1.3-BUTADIENE	2-BUTENE TRANS	2-BUTENE CIS	ISCBUTENE	1-8UTENE
S-BUTTL RAD N-BUTTL RAD	I-BUTYL RAD	ISCOUTANE	N-BUTANE	CARBON SUBNIT!
CYCLOPENTADIENE CYCLOPENTANE	2 - PENTENE	N-PENTYL RAD	T-PENTYL RAD	CH3C(CH3)2CH3
ISOPENTANE MEXATR WE	PHENTL RAD	PHENGIY RAD	BENZENE	PHENGL
PROPANE I-PROPANDL 2-Buther I.S-Butadiene 5-Butt. Rad H-Butt. Rad Cyclopentadiene cyclopentane Isopentane Hexatrityne	C A R C A R	IN SUBDXIDE Ene trans Tyl rad Tyl rad Tyl rad Tene 'l rad	IN SUBDITIOL CA Rene Tames 2-Butene CIS Til Tado I Sobutane Tiene n-Pentil Aad Lead Phendit Aad Lead Phendit Aad	IN SUBOXIDE CA BUTADITYE EVETRANS 2-BUTENE CIS ISOBUTENE TTT RAD ISOBUTANE N-BUTANE TTT RAD ISOBUTANE N-BUTANE TTENE N-PENTYL RAD I-PENTYL RAD L.RAD PHENGXY RAD BENZENE

	N-HLITL RAD	BENZALDEHTDE	TOLUEME	CRESOL	1-HEPTENE	N-NEPITL RAD
	1-0C1ENE	N-OCITL RAD	DCTAME	I SO-OCIANE	N-NONTE RAD	NAPTHLENE
AZULENE	N-DECVL RAD	D-BIPHENTL RAD	BIPHENTL	JE1-A(G)	BIBENZYL	UNN UNI
2 D N H	HND 3	H D 2	H 2 M 2	H 2 G 2	z	NCO
Ĩ	NN 20H	N 0 2	K 0 M	M2H2	NH ZND Z	NZHA
N 2 0	N203	N204	N 2 0 5		N J N	
C (C #)	BENZENE(1)	TOLUENE(L)	DCTANE(L)	361-A(L)	Curs)	
CUC03(S)	Cu0(5)	CU02M2(S)	CU20(S)	CU20(L)	H 20(5)	H20(1)
PB(S)	PB(L)	P 80 (R D)	PBC(74)	PB0(L)	PB02(S)	PB304(S)

ь

Table C-2 NASA - Lewis CET - 86 Output Composition H

J.

-

.

Tue Dec 3 10:16:37 ED1 1991

.

	•		•	•	
	•	•		•	•.
•	•	•	•	•	
 •	•		_	_	
				:	
•	•		•		•
	•	•			•
•	:	•	•	•	•
•	2	:	•	•	-
	•	•	•	•	
	•	•		•	

.

		LE NE
		CCLA CCLA HYDRXYCTHY HYDRXYCTHY MCW RAD CCA RAD CCA RAD HCTHL CANI HCTHL CANI ACONTANC ALLENC ALLENC ALLENC ALLENC ALLENC ALLENC ALLENC CANOYL RAD CONTANC CANOYL RAD
		7 7 7 7 7 7 7 7 7 7 7 7 7 7
298.150 298.150 298.150 298.150 7 298.150 7 298.150 7 298.150 7	1	CCL3 CM2 CM2 CM2 CM3 CM3 CM3 CM3 CM3 CM3 CM3 CM3 CM3 CM3
5430.00 9170.00 8600.00 5100.00 5100.00		31 6/70 312/72 712/72 712/72 712/72 6/69 10/61 10/61 10/61 8/8 8/8 7 6/68 7 6/68
7,80000 -10 54,59999 -16 55,500000 -8 55,500000 -8 1,200000 -2		CCL2 CMCL2 CMCL3 CMS CMS CMS CCL4 CCCL4 CCCL4 CCCL4 CCCL0 FMCL0 CVCL0 FMCL0 CVCL0 FMCL0 CVCL0 FMCL0 CVCL0 FMCL0 CVCL0 FMCL0 CVCL0 FMCL0 CVCL0 FMCL0 CVCL0 FMCL0 CVCL0 FMCL0 CVCL0 FMCL0 CVCL0 FMCL0 CVCL0 FMCL0 CVCVCL0 CVCVCL0 CVCV
0000 0 0000 0 0000 0 0000 0		312/08 112/09 112/07 112/07 112/07 112/07 122/07
7 7 7 7 0 0 0 0 7 0 0 0 0 7 0		. FA. DR FPCT TSTEM CCL CCL CCL CCL CCC CCC CCC CCC CCC CC
L 1.0000 7.5500 5.0000 1.0000	23+0.000 23+0.000 23+0.006 23+0.006 23+0.006 0000 0000 0000 0000 0000 0000 000	DF. EGRAT IN THIS S' J12769 RUS 79 RUS 79 F12769 J1760
4 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	26+0.0000001.0 26+0.0000001.0 5000.0000001.0 7.5 5000.000000000 5000.0000000000 5000.0000000000	MALUE GIVEN FOR Eing Considered En Considered En Hildentde Methildentde En Ad En Ad Ad En Ad Ad En Ad Ad En Ad Ad En Ad Ad En Ad Ad En Ad Ad Ad En Ad Ad Ad En Ad Ad Ad En Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad A
AEAETAMTS A 1.0000 6.0000 3.0000 11.0000 1.0000 1.0000	5 5 <td>85 M 0 1 M 7 2 4 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td>	85 M 0 1 M 7 2 4 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2

BA 2-BUTENE T	RANS BUR BA	2-BUTENE CIS	8 N 8 4	ISOBUTENE	BUR BA	1-BUTENE	L 4/85	(ACETIC ACID)2
		S-BUTTL RAD	P10/85	M-BUTYL RAD	1 4/85	N-BUTANE	L 4/85	I SOBUTANE
T-PENTYL BU	AD P10/41	L) L	710/65	CYCLOPENTADIENE Beataur	P12/52	CYCLOPENTAN	E P12/52	1-PENTENE
HEXATRIVNE	112/84	PHENTL RAD	41211	PHENDER BAD		ISUTERIANL Rentere	CB/014	EH3C(EH3)2CH3 Burnd:
I CYCLOHEXEN	E P10/83	N-HEXTL RAD	P10/84	TOLUEME		CRESOL	P12/52	1-NFPTFWF
N-HEPTYL R.	AD F 4/81	N-HEPTANE	P12/52	1-0CTEME	P10/83	M-OCIVL RAD	P 4/85	DCTANE
ISO-OCTANE	F10/83	N-NONTL RAD		KAPTHLENE	48 878	AZULENE	P10/83	N-DECYL RAD
		L BI PHENYL	F 6/88	JET-A(G)	2 6/72	ដ	3 6/66	CLCN
	10/6 1			CL7	29/212	5120	11/2 5	x
HNC 2	84 SAN	MMD3						DWW
H2N2	2/19	N20	1 3/85	M202			99/E E	
J L L	3/63	нн	13/216	KO X	01/210	*0*	112/61	23
K2C2N2	3 3/66	K2CL2	01/210	E 202H2	11/5 E	×	01/215	NED
×	8 C 2 B	MH2	3 6/77	MH 3	RUS 78	MM 2 0 H	RUS 78	0.
	Rus 78	×0.7	Rus 78	MOZCL	12/64	MO3	11/6 5	2 11
2428		MMZMGZ	8 L S N B	N2H4	RUS 78	#2D	RUS 78	M203
		# 2 D 3	RUS 78		RUS 78	M 3 H	7116 6	0
1 TOTALEMENT							P10/80	BENZENE(L)
		ULIANE(L)		JET-A(L)	1 3/81	н20(S)	5/15 E	H20(T)
	19/210		3 3/66		3 3/66	KCN(T)	3 3/66	#C1(S)
			312/70	KOM (8)	01/21C	KOM(1)	11/9 5	K02(5)
	99/C C	K2C03(1)	C 6/63	K 20(S)	C9/6 C	K202(S)	BAR73	NHACL(A)
AN4LL(0)								
-								
	000000000	19.0000000						
	23.000	00000000000	. 9-0,000000	. 00+3000000000				
10000'0-77 -	+30000000000							
- 3800.000	•							
•	I							
,		1 T E 7 U E L	EFFECTIVE	INVOIND	HI I LURS			
)(DEG K)/KG	-0.2700	r12) 642764A3			DBUZN CENCULE C			
					7.4900/7.0-	[+d]		
. WT. /KG	B0F (1.2)	807(1.)	-	80(1)			
	0.3629	78115-03			0 44747811	5.01		
	0.3619	9537E-01	0 000000	00+00	0 341 4 4 5 5 5			
	0.5629	76116-03		01400	1 9679781			
	0.1878	60-316-01						
	1 2742	11585.01						
	0.9667	9461E-D2		06+00	0.94679461	f-07		
	1	00	Ĩ	C 0 2	02 H		M.2	
0 3163.37 -4	2.372	-20.934	-30.674	1+2 Se-	- 34. 3	•	-24.742	
• ZYU7.55 -4	3.186	-29.563	-31.409	-46.380	17. 17.		- 24.987	
1 316867.1	- 2907.53							
2 2703.83 -4	3.172	-29.567	-31.414	-46.389	-35.2		-24.988	
	C							
2 27U2.84 -4	2.172 - 2005 -	- 27. 367	-31.414	-46.389	- 25 - 2	57	-24.918	
7 1574 55 -5	- 27UJ.							
	1 4 7 1						26.468	
	170.1	*7n. cc-			9.99-		-26.470	
				F86.10-			- 26. 586	
	2.471		115.72-	-61.526			- 26. 583	
	976	- 30.087	-40 741	-64.443			-26.835	
- 22.2/CT (4.533	-36.693	-40.954	-64 654		. 20	-26.836	
2- 26° 287 - 5	6.954	-36.007	-42.862	-68.217	-50.1		-27.116	
5 1247 86 -5	6.959	-37.980	-42.849	-68.112	- 50.0	56	-27.124	

.

-27.118 -50.022 -68.063 -42.819 -37.961 3 1251.37 -56.918 9

. .

