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Automated Insertion of Sequences into a Ribosomal
RNA Alignment: An Application of Computational

Linguistics in Molecular Biology

by

Ronald C. Taylor

Abstract

This thesis involved the construction of (1) a grammar that incorporates knowledge on
base invariancy and secondary structure in a molecule and (2) a parser engine that uses the
grammar to position bases into the structural subunits of the molecule. These concepts were
combined with a novel pinning technique to form a tool that semi-automates insertion of a
new species into the alignment for the 16S rRNA molecule (a component of the ribosome)
maintained by Dr. Carl Woese's group at the University of Illinois at Urbana. The tool was
tested on species extracted from the alignment and on a group of entirely new species. The
results were very encouraging, and the tool should be of substantial aid to the curators of the
16S alignment. The construction of the grammar was itself automated, allowing application
of the tool to alignments for other molecules. The logic programming language Prolog was
used to construct ali programs involved. The computational linguistics approach used here
was found to be a useful way to attack the problem of insertion into an alignment.

1 Introduction

Since January 1990, with the interruption of other projects, T have been working on the rep-
resentation of molecular structure via computational linguistics, that is, via a grammar-based
method.

The first serious application to which I have applied this approach is the devising of a
means to automate or semi-automate insertion of new species into the alignment of the 16S
rRNA ribosomal subunit created and maintained by Dr. Carl Woese and his colleagues at the
University of Illinois at Urbana. This is the subject of my master's thesis in biology at Case
Western Reserve University. My thesis supervisor at Argonne National Laboratory was Dr.
Ross Overbeek, a senior scientist in Argonne's Mathematics and Computer Science Division.

One way to look at what I have been doing is to say that I have been working on a repre-
sentation (encoding) of the structure of a molecule that is closer to how biologists think of such
things. Previously the norm was to manipulate only primary sequences and bonded-pairs in the

computer programs used for DNA/RNA sequence ai_alysis. I use the concept of a grammar and

of parsing according to a grammar (concepts more norm _l!y associated with human languages)

here to allow groups of bases to be treated as structural mdts. This grammar concept is com-
bined with a pinning technique to produce the complete in,_ertion tool. Automated alignment
insertion could be described as the first payoff of this new organizational approach.



A short summary of the cellular role fulfilled by the ribosome starts off this introductory
section. The role of the 16S rRNA subunit within the ribosome is also discussed. Some back-

ground information on the computer language (Prolog) used to create the alignment insertion
tool follows. I then pose and answer the following questions: (a) What is an alignment, what

does such an alignment represent, and what is its use? (b) What does insertion into such an

alignment mean? (c) Why is automating insertion into such an alignment important?

This section co_lcludes with subsections on why the grammar/parser approach was chosen
over others and on what a grammar for a biological molecule means. I also describe an algorithm

that figures prominently in this work (the Smith-Waterman algorithm).

In the section following this introduction, the overall flow of control through the insertion

tool is described. Next, the particular grammar used here, along with the development of
an automated grammar generation process, is depicted in more detail. This is followed by

separate sections specifically devoted to pinning and pm'sing components of the complete tool.

The results are then summarized and closing comments made.

Almost all the source code for the tool is contained in one file called "parse_ combined_ops.pl".

A few relatively low-level code fragments are employed from a toolkit that Dr. Overbeek has

developed. Also, the code to generate node vectors (done once for a given alignment, a proce-
dure that is described in the section on the pinning component) is contained in a small separate

file. We would be happy to distribute all the source code necessary to run the tool to anybody
who reqaasts it.

1.1 Biological Role of the Ribosome and Its 16S rRNA Subunit

The central dogma of molecular biology is "DNA makes RNA makes proteins". The first stage,
the copying of the information coding for a protein from DNA into RNA, is called transcription.

The second stage, the actual production of a protein using the instructions now encoded in a
piece of RNA called messenger RNA, or mRNA for short, is called translation. This is where
the ribosome plays its role; it is the structure in the cell where translation is done. Since the

various proteins are crucial to every part of the cell's metabolism, we see that the presence of

the ribosome itself is vital to the cell's continued existence. All cells in all organisms currently
known contain complexes that can be identified as ribosomes. In other words, the ribosome is

a universal structure. The ribosome is typically present in a cell in an extremely large number

of copies. (Two examples: there are over 10 million ribosomes in an average mammalian cell;
and, depending on the rate of cell growth and division, there can be anywhere from somewhat

less than 10,000 to over 30,000 of these structures in a cell of the bacterium E. coli.)

To start the translation process, the ribosome locks onto a linear piece of mRNA (an infor-

mation "tape", so to speak) which specifies the code for the amino acids in the target protein.

It then captures amino acids one by one in the proper sequence (each amino acid being carried
in by what is called a transfer RNA, or tRNA, molecule) and joins the amino acids in a chain

to make the desired protein.

All variants of the ribosome are similar in structure and function, both in prokaryotes and

eukaryotes. Differences do exist, of course, particularly over such a broad division as that



between kingdoms. (This is one reason why the genetic engineer has a difficult time getting

eukaryotic genes properly translated when they are inserted into prokaryotic bacteria.) All
ribosomes are composed of one large unit and one small unit. Together ¢i,.e two units form a

large complex that contains several pieces of ribosomal RNA, rRNA for short, (over 50% of the

ribosome by weight) and a substantial number of proteins (about 50 proteins in prokaryotes,
75-80 in eukaryotes). The large unit is used to link the amino acids together by catalyzing
the peptide bond formation. The small unit provides the docking sites for the mRNA and the
tRNAs.

The 16S alignment from Urbana of concern to us here contains solely prokaryotic species. In

prokaryotes there are three distinct molecules of rRNA in the ribosome. Two of them (named
the 5S rRNA and the 23S rP_NA) are located in the ribosome's large unit. The particular rRNA
fragment that we work with, the 16S rRNA, is located in the small unit.

While the general cycle of protein formation in the ribosome is understood, there are still

substantial mysteries about how the ribosome works and what, in particular, is the function of

the rR.NA molecule (the 16S rttNA in prokaryotes, the slightly larger 18S rRNA in eukaryotes)
contained in the small unit. One fact that we do know about the 16S rRNA is that it ensures

that translation of the mRNA is started at the proper site. This is done through base-pairing
between a short sequence at the 3'-end of the 16S and a sequence on the mRNA upstream of

the translational start site. (This is known as the Shine-Dalgarno interaction.)

We also note that the discovery by Tom Cech and his co-workers in 1982 that RNA molecules
could function as enzymes with catalytic activity provided tbe first solid evidence that rRNA

ct; ld contribute to the ribosome's catalytic activity (other than by providing binding specificity)
[1]. In fact, it is now widely believed that the contributions of the ribosomal proteins are almost

completely limited to assembly, stabilization, and optimization and that the rRNA molecules
are the parts that perform the 5asic ribosomal functions. However, much remains to be learned.

The best understood version of the ribosome is in the species Escherichia coli (E. coli), where
the most work has been done. A fuller introduction to the ribosome can be found in reference

[2]. More information on the 16S rRNA in particular is in [3] (for comparative anatomy of its

structure) and in [4] (for structure-function relationships).

1.2 Background Information on Prolog

With the exception of a few subroutines that were coded in the language C for increased speed,
our entire alignment insertion tool was coded in a computer language called Prolog. This is

a somewhat unusual language, which contains some concepts that may be confusing to the

typical biologist whose programming experience, at most, consht: of a few programs in BASIC

or Pascal. Within the confines of this paper, I do not have the space to give an exhaustive

description of the language. Nor would this be a wise use of the reader's time, since experts in
the field have produced explanations of the ideas inherent in Prolog better than I ever will. I

shall limit myself here to pointing out a few relevant features, giving a bit of the history of the
Prolog language, and describing some work previously done in the field of molecular biology

that has employed Prolog.



Prolog is one of the two leading languages used in artificial intelligence work (the other

being a language called LISP. LISP was created in the late 1950s at Stanford. Prolog is much

newer, having been developed in the early 1970s by Alian Colmerauer in Marseilles, France,

and Robert Kow_lski in Edinburgh, England.

Prolog's name comes from the term PROgramming in LOGic. Prolog is, in fact, an im-
plementation of the processes involved in first-order predicate calculus. A Prolog program is

simply a set of clauses. Each clause expresses either a fact or a rule. A typical fact might be

struc_unit(b38,71,71,gap,null).

This is one of a set of facts used to describe the 16S rRNA molecule. Its name, or functor,

is "struc_unit'. It has five arguments. The first argument (b38) identifies which structural unit
we are talking about. The other arguments contain information pertaining to that particular

unit. (These arguments are fully explained in the section in this paper devoted to the 16S
grammar and its generation.)

A rule has a somewhat different format. A fact simply has a head. A rule has a head and

a body, with the two structures separated with the symbol ":-'. Here is a sample rule from
Appendix 8:

cap_type(Bases,pentaloop,14) :-
length(Bases,5),
Bases = [Basel,Base2,Base3,Base4,_],
cap.type([Basel,Base2 ,Base3,Base4],tetraloop,_) 4

The meaning of this rule is as follows: If the string of bases passed to the cap_type clause in the
variable "Bases" is of length five, and if the first four bases form a "tetraloop", then we identify

that string of bases as a "pentaloop" and pass back a point count of 14 (what these points are
used for is not .'mportant here) when the clause is exited. A rule holds true (succeeds) only if
all the conditions in its body hold true.

More than one clause can share the same functor name. For example, several hundred

struc_unit clauses are used in our tool, one for each different structural unit in the 16S molecule.
tIere are three more:

struc_unit(b39_46,72,80,lhs,nu11).
struc_unit(b47_51,81,87,gap,nu11).
struc_unit(b52_S3,88,89,1hs,nu11).

The collection of all clauses sharing the same functor name (and the same number of arguments)
is called a predicate. For example, the struc_unit/5 predicate is the collection of all struc_unit

clauses used by the tool. (The//5 is added to the name to indicate that five arguments are used

in the clauses of the predicate.)

A Prolog program draws conclusions and makes inferences from the knowledge or infor-

mation con_,ained in the clauses. We say that Prolog is a declarative language; that is, the



programmer states the facts and relationships involved with a problem rather than describing

a sequence of steps or a specific algorithm. An inference engine built into Prolog performs

searches and pattern matching automatically. When a query is made, the inference engine is

invoked. The engine then useu a depth.first search strategy combined with backtracking to

examine the facts and rules in the database (which is formed out of clauses of the program
itself) for evidence to answer the query. For readers desiring further information, three good

introductions to the Prolog language are given in [5,6,7].

There has been no previous work in Prolog that I am aware of relating to the problem at
hand, that is, relating to insertion into an alignment for a molecule. (Nor am I aware of any other

work in any language that uses a grammar/parser approach for this specific problem.) However,

there has been previous work done in Prolog in the general areas of molecular biology, chemistry,
and sequence analysis. Dr. David Searls has been using Prolog to apply a computational

linguistics methodology to problems in DNA/RNA sequence analysis [8,9,10]. While only a
very few basic constructs have been carried over into our code (the ellipsis operator and the

predicates that process base bonding in the sides of a helix), his work was the direct inspiration
for the grammar/parser method described in this paper. The basic idea of capturing secondary

structural information (in addition to information on the base sequence itself) in a grammar
comes from him. I give an detailed example of his work later in this section. Other work

in Prolog has been done on describing chemical structures and predicting chemical reactions

[11,12] and in describing protein structure and topology in particular [13,14l

There has also been some computational linguistics work in the area of biological sequence

analysis that has not employed Prolog as the implementation vehicle. Some recent examples
are given in references [15] through [27]. In fact, there has been expanding interest recently

among many scientists in applying aspects of linguistic theory to DNA/RNA sequence analysis.
Enough attention has been generated so that articles on this subject are starting to appear in

the semi-popular press [28].

1.3 What Is an Alignment?

In molecular biology it is often useful to create an alignment to help study a particular macro-

molecule. By means of such an alignment, the correspondences that exist between versions of
the molecule in different species can be visually portrayed. As an aid, this is something in the

nature of "one picture is better than a thousand words". For example, Figure 1 below shows a E

small extract from the 16S rRNA alignment that we have worked with.

As you can see, the alignment is a two-dimensional matrix. Each species occupies one row,

and each character for a given species fills one column in that row. To make the alignment,

indels (dashes, representing insertions or deletions) are added to the primary sequence of each

species, which has been obtained through sequencing. (The primary sequence for an RNA
molecule, of course, is simply a string of characters from the alphabet [A,C,G,U]. The E. coli

16S rRNA molecule, for example, has a primary structure of 1,542 such characters.) The

addition of the indels causes corresponding parts of the sequences to align visually. (Or at least

that is the hope. Different biologists might have different opinions regarding some sections of

the molecule, and the alignment that you produce also depends on what correspondences you



<<<< <_<<< >>>>> >>>>
E. coli UAUUGCACAAUGGGC-GCAAGCCUGAUGCAGCCAUGCCGCGUGUAUGAAGAAGGCC--U
F. halmephi UAUUGCACAAUGGGC-GCAAGCCuGAUCCAGCCAuGCcGnGUGUAUGAAGAAGGCC--C
Thb. thioox UUUUUCGCaAUGGGG-GCAACCCuGACGAAGCAAUGCCGcGUGUAUGAAGAAGGcc--u
Fus. nuclea UAUUGGACAAUGGACCGAGAGUCUGAUCCAGCAAUUCUGUGUGCACGAUGACGUUU--U
M. iowae UUUUUnACAAUGGGC-GAAAGCCUKAUGGAGCAAUCCCGcGUGGAUGAUGAAGGUCUUa
Mb. fcrmici ACCUCCGCAAUGCAC-GAAAGUGC_ACGGGGGAAACCCAAGUGCAA.....

l l l l
E. coll 365 378 385 420
base
position

Figure 1: Extract from the 16S rRNA alignment for six species covering the region from E. coli

position 365 through position 420

are looking for. More on this below.) The character n is used to indicate ambiguity in that we

know some character (base) occupies the given column, but not which one. Lowercase letters

(c instead of 6', for example) are used to indicate uncertainty.

Accompanying the 16S alignment, an associated phylogenetic tree has been built by the
Urbana team. This is a data structure called a binary tree whose leaves are the names of the

species in the alignment. Each interior node of the tree can be said to represent a hypothetical
common ancestral organism of all the species lying on leaves that fall beneath that node in the

tree. If a set of species is known to fall into a family, then the interior node that lies at the
root of the subtree containing only those species is labeled with the appropriate family name.

The tree is used to represent evolutionary relationships between species. The closer two species
have been placed in the tree, the closer they are presumed to be in terms of descent from a

commo_ ancestor. While algorithms exist to assign numeric distances to the edges (branches)
that connect the nodes in the tree ([29]), in the particular tree used for the 16S we do not at

this time assign any such numeric value to the edges between the various leaves and nodes.

Hence the evolutionary distance between any two species in type of the phylogenetic tree we
use in our insertion tool is represented solely by the number of nodes (or edges) that lie between
them as one traverses the tree from the first species to the second.

There axe many types of alignments, with no one type being accepted as the most "correct"

alignment. Different underlying relationships can be represented by different alignments. To
summarize here, we can divide alignment types into two broad categories: alignments repre-

senting evolutionary relationships and alignments representing structural correspondence. If we
have an alignment of the first type, then when two characters (bases) fall in the same column in
two different species, the assertion by the people who have created the alignment is that those

characters correspond to the same character in the closest common ancestor. In an alignment
of the second type, two bases falling in the same column indicate that the bases lie within the
same structural unit. For example, the bases that make up the structural unit consisting of

the left-hand side of a particular stem-loop construct would lie within the same set of align-

ment columns in every species in the alignment. Usually an alignment of the first type and an

alignment of the second type for the same molecule drop the bases for each species into the
same columns; that is, they are consistent with each other. However, there are cases where

inconsistencies do arise. (Molecular systematics and the derivation of evolutionary relationships



in general are very complex subjects. For more information see [29,30]).

Some of the more valuable insights that can be gained from genetic sequence analysis are

produced by comparing sequences of different organisms. Such insights have motivated the
creation of alignments. The alignment of the 16S rRNA sequences that I refer to throughout
this paper was produced by a group headed by Carl Woese at the University of Illinois. It

now includes sequences for about five hundred organisms (all prokaryotes), and more :equence

data are rapidly accumulating. This alignment is of the structural correspondence type. Or,
at least to a first approximation, it is of that type. However, there is a complex feedback

between the alignment and the accompanying phylogenetic tree that has been concurrently

built up. The alignment has been used to improve the tree, and then the tree has been used to

improve the alignment, in successive cycles of modification. (I have more to say on these cycles
shortly.) At present it would be wisest to say that the 16S alignment reflects both structural unit
information and evolutionary information. Or you could say that this alignment is dominated

by structural unit information (using both primary and secondary structure, which I describe

shortly) but also influenced by evolutionary information where structural unit information is
insufficient or ambiguous. Dr. Woese is primarily interested in using this alignment to find
evolutionary relationships, that is, in deriving the "tree of life", and has published extensively

with results based on the lbl) alignment [31,32,33,34]. Other scientists, such as Henry NoUer at
the University of California at Santa Cruz, are interested ;n determining in detail the structure
of the 165 molecule and in how such structure relates to the function of the ribosome of which

the 16S rRNA is a subunit [35]. Here the alignment can be used to find constraints on the
possible structure.

I stress the significance of this particular 16S alignment. As the alignment upon which Dr.

Woese has depended most heavily, it has contributed in a _'undamental way to phylogene_,ic tree

construction in prokaryotes. It has served as one of the best such tools -- indeed, perhaps the
best yet known.

There are several reasons that Dr. Woese chose an alignment of 16S rRNA molecule to in-

vestigate phylogeny. First of all, rRNA molecules (as mentioned above) are universally present.
Second, they are constant in at least some of their functions, which ensures relatively good

behavior as a molecular clock. Third, different sections of the larger rRNA molecules (such as

the 16S and 23S) change at quite different rates. These changes allow a very wide range of phy-
logenetic relationships to be measured. (At the same time, however, the primary sequence and
secondary structure in a rRNA molecule such as the 16S remain sufficiently conserved so that

homologous positions can be identified between various species.) Fourth, an rRNA molecule

such as the 16S is readily identifiable across a wide range of organisms. (One cannot work
with a molecule if one cannot isolate it.) Fifth, the 16S molecule is large enough and contains

enough loosely coupled functional units so that its functioning as a chronometer is relatively
insensitive to nonrandom changes in one of the units, that is, the chronometer runs "smooth".

Finally, there is a practical consideration: an rRNA molecule like the 16S can be sequenced

directly (and hence rapidly) by using the enzyme reverse tlanscriptase. Sequencing technology

s changing rapidly nowadays (through the use of the polymerase chain reaction, for one factor),

but when Dr. Woese began his studies, this fact was of great significance.



In the 16S alignment the number of column positions exceeds the number of bases contained

in the sequence for any individual species. Currently the alignment has 1,892 columns, while
no species has more than 1,660 bases in its primary sequence. The great majority of species

contain from 1,450 to 1,600 bases. This means that each species must have at least some indels

inserted in order to properly fit into the alignment. (Indeed, some species lack any bases in
some of the structural units. No bases in a structural unit indicates a complete absence of the

structure represented by that unit. The absence is represented by only indels appearing in the
set of alignment columns for that particular unit.)

As stated above, the 16S alignment was built not only on base invariancy (matching between
species based on _he primary sequence), but also on secondary structure. In fact, in order

to divide up the 16S molecule into smaller structural units Woese's group relied primarily on

secondary structure patterns detected through a technique called covariance analysis. Therefore

let me say a few words on the prediction of secondary structure and the use of secondary
structure in the 16S alignment construction.

The best estimate at present of the secondary structure of the 16S rRNA molecule for E.

coli is given in Figure 2. (Some species might have a diagram that looks very similar, while

other species might be lacking certain regions entirely.) Looking at this di,_gram (direct your
attention to the area slightly below and to the left of center), one can see that positions 375-379

bond with 384-388. Such a structure, in which two sections bond in consecutive positions, is

called a helix. The vast majority of bonds in helices are A-U, G-C, or G-U bonds (e.g., the
378-385 bond is an G-C bond).

The two sections are called the left-hand side (lhs) and the right-hand side (rhs) of the
helix. We t_ke the lhs of each helix as the side first encountered when the 16S molecule is

traversed in Figure 2 in the direction from base 1 to base 1542. The rhs is always the second
side encountered in such a traversal. (The position of the first base in any new sequence fed

into our insertion tool corresponds to the start position held by base 1 in Figure 2. The parser
component of the tool traverses a sequence in the direction described above. Hence the parser

component always reaches and processes the lhs of a helix before the associated rhs.) Make a

note of the lhs and rhs abbreviations, since they will be used throughout the rest of this paper.

If the bases that lie between the lhs and rhs do not form any bonds, then we have a simple

gap, or cap, between the lhs and rbs. We say that the lhs, cap, and rhs together form a loop

or a stem-loop structure. This is what we have in the above example. In my grammar such a
structure is called a loop_unit. Looking at the entire region from E. coli position 368 to position

393, we see that the loop described above falls between the lhs (positions 368-371) and rhs
(positions 390-393) of another helix. Thus a more complex structure is built out of positions

368-393 considered as a whole, namely what we would call a "a helix with an interior loop"
(although such a structure might occasionally also be referred to as two distinct helices).

Going back to Figure 1, we see there the portion of the alignment corresponding to pc.s]tions
365 through 420 in the E. coli sequence for six species, including E.coli itself. The columns

that make up the lhs and rhs of the helix with an interior loop described above are indicated
by the "<" and ">" symbols, respectively, at the top of the figure. These symbols represent

the bonded positions. Now, if we take isolate the columns that include E. coli positions 378
and 385, we obtain Table 1.

8
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Figure 2: Diagram of the 16S rRNA secondary structure in the species Escherichia coli (E. coli)



T_.ble 1: Contents ofsix speciesin the Mignment c_umnscorrespondingto E. coUbase positions
378 and 385

378 385

E. coli" G C
F. halmephi G C
Thb. thioox G C
Fus. nuclea A U
M. iowae G C
Mb. formici A U

Note that in each case the positions contain one of the common bonding pairs (G-C for
four of the organisms and A-U for the other two). The columns appear to covary. It seems
as if a mutation in one position produced a corresponding mutation in the other bond-pair
position. Of course, this is not quite the case. A mutation in one of the bonding columns
normally produces a nonbonding p_ir; and if a second mutation does not occur fairly quickly
in the other bond-pa_r column, then the organism will typically suffer from reduced efficiency
aad thus disappear through natural selection. It is the selection against nonbonding pairs that
_roduces the detectable phenomenon of covariance of concern to us here. (I am simplifying in
order to clarify the basic idea. It is possible that a mutation-caused base change at a particluar

location would have little or no effect on ribosomal activity, and hence natural selection could
not act upon it. However, the concept as briefly described above lies at the heart of covariance
analysis.)

The covariance among the six organisms displayed in Figure 1 could correspond to a single

"event" or to two events, depending on the phylogenetic relationship of the six organisms. For

example, if the organisms were related as shown in Figure 3a, then a single event would suffice.

On the other hand, if they were related as shown in Figure 3b, then pair of events (one for Fus.
nuclea and a separate one for Mb. formici) would be required.

This can be seen as follows. In both Figure 3a and Figure 3b all six organisms share a

common ancestor (the root node at the top of the small subtrees depicted). Suppose that in
this common ancestor we had a G in position 378 and a C in position 385. Then for four
species (E. coli, F. hapmephi, Thb. ihioox, and M. iowae) no event needs to occur, since the

G-C bond pair remains as is. The problem then is to explain how the G-C pair became an
A-U pair in Fus. nuclea and Mb. formici. In Figure 3a we see that these two species share a

common ancestor not shared by any of the other six species. Hence the simplest explanation is

that one event in that common ancestor changed the G-C pair to an A-U pair. (For simplicity
in this discussion, I refer to the replacement of both bases as a single event.) The change was
then passed on to Fus. nuclea and Mb. formici. In Figure 3b there is no common ancestor

between Fus. nuclea and Mb. formici that is not also shared by the other four species. Hence
the simplest explanation becomes that the G-C to A-U change occurred twice, once when the

Fus. nuclea species came into being and once when Mb. formici separated from the common
ancestor of all six species. Hence two separate events took place.
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Figure 3: Two hypothetical phylogenetic trees for the six species used in Table 1

Current wisdom places the organisms in the tree given as Figure 3b, indicating two distinct

events. By studying the small portion of the 16S alignment shown in Figure 1, along with

the tree in Figure 3b, we see that clues exist to support the existence of the following bonds:
379-384,378-385, 377-386,371-390, 370-391, and 369-392.

Thus we see that covariance analysis allows the corresponding lhs and rhs of helices to be

determined [36]. With these results, secondary structure (the helices) can be used to decompose

the molecule into small structural units. Looking at Figure 2, note the large number of helices,
which allow the decomposition of the molecule into a sizable number of smaller structural units
based on the helLx boundaries.

