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ABSTRACT 
The most widely used model for electroencephalography (EEG) 

and magnetoencephalography (MEG) assumes a quasi-static 
approximation of Maxwell S equations and a piecewise homoge- 
neous conductor model. Both models contain an incremental field 
element that linearly relates an incremental source element (cur- 
rent dipole) to the field or voltage at a distant point. The explicit 
form of the field element is dependent on the head modeling 
assumptions and sensor configuration. Proper characterization of 
this incremental element is crucial to the inverse problem. The$eld 
element can be partitioned into the product of a vector dependent 
on sensor characteristics and a matrix kernel dependent only on 
head modeling assumptions. We present here the matrix kernels for 
the general boundary element model (BEM) and for MEG spheri- 
cal models. We show how these kernels are easily interchanged in a 
linear algebraic framework that includes sensor specijics such as 
orientation and gradiometer configuration. We then describe how 
this kernel is easily applied to “gain” or “transfer” matrices used 
in multiple dipole and source imaging models. 

1. INTRODUCTION 
In [ 11 we investigated several methods of image reconstruction, 
essentially using a discrete form of the magnetic lead field. In [2], 
we assumed the source to be a small set of point sources, Le., current 
dipoles at unknown locations. This approach focuses the processing 
on the magnetic forward field. We also showed how the “fixed,” 
“rotating,” and “moving” multiple dipole models could all be cast 
in the same linear algebraic framework. 
These previous studies emphasized the source model. For simplic- 
ity in those presentations, we assumed a very simple head model 
and sensor configuration. In this paper, we present the explicit 
matrix kernels for different head models, then describe how they 
can be interchanged in a common set of equations describing the 
sensor characteristics. The general BEM head model results are 
applicable to both EEG and MEG; for brevity, the model for a 
spherical head is presented for the MEG case only. 

2. PRIMARY AND VOLUME CURRENTS 
For the biological signals of interest in MEG and EEG, the time- 
derivatives of the associated electric and magnetic fields are suffi- 
ciently small that they can be ignored in Maxwell’s equations. See 
Equations (3)-(9) of ([3]) for a recent discussion and ([4]) for more 
details. The static magnetic field equations are V x B(r) = poJ(r) 
and v . B(r) = 0, i.e., the curl of the magnetic field at location r is 
equal to the current density (times Po), and the divergence of the 
magnetic field is zero. 
We are interested in the current density Jin a closed volume of finite 
conductivities. Outside this volume the conductivity and current 
density are zero. We divide the current into two components, pas- 
sive and primary. We define as passive those currents that are a 

result of the macroscopic electric field in the conducting medium of 
the volume, J” = OE. All other currents are considered primary, Jp.  
The division of the current as J p  and J” is to emphasize that neural 
activity gives rise to primary currents that then flow passively 
throughout the rest of the conducting medium. Our problem is to 
locate these primary currents and hence the sources of brain activity. 
Substituting our interpretation of J into the equation for the quasi- 
static magnetic field yields (c.f., [3]) 

(1) 
B(r) = :j( Jp(r’) - 0(r’)VV(rt)) x 7 d v ‘ .  ( r  - r‘) 

G Ir - r‘l 
with the integration carried out over a closed volume G. 
The typically accepted brain model assumes piecewise homoge- 
nous conductive regions (we will consider only isotropic conductiv- 
ities here). The gradient of the conductivity is therefore zero except 
at the surfaces between regions; therefore, the volume integrals can 
be reworked into surface integrals. These surface integrals allow 
possibly simpler solutions and smaller sets of numerical equations, 
as well as some simplifications for specialized cases. 
We assume our volume can be divided into M+I different ,regions 
with conductivities oi, including the nonconducting region outside 
of the head. These regions are separated from adjacent regions by a 
total of m 2 M surfaces Si. Through a sequence of steps using vec- 
tor identities, we can rewrite (1) as ([3], [4], [SI) 

where ni(r) is the “outward” directed unit vector normal to the ith 
surface, and the “+” (“-”) superscript indicates the conductivity out- 
side (inside) the ith surface. Bo(‘) is the “primary current model”: 