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION

1

PC = \$000.0 PSIA CASE ND. 208

TEMP DEG K 298.15 298.15 298.15 298.15 298.15 298.15		
STATE S S S		
EMERGY CAL/MOL -103430.000 -169170.000 -169170.000 -26100.000 -25100.000	11= 0.0000	
WT FRACTION (SEE NOTE) 0.074000 0.546000 0.546000 0.596000 0.029000 0.012000	10= 1.3340 Pt	
	IVALENCE RATI	EX17 244-52 1.9914 1.9914 1.9914 1.9914 -1345, 44 -1345, 44 -1345, 44 -1455 28, 309 -1,01123 0.4061 1.1843 0.4061 1.1823 0.4061 1.1823 0.4953 3.953
4 5000 0 0 0 0 0 0 0 0 0 0	10 E QU	EXIT 2.42.42.42.42.42.42.42.42.42.42.42.42.42
~~~	100.000	Exit a.1055 a.1075 a.1074 a.1074 a.1075 2.1655 2.1655 2.1655 2.1655 2.1655 2.1655 2.1655 2.1655 2.1655 2.1655 2.1656 3.2655 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.365 3.
CL 1.00000 H 7.55000 H 5.00000 0 1.00000	ICENT FUEL.	EXIT 63.857 5.3280 5.3280 1575.0 1.1.1626.9 1.1.1626.9 1.1.1225.78 1.1.125 2.1679 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.2115 1.21
× • • • • • • • • • • • • • • • • • • •	000 PEA	THRDAT 1.7652 1.7652 2.2695 8 2.2695 8 -695 -8 -695 -34 -695 -34 2.1675 2.1675 2.1675 2.1679 1.0399 1.0399 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.1885 1.18855 1.18855 1.18855 1.188555 1.1885555
L FORMUL 100 0 100 0 100 0 100 H 2 100 H 2	I/F= 0.0	CHANGER 1.000 3.000 3.000 3.000 3.000 1.000 2.157 2.157 2.157 1.007 1.0796 1.0796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796 1.1796
CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMIC CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMIC CHEMIC CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEMICI CHEM	3	Z/P - ATH - DEC K - DEC K - DEC K - CALC - CALC(G)(K) - CAL/(G)(K) - CAL/(G)(K) - CAL/(G)(K) - CAL/(G)(K) - M VEL, M/SEC - CH NUMBER
		rregion iggi

# PERFORMANCE PARAMETERS

23.000 4928 1.732 279.7	C. CO 3
15.000 4928 1.677 273.1	8 . O / 8
10.000 4928 1.615 266.0	
8.3000 4928 1.564 262.5	
1.0000 4928 0.673 189.9	
AE/AT CSTAR, FT/SEC CF TYAC,LB-SEC/LB TSP, LB-SEC/LB	

IDLE FRACTIONS						
DRMALDEHYDE	2.7435-6	1.6194-6	9.1811-8	7.7064-8	8-2111 S	9-2023 1
ORMIC ACID	1.0412-5	5.7875-6	1.6383-7	1.2999-7	7.9736-8	A 8577-8
H.A	6.2423-9	4.4399-9	3.5754-8	5.5107-8	1.9707-7	5.0636-7
	2.9577-1	2.9229-1	2.5795-1	2.5360-1	2.4311-1	1-9701-1
:001	2.351 -6	8.762 -7	5.242-11	2.041-11	2.351-12	2.126-13
.02	2.1600-1	2.2113-1	2.5776-1	2.6229-1	2.7332-1	2 8608-1
-	2.581 -A	1.325 -4	2.231 -8	1.734 -9	9.888-10	1-409-8
10	9.266 -7	2.156 -7	7.093-15	1.109-15	1.949-17	2 107-19
_	3.0335-3	1.8939-3	5.2374-6	2.8060-6	6.6799-7	1 4038-7
	2.6045-6	1.5186-6	9.2577-8	7.8615-8	5.5888-8	1 9460-E
ICO RAD	2.008 -5	9.067 -6	8.326 -9	4.395 -9	1.039 -9	2.202-10
כו	6.1892-3	5.2073-3	4.5892-4	3.4824-4	1.8022-4	1441-5
NC D	2.3911-6	1.2876-6	2.6196-8	1.9905-8	1.1000-0	5.9337-9
DN	2.315 -6	6.759 -7	1.982-12	5.701-13	3.348-14	1.574-15
001	1.623 -6	5.363 -7	2.192-12	6.203-13	3.398-14	1 363-15
02	6.611 -6	1.539 -6	8.439-14	1.537-14	3.126-16	11-219 4
2	4.9034-2	5.0971-2	8 5609-2	9.0087-2	1.0095-1	1 1 3 5 7 - 1
20	2.7086-1	2.7318-1	2 4704-1	2.4278-1	2.3242-1	1-2102-2
202	2.364 -6	6.811 -7	1.115-12	2.983-13	1.481-14	5.782-16
	8.2420-4	7.3054-4	5.2514-5	3.7366-5	1.6401-5	6.0995-6

PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN D.50000E-D6 FOR ALL ASSIGNED CONDITIONS 

 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 0.0000
 ADDITIONAL (1) 13X 

0 H C

CHCL CH HYDRDXYMETHYLEME CZ KETTENE KETTENE ETHANOL FROPYNE BUJAN-IEN-YYN BUJAN-IEN-YYN (ACETIC ACID)2 3 CCLA CCLA COSCL COSCL2 ACETVLEME ACETVLEME DIMENTLEIME DIMENTLEME CCCLOBUTADIE CCCL CHM RAD C2961 C1975 C1975 C1975 C1975 C1975 D1100716 D1100716 S100716 S100717 S10077 S100775 S10077 S10077 S10077 S10077 S100775 S100775 S10075 S10070 CC13 CA 2-BUTENE CIS N-BUTANE 1-PENTTL RAD PHENDXY RAD 1-HEPTENE N-NNYL RAD N-NNYL RAD CLCN CCL2 CM2CL2 MCN RAD C2H RAD CM2CH0 RAD E1HANE PROPYLENE CTCL6 CHTC0 RAD CHTC0 RAD CTHTL OXIDE RAD CC0 RAD CC0 RAD CC0 RAD CTCLDPRDPANE CTCLDPRDPANE CTCLDPRDPANE CTCLDPRDPANE 1.PUTL RAD 1.PENTERE 1.PENTERE 1.SO-OCTANE 1 CCL CH2 C CHCL3 HFTWAHOL CFCL4 HFTWAL CFCL4 FTWYL RAD CFANDGEN CFANDGEN CFANDGEN CFANDGEN S-BUTTU RAD 1-PROPANOL 3-BUTTU RAD HFTATRIVHE TOLUEME TOLUEME HEATL

10TE KEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXYDANT IN TOTAL OXIDANTS

JET-A(L) KCL(S) K20(S)

KEN Mozel Nzos Dctane(l) Ken(l) Kzeds(l)

TOLUENE(L) KCN(S) K2CO3(S)

N203 Benzene(l)

HND3 NH20H

K(L) K02(S)

NCD N2н4 C(GR) K(S) KDH(L) NHACL(B)

IHEORETICAL ROCKET PERFORMANCE ASSUMING FROZEN COMPOSITION DURING EXPANSION

PC = 5000.0 PSIA Case No. 208

TEMP DEG K 298.15 298.15 298.15 298.15 298.15 0.00 STATE WT FACTION ENERGY S (SEE NOTC) CAL/MOL (SEE NOTC) CAL/MOL 0.78000 -103430 000 0.546000 -103430 000 0.546000 -16910 000 0.0000 -23100 000 0.000 0.0000 - I H J -EQUIVALENCE RATIO= 1.3340 2.45000 3.00000 2.00000 100.000 z z z CL 1.00000 H 7.55000 H 5.00000 D 1.00000 PERCENT FUEL= CHEMICAL FORMULA CHEMICAL FORMULA T 1.00000 0 9.90000 H C 5.00000 0 9.00000 H C 1.00000 H 20.0000 0 C 1.00000 H 20.0000 0 0/F= 0.0000 1001 1001 1001

 
 AT
 EXIT
 E CHAMBER THRDAT 1.0000 1.7792 340.23 191.23 346.54 2.861.2 3.6685-2 2.2797-2 1 -536.68 -659.18 --761.28 -662.95 --7395.34 -6661.46 --7395.34 -6661.46 -27.989 0.4055 1.2122 1015.1 1.000 27.909 0.4092 1.2099 1066.3 PERFORMANCE PARANETERS M. MOL WT CP. CAL/(G)(K) Gamma (S) Son VEL.M/SEC Macm Number PC/P P. ATH T. DGC K RHD, G/CC H. CAL/G G. CAL/G S. CAL/G)(K) S. CAL/(G)(K)

23.000 4888 1.727 275.6 262.3 15.000 4888 1.673 269.5 269.5 254.1 10.000 4666 1.613 262.0 245.0 8.3000 486 1.562 259.4 259.4 1.0000 4888 0.681 188.9 103.5 AE/AT CSTAR, FT/SEC Cf Ivac,lb-sec/lb Isp, lb-sec/lb

## HOLE FRACTIONS

........ CDCL H HMCD HMCD H2 KCL K2CL2 KM43 M2D D.29577 0.0000 0.00619 0.0001 0.00062 0.00062 0.00556 0.00556 0.13469 0.13469 SNO FRACTI 0,0000 0,0000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 WHOSE MOLE WERE CONSIDERED BUT PRODUCTS WHICH 0.00000 0.21600 0.00000 0.27006 0.27006 0.00003 0.00003 0.00119 0.00128 F GRMALDENTDE C 0 2 H C N H M 0 H M 0 N 1 N 1 N 0 N 0 N 0 0 ADDITIONAL

NED CONDITIONS	CHCL HETHYLDXIDE CZ KETENE KETENE KETENE ETHANOL HANOL HANOL HANOL HANOL HANOL HANOL HANOL HANOL CACETIC ACID)2 (ACETIC ACID)2 (ACETIC ACID)2
5-40 TUR ALL ASSIG	CH HYDRDXYHETHYLENE COCL2 ACCTYLENE ACETYLENE ACETALDEMPE DIMETHYL ETHER CYCLORPENE I-PROPYL RAD I-BUTADIENE 1-BUTADIENE CARON SUUMITRID
	CCLA CMJCL CMJCL CMN RAD C2MCL C1MYLLNE AZONETANE C3MS RAD PROPYLENE DXIDE S9DUTENE ISOBUTANE ISOBUTANE
	CCL3 EM3 MCM AD CM AD CM 2D AD CM2CH0 AD CM2CH0 AD CM2CH0 AD CM2CH0 C12 C3 C3 C3 C4 C12 C3 C4 C12 C12 C12 C12 C12 C12 C12 C12 C12 C12
	CCL2 CM2CL2 CM2CL2 CM2CD RAD CM2CD RAD CM2CD RAD CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CL0PR0PANE CT2CCC0PR0PANE CT2CCC0PR0PR0PANE CT2CCC0PR0PANE CT2CCC0PR0PANE CT
	CCL CH2 Methanol C2CLa C2CLa C2CLa C2CLa C2CLa C2CANODE C3H3 CANODE C3H3 CANODE C3H3 C2 Butane S-Butane S-Butane S-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-Butane C2-B
	C CHCL3 CHCL3 CHAAC C2CL2 C2CL2 CHAAC CHAAC ALLER ALLENC ALLENC 1.3-BUTADIEWC BUTADIEWC

СТСТЕТАТО СТСТЕТАТО М.НЕХТЕ ЖАО М.ОСТТЕ ЖАО М.ОСТТЕ ЖАО М.ОСТТЕ ЖАО М.ОСТТЕ ЖАО М.ОСТЕТ ЖАО М.ОСТЕТ М.ОСТЕТ М.ОСТЕТ М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО М.ОСТЕТАТО	. СТСПРЕНТАНЕ СТАНТАНЕ ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТАНС ОСТА	1-FENTENE PHENTL RAD CRESOL 150-OCTANE 150-OCTANE 150-OCTANE 150-OCTANE 150-OCTANE 150-OCTANE 150-OCTANE 150-OCTANE 150-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-OCTANE 170-O	T-PENTL RAD PHENDT RAD 1-HEPTENE N-HOWTL RAD CLEN N-100 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-105 N-10	M-PENTYL RAD BURTYL RAD N-METTYL RAD N-MPTHLENE C102 C102 C103 N) 367-A(L) N) XCL(S) XC03(L)	PENTANE Netrol Neteptane Azulene Azulene Esta Nana Nana Nana Nan(S) Kzo(S)	ISOPENTAME ISOPENTAME 1-CCLOHEENE 1-CCYL RAD N-DECYL RAD C2020 K2020 N201 K00(A) K00(A)
DTE. WEIGHT FRAN	CTION OF FUEL IN T	TOTAL FUELS AND OF	C DXIDANT IN TOTAL D	X I DAN 7 S		

REACTAN K 1.0	15000	0	A.0000	C L	1.0000		0.0000	0000	. 05000	-103430.00		051.842	•
-	000	0	9.9000	x	7.5500	*	2.4500	0.000	54.59998	-169170.00	s	198.150	5
		• 1	9.0000		0000	Z 2	3.2000	0.0000	35.50000 0 000000	-86600.00		1051.150	
			0.00	5	0000.0	r	0000	0.000	1.20000	00.0	n -	0.000	-
NAMELIS	15												
514P12													
4 9 C	. '		. 802										
- 4	•				000								
		202	000.0		000.0-0	10000							
			00000000	1.00									
	•	5			000 0-5	0000	007						
	• •												
			000000										
•		,		•									
	- 6. 1 8												
	• •												
	. L.	•											
	•												
	•				100E-07.								
5		0 . 00	0000000	00000	. 00+300.								
20	•	0.00	+300000										
IGMS													
IDEBUG													
I H L	•												
LINUIS	•												
I NHG													
TRNSPT	•												
TRPACC		66.0	10000066	00000	. 00								
015	-												
NDDATA	•												
2		1.00	1000000000	0000	02+30								
		00.1		00000	001+30								
S E ND	,												
I ANI ON	2 V.A	LUE	GIVEN FI	0 U	. EQRAT	Γ.	OR FPCT						
٦ נ	•												
F N O Z	•												
Sugan	•		0000000	00000	0+30000								
SUPAR	•	•	0000000	00000		2	000000000	000000					
15.00	0000	0000	0000	•	23.0000	00000	00000	. 9*8.00000	00+300000000000				
	~	2.0.	00000000	00000	0+300001								
1 C E S T		380	0.000	•									
47 Z			-										
B E ND													
	6	0000											
*		200	_				:						
	,						-				2.		
191911111 1919		1											
106-941				'	(CN/7.0.		5				C + 3 N		

+1

.

i.

.

.

 $\sim -1$ 

94

.

0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 <th>KG-FORM.WT./KG</th> <th></th> <th>DP(I.2)</th> <th>80P(I.1)</th> <th></th> <th>ROLLI</th> <th></th>	KG-FORM.WT./KG		DP(I.2)	80P(I.1)		ROLLI	
0     0.561812872-01     0.000000000000     0.361812872-01       0     0.551812812-01     0.000000000000     0.37899316-01       0     0.578933105-01     0.0000000000000     0.37899316-01       0     0.187990315-01     0.0000000000000     0.37890316-02       0     0.1879000000000000000000000000000000000000	×	5.0	79573405-03	0 00000000 0	00+	0.579573406-03	
CI     0.579773405-01     0.00000005400     0.579773405-01       C     0.182404915-01     0.00000005400     0.1314204915-01       C     0.182404915-01     0.00000005400     0.1214204915-01       C     0.13165-97     0.00000005400     0.1214204915-01       C     0.12165-97     -42.330     -22.955     -45.351       C     1.2311.78     -42.330     -23.571     -31.397       C     1.2311.78     -42.330     -23.571     -31.397       C     1.2311.78     -32.110     -31.1397     -46.359       C     1.2411.78     -32.120     -31.397     -46.369       C     1.2411.78     -32.130     -23.571     -31.397       C     1.2401.66     -31.130     -23.571     -31.397       C     1.2401.66     -31.397     -46.369     -33.249       C     1.2401.66     -31.397     -31.397     -46.369       C     1.2401.66     -31.397     -31.397     -46.369 <td>0</td> <td>0.3</td> <td>6181282E-D1</td> <td>0.0000000000000000000000000000000000000</td> <td>00+</td> <td>0.361812826-01</td> <td></td>	0	0.3	6181282E-D1	0.0000000000000000000000000000000000000	00+	0.361812826-01	
C         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D <thd< th=""> <thd< th=""> <thd< th=""> <thd< th=""></thd<></thd<></thd<></thd<>	12	0.5	7957340E-03	0 00000000	00+	0.57957340E-03	
D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D         D	U	0.11	1240491E-01	0.00000000	00+	0.18240491E-01	
N         D.96335705-02         D.00000005400         D.96335705-02           POINT ITM         T         Z0         S121.70         -31.397         -34.399         -34.310           1         Z0         S121.17         -27.567         -31.397         -40.399         -53.310           7         Z         S121.17         -29.567         -31.397         -40.399         -53.310           7         Z         S121.07         -29.567         -31.397         -40.399         -53.242           7         Z         S10.07         -29.571         -31.397         -46.399         -53.242           7         J.30019         -29.571         -31.397         -46.369         -33.249           7         J.300109         -29.571         -31.397         -46.369         -33.249           7         J.300109         -29.571         -31.397         -46.369         -33.249           7         J.300106         -31.390         -29.571         -31.397         -46.369         -33.249           7         J.300106         -31.397         -46.369         -33.249         -33.249         -33.249           7         J.300106         -31.3910         -31.3910         -33.249	I	0.23	3562253E-01	0.00000000	00+	0 235622535-01	
POINT ITM     T     CO     NEL     CO       1     20     316.57     -21.390     -21.393     -93.063       1     20     316.57     -43.140     -21.393     -93.023     -94.313       1     20     316.57     -43.140     -21.393     -93.023     -94.313       1     20     311.30     -31.140     -21.393     -93.120     -35.242       1     7     1     7000     -31.150     -31.393     -93.243       1     7     1     7000     -21.392     -46.369     -35.242       1     7     1     7000     -21.392     -46.369     -35.242       1     7     1     7000     -29.571     -31.392     -46.369     -35.249       1     7     7     7     29.11.09     -29.571     -31.392     -46.369     -55.249       1     7     7     7     7     -31.952     -46.369     -55.249     -35.249       1     7     7     7     7     -31.952     -51.249     -35.249       1     7     7     7     -31.952     -51.249     -46.369     -51.249       1     7     7     7     -31.952     -51.249	z	94.0	5438370E-02	0.000000000	00+	0.96438370E-02	
1       20       316.67       -21.330       -21.397       -43.100       -21.310       -23.510       -43.100         7       7       3       311.30       -23.567       -31.397       -46.356       -33.510       -53.510         7       7       3       210.07       -31.400       -29.571       -31.397       -46.356       -33.524       -53.547       -33.524         7       2       2       210.07       -32.571       -31.397       -46.366       -33.249       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53.549       -53	POINT ITN I	KCL	C 0	HCL	C 0 2	H20	N 7
