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ABSTRACT



INTRODUCTION

Engineering and scientific phenomena are often studied with the aid of mathematical

models designed to simulate complex physical processes. In the nuclear industry,

modeling the movement and consequence of radioactive pollutants is extremely

important for environmental protection and facility control. One of the steps in model

development is the determination of the parameters most influential on model results. A

"sensitivity analysis" of these parameters is not only critical to model validation but also

serves to guide future research.

A previous manuscript (Hamby 1994) detailed many of the available methods for

conducting sensitivity analyses. The current paper is a comparative assessment of several

methods for estimating relative parameter sensitivity. Method practicality is based on

calculational ease and usefulness of the results. It is the intent of this report to

demonstrate calculational rigor and to compare parameter sensitivity rankings resulting

from various sensitivity analysis techniques. An atmospheric tritium dosimetry model

(Hamby 1993) is used here as an example, but the techniques described can be applied to

many different modeling problems. Other investigators (Rose 1983; Dalrymple and

Broyd 1987) present comparisons of sensitivity analyses methodologies, but none as

comprehensive as the current work.

SENSITIVITY ANALYSIS METHODS

The sensitivity of a tritium dose model (Hamby 1993) to 21 input parameters has been

analyzed using fourteen methods of sensitivity analysis. A comprehensive review of

these methods is given by Hamby (1994). The sensitivity methods include the utilization



of the following one-at-a-time sensitivity measures: partial derivatives (PD), one standard

deviation increase and decrease of inputs (+SD), a 20% increase and decrease of inputs

(+_20%),and a sensitivity index (SI). The sensitivity measures investigated that utilize an

array of input and output values generated through random sampling include: an

importance index (II), a relative deviation of the output distribution (RD), a relative

deviation ratio (RDR), partial rank correlation coefficients (PRCC), standardized

regression coefficients (SRC), and rank regression coefficients (RRC). Four additional

techniques have been used to estimate parameter sensitivity rankings based on the

partitioning of input data based on the distribution of associated model results (Crick et

al. 1987). These methods include the Smirnov test (S), the Cramer-von Mises test (CM),

the Mann-Whitney test (MW), and the squared-ranks test (SR).

A simplistic and qualitative approach to determining parameter sensitivity is achieved by

aggregating the mathematical model, i.e., algebraically combining exposure pathway

models, evaluating the resulting equation using best-estimate parameter values, and

assessing the relative contribution to dose via each pathway component. It is a simple

task to aggregate the tritium model utilized for this paper (Hamby 1993). Total

atmospheric tritium dose to a receptor is the sum of the inhalation and ingestion pathway

doses and is given by,

D = ( 4.84x 10.9 Te fw C aRpa } • { (2.74 Um fm fpmIme'(_'tm))+(2.74Ub fb fpb Ib e(ktb))
MH (1)

+(I000Uv fv)+(1000Ulfi)+((l.5)BR H.)}
fw Rpa

where the constants account for unit conversions. Distribution definitions and

characteristics of parameters are given in Tables 1 and 2. The five components in the

right set of brackets represent the five exposure pathways: 1) milk consumption, 2) beef

consumption, 3) produce consumption, 4) leafy vegetable consumption, and 5) inhalation,
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respectively. It is immediately apparent that the model will be sensitive to some degree

to three of the parameters in the left set of brackets (Te, Ca, and M) since their values

influence all pathway dose estimates. The three remaining parameters in the left brackets

(fw, Rpa,and H) cancel in the inhalation portion of the equation, therefore, they are

expected to be sensitive, but to have less influence than Te, Ca, and M, since all pathway

dose estimates are not affected by their values.

Differential Sensitivity Analysis (PD). Differential analyses, also referred to as the direct

method, are structured on the behavior of the model for a base-case scenario, e.g., all

parameters set equal to their mean value. Differential sensitivity analysis is based on

partial differentiation of the aggregated model. When an explicit algebraic equation

describes the modeled relationship, the sensitivity coefficient for a particular independent

variable is calculated from the partial derivative of the dependent variable with respect to

the independent variable. Partial derivatives of the aggregated equation describing the

atmospheric tritium model were calculated for each input parameter. Table 3 shows the

numerical results of these calculations. The partial is multiplied by the ratio of the

parameter value and the model result for the base-case scenario to remove the effects of

units.