(3) 

which is the magnetic field observed at r due to the primary current 
only. We defer the explicit details to ([3], [4], [SI). Using (1) Green’s 
second identity, (2) a continuous current density across each inter- 
face, (3) the divergence free nature of the total current, and (4) limits 
as a point in the volume approaches a surface, we can obtain a sur- 
face integral equation for V(r) for r on the jth surface (with elegant 
symmetry to the magnetic equation), 

m (4) 

ooV0(r) - 1 ((3; - oT)JV(rq)ni(r’) . 7 d a ’  ( r - r ‘ )  
Ir - r‘l 

i =  1 s, 
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VJr) is the solution for the infinite homogeneous medium due to the 
primary current J p ,  and Oo is the normalizing unit conductivity 
needed for correct dimensions ([31,[41, [51), 
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( r  - r‘) V0(r) = -- dv‘ . 
G Ir - r‘l 

Equations (2) and (4) therefore form our general set of equations for 
solving the forward problem for both voltages and magnetic fields. 
2.1 Point Dipole 
For the case of Jp(r)  = q6(r-rq), i.e., the current dipole q located at 
rq, then B,(r) and V,(r) can be simplified as (c.f., [31, [41, [51, [61) 

2.2 Spherically Symmetric Conductor 
In the spherically symmetric conductor case, n(r’) = r’WI for all r’ 
on all surfaces. If we examine just the radial component of the field 
at r, B,  = B(r) * rhl, then the contribution due to the passive currents 
in (2)  can be shown to vanish. Thus B, is simply calculated with the 
well-known primary current model, 

Since no currents exist outside the head, the radial magnetic field B,  
can be used to derive the scalar magnetic potential U(r), and hence 
the full magnetic field is derived as the gradient of this scalar. Sarvas 
has explicitly stated the formula for B(r) = - povU(r) outside the 
spherical conductor in Cartesian coordinates ( [5 ] ,  repeated [ 3 ]  Eq. 
(34)), 

where F is a scalar function, V F  is a vector function, and both are 
functions of r and rq, 

(9)  F = F(r,r 4 ) = a ( r a + r 2 -  (r  4 . r ) )  

VF = VF(r, r,) = 

and a = r - rq, a = Id, and r= Irl. 
The equation for the voltage potential on the surface of concentric 
spherical shells is not as compactly presented as for the MEG case. 
The EEG formula using similar notation and references to previous 
derivations can be found in [7]. 
2.3 Boundary Element Method 
The review in [3]  of the boundary element method and the refer- 
ences therein provide a good perspective on the approaches and spe- 
cifics of modeling more realistically shaped heads. Here we can 
only give a brief overview to motivate the gain matrix calculations. 
In the arbitrarily shaped conductor, we compute the surface inte- 
grals of the voltages using the boundary element mFthod. We can 
tessellate each surface Si into di suitable triangles, Ak , k = I ,  ..., di. 
The area of each triangle is denoted pk . If we assume that the volt- 
age is constant across each triangle, V(r) = $, then integrate (4)  
over one triangle, we can develop a set of linear equations, 

di 

V‘ = CHi’Yj+gi i = I ,  ..., m (11) 
j =  1 

See [3 ] ,  [6 ] ,  for detailed definitions of H and g. The term g is lin- 
early related to the primary voltage Vo, and the dipole q can be fac- 
tored out, such that g = G,,q over the system of triangles. H can be 

computed once the conductor geometry is known, independently of 
any source or sensor location considerations. Since voltage poten- 
tials are defieed up to an additive constant, H must be “deflated,” 
( [ 3 ] ,  [ S I )  to H . This deflation allows us to now uniquely solve the 
system of N equations, 

(12)  
- 

( I - H ) V  = g = GVq 
where Z is an N x N identity matrix. After solving for we have 
essentially solved the EEG problem for all surface elements in the 
head. 
The magnetic field is found from a discrete form of (2), where we 
can again approximate the integration using the centroid of the tri- 
angles ([6]), yielding 