2       6       291.17       -43.144       -29.567       -31.387       -46.359       -55.242         7       7       17301.39       1       2911.71       -31.397       -46.351       -35.242         7       7       1.300.09       -43.150       -29.571       -31.392       -46.361       -33.249         7       7       1.300.06       -43.150       -29.571       -31.392       -46.361       -33.249         7       7       1.300.06       -43.120       -29.571       -31.392       -46.369       -35.249         7       7       1.300.06       -31.391       -29.571       -31.392       -46.369       -35.249         7       7       1.300.06       -31.391       -31.392       -46.369       -35.249         7       7       7       7       -31.392       -29.571       -31.392       -46.369       -35.249         7       7       7       7       7       -46.369       -55.249       -55.249       -45.369       -45.399       -45.399         7       7       7       7       -31.304       -35.310       -35.249       -45.399       -45.399       -45.399       -45.249       -45.399       -45.39	1 20 3166.98	-42.330	-28.939	-30.653	-45.025	-34.310	-7.47
FC/F1       1.738119       T       2911.78         FC/F1       1.789110       48.361       33.249         FC/F1       1.78416       48.361       -33.249         7       2.2910.09       43.150       -29.571       -31.392       -46.361       -33.249         7       7       1.56416       14.3190       -29.571       -31.392       -46.369       -33.249       -         7       7       1.56416       14.3190       -29.571       -31.392       -46.369       -33.249       -         7       7       1.56416       -31.2910.01       -29.571       -31.392       -60.061       -33.249       -         7       7       1.56416       -31.291       -31.397       -60.061       -44.561       -44.590         7       7       1.309.45       -91.594       -91.594       -61.485       -45.596       -45.596         7       1.309.45       -91.461       -91.295       -91.295       -91.485       -45.596       -41.485       -45.596         8       1.319.416       -54.421       -35.522       -99.285       -91.485       -45.566       -41.485       -45.566       -41.485       -45.566       -41.485       -45.566	2 6 2911.78	-43.144	-29.567	-31.307	-46.359	-35.242	
2       3       2910       09       -43.150       -29.571       -31.392       -46.368       -39.249       -         7       7       11.10       11.392       -46.368       -39.249       -       -       -39.249       -         7       7       2710.01       -31.392       -46.369       -35.249       -       -       -35.249       -         7       7       2710.02       -29.571       -31.372       -46.369       -35.249       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -	PC/PT= 1.758159	I = 2911.78					
FC/Fit       1       2910.09       29.571       -31.392       -46.369       -35.249         FC/Fit       1.56476       -31.150       -29.571       -31.392       -46.369       -35.249         7       154026       1.2       2910.09       -29.571       -31.392       -46.369       -35.249         7       154026       1.2       2910.09       -29.571       -31.392       -46.369       -35.249         7       1540.66       -31.934       -35.014       -38.557       -60.061       -44.590       -45.590         4       5       1579.56       -31.534       -91.265       -91.357       -60.081       -45.596       -45.596         5       5       52.421       -35.522       -39.265       -51.450       -61.450       -45.596       -55.532         5       5       52.421       -35.522       -39.265       -61.450       -61.450       -45.596       -55.532       -51.661       -55.532       -51.661       -55.532       -51.661       -55.532       -51.661       -55.532       -51.661       -51.661       -55.532       -51.661       -55.532       -51.661       -55.532       -51.661       -55.232       -51.661       -55.2421       -55.662       -	2 3 2910.09	-43.150	-29.571	-31.392	- 46 348	-15 249	- 2 4 60
2       2       2910.01       -43.150       -29.571       -31.392       -46.369       -35.249       -         7       7       1340.66       -51.931       -35.004       -38.543       -60.061       -44.590       -         3       7       1340.66       -51.934       -35.004       -38.543       -60.061       -44.590       -         3       5       1370.56       -91.534       -35.014       -38.573       -60.061       -44.590       -         3       5       1370.56       -91.534       -35.014       -38.557       -90.017       -44.608       -         4       5       1370.50       -94.448       -35.532       -99.265       -61.405       -45.556       -61.608       -       -45.556       -41.608       -       -45.556       -45.556       -45.556       -45.556       -45.556       -41.608       -45.556       -45.556       -45.556       -45.556       -45.556       -45.556       -45.556       -45.666       -47.641       -       -45.556       -45.556       -45.566       -47.641       -45.556       -45.566       -47.564       -45.566       -47.564       -45.566       -45.566       -47.564       -45.566       -45.566       -47.564	PC/PT= 1.764734	1 = 2910.09					
FC/FI=     1.764826     1.     2910.08     -31.038     -33.004     -31.538     -44.590       3     71390.66     -31.338     -33.014     -38.553     -60.061     -44.699       3     31379.26     -31.338     -33.014     -38.553     -60.061     -44.699       4     51379.55     -52.421     -35.315     -39.265     -61.485     -45.596       5     5111.21     -52.421     -35.522     -39.265     -61.485     -45.595       5     5111.21     -52.421     -35.222     -39.265     -61.485     -45.595       5     5111.21     -52.421     -35.222     -39.265     -61.485     -45.595       5     5111.21     -52.421     -35.222     -39.265     -61.485     -45.595       6     51276.50     -54.677     -40.901     -64.565     -47.561       6     51276.77     -40.901     -64.160     -47.561       6     51276.77     -56.661     -42.779     -68.109       6     51276.77     -56.661     -42.779     -68.109       6     51256.77     -56.661     -42.779     -68.109       6     51256.77     -56.661     -42.779     -68.109       7     55.666     -42.779 <td>2 2 2910.08</td> <td>-43.150</td> <td>-29.571</td> <td>-31 342</td> <td>-46 760</td> <td>.15 240</td> <td></td>	2 2 2910.08	-43.150	-29.571	-31 342	-46 760	.15 240	
7     1310     66     -51.334     -33.00     -31.543     -60.061     -41.590       8     51379.26     -51.334     -33.014     -31.575     -60.081     -41.590       8     51379.26     -52.421     -35.522     -39.265     -61.485     -43.556       8     51376.21     -52.421     -35.522     -39.265     -61.485     -43.556       8     51376.21     -52.421     -35.522     -39.265     -61.485     -43.556       9     1376.51     -54.421     -36.677     -40.996     -61.365     -91.641       9     1376.51     -54.481     -36.677     -40.910     -61.450     -41.561       9     1376.51     -54.481     -36.677     -40.910     -61.405     -41.561       9     1376.51     -54.481     -36.677     -40.910     -64.109     -91.641       6     1239.79     -56.863     -17.796     -42.779     -66.103     -91.456       6     1229.77     -56.863     -17.796     -42.799     -66.103     -91.457	PC/P1= 1.764826	1 = 2910.08					
3     3     1579     26     -91.594     -35.014     -31.557     -60.007     -40.60       4     3     1511.21     -52.444     -35.535     -91.283     -61.485     -45.556       5     5     1316.11     -52.444     -35.535     -91.556     -41.60       5     5     1311.21     -52.444     -35.535     -91.485     -42.556       5     5     1376.18     -54.481     -35.532     -99.255     -41.485       5     5     1376.18     -54.481     -36.674     -40.991     -64.565     -41.641       5     5     1376.18     -54.481     -36.677     -40.901     -64.565     -41.641       6     5     12.49.79     -64.565     -42.799     -64.109     -50.053       6     5     12.39.70     -56.861     -37.786     -42.799     -64.109       6     5     12.39.70     -56.863     -37.786     -42.796     -64.109       6     5     12.39.79     -56.863     -37.786     -42.796	3 7 1580.66	-51.538	-35.004	-38.543	-60.061	-44.590	-26 47
a       5       1507.55       -52.444       -35.535       -39.281       -61.485       -45.555       -15.555       -15.555       -15.555       -15.555       -15.555       -15.555       -15.555       -15.555       -15.555       -15.555       -15.555       -15.555       -15.557       -15.557       -15.572       -15.677       -10.196       -66.566       -17.641       -15.677       -10.901       -66.356       -17.641       -16.677       -10.901       -66.356       -17.641       -16.677       -10.901       -66.356       -17.641       -16.677       -10.901       -66.356       -17.641       -16.677       -10.901       -66.356       -17.641       -16.677       -10.901       -66.356       -17.641       -17.641       -17.641       -17.641       -17.641       -16.27.645       -10.101       -10.201       16.677       -10.901       16.61.105       -10.105       -10.105       -10.105       -10.105       -10.105       -10.105       -10.105       -10.105       -10.105       -10.105       -10.105       -10.105       -10.105       -10.105       -10.105       -10.105       -10.105       -10.105       -10.105       -10.105       -10.105       -10.105       -10.105       -10.105       -10.105       -10.105       -10.105 <td< td=""><td>3 3 1579.26</td><td>-51.554</td><td>-35.014</td><td>-38.357</td><td>-60.087</td><td>-44.608</td><td>-76 47</td></td<>	3 3 1579.26	-51.554	-35.014	-38.357	-60.087	-44.608	-76 47
•       3       1311.21       -52.421       -35.522       -99.265       -61.450       -47.631       -57.552       -51.552       -51.552       -51.552       -51.552       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.641       -51.741       -51.741       -51.741       -51.741       -51.741       -51.741       -51.741       -51.741       -51.741       -51.741       -51.741       -51.741       -51.741       -51.741       -51.741       -51.741       -51.741       -51.741       -51.741       -51.741       -51.741       -51.741       -51.741       -51.741       -51	A 5 1509.55	-52.444	-35.535	-39.203	-61.485	-45.556	
5     6     1376.50     -54.448     -36.674     -40.896     -64.556     -47.641     -       5     3     1376.18     -54.454     -36.677     -40.901     -64.565     -47.646     -47.646       6     6     12.49.79     -56.861     -37.986     -42.799     -68.109     -50.053     -       ADD KCL(1)     -31.7916     -42.799     -68.109     -50.053     -       6     3     1224.79     -56.863     -37.961     -42.786     -68.103     -90.053       6     3     1224.79     -56.863     -37.961     -42.786     -68.103     -99.093	4 3 1511.21	-52.421	-35.522	-39.265	-61.450	-45.532	-26.59
5         3         1376.18         -54.454         -36.677         -40.901         -64.565         -47.646         -           6         512.49.79         -56.861         -37.986         -42.799         -68.109         -50.053         -           ADD RCL(L)         -31.961         -42.786         -42.786         -68.109         -50.053         -           6         3         1235.79         -56.863         -37.961         -42.786         -68.101         -09.994         -	5 6 1376.50	-54.448	-36.674	- 40.896	-64.556	-47.641	-26.84
6 6 1249.79 -56.861 -37.986 -42.799 -68.109 -50.053 - ADD KCL(L)	5 3 1376.18	-54.454	-36.677	105.04-	-64.565	-47.646	-26 84
ADD KCL(() 6 3 1238.79 - 56.163 - 37.961 - 42.716 - 68.1014 - 4994 - 6 3 1228.79 - 56 826 - 37.941 - 42.716 - 48.746 - 48.794	6 6 1249.79	-56.861	-37.986	-42.799	-66.109	-50 05-	
6 3 1233.40 -56.863 -37.961 -42.786 -68.014 -49.994 - 6 3 1254.79 -56 826 -37 943 -42 758 -47 440 -40 54	ADD KCL(L)						
6 3 2254.79 -56.826 -17 943 -42 758 -47 448 -47 448	6 3 1253.AD	-56.863	-37.961	-42.786	-68.014	- 49.994	-21.13
	6 3 1254.79	-56.826	-31.943	-42.758	-67.969	-49.963	-27.12

THEORETICAL ROCKET PERFORMANCE ASSUMING COULLIBRIUM COMPOSITION DURING EXFANSION

PC = 5000 0 PSIA Case No. 208

Смемі Гчег с 1.0 Гчег с 3.0 Гчег с 3.0 Гчег с 3.0 Гчег с 3.0	CAL FORMUL 0000 0 0000 0 0000 0 0000 0 1 2	LA - 00000 - 9.90000 - 9.0000 - 00000 - 00000	CL 1.0000 H 7.5500 H 5.0000	0000 2 2 2 2 2 2	45000 00000 00000		WT FRACTION (SEE NUTE) 0.080299 0.944639 0.944639 0.944639 0.008978 0.011970	ENERGY CAL/MDL +103430,000 -169170,000 -169170,000 -169170,000 -25100,000	51A1E 5 5 5 5	TEMP DEG K 298.15 298.15 298.15 298.15 0.00
	0/F= 0.0	1000 PE	RCENT FUEL	<ul> <li>100.000</li> </ul>	0 600	VALENCE RATID=	H4 213312 PH	I. 0.0000		
PC/P - ATH - DEG K HD - G/CC - Cal/G - Cal/	СМАМВЕЯ 1.0000 340.23 5467.0 5712-2 -537.20 -761.64 -764.75 -754.75 -7653	Тнярат 1.7648 192.78 2910.1 2.2712-2 -659.25 -6960.62 2.1655	Ex17 63.795 5.331 1.1579.3 1.1650-3 -1213.11 -1224.16 -4652.74 -2.1653	EXIT 81.952 4.1516 1511.2 9.4643-4 -1240.31 -1346.54 -4512.60 2.1655	EXIT 140.27 140.25 2.4255 6.0785-4 -1294.78 -1391.42 -1391.42 -274.67 -2.1653	EXIT 244.29 1.927 1254.8 3.8569-4 -1345.89 -1254.8 -1465.80 -14653.95				. •
., HOL WT DLV/DLP)T DLV/DLP)T P. Cal/(G)(K) Amma (S) Amma (S) ACH NUMBER	28.041 -1.00379 1.0764 1.0764 0.5300 1.1781 1.1781 1.051.8 1051.8	28.132 -1.00194 1.0405 0.4779 1.1879 1010.0 1.000	28.259 -1.00083 1.0116 0.4038 1.2157 751.6 3.164	28.269 -1.00101 1.0148 0.4066 1.2151 734.9 3.301	28.299 -1.00133 1.0213 1.0213 0.4152 1.2122 700.1 3.596	28,366 -1.01173 1.02121 1.1921 1.1721 1.173 5.58.0 3.959				
ERFORMANCE PAR	AME'ERS									
E/AT Star, Ft/SEC f vac.l0-sec/l0 SP. l0-sec/l0		1.0000 4927 0.673 109.8 103.1	. 3000 4927 1.584 262.5 262.5	10.000 4927 1.615 266.0 247.3	15.000 4927 1.677 273.1 256.7	23,000 4927 1,732 219,7 265,5				
JLE FRACTIONS										

	<pre>/************************************</pre>	7.573-4 7.252.5 7.252.5 7.252.5 7.256.9 7.556.9 7.557.9 7.657.9 7.657.9 7.657.9 7.657.9 7.657.1 7.657.1 7.657.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.557.1 7.5	9.0205-0 2.557-7 2.557-7 2.557-1 2.5515-1 2.5515-1 2.5515-1 2.427-1 5.445-1 5.445-1 5.445-1 2.5595-8 2.5595-8 2.5595-8 2.4515-1 2.4515-1 2.4515-1 2.4515-1 2.4515-1 2.4515-1 2.4515-1 2.4515-1 2.4515-1 2.4515-1 2.4515-1 2.4515-1 2.4515-1 2.4515-1 2.4515-1 2.4515-1 2.4515-1 2.4515-1 2.4515-1 2.4515-1 2.4515-1 2.4515-1 2.4515-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5455-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.55555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-1 2.5555-10	2.751-6 2.261-6 2.221-1 2.221-1 2.231-1 2.231-1 2.231-6 2.231-6 5.231-6 5.231-6 5.031-6 5.031-6 5.031-6 5.031-6 5.031-6	1 0156-5 2 418 2-5 2 518 2-5 2 160 -5 1 6 5 2 160 -5 1 6 5 1 7 7 1	