One-at-a.Time Sensitivity Measures (+_20%,+_SD). This type of sensitivity analysis only

addresses parameter sensitivity relative to the point estimates chosen for the parameters

held constant. One test was conducted where the sensitivity measure was determined by

adjusting parameter values by a percentage of their base-case value. The sensitivity

measure (+_20%)was determined by calculating the ratio of model results while the input

parameter was varied by +_20%.



A more powerful test of local sensitivity examines the change in output as each parameter

is individually increased by a factor of its standard deviation (+_SD). This type of

sensitivity measure takes into account the parameter's variability and the associated

influence on model output. This test is similar to that described above except that

parameters were varied by one standard deviation of their input distribution rather than

20% of their base-case value.

Factorial design (Box et al. 1978) is another one-at-a-time analyses, however, this method

requires a great deal of effort when dealing with large models. A simple factorial design

for the twenty-one parameters used here and only two levels requires more than two-

million model runs. In some cases, a fractional factorial method can be implemented to

reduce the number of trials to a manageable size.

The Sensitivty Index (SI). Another of the simple methods of determining parameter

sensitivity is to calculate the output percent difference when varying one input parameter

from its minimum value to its maximum value. The "sensitivity index" was introduced

by Hoffman and Gardner (1983) to account for all possible values when determining

parameter sensitivity.

Parameter Sensitivity Using Random Sampling Techniques

To this point, sensitivity has been assessed on parameters one-at-a-time without regard to

the combined variability resulting from considering all input parameters simultaneously.

Random sampling (e.g., simple random sampling, Monte Carlo, Latin hypercube, etc.) of

input parameters generates input and output distributions useful in assessing model and

parameter uncertainties in a "global" sense, i.e., sampling over the entire range of

possible parameter values.



The Importance Index (II). Hoffman and Gardner (1983) introduce an "importance

index" which is equal to the variance of the parameter value divided by the variance of

the dependent values. For additive models the variance is of the raw data, whereas for

simple multiplicative models the variance is of the log-transformed data. The model

under consideration here is definitely not a simple additive or multiplicative model.

Importance indices were calculated, however, using the input and output data following a

log transformation, as would be carded out for a multiplicative model.

The "Relative Deviation" Method (RD). This sensitivity ranking method measures the

amount of variability in the model output while varying each input parameter according

to its probability density function. This method is similar to local sensitivity methods

j with the exception that a larger sampling is made of the input distribution. The

sensitivity figure-of-merit is the "relative deviation" (RD), the ratio of the standard

deviation to the mean of the output's density function.

The "Relative Deviation Ratio" (RDR). This test statistic is the ratio of the output

distribution's relative deviation to the input distribution's relative deviation. In principle,

this sensitivity measure is very similar to the importance index calculated above. A large

value of the RDR indicates that either the output distribution varies widely or that the

input distribution is relatively narrow.

The Partial Rank Correlation Coefficient (PRCC). Correlation can be determined

qualitatively by scatter plots of input vs output values (Fig. 1), or quantitatively by

calculation of a correlation coefficient, r. The larger the absolute value of r, the stronger

the degree of linear relationship between the input and output values (IAEA 1989). One

of the problems encountered in calculating test statistics from raw data is that the data are
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not nece__adly linear. For this reason, parameter sensitivity was not calculated based on

simple correlation.

A method of reducing the effects of nonlinear data is to use the rank transformation. If

the input/output associations are monotonic then rank transformations of the input and

output values (i.e., replacing the values with their ranks) will result in linear relationships

and the rank correlation coefficient (RCC) will indicate the degree of monotonicity

between the input and output sample values (IAEA 1989). The RCC can be calculated

using the equation for simple correlations with the exception of operating on the rank

transformed data (Iman and Conover 1979).