One might think that there would be a simpler means to cflculate how an rRNA molecule

folds in a particular species, a means that would not require also gathering data from many
other species. After all, given the constraints on the characters that bond, one is tempted

to believe that it would_ be simple to write a program that would take the sequence for a

given species and produce tL_ "most likely" folded form of the molecule for that particular

sequence. Unfortunately, such programs can produce literally thousands of plausible patterns.

More accuracy could be gained by looking for configurations that minimize free energy, but such

computations are prohibitively expensive for large molecules. Also, there is no hard-and-fast

rule that states that a macromolecule must occupy the globally minimized energy state. In the
actual cellular environment it might be perfectly feasible for a molecule to occupy one of the

deep local minima. Following this route, one can easily fall into a quagmire of calculations that

produce no definitive answer, or anything close to a definitive answer [37]. Furthermore, since

the 16S rRNA exists in a much larger complex (the ribosome), a fact that cannot currently

be included iii our energy minimization calculations, such calculations can at best reduce the

number of plausible configurations. Hence the key to producing an accurate estimate of the

secondary structure has been found to involve comparative analysis between sequences from

several organisms by means of the covariance method illustrated in the above example.

From the last several paragraphs, one might conclude that covariance analysis alone built the

estimate of the secondary structure shown in Figure 2. That is not accurate. While covariance

analysis is indeed the central tool used in formulating such estimates, there are details that
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were not made explicit in the above discussion; that is, the three problems of

1. aligning the genetic sequences,

2. producing the phylogenetic tree, and

3. detecting the secondary structure

are ali deeply interrelated and, in fact, must be solved simultaneously. We begin with the

construction of an initial alignment (via covariance and simple base matching of primary se-

quence). The initial alignment is then used to get an initial phylogenetic tree and secondary

structure. Next, these estimates are used to go back and improve the alignment (because the

alignment involves making decisions that reflect alignment of secondary structure). In turn,
the new alignment is used to improve the computations of secondary structure and phylogeny,
and so on.

These cycles of modification might appear circular, but truly they are not. For example,
suppose the initial covariance data aJlow us to define where helix boundaries lie in parts of the

16S molecule, but in other parts of the molecule the data are too ambiguous for us to break

things down into smaller structural units. (We are not sure whether there really are bonds

forming between bases in such regions.) What we do is this: we construct an alignment and
then a phylogenetic tree with the data we have. The tree can then be used to resolve some

of the ambiguities in the regions of the molecule where we earlier refrained from deciding on

base placement and unit boundaries. This stage improves our estimate of secondary structure

and improves the alignment. We can then generate an improved phylogenetic tree that should

resolve even more ambiguities, and so on. (Additional data from various laboratory tests or
other sources can also enter into this loop, of course. For one example that checks on rRNA

secondary structure predictions by using chemical probing experiments, see [38].)

How does the phylogenetic tree resolve ambiguities in the secondary structure? Here is a

concrete example: suppose, for simplicity, that we have six species (rather than the 500 or so in
the _urrent alignment). Also suppose that an initial alignment has already been done and that

we now wish to examine the base in alignment column M and the base in alignment column N
in each of the six species to see whether they form a bond. Now suppose that we have these
bases in columns M and N:

column M column N
species 1 G C
species 2 A U
species 3 C G
species 4 U A
species 5 G C
species 6 A U

This evidence is clear-cut. No matter how the tree has been set up, it would take several

independent events to produce the base variation seen. The simplest (and thus, by Ockham's
Razor, best) explanation for ali these events (and, just as important, the absence of events that

would produce nonbond mismatches such as A-A, A-C, etc.) is that they are necessary to retai,
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a i)a.,_epair bond that is useful or vital to tile functioning of the molecule. Hence we conclude
that a bond does exist between the bases in these two alignment columns, and we do not need

to look at the a_ssociated phylogenetic tree to do so. (Actually, such a clear-cut bond should

have been discovered when we created the initial alignment. I use it here simply in contra_t to
the example that follows.)

llowever, suppose that instead of the above base set we instead had this:

colu_m.nM colu.mnN
species I G C
species 2 G C
species 3 G C
species 4 A U
species 5 A U
species fi A U

Admittedly, all the pairs are of the type that can form Watson-Crick bonds. But do they

really? Could what we see have been produced by random chance instead, with no bonding

involved? Note that we only have two types of pairs (G-C and A-U). The answer depends on
the guidance we receive from the phylogenetic tree. If all six species share a common ancestor
in the tree, with species 1 through 3 hanging off one branch and species 4 through 6 hanging off

the other, then we would have very weak evidence for a bond. This conclusion follows because

only one event would be needed to produce the above set of bases. For example, if the common
ancestor contained a G-C pair, then no event would be needed in the branch containing species

1 through 3, while in the other branch one event changing the G-C pair to an A-U pair in a

descendant of the common ancestor of all six species, said descendant serving as a common
ancestor of just species 4 through 6, would be all that is needed. The occurrence of only base
pairs that form bonds is of note, but it can remain only suggestive if the base pairs can be

produced by a single event.

But suppose, say, that species 1 and species 4 lie very close together in one branch of the tree
and that the last common ancestral node that they share contained a G-C pair in columns M

and N. In such a case an event would be required in the branch containing species 4 in order to
change the G-C to an A-U. Now suppose that the same situation occurs between species 2 and

species 5 and between species 3 and species 6. We are now talking about a minimum of three
separate events at widely separated locations in the tree. The more events we have, the more

unlikely is the above outcome of only base pairs that can form Watson-Crick bonds (without

mismatches like A-A mixed in) unless such bonds do exist and are useful in the molecule's
function. Hence we are guided toward the conclusion that a bond exists between the bases in
the columns.

1.4 What Is an Insertion into an Alignment?

The insertion, or addition, of the 16S rRNA sequence from a new species into the 16S Urbana

alignment is currently achieved completely manually, either by Dr. Carl Woese himself, or by

one of his colleagues. The new species sequence is brought into a customized text editor, along

with a subset of the alignment (the whole alignment now being too large to fit on one screen).
The human then lines up the bases by eye, typing in the indels (the dashes) one by one.
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Although some progress has been made in automatically generating an "alignment and in

formulating an estimate of secondary structure (an up-to-date reference is given iii [39]; Ilo

further discussion of this work will be given here, since virtually none carries over to the

methodology used in the current version of our alignment insertion tool), most biologists agree
that careful analysis by a human expert is still required to produce an alignment that is reliable

enough to be useful. Hence most alignments are constructed as in the 16S example above, using

an editor (either a standard text editor or a program that has been customized to support

alignment of genetic sequences). Further, the actual estimate of secondary structure is often

left totally implicit; occasionally it is included in "comment lines" (much like the top line
in Figure 1, above the species data), and sometimes it is maintained as a separate file of

"known bonds". As researchers begin to use alignments as the basis for formulating and testing
numerous hypotheses, it will become increasingly important that the known structural units be

represented explicitly, as is done here in the grammar.

1.5 Why Is Automation of Insertion Important?

In the computer age, it is fairly absurd to waste the time of such senior scientists as Woese

in a nonresearch task that can be automated. The particular 16S alignment I worked with is

already among the largest of its type (if not the largest) in the world. It seems likely that the
alignment, which now holds sequences from 500 species, will include thousands of sequences

within just a few more years. Hence maintena,".ce issues are becoming increasingly important.

We also expect that a large and growing number of sequences are going to have to be aligned
on a weekly basis due to the recent establishment of what is officially known as the Ribosomal

Database Project, which will make the Urbana data publicly available. One of the project's

goals is to allow a biologist to send in a 16S rRNA sequence via e-mail and get back an aligned
version with the indels inserted in the proper positions. Hence the interest of Dr. Woese and

of Dr. Overbeek, who is providing computational support to Woese's group, in automating the
alignment insertion procedure.

There are many molecules in addition to the 16S rRNA where our best tool for discerning

structural features would be the study of cross-species alignment. The total effort involved
in aligning the 500 species in the 16S alignment at Urbana over the past decade has been

enormous, and the training required for Woese and his team to learn their skill is very large.

The initial goal of this project was to automate insertion of a sequence from a new species into

the 16S rRNA alignment. However, another goal of the project was to duplicate or encode at
least a portion of the skill of the Urbana team in an automated tool that could bring to bear

the same sort of expertise on other molecules.

1.6 Benefits of the Grammar/Parser Approach

Those readers familiar with multiple sequence analysis, might raise this question: Why not

use one of the various dynamic programming type sequence alignment algorithms (Smith-

Waterman, Sellers, or Needleman-Wunsch) across the entire new sequence, matched against

all the species already in the alignment?
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Unfortunately, that approach does not work very weil. Trying to produce an optimal align-
ment of more than two sequences simultaneously over a molecule the size of the 16S rRNA
(almost 1,900 alignment positions) is simply computationally intractable _xtthe moment. (The

computational effort is of order L raised to the Nth power, where L is the mean length of the

sequences involved and N is the number of sequences [41].) It certainly cannot be done for
an alignment of over 500 species. Sophisticated non-optimal alignment methods using various

heuristics have also been tried. The results contain enough errors so that such methods are not
a viable way to approach the alignment insertion problem. (See Section 1.3.2 in reference [40]
for a brief discussion on two of the best of these methods.)

We have chosen a method that combines the concepts of pinning and parsing. First, a
pinning program is run that pins a subset of the bases in the new species to given alignment

positions. There are some regions that are so constant that virtually ali species in the alignment
fill those alignment positions with the same bases. Such regions are easy to pin. However, the

, pinning technique we use goes beyond this to also pin bases that occupy alignment positions

where the base composition stays relatively constant within only a small subset of species

(perhaps the species belonging to one subfamily of the phylogenetic tree associated with the
alignment). Once this is done, the problem remains of filling in the gaps between the pinned

bases. We do this with a parser and a grammar extracted from the alignment. For future

reference, note that "the parser" refers to the computer program that I have written (combined

with Prolog's built-in inference mechanism). The actual physical act or process of parsing is

called "the parse". The parse (act) is performed by the parser (program).

1.7 The Meaning of a Grammar for a Molecule

Now, what exactly do the words gramma, and parsing mean in a biological context? A linguist

might say that the objective of a parser is to determine whether _'.n input string (in molecular
biology, a string of bases) is derivable from the rules of a grammar. That is, the act of parsing

would determine whether there is a pattern in the input string that can be recognized according
to the rules of the associated grammar.

In standard linguistics a grammar would give a hierarchical breakdown of a sentence into
noun clause and verb clauses, then break down the noun clause into adjective and noun, and

so on. In the variant grammar that I build, the grammar breaks down a molecule in a similar

fashion into structural units. There are the simplest structural units (corresponding to noun,

verb, adjective w things that correspond to a single word) and then there is the superstructure
of larger structural units (my noun and verb clauses) that can be superimposed to recognize
desired patterns.

In the context of RNA molecules, our underlying alphabet is acgu, the simplest structural

units correspond to indivisible words, the more complex structural units built up from the
simpler units correspond to phrases or clauses, and the entire molecule can be considered to be

a well-defined sentence. Our situation is this: we know that the sequence of bases handed to us

for a new species is supposed to fill the entire 16S molecule. There is no ambiguity about this;

we know that the bases are for the 16S and that no bases are going to be left over or left out.
iience the use of a grammar/parser approach here to recognize the pattern of the 16S rRNA
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Figure 4: Diagram of typical tRNA secondary structure

in the input string as a whole is not the point. If that was all the grammar could do, then

there would be no point in using such an approach here. But (and this is crucial) as the parser
engine chugs along the input string to see whether the entire sequence can be fit into one of the

allowed patterns for the 16S rRNA (according to the grammar rules), the engine automatically

"slots" the bases into words or phrases, that is, into the structural units. This breakdown of of
the input string into linguistic subunits by the parser is precisely what we need to perform an

accurate alignment.

As mentioned earlier, Dr. David Searls has done some pioneering work in the area of

applying grammars to DNA/RNA sequence analysis, and in a sense we are extending his work.

One of his grammars is used to search for tRNA genes in genomic sequences. It is quite short,

but also quite powerful because it incorporates knowledge of the secondary structure of the

tl_NA. A diagram of typical tRNA secondary structure is shown in Figure 4, while Figure 5

contains a listing of Searls' grammar itself.

In this tRNA grammar, secondary structure information (the ]ength of the stems and how

many mismatches are allowed between the lhs and rbs) has been easily folded into the restric-

tions on the primary sequence. The grammar has been tested successfully on raw genomic

sequences. In the first try, Searls parsed all seven tl_NA genes known to be contained in the

sequence of DNA that he used. (For our input 16S sequences, where ali bases should belong to

the 16S molecule, a successful parse means that all bases are used up in the 16S pattern found

and none are left over. However, here where long genomic sequences are used and we are trying

to recognize a pattern hidden in a longer sequence, a prefix and/or postfix of the base string

can remain, and a successful parse means that we have found a subsequence of bases ia the

input string that fit the pattern defined by the grammar.) The codon (the amino acid) carried

by each tRNA was also correctly identified. This is quite remarkable for a dozen-odd lines of

code. More information on Searls' work can be found in [8,9,10].
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7,This is Searls' grammar for tRNAs. It returns the expected amino acid
_,for the anticodon found (or 'suppressor' if it is a stop codon).

tRNA(AA) -->
Stem#7, ''t'', base, d_arm, base, anticodon_arm(AA),
extra_arm, t_psi_c_arm, "StemS1, acceptor_arm, !.

d_arm -->
Stem#4, ''a'', purina, 1...3, "gg'', I...3, ''a'', 0...1, "StemS1.

anticodon_arm(AA) -->
Stem#5, pyrimidine, ''t'', anticodon(AA), purina, base, "StemS1.

extra_arm --> 3...20, pyrimidine.

t_psi_c_arm -->
Stem%4, ''gttc'', _urine, ''a'', base, pyrimidine, ''c'', "StemS1.

acceptor_arm --> base, c_cca,'.

anticodon(AA) --> "IX], "[Y], "[Z], {codon(AA) ==> [Z,Y,X]}.

anticodon(suppressor) --> "IX], "[Y], "[Z],
_srop_codon(AA) ==> [Z,Y,X]>.

Figure 5: Prolog code listing for Searls' tRNA grammar

I am going to describe later in this paper how bases are parsed in a single structural unit.
The procedure of parsing across a single unit might at first appear somewhat trivial. The point

is that the grammar ties ali of the units together and imposes a superstructure on them, allowing

them to form "phrases" or "clauses" that can be recognized and treated as a separate objects in
their own right. The superstructure, the hierarchy, can be made to reflect the structure of the

molecule. Anyone can look at a diagram of the 16S molecule and say that this structural unit
starts here and is made up of these bases, that one starts there and is made up of those bases, etc.

What makes the grammar/parser technique extremely valuable is that relationships between
the various structural units are automatically defined and maintained. The program knows

automatically how many bases it takes to reach one structural unit from another structural
unit as the molecule is traversed, along with how many structural units are passed through on

the way and with what constraints that have to be obeyed. The program knows automatically
what structural units are embedded in larger structural units, and precisely ali the possibilities

into which a larger structural unit can be broken down into smaller units.

To summarize: if insertion into an alignment based on primary sequence is not good enough

(and it is not, at present), then one naturally turns to the idea of u_ing the molecule's secondary
structure to aid in the insertion. But how do we describe such structure in a form that a

computer program can easily manipulate, and at the same time feels natural to the biologist?
We believe that the use of a grammar/parser approach meets these needs. A grammar is

inherently hierarchical, recursive, and a good overall framework to which other algorithms can

be added or in which different types of information (such as primary and secondary structure)
can tm superimposed on each other. Also, many features of a molecule cap. be expressed clearly

in a grammar. A grammar can stand as a concise, human-readable descril)tion of a molecule.
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1.8 The Role of the Smith-Waterman Algorithm

The Smith-Waterman algorithm is a member of a class of dynamic programming algorithms
used for comparison and alignment of molecular sequences. It has an important role in our

alignment insertion tool. It is used in two places, for two different purposes:

1. First, it is used to score different helix configurations in what are called loop__mits in the

grammar.

2. Second, it is used to find the best match in the alignment for those bases of a new species

lying in a particular structural unit.

I have more to say about each of these cases later on. Because of its prominent use in our
tool, I shall point out a few features of the Smith-Waterman algorithm in particular, and of the
class of dynamic programming sequence comparison algorithms in general.

Dynamic programming algorithms might be described as algorithms that take a "divide

and conquer" approach. They break up the problem (usually an optimization problem of some
sort, such as finding an optimM alignment between t_vo strings) into subproblems, saving the

solutions to the subproblems so that the subproblem calculations are done only once. An
optima] solution to the subproblems yields an optimal solution to the original problem.

An MignmCnt between two sequences is evaluated by means of a similarity score that is
based on the deduction of points for each substitution, deletion, and insertion needed to get
the sequences to match, and on the addition of points for each pair of matched elements in
the sequences. The configuration of the two sequences with the best score is the one having
the most points. Several other methods of sequence alignment do not provide such an explicit
evaluation score, and hence lack a well-defined and easily understandable criterion for choosing
between configurations. (One example is the system of Korn, Queen, and Wegman; see reference
[42].) The dynamic programming approach is guaranteed to find the configuration with the best
evaluation score within the preset parameters. Note that the score is available as a separate
entity for other uses, such as determining whether two sequences show any similarity other than
that arising by chance. (Such a test could be performed by comparing the score for the two
original sequences against the scores for random permutations of the sequences.)

All alignment methods incorporate some sort of parameters. In the dynamic programming
method the parameters are the we:_hts assigned to the penalties for the various substitutions,
deletions, and insertions. The idea here is that the less likely a change would be biologically,
the larger the penalty we assign. For example, one substitution event is more likely than two
separate insertion and deletion events, so we bias the score toward the alignment using the
substitution by making the substitution cost less than a deletion and insertion combined. The
type of parameters used by the typical dynamic programming algorithm impose soft limits.
For example, if too many deletions occur, then the evaluation score is reduced, and the trial

alignment using those deletions will not be picked as the optimal alignment. This approach is
more realistic than a sharp limit that, say, permits four deletions without penalty but positively
forbids five or more deletions. (Dynamic programming algorithms can also use sharp limits
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where useful; it is simply the case that soft limits are better in scoring biological sequence

alignments.)

The prime distinguishing characteristic of the Smith-Waterman algorithm is its use of a

linear gap cost function. There are other dynamic programming algorithms that set the gap

cost (the cost of K consecutive insertions or deletions) to K times gl (the cost of one insertion
or deletion). IIowever, this means that two separate deletions, each of length one, would cost
t._e s_me as two consecutive deletions. Since the consecutive deletions can be caused by one

event while two separate deletions take two events, the consecutive deletions are more likely

and hence should cost less in order to reflect biological reality. The Smith-Waterman algorithm

does just that by setting the cost C of K consecutive indels to

C = U * (V * K) .

The value of the U and V parameters used in our tool are -36 and -6, respectively. (These

values were suggested by Dr. Overbeek, based on his previous work in the area of sequence

alignment.) Hence the cost of two separate deletions is -84 (-42 + -42), while the cost of
two consec,ltive deletions is -48 (-36 + -6,2). We add +18 points for a identical match

between bases in the two sequences being compared, so in the scoring that the Smith-Waterman
algorithm uJes for a projected alignment one can see that the cost of one deletion (-42) slightly

outweighs the bonus points we get for lining up two bases in the first sequence with two identical

bases in the second sequence (+36 = 18 + 18).

At the end of its calculations, the Smith-Waterman algorithm (like any dynamic program-

ming algorithm) through a traceback mechanism automatically provides a correspondence for
the optimal alignment found for the two sequences being compared. This correspondence tells
us which bases match and how to fill in the gaps in the most biologically realistic manner

(according to the set parameters). From this we generate the alignment of the two sequences.
The alignment consists of two lines, one species per l:ne, with dashes inserted among the bases

in each species to line up the bases that are found to be in correspondence in both species.

Another way of stating what the Smith-Waterman al[orithm does is this: the Mgorithm gives
us the score and correspondence for the alignment thai results from the sequence of elementary

operations (substitution, insertion, and deletion) that minimize the cost for transforming the
first sequence into the second (or vice versa). This, after all, is what we want: to show which

bases correspond in the two species and to show the remaining bases that do not correspond
(i.e., those bases that must be deleted or inserted to get from one sequence to the other) in a

pattern with interwoven dashes (indels) in a way that reflects the most plausible deletion and
insertion events needed to transform the sequences into each other.

Note that I am using the term alignment here to represent something a bit different from

the 16S alignment described in Section 1. if the 16S alignment were built solely on the primary
sequence, then aligning species by minimizing the evolutionary distance between them (distance

being the number of elementary operations or evolutionary events that must occur to transform
the primary sequences into each other) would be fine, and the 16S alignment would represent

the same sort of data as the alignment described in the preceding paragraph. However, the

16S alignment does indeed take into account secondary structure, while the Smith-Waterman

algorithm and similar algorithms do not use secondary structure in the calculation of distance.
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This is why using tile Smith-Waterman algorithm alone does not produce an optimal 16S rRNA

alignment. Humans utilize more information in making their judgments.

Let us consider two concrete examples before passing on to tile next section. First is a

sample alignment between two sequences showing how our program would work if it was using

the Smith-Waterman algorithm in its search for a best match to a sequence. The first sequence
is aauuuccggg and the second sequence is aaggggguuucc. The optimal alignment found has a

score of six. Counting from zero, the correspondence produced (which is displayed as a list of
Prolog pair2 facts) shows that the zeroth base in the first sequence corresponds to the zeroth

base in the second sequence (pair(O,O)), the first base in the first sequence corresponds to the
first base in the second sequence (pair(I,1)), the second base in the first sequence corresponds

to the seventh base in the second sequence (pair(2, 7)), and so on. The optimal alignment is
automatically constructed from the correspondence.

Seql : aauuuccggg
Seq2 : aaggggguuucc
Score : 6
Correspondence : [pair (0,0), pair ( 1,1 ), pair (2,7), pair (3,8),

pair (4,9),pair(5,I0),pair(6,ii)]

the optimal alignment:
AliEnedSeql : aa.....uuucc_
AlignedSeq2: aaggggguuucc---

The second example is a sample alignment showing how the Smith-Waterman algorithm is
used to score helices. Since we compare the lhs and rhs of a helix, we wish complementary

bases that form bonds to correspond. Note that our program reverses the order of bases in the
lhs before making the comparison.

lhs of the helix: uagcc
rhs of the helix: gcua
Score = 30
Correspondence = [pair(O,O),pair(2,1),pair(3,2),pair(4,3)]

the optimal alignment:
reverse order true order

lhs c c g a u u a g c c ->
rhs g - c u a a u c - g <-

The higher the score, the better the helix we have. As the score increases, we expect the
helix to contain fewer substitutions, insertions, and deletions.

We use matrices to store the cost values for mismatches. The Smith-Waterman algorithm
looks up in such a matrix the cost defined, for example, when we know that one base.is c but

we know only that the other base is a purine (but not which purine). Obviously we need two
such matrices, one for alignment of similar sequences and one for helices. The current matrices

employed are shown in Appendix 1.

As a final note to this section, I point out that bonds other than Watson-Crick ('A-U, G-C)

are allowed in helices in our scoring scheme. Woese's group have found other bonds that are
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tolerated in RNA helices. Such bonds are of lesser strength than the standard Watson-Crick
bonds, but they do exist and they are important. After consultation with a senior member of

the Urbana team [43], we came up with this ranking for use by the Smith-Waterman algorithm:

A-U bond : 18 I00'7.of max value
C-G bond : 18 100_ of max value
G-U bond : 13 86_ of max value
G-A bond : 3 58_ of max value
C-A bond : -II 31_ of max value
U-U bond : -11 31_ of max valueG-G mismatch: : -18 O. of max value

A-A mismatch: : -18 !I of max value
C-C mismatch:: -18 of max value
U-C mismatch:: -18 of max value

More information on the Smith-Waterman algorithm can be found in [44,45,46,47].

2 Overall Flow of Control in the Insertion Tool

The overall flow of control through the entire tool is shown in Figure 6. A more detailed
description runs as follows:

a) The pinning component of our tool, taking as input the new sequence, the alignment,

and the phylogenetic tree, outputs a set of pins and a subtree of the phylogenetic tree. (For an

detailed explanation of what a pin is, see the first paragraph of Section 4 below.)

b) Three small programs are run after the pinning component and before the parser com-
ponent. The first uses the set of pins outputted in (a) to find those structural units that are

pinned at both ends. Since both ends are pinned, the program here can automatically slot the
bases that fall between the two pinned ends into that unit without waiting for any aid from
the parser component. A list of such pinned units with their bases is then fed into a second

program, which checks to see whether the bases slotted into a unit obey the rules in the gram-

mar for that unit. If not, we have a strong indication that at least one of the two boundary

pins was bad (incorrect), so we delete that unit from the list of pinned units. (This has been a
very rare occurrence so far, but a check is useful.) The remaining units that pass are outputted

with their bases in a list that is passed on to the parser. The third program takes the subtree
from (a) as input and outputs the set of families in the phylogenetic tree that have at least one
member species in that subtree.

c) The parser component takes as input the new sequence (a string of bases), the structural

unit definitions, the grammar, the set of pins from the pinning component, the set of (verified)

pinned structural units found in (b), and the set of families found in (b) from the pinning
subtree. It parses the new sequence into the structural units and then inserts the indels to

properly position the bases. Its output is the aligned sequence, ready for inspection and insertion
into the alignment.