2.2125	2.3339-1	2.4363-1 2 3.285-13 1	2.4785-1	1-14(1-1	2.451 -6 7	2
1.1237	9.9829-2	8.9072-2	8.4639-2	5.0387-2	A.8488-2	
-116.5	5.631-16	1.754-14 3	9.560-14	1.617 -6	6.879 -6 1	
-055	829-14	6.900-13	2.425-12	5.641 -7	1.697 -6	-
	3.690-14	6.208-13	2.147-12	6.952 -7	2.365 -6	
		1.9756-8	2.5993-8	1.2745-6	2.3663-6	
	1 1703-4	3.6007-4	4.7386-4	5.3228-3	6.3228-3	
		4.498.4	8.502 -9	9.051 -6	2.000 -5	R A D
		7.6672-8	9.0296-8	1.4834-6	2.5459-6	
	0205-7	2.9290-6	5.4497-6	1.9091-3	3.0467-3	
	104-17	1.383-15	8.185-15	2.306 -7	9.821 -7	
		9.576 -9	2.423 -8	1.381 -4	2.678 -4	
	2.7416-1	2.6323-1	2.5874-1	2.2241-1	2.1722-1	
		2.182-11	5.583-11	9.041 -7	2.416 -6	-
		2.5247-1	2.3672-1	2.9072-1	2.9422-1	
		1.2951-7	1.6323-7	5.7635-6	1.0366-5	MIC ACID
		7 5734-8	9.0204-8	1.3721-6		THALDENTUL

 KH
 3.1177-3
 1.0906-5
 8.9166-8
 5.1106-8
 3.1716-9

 KO
 3.007-5
 1.0906-5
 8.1937-6
 3.1971-5
 1.020-13

 KO
 3.007-5
 1.0975-5
 1.0976-5
 1.0976-5
 1.0971-5
 1.020-15

 KZCL2
 3.007-5
 1.0975-5
 1.0976-5
 1.0976-5
 1.020-15
 3.057-15
 1.020-16

 KZCL2
 3.9035-5
 3.0207-5
 1.0595-7
 1.0595-75
 1.0596-75
 3.037-16
 1.0595-14

 KZCL2
 7.027-7
 7.0377-12
 1.055-14
 4.0577-15
 1.056-14

 NH
 7.0575-7
 7.007-77
 7.3577-12
 1.056-14
 1.056-14

 NH
 2.1277-6
 4.971-70
 1.045-14
 4.077-14
 1.076-14

 NH
 2.2795-6
 4.971-70
 1.046-76
 7.357-12
 1.056-14

 NH
 2.2177-9
 4.971-70
 1.046-16
 7.356-11
 1.056-14

 NO
 1.2177-9
 4.971-71
 7.474-72
 1.566-11
 1.566-11

 NO
 2.027-15
 1.365-11
 1.756-11
 1.566-11
 1.566-11

ADDITIONAL PRODUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN D.50000E-D6 FOR ALL ASSIGNED CONDITIONS

	COLL	METHYLOXIDE	5		KETENE	ACETIC ACID			3NA d D A d	N-PROPYL RAD	221 - 721 - 741 - 10		(ACEIIC ACID)2	5	1 COBPLIANT		CYCLONEXENE	1-0C7ENE		N-ULLIL RAU	C120	K202H2		7 7 1 7 1 1	<b>C</b> 3	H20(T)			HHACL(A)	
I		MYDROXYHETHYLENE	CDC1 2		ALLITLERE	ACETALDENYDE	DIMFIUNI CILLS		LTLUPRUPEME	I-PROPYL RAD	CYCLORITADIENE			CARBON SUBNITRID	PENTANE		TREMUL	N-HEPTANE	ATHENE		112	K2C2N2				H20(5)	KOH(A)		K 202(5)	
CCLA		CHJCL	CNN RAD	13411	11111 1	ETHYLENE	AZGMETMANF Azgmetmanf			PROPYLENE DXIDE	BUTADIYNE	TSABITERS		I SUSUEANE	N-PENTYL RAD			N-HEPTYL RAD	NAPINI FNF			K 2	MO 3	2	2	JET-A(L)	KCL(S)		101074	
כנוז		252	NCN NAD	CON BAD		CHICKICHO RAD	ETHANE	:		PRUPTLENE	•	2-RUTENE ETS			T-PENTYL RAD	PHEMDEY BAD		J-HEPTENC	N-NONYL RAD			KEN	MDZCL	M 2 0 5		DCTANE(L)	KCN(T)	* 25031.1		
CCL2	5437:3		C N	C2C16		LAJLU RAU	ETHYL DXIDE RAD	CCO RAD		CICLURATE	CARBON SUBOXIDE	2-BUTENE TRANS	M-BUTVI BAD		1-PENTENE	PHENYL RAD		LMEDUL	156-0CTANE	361-A(G)		2 11 2 11	NOCL	M204		TULUEME(L)	KCM(S)	KJERICI		
tt	CH3		AL THANGL	C2C14		TENTE CIRRIUC	ETHYL RAD	CTANDGEN			1-FROFANDL	2-BUTTNE	S-BUTYL RAD		<b>CTCLUPENTANE</b>	HEXATRIVNE	TOLUCAE		OCTANE	BIPHENYL	1 2 2 3		NN 20H	N203		DERLENELL)	K(1)	KD2(5)		
U	CHCL3			C2C12	LAN BAD		IL URALL ALIDIZ	CMC RAD	A115N5		INUTAR	1.3-BUTADIENE	I-BUTY! RAD		LILLUTAN AUTERL	CH3C(CH3)2CH3	M-X5X7 840		N-ULTL KAD	<b>0-BIPHENTL RAD</b>	MM0.7		NCO	M2H4				KOH(L)	NHACL(B)	

NDTE. WEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

THCORETICAL ROCKET PERFORMANCE ASSUMING FROZEM COMPOSITION DURING EXPANSION

.

PC = 5000.01 CASE NO. 2	51 A 01								
Fuel CHEM Fuel 6 1.0 Fuel 6 3.0 Fuel 6 3.0 Fuel 6 17.0 Fuel 6 17.0	CAL FORMULA 0000 0 4.00000 1000 0 7.90000 0000 4 20.00000 0000 4 20.00000	CL 1.00000 H 7.55000 H 5.00000 H 5.00000	****	45000 00000 00000		WT FRACTION (SEE NOTE) 0.080299 0.94659 0.94659 0.946115 0.9546115 0.011970	ENERGY STA CAL/MOL S -103430.000 5 -169170.000 5 -169170.000 5 -25400.000 5 -25400.000 5	.TE TEMP DEG K 298.15 298.15 298.15 298.15 0.00	
	0/f= 0,0000 PI	CACENT FUEL=	100.000	10 EQUI	VALENCE RAI	TIO= 1.3312 PH	1- 0.0000		
PC / P		EXIT	EXIT	EXIT	EXIT				
P. ATH		66.361	85.629	148.39	263.63				
T. DFG K		5.1269	3.9733	2.2928	1.2905				
	1.4432 U. 1010	1460.5	1409.2	1265.0	1127 0				
	3.6/12-2 2.2813-2	1.1834-3 9	. 6348-4	6.1937-4	3.9131-6				
	-237.20 -660.23	-1200.83 -	1226.93	-1278.99	-1327.66				
	-761.64 -865.25	- 1305.75 -	1326.80	-1368.64	-1407.53				
5. EAL/(6)/m)		- 4406.52 -	4278.43	-4018.13	-3768.04				
	4.1023 2.1653	2.1653	2.1633	2.1653	2.1653				
M, MOL WI	28.041 28.041	28 041							
CP. CAL/(G)(K)	0.408.0			Z8.041	28.041				
GAMMA (S)	1.2097 1.2120	1 2101		0.3569	0.3484				
SDN VEL.N/SEC	1065.8 1014.6		7107.1	1.2478	1.2553				
MACH NUMBER	0.000 1.000	3.196	3.336	3.642	5.971				
PERFORMANCE PAR	AMETERS								
AE/AT	1.000	8.3000	10.000	15 000	000 16				
CSIAR, FT/SEC	4886	4886	4886	4884					
TVAT TA STOLE	0.681	1.582	1.613	1.673	1.777				
1446.10-SEC/LB	188.8	259.3	262.7	269.4	275				
17. 10-3EF/10	103.5	240.3	245.0	254.1	262.3				
MOLE FRACTIONS									
<b>FORWALDENYDE</b>	0 61900								
C 0 2	0.21772	WHIC ACID	00 . 00	100	00	0.29422	COCL		
HCN	0 00000	D RAD	50.0	120		0.0000	I		
ONH.	D. 00000 MC	ונר	00.0	100	111	0.00632	HNCO	0.0000	_
	0.27100 M2	202	00.0	000			Н2	0.04849	-
2 2	0.00003 K0	_	00.00	400	HOM	41000.0	XCL X25.2	83600.0	_
		_ •	0.00	000	NH 2	0,00000	21128	40000.0	_
0	0.00024 DH	•	0.0	000	N2 00	0.13459	N20	10000 ° 0	
					20	0.00054			
TAULTINAL PRODUCT	JETS WHICH WERE CON	SIDERED BUT	M 3SOMA	OLE FRACT	IONS WERE L	LESS THAN D.5000	0E-06 FOR ALL A	SSIGNED CONDITIO	S N
	ככו	2122		CCL3					•
CHELS	CH 2	CH2CL2		E E E			Đ	CHCL	
	METHANDL	L.M.		NCN RAD			HYDROXYMETHYL	ENE METHYLOXIDE	
LZLLZ 5243 845	CZCLA	C2C16		CZH RAD		C2MCI	21202	C 2	
	METHYL CYANIDE	CH3CO RAC		CH2CH0	RAD	ETHYLENE	ACCITCENE	KETENE	
	CLATL RAD	ETHYL DX]	DE RAD	ETHANE		AZOMETHANE	DINTIAL TTUT	ACETIC ACID	
ALLENE		CCO RAD		5		C3H3 RAD		CTHANDL	
PROPANE	1-PRDPANDI		ANE	PROPYLE	u u	PROPYLENE DXIDE	I-PROPYL RAD	NAUPYNE K-BADBY, BA	4
1.3-BUTADIE.4E	2-BUTTHE	CARGUN SU	TAAVE			BUTADITNE	CTCLOBUTADIEN		.,
T-BUTTL RAD	S-BUTTL RAD	N-BUTTL B		N3100-7		ISOBUTENE	1-BUTENE	(ACETIC ACTI	: 2
			P			ISUBUTANE	CARBON SUBNIT!	IID CS	:

(0, 1, 1)

. . .

ISOPENTAME C VCLOMEXEME 1 - OCTEME M - DCEVL RAD C L 20 C L 20 C L 20 N 20 2 2 M 20 (L ) K 20 2 (S)	
PENTANE PHENOL N-HEPTANE CL2 K2C2N2 K2C2N2 N2H2 N2H2 N2H2 N2H2 N2H2 N2H2 N2(L) K20(S)	
N-PENTYL RAD BENZENE N-HEPTL RAD N-HEPTL RAD N-HEPTL RAD N-12 N-12 N-12 N-12 N-12 N-12 N-12 N-12	Thauts
T-PENTYL RAD PHENDXY RAD 1-PEPTENE N-NNYL RAD CLCN N-NNYL RAD CLCN NOZCL NOZCL NOZCL NOZCL NOZCL NOZCL NOZCL NOZCL NOZCL NOZCL NZCOJ (S)	TDAMT TH TOTAL OF
1-PENTENE PHENTL RAD FHENTL RAD Enesol ISO-OCTANE ISO-OCTANE ISO-A(G) JET-A(G) JET-A(G) NDCL NDCL NDCL NDCL NDCL NDCC NDCC NDCC	OTAL FUELS AND OF DX
CTCLOPENTANE HEATRITHE TELUENE DELUENE DELUENE DETANE HAND HAND HAND HAND HENELE KELL) KELL) MANAEL(B)	TION OF FUEL IN T
CYCLOPENIADIEME CH3CCCH3J2EA5 N-METVL RAD N-OCFYL RAD O-BIPMENYL RAD NO2 NO2 NO2 NO2 NO2 NO2 NO2 NO2	NOTE, WEIGHT FRACT

Table C-3 NASA - Lewis CET - 86 Output Composition L

fue Dec 3 10:16:43 EDT 1991

,

  .
REACTA	LM 1 5													
	0000	-	0000.1	Ŧ	A.00	10 00	1.0000	0000 0	71 610000					
~	0000	ר נ	0001	×	3.00	00	0,000			00.01-00-00	ŝ	298.150	•	
C 22	0000	•	0000.1	I	42.00	00			0000/9.11	8408.00	s	298.150	<b>L</b>	
	0000		0000	_	0.0	00			0000/9.11	-308000.00	s	298.150	۴.	
AL 1.	0000	0	.0000	_	00.00	00				0.63		0.000		
BA I	0000	10		_	0.00	00	0.0000		0.1790700	0.00		0.000		
. 2	0000	~ 5	0000	•	• . 00	Ωn	0.0000	0.000	0.970000	00.0		0.000		
NAMELI	515													
5 1 N P 1 2														
KASE	•		208.											
-	- 26	00.0.	00000	00+3										
	•	2500.	000	•	25+0.0	3000000	.00.							
VIS.														
	•													
HDS.														
	* 26	.00	00000	E + 00										
OH		2500.	000	•	25-0.0	300000E	.00+							
RATIO	•													
PCT														
<														
X I	- 26	1.01	00000											
۵.														
٩.														
٩.														
*														
RACE	•	0000	00000	00000	0-300C									
	•	00000	000600	00000	00+3000									
0	•	00000	100E+C	.0										
ONS														
DEBUG	•		c											
HI			;											
IUNIT														
DHN														
RNSPT														
RPACC			00000	0000	4									
15					2									
DDATA	. i													
		00000	00000	0000										
					001-30									
OND														
1 INP 1 2	2 גאוטו	E GIV.	EN 50	R OF	EQRA	T. FA.	OR FPCT							
ECIES	BEING	CONS	IDFAF	1	1 1 7 6									
6/19	AL													•
6/63	ALH							61/6 F	ALCL	3 6/76	ALCI	12	3 9/79	
112/79	AL02							61/215	ALD	A3/6 C	ALDI		19/610	ALLL3
912/79	AL202	~			00/777			3 6/79	ALZ	61/6 C	AL21	516	91212	
112/75	BA021	4.2		•••		, , ,		21/216	BACL	27/216	BACI	2	21.27	8405
12/01								60/71r		312/68	100		02/9 0	
12/81	CHZCI	2		•••	10/310			RUS 79	CHCL	P 6/81	CHC	5	117/20	
9/85	HYDRO	LYNE!	LA A L	, . , .			LULATUL	L 4/85	FORMIC ACID	3 6/69	CH3		19/019	22
12/70			37122	پر		AH13M	LOXIDE	L 5/84	CHA	1 9/85	HE T	INNU	19/711	נווזנו
9/65	C 0 2	2			99/0 F		AD	319/65	5	312/65	1000		19/9 2	
3/67	C 2H M	1 A D			64 SU	L 2 M L 1		89/715	52512	L10/87	C 2 C 1	•	10/87	C 2 C 1 K
UR 84	4 H I 3 H	יו ביו	INIDE		808 84	CH3CO	R A D		ALE:TLEME Fustur BAD		813X	NE	BUR 84	C2H3 RAD
									ALC 001949	r «/#>	ETHT	LENE	BUR 84	ACE ALDENYDE

ļ

.

102

.

PROFILENE OXIDE Carbon Subolide 1.3-Butene 1.401fme N-Butane Coclopentane Sovenane Sovenane Sovenane Sovenane Sovenane Sovenane Sovenane Sovenane Sovenane 3AD(S) BENZENE(L) ER(L) Cu(') Cu(') ETHANE Cyanogen Propyne С. С. 20 С. 403 С. 403 С. 403 Ност Ност Ност Ност NH3 ND2CL (S)N1 A(C) 42HA L 9/65 L 9/65 F 12/55 F 12/55 F 12/55 F 12/55 F 12/55 J 2/56 J 2/56 J 2/56 J 2/56 J 2/56 F 1 3/95 F 1 3 L 5/84 3 3/61 Bur 84 ETWYL DYIDE RAD CMC RAD CYCLOPAOPKE PROPYLENC PROPYLENC PROPYLENC PROPYLENC PROPYLENC SSBUTINC SSBUTINC SSBUTINC SSBUTINC FURTINC PREMOXT RAD CYCLOPENT ADIENC PREMOXT RAD SCTORECKE MAPTHLENC SCTORECKE MAPTHLENC SCTORECKE MAPTHLENC ALCL3(L) BACL3(L) BACL2(L) C(G7) C(G7) CR203(L) CV20(S) WH4CL(B) СUZ НСО RAD НИО3 Н20 NH2 **NN 2 NO 2** CL2 CR07 N205 MIXTURE MSUBO -0.26506627E+03 B0(1) 0.502801702 0.55277726-01 0.43008526-01 0.41901988-02 0.1107313556-01 0.531855-01 0.18865738-04 0.59095016-04 0.59095016-04 202 BUR 84 1. 4/85 1. 4/85 1. 4/85 1. 4/85 1. 4/85 1. 4/85 1. 4/85 1. 4/85 1. 4/85 1. 4/85 1. 5/88 1. 5/88 1. 5/88 1. 5/88 1. 5/88 1. 5/85 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5/75 1. 5 ETHTL RAD Ethanol Cans Rad Catclopropane Propane Catclobutadiene Catclobutadiene Sebuttl Rad C5 #FENTL RAD #FENTL RAD M-HEYL RAD M-HEYL RAD M-HONTL RAD BIPMENTL RAD BIPMENT RAD BIPMENT CFO CFO CFO HAD M2CL M1 M2CL M2DA M2DA BACL2(B) BAD2H2(L) BAD2H2(L) JET-A(L) CR2D3(S) CUD2H2(S) NH4CL(A) ALCL3(S) Ba(A) EFFECTIVE DXIDANT MPP(1) 0.000000006+00 P10/95 BUR 96 BUR 96 F 10/85 P10/85 P10/85 P10/85 P10/85 P12/85 P10/85 P10/85 P10/85 P10/85 P12/75 P BAR73 6/66 C345 RAD M-PROPTL RAD BUTADIYNE RAD BUTADIYNE FRANS 2-BUTENE FRANS 2-BUTENE FRANS CARBON SUBMITRID CARBON SUBMITRID CARBON SUBMITRID CONCERNE CONC (FORMIC ACID)2 Dimethyl Ether AL(L) AL203(L) BACL2(A) BACL2(A) BACL2(S) BACL2(S) CTANE(L) CTANE(L) CUC(S) H20(L) B0P(1,2) 0.6092801E-02 0.6082801E-02 0.208266E-01 0.8180198666-01 0.10151155E-02 0.10151155E-02 0.18866738E-03 0.18866738E-04 0.6599501E-04 0.65905301E-04 EFFECTIVE FUEL HPP(2) -0.26906627E+03 MATRIX, ITERATION 1 VARIABLE & U T D L D N203 C C C 0 N H NCO 2 VARIABLE L 4/85 BUR 84 312/69 BUR 84 BUR 84 BUR 84 L 9/85 J 3/61 L 9/87 L 5/87 BUR 84 BU > 6/61
>> 5/66
>> 5/66
>> 5/66
>> 5/66
>> 5/66
>> 5/66
>> 5/66
>> 5/66
>> 5/66
>> 5/66
>> 5/66
>> 5/75
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/77
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> 5/79
>> MATRIX, ITERATION AL(S) AL203(A) BA(L) BA0(L) CPN(S) CPN(S) CU(L) CU(L) CU(S) ENTHALPY (KG-MDL)(DEG K)/KG H HNCO HO2 NH20H NH20H NU30H 0.000000 KG-FORM.WT./KG Ľ. 53 -SINGULAR SINGULAR 0f * FROZ NI 2 ă

ł

Ĭ U

SINGULAR MATRIX, ITERATIOM 3 VARIABLE B

SINGULAR MATRIX, ITERATION & VARIABLE 10

WARNING--POINT 1 USES A REDUCED SET OF COMPONENTS AND NO SPECIES USING THE ELIMINATED COMPONENT ANE CALCULATED. If Ouestionable, reaun with inserted condensed species containing component co

					TING COMPONENT CO			
POINT IIN T Cros	N3H CU3CL3		03	чo	MOZCL	MCO	MALO	840343
1 25 2647.56 -64.691 ADD Altrivit	-46.597 -94.458		-55.490	-27.117	-69.071	-42.849	-45.687	-88.721
I 5 2679.09 -64.660 ADD FR20361	-46.687 -94.749		-55.233	-27.054	-68.787	-42.847	-49.375	-88.674
1 4 2694.85	-46.726 -94.895		-55.074	-27.010	-68.678	-42 . 846	-49.247	-86,515
SINGULAR MATRIX.	ITERATION	-	VARIABLE 10					
SINGULAR MATAIX,	ITERATION	~	VARIABLE 10					
SINGULAR MATRIX,	ITERATION	~	VARIABLE 10					
SINGULAR MATRIX,	ITERATION	4	VARIABLE 10					
WARNINGPOINT 2 If Questionable,	USES A AI Rerun With	EDU	CED SET OF COMPO Serted comdemsed	DNENTS AND NO SPE ) Species contaim	CIES USING THE EL The formore, co	ININATED COMPON	ENT ARE CALCULATED.	

COMPONENT CD INING . POINT INNO

CR203(L) CUCL	C02	Н 20	HCL	CD	AL203(L)	BACLZ
2 20 2456 97 -25,596 -83,195 -31,353	- 50.300	- 36 . 906	-28.573	-30,906	-105.521	- 75.347
PHASE CHANGE, REPLACE CR205(L) 2 2239.07 -25.599 -21.560 PC/PT+ 1.760411 T + 2459.07	) wIIH -50.289 7	C#203(5) -36.900	-28.972	-30.904	-105.466	185.81-
SINGULAR MATRIX, ITERATION 1	VARIABLE 10					
SINGULAR MATRIX, ITERATION 2	VARIABLE ID					
SINGULAR MATRIX, ITERATION 3	VARIABLE 10					
SINGULAR MATRIX, ITERATION &	VARIABLE 10					

WARMING--POINT 2 USES A REDUCED SET OF COMPOMENTS AND NO SPECIES USING THE ELIMIMATED COMPOMENT ARE CALCULATED. If Ouestionable, reaum with imserted comdensed species containing compoment co

			ANG CURTORENE CO			
PDIMT ITN T NZ Cr203(5) CUCL	C 0 2	#20	HCL	CO	AL203(L)	BACLZ
<pre>4 7 4407-05 -25,601 -83,598 -31,558 PC/PT+ 1,788686 T + 2457,05</pre>	-50.305	-36.911	-28.578	116.06-	-105,519	155 51-
SINGULAR MATRIX, ITERATION 1	VARIABLE 10					
SINGULAR MATRIX, ITERATION 2	VARTABLE 10					
SINGULAR MATRIX, ITERATION 3	VARIABLE 10					
SINGULAR MATRIX, ITERATION &	VARIABLE 10					

WARMING--POINT 2 USES A REDUCED SET OF COMPONENTS AND NO SPECIES USING THE ELIMIMATED COMPONENT ARE CALCULATED If Ouestionable, Rebun with inserted condemsed species containing component ed -33.601 -30.911 -103 519 2 9 2437.04 -23.601 -50.505 -36.911 -28.578

- 75 351 -105 519

ι

-83.599 -31.358 7C/P1= 1.788749 1 = 2437.04

SINGULAR MATRIX, ITERATION 1 VARIABLE 10

SINGULAR MATRIX, ITERATION 2 VARIABLE 10

SINGULAR MATRIX, ITERATION 3 VARIABLE 10

SINGULAR MAIRIX, ITERATION & VARIABLE 10