RCCs have bee_nc_lculated for the correlations between each input parameter and the

output. Strong correlations between input parameters, however, may influence these

input/output correlations. Partial correlation coefficients (PCC) are calculated to account

for correlations among other input variables• Again, partial correlations are not

necessarily linear, therefore sensitivity rankings were not calculated using PCCs.

The rank transformation also can be applied to partial correlation as a test of

monotonicity between input and output variables while accounting for relationships

between input parameters. The partial rank correlation coefficient (PRCC) is widely

utilized for sensitivity studies. Because of the difficulty in determining correlations

between input parameters, many investigators assume that input correlations do not exist

in model evahlations. Therefore, the use of RCCs or PRCCs will result in identical

sensitivity rankings, although actual values of the correlation coefficients will differ

(Table 4).



Standardized Regression Coefficients and Rank Regression Coefficients (SRC & RRC).

The use of the regression technique allows the sensitivity ranking to be determined based

on the relative magnitude of the regression coefficients. The coefficients are indicative of

the amount of influence the parameter has on the whole model. Because of units and the

relative magnitudes parameters, a standardization process is sometimes warranted.

Standardization in regression analysis takes place in the form of a transformation by

ranks or by the ratio of the parameter's standard deviation to its mean. The rank

regression coefficient (RRC) is calculated by performing regression analysis on the rank

transformed data rather than the raw data. The RRC generally is referred to as a

standardized RRC. This terminology, however, is misleading and redundant since the

data are standardized by the rank transformation process.

Sensitivity Tests Involving Segmented Input Distributions

These statistical tests involve some form of dividing or segmenting input parameters into

two or more empirical distributions based on an associated partitioning of the output

distribution (Crick et al. 1987). In one of the two examples presented here, the median

value of the dose distribution is chosen as the partitioning point. For a given parameter,

all input data associated with a dose below the median are said to belong to one random

sample while input data associated with a dose above the median belong to a second

random sample, These two random samples are used to generate the empirical

distributions. Means, medians, variances, and other characteristics of these empirical

distributions are compared to determine whether the distributions are statistically

identical. In the second numerical example, input data are partitioned according to the

90th percentile dose. Since their results are specific to the partitioning point, the

sensitivity tests performed on the segmented data are not compared to the previous tests.
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The Smirnov Test (S). The Smimov test operates on the two empirical distributions,

Sl(x) and S2(x), generated as a result of partitioning a given input parameter distribution.

The degree of similarity, measured as the greatest absolute difference in the vertical

direction between distributions, is used to indicate the sensitivity between the input and

output values. The resulting sensitivity ranking is based on the distribution partitioning;

ranks resulting from data partitioned based on the output median value may be different

than ranks resulting from data partitioned based on the 90th percentile.

The Cramer-von Mises Test (CM). The Cramer-von Mises test is very similar to the

Smirnov test in that its purpose is to determine whether two empirical distributions are

statistically identical. The test statistic is the sum of all squared vertical distances

between the two empirical distributions.

The Mann-Whitney Test (MW). The Mann-Whitney test, also known as the Wilcoxon

test, is utilized to compare the means of two independent samples (Conover 1980). Two

distribution functions are ordered as a single sample and ranks are assigned based on the

ordering. The test statistic is the sum of the resulting ranks of data from one of the

distributions. Since the Mann-Whitney test is two-tailed (the mean of X could be larger

or smaller than the mean of Y), sensitivity ranks are based on a normalized value of T

(Hamby 1994). After normalization, the smaller values of T indicate the more sensitive

parameters since the means of the distributions show a greater difference based on the

partitioning of input data.
i

1'he Squared-Ranks Test (SR). The variances of two independent samples can be

compared using the squared-ranks test. Ranks are not based on the raw data, rather on the

absolute difference between the random sample and the sample mean. For parameter

10
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ranking purposes, the normalization procedure executed on the Mann-Whitney statistic

also is necessary with the squared-ranks statistic.

RESULTS

The sensitivity results for each test are given in Tables 5 and 6. Tables 7 and 8 present

the sensitivity measures in terms of ranks. Since one sensitivity method does not stand

out as being universally accepted as the "correct" method, a "true" sensitivity ranking has

been determined. For the sake of comparing methods, the "true" sensitivity _anking is

based on the sum of ranks over the methods shown in Table 7. The parameter with the

lowest total rank is considered to have the greatest sensitivity.