All these (sub)programs are hooked together into our one unified tool, so the user has to

type in only one line to start the process. The run can then proceed unattended. At the end

of the run, output will be stored automatically in a file in the format shown in Appendix 4.
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Overview

new sequence

I
phylogenetic tree --> pinning component <-- alignment

I
output: a set of pins to alignment positions and

a subtree of the phylogenetic tree

I
three subprograms to
a) make a list of the pinned structural units

b) check that list and throw out the pinned units
that violate Erammarrul_s

c) create a list of the families with a representation
of one or more species in the subtree outputted by
the pinning component

I
new sequence ..... > parser component <-- structural unit

I definitions and theErammar
l

output: the aligned sequence

Figure 6: Diagram showing overall flow of control through the alignment insertion tool
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3 The 16S rR,NA Grammar

Our particular grammar works as follows: Dr. Gary Olsen annotated the Urbana alignment
for us, using special characters to indicate the breakdown of the alignment columns into the

various structural uILit_o. (A structural unit in this context can be a lhs of a helix, an rhs of

a helix, or a gap, with the understanding that a gap can either form the cap of a helix or lie
completely outside all stem-loop structures and simply form the linking bases between the last

helix and the next.) This annotation is shown in Appendix 2.

I made one modification to this annotation by marking out the one pseudoknot (really a

tertiary interaction; see [48]) in the 16S molecule with my own symbols. Using the modified
annotation, I then generated automatically a list of the structural units in Prolog clause format.

A brief extract from the list containing data on four structural units is shown below:

struc_unit(b64_65,100,101,gap,null).
struc_unit(b66_82,102,133,1hs,nu11).
struc_unit(b83_86,134,141,gap,null).
struc_unit(b87_103,142,174,rhs,lhs(b66_82,102,133)).

Each of these Prolog facts contains five arguments. The first argument simply names the

structural unit. We create a unique identifier by using the base positions in the E. coli species
that lie at the start and end of the unit. The unit name of b66_82, for example, means that

bases 66 through 82 in E. coli lie in the alignment columns assigned to this structural unit.
One point about this naming convention: in certain units the E. coli species lacks any bases,

so we must use sumething like, for example, b_32_after_and_before__33, as a name. The same

problem would crop up in any species selected to name the units. All the names are generated
automatically by the program, which converts the alignment annotation into the structural unit

Prolog facts. The second and third arguments give the starting and ending alignment columns
that mark the bounds of the unit. The b83_86 unit, for instance, occupies alignment columns

134 through 141. The fourth argument gives the unit type (gap, lhs, rhs, loop_unit). The last
argument (in rbs units only) is used to hook together the associated rhs and lhs of a helix. (In

other units a placeholder null is used.) In the sample listing of structured units above we have
a gap followed by a complete stem-loop structure whose lhs is b66_82, whose cap is b83_86, and
whose rhs is b87_103.

I manually added entries to the list of structural units for a half-dozen more complex struc-

tural units called loop_units to aid in the parse. This is a simple process that takes ten to fifteen

minutes (and will rarely need redoing). The parser can function without loop_units, but at least
in the 16S rRNA it appears to function better with a few added. The purpose of loop_units is
explained more fully below.

Taking the list of structural units and the alignment contents as input, another Prolog

program then automatically generates a grammar for the Mignment. This grammar is actually

quite simple to understand. For each structural unit and each named family in the phylogenetic

tree, there is a rule in the grammar that expresses the base invariancy constraints obeyed by

the species belonging to that family over that particular structural unit. Also, for each helix
formed by two structural units, that is, by a lhs and a rhs, the secondary structure constraints
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obeyed by the helix for each named family in the tree are set down in the form of the maximum

mismatches, insertions, and deletions allowed in the helix.

3.1 Features of the 16S rRNA Grammar

Grammar information is now stored in the six Prolog predicates described below. Five pred-
icates consist of collections of facts that have to be processed (interpreted) by other Prolog

predicates. The constraint predicate, however, is a collection of rules (in what is called Definite
Clause Grammer format), and each such rule is processed in the parse by simply calling it
in-line with the proper parameters passed to it.

For those readers unfamiliar with Prolog, there is no need to grasp the fine points of what

follows. What is important is the type of information made available to the parser. The

grammar predicates are as follows:

i) gap (Interval_name,Family,Msg_Min,Max).

In standard Prolog terminology this is called the gap/5 predicate, since it has five arguments.

A gap/5 clause is used to build a sub-goal for parsing the interval (structural unit) given by
Interval_Name for family Family. The third argument (Msg) can be ignored in this predicate
and in ali the other predicates I discuss below; at present it is an unused placeholder for any

comment (message) we wish to insert. The Min and Max arguments tell us that Min to Max
number of bases are allowed in this unit.

2) lhs(Interval_name,Family,Msg,Min,Max).

An lhs/5 clause is used to build a subgoal for parsing the left side of a helix having Min to
Max number of bases.

3) rhs(Interval_name,Family,Msg,Mismatches_allowed, Insertions_allowed,
Deletions_allowed,Lhs_interval_name).

An rhs/7 clause is used to build a subgoal for parsing the right side of a helix with the

permitted number of mismatches (substitutions), insertions, and deletions. Note that, unlike
gap/5 and lhs/5 clauses, rhs/7 clauses do not incorporate length (Min and Max) information.

Such data for an rhs is kept in its associated constraint clause, along with any base invariancy
information for the rhs. The Lhs_interval_name argument identifies the lhs associated with this
rhs in the complete helix.

4) sequence_parsed_by_family_set(IntervalName,
Family,Msg,MinBases,MaxBases,
[ (StrucUnitList,FamilyList) ]).
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Tile list of structural units to use in the parse is found with a call to this one sequence_parsed_by_filmily_so

clause in the grammar. IntervalName is set to b1_15_2, since there are 1,542 bases in the E.

coli 16S molecule. The StrucUnitList argument is a list that defines the entire set of 16S rRNA
structural units in their proper order. The Family, Msg, MinBases, MaxBases, and FamilyList
arguments are currently not used.

5) constraint(Interval_name,Family,Msg) -->
<list of constraints, such as 'an,S..3,cn,gn'>.

Each gap/5, lhs/5, and rhs/7 clause has an associated constraint/3 clause. The constraint/3
clause captures the base invariancy information. For example, suppose we had

constraint(b1358_1364,'Green Nonsulphur' ,no_msg) --> un,cn,an,ga,
0...1,cn,ra,un.

This clause states that in structural unit b1358_1364 all the species in the alignment belonging

to the Green Nonsulphur family must have this base composition: a u, followed by a c, followed

by an a, followed by a g, followed by zero to one bases of any type, followed by a c, followed

by an a or g, followed by a u. (Note that we allow unknown bases represented by ns to satisfy
any of the base invariancy codes we use. That is why the code for u is given as un, and so on.)

The standard sequence analysis coding scheme is used. Thus rn means an a or g (or an n), yn
means c or u, and so on. The coding scheme is shown in Appendix 3.

The procedure used by the grammar generation program to create such a constraint clause
is fairly simple in concept. For the example above, the program first checks the phylogenetic

tree to find out what subset of species in the alignment lie within the Green Nonsulphur family,

that is, which species lie in the subtree whose root node is labeled Green Nonsulphur. The

program then checks the structural unit definitions for the Prolog clause corresponding to the

b1358_I364 unit. This clause will tell the program which alignment columns fall within the
unit. In this particular case, columns 1690 through 1697 lie in unit b1358_1364. The program

then goes through the unit's alignment columns one by one, to see what each column contains.

In this example, the program found that all species in the Green Nonsulphur family contained

a u (or an n) in the first column (column 1690) belonging to the unit, all species contained
a c in the second column (1691), and so on. Note that if one or more species lacks a base in

a particular column, that is, has an indel in that column, then no base invariancy constraint

whatsoever is obeyed in that column. The only constraint we can set for that column in that
particular family is that zero to one bases may exist in the column. That is, we can make
some statement on the minimum and maximum number of bases allowed but not on the type

of bases. In the example above, we see exactly this sort of result in alignment column 1694,

where the only statement the grammar generation program can make is that 0...1 bases can
lie in column 1694 for a species belonging to the Green Nonsulphur family. Note that such a

situation can extend over more than one alignment column. If one or more indels had been

found in column 1695 in the above example, then we would have had the two constraints 0... 1,
0...1 in succession for columns 1694 and 1695. In such cases we would wish to combine the two

(or more) constraints on base number into one more concise constraint. However, before we
could do so, we would have to check on the minimum and maximum number of bases falling into
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the two columns combined. Otherwise we would not know whether we should use 0...1 or 1...2

or 1...1 or 0...2 as the combined constraint. The grammar generation program automatically
does such rechecking before creating the single combined constraint on the number of bases in

two or more adjacent indel-containing columns.

6) loop_unit(Interval_name,Family,Ms_,
Lhs_inrerval_name,Cap_inrerval_name,Iths_interval_name,
(Cap_inrerval_type,ListofCapSubIntervals),
WiggleFactor,Variance,
LocalLookAheadNumber).

The idea here is to treat a (lhs, cap, rhs) triplet as a single unit called a loop_unit. When
this is not done, it sometimes is the case that the Prolog helix pairing rule used in the parser

can find the helix, but the resulting helix will be off by one base (or perhaps two bases)
from the helix found by using expert human judgment in the Urbana alignment. The rule

will always find a helix (if there is one present) within the limit of the constraints we give it

(SubsAllowed, InsertionsAllowed, DeletionsAUowed), but because some leeway must be given
(that is, SubsAllowed, InsertionsAUowed, DeletionsAllowed must frequently be a bit greater
than needed for a particular species) in order to succeed with all species in a family in the

alignment, the helix pairing rule cannot guarantee returning the helix correctly in all of its
bases. To address this problem, we do the following for a loop_unit clause (the explanation

goes into the actual parsing process, so readers unfamilar with Prolog may want to skip the

explanation below; then, after reading Section 5 on the parser component, later come back):

a We first parse the constituent parts (lhs,cap,rhs) of the loop_unit as we would ordinarily do
if we were treating them separately.

b If (a) fails, we backtrack as usual. However, if (a) succeeds, then we perform additional steps
before going on to the rest of the parse. To ensure that the bases have been optimally divided

up between the loop's three subunits (lhs, cap, rhs), we "wiggle" the components and/or vary

the number of bases passed on to the structural unit following the loop_unit_ with the amount
of "wiggle" being given by the WiggleFactor argument and the change in the number of bases

passed on by the Variance argument. Fo_ example, if we have WiggleFactor = 1 and Variance

= 0, then we vary the base configuration that succeeded in (a) in eight ways to try out nine
configurations in all:

lhs-1, gap+2, rhs- 1
lhs-1, gap+l, rhs
lhs- 1, gap, rhs+l
lhs, gap+l, rhs-I
1hs, gap, rhs <- (the original successful configuration)
1hs, gap-I, rhs+l
1hs+l, gap, rhs-1
1hs+l, gap-l, rbs
1hs+l, gap.-2,rhs+l

If we have WiggleFactor = 1 and Variance = l, then we examine 27 base configurations: First,

we do cost calculations for the same nine configurations as is done above. Second, we do the
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same nine cost calculations for the nine configurations that result after one base is added at

the ending boundary of the rhs so that the rhs is len3thened by one base. Third, we again do

the same nine cost calculations for the nine configurations that result after one base is deleted

at the ending boundary of the rhs so that the rhs is shortened by one base.

Note that the additions and deletions used in the set of nine cost calculations when wiggling

are made only to the ending boundary of the lhs and the starting boundary of the rhs (i.e., at
the interface between the cap and the left-hand and right-hand sides). Using a variance other

than zero adds the capability of modifying the base placement at the ending boundary of the
rbs.

The Smith-Waterman dynamic programming algorithm (modified for helix testing) is used to

compare the helix formed by the lhs and rhs of the above configurations. The base subsequences
in the lhs, gap, and rhs that make up the helix tbrmed with highest net score (Smith-Waterman

similarity score + bias for cap type) are the three subsequences returned. Presumably this

would be the hehx fou,d by using the best human judgment. Note that we allow certain types
of cap to be weighted. Dr. Woese, Dr. Robin Gutell, and Dr. Steve Winker have discovered

some cap motifs in the 16S of which I have made use [49]. While most cap types are assigned
a score of zero and hence do not affect the net score, a cap type such as a predominant tetra-

loop motif can add some points to the total similarity score, thus biasing the parser to the
configuration whose cap forms a tetra-loop. Further discussion on this subject can be found in
Appendix 8.

c The third and last step is to parse the string passed to the cap and break it down into

substructures, if necessary. If the cap is a simple gap (which it is for all loop_units cur-

rently in use), then the (Capinterval_type,ListofCapSubIntervals) argument is filled in as
(gap,[Capinterval._ame]). Other, more complicated possibilities for the cap were once en-
visioned and coded for, but they no longer appear necessary and are not discussed here.

LocaILookAheadNumberis an argument to tell the parser the number of structural units we

wish to look ahead. The idea here is that, since performing all the wiggling and calculations in

a loop_unit is quite costly relative to parsing other types of units (gaps and so on), we would
like to have some assurance that the effort is not going to be wasted. Ideally we would like to
ensure, before doing ali these time-consuming calculations, that we would not need to backtrack
over the loop_unit later on because the parse failed at a later point. While we cannot make such

a guarantee, looking ahead by a certain small number of structural units (a number given in
LocalLookAheadNumber) is a step in that direction and will avoid some wasted effort and thus
speed up the parse. For N (= LocalLookAheadNumber) structural units after the loop_unit we

check whether the bases that would be passed on will meet the base invariancy (constraint/3

clause) restrictions on those intervals. We do this before we start wiggling. Although this
means that we, in effect, parse this block of structural units that fall after the loop_unit twice

(at least in terms of their base invariancy constraints), this process is still much cheaper than
simply wiggling without any guidance. If the bases to be passed on fail the lookahead test,

then we skip wiggling for that variance (we do the test for each different variance, that is,
for each different set of bases to be passed on). If the lookahead test fails over all variances,
then we skip wiggling entirely and exit the loop_unit with failure at that point, backtracking to
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gap(b59_60,'Lactobacillus/Bacillus',no_msg,2,2).
gap(bS9_60,'Low G+C Gram Positive',no_msg,2,2).

lhs(bg_13,'Fusobacteria',no_msg,5,b).
lhs(bg_13,'High G+C Gram Positive',no_msg,5,5).

rhs(b21_25,'FusobacCeria',no_msg,O,O,O,bg_13).
rhs(b21_25,'High G+C Gram Positive',no_msg,l,0,O,bg_13).

loop_unit(b66_lO3,'Methanococcales',no_msg,b66_82,b83_86,b87_103,
(gap, [b83_86] ) ,2,0,10).

loop_unit(b66_lO3,'Methanobacterialee',no_msg,b66_82,b8S_86,b87_103,
(gap,[b83_86]) ,2,0,10).

Figure 7: Sample Prolog clauses from 16S rRNA grammar

the structural unit that came before the loop_unit. The use of this lookaiead test may make

the point of failure returned by the parser for parse failures appear to come earlier (at the
loop_unit) than it really is. The trade-off in increased parser speed is, I believe, worth this

increased diagnostic imprecision.

LocalLookAheadNumber is set to a default of ten. However, at present this default is

ignored and the actual LocalLookAheadNumber used is calculated on-the-fly by the parser,
which simply extends the number of units to look ahead to the unit immediately preceding the

next pinned unit.

Two examples each of gap/5, lhs/5, rhs/7, constraint/3, and loop_unit/10 clauses from the
actual grammar we are now using are shown in Figure 7.

From all families and structural units, over 20,000 of these Prolog grammar clauses are

produced in total for the 16S rttNA molecule and saved into a file for use by the parser.

(Excluding loop_units, there are currently 392 structural units defined, and clauses for each of
the 26 families used by the parser are created ior each grammar predicate that applies to a

given unit.)

How many clauses pertain to a particular structural unit? Each elementary structural unit

will have 26 gap, lhs, or rhs clauses (one for each family). There will also be 26 constraint
clauses, so the total comes to 52 (26 + 26) clauses per unit. Structural units of the loop_unit

type (of which there are six at present) do not use constraint clauses (they rely on the base

invariancy constraint clauses of their three subcomponents), so each unit of this type simply
has 26 loop_unit clauses in the grammar.

3.2 Development of Automated Grammar Generation

Automation of grammar generation developed gradually. When I first started working on this
project in January 1990, Dr. Overbeek had already developed a few basic tools to generate

base invariancy statistics from the alignment. However, there was nothing that automatically
generated any of the Prolog facts or rules for a grammar. To m_ke a constraint/3 clause for
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a particular family and structural unit, I had to take the base invariancy statistics for the

alignment positions making up that structural unit (using the species in the designated family)

and manually type in the resulting constraint rule. Building the rhs/7 facts with the tightest
allowable substitutions, deletions, and insertions was even harder. To begin, I typed in an

rhs fact with a large default number for the maximum substitutions, deletions, and insertions

allowed. I then tried parsing over and over with that fact, gradually tightening (lowering the
maximum) the constraints on the helix until the parse would fail in one or more species. I

did this in order to come up with an rhs/7 fact that would parse as precisely as possible.

Obviously, this was tedious and very time-consuming. You can see that the task of constructing
the grammar was quite laborious. Further, this same task would have to be done over again

whenever one or more new species were added to the existing alignment and we wished a new
grammar to catch the information in the new alignment contents.

However, it was soon clear that both the data (the base statistics and the definition of

the structural units) and the means existed to automate this task. I therefore wrote a Prolog

program to do so. (The generation of a rhs/7 clause was hand,_.ed by getting the optimal helix
configuration in each species via the Smith-Waterman algorithm and then counting up the

substitutions, deletions, and insertions used in that configuration. The maximum values found

over all species tried were the values placed in the rhs/7 clause as the allowed maxima.) On a Sun
workstation, it now takes from three to six hours (depending on workstation type) to regenerate

the complete grammar for the 16S rRNA. Hence changes can be made to the structural unit
definitions, the new definitions can be fed into the grammar generation program, and a new

grammar using those changed definitions can be produced in a single day.

Over the course of development, as I noticed where problems were occurring, I have made
some minor modifications to the structural units defined by Dr. Olsen's annotation. These

modifications involved the consolidation of certain structural units into larger units. The units

still reflected the secondary structure, but the consolidation helped the parse speed and its

accuracy. These consolidations reflected an expert human programmer's judgment (mine) and

I have not attempted to automate them. The parser would work without them, but somewhat

more slowly and a bit less accurately.

Let me give an example. Suppose a stem-loop structure lies in a extremely variable region.

Also suppose that in the annotation the rbs of this helix is split in two, with a gap defined in the

middle to show a bulge (and hence we also have the lhs split in two to match the two rhs units).
If the helix sides were fairly short in the first place, then the secondary structure constraints

might become so loose for each subdivision of the rhs that they are no longer of any aid to the

parser. More specifically, suppose that in a typical new sequence the full-length rhs defined by

my consolidation contains six bases and that the two rhs subdivisions contain three and two

bases, respectively (with one base going in the bulge unit). Now suppose that our automated

grammar generation program, when the structural units containing my consolidation are fed
in, reports back that a maximum of two substitutions are used by any alignment species in the

rhs, and thus we can set 2 as the maximum allowed in the grammar clause for that rhs unit.
If there are a couple of species in the alignment that use two substitutions at the upper end of

the rhs and another species or two that use two substitutions at the lower end, then when the

rbs is split in two, as in the original annotation, the grammar generation program is going to
have to allow two substitutions in both the shorter rbs units. Since the rhs units are now two
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and three units long, allowing two substituti(:ns means just about any base se_,mnce can satisfy
the secondary structure constraints for those two units. Hence the parser can actually make

more use of the secondary structure information when it acts on the longer full-length rhs, even

if it cannot place a base into quite as small a box. That is, the box is somewhat larger, but

we have a better chance of placing the correct bases in it. That is the prime reason I would

consolidate the two rhs and the bulge into one rhs unit and the two corresponding lhs units
into one lhs unit. However, cutting down on the number of structural units also cuts down on

the amount of backtracking we do when a parse failure occurs. (I will not get into the fairly
complex reasons for this here; see the discussion later in Section 5.1.2 on backtracking.) Hence
consolidation can also speed up the parse of a species.

3.3 Uses for the 16S rR1NA Grammar

A final point about the grammar. In addition to acting as the information pool for the parser
component of our insertion tool, the grammar can also serve us in other ways. First, it can

perform as an exploration tool in itself. For example, the grammar might be changed to lengthen

the lhs and rhs of a helix by one base each, without altering the alignment itself. This might
be done to see the effect of a longer helix on, say, a covariance analysis we were running.

Second, the grammar labels the structural units of the alignment. For example, the grammar
tells us which intervals in the alignment are left-hand sides of helices. This information could

also be extracted from the alignment annotation entry shown in Appendix 2. We couhl even
match up an lhs and a corresponding rhs as the grammar does by searching for matching sets

of lhs-rhs symbols in the annotation. However, if more complex structural units are built out

of the elementary structural units (gap, lhs, rhs), then a grammar can contain information that
the alignment itself will not have, even with the annotation entry added. Such a hierarchical

grammar, with its multiple layers of description, allows us to label larger structural units and

manipulate them easily.

The grammar that is in fact now used in our alignment insertion tool is relatively "flat",

with loop_units forming the only combinations ("phrases", so to speak) of the elementary units.
I started out with a much more hierarchical version, with the 16S rRNA molecule broken down

into a central core and four large arms, with subunits formed out of each arm, and so oil,
until the elementary unit types were reached. However, over the course of development I found

that this was not necessary, and the concept of hierarchy was weakened. One might say that

we are currently breaking the sentence (molecule) down directly into individual words, and
skipping the groupings into noun and verb phrases. This was all that is needed in terms of

hierarchy for the particular type of parsing done here. (Generation of a flat grammar was also

much the simplest to automate.) However, in other forms of parsing, such as recognition of
complex structures like genes (which are built out of clearly defined substructures which can

have substructures of their own), highly hierarchical grammars are preferable. (For examples,
I again direct your attention to the work of Dr. David Searls in this area [8,9,10].)

Finally, the grammar serves as a convenient, concise summary of what is known about the

molecule in terms of the alignment. There is nothing in this summary that cannot be recreated
from the alignment and the associated phylogenetic tree, but it does appear to be a more
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convenient representation than the alignment for some tasks. For example, we can generate an

explanation of the structure in terms of a series of natural-language-_:; "- English sentences in

a set of paragraphs more easily using the grammar rather than tl_ alignment as the starting
point.

4 The Pinning Component

What is a pin? A pin is simply a statement that the 1)ase at position M in the sequence for

the new species should be placed in alignment column N. Such a statement may be true, or it
may be false. Placement of each base in the new sequence into a particular alignment column

is exactly what our alignment insertion tool is trying to achieve, so the more (reliable) pins we
have, the better. If the pinning component of our tool could pin all the bases by itself, then
the second grammar/parser component would not be needed. However, that is not the case

(though in some species closely related to the species already in the alignment, we do get a very
large number of correct pins using the technique described below).

I will not go into as much detail about the pinning program as I will for grammar and
parser, since the basis of the particular pinning technique used here is well laid out in an

Argonne technical report by Dr. Overbeek and Dr. Ian Foster [40]. We employ a standard
dynamic programming algorithm, with one important addition. As stated in their report, the
core of this technique is the employment of "consistency checks to produce reliability estimates".
We can compute confidence levels for pins and throw out those pins that fall below a minimum
confidence level. Hence we can set the minimum level to produce extremely reliable pins, with
an extremely small number of bad (incorrect) pins slipping through. Even with the minimum
set quite high, pins will be generated for a majority of the bases. The parser then addresses
the minori:y of bases that fall in the more variable regions and thus cannot be pinned.

Pins al., generated as follows. A random set of species is selected from the alignment. A

set of pins _ then generated for the new species when compared to this subset of alignment

species. (The process takes time, so we use a subset of species, not the entire alignment.) We
then employ the phylogenetic tree to provide guidance. The phylogenetic tree is a binary tree,

so the root node, like all other internal nodes, has two branches. The species that are most

related to the new species are going to hang off only one of these branches, not both. What
we would like to do is move down the tree via one of the two branches toward the subset of

species related to the new species. If we can do that, then we can do another pin generation run

using a subset from the new, smaller subtree. That is, when we move down to another node
we generate a new set of pins using a representative set of species from the subtree of which

the new node is the root. This should give better results (more pins) since we are now using a
collection of species closer to the new species. We keep reiterating this cycle until we can move

down no further in the tree. The pins generated from the last run before we stall then become

the set of pins outputted. A diagram of the process is given in Figure 8.