 $\sim \chi$ 

-97.138 -97.080 -101 842 WARNING--POINT 3 USES A REDUCED SET OF COMPONENTS AND NO SPECIES USING THE ELMIMATED COMPONENT ARE CALCULATED. 1 Toussiamable. Remun with inserted condensed species containing component cd 1 13 12a.rz - 24.99 -123.167 - 31.018 -123.167 - 31.018 Phase Enamee. Reflace Algos(L) with Algos(A) 2 2.1286.64 - 26.933 - 67.207 - 48.498 - 34.023 - 37.378. -171.472 -123.653 - 31.012 Add Baclis(L) Add Baclis(L) -171.158 -37.360 -34.010 -48.456 -67.139 3 4 1289.42 -26.939 -125.429 -31.005

SINGULAR MATRIX, ITERATION 1 VARIABLE 10

SINGULAR MATRIX, ITERATION 2 VARIABLE 10 SINGULAR MATRIX, ITERATION 3 VARIABLE 10

SINGULAR MATRIX, ITERATION & VARIABLE IO

MARNING--POINT 3 USES A REDUCED SET OF COMPONENTS AND NO SFECTES USING THE ELIMIMATED COMPONENT ANE CALCULATED. If Ouestionable, reann with inserted condensed species containing component co

14

BACL2(L) -102.283 -102.281 WARMING--POINT 3 USES A REDUCED SET DF COMPONEN'S AND NO SPECIES USING THE ELIMIMATED COMPONENT ARE CALCULATED 1 ducstionable, reaum with inserted comdensed species contaiming component co 3 11 1281.26 -26.93 -126.032 -95.118 -126.032 -95.118 WARWING--POINT A USES A REDUCED SET OF COMPONENTS AND NO SPECIES USING THE ELIMIMATED COMPONENT ARE CALCULATED 1 Destionable. Return with inserted compensed species containing component cd 1 J1173.50 -27 159 -70.729 -50.891 -35.087 -38.684 -185.610 -134.857.50 -94.710 -94.710 +455.50 -54.519 -70.724 -50.588 -35.086 -38.682 -185.586 +455.50 -134.819 -70.724 -50.588 -35.086 -38.682 -185.586 -134.819 -94.707 -94.707 AL203(A) -172.090 -37.446 2 -34.080 HCL -48.613 N20 SINGULAR MATRIX, ITERATION 1 VARIABLE 10 SINGULAR MATRIX, ITERATION 2 VARIABLE ID SIPGULAR MATRIX, ITERATION 3 VARIABLE 10 SINGULAR MATRIX, ITERATION & VARIABLE IO SINGULAR MAIRIX, ITERATION 3 VARIABLE 10 SINGULAR MATRIF, ITERATION A VARIABLE IO SINGULAR MATRIX, ITERATION 1 VARIABLE 10 SINGULAR MATRIX, ITERATION Z VARIABLE 10 -67.371 C 0 2 INT ITM T N2 CR203(5) CU3CL3 3 11 1281.21 -26.953 -126.035 -93.118 -93.118 POINT IIN T Cr203(S) 3 11 1281.21

-108.785 -108.712

BACL2(A) BACL2(A) -107.189 -108.807 -108.805 -108.704 -117.506 -117.569 -124.327 WARNING--POINT A USES A REDUCED SET DF COMPONENTS AND NO SPECIES USING THE ELIMIMATED COMPONENT ARE CALCULATED If questiomable, aerum with inserted comdensed species containing component cd MAMMING--POINT 5 USES A REDUCED SET OF COMPONENTS AND NO SPECIES USING THE ELIMINATED COMPONENT ARE CALCULATED. If Oucstionable. Reann with inserted condensed species containing component ed 5 il 1059.09 -27.419 -75.07a -53.832 -53.832 -16.371 -40.288 -203.141 -146.302 -97.630 WARNING--POINT 3 USES A REDUCED SET OF COMPOMENTS AND NO SPECIES USING THE ELIMIMATED COMPOMENT ARE CALCULATED. If Ouestionable, reann with inserted condensed species containing component cd WARMING--POINT & USES A REDUCED SET OF COMPONENTS AND NO SPECIES USING THE ELIMIMATED COMPONENT ARE EALCULATED If ouestionable, reaum with inserted condensed species containing component ed 6 11 985.87 -27.615 -78.405 -56.080 -37.347 -41.521 -216.593 AL203(A) AL203(A) -185.355 -182 312 -185.562 -185.557 -203.107 -216.593 -38.490 -38.681 -38.681 -38.662 -40.284 8 8 -34.950 -35.085 -35.084 -35.069 -36.368 HCL HCL -50.444 -50.885 -50.884 -50.850 -53.826 M 2 0 H20 1 VARIABLE 10 2 VARIABLE 10 3 VARIABLE 10 4 VARIABLE 10 SINGULAR MATRIX, ITERATION 1 VARIABLE 10 SINGULAR MATRIX. ITERATION 2 VARIABLE ID SINGULAR MATRIX, ITERATION 3 VARIABLE 10 SINGULAR MATRIX, ITERATION & VARIABLE 10 SINGULAR MAIRIX, ITERATION 3 VANIABLE 10 SINGULAR MATRIX, ITERATION I VARIABLE 10 SINGULAR MATRIX, ITERATION 2 VARIABLE 10 SINGULAR MATRIX, ITERATION & VARIABLE 10 SINGULAR MATRIX, ITERATION 1 VARIABLE 10 SINGULAR MATRIX, ITERATION 2 VARIABLE 10 SINGULAR MATRIX, ITERATION 3 VARIABLE 10 SINGULAR MATRIX, ITERATION & VARIABLE 10 -70.719 -70.018 -70.718 - 70.668 - 75.066 C 0 2 C 0 2 A 3 1197.99 -27.217 -132.68A -94.420 RHOVE BACL2(B) A 2 1173.85 -27.160 -134.804 AD CU(S) SINGULAR MATRIX, ITERATION SINGULAR MATRIX, ITERATION SINGULAR MATRIX, ITERATION SINGULAR MATRIX, ITERATION POINT ITN T N2 CR203(S) CU3CL3 4 11 1175.36 -27.157 -134.668 -94.770 1173.89 -27.160 00 -94.802 CR203(5) CU(5) 5 10 1059.29 -27.418 -146.280 -5.695 N 2 POINT ITN T Cr203(5) NDD BACL2(A) -134.800

P

-

WARNING--POINT & USES A REDUCED SET OF COMPONENTS AND NO SPECIES USING THE ELIMIMATED COMPONENT ARE CALCULATED. If Ouestionable, rerum with inserted condensed species containing component cd -19.195 20 SINGULAR MATRIX, ITERATION 1 VARIABLE 10 SINGULAR MATRIX, ITERATION 2 VARIABLE IO SINGULAR MATRIX, ITERATION 3 VARIABLE 10 SINGULAR MATRIX, ITERATION A VARIABLE 10 -78.376 C 0 2 POINT ITM F N2 Er201(5) EU(5) 6 11 986,46 -27,613 -155.061 -5.533 -5.332 151.861-

BACL2(A) -124.268

AL203(A) -216.477

-41.510 2

-37.339 HCL

,

ŧ

---

THEORETICAL ROCKET PERFORMANCE ASSUMIMG EQUILIBRIUM COMPOSITION DURING EXPANSION

1647 298 15 298 15 298 15 298 15 0 00 0 00 0 00 STATE **~~~** M EMEMGY 5 CAL/MOL -70580 000 8400 000 -308000 000 0.000 0.000 0.0000 -144 WT FRACTION (SEE HOTE) 0.14193 0.146992 0.116992 0.116992 0.116992 0.009323 0.009722 1.4412 RATIO= CAAMEE THEAT EXIT EXIT EXIT EXIT EXIT TAULE TAUL 1.454 -5 3.060 -6 1.607-14 3.466-16 2.068-19 4.354-20 5.681 -5 1.641 -5 4.004-12 2.644-19 2.054-19 2.726-10 2.791 -5 7.013 -6 1.280-13 5.622-13 2.024-10 2.791 -5 7.013 -6 1.280-15 7.624 -9 1.022 1.217 -5 2.797 -6 6.691-15 1.311-16 6.824-19 1.309-22 4.6529-4 4.6737-6 6.691-15 1.311-16 6.824-19 1.1067-9 1.001 -6 3.735 -6 6.691-15 1.311-16 5.824-19 1.1067-9 2.6599-6 1.5400-6 3.1754-6 3.471-1 1.3434-8 1.1167-9 2.6599-6 1.5400-6 7.6593-6 5.1857-8 3.6981-17 2.697-19 2.9599-6 1.5400-6 7.5693-6 5.1857-8 3.6981-18 2.6972-8 2.9515-6 2.197-6 7.6593-6 5.707-8 3.6981-1 1.9762-1 2.9815-1 1.4861-1 1.1356-6 1.1956-1 1.0752-1 1.9815-1 1.4861-1 1.1325-1 1.4864-1 1.0752-1 2.9815-1 1.4861-1 1.1325-1 1.4864-1 1.0752-1 2.9815-1 1.4861-1 1.1325-1 1.4864-1 1.0752-1 2.9815-1 1.2872-2 1.1949-1 1.1329-1 1.9895-1 1.5717-2 7.1942-2 1.1941-1 1.7127-1 1.4869-1 1.0752-1 2.9725-3 7.295 -4 1.017-7 7.542-4 3.7139-1 1.9895-1 1.2717-2 7.1942-1 1.1940-1 1.1712-11 1.9495-1 1.0752-1 2.1295 -5 7.104-2 1.1041-1 1.7127-1 1.9495-1 1.10752-1 2.1295 -5 7.104-2 1.1041-1 1.7127-1 1.9495-1 1.10752-1 2.1295 -5 7.205 -4 1.017-7 7.542-8 3.7195-10 1.2912-1 1.2951-1 1.0752-1 2.1295 -5 7.205 -4 1.017-7 7.542-8 3.7105-10 1.2051-1 1.9495-1 1.10752-1 2.1295 -5 7.205 -4 1.017-7 7.5442-8 3.7105-10 1.2072-1 1.10752-1 1.10752-1 1.0755-1 1.0755-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075-1 1.1075 20.000 4780 1.704 266.7 255.2 EQUIVALENCE 15.000 4780 1.668 262.6 267.8 1.00000 PERCENT FUEL= 100.0000 10.000 4760 1.610 256.2 256.2 259.2 ដ 4.00000 3.00000 42.00000 CD 1.09000 CR 2.00000 0 4.00000 7.2000 4780 1.556 250.3 231.1 **. . .** RMULA 0 4.00000 CL 1.00000 0 4.00000 1.0000 4780 0.685 184.8 184.8 0.000 FORMU CKEMICAL FOM 1.00000 C 2.00000 C C 2.00000 C C 1.00000 C C 1.00000 C C 1.00000 C C 2.00000 C C 2.00000 C C 2.00000 C PERFORMANCE PARANETERS 0/F. 2500.0 PSIA No. 208 PC/P AT DEG K T. DEG K PO CAL/G CAL/G CAL/G CL/C CL AE/AT CSTAR, FT/SEC Cf Ivac,lb-sec/lb ISP, lb-sec/lb MULE FRACTIONS ALEL ALEL2 ALEL2 ALEL3 ALOC1 ALOC1 ALOC1 BAC22 BAC22 Formaloenyde Form PC . 

ļ

ŝ . WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAN D.50000E-D6 FOR ALL

			ULL FRACTIONS WERE	LESS THAN D.50000	E-D6 FOR ALL ASSI	GNED CONDITIONS
AL	ALC	ALH	A : N			
AL2C16	AL 20	AL 202			ALDZ	ALZ
ככו	CCL2	CC13			HOHO	IJ
CHZ	CH2CL2	CH 3			CHCL	CHCLJ
N U	NCN RAD			NIURUXIMEINYLEME Co	METHYLOXIDE	METHANDL
C2C16	CZH RAD	C 2HLI			C2CL2	CZCLA
CH3CO RAD	CH2CHD RAD	E THY I FWF	ACCI LERC	REIEME AARTES 2222	C2H3 RAD	METHYL CYANIDE
ETHVL UXIDE RAD	EIMANE	870M51W8W5	DINETURE FILE	ALLIE ACID	(FORMIC ACID)2	ETHYL RAD
CCO RAD	0		CVT: 00000511		CMC RAD	CYANDGEN
CYCLOPROPANE				PROFYME	ALLENE	C3H5 RAD
CARBON SUBDIIDE		DITADITICNE UNIUE	I-PROPYL RAD	N-PROPYL RAD	PROPANE	1-PROPANDE
2-BUTENE TRAMS	1. Butter ctr		<b>CTCLOBUTADIENE</b>	BUTAN-1EN-3YN	1.3-BUTADIENE	2-811485
	STATUT CIS	ISOBUTENE	1-BUTENE	(ACETIC ACID)2	T-RITYL PAD	
GVM TLING-W	N-BUTANE	ISOBUTANE	CARRON SURWITETD			S-BUITL RAD
1-PENTENC	T-PENTYL RAD	N-PENITI BAD			CTCLOPENTADIENE	<b>CYCLOPENTANE</b>
PHENYL RAD	PHENDXY RAD			I SUT LNI ANE	CM3C(CM3)2CM3	HERATRIVNE
CRESOL	1-KFPTEMF			CVCLOMEXENE	N-HEXYL RAD	TOLUENE
150-DCTANE				1-OCTONE	N-OCIVL RAD	OCTANF
151-4151		MAPINLENE	AZULENE	N-DECYL RAD	0-BIPHENYI BAD	
		C102	CL20	CRN		
1 1 2	MALG	UWH	NND 2	N N N N		100
H 2 D 2	2	NCO	X Z			HZNZ
NDZCL	ND 3	M 2 H 2			MOCE	2 O M
N 2 0 4	M205	2		4U7N	M20	M203
ALCL3(S)	ALELSCI			0 J	AL(S)	<b>A</b> L(L)
BACL2(B)				2¥(2)	84(C)	BA(L)
TOLECKER			5402H2(S)	8A02M2(L)	C(GM)	
	ULIANE (1)	JE1-A(L)	CR(S)	CR(L)		
LU11)	C U D ( S )	CU02H2(S)	CU20(S)	CU20(1)		
NHACL(A)	NHACL(B)				( < ) חז ש	H20(1)

NDTE. VEIGHT FRACTION OF FUEL IN TOTAL FUELS AND OF OXIDANT IN TOTAL OXIDANTS

TMEORETICAL ROCKET PERFORMANCE ASSUMING FROZEM COMPOSITION DURING EXPANSION

C CHCL3 CH2 C2CL2 C2CL2 C2CL2 C2CL2 (FORMIC ACID)2 CMC RAD ADDITIONAL PADDUCTS WHICH WERE CONSIDERED BUT WHOSE MOLE FRACTIONS WERE LESS THAM 0.50000E-06 FOR ALL ASSIGMED COMDITIONS 0,00003 0,00000 0,00001 0,00003 0,00003 0,00001 0,13676 0,00001 0,00001 1517 0557 298.15 298.15 298.15 0.00 0.00 0.00 0.00 81S STATE **~~~** ALD2 BAOH CHCL METHYLDXIDE C2 WT FRACTION ENERGY S SCE UNCE) CAL/MOL (SCE UNCE) CAL/MOL 0.7411597 -70280 000 0.114992 -508000 000 0.00351 0.000 0.0009712 0.000 0.000712 0.000 PHI= 0.0000 0.00015 0.19815 0.19815 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0/F= 0.0000 FERCENT FUEL= 100.0000 EQUIVALENCE RATIO= 1.4412 ALCL3 BACL2 CL0 CL0 CL0 CR02 CR02 NCN NCN NH3 OH ALN BA CCLA CNSCL CNN RAD C2NN RAD C7NCL ETHYLENE A20NCTMANE CL 1.00000 0,00006 0,00000 0,00000 0,00005 0,00005 0,00000 0,00000 0,00000 0,00000 M 1.0000 0 4.0000 H 4.00000 C 2.00000 C 2.00000 C 1.00000 H 3.00000 C 1.00000 H 3.00000 H 42.00000 H 42.00000 H 42.00000 H 42.00000 C 1.00000 H 42.00000 C 1.00000 C 1 ALELZ Alozh Formic Acid 0 C#203(L) C#0 H HNCO NH2 СНАМВЕЛ ТНЕОЛТ 1.0000 1.0000 1.0000 1.0101 1.0161-2 -226.74 -74.74 -74.74 -74.74 -74.74 -74.74 -74.74 -74.74 2.7790 2.2790 1.226 1.226 C 1005.0 FDANULA ALC AL2D CCL2 CH2CL2 0.00001 0.00000 0.00000 0.00175 0.00002 0.00154 0.19781 0.30941 0.01542 0.01542 PERFORMANCE PARAMETERS CHENICAL PC = 2500.0 PSIA Case No. 208 M. WOL WT CP. Cal/(g)(k) Gama (s) Som Yel,m/Sec Macm Mumber AL AL2CL6 CCL CT2 CH2 METMANDL METW1L CZCLA METW1L CYANIDE EIW1L RAD PC/P - Alm 1. DCG K RH0. G/CC H. CAL/G C. CAL/G C. CAL/G S. CAL/G)(K) AE/AT CSIAR, FT/SEC Cf IYAC.LB-SEC/LB ISP, LB-SEC/LB HOLE FRACTIONS ALCL Aldh Formaldemyde Co2 M2 Al203(l) C.M.C.L C.V.C.L 40 F

C2 Ketene Acetic Acid Etmandl

C2CL6 C2CL6 CM3CD RAD ETHYL DXIDE RAD

CTELOFENTANE     1-FENTINE    FENTINE    FENTINE     CTELOFENTANE     CTELOFENTANE       CTELOFENTINE     1-FENTINE     FENDIL     CTELOFENTANE     CTELOFENTANE     CTELOFENTANE       CTANE     FENDIL     FENDIL     FENDIL     CTELOFENTANE     CTELOFENTANE     CTELOFENTANE       CLANE     FENDIL     FENDIL     FENDIL     CTELOFENTANE     CTELOFENTANE     CTELOFENTANE       CLANE     FENDIL     FENDIL     FENDIL     FENDIL     FENDIL     FENDIL     FENDIL       CLANE     TANE     FENDIL     FENDIL     FENDIL     FENDIL     FENDIL     FECCIONESTANE       DITANE     TENDIL     FENDIL     FETDIL     FETDIL     FETDIL     FETDIL     FETDIL       DITANE     TENDIL     FETDIL     FETDIL     FETDIL     FETDIL     FETLINE     FETLINE       DITANE     TELA     CLCN     CLCN     CLCN     CLCN     FETLINE     FETLINE       DITANE     TANA     FETLINE     FETLINE     ALL     FETLINE     FETLINE     FETLINE       DITANE     TANA     TANA     TANA     TANA     TANA     TANA       DITANE     TANA     TANA     TANA     TANA     TANA       DITANE     TANA     TANA
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

SINCE IN THE STATES OF A STATE

CALCULATIONS WERE STOPPED BECAUSE NEXT POINT IS NORE IMAN 50 DEG BELOW TEMP RANGE OF A CONDENSED SPECIES

Table C-4 NASA - Lewis CET - 86 Output

Composition Q

Tue Dec 3 10:16:49 EDT 1991

٨

 .

KETENE Ethylene Ethyl dxide mad . JRMALDEHTDE CMa 5 3/61 1 5/65 1 9/65 84 1 2/85 1 2/85 84 84 84 296.150 298.150 298.150 298.150 298.150 298.150 298.150 298.150 298.150 298.150 298.150 298.150 298.150 CHZ METMYLDXIDC CMM RAD ACETYLEME CHZCHQ RAD ETMYL RAD 312/72 L 9/85 J 6/66 J 3/61 Bur 84 Pi0/83 CH HYDROXYNETHYLENE L HYDROXYNETHYLENE L HYDROX AAD CHISCO RAD FORMIC ACID)2 F 11.360000 11.360000 4.550000 1.660000 0.750000 0.400000 0.340000 0.340000 1.000000 1.500000 0.90000 0.900000 212/67 L 9/85 J12/70 J 3/67 D 8/85 L 4/85 SPECIES BEING TEVSIDERED IN INIS SYSTEM 1 7/75 BI 1 4/15 CORMIC ACID 3 5/45 CH 1 4/15 CORMIC ACID 3 6/65 CH 1 9/15 MELANOL 3 5/65 CH 3 9/65 CH 3 9/65 CH 8 8 A CETALDENDE BUR BA METHL CANIDE BUR BA ACETALDENDE UN SA METHL CTD MANELISIS SINTIZ FIAL NO IMPTZ VALUE GIVEM FOR OF. EQRAT. FA. OR FPCT % 0000 x 7 0000 x 7 0000 x 8 0000 x 8 0000 x 11 0000 x 11 0000 x 11 0000 x 12 0000 0 1 0000 x 12 0000 0 1 15 0000 0 * * * * * * * * * x 9,0000 8,0000 9,0000 1,0000 2,0000 2,0000 2,0000 7,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 A A CALANIS A CALANIS

.7 CNC RAD 14 CYCLOPROPENE 15 Propylene 1 - Propandi	A BUIAN-ICN-JTN BUIAN-ICN-JTN BUIAN-ICN-JTN BUIAN- BUIAN- BUIAN- CLUERE A PHYAR PHYAR BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIAN BUIA	81 - 23 . 5 <b>4</b> 0	- 23 . 66 7	- 23. 649	- 23 . 653
L 3 3/6 AD BUN 3 Ropane La/8 E La/8	HU CLIEN HU CLIEN HU CLIEN HAD FID/9 HU CLIEN HU CL	-18.915	-19.044	-19.026	-19.029
0UR 84 ETMAMO 086/61 C3M3 R 8UR 84 CYCLOP L 4/85 PROPAN	ULAT REAL FLACTOR FLAC	- 55.063	-62.741	100-29-	-62.791
DIMETHTL ETHER C3 C3H5 RAD M-PROPTL RAD	Z-60'EWETTRANS Z-80'EWETTRANS CARBON SUBMITTE FIERD SUBMITTE FIERD SUBMITTE FIERD SUBMITTE FIERD SUBMITTE FIERD SUBMITTE FIERD SUBMITTE FIERD SUBMITTE FIERD SUBMITTE FIERD SUBMITTE FIELD SUBMITT	-25.033	- 25 . 076	- 25 . 069	-25.071
. 80 80 84 312/69 607 84 14D 1.9/85	<pre>ID)2 L 5/25 L 5/47 L 5/47 L 5/47 P 10/25 P 10/25 P 10/25 P 10/26 D 5/77 D 5/777 D 5/777 D 5/777 D 5/777 D 5/777 D 5/777 D 5/777 D 5/777 D 5/7777 D 5/7777 D 5/77777 D 5/777777777777777777777777777777777777</pre>	-18.137	01.11-	-18.174	-18.175
IN 84 AZOMETHAN 9/66 CCO RAD 18 84 ALLENE 9/85 I-PROPTL 1 2/26	R 445 (2011 A 45 (2011) A 45	-36.143	-36.083	- 36.091	-36.070