The relative performance of each method was determined by comparing the method-

specific sensitivity ranking to the "true" ranking. A "performance index" was calculated

for this comparison. The performance index is a test of trend and is the sum of the

squared-differences of the compared ranks, the T statistic in Spearman's p (Conover

1980). Table 9 shows an example of the calculation of the performance index. A smaller

index indicates a better trending of the method-specific and true rank orders. The "true"

sensitivity ranking and the method perfo_xnance ranking are shown in Table 10.

Parameters are listed in decreasing order of sensitivity and the sensitivity techniques are

listed in order of increasing performance index. Sensitivity ranks of the top ten

parameters for each method are given in the table.

Table 11 shows the ten most sensitive parameters based on the data-partitioned sensitivity

methods. Because of the nature of these sensitivity tests, their results are not compared

quantitatively to the "true" sensitivity ranking. For convenience and a qualitative view of

11
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their performance, however, the table lists the model parameters in the same order as the

"true" ranking.

The test of trend using Spearman's p also was used to calculate a performance index and

compa,'e sensitivity ranks between methods. These comparisons show which tests

behave similarly and which tests appear to be inappropriate for sensitivity analysis, at

least for the type of model considered in this work. The sums of squared-differences are

given in Tables 12 and 13. Again, smaller values indicate better trending of ranks and

greater parity between methods. As an example, the performance index for the

comparison between the +20% and PD methods is 1.5, indicating remarkable agreement

between the two rank orders. The techniques involving partitioning of input distributions

have not been compared with the other methods.

DISCUSSION

A number of sensitivity analysis techniques have been presented (Hamby 1994). These

techniques were utilized to determine relative sensitivity of parameters used in an

atmospheric tritium dosimetry model (Hamby 1993). A "true" sensitivity ranking was

determined by considering the resultant ranking order of all sensitivity tests. This "true"

ranking is the basis for comparison of sensitivity methods and for determining method

performance.

As stated earlier, the performance of each method is measured by how closely the

method-specific sensitivity rank compares to the "true" rank. The performance index (PI)

indicates that the SI and RD methods produce ranking results that are most similar to the

"true" rank (refer to Table 10). It is encouraging to see that all methods (except the

importance index) produce le same general ranking of parameter sensitivity. The II

12
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method is meant to be used with simple additive or multiplicative models; it is apparently

not appropriate as a sensitivity measure for the model used in this example. The SI

method chooses all of the top ten sensitive parameters while the RD method chooses the

top six parameters in the "true" order. The first five methods choose the top six

parameters, but not necessarily in the "true" order.

The top ten parameter sensitivity rankings determined by the partitioned dats. methods are

given in Table 11. The ranks based on the Smirnov, Cramer-von Mises, and Mann-

Whitney tests appear to be very similar to the "true" rank. The three methods produce the

three most sensitive parameters regardless of the partitioning point. Ranking results from

the squared-ranks test are much different and show greater sensitivity to the selection of

partitioning point than the others.

Table 12 provides a comparison between sensitivity methods; the PI is calculated for each

combination of ten sensitivity techniques discussed. Small values of PI indicate similar

sensitivity rankings. The partial derivative method is the most fundamental of the "local"

sensitivity analysis techniques. It is appropriate only for relatively small changes (on the

order of several percent) in the input parameter. It is not surprising, therefore, that

sensitivity ranks based on the PD and +20% methods result in very similar orders. The

standard deviation increments (+SD) can at times be quite large, therefore, the +SD ranks

are not as similar. The RDR method acts "globally", yet produces rankings similar to PD

and +_20%. As suggested by Table 10 and confirmed in Table 12, rankings obtained from

the sensitivity index (SI) and the relative deviation (RD) are quite similar. And, to a

lesser degree, the SI and RD methods produce results similar to the +SD method.

Parameter sensitivity ranks based on the rank regression coefficient (RRC) are similar to

the rankings from the SI, +SD, and PRCC techniques. The importance index (II), meant

13



for simple multiplicative models, produces results unlike any of the other methods; its

utility is questionable.