B(r) = Bo@) + A  V = Bo(‘> + A  (Z - k) -‘g (13) 
where matrix A represents the linear transfer function that relates V 
to the contribution that the passive currents add to the magnetic field 
at point r. The matrix A is a function of the sensor location and the 
head geometry and can therefore be computed without regard to the 
source currents Jp.  The right hand expression in (1 3 )  has the advan- 
tage of not explicitly calculating the EEG potentials, an approach 
that can greatly reduce the numerical calculation cost. 
As we illustrate below, Bo can also be expressed as a kernel matrix 
times the dipole, Bo = K d .  Combining these terms allows us to 
express ( 1 3 )  for the dipole case as 

B(r) = [ K O + .  (Z-Z?)-’GV]q (14) 

3. MATRIXELERNELS 
Each of the above models, (6), (8), and (14) for MEG, and (12) for 
EEG, represents a linear relationship between the dipole moment q 
and the field B (or measurement V). In this section, we represent 
each model as B (or V )  = K(crq)q, where K is a field kernel. 
Although (6), (12), and (14) have an obvious form for K ,  (8) does 
not. 
To simplify the algebraic manipulation of the cross-product, we 
convert the operation to the product of a matrix and a vector and 
explicitly state all vectors in their Cartesian forms, 

0 -az a 
a x b  = Cab = [a: 0 -:I[. (15) 

-a a, 

Substituting into (8) and manipulating the triple scalar product, we 
find the expression for the spherical model, 

The kernel for the spherical EEG case can be extracted from the 
concentric shell model; see [7] and its references. 
The other kernels are easily formed. The widely used primary cur- 
rent model is 
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In each case, the bracketed term is represented by the 3 x 3 kernel 
matrix K(r,r ), a function of the observation point and the dipole 
point only. ?he exception is the BEM voltage kernel, which solves 
for all D triangles in the head model as a function of a single dipole, 
essentially solving the forward field. Each row of the numerically 
inverted matrix forms our EEG field kernel. Next we incorporate the 
sensor characteristics to complete the description of the field ele- 
ment. 

4. SENSOR CHARACTERISTICS 
The above calculations for V and B assume that we make a perfect 
measurement of the voltage or magnetic field at sensor location r. In 
reality, a circular or square coil centered about r, with a surface area 
ranging from about 1 cm2 to 3 cm2, measures the magnetic flux 
passing normal through the surface of the coil. Additionally, each 
coil is usually matched with one or more other coils to form gradi- 
ometers, which are effectively differential amplifiers designed to 
suppress measurement of the large magnetic field of the earth. In 
EEG measurements, the probes are usually small enough to be con- 
sidered as point measurements, but the actual measurements are 
made by combining pairs of probes into differential pairs. In this 
section, we show how the sensor orientation, the gradiometer con- 
figuration, and the differential pairs are easily included as a simple 
processing step added after the calculation of the field kernel matrix. 
4.1 MEG Sensor Orientation 
Let Kij = K(rj ,  rd) be the shortened notation for the field kernel 
matrix for the ith sensor and thejth dipole. The ith sensor is assumed 
to make a measurement in the direction si, normal to the plane of the 
sensor coil. Analogous to our expansions in [2], for the case of m 
sensors and p dipoles, we form a vector of scalar measurements, 

0 

where sbd is the block diagonal matrix formed from the matrix of 
sensor orientations S ,  R is the matrix representing the set of sensor 
locations, RQ is the matrix representing the set of dipole locations, 
and Q is the matrix of dipole moments. G is the gain or transfer 
matrix generically used in [2]. 
4.2 Gradiometer Configuration and Switching Matrix 
The 1st-order gradiometer comprises two coils oriented in the same 
direction and separated from each other by some baseline. For 
example, 1st-order axial gradiometers typically have their second 
coils positioned 5 cm directly above the first. To calculate the gain 
matrix for the 1st-order gradiometer, we simply evaluate G(S,R,RQ) 
twice, first at the coil locations R1 of the lower set of coils, then at 
coil locations R2 for the second set. For most configurations, the ori- 
entations SI and S2 of both of these coils are the same, but we could 
evaluate each set at arbitrary orientations, for unusual gradiometer 

alignments. The gradiometer gain matrix is then formed as the dif- 
ference between the two calculations, 