The big question is: ttow do we choose which branch to move down? The answer is that we
vote. For each node in the phylogenetic tree, a vector has been computed. (This computation

has to be done only once for a given alignment; then the vectors are loaded in automatically

each time the program is used.) Each vector has 1,892 components (one for each alignment
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Figure 8: Diagram for the pinning component
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column). Each component, in turn, stores eight pieces of information, four for each branch. For

the right branch the component stores how many species in the subtree formed by right branch
of the node contain an a in that alignment column, how many contain a c, how many contain a
g, and how many contain a u. The same data are stored for the left branch. These vectors are

then used to calculate a vote for each pinned base in the new species. For example, suppose
that after the set of pins is generated at the current node we find that base a at species position
455 is pinned to alignment column 503. Then the component of the vector for the current node

for alignment column 503 would be examined. If there are more a bases in the the species in

the right branch of the node than in the left branch in column 503, then a vote is made to go

right. The magnitude of this vote is the number of a bases in the right branch divided by the
size of something called the changelist.

The changelist concept is simple to understand. One changelist is associated with each

column in the alignment. ]f there are 1,892 alignment columns, then we have 1,892 changelists.
A changelist for a particular column is a list of the internal nodes in the phylogenetic tree whose

predominant base type in that alignment column changes between the left and right subtrees
of the node. The larger the changelist, the more variation we have in that particular alignment
column. The changelist values are calculated by a program written by Dr. Steve Winker at
Argonne. For each alignment column, Dr. Winker's program examines each internal node in

the tree, one by one. At each node it counts the occurences of each base type (A, C, G, or

U) to find the predominant base. It then checks to see if this predominant base type changes
between the two branches of the node. If so, then we have a change, and we add the node

to the changelist. If not, that is, if the same base predominates in both subtrees, then the

node is not added to the changelist. Note that the a node may be included in the changelist
for alignment column M, but in another alignment column N (where its two branches share

the same predominant base in that column) tbe same node may be left out of the changelist.
The magnitude of the changelist associated with a column reflects the stability of that column

throughout the alignment. The smaller the size of the changelist, the higher the stability [50].
The changelist concept is used here to implement the fact that we desire that a vote from a

stable column should weigh more in the voting than one from a column in a variable region.

(As with the node vectors, the set of changelists only has to be calculated once for a given
alignment.)

We perform the voting process for ali pins, obtaining a vote vector (magnitude and direction)

for the alignment column associated with each pinned base. For example, if 800 of the 1,500
bases in a species were pinned, then we would have a total of 800 votes. We then add all

the votes for the right branch together into RightSum and all the votes for the left branch

together into LeftSum. Next, we calculate two ratios: RightRatio = RightSum/LeftSum and

LeftRatio = LeftSum/RightSum. If RightRatio is greater than LeftRatio, and if it is also
greater than a preset threshold, then we move down to the next node on the right branch of the

current node. We then restart the whole process by calculating a new set of pins, as described

above. If LeftRatio is greater than RightRatio, and if it is also greater than the preset threshold,
then we move down to the next node on the left branch of the current node. If neither ratio

exceeds the threshold, then we cannot move down the tree any farther, and we end the pin run

at the current node. (The threshold was determined empirically. Obviously, if we do not use

a threshold of some kind, we are eventually going to run into noise that can cause us to take
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the wrong branch. We tried out various thresholds on the species already in the alignment nad
phylogenetic tree to see what was the minimum we coldd use without ending up at the wrong

place in the tree.)

In addition to the pins themselves, the pinning program also returns the subtree whose root

is the last node where pins were calculated. The set in this subtree is presumably those spet:ies
most closely related to the new species. Tile parser later makes use of this fact by confining its
parse to the subset of grammar clauses belonging to only those families which have at least one
member species in the pinning subtree. This speeds up the parse and improves its accuracy.

If the end user is interested in evolutionary relationships, the subtree can be included with

the aligned sequence in the tool's output. This arrangement will help the user track down the

location where the new species should be placed in the phylogenetic tree associated with the
alignment.

5 The Parser Component

The parser component consists of two sections. The first section performs the actual parsing of
the input base string, which slots the bases into the structural units. The problem then remains

of inserting the indels at the proper positions among the bases placed within each unit. This

is the job of the second section. Once that is done, the aligned version of the sequence is put

together as simply the concatenated string of all the aligned structural units. A diagram for
the parser component is shown in Figure 9. A much more detailed set of diagrams for the first

section of the parser mechanism that does the parse and assigns bases to structural units can
be found in Appendix 9.

5.1 Parsing of the Bases into the Structural Units

The criterion for final parser success is simply this: no bases remain after the last structural

unit has been parsed. That is, all bases from the initial input string (typically about 1,500 bases

long for the 16S) have been slotted into some structural unit (consumed by some structural
unit) without causing a violation of that unit's grammar clauses or the grammar clauses for
any of the following structural units.

Localized parse failures in unpinned groups of structural units that lie between two pinned

units (or between a pinned unit and one of the ends of the molecule) can occur. The overall
parse will still succeed, however, because the parser can recover its position in the input string
at the right-hand pinned unit. Nevertheless, that is not an ideal situation, and we try to avoid

such localized failures (though cases will indeed occur despite our best efforts, since some new
species simply will not obey, in one place or another, even the weakest of the grammar rules

extracted from the alignment). A localized parse failure diminishes the accuracy of the parse,

since the bases falling between the pinned units cannot be confined to a given structural unit

but rather are spread throughout all the unpinned units between the two pinned units.

The way in which the parser is currently written and the way it currently employs pinned

units virtually guarantee overall success (no bases left over at the end; program ends normally
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and reports results). However, if the number of localized parse failures is very large the overall
success would mean very little. Fortunately, this does not look like a problem. Localized failures
have been few and, in general, confined to small regions. (See the results section below.)

A localized failure, per se, is not currently flagged for human attention. If the region of

failure is small, there is still a fair chance (withthe aid of interior pins) for the indel insertion
section of the parser to later insert the indels properly. However, in a future version of the
parser we might add a line of output to flag such a region as one where errors are more likely

to occur, and thus as an area that should be checked more closely.

The parser is written in Prolog, which means that we have a built-in backtracking inference
engine. If the parse fails in some structural unit, the parser automatically backtracks to the

last decision point to see whether it can come up with a different input string to the structural

unit that failed to parse. This feature is what makes Prolog so appropriate for computational
linguistics and cefr=5, artificial intelligence applications. Indeed, Prolog is probably the leading

language today in the field of computational linguistics. Its use in that area is so common that

a certain type of syntactic "sugar" has been added to easily express Definite Clause Grammar

(DCG) notation, which I used in the constraint/3 clauses above. The DCG right arrow symbol

is used in those clauses. This symbol causes Prolog to rewrite the clauses when it reads them

in from a file, adding two arguments for an input string and an output string. (Thus the

constraint/3 clauses are really constraint/5 clauses, and I will refer to them as such from now

on.) An excellent short introduction to the use of Prolog in parsing and to the use of DCG
notation can be found in [51]. Longer texts on the general use of Prolog in computational

linguistics are in [52] and [53].

At its most basic level, the parser works as fo',!ows. The parser feeds an input string

consisting of all the remaining bases into a structu"al unit. The structural unit (if the parse
is successful within it) then "consumes" a substring of bases from the start of the string and

passes back to the parser the shortened remaining list of bases. (I am simplifying here. The

structural unit itself does not do anything. Rather, a piece of code processes the string using
all the constraints associated with that structural unit.) The parser then repeats the process

with the next structural unit. The parser moves along the structural units, handing the base
string off and getting a shorter string back. After the last structural unit is exited the empty

(null) string will be what is left, if we have a successful parse.

Why would the parser fail in a structural unit? Here's one example. Suppose the parser

feeds a string whose head (start) consists of the bases acaaggg ... into unit b351_353. To
save space, I will simply use acaaggg as the input list to the unit in my discussion below, but

remember that this can be simply the head of a much longer string. Now suppose that this
unit is a gap, so no secondary structure information is involved and the only constraints are

the base invariancy constraints on the primary sequence. Let the base invariancy constraints
for this unit be an, an, an. These constraints can be described as three sequential tests, with the
output of one fed as input into the next. The input to the first an test is the string acaaggg.
Remember from our discussion of constraint clauses in Section 3.1 that the an test means that

only an a or an n will satisfy the test. There is an a at the start of the input string, so the first

an test is satisfied. It consumes (recognizes) the a and passes on the shortened list caagg9 as
input to the second an test. However, when the second an test looks at the start of its inptlt
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Figure 10: Diagram for detailed parse example

string, it sees a c. This will not pass, so the second an test fails, thus causing the parse of the

e,Ltire structural unit to fail. Note that the unit (and each of the tests contained within it) is
!imited to taking bases from the head of the input string and in the order that they are given.

Now, suppose we took the same input but a different set of base invariancy constraints:
1...2,an, an. The 1...2 test can consume one to two bases of any c:Jmposition. The first time

through it consumes one base from the input string of acaaggg and passes on the string caaggg

to the an test. As before, the an test will fail because of the c at the start of its input. However,

in this case there is a decision point within the unit. The 1...2 test has two possible choices,
and it has used only one. Hence our Prolog engine automatically backtracks to the 1...2 test

upon the failure of the first an test. The 1..2 test then tries a different choice by consuming
two bases and passing on the string aaggg. The aaggg satisfies the first an test, which consumes
an a and passes on aggg to the second an test. The second an test in turn is satisfied with the
a at the start of its input string and outputs the string ggg. Since this is the last test for the

unit, the parse now succeeds, and the unit as a whole passes along the string ggg back to the
parser. The parser notes the difference between the input string fed into the unit and what it
received back. This difference tells the parser what bases to store as slotted into that unit. The

parser then passes on the output string of ggg to the following structural unit, where the same

process will be repeated. (One way of looking at the parser controller is as a messenger that
carries the ever-shortening input string from unit to unit.)

5.1.1 Detailed Parse Example

Let us go through a trace of a parse over several structural units combined, to give a better

idea of the parser in action. Suppose that the parser has reached unit b846_857 in its parse
of a new sequence. Also suppose that the pinning component has provided the information

that unit b846_857 is a pinned unit; that units b858_860, b861_862, b863_866, and b867_868

are unpinned units; and that unit b869_873 is a pinned unit. The units b858_860, b86I_862,
b863_866, and b867_868 form what I call an unpinned structural unit group, sandwiched between
the two pinned units. Hence we obtain Figure 10.

The pinned units provide reference points for the parser, telling it what bases must go into

the unpinned unit group and what bases must come out. The parser confines backtracking to
within a single unpinned unit group. (,, the parse fails for some reason, there is n_) point in

backtracking past a pinned unit in order to try to find an alternative, since the pinned unit
will always pass on the same string to the following v'fit.) The entire parse is divided up into
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unpinned unit groups and the pinned units that lie between them. Note that a localized parse

failure always extends through exactly one unpinned structural unit group.

The following happens when the parser goes through the section of the 16S molecule given
in the above example:

1) First, the parser looks at the b846_857unit. Checking, the parser finds that it is a pinned
unit. The bases that belong to that unit have already been slotted in and hence are known.

All the parser has to do is put those bases in its own storage list as slotted into this unit, and
then pass on the shortened string (with those bases removed from its head).

2) Second, the parser looks at the b858_860 unit. Seeing that it is an unpinned unit, the
parser immediately looks ahead to see how far this list of unpinned units goes. It finds the next

pinned unit (or the end of the molecule, whichever comes first). From the following pinned
unit, the parser then deduces what bases should fall within the unpinned unit group. These

bases will form the input string to the group. (The group will have parsed successfully if none

of these bases are left over after the last unit in the group is processed, that is, if the null

string is left over.) The parser then constructs a Prolog goal "on the fly" for the four unpinned
units combined, and then calls that goal. This goal consists of four subgoals, one for each unit.

The goal succeeds if each subgoal succeeds, that is, if ali tests (base invariancy constraints and,
if appropriate, secondary structure constraints) succeed for the each of the four units and all
the bases end up slotted into one of the four units. If the goal fails, then we construct the

another goal for the unpinned group using the constraints for a different family and try again.
We continue, if necessary, until we have built and tried a goal using the grammar clauses of
every possible family. We stop only when success is achieved or we run out of families to try.

(Currently there are 26 different clauses in each Prolog predicate that apply to a given unit,
each expressing the constraints according to the alignment species in a different family. Hence,

.rp to 26 goals could be tried. Ordinarily, somewhat fewer goals would be used, since not all 26

families would show up in the subtree returned by the pinning component, which is used as a
guide here.)

The question might arise as to why we are trying to parse according to one of the 26

subfamilies (which together span the alignment) rather than just according to the constraints

that apply to all the species in the alignment (that is, to the constraints that hold for the
family Prokaryotes, to which all the species in the current 16S rRNA alignment belong). The

answer is that a constraint that applies to all the species is liable to be very weak, and hence

not of much use in correctly slotting the bases into the proper units. Tighter constraints that

come from a subfamily of more closely related species are much better. For example, in the

family Prokaryotes it might be the case that all we could say for a given unit in terms of "ts

base invariancy constraints is that it contains one to five bases (constraint: 1...5). On the other
hand, in a subfamily such as Flavobacteria the grammar might be able to state that there should

be an a, followed by two to three bases of any composition, followed by another a (constraint:

an,2...3,an), a much tighter pattern for the input string to match.

We are using here a technique called meta-programming to impose an extra level of control
by constructing and then launching Prolog goals. Using parts (various clauses) of the program

itself as data, we build an entirely new piece of code (which did not exist until then) and execute

it using Prolog's call(Goal) predicate. If any one line can be called the "heart" of the parser
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component, the line of code that r erforms call(Goal) is it. Two interesting points: (1) the set of

goals so constructed is going to differ from species to species (since which units are pinned and
which are not will differ in each species) and (2) each such goal will be "invisible" in the sense

that it will never actually appear in a listing of the program's source code. This is a strong
reminder of how different Prolog is froIa a more conventional computer language such as C or

Pascal. Also note that since there is a complete equivalence of programs and data in Prolog,

meta-programming (using a program itself as data) is, as Sterling and Shapiro say, "nothing
special in Prolog" [6].

The reason for using this extra control level is our desire to sequentially try the constraints of

each family, as explained above. The extra level of control allows another goal to be constructed

and tried if the goals tried earlier have failed. Hence we can try alternative constraints from
the grammar over the same series of structural units.

The parser makes use of pin information in two ways. First, as described earlier in the
processing of the b846_857 pinned unit, a pair of pins that occur on a unit's boundaries can slot
in bases for that unit automatically for the parser. Second, there can b_ pins that fall within

the interior of a unit. These pins, while not as useful as the boundary pins, can still aid the
parser. Such a pin states that the base in such and such a position in the new sequence must

lie within such and such a unit. This can be used to supplement the grammar constraints.
However, there is the possibility that such a pin can be incorrect. This might force a false

failure of the parse. In such a case the parse might have succeeded in the unpinned unit group
if it had not made use of the interior pins that were available. The first time we construct a

goal for the unpinned unit group using the constraints for one of the 26 families, we build the
goal so that the information from all the interior pins falling within the four units is used. If

the first goal succeeds, well and good. If it fails, we sequentially build and call goals for each

of the families that show up in the pinning compcnent's subtree. All of these goals make use
of interior pins. However, if the entire set of goals fail, then we do something in addition. We

reconstruct and launch the same set of goals, in the same order as before, but with the single
difference that interior pins are not used. If the cause of the failure the first time through a

goal was a bad pin, then the s_.cond time through that same goal will now succeed, and thus
the parse will succeed for this unpinned structural unit group.

Now let us look at what will happen when a goal for the unpinned unit group is called. The
first of the four unpinned units is b858_860, which is a gap. (The three following units, b861_862,

b863_866, and b867_868, form the lhs, cap or gap, and rbs of a stem-loop, respectively.) The
first subgoal tried is therefore for this gap. The only grammar constraint done for a gap is a

base invariancy test (using a constraint/5 clause). (If this is the first time this family has been
tried, there will also be a check using the interior pins for unit b858_860). If this test succeeds,

then the b858_860 subgoal will succeed, and we move on to the lhs in unit b861_863.

While the case here is that the associated rbs for the lhs in b861_863 falls within the same

unpinned unit group (in unit b867_868), there is no guarantee of that always happening. Often

the associated rhs of a lhs will lie outside the unpinned unit group containing the lhs. The rhs
will exist either as a separate pinned unit or as a unpinned unit in a separate unpinned unit

group.
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I made the decision to limit backtracking to within a single unpinned unit group. The
motivation was to dramatically decrease the chance oi running into an explosion of possibilities

upon backtracking. (See the discussion of the problems associated with automatic backtracking

below.) However, this decision meant that if the rhs lies in a separate unpinned unit group
further on in the molecule, then when the parse later reached that rhs and the se('ond;_ry

structure constia_.at test was tried, we could have a problem. Suppose the secondary structure

test fails. If the f_ilure is due to incorrect bases in the rhs, that is all right; we can backtrack

within the unpinned unit group containing the rhs to come up with different set of bases.
However, if the true cause of the failure is that we placed the wrong bases in the lhs, then we

have no way of backtracking to the lhs to fix that, and hence the parse of the unpinned unit

group containing the rhs will fail. (By the way, the bases for each lhs are carried from unit to
unit in a storage structure maintained by the parser, and are made available as needed to an

rbs unit when the secondary structure (base bonding) test needs to be done between an rbs

and its associated lhs.) Hence we must do as much as we can to ensure that we get the lhs

right while we are still in its unpinned structural unit group. We do this by looking ahead, if
necessary, to the unpinned unit group containing the associated rhs.

Hence whenever the parser runs across an unpinned lhs unit, it does the following:

a) It first checks to see that the lhs passes its own base invariancy constraint test. If not,

we backtrack. If yes, then we proceed to (b).

b) It checks whether the associated rhs falls within the same unpinned unit group. If so, there

is no problem. The lhs unit simply has to be tested using base invariancy constraints (already
done in (a)), and the secondary structure constraint test involving base-bonding between the
lhs and rhs will be performed when we arrive at the rhs unit.

c) If the associated rhs lies outside the current unpinned unit group as a separate pinned
unit, then we test whether the bases in the lhs will satisfy the secondary structure (helix or

base-bonding) constraints with the bases in the rbs being those that were slotted into the pinned

unit. If the test succeeds, fine. If not, then we fail here on the lhs and start backtracking.

d) If the associated rhs is not pinned and lies in a separate unpinned unit group, then we find

the first pinned unit falling before the rhs and the first pinned unit falling after it. Using these
pinned units as references, we find the units and bases that fall within the unpinned structural
unit group to which the rbs belongs. We construct and execute goals on that unpinned unit

group in the same manner as discussed above for the original four-unit unpinned group, with
the following change:

We treat all the unpinned units as gaps except for the one rhs. That is, we apply the

constraint clause and interi_ : pins tests to all the unpinned units in sequence, using the bases
contained within that unpinned unit group as the starting input string. If the parse of the group

fails (because of an incorrect pin or whatever), then we stop and let the lhs in the preceding
unpinned structural unit group succeed. If the parse of the group containing the rhs succeeds,

then we reparse the group a second time, using one additional test: we apply the secondary

structure constraint test to the rhs using the bases found for the corresponding lhs. Now that

we have established that the unpinned group containing the rhs can be parsed (if secondary
structure constraints are ignored), if the secondary structure test matching the rhs with the
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lhs fail,J, then that strongly indicates that the wrong bases are in the lhs and that we should
fail and backtrack at the lhs, allowing the correct set of bases to be placed in the lhs. If this

additional test succeeds, then we say that we succeeded in the lhs and move on. If the test

fails, then we fail at the lhs. This is not the best possible testing method, since we are not

using some information -- i.e., we are not applying the secondary structure test to the other

rhs units (if they exist, of course) m that fall within the same unpinned group that contains

the original rhs of interest. However, the current combination of tests has produced excellent
results so far.

If the subgoal for lhs unit b861_862 succeeds, then the subgoal for b863_866 is tried. Since

b863_866 is a gap, the only grammar constraint done will be a base invariancy test (using a

constraint/5 clause). If this is the first time this family has been tried, there will also be a check
that all interior pins that should fall within b863_866 actually do so. If the constraint/5 tcst

succeeds (and, if interior pins are used, if that test succeeds), then the b863_866 subgoal will
succeed, and we move on to the rhs in b867_868, which forms the last unit in the unpinned unit

group. Both base invariancy and secondary structure (base-bonding) tests will be used for this
unit. If both these grammar tests succeed (and, if interior pins are used, if that test succeeds),

then the b867_868 subgoal succeeds. At this point all four subgoals of the original goal have
been tried and exited with success. The parser now checks to ensure that the empty string is

what is left of the original input string. If so, then we exit the goal with success and proceed to

step (3) below. If not, the parser starts backtracking back into the subgoals to try to find an
alternative configuration of bases that will leave zero bases left over. Note that the goal as a

whole has been constructed so that the output string of each subgoal serves as the input string
to the next.

As mentioned earlier, the rbs in our example lies in the same unpinned group as its associated

lhs. Itowever, if a subgoal for an rhs is being executed and if the associated lhs lies in a separate
unpinned group that previously failed to parse (hence no bases are available as slotted into just
the lhs), then the rbs subgoal is allowed to succeed if its base invariancy and interior pins tests

are satisfied. The base-bonding test is not used in such an instance.

3) Third, if one of the goals tried for the unpinned unit group succeeds, then using the
information returned by that goal, the parser divides up the bases between the four units in

the group and stores that away for later output to the indel insertion section. The parser then

passes on a shortened string, with all the bases that fall into the group removed, to the pinned
unit in b869_873, where the parse continues by repeating the same process as in (1) above.

If all the alternative goals have been tried and each has failed, then the parser accepts the

fact that it will not be able to break down the bases in the input string so that the bas_s that

belong to each of the four units are properly slotted into an individual unit. Instead, it simply

stores all the bases as being slotted into a larger region made up of the four units combined.
It then continues the parse by passing on a reduced input string (minus these bases) to the

following pinned unit in b869_873. (This localized parse failure makes the job of the indel

insertion section harder, of course.) This concludes our trace of the parse through the b8_6_873
example.
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5.1.2 Potential Problems in Prolog's Automatic Backtracking Mechanism

Automatic backtracking upon failure is one of the most valuable features of the Prolog computer

language and also, on occasion, one of the most frustrating. The question is how to use this
facility wisely: how to extract the most benefit while limiting the potential problems. Lc! mc

give an example of the type of problem we can run into. Suppose that we treat a region of some

molecule as a single unit, with the only constraint on that unit being that we know that 1 to 100
bases can fit into it. There is no constraint on base c_mposition, only on the number of bases.

Our sole constraint could then be written as 1...100 in the notation used in the grammar. Now
suppose that the parse failed at some point further on in the molecule, so the parser wishes to

backtrack over this unit to generate other possibilities. Question: How many possibilities are
there for the parser to generate? The parser is confined to taking one base off of the start (head)

of the input string and slotting it into this unit, or taking two bases off the head, or taking

three bases off the head, and so on. Hence there are exactly 100 possible ways of succeeding (o1"

99 ways to backtrack and succeed again after the initial success). This is a fair number for a
human to plow through, but trivial for a computer. Now suppose that there are substructures

in this unit, so that the biologists who design the structural unit definitions wish to reflect

these structures in the grammar. Suppose that the unit is thus divided into ten smaller units,

but that we still know nothing about base composition (and secondary structure constraints

are also not used). For simplicity, also say that the ten units divide up the region somewhat
equally so that zero to ten bases can be slotted into each of the ten units. The constraints for

the ten units when hooked together would then look like this:

0... 10,0... 10,0... 10,0... 10,0... 10,0... 10,0... 10,0... 10,0... 10,0...10

With no check on base composition (such as, say, that the third unit must contain an a
followed by a c), the parser is free to spin through all of the possibilities. And there are a

lot of them. Instead of the hundred possibilities we had with the single unit, there are now

ten to the tenth possibilities for the parser to work through. What we face is nothing less
than a combinatorial explosion. For example, when there was one unit in this region, there

was only one way to slot 20 bases into the region. Now we can take five bases from the head
of the input string for the first of the ten units and insert them into that unit, another nine
bases froI,_ the head of the input list for the second unit, and the final six from the head of

the input list for, say, the seventh unit. Or we could slot seven bases into the fourth unit, six

bases into the ninth unit, and seven more into the tenth unit. And so on. The problem here

is not getting an incorrect answer out (though weak constraints will indeed produce a more
inaccurate alignment of a new sequence). The problem is getting any answer back at all in a
reasonable period of time. Tightening the constraints by parsing according to subfamilies could

be a solution. For example, perhaps in some subfamily of all species in the alignment for this
hypothetical molecule the constraints in the fourth unit would change from 1...10 to something

like an,an,gn,2...3,cn, cn. This would dramatically cut down on the possibilities.