ME BU DGEN J The Date Bu Theme Dation J	RUTADIENE RUTADIENE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUTANE RUT	.8 -30.116	10 - 30,10 <b>4</b>		cut.uc- 1
L 5/84 ETMA. 3 5/61 EYAM BUR 84 FROF 1 9/85 FROF 3 6/66 CARD	8 - 4 - 8 - 1 - 5 - 1       8 - 4 - 8 - 1 - 5 - 1       1 - 1 - 5 - 1       1 - 1 - 5 - 1       1 - 1 - 5 - 1       1 - 1 - 5 - 1       1 - 1 - 5 - 1       1 - 1 - 5 - 1       1 - 1 - 5 - 1       1 - 1 - 5 - 1       1 - 1 - 5 - 1       1 - 1 - 5 - 1       1 - 5 - 1       1 - 5 - 1       1 - 5 - 1       1 - 5 - 1       1 - 5 - 1       1 - 5 - 1       1 - 5 - 5       1 - 5 - 5       1 - 5 - 5       1 - 5 - 5       1 - 5 - 5       1 - 5 - 5       1 - 5 - 5       1 - 5 - 5       1 - 5 - 5       1 - 5 - 5       1 - 5 - 5       1 - 5 - 5       1 - 5 - 5       1 - 5 - 5       1 - 5 - 5       1 - 5 - 5       1 - 5 - 5       1 - 5 - 5       1 - 5 - 5       1 - 5 - 5       1 - 5 - 5       1 - 5 - 5       1 - 5 - 6       1 - 5 - 7       1 - 5 - 7       1 - 5 - 7       1 - 5 - 7       1 - 5 - 7       1 - 5 - 7       1 - 5 - 7       1 - 5 - 7       1 - 5 - 7       1 - 7 - 7       1 - 7 - 7 <t< td=""><td>1 20 2920 1</td><td>ADD ZR02(B) 1 5 2955.3</td><td>ADD ZRO2(L) 1 1 2950 a Remove Zro2(B) 1 2 2951 1</td><td></td></t<>	1 20 2920 1	ADD ZR02(B) 1 5 2955.3	ADD ZRO2(L) 1 1 2950 a Remove Zro2(B) 1 2 2951 1	

I.

E

P 0 I N 1	I NII	CO	М 2 О	н2	и2	Z802(1)	84	18
2	4 2664.85	-30.797	-37.224	-18.367	-25.271	-66.390	-18.457	- 23 04
PHASE 2	CHANGE, REP 2 2668.58	LACE 2802(L) -30.795	WITH 2RO -37.216	2(8) -18.372	-25.276	-66.704	-18.473	
PC/PT.	- 1.781106	T = 2668.58						
1 N I O	I N I	CD	Н20	н2	N.2	2802(B)	84	
7	3 2666.37	-30.801	-37.225	-18.374	-25.277	-66.738	-15.468	- 23.10
-C/P1-	<pre>1.789253 2 2666.35</pre>	T = 2666.37 -30.801	-37.226	-18.374	-25.277	-66.738	- 16.468	- 23.10
5 / F1.	• 1.789311 6 1894.37	T = 2666.35 -33.464	-41.961	-18.908	-25.067	-84.178	-15.823	
•	4 1897.79	-33.448	-41.932	-18.906	-25.864	-84.067	-15.840	-20 3 <b>A</b>
•	5 1713.91	-34.399	-43.699	-19.056	-26.042	121.00-	-14.803	-19.24
•	3 1716.00	-34.387	-43.677	-19.054	-26.040	-90.653	-14.816	-19.25
•	5 1567.74	-35.307	-45.410	-19.187	-26.204	-97.236	-13.783	-18.14
•	3 1568.43	-35.302	-45.401	-19.186	-26.203	-97.203	-13.788	-19.15
v	5 1496.82	-35.810	-46.365	-19.256	-26.291	-130.876	-13.209	
s	5 1496.74	-35.811	-46.366	-19.256	-26.291	-100.880	-13.206	-17.53
٢	5 1404.05	-36.544	-47.764	-19.352	-26.416	-106.224	-12.362	-16.62
HASE 7	CHANGE, REPL 2 1404.39	.ACE 2802(8) -36.542	MITH 2803 -47,760	2(A) -19.353	-26.416	-106.229	-12.367	-16.62
1 N I O	ITN T	CO	Н 20	Н2	NZ	ZR02(A)	8 a	18
•	3 1405.41	-3ė.533	-47.743	-19.352	-26.415	-106.156	-12.311	-16.64

ю.

THEORETICAL ROCKET PERFORMANCE ASSUMING EQUILIBRIUM COMPOSITION DURING EXPANSION

TOTANUA         TOTANUA <t< th=""><th>- 0.0 - 0</th><th>00</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	- 0.0 - 0	00											
0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	CAL	FORMUL	14							T FRACTIO	N CR.	5	STATE
1       0       1.0000       0       0.0000       0       0.0000       0       0.0000       0       0.0000       0       0.0000       0       0.0000       0       0.0000       0       0.0000       0       0.0000       0       0.0000       0       0.0000       0       0.0000       0       0.0000       0       0.0000       0       0.0000       0       0.0000       0       0.0000       0       0.0000       0       0.0000       0       0.0000       0       0.0000       0       0.0000       0       0.0000       0       0.0000       0       0.0000       0       0.0000       0       0.0000       0       0.0000       0       0.0000       0       0       0.0000       0       0.0000       0       0.0000       0       0.0000       0       0.0000       0       0.0000       0       0       0       0.0000       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	0000	•	9.00000	T	.0000	z	000000		-	SLE NGTE)			,
0         0         00000         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>0000</td> <td>0</td> <td>9.00000</td> <td>×</td> <td>.0000</td> <td>x 0</td> <td>3.00000</td> <td></td> <td></td> <td>0091110</td> <td></td> <td></td> <td><i>.</i> .</td>	0000	0	9.00000	×	.0000	x 0	3.00000			0091110			<i>.</i> .
0         5.0000         1.4.0000         1.4.0000         1.4.0000         1.4.0000           0         2.0000         1.4.0000         1.4.0000         1.4.0000         1.4.0000           0         2.0000         1.4.0000         1.4.0000         1.4.0000         1.4.0000           0         2.0000         1.4.0000         1.4.0000         0.00000         0.00000           1         1.0000         1.4.0000         1.4.0000         0.0000         0.0000           1         1.0000         1.4.0000         1.4.0000         0.0000         0.0000           1         1.0000         1.4.0000         1.4.0000         0.0000         0.0000           1         1.0000         1.4.0000         0.17.0000         0.0000         0.0000           1         0.000         1.4.0000         0.17.0000         0.0000         0.0000           1         0.000         1.4.0000         0.17.0000         0.0000         0.0000           1         0.000         1.4.0000         0.0000         0.0000         0.0000           1         0.000         1.4.000         0.0000         0.0000         0.0000           1         0.000         1.4.000         0.00	0000	•	8,00000	x	00001	z	8.00000			0.660000			n u
0       1.00000       1.00000       1.00000       1.00000       1.00000         0       1.00000       1.00000       1.00000       1.00000       1.00000         0       1.00000       1.00000       1.00000       0.00000       1.00000         0       1.00000       1.00000       1.00000       0.00000       0.00000         1       1.0000       1.0000       0.10000       0.00000       0.00000         1       1.0000       1.0000       0.10000       0.00000       0.00000         1       0.0000       1.0000       0.11700       0.00000       0.00000         1       0.0000       1.17.0000       0.17.000       0.00000       0.00000         1       0.0000       1.17.0000       0.17.000       0.00000       0.0000         1       0.000       1.17.0000       0.17.000       0.0000       0.0000         1       0.000       1.17.000       0.17.000       0.0000       0.0000         1       0.000       1.17.000       0.17.000       0.0000       0.0000       0.0000         1       0.000       1.17.000       0.17.000       0.0000       0.0000       0.0000       0.0000       0.0000		•	5.00000	9 T	.0000					0.040300	-282900	000	
0       1       00000       1       1       00000       1       00000       1       00000       1       00000       1       00000       1       00000       1       00000       1       00000       0       00000       0       00000       0       00000       0       00000       0       00000       0       00000       0       00000       0       00000       0       00000       0       00000       0       00000       0       00000       0       00000       0       00000       0       00000       0       00000       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0				 	0000	z .	1.00000			0.016800	-23550	000	ŝ
0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	0000		2.00000	: 1						0.007500	-7460	000	ŝ
0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	0000	0	1 00000							0.0400.0	-15400	. 000	s
F 12.00000       H 16.0000       T 17.0000	0000	0	20.0000	K 13	0000	z	00000 5			0.003400	-635130	. 000	ŝ
5       17.0000       #14.0000       17.0000       0.0000         6       0.0000       0.0000       0.0000       0.0000         7       0.0000       0.0000       0.0000       0.0000         7       0.0000       0.0000       0.0000       0.0000         7       0.0000       0.0000       0.0000       0.0000         10000       145.0000       0.111       0.0000       0.0000         10000       145.0000       0.111       0.0000       0.0000         10000       145.0000       0.111       0.0000       0.0000         10000       145.000       0.111       0.0000       0.0000         10000       145.000       0.111       0.114.000       0.0000         10000       145.000       0.0000       0.0000       0.0000         10000       145.000       0.0000       0.0000       0.0000         10000       145.000       0.0000       145.000       0.0000       0.0000         10000       145.000       0.0000       145.000       0.0000       0.0000         10000       145.000       145.000       145.000       145.000       0.0000         10000       145.000<	000	ບ ດ	1.00000								- 101200	000	<b>~</b> ~
C     C     0.00000     M13.0000     0.00000     0.00000       7     0.00000     L1793     0.00000     EUINALENEE MITO     0.00000       74405     TMANN     ETELENT TUEL     D.00000     EUINALENEE MITO     0.00000       100011     J1793     10.173     J1793     J171     J1111     J1111       100011     J184-3     J1711     J1111     J1111     J1111     J1111       100111     J184-3     J1111     J1111     J1111     J1111     J1111       1100111     J1111     J1111     J1111     J1111     J1111     J1111       11113     J1111     J1111     J1111     J1111     J1111     J1111       11113     J1111     J1111     J1111     J1111     J1111       11113     J1111     J1111     J1111     J1111     J1111       11113     J1111     J1111     J1111     J1111     J1111       J11113     J1111     J1111     J1111     J1111     J1111       J11113     J1111     J1111     J1111     J1111     J1111       J11111     J1111     J11111     J11111     J11111     J1111       J11113     J11111     J11111     J11111     J	000	- - -	12.00000	Н 16	.0000	. 0	7.00000			0.015000			n v
- 0.0000         FREENT FUEL         10.000         FUEL         11.000         1.4706         Mis         0.0000           10.001         5.1717         5.171         5.171         5.171         5.171         5.171         5.171         5.171         5.171         5.171         5.171         5.171         5.171         5.171         5.171         5.171         5.171         5.171         5.171         5.171         5.171         5.171         5.171         5.171         5.171         5.173         5.173         5.173         5.173         5.173         5.173         5.173         5.173         5.175         5.173         5.175         5.175         5.175         5.175         5.175         5.175         5.175         5.175         5.175         5.175         5.175         5.175         5.175         5.175         5.175         5.175         5.175         5.175         5.175         5.175         5.175         5.175         5.175         5.117         5.117         5.117         5.117         5.117         5.117         5.117         5.117         5.117         5.117         5.117         5.117         5.117         5.117         5.117         5.117         5.117         5.117         5.117         5.117		- - -	00000.01	н 13	. 0000					0.004000		88	<b>.</b>
WANKER TWOAT       ETT	0/6		3000 PE	RCENT	1301	. 100.0	000 E Q	UIVALENCE	RATID. 1	. 6706 1	MI= 0.000	8	
1000       17,135       17,450       27,136       27,136       27,136       27,137       12000         1000       1,36,723       1,1900       1,1900       1,1900       2,4935       27,137       4400,75       4401,75         27,93       27,937       27,937       27,937       27,937       27,937       27,937       27,937       27,932       27,937       27,932       27,937       27,932       27,937       27,932       27,937       27,937       27,937       27,937       27,937       27,937       27,937       27,937       27,937       27,937       27,937       27,937       27,937       27,937       27,937       27,937       27,937       27,937       27,937       27,937       27,937       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947       27,947 <td< td=""><td>u</td><td>HANBER</td><td>I THROAT</td><td></td><td>E X I 1</td><td>E X I</td><td>1 C×1</td><td>T Ex11</td><td>EXI</td><td>F</td><td></td><td></td><td></td></td<>	u	HANBER	I THROAT		E X I 1	E X I	1 C×1	T Ex11	EXI	F			
7393-5       7.4843       9.7844       5.4913       1.9613       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615       1.9615		1.0030	1 1.7893	9	. 525	17.45	0 27.34	0 34.519	47.30				
7.371-5       7.301-5       1730-6       1730-6       1730-6       1730-6       1730-6       1730-6       1730-6       1730-6       1730-6       1730-6       1730-6       1730-6       1730-6       1730-6       1730-6       1730-6       1730-6       1730-6       1730-6       1730-6       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7       1730-7		100 71	56.283	•	5688	5.771	1 3.683	6 2.9174	1 2.129				
1.4012       2.4319       2.4319       2.4319       2.4319       2.4319       2.4319         2.4319       2.4319       2.4319       2.4319       2.4319       2.4319         2.4319       2.4319       2.4319       2.4319       2.4319       2.4319         2.4319       2.4319       2.4319       2.4319       2.4319       2.4319         2.4319       2.4319       2.4319       2.4319       2.4319       2.4319         1.4020       1.4000       1.4000       1.4000       1.40001       1.40001         1.4020       1.4000       1.4000       1.40001       1.40001       1.40001         1.4020       1.4000       1.40001       1.40001       1.40001       1.40001         1.4020       0.4110       0.4114       0.4114       0.4114       0.4114         1.4020       0.4101       0.4114       0.4114       0.4114       0.4114         1.1275       1.2750       1.2710       2.4310       2.4310       2.4310         1.1275       1.2750       1.2710       2.4120       2.4310       2.4310         1.1177       1.0600       1.2710       2.4120       2.4120       2.4114         1.1177 <td< td=""><td>•</td><td>2.1645</td><td>2666.4</td><td>33</td><td>97.<b>8</b></td><td>1716.</td><td>0 1568.</td><td>4 1496.7</td><td>1405</td><td>•</td><td></td><td></td><td></td></td<>	•	2.1645	2666.4	33	97. <b>8</b>	1716.	0 1568.	4 1496.7	1405	•			
7. 131       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 433       2. 234       2. 234       2. 234       2. 234       2. 234       2. 234       2. 234       2. 234       2. 234       2. 234       2. 234       2. 234       2. 234       2. 234       2. 234       2. 234       2. 234       2. 234       2. 234       2. 234       2. 234       2. 234	•	- 134.61	-270 51					4 5.6947-4	4.4757-	•			