Alternatively, we can apply a “switching matrix,” so named because 
in (older) EEG recording devices, the operator must set switches 
across a matrix of possible probe combinations in order to form the 
necessary differential pairs. Form gradiometers, we need to subtract 
the gain matrix of the upper coils from the gain matrix of the lower. 
Let our switching matrix be an (m x 2m) matrix comprising two m 
x m identity matrices, W = [Zm, -Im]. Then the output of the gradi- 
ometers is expressed as 

which yields an identical calculation to (23). The 2nd-order and 3rd- 
order gradiometers follow as natural extensions. Explicitly stating 
this switching matrix, as opposed to “hard-wiring’’ specific gradi- 
ometer configurations into a program function, will allow more 
flexible programming and analysis of the novel gradiometer arrays 
now in design and production. 
4.3 Discrete Lead and Forward Fields 
The “lead field” represents the linear sensitivity of an external bio- 
electromagnetic sensor to the internal biological sources at any 
position and orientation. The “forward field represents the linearly 
dependent external spatial pattern generated by a known internal 
source pattern. Both share the same field kernel matrix. The arbi- 
trary dipole moment, arbitrary sensor orientation, gradiometer, a n d  
or the switching matrix are easily formed around this kernel. We 
design a switching matrix W, form a block diagonal matrix from the 
sensor orientation matrix S (MEG only), form dipole moment 
matrix Q, and calculate the field matrix kernel as functions of the 
matrix of sensor locations R and dipole locations Re yielding 

B(W, S ,  R, R p  Q )  = wsbdK(R, RQ>Q = GQ 

v ( W ,  R,  R p  Q )  = WK(R, RQ>Q = GQ 
(25) 

We note that matrices W, sbd ,  and Q are easily formed from the sen- 
sor parameters, and that the difficult calculation remains the field 
kernel matrix K(R,RQ). The combination of these terms yields our 
“gain” or “transfer” matrix G. If we assume a finely sampled grid of 
measurement points in R and a finely sampled grid of source loca- 
tions in Q, then the rows of G represent a sampled form of the lead 
field, and the columns of G represent a sampled form of the forward 
field. 

5. INVERSE METHODS 
In [IO], we review some of the localization and imaging issues. We 
present here a brief overview to motivate the uses of the above gain 
matrices. The inverse procedures often require the calculation of the 
field kernels at thousands of candidate dipole locations. In the imag- 
ing procedures, these locations are typically calculated on a regular 
grid. Source localization techniques could use combinations of 
these gridded points, but more typically a directed search algorithm 
calculates the gain matrix iteratively, selecting from combinations 
of dipoles as directed by its error minimization algorithm. In either 
case, proper attention to the calculation of the field kernel can 
greatly reduce computational costs. 
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5.1 Nonlinear Least-Squares 
In source localization techniques, we assume that the sources are 
represented by a small number of point sources. The continuous 
lead field is effectively considered to exist only at a small set of dis- 
crete points. The forward field is typically sampled at 100 or fewer 
sensor locations. Inverse processing efforts are focused on (1) deter- 
mining the number of sources to model, and (2) the location of these 
sources. We extensively review this multiple dipole model in [2], 
and present here a brief summary of some of the inverse techniques 
that can be used. 
The gain matrix G is m x n in size, where m is the number of sensor 
sites, and n is twice (MEG) or three times (EEG) the number of 
assumed dipoles. The key distinction of G here from G used in 
imaging discussed below is that m is assumed greater than n, pref- 
erably much greater. In either case, we denote the singular value 
decomposition (SVD) of G as U ZgVgT, where we retain only the 
principal components in Ug and 1,6g that correspond to non-zero sin- 
gular values. We will also assume that a spatiotemporal matrix of 
measured data, F, has been acquired, and that its SVD is denoted as 
Ufc VJ where Uf and Vf contain the principal components associ- 
atedwith the signal sukspace. The orthogonal complements of Ug 
and Uf are denoted as U and Uf ~ respectively. See [2] for details 
on these definitions and cfecompositions, as well as rank detennina- 
tions of these matrices. 
In nonlinear least-squares (NLLS) fitting, we minimize the squared 
error between the data and the multiple dipole model. The parame- 
ters in the model to be fit are the locations and moments of the 
dipoles. In [2], we show how this problem reduces to an explicit fit 
of the locations only, yielding the cost function 