However, if the constraints have already been tightened as much as po._sible, is there any-
thing else that can be done? The answer is yes. Note that no matter how we divy up the 20

bases inside this one region, that is, no matter which of the possibilities for slotting in the 20

bases we use, the same strin?_ (minus 20 bases) will be passed on to the rest of the parse that
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takes piace after the tenth unit. Hence we could pass on the same input string hundreds or
thousands of times to the rest of the parse, and every time after the first will be wasted, since

if the parse fails with a given input string the first time through, it is always going to fail the

second and the following times that the same string is used as input. (Nothing has changed in
terms of the primary sequence; and since we are doing a lookahead to the associated rhs when

an lhs is reached, secondary structure constraint test results should also not change.) What

we wish to do is keep track of which strings have been passed on as input to the rest of parse,
at any given point in the parse. Then we can check after each unit to see whether the same

string has been passed on before. If so, there is no point in going any farther (the parse must
have failed at some point later on with that string), so we can force a failure right there instead

of failing farther (perhaps much farther) on, and thus save a great deal of time. The storage

of intermediate results for this purpose is a form of chart parsing [54], and I am indebted to

Dr. Searls, who directed my attention to its possible use. I have implemented just such chart
parsing in the parser component of our insertion tool. (In Prolog terminology, this is called

memoization or memo-function use (see p. 88 in reference [5], pp. 181-182 in [61).

I have given an extreme example above. Fortunately, such allowed number ranges are
unusual. There is nothing even remotely like it in the 16S grammar. Also, we have plenty of

base composition and secondary structure constraints we can use. Still, chart parsing saves time

in the runs, and, more important, it serves as a effective guard against extreme time-wasting
possibilities on those rare species that fail near the end of an unpinned structural unit group

and thus do a vast amount of backtracking.

ltence I believe that I have the backtracking problem under control for the 16S molecule.
I also have confidence that the problem is controllable in similar molecules. However, if you

do happen to run across a couple of regions in some molecule like my hypothetical example

above, and these regions were neighbors, and if you are doing your parse on a small desktop

computer (and you were not using chart parsing), you should be prepared to get an answer
back sometime after the turn of the century. The biggest surprise I had during this project was
just how fast the possibility explosion could appear when backtracking over weak constraints.

5.2 Insertion of Indels in the Proper Positions

The second section of the parser works as follows: Suppose for some new species the parser
groups the bases aggcu in structural unit b9_13. For simplicity, also suppose that there are
no interior pins within the b9_13 unit. (If there were, the program would make use of this
information by breaking the unit down into subintervals. However, it is not necessary to go

into that level of detail here.) Then the code to add indels in the proper positions in b9_13 does

the following:

1) The program first checks whether the number of bases slotted into b9_13 exceeds the

number of alignment columns for that unit. If such is the case, obviously there is no room to
add any indels, so we stop here and simply add a pair of brackets ([ ]) around the bases in the
visual output to notify the user that something unusual (more bases than alignment positions)
occurred in this unit. If the parser correctly slotted the bases, then the alignment will need one

or more columns inserted to handle the new species properly. If the parser made a mistake,
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the brackets will flag the error for easier correction. This is a fairly rare occurrence, but it call

happen. (If the parser failed in an unpinned structural unit group and the number of bases
slotted into the alignment columns for the entire group exceeded the number of columns, then

that slightly different type of anomaly would be signaled by a double pair of brackets ([[ ]]).)
Let us assume th:t the number of bases in our example do not exceed the limit, and so proceed
to step 2.

2) The code now searches through all alignment species belonging to the the pinning subtree

(which may be as large as the entire alignment or as small as four or five species) for those

species that have the same number of bases (in this case, five) in unit b9_13. If there are no such
species having the same number of bases the program skips directly to 4b below. Otherwise we
proceed to step 3.

3) At this point the program searches within subset of species found in step 2 for the species

whose base group in the interval most closely resembles that of the new species we are inserting.

That is, the bases in each corresponding position are compared and the alignment species that
has (or have, if more than one such species) the most matches with the new species will be the
result returned from this step.

4a) If the result found in step 3 differs by at most one mismatch from the sequence of the

new species, then we duplicate for the new species the indels used in the alignment species
found in step 2. For example, if there is eight alignment positions in this unit (room for three

indels in addition to the five bases), and the alignment species most closely resembling the new
species found in step 2 has indels at positions 2, 5, and 6, then we place indels (dashes) at
positions 2, 5, and 6 in the new species.

4b) If the result found in step 3 is not accurate enough (i.e., differs by more than one mis-

match) then we scan the alignment again. Using the Smith-Waterman algorithm, we score all

species in the pinning subtree for this interval (with all indels removed) for a similarity compar-

ison with the new incoming sequence. We then choose the alignment sequence with the highest
score to line up the new incoming sequence. As in step 3a, we insert indels in the new sequence
to make it match up with the chosen alignment sequence. The Smith-Waterman algorithm au-

tomatically produces a correspondence between the highest-scoring alignment species' sequence
and the new species' sequence, so indel insertion will follow the correspondence produced. Indels
are inserted in the new species in this fashion:

(1) If the correspondence produced shows one or more insertions in the new species relative

to the closest matching species in the alignment, then we have a situation where inserting
indels in the new species according to the correspondence produced by the Smith-Waterman

algorithm will result in the new species having a number of bases + indels in the structural unit

that is greater than the number of alignment positions in that structural unit. Hence all species
already in the alignment would have to be modified by also inserting one or more columns of

indels in order to align with the new species. That is, the size (length) of the alignment would
have to be increased in this structural unit. Note that such a situation occurs when we have

one or more noncorresponding bases (bases not included in the correspondence pairs) in the

new species. We can handle this situation in various ways. Here are two:
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If we do not wish to throw all the following structural units out of sync with the alignment
(when ali the aligned units are concatenated together at the end), then in scch a situation we

can simply center the new species in the middle of the structural unit by paddiag it with indels

on both sides. We also output a message in the commentary saying that simple centering was
used for this unit.

Alternatively, we can insert indels (dashes) in the new species according to the Smith-

Waterman correspondence, regardless of the effect on the total alignment length. We also

signal that such an occurrence has taken place by surrounding the entire base and indel group
with a pair of parentheses. Currently this method is used. Code for the first method has been
written but is not employed at present.

(2) If the correspondence produced does not show any such insertions, but rather shows only

deletions or substitutions (i.e., the only noncorresponding hazes -- which represent deletions

relative to the best match in the alignment -- are found in the matching alignment species, not

the new species), then we proceed as follows:

First, we insert an indel in the new species wherever a noncorresponding base in the matching

alignment sequence occurs (a deletion in the new species relative to the matching species). After
this is done we have the same number of characters (bases + indels) in the new species as there
are bases in the matching species.

Next, we insert an indel in the new species wherever an indel occurs in the matching se-
quence, with the matching sequence being used now consisting of its bases and its indels, as it

originally looked in the alignment. Note that this is a trivial task, since we simply count up the
number the bases in the match which come before an indel and then insert an corresponding

indel at the location falling after that number of characters in the new species.

Ob,,iously we have a better chance of placing the indels correctly in the new species if we

can follow this insertion method for step 4b rather than the first discussed.

We try steps 2, 3, and 4a before trying step 4b simply to avoid performing the Smith-

Waterman algorithm if possible. (The algorithm is time-consuming, and there is no point in
using it if we can avoid doing so without loss of accuracy.)

6 Results

The new alignment insertion tool was tested in two ways: using species already in the 16S

rRNA alignment, and using species not present in the alignment (but for which separate aligned
versions did exist, so the results could be scored). Results are given for these tests in Sections

6.1 and 6.2, respectively. In both cases our insertion tool program was run under Quintus
Prolog version 2.5.1 on a Sun workstation working under the Unix operating system.

The output of the alignment insertion runs was graded on the number of bases correctly

placed, where the definition of a base being "correctly placed" is that the correct base type

(A,C,G,U,N) shows up in the correct alignment column. A detailed discussion of the scoring
scheme is given in Appendix 7.
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Table 2: Results for alignment insertion runs on species already in the 16S alignment

Number of Specios Percentage of Range
Lying in Range Total Species (percentage of bases correctly

placed by the tool in the
aligned sequence)

12 9.52' IO0.OOZ
35 27.78' 99.5 - 99.99_
36 28.57' 99 0 99 49_
18 14.29' 98 5 98 99_
12 9.52 98 0 98 49_
7 5.56 97 0 97 99_
5 3.97 96 0 96 99_
1 0.79 95 0 95 99Z
0 0.00 < 95.0Z

6.1 Insertion of Species Already in the Alignment

Ideally, if our tool is given _he base sequence of a species already in the alignment (and hence
whose influence is reflected in the grammar we use), the aligned version that the tool produces

should agree 100% with the aligned version of the species present in the alignment.

The actual results were very good and fell only a bit below that standard. Using ali species

in the alignment that contained a maximum of 20 consecutive unknown bases (a total of 126
species), we obtained the results shown in Table 2.

Almost ten percent of the species had perfect insertions, while 65.9% of the species had

insertions that placed correctly in the aligned output 99 bases (or more) out of every 100. Of
the species, 95.2% achieved an insertion accuracy of 97% or higher. The lowest scoring species
came in with 95.9% of its bases placed correctly. The 125 other species scored 96.2% or higher
in correct base placement.

I should note here that the scores of 28 of these species have been artificially lowered. When

examining the run results, I noticed that ali of these species were placing bases incorrectly in the
b1_8 unit at the start of the molecule. All 28 had the correct bases slotted within the unit, but

one or more of the bases were incorrectly positioned after the indels were added. This situatio,l

was unusual and aroused my suspicion. Checking with Dr. Olsen at Urbana, I discovered that

the workers there do not start to "lay" in the bases until the next unit (b9_13). Unit b1_8 is
considered unimportant and typically contains a fair number of unknown bases or sequencing

errors, so they do not try to align the bases that fall within it. Hence our program was trying

to align the bases in b1_8 against an alignment that did not exist for that unit. This subtracted
a base or two from the total number of correctly aligned bases in some of the 28 species, and

in others it subtracted substantially more from the count.

A complete listing of the output of the insertion run for a typical species (Arb. globif) is

given in Appendix 4. That is what the user of the our tool currently receives as output. An
examination of Appendix 4 shows that the output is broken into three sections.
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The first section displays those structural units in which one or more bases were misplaced.
This first section is displayed only for sequences that are either already present in the alignment
or, as in the case of the Urbana private sequences I use in Section 6.2, where special coding

arrangements have been made to access aligned versions lying outside the alignment. (Obviously
we cannot state which bases were misplaced by our tool if we have do not have an already aligned

version to check the output against. Hence this section is skipped when a completely new species
is being inserted.)

The second section is a listing of complete aligned sequence for the new species, broken

down into 60 characters per line. Under each line for the aligned output from our tool three
other lines are also displayed, for a total of four associated lines of data. The second line of this

group (immediately under the tool output) is what is called the insertion marker line. This line
is empty (blank) except where our tool has added an extra column in its output relative to the

alignment. We mark such a column with a dash on this line. (More precisely, what we do is
mark a column falling immediately after the structural unit or subinterval of the unit in which

the column insertion was made. This procedure is done because, as stated in Appendix 7, the
information currently returned by the tool localizes the extra column(s) to a unit or subinterval
of the unit, but does not pinpoint the location within the unit or subinterval.) In the sample

run for Arb. globif, the aligned output is 1,893 characters long. Since the current alignment
length is 1,892 columns, one column position must have been added. Looking at the second

section in Appendix 4, one can see the dash indicating this new column in column position 1253.
The third line contains the aligned version of the Arb. globifsequence that already existed in

the alignment. (For a new species that does not already have an entry in the alignment, this

"_lird line is removed, so a total of three associated lines would be displayed, not four.) The

fourth line is the aligned version of the E. coli sequence (our standard reference sequence) that
is already present in the 16S alignment. It is displayed for easy comparison.

The third and final section contains one Prolog clause. The clause name is alignment_row/3
and it has three arguments. The first argument contains the name of the molecule we are

dealing with (in this case, 16S). The second argument contains the name of the species (Arb.

globif). The third argument contains the complete aligned string outputted by our tool. This
third section is used when we wish to bring up the output into a text editor. The uninterrupted

aligned string in the third argument of the Prolog clause is much easier to handle than the

aligned string spread over 32 lines in the second section. Also, the output string in the third

argument (unlike the output string in the second section) contains the parentheses and brackets
that the parser inserted to mark off any regions where columns were added. (These parentheses

and brackets flag such regions as anomalies for the biologists to look at. For more information

on what symbols are used where, see Appendix 6, where the symbols are catalogued.) Looking

at the third argument of the alignment_row/3 clause in Appendix 4, one can see one pair of
parentheses in the string. These parentheses surround the characters placed in unit b1025_1028,

where, as one can see by referring back to the first and second sections, one column has been

added relative to the alignment.
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Table 3: Results for alignment insertion runs on new species

Number of Species Percentage of Range
Lying in Range Total Species (percentage of bases correctly

placed by the tool in the
aligned sequence)

2 11.11 1oo.oox
4 22 99.5- 99.99
2 11 11_ 99.0 99 49_
3 16 67_ 98.5 98 99_
4 22 22_ 98.0 98 49_
0 000u 97.0 97 99_
2 11 11_ 96.0 96 99_

0 0 < 95. OX

6.2 Insertion of New Species

Our insertion tool was also tested on a private set of 16S rRNA sequences from 18 species held
by Woese's Urbana group. These sequences were not in the alignment at the time of testing, and
hence the grammar extracted from the alignment did not reflect the contents of these species.
However, an aligned version o" _.he 16S sequence for each species did exist, thus allowing us to
check the tool's aligned output against the expert human judgment of the Urbana biologists.
The set contained a mixture of species; some were related quite closely to species already in
the alignment, while several others appeared to lie quite distant from anything in the current
alignment. This was a pseudo-random test in that we did not ask for any species in particular;
we simply were given what the Urbana group had on hand at that moment.

The results were excellent and are shown in Table 3. Over eleven percent of the species
were inserted perfectly, while 44.4% came in at an accuracy of 99% or higher and 83.3% scored
at 98% or better in correct base placement. All but one species (that is, 94.4% of all species)
scored at 96.2% or higher. Within the random error range implicit in the use of a relatively
small number of species in this run, the results are remarkably similar to the run in Section

6.1 where we performed our tests on species from the alignment (and thus where the species
being inserted were represented in the grammar) and 95.2% of the species scored at 97.0% or
higher. The results here were also quite robust in regard to large sequences of consecutive
unknown bases confusing the parser. To make the test as tough as possible, I allowed sequences
containing up to 75 consecutive unknowns. Fifteen of the sequences tried had strings of 50
unknowns or more.

The worst-scoring species came in at 95.5%. Given its iow score and the relatively low

number of pins generated for it, I guessed that this was a rather unusual species compared to
the current contents of the 16S alignment. Dr. 01sen later confirmed that guess, calling the
sequence "very strange". The parse of this particular species was also hurt somewhat by a

string of over 60 consecutive unknown bases in a variable region (where such factors can be

quite detrimental).
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There were a total of eight localized failures spread over 3 of the 18 species tested. Three

moderate-sized failures occurred in the worst-scoring species described in the preceding para-

graph. One small failure occurred in a species coming in at 96.2% accuracy. The remaining

four failures (two fairly large) all occurred in one species, which still managed to come in at a
score of 98.0%.

Interestingly, if one compares Tables 2 and 3, one sees that the percentage of bases accurately
positioned by the insertion tool for both the species already in the alignment and the species not

in the alignment are quite similar. Thus it appears that our insertion tool is working as well for

species outside the alignment as for those species already in the alignment and hence represented

in the grammar. I conclude that the grammar (at least when combined with the pinning
technique) is not "brittle", that is, is not so specific to the contents of the alignment (upon

which it was derived) that it fails on other species. The localized parse failures in three of the
private species do not appear large enough or frequent enough to affect this overall conclusion.

The current alignment cot.tents therefore appear to be a fairly representative sampling of the
universe of possibilities (at least fc_ the outside sequences tried so far).

The time for a complete insertion run (from program start to program end with output
automatically stored in a file) was typically less than 10 minutes on a Sun workstation. Only

4 species of the 18 tried exceeded that limit, and only 3 did so substantially.. As one might
expect, those 3 species were the ones that contained localized parse failures, and hence did the

most amount of backtracking in the parse. The worst species spent slightly over 100 minutes

in the actual parse and another 18 minutes doing the indel insertion. The great majority of
the species spent 2 minutes or less in the parse and another 2 minutes or less in indel insertion.

The time spent in the pinning component was only a few minutes for all 18 species; it never
exceeded 5 minutes.

Since these species are still private data, I cannot give an output listing that shows a 5111
sequence. However, I have put in Appendix 5 partial outputs for three sample insertion runs.
Each of these partie! outputs contains the first of the three sections of the total run output,

and thus shows which structural units and bases were in error for the species.

6.3 Types of Mistakes Seen and Their Causes

The alignea sequence output from our program can differ from the preexisting human-aligned
version in two ways:

a) A base can be assigned to the wrong structural unit.

b) A base can be assigned to the correct structural unit, but misarranged inside it when the

indels are added to position the bases.

The place where a mistake of type (a) most often occurs is at the boundary between the

cap of a stem-loop and the associated lhs and rhs. A base or two from the sides are moved
incorrectly into the cap, or vice versa. I have provided below an example from the output of

one of the private species in Section 6.2. The entire stem-loop covers b829_857. The lhs is unit

b829_8_0, the cap is b8_1_845, and the rhs is b8_6_857. (For help in visualizing, refer back to
the secondary structure diagram in Figure 2.) Two Cs have been incorrectly shifted from the
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cap into the sides by our program.

struc_unit(b829_840): not ok
new version: GAUGUUUGGUGCC-

aligned private seq version: GAUGUUUGGUGC--
# of bases correctly placed: 12

struc_unit(b841_845): not ok
new version : --UAG....

aligned private seq version: -CUAGC---
# of bases correctly placed: 3

struc_unit(b846_857): not ok
new version: -CGUACUGAGUGUC

aligned private seq version: --GUACUGAGUGUC
# of bases correctly placed: 12

There does not appear to be any particular location where an error of type (b) is most likely.
(One could say that such errors occur most often in the most variable regions of the molecule,
such b63_104, b179_219, and b1435_1466, but that is only common sense. All errors occur most

often in the variable regions where pins are hardest to find and the grammar rules are weakest.)

I believe that the reasons for disagreements between our output and the version already
aligned can be broken down into five categories:

(a) The parser is not making full use of the information available in the alignment. For
example, the loop_unit concept was not employed for the b829_857 stem-loop shown above.

(b) Humans are basing some of their judgments on information not contained in either the

alignment or the associated phylogenetic tree. Perhaps they have performed some test in their
lab, looked at some X-ray crystallographic data, or whatever, and that has influenced the base
placement. (I believe that this situation played a very small role in the mistakes seen in our

program's output for the 16S alignment, but it might be a larger factor when working with
other alignments.)

(c) Essentially arbitrary (or, at least, hard-to-explain) decisions are being made by the
humans in base placement. The people at Urbana have told us that a very small number of

base placements in the 16S alignment do indeed fall into this category. There simply was not
enough data to make an incontrovertible placement. Members of the Urbana team themselves

disagree on where such bases should be placed. Obviously, any computerized insertion program
is going to have trouble in such situations. I believe that some of our mistakes in the output for

the 16S runs are due to this residual disagreement limit where even human experts disagree.

(d) Mistakes exist in the alignment. Mistakes do occur; maintaining an alignment is a big
job, and no human is infallible. In fact, we soon shall be converting over to a new version of the

Urbana alignment (and its associated phylogenetic tree) in which several such errors have been
corrected by the Urbana team. This should have a beneficial result on our insertion outcomes.

(Note that one of the auxiliary uses of an alignment insertion tool like ours would be to run

it on all the species already in an alignment. The disagreements could then be checked to see

whether the problems lie in the version of the sequence in the alignment rather than in tlm tool

output. In such a way our tool could help maintaiD a "clean" alignment.)

(e) Localized parse failures negate the use of the information stored in the grammar. There
may always be the possibility of one or more localized parse failures in a new species where the
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species does not obey even the weakest grammar rule extracted from the alignment. The 16S

alignment is already a healthy sampling of the possibilities, but it by no means covers everything
yet. (And maybe it never will. There may or may not be some finite limit on the number of

biologically realistic patterns that can be .:sed in this molecule.) Indeed, localized parse failures

occurred in 3 of the 18 Urbana private species, as pointed out in Section 6.2. When such failures
happen, the only guidance we have inside the region of failure is whatever pins have been found

in that region. That may not be good enough to come up with a completely correct alignment
in that region.

7 Discussion

T1, accuracy currently obtained by our tool is certainly good enough to aid biologists in

maintaining an alignment. When a new species aligned via the insertion tool is now displayed

on-screen for viewing, its alignment will be close enough that the remaining errors will be far
easier to detect and handle. And, of course, all the indel insertion, all the hackwork, necessary

to get to this point no longer has to be done by humans. The tool can be used on any Sun

workstation with a fair-sized RAM memory (say 20 megabytes) running under Unix. Therefore,
at this point, even without any further development, I would call the the insertion tool project
a success.

To summarize, the novel features of this alignment insertion tool are as follows:

(a) A pinning technique that yields pins of almost 100% certainty. The reason we can make

such extensive use of pins in the parser program is that we can trust them to be accurate.

(b) A grammar to utilize secondary structure information. In those variable regions where

pins (or any sort of correspondence between species in terms of primary sequence) are difficult

to find, the use of structural (helix) information is vital. The grammar/parser approach is one
excellent way of organizing such information. Note that the pinning program makes absolutely
no use of secondary structure; that is entirely the province of the parser.

And so the two programs, pinning and parser, work together. The pins allow the parser to
limit incorrect parses to small regions and start anew at the next pin after the area of failure.
The parser complements the pins in the variable regions where pins are extremely difficult to
find.

Although, as I stated in the last section, the results are quite good, there are still improve-

ments I wish to make. The addition of a loop.unit for b8Pg_857 might improve the insertion
in several species; other minor changes like this are part of the natural "tuning up" process

that we shall go through as the tool is put into use and we get feedback from more runs. We

may also find more heuristic rules that we can incorporate in the grammar in the same manner
as the tetra-loop cap composition motif heuristic described earlier. A heuristic such as that

may or may not auply to other rRNA molecules. However, even if it cannot be transferred

over it shows that there is always the possibility that the curator of a database for a particular
molecule can uncover such rules and thus improve alignment insertion accuracy.
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In the future we might also include in the loop_unit construct calculations based on Zuker's

secondary structure prediction algorithm, if that turns out to be useful. (Zuker's algorithm is

one of a class of dynamic programming algorithms that use a global minimum energy search

method to predict secondary structure in RNA sequences. Briefly, the algorithm derives the
best structure for a given part of tile molecule from the best structures of the smaller sequ(,n('_,s

embedded within it, the "best" here referring to that with the minimum free energy. More

information on this subject can be found in references [55, 56, 57].)

The grammar/parser concept is a neat organizational principle that can easily incorporate

new tests and constraints for a given type of structural unit, a linear group of structural units

that follow one another, or any defined collection of units from any place in the molecule.

As I mentioned earlier, the subtree of species returned by the pinning component of our tool

provides the end user some guidance on where the new species falls in the phylogenetic tree. It
should be possible to supplement this information by modifying the indel insertion section of
the parser. It is extremely unlikely that one alignment species would be found as the best match

to the new species across all the structural units. However, if we store the names of the species

that serve as the best matches for all the units, it is quite possible that a few species will serve
as the best matches in several structural units and thus show up quite frequently. The program

could be changed so that a ranking of all species that were used (say, five or more times as a
best match) would be included in the tool's output. Presumably the top-ranking species would

be the ones lying closest to where we should insert the new species in the phylogenetic tree,
and hence such a ranking would be useful to biologists.

Steve Smith, formerly at Urbana and now working in Walter Gilbert's lab at Harvard, has
created a software environment for sequence analysis that has built-in "hooks" to which outside

tools can be attached. I would like to attach our alignment insertion code as such a tool, with

a form of output that can be fed directly into Smith's customized text editor. Doing this,
we could bring up on-screen the proposed aligned version of the new species in a color-coded

fashion. The bases that were pinned could be one color, the ordinary unpinned bases another
color, and the suspected problem regions yet another.

We also hope to extend our work to other molecules, the 23S rRNA for a start. With

automated grammar generation, it might be possible to set up operation for a new molecule in

a matter of a few days. Thus the additional goal mentioned in Section 1._ of transferring or
duplicating at least a portion of the skill of the 16S rRNA human experts to an alignment for
another molecule looks to be within reach.