7117.61 -675979 -7227.72 -4859.60 -4570.72 -4412 6 -7278.26 7.4378 2.4378 2.4378 2.4318 2.4318 2.4318 2.4318 2.4318 2.4338 1.0027 1.0020 -1.00003 -1.00001 -1.00001 -1.00001 1.0177 1.0001 -1.0000 -1.00001 -1.00001 -1.00001 1.2166 1.2779 1.2181 1.272 1.2522 1.2526 1.1217 1066.4 906.6 862.9 825.9 806.9 781.2 1.117 1066.4 906.6 862.9 825.9 806.9 781.2 1.100 2.185 2.473 2.727 2.859 5.0000 6.2500 5100 5100 5100 5100 5100 5100 5100 1.000 1.710 2.2500 5.1000 5100 5100 5100 1.000 1.710 2.2100 5100 5100 5100 5100 0.660 1.717 2.276-5 2.1729-5 2.1729-5 2.1729-5 1.000 1.2172 1.2579-5 2.1729-5 2.1729-5 2.1729-5 1.000 2.2300 5100 5100 5100 5100 5100 5100 1.2000 0.660 1.2779 1.3197 1.4819 1.4819 1.527.0 1.000 2.2300 5.100 5100 5100 5100 5100 1.2000 0.660 1.2779 1.3190 7.229.6 7.229.9 1.2179-5 1.010.7 2.0099-7 1.4140-7 1.1107-1 2.4219-1 2.1729-1 2.1729-5 2.1729-5 2.1729-5 2.1729-5 2.1971 2.0270-8 2.2117 2.0956-1 2.4811-1 2.2786-1 2.101 2.2300-8 1.4017-7 2.0959-7 1.4140-7 1.11070-1 2.1991-5 2.1729-5 2.1729-5 2.1729-5 2.1729-5 2.6919-6 1.2787-1 2.0919-7 2.1729-5 2.1729-5 2.6919-6 1.2787-6 2.2112-7 2.0959-7 1.4140-7 1.11070-1 2.1991-5 2.1728-5 2.1729-5 2.1729-5 2.1729-5 2.6919-6 1.2787-6 2.2112-7 2.0959-7 1.4140-7 1.11070-1 2.1991-5 2.1729-6 1.2019-1 2.2911-7 2.1729-5 2.1729-5 2.6919-6 1.2787-6 2.2112-7 2.0959-7 1.2109-1 2.501-6 2.2005-1 1.2109-1 2.9919-5 2.1729-5 2.8877-5 2.2891-7 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951-9 2.0951		-380.24								-			
7.437       7.437       7.437       7.437       7.437       7.437       7.437       7.437       7.437       7.437       7.437       7.437       7.437       7.437       7.437       7.437       7.437       7.4116       0.0001       -1.00001       -1.00001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.00	,	19 / 16/											
73.077       23.077       23.077       23.077       23.077       23.077       23.077       23.077       23.077       23.077       23.077       23.077       23.077       23.077       23.077       23.077       23.077       23.077       23.077       23.077       23.077       23.077       23.071       100001       1.00001       1.00001       1.00001       1.00001       1.00001       1.00001       1.00001       1.00001       1.00001       1.00001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0		2.4338	2.4338					99.7188- 7	2.8228-				
37.177       23.973       23.973       23.973       23.973       23.973       23.973       23.973       23.973       23.973       23.973       23.973       23.973       23.973       23.973       23.973       23.973       23.973       1.20001       1.00001       1.00001       1.00001       1.00001       1.00001       1.00001       1.00001       1.00001       1.00001       1.00001       1.00001       1.00001       1.00001       1.00001       1.00001       1.00001       1.00001       1.00001       1.00001       1.00001       1.00001       1.00001       1.00001       1.00001       1.00001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0001       1.0011       1.0011       1.0011       1.0010       1.0010       1.0011       1.0011       1.0011       1.0011       1.0011       1.0011       1.0011       1.0011       1.0011       1.0011       1.0011       1.0011       1.0011       1.0011       1.0011       1.0011       1.0011       1.0011       1.0011       1.0011       1.0011       1.0011 <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>····</td> <td>-</td> <td></td> <td></td> <td></td>			1						····	-			
1.0027       1.0000       -1.00001       -1.00001       1.0001       1.0001         0.505       0.450       1.240       1.201       1.0001       1.0001       1.0001         0.505       0.450       1.270       1.252       1.252       1.252       1.252       1.252         0.505       0.416       1.271       1.252       1.252       1.252       1.252       1.252         0.117       1066.0       9.185       2.474       2.728       2.752       2.859       3.036         0.000       1.000       2.185       2.474       2.728       2.728       3.036         0.000       1.000       2.185       2.474       2.728       2.859       3.036         0.000       1.000       2.185       2.474       2.728       2.850       3.036         1.000       2.100       3.100       3.100       3.100       3.100       3.100         1.97.3       2.39.0       5.100       3.100       3.100       3.100       3.100         1.97.3       2.39.0       3.1300       4.2900       5.1000       3.100       3.100         1.97.3       2.39.1       2.39.1       2.39.1       2.39.1       2.39.1		23.879	23.932	23	.972	23.97	1 23.97	5 23.973	23.97				
1.2305       1.2001       1.0001       1.0001       1.0001       1.0001         1.2105       1.2701       1.2512       1.2512       1.2522       1.2512       1.2512         1.1107       1066.4       906.6       802.9       781.2       1.2512       1.2522       1.2512         1.1107       1066.4       906.6       802.9       805.3       906.5       781.2         1.1107       1066.4       906.6       802.9       825.3       906.5       781.2         1.1107       1066.4       1.210       2.130       8.200       5.000       6.200         1.1107       1060.7       2.185       2.472       2.728       2.500       5.000         1.1107       1000       2.190       5.190       5.190       5.190       5.000         1.1107       1000       5.100       5.190       5.190       5.190       5.000         1.1107       2.190       5.190       5.190       5.190       5.190       5.192         1.111       2.1129       2.1129       2.1129       2.1129       2.1129       5.1129         1.111       2.101       2.110       2.11729       2.11299       5.1129       5.1129	i.	1.00207	-1.00091	-1.0	- 4000	1.0000	2 -1.0000	1 -1.00001	-1.0000	-			
TTTN 1066 1.277 1.4167 0.4131 0.4146 0.414 0.4118 1.2704 1.277 1.467 0.4131 0.4131 0.4146 0.4129 1.000 1.000 2.130 6.279 1252 1.572 1.572 1.572 2.000 6.2500 5.000 6.2500 1.000 2.200 5100 4.250 5.000 6.2500 1.000 2.200 5100 4.250 5.000 6.2500 1.000 2.200 5100 4.250 5.000 6.2500 1.000 2.200 510 5.000 5.000 6.2500 1.001 2.274 1.373 1.441 1.487 1.527 1.77 1.574 1.375 1.441 1.487 1.527 1.77 2.541 2.541 2.541 2.541 2.541 2.541 1.001 2.250 5.0005 1.001 6.2500 1.017 2.2546 2.5179 5.2179 5.2179 5.511 2.6510 1.0566 1.274 1.379 5.1729 5.1729 5.1729 5.511 2.6510 1.017 2.1729 5.5126 5.21779 5.2171 7.52946 1.5119 5.5414 8 5799 6.14218 6.2014 7.14136 7.72946 1.5119 5.5414 8 5799 6.14218 6.2014 7.14126 7.7216 5.2171 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.5281 7.52		1.0422	1.0200		8000	1.000	1.000	1 1.0001	1.000	-			
11177       1066.3       1.2312       1.2322       1.2322       1.2322       1.2322         0.000       1.0000       2.185       2.473       2.728       2.659       5.036         11000       2.185       2.473       2.728       2.659       5.036         1.0000       2.2300       5.1300       4.2300       5.000       4.2500         3100       1.0000       2.2300       5.100       4.200       5.100         3100       5100       5.100       5.100       5.100       5.100         3100       1.0001       2.2500       5.1000       4.2500       5.000         0.661       1.231       1.401       1.401       1.401       1.401       1.401         0.601       2.000       5.100       5.100       5.100       5.100       5.251       2.651         0.601       2.001       2.001       2.29.1       2.39.1       2.691.1       2.691.0         1640-5       2.1178-5       2.1179-5       2.1179-5       2.1179-5       2.11729-5       2.11729-5         1640-5       2.1080-7       2.0099-7       1.040-7       2.391.1       2.691.1       2.691.1         1640-5       2.1081-7       2.291		0.0056	1.4658		4167	0.413	114.0	6 0.4114	0.411				
CTENS 1.000 1.000 2.185 2.478 2.728 2.659 5.003 4.2500 5.1035 2.478 2.659 5.035 5.103 2.165 2.478 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.65 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.172 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.		9617-1	C/ 2 2 . T	-	2488	1.251	1.252	1.2524	1.252				
LTEAS 1.0000 2.7300 3.1300 4.2500 3.0000 6.2500 2100 3100 3100 5100 5100 5100 5100 5100 0.686 1229 1.513 1.440 1971 202.0 217.7 229.6 239.1 263.0 1972 202.0 217.7 229.6 239.1 263.0 217.7 229.6 239.1 262.0 217.7 229.6 239.1 262.0 217.7 229.6 239.1 262.0 217.7 229.6 235.1 262.0 217.7 229.6 2102.0 217.7 229.6 2102.0 217.7 229.6 11040-7 91040-7 217.9 2350-0 11040-7 21009-1 2107.6 11040-7 21040-7 31067-7 21057-9 2107.6 11209-1 1.009-1 2107.6 1.208-7 3.5557-8 1.057-9 2107.9 2.0031-9 210.0 6.0507-1 1.0040-7 3.5516-7 2.0031-9 210.0 1.209-0 1.2080-7 3.5516-7 2.0041-8 210.0 1.209-0 1.2080-7 3.5516-7 2.0041-8 210.0 1.2080-7 1.209-10 1.0359-9 210.0 1.2080-7 1.200-10 1.0359-9 210.1 1.200-10 1.200-10 1.0359-9 210.1 1.200-10 1.200-10 1.0359-9 210.1 1.200-10 1.0350-10 1.0359-9 200.1 2.000-10 1.200-10 1.0359-9 210.1 1.200-10 1.0350-10 1.0350-10 1.0359-9 200.1 2.000-10 1.200-10 1.0350-10 1.0359-9 200.1 2.000-10 1.200-10 1.0350-10 1.0359-9 200.1 2.000-10 1.0350-10 1.0350-10 1.0359-9 200.1 2.000-10 1.0360-10 1.0350-10 1.0359-9 200.1 2.000-10 1.0360-10 1.0350-10 1.0359-9 200.1 2.000-10 1.0360-10 1.0360-10 1.0359-9 200.1 2.000-10 1.0360-10 1.0360-10 1.0350-10 1.0359-9 200.1 2.000-10 1.0360-10 1.0350-10 1.0359-9 200.1 2.000-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1.0350-10 1		0.000	1 000	n n	185	2.47	825. 2.72	5 806.3 8 2 859	781.	~ •			
1.0000       2.2500       5.1300       5.100       5.000       6.2500         1.910       5.100       5.100       5.100       5.100       5.100         1.971       1.271       1.371       1.481       1.571         1.971       2.174       1.371       1.481       1.571         1.971       2.071       2.100       5.100       5.100         1.971       2.072       2.117       2.127       2.511         2.971       2.072       2.117       2.251       2.421         2.971       2.072       2.117       2.242       2.421         2.975       2.1172       2.1172       2.1729       2.11729         2.975       2.1129       2.11729       2.11729       2.11729         2.975       2.1100       2.11100       2.2111       2.4210         2.975       2.1120       2.1120       2.1120       2.4210         2.975       2.1110       2.11100       2.1120       2.4210         2.975       2.1120       2.11100       2.11100       2.2111         2.975       2.11100       2.11100       2.9100       2.9100         2.976       2.91010       2.91010       2.91	H	e t e n s											
1.0000       2.200       5.1300       5.000       5.000       5.000       5.000         510       510       510       5100       5100       5100       5100       5100         510       510       510       5100       5100       5100       5100       5100         0.666       1.23       2.5.1       2.46.1       2.5.2       2.31.1       2.5.2         0.610       2.010       2.010       2.011       2.5.2       2.31.1       2.63.0         0.645       2.0172       2.9.46.1       2.5.2       2.31.1       2.62.0       2.01201         101.7       2.0172       2.5.17       2.9.46       2.95.1       2.63.0       2.0129         101.7       2.01729       2.1729       2.1729       2.1729       2.1729       2.1729         101.01.7       2.2171       2.1901       2.0101       2.0101       2.2111       2.64.1       2.64.1         12199       2.1071       2.1010       2.1010       2.1010       2.0101       2.0101         12199       2.1011       2.0101       2.0101       2.0101       2.0101       2.0101         12199       2.1011       2.01011       2.0101       2.0101													
3100       5100       5100       5100       5100       5100       5100       5100       5100       5100       5100       5100       5100       5100       5100       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510       510 </td <td></td> <td></td> <td>1.0000</td> <td>2.1</td> <td>2500</td> <td>3.1300</td> <td>1 4.250</td> <td>0 5.0000</td> <td>6.2500</td> <td></td> <td></td> <td></td> <td></td>			1.0000	2.1	2500	3.1300	1 4.250	0 5.0000	6.2500				
0.686       1.274       1.375       1.448       1.451       1.57         197.3       235.9       246.1       259.2       259.1       242.0         108.7       202.0       217.7       229.6       235.1       242.0         108.7       202.0       217.7       229.6       235.1       242.0         108.7       202.0       217.7       229.6       235.1       242.0         108.7       202.0       21729-5       2.1729-5       2.1729-5       2.1729-5         5739-6       1.4012-6       2.0193-7       1.4102-7       9.5546-8         5739-6       1.4012-6       2.11148-7       9.5546-8       7.4239-5         5739-6       2.0131-7       2.0194-7       9.5546-8       7.4239-5         5797-8       2.0131-7       7.4239-9       9.5416-8       7.4239-5         5197-9       2.1128-7       2.0194-7       7.4140-7       1.1095-1       1.1295-1         5197-8       2.1729-5       2.1729-5       2.1729-5       2.1729-5       2.1729-5         5198-6       2.910-7       2.9586-1       1.4007-6       1.21075-1       1.1295-7         5198-7       2.9401-8       1.01077-6       1.21037-5       2.0313-			5100		5100	5100	510	0 2100	5100				
197.3       239.9       246.1       239.1       261.2         106.7       202.0       217.7       229.6       235.1       261.0         1643-5       2.1728-5       2.1729-5       2.1729-5       2.1729-5       2.1729-5         2759-6       1.4072-6       2.1729-5       2.1729-5       2.1729-5       2.1729-5       2.1729-5         2759-6       1.4072-6       2.1729-5       2.1729-5       2.1729-5       2.1729-5       2.1729-5         2759-6       1.4072-6       2.1728-5       2.1729-5       2.1729-5       2.1729-5       2.1729-5         2759-6       2.30180-7       2.01935-7       1.4140-7       1.4140-7       2.511-7       9.5516-6         2759-6       2.3014-7       2.2171-7       3.4950-7       6.9518-6       9.5516-7         2759-7       2.1811-1       2.10177-7       2.7951-7       1.2759-5         2750-8       2.4457-5       2.10177-7       2.7951-7       2.7959-6         219-1       2.10177-7       2.10177-7       2.10177-7       2.7959-6         219-2       2.4457-5       2.10177-7       2.10177-7       2.10177-7         219-1       2.10177-7       2.10177-7       2.10177-6       2.10177-6			0.686		274	1.373	1 1.44	1 1.483	1 57				