In this case, the signal subspace spanned by Uf may include the 
entire space, or the user may select a lower dimensional space. For 
a p  dipole fit, the inverse procedure is to form a gain matrix G using 
p candidate dipole locations, decompose it to obtain U, , and calcu- 
late the cost function. The lowest cost function over all possible 
combinations of p locations is the NLLS solution. Exhaustively 
searching over all possible combinations is usually impractical, so 
generally a directed search algorithm is used such as Nelder-Meade 
Simplex, conjugate gradient, or modified Levenburg-Marquardt. 
5.2 MUSIC 
One of the primary problems of NLLS centers on the directed 
search algorithms. Avoiding local minima is a major concern, and 
determination of the parameters to drive such routines can become 
quite subjective. In [2], we presented an alternative algorithm that 
effectively allows us to exhaustively search for the solution, using a 
one dipole model. The assumption for the multiple signal character- 
ization (MUSIC) algorithm is that the time series associated with 
each dipole is linearly independent from all other dipole time series. 
After careful selection of the signal subspace Uf, the MUSIC cost 
function to be minimized is 

which is the minimum eigenvalue of the enclosed term, which is, in 
turn, a 2 x 2 (MEG) or 3 x 3 (EEG) matrix. The procedure for 
MUSIC is to form the one dipole gain matrix (regardless of the true 
number of sources), decompose it to yield U g l ,  and find the p 
locations where this function is a minimum. Exhaustively testing all 
practical locations of a single dipole is generally feasible, allowing 
us to avoid the complexities of directed searches. 

5.3 Imaging 
The basic formulation of the neuroelectromagnetic imaging prob- 
lem is to construct a gain matrix G from a finely sampled grid of 
known source locations throughout some predefined “reconstruc- 
tion” region. Since the locations are known, the solution is linear in 
the dipole moments, and we can then present tomographic images 
of these moments throughout the reconstruction regions. 
The number of sensor sites is on the order of 100, and G can 
approach on the order of thousands or tens of thousands of columns 
(possible dipole sites), such that m << n . Fitting these discrete lead 
fields to spatiotemporal data is greatly underdetennined, and addi- 
tional constraints must be incorporated to make the solution unique. 
A common assumption among many imaging approaches is to 
assume that the current sources are restricted to a linear combina- 
tion of the lead fields. This assumption is equivalent to imposing a 
minimum norm requirement on the solution space. Examples of this 
approach can be found in [3], [4], [SI, 191 and their references 
therein. One general drawback to minimum norm reconstruction is 
that the restriction of the currents to a combination of the lead fields 
excludes many physically plausible current configurations. In signal 
processing terms, the basis set spanned by the lead fields is incom- 
plete for representing all possible current patterns. We can expand 
the basis set to some extent by adding additional sensors (and there- 
fore lead fields); however, the row rank of the matrix cannot be 
increased arbitrarily, since the measurements will eventually 
become oversampled. 
In [l], we examined minimum norm and other reconstruction tech- 
niques for this underdetermined problem; see also discussions in 
[31, 141, 151, 191. In [lo], we also briefly review other inverse 
approaches. The many variations of minimum norm use an addi- 
tional weighting matrix that has the effect of altering the m-dimen- 
sional subspace spanned by the lead fields. Since m << n, good 
solutions can only be found if the weights are carefully designed 
using strong a priori or physiologically constrained information. 
Arbitrary weights will simply alter this very small subspace to some 
other span in the much larger n-dimensional space, yielding ambig- 
uous results. 
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