In conclusion, the grammar/parser approach promises to be useful for any molecule where

(a) secondary structure in alignment construction is important and (b) at least a minimal
alignment and phylogenetic tree already exist, to provide the necessary starting point.
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Appendix 1: Smith-Waterman Matrices

Smith-Waterman matrices:

/*G A T/U C R Y M K S W H B V D N */
similarity_matrix(me(

me( 18,-18,-18,-18, 0,-18,-18, O, 0,-18,-18, -6, -6, -6, -9), X G

me(-18, 18,-18,-18, 0,-18, 0,-18,-18, O, -6,-18, -6, -6, -9), X A
me(-18,-18, 18,-18,-18, 0,-18, 0,-18, O, -6, -6,-18, -6, -9), Z T/U

me(-18,-18,-18, 18,-18, O, 0,-18, 0,-18, -6, -6, -6,-18, -9), Z C
me( O, 0,-18,-18, 0,-18, -9, -9, -9, -9,-12,-12, -6, -6, -9), Z R

me(-18,-18, O, 0,-18, O, -9, -9, -9, -9, -6, -6,-12,-12, -9), Z Y

me(-18, 0,-18, O, -9, -9, 0,-18, -9, -9, -6,-12, -6,-12, -9), X N
me( 0,-18, 0,-18, -9, -9,-18, O, -9, -9,-12, -6,-12, -6, -9), Z K

me( 0,-18,-18, O, -9, -9, -9, -9, 0,-18,-12, -6, -6,-12, -9), X S

me(-18, O, 0,-18, -9, -9, -9, -9,-18, O, -6,-12,-12, -6, -9), Z W

me(-18, -6, -6, -6,-12, -6, -6,-12,-12, -6, -6,-10,-10,-10, -9), Z H

me( -6,-18, -6, -6,-12, -6,-12, -6, -6,-12,-10, -6,-10,-10, -9), Z B

me( -6, -6,-18, -6, -6,-12, -6,-12, -6,-12,-10,-10, -6,-10, -9), X V
me( -6, -6, -6,-18, -6,-12,-12, -6,-12, -6,-10,-10,-10, -6, -9), _ D

me( -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9) _ N
)).

X G A T/U C R Y M K S W H B V D N
helix_match_matrix(me(

me(-18, 3, 13, 18, -8, 15, 10, -3, O, 8, 11, 4, 1, -1, 4), X G

me( 3,-18, 18,-11, -8, 3,-15, 10, -4, O, -4, 3, -9, 1, -2), X A

me( 13, 18,-11,-18, 15,-15, O, 1, -3, 3, -4, -6, 4, 6, 0), _ T/U

me( 18,-11,-18,-18, 3,-18,-15, O, 0,-15,-16, -6, -4, -4, -8), X C
me( -8, -8, 15, 3, -8, 9, -2, 4, -2, 4, 3, 3, -4, O, 1), _ R

me( 15, 3,-15,-18, 9,-17, -8, O, -2, -6,-10, -6, O, 1, -4), X Y
me( 10,-15, 0,-15, -2, -8,-15, 5, -2, -8,-10, -2, -6, -2, -5), _ M

me( -3, 10, 1, O, 4, O, 5, -1, -2, 5, 3, -1, 2, 3, 2), X K

me( O, -4, -3, O, -2, -2, -2, -2, O, -4, -3, -1, -2, -3, -2), _ S

me( 8, O, 3,-15, 4, -6, -8, 5, -4, 1, -4, -1, -3, 3, -1), X W

me( 11, -4, -4,-16, 3,-10,-10, 3, -3, -4, -8, -3, -3, 1, -3), X H

me( 4, 3, -6, -6, 3, -6, -2, -1, -1, -1, -3, -3, O, O, -1), X B
me( 1, -9, 4, -4, -4, O, -6, 2, -2, -3, -3, O, -4, -1, -2), X V

me( -1, 1, 6, -4, O, 1, -2, 3, -3, 3, 1, O, -1, 2, 0), X D
me( 4, -2, O, -8, 1, -4, -5, 2, -2, -1, -3, -1, -2, O, -2) X N

)).
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Appendix 2: Urbana Alignment Annotation

The annotation to the Urbana alignment provided by Dr. Gary Olsen defining the elemcntary
structural units follows.

LOCUS R.O.pair 1892 BP
DEFINITION Pairing for Overbeek
ORIGIN

1 _ _<<<<<___[C[_>>>>>_<
61 <<<_[[[[[[ _<<<<<<<<<....... <<< _lEE__<<<__{{{{{{{{{ {{{{{{{{{{

121 {{{{{{{{{{ {{{- ....... }}}}}}}}} }}}}}}}}}} }}}}}}}}}} }}}}777___
181 ...... <<< < <<<<<< .... [[ .... (((( (((_<<<<<< <__[[[[[[=
241 ===]]]]]]_ __>>>>>>> ...... <<<<< <<<<<<<<<< ======>>>> >5>>75>>>7
3Ol ......<<<<<<__[[[[[[[===========13]]]I]777577___)))))))___11
361 >>>7>>>_<<<__{__['CE.....(((((('((=======))))))))I33.....}>7
421 >__[CEE((((====)))) .... 1111777_<<<<<<<========>775557_<<<-<=
481 =====7>77___333_>'7> ....... {_C C[___(_((( (======)))))_333}_>7
541 5>7777>___<<-<<. [CCC[=====111]] ..... (((( ..... ))))7757_<
6Ol <__[[[[[__ _{. ( (((((((( ....... ))))) ))))) }.... 3333
661 111___>7___<<<<<<, EC[[[[= =================333111>7>7>>_
721 111111>>>> <<<....... [[E[___(((_<<<<<<<<_CE((((((((
781 .......{{{ _ZZZL___}}}}}......)))))))__33777>7777___<<<<<<<<
841 ___[CC['CC C((((((((( ..... (((__ _{{{====== }}'} ....... ))))))))))
901 ))....(....{{====}})3333333__577777777___)))___3333....<<<<<
961 << [CEC-......... 3333.... >>>>>>>__ (( (((((__[[[

lO21 [[[[[[[[[[ [ ......... 1111111]]I ]]]]___[E= ===33..... ))))))_>>>
lO81 ((((:====))))__ ]]]__ <<_[[[-((( (((--( ....
1141 ___[[[['[[ __<<<<<<<< [[ ( ( ........ ) ) (((((((_
12Ol ..... <<_[[ [[[[C .... ( ((((((( ..... )))))))) )__((((((( (........ )
1261 )))))))I]] ]]]__5>___ <<<<__[ ...... (((_{{{ ....... }}} _))) ..... ]

1321 __7>>7___< <'ECEL_{{ _(({{{ .... <<<<<<[[E: ===]]]__C[ C[_.... "]3
1381 ]]__>>>>>> ..... <<<<_ _[[[[[[[ ((__{{ {<<<<< ......... >>>>>

1441 "}}})) ..... ]]]]]]] ..... [[[[[ ....... ]]]]" "] >7>7 ....
15oi __}}}___)) .... }}3]'] ]>> .... )') )'))))___] ]'>>>>>>>> ..... <<<<<
1561 << [ [[___(( .... {{{===::} }} ...... )) .... ]]3 .....
1621 _>7>>777 < [ [[[[[[==== ==:=]33]]] ] .... >..... ]33313___
1681 _<<<<<<<< ........ >>> >>>>> .)))) )))]]]'>>_
1741 _((((((((( (((((((((( ((( .... <<< <<<<<'['[[ [___{{{ .......... }}}
18o1 _I]I]>5>>> >>___))))) )))))))))) )))))))__ <<<<<<<<
1861 <====>>>>> >>>>

The equal sign ("="), the triangular "hat", and the underscore ("_") symbols indicate that

an alignment column falls into what is called a gap unit in the grammar. The "<>', "( )", "{

}", and "[ ]" symbol pairs indicate a pair of alignment columns between which base bonds form

(and thus which fall within a lhs and a rhs of a helix).
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Appendix 3: Base Invariancy Coding Symbols

The base invariancy coding symbols used in the grammar are as follows (note that both upper-

case and lower-case symbols are permitted for the bases):

gn --> ''g''.

gn --> ''n''.

gn --> ''G''.

gn --> ''N''.

an --> ,Ca,,.

an --> rcn''.

an --> tCA''.

an --> eCN''.

cn --> CCn''.

Cn --> ccc''.

cn --> CEN''.

un --> CCu3_.

un --> CCn_.

un --> ''U''.

un --> ceN''.

rn --> ''g''.
rn --> tca''.

rn --> 'Cn''.

rn --> COG''.

rn --> tCA''.

rn --> eCN''.

rn --> ''r '_.

yn --> ''c''.

yn --> ''u ''.

yn --> 'Cn''.

yn --> ''C''.

yn --> ''U''.

yn --> ''N''.

yn --> ''y''.

yn --> coy,,.

mn --> cCa''.

59



mn --> ccc*_.

--> CCn2, "

mn --> 'CA''.

mn --> 'tC''.

mn --> ''N''.

mn --> "m,,.

mn --> 'CM,,.

kn --> ''g,,.
kn --> COo,,.

kn --> ecn,,.

kn --> COG''.

kn --> c'u,,.

kn --> C'N,,.

kn --> ''k''.

kn --> ''K''.

sn --> ''g''.
sn --> 'tc''.

sn --> 'Cn,,.

sn --> C'G''.

sn --> 'tC''.

sn --> eCN''.

sn --> 'Cs''.

sn --> o'S''.

wn --> ''a''.

wn --> ''U''.

wn --> ''n''.

wn --> 'CA''.

wn --> ccU,,.

wn --> eCN''.

wn --> cow _.

wn --> ''W''.

g is ASCII 103

a is ASCII 97

u is ASCII 117

c is ASCII 99

hn --> [OneBase], { integer(OneBase), OneBase =\= 103}. _.not g
bn --> [OneBase], { integer(OneBase), OneBase =\= 97}. Y,not a
vn --> [OneBase], { integer(OneBase), OneBase =\= 117}. _,not u

dn --> [OneBase], { integer(OneBase), OneBase =\= 99}. Y,not c

6O



Appendix 4: Insertion Run Results for Arb. globif

The complete output listing for the insertion run for species Arb.globif follows below:

XXXXX%X%%XX%X%%%X%XXXXXXXX%XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Species grb.globif already exists in the alignment.
Commentary on the correctness of the insertion, broken down by
structural unit, re already present version follows.
(Only structural units ,here the parse differs from the alignment
version are displayed.)

struc_unit(b184_186): not ok
new version: ACUCC--UC---AUC
alignment version: ACUCC--U-C--AUC
# of bases correctly placed: 9

struc_unit(b447_454): not ok
new version: GAAG--AAG--
alignment verszon: GAAG--AAGC-
# of bases correctly placed: 7

struc_unit(b455_462): not ok
new version: CG
alignment verslon:
# of bases correctly placed: 0

struc_unit(b463_469): not ok
new version: ---AAA-
alignment verszon: --GAAA-
# of bases correctly placed: 3

struc_unit(b470_477): not ok
new version: G
alignment verslon:
# of bases correctly placed: 0

struc_unit(b478_487): not ok
new version: ---UGACGGUA
alignment verslon: --GUGACGGUA
# of bases correctly placed: 8

struc_unit(b829_840): not ok
new version: GGUGUGGGGGACAU
aliEnment verszon: GGUGUGGGGGAC--
# of bases correctly placed: 12

struc_unit(b841_845): not ok
new version: --U-CC---
alignment version: AUUCCAC--
# of bases correctly placed: 2

struc_unit(b846_857): not ok
new version: ACGUUUUCCGCGCC

alignment version: --GUUUUCCGCGCC
# of bases correctly placed: 12

struc_unit(b1024): not ok
new version: --
alignment version: U-
# of bases correctly placed: 0

struc_unit(b1025_1028): not ok
new version" (U ..... CUC)
new vet stripped : U..... CUC
alignment version: CU ....CC
new vet and ali with asterisks added to align with each other:

new ver:U ..... CUC
ali:CU .... C*C

# of bases correctly placed: 2
struc_unit(b1029_1032): not ok
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new version: --CUUUU-
alignment version: --UUUU--

# of bases correctly placed: 3
struc_unit(b1136_1138): not ok

new version: --GUAA---
alignment version: --GUAAUG-

# of bases correctly placed: 4
struc_unit(b1139_1144): not ok

new version: ....UGGCGGG
aliEnment version: ...... GCGGG
# of bases correctly placed: 5

Number of correctly placed bases: 1516

Total number of bases in species Arb.globif: 1531

Percentage of bases correctly placed: 99.02

Number of structural units completely correct: 378

Total number of structural units: 392

Percentage of structural units correctly placed: 96.43

OJlOIgSllfllllOf IJOSOlllt|lOS_l|llOIOtSJ|ltl|SOIOSttOiS|jlSSli8

new species = Arb.globif (species is already in alignment)
New species line length: 1893

Four lines follow in this order: new species, insertion marker,
new species as already in alignment, E. coli

l/ ........................ UUUCAACGOAOAGUUUOAUCCUGOCUCAG
........................ AAAUUOAAOAGUUUOAUCAUGGCUCAO

61)

_I GAUGAACGCUGGCGGCG-UG-C-UUAACACAUGCAAGUCGAACG_AUG ....GAUGAACGCUGGCGGCG-UG-C-UUAACACAUGCAAGUCGAACG_AUG.............
(61) AUUGAACGCUGGCGGCA-GG-C-CUAACACAUGCAAGUCGAACG_GUAA_CAG

121i ..... AUCCGGUG--CUUG--CACCGGGG AUUAGUGGCGA-

121

121 ..... AUCCGGUG--CUUG--CACCGGGG AUUAGUGGCGA-
121 ...... GAAGAAG--CUUG--CUUCUUU G-CUG--ACGAGUGGCGG-

181 -ACGGGUGAGU---AAC-ACGUGAGUAA--CCUGC-CCUUGACUCUGGGAUAAGCCUGGG181

181 -ACGGGUGAGU---AAC-ACGUGAGUAA--CCUGC-CCUUGACUCUGGGAUAAGCCUGGG
181 -ACGGGUGAGU---AAU-GUCUGGGA-A--ACUGC-CUGAUGGAGGGGGAUAACUACUGG

241) AAACUGGGUCUAAUACCGGAU-AUGACUCC--UC---AUC_GCAU_GGU__G_G_GGGGU
241)
241) AAACUGGGUCUAAUACCGGAU-AUGACUCC--U-C__AUC_GCAU_GGU__G_G_GGGGU
241) AAACGGUAGCUAAUACCGCAU-AAC GUC-GCAA-GAC

l_I GGAAA-GC- -UUUUU---
GUG--GUGUUGG-AUGG
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3011 GGAAA-GC-- UUUUU -GUG-- GUIK_GG-AUGG301 -CAAA-GAGGGGGACC UUCG GGCCUCUUG-- CCAUCGG- AUGU

361 ) ACUCGCGGCCUAUCA-G-CUUG---UUGGUG-AGGUAAUGGCUCACCAAGGCGACGACGG
361)
361) ACUCGCGGCCUAUCA-G-CUUG---UUGGUG-AGGUAAUGGCUCACCAAGGCGACGACGG
361) GCCCAGAUGGGAUUA-G-CUAG---UAGGUG-GGGUAACGGCUCACCUAGGCGACGAUCC

421) GUAGCCGGCCUGAGAGGGU-GACCGGCCACACUGGGACUGAGACACGGCCCAGACUC-CU
421)
421) GUAGCCGGCCUGAGAGGGU-GACCGGCCACACUGGGACUGAGACACGGCCCAGACUC-CU
421) CUAGCUGGUCUGAGAGGAU-GACCAGCCACACUGGAACUGAGACACGGUCCAGACUC-CU

481) ACG--GGAGGCAGCA-G-UGGGGAAUAUUGCACAAU-GGGC-GAAA-GCCUGAUGCAGCG
481)
481) ACG--GGAGGCAGCA-G-UGGGGAAUA_JGCACAAU-GGGC-GAAA-GCCUGAUGCAGCG
481) ACG--GGAGGCAGCA-G-UGGGGAAUAUUGCACAAU-GGGC-GCAA-GCCUGAUGCAGCC

541) ACGCCGCG-UGA-GGGAUGACGGCC--UUCG-GGUUGUAAA CCUCUU
541)
541) ACGCCGCG-UGA-GGGAUGACGGCC--UUCG-GGUUGUAAA CCUCUU
541) AUGCCGCG-UGU-AUGAAGAAGGCC--UUCG-GGUUGUAAA GUACUU

601 UCAGUAGGGAAG--AAG--CG AAA G---UGACGGUACCU-
601
601 UCAGUAGGGAAG--AAGC GAAA GUGACGGUACCU-
601 UCAGCGGGGAGG--AA-GGGAGUAAAG-UUAAUAC-CUUUGC-UCA-UUGACGUUACCC-

661 G-CAG-AAGAAGCGCC-GGCUAACUACGUGCCAGCAGCCGCGGUAAUACGUAG-GGCGCA
661
661 G-CAG-AAGAAGCGCC-GGCUAACUACGUGCCAGCAGCCGCGGUAAUACGUAG-GGCGCA
661 G-CAG-AAGAAGCACC-GGCUAACUCCGUGCCAGCAGCCGCGGUAAUACGGAG-GGUGCA

721 ) AGCGUUAUCCGGAAUUAUUGGGCGUAAAGAGCUCGUAGGCGGUUU-GUCGCGUCUG-CCG
721)
721 ) AGCGUUAUCCGGAAUUAUUGGGCGUAAAGAGCUCGUAGGCGGUUU-GUCGCGUCUG-CCG
721 ) AGCGUUAAUCGGAAUUACUGGGCGUAAAGCGCACGCAGGCGGUUU-GUUAAGUCAG-AUG

781 ) UGAAAGUCCGGGGCUCAACUCCGGAUC-U r-:GGUGGGUACGGGCA-GACUAGAGUGAUGU
781_
78 I) UGAAAGUCCGGGGCUCAACUCCGGAUC-UGCGGUGGGUACGGGCA-GACUAGAGUGAUGU
781 ) UGAAAUCCCCGGGCUCAACCUGGGAAC-UGCAUCUGAUACUGGCA-AGCUUGAGUCUCGU

841) AGGGGAG-ACUGGAAUUCCU ..... GGUGUAGCGGUGAAAUG-CGCAGAUAUCAGGAGGA
841)
841) AGGGGAG-ACUGGAAUUCCU ..... GGUGUAGCGGUGAAAUG-CGCAGAUAUCAGGAGGA
841) AGAGGGG-GGUAGAAUUCCA ..... GGUGUAGCGGUGAAAUG-CGUAGAGAUCUGGAGGA

90!) ACACCGA--UGGCGAAGGCAGGUCUCUGGGCAUUAACUGACGCUGAGGAGCGAAAGCAUG
901)
901) ACACCGA--UGGCGAAGGCAGGUCUCUGGGCAUUAACUGACGCUGAGGAGCGAAAGCAUG
901) AUACCGG--UGGCGAAGGCGGCCCCCUGGACGAAGACUGACGCUCAGGUGCGAAAGCGUG

961) GG-GAGCGAACAGGAUUAGAUACCCUGGUAGUCCAUGCCGUAAACGUUGGGCA-CUAGGU
961)
961) GG-GAGCGAACAGGAUUAGAUACCCUGGUAGUCCAUGCCGUAAACGUUGGGCA-CUAGGU
961 ) GG-GAGCAAACAGGAUUAGAUACCCUGGUAGUCCACGCCGUAAACGAUGUCGA-CUUGGA
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1021) GUGGGGGACAU--U-CC---ACGUUUUCCGCGCCGUAGCUAACGCAUUAAGUGCCCCGCC
1021)
1021) GUGGGGGAC--AUUCCAC .... GUUUUCCGCGCCGUAGCUAACGCAUUAAGUGCCCCGCC
1021) GGUUGUGCC---CUUGA ..... GGCGUGGCUUCCGGAGCUAACGCGUUAAGUCGACCGCC

1081 UGGGGAGUACGGCC-GCAAGGCUAAAACUC-AAA-GGAAUUG-ACGGGGGCCC--GC-A-
1081
1081 UGGGGAGUACGGCC-GCAAGGCUAAAACUC-AAA-GGAAUUG-ACGGGGGCCC--GC-A-
1081 UGGGGAGUACGGCC-GCAAGGUUAAAACUC-AAA-UGAAUUG-ACGGGGGCCC--GC-A-

1141 -CAAGCG-GCGGAGCAUGCGGA-UUAAUUCGAUGCAACGCGAAGAACCUUA-CCAAGGCU
1141
1141 -CAAGCG-GCGGAGCAUGCGGA-UUAAUUCGAUGCAACGCGAAGAACCUUA-CCAAGGCU
1141 -CAAGCG-GUGGAGCAUGUGGU-UUAAUUCGAUGCAACGCGAAGAACCUUA-CCUGGUCU

1201 ) UGACAUGGA-CCGG---ACCGC-CGCA-GAAAUGU-G-GUU--U ..... CUC--CUUUU-
1201)
1201) UGACAUGGA-CCGG---ACCGC-CGCA-GAAAUGU-G-GUUU-CU .... CC --UUUU--
1201) UGACAUC-C-ACGG---AAGUU-UUCA-GAGAUGA-G-AAUG-UG ....CC --UUCG--

1261) GG....GG-CCGGU-UCA
1261)
1261 ) GG....GG-CCGGU-UCA---
1261) GG....AA-CCGUG-AGA .........................

1321) --CAGGUGGUGCAUGGUUGUCGUCAGCUCGUGUCGUGAGAUGUUGGGUUAAGUC
1321)
1321 ) CAGGUGGUGCAUGGUUGUCGUCAGCUCGUGUCGUGAGAUGUUGGGUUAAGUC
1321 ) CAGGUGCUGCAUGGCUGUCGUCAGCUCGUGUUGUGAAAUGUUGGGUUAAGUC

1381_ CCGCAACGAGCGCAACCCUCG-UUCCAUG---UUGCCAGCGC ....... GUAA1381)

1381) CCGCAACGAGCGCAACCCUCG-UUCCAUG---UUGCCAGCGC GUAAUG .....1381) CCGCAACGAGCGCAACCCUUA-UCCUUUG---UUGCCAGCGGU CCG

1441) UGGCGGG-GACUCAUGGGAGACUGCCGGGGU-CAA-CUCG--GAGG-A-AGGUGGGG-AC
1441)
14417 --GCGGG-GACUCAUGGGAGACUGCCGGGGU-CAA-CUCG--GAGG-A-AGGUGGGG-AC
1441) G-CCGGG-AACUCAAAGGAGACUGCCAGUGA-UAA-ACUG--GAGG-A-AGGUGGGG-AU

(1501 ) GACGUC--AAAUCAUCAUG- CCCCUUAUG-UC-UUGGGCX_JCACGCAUGCUACAAUGGCCO CO C--AAA  A    O-CCCC   O- C- OOO  ACOC  OC A AA O0OACO  --A O CA   OO-OCCC A O-AC- AOOOC A AC CO OC A AAO00 O
(1561) GGUA-C-AAAGGGU-UGC-GAUACUG-UGAGGUG CAGCUAAUCCCA-AA

1561)
1561) GGUA-C-AAAGGGU-UGC-GAUACUG-UGAGGUG GAGCUAAUCCCA-AA
1561) CAUA-C-AAAGAGA-AGC-GACCUCG-CGAGAGC .... AAGCGGACCUCA-UA

I162 I AAGCCGGUCUCAGUUCGGAUUGGGGUCUGCAACUCGACCCCAUGAAGUCGGAGUCGCUAG
162_
1621 AAGCCGGUCUCAGUUCGGAUUGGGGUCUGCAACUCGACCCCAUGAAGUCGGAGUCGCUAG

(1621) AAGUGCGUCGUAGUCCGGAUUGGAGUCUGCAACUCGACUCCAUGAAGUCGGAAUCGCUAG
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1681 ) UAAUCGCAGAUCAGCAACGCUGCGGUGAAUACGUUCCCGGGCCUUGUACACACCGCCCGU
1681)
1681 ) UAAUCGCAGAUCAGCAACGCUGCGGUGAAUACGUUCCCGGGCCUUGUACACACCGCCCGU
168 I) UAAUCGUGGAUCAG- AAUGCCACGGUGAAUACGUUCCCGGGCCUUGUACACACCGCCCGU

1741) CAAGUCACGAAAGUUGGUAACACCCGAAG-CCGG-UGG-CCUAA-CCC--C[WJGU---GG
1741)
1741) CAAGUCACGAAAGUUGGUAACACCCGAAG-CCGG-UGG-CCUAA-CCC--CUUGU---GG
1741) CACACCAUGGGAGUGGGUUGCAAAAGAAG-UAGG-UAG-CUUAA-CC ....UUCG .... G

1801) GAGGGAGCCGU-CGAAGGUGGGACUGGCGAUUGGGACUAAGUCGUAACAAGGUAGCCGUA
1801)
1801) GAGGGAGCCGU-CGAAGGUGGGACUGGCGAUUGGGACUAAGUCGUAACAAGGUAGCCGUA
1801) GAGGGCGCUUA-CCACUUUGUGAUUCAUGACUGGGGUGAAGUCGUAACAAGGUAACCGUA

1861) CCGGAAGGUGCGGCUGGAUCACCUCCUUUCU--
1861)
1861 ) CCGGAAGGUGCGGCUGGAUCACCUCCUUUCU--
1861 ) GGGGAACCUGCGGUUGGAUCACCUCCU_% ....