108.7 202.0 217.7 229.6 2351 242.0 1643-5 2.1691-5 2.1728-5 2.1729-5 2.1729-5 2.1729-5 4359-6 1.4218-6 3.0240-7 2.0095-7 1.4126-7 1.1836-7 9.3425-8 5.759-6 1.4218-6 3.0240-7 2.0095-7 1.4126-7 1.1836-7 9.3425-8 5.759-6 1.4218-6 3.0240-7 2.0095-7 1.4126-7 1.1036-1 9.5616-8 7.175-8 2.25120-8 5.4514-8 1.4218-1 2.1025-6 1.2.7685-1 7.175-8 2.2520-8 5.4514-8 1.4218-1 2.1057-1 2.1255-5 7.157-8 2.2520-8 5.4414-8 1.4218-1 1.1075-6 1.21559-5 7.157-8 2.2437-5 9.2443-5 9.2443-5 1.0624-1 1.1075-6 1.21559-5 7.1759-6 2.7443-5 9.1665-2 9.8487-5 1.0624-1 1.1075-6 1.21559-5 5.2765-5 4.960-6 1.2684-7 5.5162-8 1.0579-8 5.2783-9 2.0353-9 5.100-6 8.650-6 1.2684-7 5.5162-8 3.0810-8 5.0353-9 5.117-7 1.100-7 1.200-10 1.2354-11 1.2312.314-9 2.0301-8			197.3	2.7	15.9	246.]	25	258.1	194	_			
1643-5 2.12691-5 2.1728-5 2.1729-5 2.1729-5 2.1729-5 2.1729-6 4359-6 1.2216-5 2.0280-7 2.0095-7 1.2124-7 2.1284-7 9.2425- 7739-6 1.4072-6 2.3114-7 1.4124-7 9.2421-9 5.9616-8 7.279-6 1.4072-6 2.3114-7 1.4124-7 9.2211-1 2.4256-8 1.4079-1 3.2921-1 2.9181-7 2.811-1 2.4256-1 1.4279-8 5.9516-8 1.4170-1 2.1957-1 3.0115-1 2.9588-1 2.6111-1 2.4256-1 1.4170-1 2195-1 2.1957-1 3.0115-1 2.9488-2 1.0588-6 1.0107-6 1.2759-6 9-961-5 7.4883-7 9.1166-2 9.8488-1 2.6110-7 2.2215-9 2096-5 3.7483-9 9.4877-7 3.2482-8 1.0319-8 5.2783-9 2.0333-9 2895-6 3.7912-6 7.2684-7 3.5957-8 1.0379-8 5.2783-9 2.0333-9 2804-6 8.0660-6 1.2681-1 2.05162-8 3.8810-1 2.0501-9 2.0331-9 2804-6 8.0660-6 1.2681-1 1.2015-1 2.9480-8 2.0500-9 4.0359-9 2804-7 1.120-17 0.12564-1 1.0179-8 5.2783-2 2.0501-9 2.0335-9 2304-7 2.0501-7 1.2015-1 1.0179-8 5.2783-2 2.04019 2.0335-9 2404-7 2.0501-7 1.010-17 0.0116-1 2.9400-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04000-7 2.04010-7 2.04000-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04010-7 2.04000-7 2.04000-7 2.04000-7 2.04010-7 2.04000-7 2.04010-7 2.04000-7 2.04000-7 2.04000-7 2.04000-7 2.04000-7 2.04000-7 2.04000-7 2.0400-7 2.04000-7 2.0400-7 2.04000-7 2.04000-7 2.04000-7 2.04000-7 2.04000-7 2.04000-7 2.04000-7 2.0400-7 2.0400-7 2.0400-7 2.0400-7 2.0400-7 2.0400-7 2.0400-7 2.0400-7 2.0400-7 2.0400-7 2.0400-7 2.0400-7 2.0400-7 2.0400-7 2.0400-7 2.0400-7 2.0400-7			108.7	20	0.20	217.7	229.	5 235.1	242.0				
1643-5 2.1691-5 2.1728-5 2.1729-5 2.1729-5 2.1729-5 2.1729-6 4399-6 1.4218-6 3.0280-7 2.0095-7 1.4140-7 1.1834-7 9.3429- 6.914-7 2.3414-7 1.4134-7 1.4140-7 1.1834-7 9.3424-8 7.757-8 2.2508-8 5.404-8 1.4414-7 2.2171-7 3.4950-7 6.914-7 1.4271-8 2.2508-8 5.404-8 1.4121-7 2.1271-7 3.4950-7 6.914-7 1.4277-8 2.2508-8 5.404-8 1.2481-7 2.2171-7 2.4259-4 2.7685-7 1.1079-1 3.1977-1 3.0117-1 2.9986-7 1.0584-1 1.1079-1 1.1751- 0.766-2 7.4379-2 9.1166-2 9.8888-2 1.0624-1 1.1079-1 1.1559-6 6-1077-6 1.7512-9 1.2512-9 1.0579-8 2.2512-9 2.0531-9 5827-6 1.7512-7 5.2437-9 2.5142-7 5.1957-8 2.0501-9 6.580-6 1.2684-7 3.5457-8 1.0579-8 2.2783-9 2.0501-9 6.580-6 1.2684-7 3.5451-8 2.8810-8 2.0501-9 6.1071-0 1.750-10 1.25614 1.1275-11 2.0001-1 511-7 1.130-7 1.000-10 1.25614 1.1275-1142-9 6.900-6 1.2014-10 1.25614 1.1256-10 1.0579-8													
1463-5 2.1691-5 2.1728-5 2.1779-5 2.1729-5 2.1729-5 2.1729-6 2.31729-5 2.1729-6 1.4218-6 3.0280-7 2.0095-7 1.4140-7 1.1874-7 9.1925-8 5.614-8 7.7273-6 1.4217-7 2.22171-7 2.4294-8 5.614-8 7.5614-7 7.2216-8 7.4294-8 5.6214-7 7.4217-1 2.4214-7 9.2524-8 7.4294-8 5.6214-1 7.0214-7 7.4214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0214-1 7.0014-1 7.0014-1 7.0014-1 7.0014-1 7.0014-1 7.0014-1 7.0014-1 7.0014-1 7.0014-1 7.0014-1 7.0014-1 7.0014-1 7.0014-1 7.0014-1 7.0014-1 7.0014-1 7.0014-1 7.0014-1 7.0014-1 7.0014-1 7.0014-1 7.0014-1 7.0014-1 7.0014-1 7.0014-1 7.0014-1 7.0014-1 7.0014-1 7.0014-1 7.001													
			2.1691-5	2.17	2 - 2 - 5 2 - 5	.1729-5	2.1729-	2.1729-5	2.1729-9				
7279-6 2.3208-6 2.3114-7 1.4124-7 2.2124-9 7.4299-7 5.5464-8 7229-1 2.1297-1 3.011-1 2.9081-7 2.2171-7 3.4590-7 6.9219-7 2199-1 3.1277-1 3.0117-1 2.9081-7 2.0111-1 2.1036-1 2.16619-1 0.766-5 1.4279-7 9.1166-7 2.91887-2 1.0624-1 1.1079-1 1.1790-1 8998-5 2.4487-9 9.4875-5 2.437'5 8.2381-6 4.1057-6 1.5199-6 5825-6 3.7919-6 7.9875-7 5.1857-8 1.0579-8 2.0531-9 2894-5 4.9660-6 1.2684-7 5.3457-8 1.0179-8 2.2381-9 2.0331-9 2894-5 4.9660-6 1.2684-7 1.53456-8 1.0179-8 2.2381-9 2.0331-9 2994-5 4.9660-6 1.2684-7 1.25466-8 2.81410-8 2.2381-9 2.0331-9	<b>.</b> .	9-4004	1.4218-6	3.028	10-7 2	2 6 0 0 .	1.4140-	1.1834-7	9.3425-1	-			
(177)-6 (2.2308-6) 4.604-1 (2.617)-7 (2.617)-7 (3.6950-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.7208)-1 (2.720	4.1	0-6676	9-Z/08-T	Z.311	-1 1	4134-7	9.2326-1	1 7.4299-8	5.5616-1	_			
2179-1 3.1227-1 3.0210-1 2.9986-1 2.8811-1 2.8256-1 2.7685-1 2786-2 7.3279-2 9.1166-2 9.8888-2 1.0628-1 1.1079-1 1.1790-1 8998-3 2.4487-5 9.847-5 2.847-5 8.25846-6 4.1077-6 1.5199-6 5825-6 3.7919-6 7.9879-7 5.3192-7 3.7672-7 3.1687-7 2.5283-9 5989-5 4.9660-6 1.2684-7 3.3845-8 1.0379-8 5.2781-9 2.0533-9 5580-6 5.0723-7 1.1660-7 6.3165-8 3.8810-8 2.0501-8 5.1120 -7 1.902-0 1.256451 1.1287-12 3.5361-8	•	1275-8	2.3208-8	5.461		.0481-7	2.2171-	3.4950-7	6.9219-7	_			
0786-2 7.4379-2 9.1166-2 9.8489-2 1.0624-1 1.1079-1 1.1750-1 1978-5 2.4481-5 9.1475-5 2.8421-5 8.2389-6 8.1057-6 1.2559-6 2825-6 5.7919-6 7.9879-7 5.1212-7 5.1212-7 5.1212-7 2.5245-7 2878-5 4.9660-6 1.2648-7 3.3457-8 1.0379-8 5.2383-9 2.0335-9 5980-6 8.6723-7 1.1640-7 3.5456-8 1.0379-8 5.29607-8 2.0353-9 511-7 1.130-7 1.500-10 1.356411 1.235422 3.334-13 5.0591-8	'n	1-661Z	3.1927-1		7-1 2	. 9586-1	2.8811-1	2.8356-1	2.7685-1				
1979-5 3: 24483-5 9: 48475-5 2:45.7-5 1:238-6 4:1057-6 1:5159-6 5425-5 3: 7915-6 7:9819-7 3:5257-5 3:7672-7 3:14817-5 2:5251-7 2894-5 4:9660-6 1:2684-7 3:5456-8 1:079-8 5:27519-9 2:0535-9 6:390-6 8:0752-7 1:12640-7 3:5156-8 1:1810-8 2:0561-9 2:05519-9 5:1-7 1:120-7 1:261-10 1:3546-8 1:1810-8 2:0551-8 2:0561-9	~	0786-2	7.4379-2	9.116	6-2-9	. 8488-2	I.0624-1	1.1079-1	1.1750-1				
5#25-6 3.7913-6 7.9#79-7 5.3192-7 3.7672-7 3.16#7-7 2.5243-7 2.894-5 4.9640-6 1.2644-7 5.3457-8 1.0579-8 5.2743-9 2.0533-9 6.980-6 8.672377 1.1640-7 6.3166-8 3.8#10-8 5.96074 8.2.0501-8 531-7 1.120 -7 1.501-10 1.305411 1.236712 3.314-13 5.0594-8	÷	8998-3	2.4483-3	9.847	5-5 2	. 8435	8.2388-0	4.1057-6	1.5159-6				
2004-5 4-9660-6 1.2604-7 3.3457-8 1.0379-8 5.2703-9 2.0335-9 0580-6 6.6723-7 1.1640-7 6.5164-8 3.0810-8 2.94607-8 2.0501-8 531 -7 1.130 -7 1.505-10 1.3561-11 1.2501-12 3.059-14	•	5825-6	3.7915-6	7.987	9-7 5	. 3192-7	3.7672-	3.1687-7	2.5243-7				
6380-6 8.6723-7 1.1640-7 6.5166-8 3.8810-8 2.9607-8 2.0501-8 531 -7 1.130 -7 1.503-10 1.336-11 1.243-12 3.314-13 5.059-14	-	2894-5	4.9660-6	1.268	4-7 3	.5457-8	1.0379-1	5.2783-9	2.0333-9				
531 -7 1.130 -7 1.503-10 1.336-11 1.243-12 3.314-13 5.059-14	-	6380-6	B.6723-7	1.164	0-7 6	. 5166-8	3.8810-1	2.9607-8	2.0501-8				
	•	1- 115	1.130 -7	1.503	-10 1	11-925.	1.243-13	3.314-13	5.059-14				

 $H^2$ D
 Z_1028-1
 2,0926-1
 1,9406-1
 1,7600-1
 1,7446-1
 1,6779-1

  $H^1$  5,022
 7
 8,291
 7,1001
 9
 1,011
 9
 1,011
 9
 1,011
 9
 1,011
 9
 1,011
 9
 1,011
 9
 1,011
 9
 1,011
 9
 1,011
 9
 1,011
 9
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011
 1,011</

ZRD2(B) ZrD2(L)	0.0000 0 2.3128-3 2.3068-3 0.0000 0	2.3168-3 2.3169-3 2 0.0000 0 0.0000 0 0	.0000 0 0.0000 0 .3169-3 2.3169-3 .0000 0 0.0000 0	2.3169-3 0.0000 0 0.0000 0		
ADDITIONAL PROD	UCTS WHICH WERE CON	SIDERED BUT WHGSE N	OLE FRACTIONS WER	E LESS THAN D. 50000	5-06 FOR ALL ASSIC	
C CN CN CN CN CN CN CN CN CN CN CN CN CN	CH NEW RAD NETWIL CYANIDE ETWIL CYANIDE CYANDGEN CYANDGEN CYANDEN CYANDE S-80174E 2-80174E 2-80174E 2-80174E CYCLOFCATANE CYCLOFCATANE CYCLOFCATANE CYCLOFCATANE CYCLOFCATANE 1010ENE 007ANE 2802 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010ENE 1010E	CH2 CMN AD CM15C0 AAD CH3C0 AAD CC0 AAD CC0 AAD CC0 AAD SUDSTDE CARBON SUBOXIDE CARBON SUBOXIDE CARBON SUBOXIDE CARBON SUBOXIDE CARBON L-PRITENE PHENTL AAD L-PRITENE CARBOL SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE SCOCTANE S	CH3 C2 C2 CM2CH0 RAD E1AME C3 PR0PYLENE C4 PR01ANE C4 C4 C4 C4 C4 C4 C4 C4 C4 C1 C4 C1 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4	HYDROXYMETHTLEWE C2H RAD C2H RAD C2H RAD C2HS RAD FROPTEME C3HS RAD FROPTEME C3HS RAD FROPTEME S50BUTAME S50BUTAME S50BUTAME S50BUTAME HHOS BENZEME HHOS MOS 200 200 200 200 200 200 200 200 200 20	METVLOXIOE METVLOXIOE ACETVLOENDE ACETVLOENDE LIMETVLETMER CTCLOPACPEME CTCLOPAL RAD CVCLOUNT RAD CVCLOUNT RAD CVCLOUNT RAD FORTANE PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHEMOL PHE	MET LUNDITIONS METHANDL KETTER ACETIC ACID Ethandl Finandl Medpyne Medpyne Medpyne Medpyne Medpyne Ceconere Medpyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyne Meddyn Meddyn Meddyn Meddyne Meddyne Meddyn Meddyn
	CITOM OF FUEL IN TO	TAL FUELS AND OF DX	IDANT IN TOTAL DX	IDANTS		

and the second second

THEORETICAL ROCKET PERFORMANCE ASSUMING FROZEM COMPOSITION DURING EXPANSION

H 16.0000 H 16.00000 H 3.00000 H 3.00000 H 11.00000 H 11.00000 H 15.00000 H 15.00000 00000 CHEMICAL FORMULA PC = 1480.0 PSIA Case ND. 300 

3.00000 3.00000 8.00000

z z z

N 1.00000 N 2.00000 N 2.00000

N 5.00000

DCG x 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15

**~~~** 

**~**~~

TEMP

STATE

K EKEACY 5
CALMAL
- E5100.000
-95370.000
-95370.000
-28590.000
-28590.000
-2859.000
-1540.000
-16400.000
-4500.000
-4500.000
-4000.000
-000 PHI= 0.0000 WT FRACTION (SEE NOTE) 0.113600 0.113600 0.113600 0.016800 0.003400 0.003400 0.003400 0.003400 0.003400 0.012000 0.012000 0.00400 EQUIVALENCE MATIO= 1.6706 0 17.00000 0/F= 0.0000 PERCENT FUEL= 100.0000 M 16.00000 H 15.00000 CHANBER THRDAT 1.0010 100.71 2791.5 9.9299-5 -134.65 -501.24 2.4355 2.4355 0 8.00000 5.00000 1.00000 2.00000 2.00000 2.00000 7.00000 7.00000 7.00000 7.00000 7.1.00000 7.1.00000 7.1.00000 7.1.00000 C 18.00000 23.879 0.4273 1.2419 1129.7 0.000 M, MOL WT CP, CAL/(G)(K) Gama (S) Sdn yel,m/sec Mach Number PC/P - ATH - ATH T. DEG K H. CAL/G U. CAL/G G. CAL/G S. CAL/G)(K)

PERFORMANCE PARAMETERS

AE/AT CSTAR, FT/SEC Cf IVAC,LB-SEC/LB ISP, LB-SEC/LB

HOLE FRACTIONS

0.3199 0.0001 0.21028 0.21028 0.0002 0.00253 0.0000
CD HCO RAD H20 MH3 0H 2802
0.00001 0.00001 0.13350 0.00000 0.00006 0.00006
FORMIC ACID HC H2 H2 H4 FB FB FB
0,00000 0,00000 0,00000 0,00000 0,25239 0,00035 0,00035
F 07%ALDEMYDE H M0 M4 N2 P8
0.00002 0.07079 0.00000 0.00000 0.00003 0.00004 0.00004
11 102 10 2 2 802(L)

ADDITIONAL PAODUCIS WHICH WERE CONSIDERED BUT KHOSE MOLE FRACTIONS WERE LESS THAN 0.50000E-06 FOR ALL ASSIGNED COMDITIONS

CM4 Acctvlenc Acctalentoe Dimetant Cyclopropene
METMYLOXIDE C2H Aad ETHYLENE Azomethane C3H3 Rad
HTDROXYMETHTLENE Casend Rad Ethane C3
CH3 CMM RAD CH3CD RAD ETHYL DXIDE RAD CCD RAD
CH2 KCM RAD HETHYL CYANIDE ETHYL RAD CYANGGR
CH CM C2H3 RAD (formic Acio)2 CMC RAD CMC RAD
E THANDL KETENE LCETIC ACID ETHANDL

I-PROPYL RAD I-CLOBUTADIENE 1-BUTENE CARBON SUBMITRID CARBON SUBMITRID PRIANE PRENDL PRENDL N-HEPTANE N-HEPTANE N-242 N2N2 NJ BI(S) H20(S) P802(S) Z802(A) 2-5 N-BUTENE CIS N-BUTANE T-PENTTL RAD Phendry Rad 1-Heptene N-Monyl Rad N-Monyl Rad PROPYLENE Ca ND2 N2D4 2RN DCTANE(L) PBD(TW) ZRN(S) CYCLOPROPANE CYCLOPROPANE 2-8UTKL RUDXIDE 2-8UTKL RID 1-8UTKL RID 1-PENTENE 2-PENTENE 210-0CTANE 350-0CTANE 35 C3H5 RAD 1-PROPANDL 2-BUTYNE 5-BUTYNE 5-BUTYNE 6-CLOPEWTANE HEXXTRIWE 10-LUENE 10-LUENE 10-LUENE 10-LUENE 10-LUENE 10-LENE 10-ALLENE 1.3-0014016NE 1.3-0014016NE 1-80141 AAO Cyclopethatere Cyclopethatere Cyclopethatere Cyclopethatere -817948N1 AAO 0-817948N1 AAO 0-81794800 0-81794800 C (GR) PB(S) ZR(A) PR0PYNE N-PR0PYL RAD BUTAN-LTK-JYN (ACETIC ACID)2 (SCETIC ACID)2 (SOPENTANE CSCENTANE CSCENTANE I-OCTENE 1-OCTENE 1-OCTE

NOTE. WEIGHT FRACTIOM OF FUEL IM TOTAL FUELS AMD OF OXIDAMT IM TOTAL DXIDANTS

CALCULATIONS WERE STOPPED BECAUSE NEXT POINT IS MORE THAN 30 DEG BELOW TEMP RANGE OF A COMDENSED SPECIES

•

# **DISTRIBUTION LIST**

No of Copics

Commander U.S. Army Environmental Hygiene Agency ATTN: HSHB-MO-A Aberdeen Proving Ground, MD 21010	1
Commander U.S. Army Environmental Hygiene Agency ATTN; Library Aberdeen Proving Ground, MD 21010	1
Commander U.S. Army Missile Command ATTN; Propulsion Directorate, RDEC/Mr. L. B. Thorn Redstone Arsenal, AL 35898	1
Commander U.S. Army Medical Research and Development Command ATTN: SGRD-PLC Fort Detrick Frederick, MD 21702-5012	1
Commander U.S. Army Medical Research and Development Command ATTN: SGRD-RMI-S Fort Detrick Frederick, MD 21702-5012	1
Defense Technical Information Center ATTN: DTIC-FDAC Cameron Station Alexandria, VA 22304-6145	2
Commander U.S. Army Biomedical Research and Development Laboratory ATTN: SGRD-UBZ-RA (Ms. Karen Fritz) Fort Detrick Frederick, MD 21702-5010	2
Commander U.S. Army Biomedical Research and Development Laboratory ATTN: SGRD-UBG-O (MAJ Young) Fort Detrick Frederick, MD 21701-5010	26

## DISTRIBUTION LIST (Cont'd)

#### No of Copies

1

1

1

1

1

10

10

Central Research Library Bldg. 4500-N, MS-6286 Oak Ridge National Laboratory P. O. Box 2008 Oak Ridge, TN 37831-6286

Document Reference Section Bldg. 9711-1 Oak Ridge National Laboratory P. O. Box 2009 Oak Ridge, TN 37831

Laboratory Records Bldg. 4500-N, MS-6285 Oak Ridge National Laboratory P. O. Box 2008 Oak Ridge, TN 37831-6285

ORNL Patent Office Bldg. 4500-N, MS-6258 Oak Ridge National Laboratory P. O. Box 62 Oak Ridge, TN 37831

T. M. Gayle Bldg. 4500-S, MS-6120 Oak Ridge National Laboratory P. O. Box 2008 Oak Ridge, TN 37831-6120

M. R. Guerin Bldg. 4500-S, MS-6120 Oak Ridge National Laboratory P. O. Box 2008 Oak Ridge, TN 37831-6120

R. A. Jenkins Bldg. 4500-S, MS-6120 Oak Ridge National Laboratory P. O. Box 2008 Oak Ridge, TN 37831-6120

## DISTRIBUTION LIST (Cont'd)

### C. Y. Ma Bldg. 4500-S, MS-6120 Oak Ridge National Laboratory P. O. Box 2008 Oak Ridge, TN 37831-6120

R. L. Moody Bechtel National Corp. 151 Lafayette Drive Oak Ridge, TN 37830

C. W. Nestor Bldg. 9104-2, MS-8058 Martin Marietta Energy Systems P.O. Box 2009 Oak Ridge, TN 37831-8058

Mr. J. A. Reafsnyder Energy Research and Development U.S. Department of Energy Oak Ridge Operations P. O. Box 2008 Oak Ridge, TN 37831-6269

C. V. Thompson Bidg. 4500-S, MS-6120 Oak Ridge National Laboratory P. O. Box 2008 Oak Ridge, TN 37831-6120

B. A. Tomkins
Bldg. 4500-S, MS-6120
Oak Ridge National Laboratory
P. O. Box 2008
Oak Ridge, TN 37831-6120

Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 1

1

2

1

1

1







DATE FILMED 3/19/92

.