The Smirnov (S), Cramer-von Mises (CM), Mann-Whitney (MW) tests all produce very

similar parameter sensitivity rankings when partitioned based on the median and 90th

percentile model resui*.s(Table 13). It is not surprising that the rankings based on the

Smirnov and Cramer-von Mises tests are similar since the two show little difference in

their statistical power (Conover 1980). Parameters can be ranked entirely different for

tests operating on a partitioning point at the median and at the 90th percentile. For

example, the performance indices show that the rankings between the CM test at the

median and 90th percentiles are markedly different than the similaries between the CM

test and the MW test, at both partitioning points. Ranking results from the squared-ranks

(SR) tests are quite different than the other tests operating on partitioned data sets. The

variances of the two empirical distributions generated by the partitioning process

apparently are not good indicators of parameter sensitivity•

CONCLUSIONS

A number of sensitivity analysis techniques have been presented. The majority of the

techniques result in similar rankings of the top several sensitive parameters. Since the

actual ranking is not as important as the general ranking, most of the techniques would be

appropriate for sensitivity analysis of the type of model considered in this report. The

criteria most important, therefore, is the ease with which the sensitivity method can be

performed. With the proper software, all methods presented here are relatively easy to

perform. Given a moderate number of parameters and a hand calculator, however, the

sensitivity index is the easiest and most reliable sensitivity measure. The SI can be

14
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calculated without knowledge of the parameter distribution and without the use of

random sampling schemes or large computer programs.

The relative deviation (RD) is a reliable measure of parameter sensitivity. Calculation of

the RD is quite simple if a sampling technique is employed and the output values are

stored for the statistical analysis. This analysis requires a one-at-a-time dpproach,

however, and can be labor intensive. Estimating sensitivity based on the relative

deviation ratio (RDR) is not recommended since its results are less reliable and it requires

more calculational rigor than the RD.

Rank regression coefficients are easily obtained with the use of commerically available

software. An electronic spreadsheet and the SAS statistical package (SAS Institute Inc.,

Cary, North Carolina) were utilized for this analysis. The calculation of sensitivity

rankings by varying the parameter by its standard deviation (+SD) is as simple as

calculating the sensitivity index with the exception that some knowledge of the parameter

distribution must be available. Varying the input parameter by a standard amount (+20%)

is an easy test to perform, but its reliability is less desirable than the simpler SI method.

The simplest approach to sensitivity analysis is the one-at-a-time method where

sensitivity measures are determined by varying each parameter independently while all

others are held constant. These sensitivity techniques, however, become rather time

intensive with large numbers of parameters. The most fundamental of sensitivity

techniques is the direct method of using partial differentials to calculate the rate of change

in the model output with respect to a given input parameter. The one-at-a-time

techniques are valid only for small variability in parameter values and the partials must be

recalculated for each change in the base-case scenario.

15
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Crick et al. (1987) propose statistically analyzing selected input vectors by segmenting

input values based on their relationship to some critical output value (e.g., the mean,

median, or 90th percentile of the output distribution). This type of analysis provides

detailed information on parameter sensitivity based on the calculated output. The non-

parametric tests on partitioned data sets are very labor intensive yet are not necessarily

beneficial unless a particular question is to be answered regarding the sensitivity of a

parameter with respect to model output.

16
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CAPTIONS

Fig. 1 Sample scatter plot showing the relationship between one input parameter and the

model output. Plot is of individual dose from tritium exposure (all pathways)

versus tritium oxide concentration in air (Hamby 1993).
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Table I. Parameter definitions and applicable exposure pathway models.