alignment_row('16S','Arb.globif','' ..... UUUC
AACGGAGAGUUUGAUCCUGGCUCAGGAUGAACGCUGGCGGCG-UG-C-UUAACACAUGCAAGUCGAACG-
AUG AUCCGGUG--CUUG--CACCGGGG .... AUUAGUG
GCGA--ACGGGUGAGU---AAC-ACGUGAGUAA--CCUGC-CCUUGACUCUGGGAUAAGCCUGGGAAACU
GGGUCUAAUACCGGAU-AUGACUCC--UC---AUC-GCAU-GGU--G-G-GGGGUGGAAA-GC .......
........ UU[K_ GUG--GUUUUGG-AUGGACUCGCGGCCUAUCA-G-CUUG---
UUGGUG-AGGUAAUGGCUCACCAAGGCGACGACGGGUAGCCGGCCUGAGAGGGU-GACCGGCCACACUGG
GACUGAGACACGGCCCAGACUC-CUACG--GGAGGCAGCA-G-UGGGGAAUAUUGCACAAU-GGGC-GAA
A-GCCUGAUGCAGCGACGCCGCG-UGA-GGGAUGACGGCC--UUCG-GGUUGUAAA C
CUCUUUCAGUAGGGAAG--AAG--CG AAA G---UGACGGUACCU-G-CAG
-AAGAAGCGCC-GGCUAACUACGUGCCAGCAGCCGCGGUAAUACGUAG-GGCGCAAGCGUUAUCCGGAAU
UAUUGGGCGUAAAGAGCUCGUAGGCGGUUU-GUCGCGUCUG-CCGUGAAAGUCCGGGGCUCAACUCCGGA
UC-UGCGGUGGGUACGGGCA-GACUAGAGUGAUGUAGGGGAG-ACUGGAAUUCCU ..... GGUGUAGCGG
UGAAAUG-CGCAGAUAUCAGGAGGAACACCGA--UGGCGAAGGCAGGUCUCUGGGCAUUAACUGACGCUG
AGGAGCGAAAGCAUGGG-GAGCGAACAGGAUUAGAUACCCUGGUAGUCCAUGCCGUAAACGUUGGGCA-C
UAGGUGUGGGGGACAU--U-CC---ACGUUUUCCGCGCCGUAGCUAACGCAUUAAGUGCCCCGCCUGGGG
AGUACGGCC-GCAAGGCUAAAACUC-AAA-GGAAUUG-ACGGGGGCCC--GC-A--CAAGCG-GCGGAGC
AUGCGGA-UUAAUUCGAUGCAACGCGAAGAACCUUA-CCAAGGCUUGACAUGGA-CCGG---ACCGC-CG
CA-GAAAUGU-G-GUU--(U ..... CUC)--CUUUU-GG .... GG-CCGGU-UCA
..... CAGGUGGUGCAUGGUUGUCGUCAGCUCGUGUCGUG
AGAUGUUGGGUUAAGUCCCGCAACGAGCGCAACCCUCG-UUCCAUG---UUGCCAGCGC ....... GUAA
....... UGGCGGG-GACUCAUGGGAGACUGCCGGGGU-CAA-CUCG--GAGG-A-AGGUGGGG-ACGAC
GUC--AAAUCAUCAUG-CCCCUUAUG-UC-UUGGGCUUCACGCAUGCUACAAUGGCCGGUA-C-AAAGGG
U-UGC-GAUACUG-UGAGGUG -GAGCUAAUCCCA-AAAAGCCGGUCUCAGUUCGGAUUGG
GGUCUGCAACUCGACCCCAUGAAGUCGGAGUCGCUAGUAAUCGCAGAUCAGCAACGCUGCGGUGAAUACG
UUCCCGGGCCUUGUACACACCGCCCGUCAAGUCACGAAAGUUGGUAACACCCGAAG-CCGG-UGG-CCUA
A-CCC--CUUGU---GGGAGGGAGCCGU-CGAAGGUGGGACUGGCGAUUGGGACUAAGUCGUAACAAGGU
AGCCGUACCGGAAGGUGCGGCUGGAUCACCUCCUUUCU--'').
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Appendix 5: Partial Insertion Run Results for Three New
Species

Three partial outputs from the alignment insertion runs on the Urbana private sequences follow:

Species <private seq> is an aligned urbana seq not in our current
alignment.
Commentary on the correctness of the insertion, broken down by
structural unit, re already present version follows.
(Only structural units where the parse differs from the alignment
version are displayed.)

struc_unit(b66_82): not ok
ne, version: ACG-GCAG-CAC GGAC

aligned private seq version: ACGG-CAG-CAC GGAC
# of bases correctly placed: 13

struc_unit(b83_86): not ok
new version: --UUC---

aligned private seq version: --UUCG--
# of bases correctly placed: 3

sZruc_unit(b87_103): not ok
new version: GUCU G-GUG--GCGAGU

aligned private seq version: -UCU G-GUG--GCGAGU
# of bases correctly placed: 13

Number of correctly placed bases: 1533

Total number of bases in species <private seq>: 1535

Percentage of bases correctly placed: 99.87

Number of structural units completely correct: 389

ToZal number of sZrucZural units: 392

Percentage of szructural units correctly placed: 99.23

Species <privaze seq> is an aligned urbana seq no_ in our curren_
alignmen_.
Commentary on the correctness of _he insertion, broken down by
structural uniZ, re already presenZ version follows.
(Only s_ructural units where _he parse differ$ from the aligned
version are displayed.)

sZruc_uni_(b66_82): not ok
new version : GCGCUG---AAG ..... GUUNGUA

aligned privaZe seq version: GCGCUG-A AGGUUNGUA
# of bases correctly placed: 13

szruc_uniZ(b87_103): noZ ok
new version: UACCGAC ...... UGG--AUGAGC

aligned private seq version: UACCGACUGGA .....U-GAGC
# of bases correctly placed: 11

struc_unit(b184_186): not ok
new version: AACUU--UA---AAC

aligned private seq version: AACUU--U-A--AAC
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# of bases correctly placed: 9
struc_unit(b191_193): not ok

new version: GUN---NN-AAGUU
aligned private seq version: GUN--NNA-AGUUU
# of bases correctly placed: 7

struc_unit(b194_197): not ok
new version: UGAAA-

aliEned private seq version: -GAAA-
# of bases correctly placed: 4

struc_unit(b455_462): not ok
new version: UGGUGAGAG

aligned private seq version: UGGUGAGA-
# of bases correctly placed: 8

struc_unit(b463_469): not ok
new version: -UGGAA-

aliEned private seq version: GUGGAAA
# of bases correctly placed: 5

struc_unit(b470_477): not ok
new version: AGCUNAU-NA

aligned private seq version: -GCUNAU-NA
# of bases correctly placed: 8

struc_unit(b841_845): not ok
new version: ---AUA---

v aliEned private seq version: --AUA ....
# of bases correctly placed: 0

struc_unit(b999_lO03): not ok
new version: C-UNGUG

aliEned private seq version: C-U_GU-
# of bases correctly placed: 5

struc_unit(blO04_1005): not ok
new version: --CU

aliEned private seq version: -GCU
# of bases correctly placed: 2

struc_unit(b1033_1036): not ok
new version: GG..... A

aligned private seq version: GG....AC
# of bases correctly placed: 2

strut.unit(bl037_1041): not ok
new version: CACGGG

aligned private seq version: -ACGGG
# of bases correctly placed: 5

Number of correctly placed bases: 1561

Total number of bases in species <private seq>: 1582

PercentaEe of bases correctly placed: 98.67

Number of structural units completely correct: 379

Total number of structural units: 392

Percentage of structural units correctly placed: 96.68

Species <private seq> is an &ligned urbana seq not in our current
alignment.

Commentary on the correctness of the insertion, broken down by
structural unit, re already present version follows.
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(Only structural units where the parse differs from the aligned
version are displayed.)

struc_unit(b66_82): not ok

new version: (GGG-GCAG-CANG -GGNAC)
new ver stripped : GGG-GCAG-CANG GGNAC

aligned private seq version: GGG-GCAG-CAN .............. GGGNAC

new ver and ali with asterisks added to align with each other:
new ver:GGG-GCAG-CANG ........ GGNAC

ali:GGG-GCAG-CAN- G_GGNAC
# of bases correctly placed: 15

struc_unit(b87_103): not ok

new version: (GUUCU- --A-GUG--GCGACC)
new vet stripped : GUUCU ................ A-GUG--GCGACC

aligned private seq version: GUUCUA ...... GUG--GCGACC
new ver and ali with asterisks added to align with each other:

new ver:GUUCU -A-GUG--GCGAC_
ali:GUUCUA ...... _GUG--GCGACC

# of bases correctly placed: 14
struc_unit(b191_193): not ok

new version: (NGU--ACUA-UUU)GU
new vet stripped : NGU--ACUA-UUUGU

aligned private seq version: NGU--ACUAUUUGU

new ver and ali with dashes added to align with each other:
new ver:NGU--ACUA-UUUGU

ali:NGU--ACUA_UUUGU
# of bases correctly placed: 12

struc_unit(b455_462): not ok

new version: (CUGCU-A---)
new ver stripped : CUGCU-A---

aligned private seq version: CUGCUA---

new vet and ali with asterisks added to align with each other:
new ver:CUGCU-A---

ali:CUGCU_A---

# of bases correctly placed: 6
struc_unit(b1006_1012): not ok

new version: (-GU-ACCGA)
new vet stripped : -GU-ACCGA

aligned private seq version: GUA-CCGA

new ver and ali with asterisks added to align with each other:
new ver:-GU-ACCGA

ali:_GUA-CCGA

# of bases correctly placed: 6
struc_unit(b1136_1138): not ok

new version: --GUUA---
aligned private seq version: --GUUAAG-
# of bases correctly placed: 4

struc_unit(bl139_l144): not ok
new version: ....AGCUGGG

aligned private seq version: ...... CUGGG
# of bases correctly placed: 5

struc_unit(b1174_after_and_before_1175): not ok
new verslon: A-

aligned private seq version: -A
# of bases correctly placed: 0

struc_unit(b1435_1449): not ok
new version: G-AUGG ....... U-G-AC-

aligned private seq version: G-AUGG ....... UGA-CCG
# of bases correctly placed" 7

struc_unit(b1450_1453): not ok
new version: CGUCAAA---

aligned private seq version: ---UCAA---
# of bases correctly placed: 2
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struc_unit(b1454_1466): not ok
new version: -GGAG .... CCGU-U

aligned private seq version: AGGAG .... CCGU-U
# of bases correctly placed: 9

Number of correctly placed bases: 1519

Total number of bases in species <private seq>: 1532

Percentage of bases correctly placed: 99.15

Number of structural units completely correct: 381

Total number of structural units: 392

Percentage of structural units correctly placed: 97.19
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Appendix 6: Symbols Used to Flag Anomalies in
Insertion Run Results

The symbols shown below were used to surround anomalies (and thus flag them for human

attention) in the aligned sequence output where one or more column positions were added

relative to the current alignment.

I) [[ ]] - Indicates ZhaZ the parse failed in a region consisting
of one or more structural units and that the number of

bases placed in the region of localized paise failure

exceeds the number of alignment colum/Ls for that region.

2) [ ] - Indicates that the parser placed within a structural unit

or a subinterval of a structural unit a number of bases

that exceeds the number of alignment columns for that

unit or subinterval.

3) ( ) - Indicates that the parser placed within a structural unit

or a subinterval of a structural unit a number of bases

less than or equal to the number of alignment columns for

that unit or subinterval but, due to the insertion of

bases in the new species relative to the closest match in

the alignment, enough indels were added to the new species
so that the number of indels and bases combined exceeds

the number of alignment columns for that unit or sub-

interval. (This is by far the most common of the three

types of column addition anomalies.)
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Appendix 7: Discussion of Scoring Method for Insertion Run
Results

As stated in Section 6, I graded the output of the alignment insertion runs on the number of
bases correctly placed. This is an obvious scoring method. Here I state why I chose the exact
definition that I did for "correctly placed". That is, I will state why the definition of a base

being "correctly placed" is that the correct base type (A,C,G,U,N) shows up in the correct
alignment column.

Ideally, I would have liked to make such calculations as follows: I would have gone through

the original input base sequence base by base, noting whether the base occupying position such

and such in the original sequence showed up in the same alignment column in the insertion
output and in the preexisting aligned version. If so, we would have added one to the total of
correctly placed bases; if not, zero would have been added. Unfortunately, this simple method

cannot be used because of the possible insertion of extra columns in the run output relative to
the alignment. For example, suppose an extra column is added in the unit occupying alignment
columns 400 through 405 in the alignment, so that this unit now actually takes up columns 400
through 406 in the run output. Then (assuming no indels occupy columns in the next unit), the
first base in the following unit will be assigned to column 407 r_ther than 406, the second base
will be assigned to 408 rather than 407, and so on. All positions would be shifted by one, so

the program would report back that no bases were correctly inserted after column 405. Now, I

could correct for the extra columns if I knew precisely where they were. However, at present our

insertion tool reports only the structural unit or subinterval of the unit in which the inserted
columns lie. I do not know how many bases within the unit lie on one side of an inserted
column, and how many lie on the other. After examining my program, I have concluded that
the precise location of the extra columns could indeed be passed to the section of my program
that outputs the results, but it would involve, I believe, a rather drastic recoding of the indel

insertion section of the parser. Since the current method (described in detail below) works
pretty well, and since reporting on the percentage of bases correctly placed is not the primary
goal of our tool (no such reporting will be done at all on the truly new species coming in, of
course), I have left the program as is. If the need arises in the future, the change can be made
to the program.

The current method to implemeut the definition of "correctly placed" uses calculations that
are broken down by structural unit, with the results for all the units added together to get the
net score. If (as is usually the case), the run has placed in a unit a grouping of bases and indels
that combined equal the number of alignment columns assigned to that unit, then we simply
count off the matches when the run output is lined up the previously existing aligned version.
Here are five examples from the output for one of the runs in Section 6.1:

sl;ruc_unit(b191_193): not ok
new version: AA--AA-C-ACAUU
alignment version: AAA....A-CACAU
of bases correctly placed: 3

struc_uni_(b194_197): not ok
new version: -UAAA-
alignment version: UUAAA-
# of bases correctly placed: 4

71



struc_unit(b1029_1032): not ok
new version: GAGGCU--
alignment version: GAGGCUAA
# of bases correctly placed: 6

struc_unit(b1033_1036): not ok
new version: A.......
alignment version:
# of bases correctly placed: 0

struc_unit(b1037_1041): not ok
new version: ACAGAU
alignment version: -CAGAU
# of bases correctly placed: S

However, if (as sometimes happens) the number of indels and bases combined that are

placed in a unit or a subinterval of a unit (a subinterval being defined as the alignment columns

lying between two pinned bases) exceeds the number of columns in the alignment for that unit

or subinterval (that is, if one or more columns are inserted relative to the alignment), then a

more complex calculation is done to find the number of bases correctly placed. Suppose, for

example, our program put A-G-A-GA into a unit, while in the existing aligned sequence that

unit contained A-GA-GA. One extra column has been added, so the program would piace a

pair of parentheses around the characters in the output like this to flag the anomaly: (A-G-

A-GA). (See Appendix 6 for a more detailed explanation of the use of parentheses.) Lining

up the strings for comparison (with the pair of parentheses thrown out), we would have

new version: A-G--A-GA
alignment version: A--GA-GA

If we simply matched on the above, the score would be only one base (the first A) correctly
placed. However, the misalignment really looks like it is confined to the area around the first G.

What we do is use the Smith-Waterman algorithm to line the sequences up (bases and indels
combined), and only then count the matches. After alignment we have

new version: A-G--A-GA
alignment version: A--G,A-GA

The score now becomes four bases,not one, correctlyplaced in thisunit. I believethis

provides a more accurate count of the number of bases correctlypositioned. Two examples
from the output of the thirdprivatespeciesin Appendix 5 are shown below:

struc_unit(b87_103): not ok

new version: (GUUCU ........ A-GUG--GCGACC)
new vet stripped : GUUCU A-GUG--GCGACC

aligned private seq version: GUUCUA GUG--GCGACC

new ver and ali with asterisks added to align with each other:
new ver:GUUCU ........ A-GUG--GCGACC

ali:GUUCUA *GUG--GCGACC
# of bases correctly placed: 14
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struc_unit(blO06_1012): not ok
new version: (-GU-ACCGA)
new vet stripped : -GU-ACCGA

aligned private seq version: GUA-CCGA
new ver and ali with asterisks added to align with each other:

new ver:-GU-ACCGA
ali:,GUA-CCGA

# of bases correctly placed: 6

The method is not perfect. In certain cases it can produce an overcount. In the example

below from Appendix 4, it would more correct to state that zero bases were correctly placed in

unit b1025_1028 than that two bases were correctly placed.

struc_unit(b1025_1028): not ok
new version: (U..... CUC)
new vet stripped : U..... CUC
alignment version: CU ....CC
new ver and ali with asterisks added to align with each other:

new ver:U ..... CUC
ali:CU .... C*C

# of bases correctly placed: 2

However, having tried to produce counts both with and without alignment of units where

columns were inserted relative to the alignment, I believe that use of the Smith-Waterman

algorithm to align the two versions brings us substantially closer to the true number of bases

correctly positioned.
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Appendix 8: Discussion of Cap Motif Use

As statedinthebody ofthispaper,when usinga loop_unitin thegrammar Ipiacea weighton
certainof thecap types,basedon theirbasecomposition.From a conversationwith Dr. Steve

Winker on July 16,1990,and from theresultscollectedinreference[49],itwas broughtto nly
attentionthatparticularcap motifs(i.e.,tetra-loops,tri-loops,and penta-loopsof particular
basecompositions)wereveryfrequentlyseen.Thus theideaofusingsuchinformationnaturally

came to mind as a means to improve the accuracyof the parse.I biasthe parseto choose

a configuration with such a cap base composition (since such a configuration appears to be
more likely to occur in nature) by adding a certain number of points (a weight) to the Smith-
Waterman score for that configuration to get a net score, and then comparing the net scores.

If 1 of the 24 predominant tetra-loop motifs exists in a (prokaryotic) RNA loop region, it
is very likely that the bases in the tetra-loop motif (or perhaps the tetra-loop motif + one

additional base) will form the cap of the loop. Also, quoting from reference [49]: "in the
vast majority of tetra-loops the composition of the tetra-loop is independent of its position in
the molecule, and conforms to one of three genera] motifs: GNRA, UNCG, and (more rarely)

CUUG." (The position held by "N" can be filled by using any of the four possible bases.)

Hence we bias the parser toward recognizing such predominant tetra-loop motifs. We also
bias the parser toward recognizing penta-loop motifs whose first four bases fit one of the tetra-

loop motifs described above. (Although this approach has not yet been tried, it might also
be worthwhile to bias the parser toward recognizing tri-loops consisting of uuu with a pyrimi-
dine:purine base pair just before the cap.)

Note that tetra-loops are quite common, accounting for the caps of about 55% (i.e., 17)
of all stem-loops in the 16S rRNA molecule in E. coli, with the next most prevalent (13%)
stem-loop cap size being five nucleotides (penta-loops).

The 24 patterns used below to recognize a tetra-loop make up 24/256 or slightly less than 1

in 10 of all possible 4-base patterns. Statistically, if the parser finds one of these predominant
motifs, then we are more likely to have found the cap (according to the information encoded in
the 16S alignment, from which these tetra-loop motifs are derived).

A tetra-loop cap type is weighted so that it adds three points more than two good bond
matches (39 = 2 • 18 + 3) to the net score for that configuration. In addition, if the last bond
pair before a tetra-loop cap is one of the strongest three bond types (g-c, c-g, u-a, a-u, u-g, g-u)
then we add another 18 points to the net score, for a total of 57 points added. The other bond
types or mismatches (a-g, g-a, c-a, a-c, u-c, c-u, u-u, g-g, a-a, c-c) add zero points.

A penta-loop cap type is weighted so that it adds one point more than one mediocre bond
match (14 = 1 • 13 + 1) to the net score for that configuration, if the first four bases in the
penta-loop match one of the 24 predominant tetra-loop patterns. (Dr. Winker believes that
the other way around is not a good penta-loop motif, that is, that a base followed by a tetra-
loop pattern is rare in a cap and has no value in recognizing penta-loops.) With the current

weighting scheme, if we have a penta-loop of uucgg, for example, then the parser should return
that as the cap rather than ucg with a u-g bond added to the sides of the loop_unit.
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Note: Currently I do not try to incorporate how unknown bases (ns) would fit into this
scheme.

The encoding of these weights into Prolog clause format is as follows:

cap_type ("uucg", tetraloop, 39).
cap_type ("ggaa", tetraloop, 39).
cap_type ("cgau", tetraloop, 39).
cap_type ("uuua", tetraloop, 39).
cap_type ("gcaa", tetraloop, 39).
cap_type ("auau", tetraloop, 39).
cap_type ("ucag", tetraloop, 39).
cap_type ("gaga", tetraloop, 39).
cap_type ("ggga", tetraloop, 39).
cap_type ("uacg", tetraloop, 39).
cap_type ("uccg", tetraloop, 39).
cap_type ("gaaa", tetraloop, 39).
cap_type ("ggaa", tetraloop, 39).
cap_type ("uuag", tetraloop, 39).
cap_typ e("cuug", tetral oop, 39).
cap_type ("cucg", tetraloop, 39).
cap_type ("gaag", tetraloop, 39).
cap_type ("guga", tetraloop, 39).
cap_type ("gcga", tetraloop, 39).

cap_type ("guaa", tetraloop, 39).
cap_type ("gcau", tetraloop, 39).
cap_type ("acau", tetraloop, 39).
cap_type ("uaac", tetraloop, 39).
cap_type ("aaac", tetraloop, 39).

cap_type(Bases,pentaloop, 14) :-
length(Bases ,5),
Bases = [Basel,Base2,Base3,Base4,_Base5],
cap_type( [Basel, Base2 ,Base3 ,Base4J, tetraloop, _).

/a Any cap type other than the above is not ,eighted (has a weight
added of zero). $/

cap_type (_,nil, O).
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Appendix 9: Detailed Flow Diagraras for Parser Component

This appendix contains a detailed set of diagrams for the first section of the parser component,

that is, for tile section that performs the parse and assigns bases to str.ctural ..its. Some

Prolog terminology _.d symbols will be employed. Where judged useful, the actual na.les of

t_e Prolog predicates used in the source code of the program are shown.

Diagram 1

Top-Level Flow of Control through the Prolog Predicates
of the Parser Component of the Insertion Teel

start

I
parse_insert_run/1 j.'edicate invoked

l
l

do_abolish_chores/O

A predicate that cleans up the Prolog environment

if multiple insertion runs are being done in the
same session.

l
I

do_parse/1

The predicate that does the actual parsing and

''slotting _ of bases into the structural units.

(Described in greater detail in DIAGRAM 2 and

following diagrams.)

I
I

do_species_insertion_via.indel_addition/1

The predicate that insvrts the indels.

(Described at length in _ec_on 5.2)

I

end

I

Aligned results for a species are stored in output

file for inspection by user (in format shown in

Appendix 4).

76



Diagram 2

do_parse/1

I
I

do_setup/3

The do_setup/3 predicate does the following:

1) It reads in the base sequence Original_Base_Seq from

a file called new_species.pl. (The sequence for the

new species is assumed to have been placed in this

file by the user.)

2) It checks on the longest number of consecutive unknown

bases in Original_Base_Seq. (The species can be

rejected if above a preset number).

3) It reports on any ambiguous and nonstandard cha1'acters

in Original_Base_Seq.

4) It ''normalizes'' Original_Base_Seq into BaseSeq by

converting ambiguous and nonstandard characters into

unknown characters (''n' 's).

5) It uses the Prolog assert/1 predicate to store the

normalized BaseSeq in a clause of this format:

seq(MoleculeId, SpeciesId,ParseInterval, StartPos,

BaseSeq).

In particular, for the 16S molecule we have

seq( '16S ',SpeciesId,b1_1542,1 ,BaseSeq).

A seq_in_orig_format/5 clause using Original_Base_Seq

in place of BaseSeq is also asserted into the database

for later use by the

do_species_ inser_ion_via_indel_addition/1 predicate.
I
I

test_all/4

The test_all/4 predicate performs four tasks:

1) It calls setup_pinned_unit/2 to set up a list of the

pinned units in PinnedUnits. Each member of PinnedUnits
is of "_heform

bases (UnitName, BasesInUnit).

2) It calls build_adjacency_info_facts/1 to construct a

set of su_with_adjacency_info/lO clauses, one for each

structural unit in the grammar. Each clause, among other

data, states what the two neighboring units are for a

given unit and whether the unit is pinned or not

(PinBoolean = ''yes'' or ''no''). The clause format is

su_with_adj acency_ info (UnitName, AlignSt art, AlignEnd,

UnitType, Rel atedUnit, PinList, PinBool ean, PinnedBases,

Prey iousUnit, NextUn it).
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3) lt calls parse_linear/10 to perform the parse.

(See DIAGRAM 3 and folloving diagrams.)

Output from parse_linear/lO is contained in one parameter,

a list called ParseOut. There is one entry in ParseOut

for each structural unit that parsed and one for each

unpinned unit group that failed to parse. Each entry
contains the (normalized) bases slotted into that unit

or region of localized parse failure, along ,ith the

start and end positions of that set of bases in the

original incoming sequence.

4) lt calls build_and__rite_out_strucrural_prolog_clauses/3

ro vrito out a set of su/li clauses to a holding file

using the data returned by parse_linear/lO in Par3eOut.

The holding file is later read in by the

do_species_ insert ion_v la_ indel_addit ion/I predicate.

There is one su/11 clause per parsed structural unit and

one per unparsed unpinned unit group (localized parse

failure). The format of each su/ll clause looks like

this :

su (MoleculeId, Species Id,Ecol iUnit Name,

FamilyUsedToParse, SpeciesStartPos, 5peciesEndPos,

UnitType, Bases, AIignSt art OfUnit, AI ignEndOfUnit,
UnitPinList).
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Diagram 3

parse_linear/lO

I
I

sequence_parsed_by_family_set/6

The one sequence_parsed_by_family_set/6 clause

present in the grasBnar (constructed by the automatic

grammar generation pretty) is accessed to obtain the

StrucUnitList. The list contains the names of all

the structural units that must be processed, and

in proper order for processing. The format of the
list looks like this:

[b1_8, b9_13, b14_16, b17_19, b20, b21_25, ...].

We shall walk through this list, parsing the units
one by one.

I
J

initialization is performed on

input parameters to parse_by_units/T:

1) StartingDice = [ ] (Dict is a list that stores the

name of each parsed lhs and the bases it contains

for hater use ,hen the associated rhs is encountered.

The Dict is set to the empty list at the start.)

2) StartingSeqPos = 1 (We keep a running track of

,here we are in the original sequence as we parse

it. The start position is the first base in th_
sequence.)

3) Pl = BaseSeq (We start the parse using the entire

sQquence as input in a variable called PI.)

The lists PinnedUnits and StrucUnitList constructed

above are also used as input parameters to

parse_by_units/7.

I
I

parse_by_units/7

This predicate performs the parse unit-by-unit,

returning the results in the ParseOut list, which

is passed back up through parse_linear/lO go

test_all/4. When called from within the parse_linear/t0
predicate it looks like this:

parse_by_units(StrucUnitList,BaseSeq,PinnedUnits,

StartingDict,StartingS_:_qPos,Pl,ParseOut).

Noto that Pl and BaseSeq are equivalent at this

point. Pl will lose bases from its head as each pinned

unit or unpinned unit group is processed. BaseSeq will
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stay the same throughout the parse, keeping the entire

original sequence available if needed. (Currently no

use is made of the BaseSeq parameter after this point,

but that m_ght change in the future.)

(See DIAGRAM 4 and following diagrams.)



Diagram 4

parse_by_units/7

i
i

This is a recursive predicate that calls itself.

Each time through we either process a pinned unit

or parse an unpinned unit group. We enter the

predicate usin E these seven parameters (with BaseSeq

present but currently not used):

parse_by_units(StrucUnitList,BaseSeq,PinnedUnits,

CurrentDict,CurrentSeqPos,P1,ParseOut).
l

yes J
StrucUnitList -= [ ] ?

l
I no

l
StrucUnitList = [UnitNameIRestOfStrucUnits]

(Go to DIAGRAM 5.)

If there is one or mor_ remaining structural units

not yet processed, we select the unit currently

at the head of the list (UnitName) and work from that.

> If the StrucUnitList is empty then the parse is

complete. We exit the parse_by_units/7 predicate,
J

passing back th_ current contents of ParseOut as

the output parameter.
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Diagram 5

StrucUnitList = [UnitName_RestOfStrucUnitsJ
i
l

member_check(bases(UnitName,Bases),PinnedUnits)

.... We check whether unit UnitName is a pinned unit
I by seeing whether it has an entry in PinnedUnits.
l l
lno I
I I
l l

The member_check/2 call fails, m
The current unit i_ not I

pinned. Thus we here shall

parse an unpinned unit _ yes
group consisting of one i
or more units, i

(Go to DIAGRAM 6.) l
l

The member_check/R call succeeds, so the current
unit is a pinned unit.

I
find_and_remove_unit/5

For efficiency, we delete the Unitname entry from

PinnedUnits to reduce the length of search during
next member_check/2 call and the ones that follow.

input: PinnedUnits, UnitName
output: NewPinnedUnits

l

We check whether the structural unit given by
UnitName is covered by a gap, lhs, or rhs in the
grammar.

l
-- pinned_bases_form_head_of_list(Bases,P1,RemainderOfPl)
I l
l l

test above fails test above succeeds

See note (a). J

l
l

-------------------------------------------------- I ----------"

I I I
lhs gap rhs
I I l

add entry for lhs leave Dict as is delete entry for
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to Dict with bases I lhs in Dict

reversed for later I I

matching to rbs _ I

l l l
reverse(Bases,Stack) _ delete_el(s_ack(

NewDict = {stack(UnitName, I LhsName,LhsStack),

Stack) IDict] NewDict =Dict Dict,NewDict)

i l See note (b).

I I l
l i I
l l j
.............. > construct 0utputClause <.....

See note (c).

l
Parse0ut = [(0utputClause,Bases) IParseOutl]

I

calculate_new_start_pos(CurrentSeqPos,Bases,

NcwSeqPos)
i

parse_by_units(Rest0fStrucUnits,BaseSeq,

NewPinnedUnits,NewDict,NewSeqPos,
Remainder0fPl,Parse0utl)

We make the recursive call to continue the parse.

(At this point we still must find the remainder

of Parse0ut by filling in Pars,_Outl.)

Note (a)" If the pinned-bases_form_head_of_list(Bases, Pl, RemainderOfP1) call fails, then a

situation like the follo_Ang must have occurred: Suppose that the input string for the unit

before this one was "AGGCUUUGG ...". Suppese that unit was pinned, with the pins telling
the parser to place "AGG" in the unit. The input string to the current (second) pinned unit then

becomes "CUUUGG ...". If the pinning component found pins that told it to place "UUUGG",

not "CUUUGG", in this pinned unit, then we have a problem: there is an extra "C" wedged
between two pinned units and not assigned to either. Hence the pinned bases do not form

the head of the current input string. This is an extremely rare occurrence. (It has happened

exactly once in ali the trials run so far.) However, we must allow for the possibility. In such a

case the extra base(s) is inserted as the first base in the current pinned unit being processed,

that is, in the second of the two units that it falls between. A message is also issued to the
user notifying him or her of this situation. (Note that such a base would fall between the two

adjacent columns in the current alignment occupied by the pinned base at the end of the first

unit and the next pinned base at the start of the second unit.)

Note (b): If the unpinned group containing the lhs failed to parse, then no Diet entry for the

lhs would be created, and the delete_el/2 call would fail. In such a case we simply set NewDict
= Diet and LhsStack = [].

note (c): If the unit is a gap, then we have
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OutputClause = gap(UnitName, pinned, no.msg, CurrentSeqPos).

If the unit is an lhs, then we have

OutputClause -- gap(UnitName, pinned, no_msg, CurrentSeqPos).

If the unit is an rhs, then we have

OutputClause -- rhs(UnitName, pinned, no_msg, 0, 0, 0, LhsName, LhsStack, CurrentSeq-

Pos).

(The number of mismatches, deletions, and insertions used in a pinned rhs is set to zero.
Those three arguments have true values placed in them only when an rhs is parsed in an

unpinned unit group.)

Note that the third argument, wldch can carry messages, is not currently used and i,,',filled
in simply with "no.ansg".
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Diagram 6

The call to

member_check (bases (UnitName, Bases ),PinnedUnit s)

failed; hence we are at the first unit of an

unpinned unit group. The input base string to this
group is given in the variable Pl.

I
I

find_ struc_unit s_in_unpinned_group ([UnitName [Rest OfStrucUnit s],

PinnedUnit s,UnpinnedGroup_St rucUnit s,RemainingSt rucUnit s)

We look through RestOfStrucUnits until we reach a pinned unit

(a unit also present in PinnedUnits). We then store the

names of the units in the unpinned group in the list
UnpinnedGroup_StrucUnit s.

I
I

fami iies_in_p inninE_ subt ree(Fami iiesToUs e)

We access the list of families previously found to have a

member in the subtree returned by the pinning component.

We restrict the parser to using grammar clauses of only
these families.

I
yes I

RemainingStrucUnits == [ ]

I I
Unpinned unit group J

extends to end of the J no

sequence, so we simply

place all remaining bases i

in it.

Bases = Pl, J

Pla = [ ] [

I I

J RemainingStrucUnits = [PinnedStructUnitName [_],

J (A pinned unit always starts off the list of structural

I units that follow an unpinned group.)

I i

[ su_pin (_,PinnedStructUnitName, Pinned_Unit_Seq_St art_Pos,

[ _Pinned_Unit_Seq_End_Pos),

I (The su_pin/4 fact was built earlier by one of the

I subprograms lying between the pinning component and the

J parser from the pinning component's output.)

i Len_Of_Group is Pinned_Unit_Seq_Start_Pos - CurrentSeqPos,

[ find_f irst_n_elements_ and_remainder (Len_ 0f_Group,
[ PI ,Bases,Pla)
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J The string returned in Bases is made up of the bases that

J must occupy that part of the molecule defined by the

] unpinned unit group. Note that input string Pl is equal

J to the combined string made by appending Pla to Bases.
I I
....... > I

I
parse_us ing_grammar (Famil iesToUse,

UnpinnedGroup_StrucUnit s,Dict, NevDict, CurrentSeqPos,

NevSeqPos ,Bases, [ _,FamiliesToUse, OutClauses)

We call parse_using_grammar/lO to parse the unpinned
unit group.

(See DIAGRAM 7.)

I
I

yes I

does parse_using_grammar/lO succeed ?

I I
i I no

append (OutClauses, I

Pars eOut 1,ParseOut)

(This is the usual route; I

the great majority of I

unpinned groups will parse.)

I I
I See note (a).

i l
parse_by_units( i

RemainingStrucUnits,BaseSeq, I

PinnedUnit s,NevDict, I

NevSeqPos, Pla, ParseOut 1). I

I
I

yes I

............. RemainingStrucUnits ffi=[ ] ?

I i
NewDict = Dict I

length(Bases ,Base_Len) J no

NewSeqPos is CurrentSeqPos i

+ Base_Len I

I I
I NewDict =Dict

J NewSeqPos is CurrentSeqPos + Len_Of_Group
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I I
"--> I

I
ParseOut = [bases_in_failure(Unpinned_Group_Name,

Curren_SeqPos,Bases)_ParseOut1]
I
I

parse_by_units(RemaininEStrucUnits,BaseSeq,

PinnedUnits,NewDict,NevSeqPos,PIa,ParseOut1)

Note (a): The build_and_write_out_structurM_prolog_clauses/3 predicate that will later write
out an su/11 fact for the unit named by Unpinned_Group_Name will need a struc_unit/5 clause

for the unit. (This unit has its UnitType argument set to "bases_in_failure".) We create a

dynamically_asserted_struc_unit/5 clause here and insert it into our database using the Prolog
assert1 predicate if the unpinned unit group fails to parse.

The build_and_write_out_structural _prolog_clauses/3 predicate was modified to check for a

dynamically_asserted_struc_unit/5 fact if a struc_unit/5 fact did not exist. (The struc_unit/5
clauses are currently "static", so under Quintus Prolog we cannot use assert/1 to add clauses

with that same name into the database.)
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Diagram 7

pars e_us ing_grammar (Famil iesToUse,

UnpinnedGroup_StrucUnit s,Dict, NewDict, CurrentSeqPos,
NewSeqPos, Bases, [ ],Famil iesToUse, OutClauses)

We.call pars.e._using_grammar/10 to parse an unpinned
unlr grou_, we try to parse using the constralnts of
a family in FamiliesToUse, going through the families
one by one.

I
CurrentFamiliesToUse = FamiliesToUse

yes [ <

............. CurrentFamiliesToUse -= [ ] ?

Retry ali families, but
with interior pins not _ no
used this time. We build I
and call a Goal exactly as i
is shown in other branch of I
this diagram. If a family l
succeeds the second time I
around, then we exit with I
success. If we run out of I
families to try before i
achieving a successful I
parse0 then the parse_
using_grammar/10 predicate
fails on this unpinned
group, l

l
CurrentFamiliesToUse = [FamilyIRestOfFamilies]

l
p2. []

l
buiId_go al_1ist_mul t_fam (UnpinnedGroup_St rucUn its,

Family, _,Dict, NewDict, ParseOutTemplat e,PI,P2,
CurrentSeqPos, Goal)

(See DIAGRAM 8.)

We build a Goal for the unpinned group using the graumar
constraints for the family named Family. Pl, the input
string for the Goal, is the previously determined string
of bases that fall into the group, that is, that lie

between the two pinned units defining the unpinned unit
group. P2 (the output string) is thus set to null. (As
a condition for parse success, no bases should be left
over. )

I
call (Goal)

See the explanation of the use of ''call(Goal)' ' in

Section 5.1.1 of this paper.

i



I
does the Goal succeed ?

....... > We try another family.
l We reset the current family
i ser to RestOfFamilies, i.e.,

yes l CurrentFamiliesToUse =

RestOfFamilies
BasesConsumed = Pl

I
ienEth (BasesConsumed, Bas eLen)

I
Ne.SeqPos is CurrentSeqPos . BaseLen

I
We exig parse_using_grammar/lO with success.
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Diagram8

bu ild_go al_iist _mulz. fam (Unpinn edGroup_St rucUn its,

Family, _ ,Dict,NevDicZ, ParseOutTemplat eSet ,Pl ,P2,

StartPos, GoaiSet)

The Goal described in DiaEram 7 is really a set of

(sub)Goals, one for each unit in the unpinned group.

Hence we refer here to GoalSet, not Goal, for clarity. We

build a GoalSet for the unpinned group using the grammar

constraints for the family named Family. Pl, the input

strin 8 for the GoalSet, is the the previously determined

strin E of bases that fall into the group, i.e., that lie

between the tvo pinned units defining the unpinned unit

group. P2 (the output string) is thus set to null. (As

a condition for parse success vithin the unpinned Eroup,

no bases should be left over).

I
yes I

<.......... UnpinnedGroup_StrucUnits == [ ] ?

I l
We have run out of units. I

Hence we construct one [

last Goal here (testin 5 [

vhether the remainin 8 I

bases equal the empty I no

list) and then exit.

I I
NewDict = Diet I

ParseOutTemplateSet = [ ] ]

GoalSet : (Pl=P2) I
I I

exit the predicate I

I
i

UnpinnedGroup_StrucUnits = [UnitNamelRemaininEUnits]

I

build_single_goal_mult_fam(UnitName,RemaininEUnits,

Family,_,ParseOutTemplate,P1,P1a,Goal,StartPos,

NewSZarzPos,Dict,Dictl,_)

(See DIAGRAM 9.)

Each call to build_single_goal_mult_fam/13 constructs a

Goal and a ParseOutTemplate (to report back the results)

for the unit given by UnitName. Goal and ParseOutTemplate
contain certain variables that share the same name. When

9O



the (sub)Goal is executed as part of the GoalSet in

''call(GoalSet) _', each placeholder variable in

Parse0utTemplate that has the same name as in Goal will

be filled in (instantiated) with the value that satisfied

the Goal, that is, that allowed the Goal to succeed.

Note that a single goal takqs Pl, Start_os, and Dict

as input parameters and returns altered values in

Pla, NewStartPos, and Dictl. These three altered values

are then passed on to the rest of the Eoals to be
constructed in the recursive call to

build_goal_list_mult_fam/10 below.

The difference between the strings Pl and Pla (Pl/Pla)

represents the bases slotted or ''consumed '' by the

Eoal for the structural unit UnitName. Pl is the input

base string and Pla is the shortened output base string

to be used as input to the remaining goals.

NewStartPos = StartPos + (the number of bases by

which Pl and Pla differ)

Dictl differs from Dict if the goal is for a 1hs or a

rhs uni_. In such cases, an entry is added or deleted

from the Dict, respectively.

I
I

GoalSet - [GoaliRemaininEGoals]

Parse0utTemplateSet = [Parse0utTemplatel

Remai ingPar ae0utTemplar es]
I
I

build_goal_list_mv.It_fam(RemainingUnits,

Family,_,Dictl,Nev_ict,RemainingParse0utTemplates,

Pla,P2,Ne_StartPos,RemainingGoai_)

We recursively call this predicate to fill in a Goal

and Parse0utTemplate for each unit.
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Diagram 9

build_ single_goal_muir_ram (UnitName, RemainingUnit s,

Family, _,Parse0utTemplat e,Pl,Pla,Goal, StartPos,

NewSt artP_s ,Dict,NewDict, _)

l
l

What is the UnitType of the unit UnitName? We try

accessing gap/B, 1hs/5, rhs/7, and loop_unit/10 grammar

clauses for UnitName aI_dFamily. If access succeeds to

a clause of a given type, then we automatically have
our answer.

l
l

If UnitType = gap, then ,e set

Parse0utTemplate = (gap(UnitName,Family,

Msg, StartPos), Bas es)

Goal = process_gap_mult_fam(UnitName, Family, Msg,

StartPo_, NewStartPos ,Bases ,Pl ,Pla)

NewDict = Dict

(Not_: Msg is currently an argument that is not used

in any of these UnitTypes. It is nulled cut to

''no_msg ''.)

l
l

If UnitType = lhs, then we set

Parse0utTemplate = (lhs(UnitName,Family,

Msg,St artPos), Bases )

Goal = process_lhs_mult_fam(UnitName, Family, Min,

Max ,Stack, StartPos, NewStartPos ,Bases ,Pl ,Pla)

NewDict = [stack(Name,Stack)IDict]

(The values for the Min and Max bases allowed in the

unit come from the lhs/5 clause in the grammar for

UnitName and Family.)

l
l

If UnitType = rhs, then we set

Parse0utTemplate = (rhs (UnitName, Family,Msg,

MismatchesUsed, Insert ionsUsed, Delet ionsUs ed,

LhsName, LhsStack, StartPos) ,Bases) )

Goal = process_rhs_mult_fam(UnitName,Family,

MismatchesAllowed, Insert ionsAllowed, DeletionsAllowed,

Mismat chesUs ed, Insert ionsUs ed,Delet ionsUsed, LhsName,

LhsSt ack,Dict, MewDict, StartPos, NewSt artPos,

Bases,Pl,Pla),

(The value_ for MismatchesAllowed, InsertionsAllowed,
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and DeletionsAllowed come from the rhs/7 clause in the

grammar for UnitNamo and Family.)

l
i

If UnitType = loop_unit, then we set

ParseOutTemplate =

loop_unit (UnitName, Family, Msg,

WiggleFactor, Variance,

Lhs_ inrerval_name, Cap_ inr erva1_name,

Rhs_ inrerval_name,

SimilarityScore, NetScore, Bas esInOpt imalLhs,

BasesInOpt imalC ap,CapSubStructur eL isr,

BasesInOptimalP_hs,

Lhs_Rhs_Corresponde_ce_ Found, StartPos) ),
Goal =

process_loop_unit (UnitName, Family,

Lhs _inrerval_name, Cap _inr erval _name,

P_hs_inr erval_name,

LhsPin, CapPin, B/_sPin,

(Cap_inr erval_type, ListofCapSubInt ervals ),

WiggleFactor, Variance,

Listof StructuralUnit sForLocalLookAhead,

SimilarityScore, NetScore, BasesInOpt imalLhs,

Bas esInOpt imalC ap,CapSubSt ructur eList,

Bas esInOpt imalRhs, Lhs_R/_s_Correspondenc e_Found,

StartPos, NewSt artPos ,Pl ,Pla)

NewDict = Dict

(The ListofStructuralUnitsForLocalLookAhead was found by

walking forward from the loop_unit to the nearest pinned

unit. The values for Lhs_interval_name, Cap_interval_name,

R/_s_interval_name, WiggleFactor, and Variance were found

by checking the loop_unit clause in the grammar for

UnitName and Family.)

J

end of possibilities for UnitType; the predicate will

always set up variables for one of the four unit types

above and then terminate with success.

The four process predicates which can be set up as the Goal in the above diagram (pro-

cess_gap.mult..fam/8, process_lhs_mult.$am/10, process_rhs_mult_fam/17, and process_loop_unit/23)

have been designed to use the grammar constraints on both the primary and secondary struc-

ture. The work done by the first three of these predicates has been described at length in

Section 5.1.1 of this paper. The tasks that the processloop_unit/23 predicate has been built

to handle have been stated in great detail in Section 3.1.
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Use of interior pins has been designed into these four predicates, with a global flag that can
be set in the database to turn interior pin use on or off.

A form of charl parsing (intermediate storage of results) has also been implemented iii each
of the process predicates. When the parse succeeds in a structural unit, the base string for th_tt
unit and the remaining string are combined into one string and then asserted into the database
in a struc_unit_config/2 clause. Then, if the parse later fails and we backtrack to the unit,
we check to see whether a configuration has already been tried. If so, we skip it. Note that
just storing the bases placed in the unit in the struc_unit_config/2 clause is not good enough
to implement chart parsing. For example, suppose that the input string to some unit, say,
b40.¢__09, is acuuuacugg. Also suppose that we succeed in parsing unit b404_09 with the ac
at the head of the input string and thus store ac in a strue_unit_config(ac, b404-400) clause as
the successful configuration that should not be retried. Now suppose that someplace further
on the parse fails and we have to backtrack to b404-409. The substring ac occurs twice in the
input string, but we shall never be able to try the second ac as a different route to success, even
though such a route will pass on a different string to the rest of the parse and possibly allow
the parse to overcome its later failure. The check against the struc_unit_config/2 clause, where
ac would have been found to already have been tried, would prevent this. But if we uniquely
identify the first trial as a¢_uuuacugg and the second as ac_ugg then we shall be able to try both
possibilities. Hence we concatenate the bases placed _.nthe unit with the bases passed on as the
input string to the rest of the parse, separated by an underscore, and place the combined string
into a struc_unit_config/2 clause, like so: strue_unit_eonfig(ae_uuuacugg, b404_400). (Further
discussion of chart parsing and the reason for its use can be found in Section 5.1.2.)

As a example of the process predicates, I show below the process_gap.mult_fam/lO predicate,
the simplest of the four. (Unlike the other three, it performs a check solely against the primary
structure constraints for a structural unit. Ali other process predicates check against both
the grammar constraints on the unit's base composition and the grammar constraints on the
secondary structure of the unit.) This is the complete Prolog predicate definition _ it currently
stands in the parser program. The input string to the unit is passed in by means of the P1
variable. The output string is returned in the P2 variable after being filled in by the predicate.
The difference between the input string and the output string is the set of bases slotted into this
particular unit. The first test that the predicate does is to check on whether the primary struc-
ture constraints can be fulfilled using some substring from the head of the input string. This is
done by a direct call to the appropriate constraint/5 clause in the grammar. If this subgoal suc-
ceeds, then a second subgoal is tried (in interior_pins_agree_with_parse/3) to see if the interior
pins test can be satisfied using the substring defined by the call to constraint/5. (The inte-
rior_pins_agree_with_parse/3 predicate checks on a global flag to see whether it should actually
perform its test or simply always succeed, no matter what input it is given. The second option
is used when we want to skip this subgoal.) Note that, if the interior_pins_agree_with_parse/3
subgoal fails, then we backtrack to the constraint/5 subgoal to find out whether a different sub-
string can be found that will obey the base constraints. If so, then we can retry the interior pins
test and still possibly succeed in the parse of this unit. This process of automatic backtracking
upon failure should be kept firmly in mind whenever one examines any section of Prolog code
where failures can occur.
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proc es s_gap_mult_f am (UnitName, FamilyUs ed,

MsgUs ed,St artPos, NewStartPos,

Bases,Pl,P2) :-

constraint (UnitName, FamilyUsed, MsgUsed ,PI,P2),

convert_rill_list_to_list (PI/P2 ,Bases),

calculate_new_st art_pos (StartPos, Bases, NewSt artPos),

inrerior_pins_agree_with_parse (UnitName, StartPos, NewStartPos),

append(Bases, "_",TempBaseList),

append (TempBas eList ,P2 ,Unique_Trial_Bases),

atom_chars (Unique_Trial_ Id,Unique_Trial_Bases),

(struc_unit_config(Unique_Trial_Id,UnitName) ->

_,This config has been tried before, so there is no

_.point in trying it again and thus failing again later
_,on. Hence we force failure here.

fail

do_ asserr (struc_unit_ conf ig(Unique_Tr ial_ Id,UnitN ame ))
).

95



Distribution for ANL-91/29

Internal :

E. A. Baehr

J. M. Beumer (25)

F. ¥. Fradin

H. G. Kaper

R. A. Overbeek

G. W. Pieper
D. P. Weber

C. L. Wilkinson

S. K. Winker

ANL Patent Department
ANL Contract File

TIS Files (3)

External :

DOE-OSTI, for distribution per UC-405 (58)
ANL Libraries

Manager, Chicago Operations Office, DOE

Mathematics and Computer Science Division Review Committee:

W. W. Bledsoe, The University of Texas, Austin

P. Concus, Lawrence Berkeley Laboratory

E. F. Infante, University of Minnesota

M. J. O'Donnell, University of Chicago

D. O'Leary, University of Maryland

R. E. O'Malley, Rensselaer Polytechnic Institute

M. H. Schultz, Yale University

J. Cavallini, Department of Energy - Energy Research

F. Howes, Department of Energy - Energy Research

G. Olsen, University of Illinois, Urbana

R. Taylor, National Institutes of Health (30)

C. Woese, University of Illinois, Urbana

96