Exposure
Description Parameter Pathway*

Average annual concentration of tritium Ca all

Effective biological half-life of tritium Te all

Mass of soft tissue in adult male M all

Average annual absolute humidity H P, L, B, M

Percent water in vegetation fw P, L, B, M

Ratio of plant HTO to atmospheric HTO Rpa P, L, B, M

Consumption rate of milk Um M

Fodder ingestion rate (milk cattle) Im M

Feed-to-milk transfer factor fm M

Fraction of fodder from pasture (milk cattle) fpm M

Milk transport time (milking to consumption) tm M

Consumption rate of beef Ub B

Fodder ingestion rate (beef cattle) Ib B

Feed-to-beef transfer factor fb B

Fraction of fodder from pasture (beef cattle) fpb B

Beef transport time (slaughter to consumption) tb B

Consumption rate of produce U,, P

Fraction of produce from home garden f,, P

Consumption rate of leafy vegetables Ul L

Fraction of leafy vegetables from home garden fl L

Annual average breathing rate of adult male BR I

*Pathwayabbreviations:P - produceconsumption;L - leafyvegetableconsumption;B - beefconsumption;
M- milkconsumption;I - inhalation.



Table 2. Parameter distribution types, ranges, and base-case values for the

atmospheric tritium dose model.

Distribution Base-Case
Parameter Type Range* Valuer Units

Ca N 3.9- 36.9 20.4 pCi m-3

Te LN 334000 - 1690000 864000 s

M LN 46000 - 107000 66400 g

H N 9.7 - 12.8 11.25 g m -3

fw T 0.77 -0.95 0.86

Rpa N 0.24 - 0.84 0.54

Urn LN 7.9 - 750 230 kg yr 1

Irn N 4600 - 22000 13140 kg yr 1

frn U 0-0.02 0.01 d L"1

fprn T 0-1 0.56

trn LN 1 - 10 3 d

Ub LN 10 - 600 81 kg yr 1

Ib N 6900 - 31000 18980 kg yr 1

fb U 0 - 0.02 0.012 d kg-1

fpb T 0-1 0.75

tb LN 2- 20 6 d

Uv LN 19 - 1200 276 kg yr-1

fv T 0.5- 1.0 0.76

Ul LN 7.5 - 300 43 kg yr-1

fl T 0.5- 1.0 1.0

BR N 3400 - 13600 8000 m3 yr-1

*rangeend-pointsareapproximately+3s fornormalandIognormaldistributions.
tbase-casevalueis notnecessarilythe meanvalueof thedistributionfrequency.



Table 3. Values of the normalized partial derivatives for the atmospheric tritium

dose model.

_ (_)=09. _(-_)=0._ _±(_)=-09.Oca OTe OM

DD(H) =.0.537 DD(__) =0.537 DD (-_) =0.537
DH Dfw DRpa

DD (-_) = 0.074 D---DD(_) = 0.074 0D (-_) = 0.074
DUm Dim Dfm

l

) = 0.074 --( = -3.5x10 "'_ (-D--) = 0.060
Dfpm Dtrn DUb

_0D(__) =0.060 DD(__) =0.060 DD (_-) = 0.060
DIb Dfb O_fpb

D__D_D(_.)= _3.7xi0. 5 DD (U_)= 0.334 D--D-D(-_)= 0.333Dtb DUv 0fv

D__DD(_____)= 0.068 D___D_D(_) = 0.069 DD (_B_DR)= 0.4640U1 0fl DBR



, o

Table 4. The correlation and partial correlation coefficients for the parameters in

the atmospheric tritium dose model.*

Parameter r p

Ca 0.513 0.684

Te 0.502 0.676

Uv 0.351 0.540

M -0.249 -0.414

BR Rpa 0.207 0.344

Ul Ub 0.122 0.203

fm 0.105 0.175

Ib f] 0.084 0.140

fv fb Um 0.077 0.128

H -0.063 -0.105

fw 0.045 0.075

tm tb -0.045 -0.075

fpb Im fpm 0.032 0.053

*thepartialscalculatedabovearethirdordermeaningthat the threehighestcorrelationsare accountedfor
in determiningthepartial.



Table 5. Sensitivity measures by parameter and method.

Parameter PD +20% +SD SI II RD RDR PRCC SRC RRC

Absolute Humidity <0.537> 1.246 1.041 0.142 0.008 0.023 0.487 <0.105><0.015><0.044>

Atmospheric Concentration 0.999 1.500 1.738 0.894 0.343 0.269 0.994 0.684 0.115 0.537
Beef Cow ingestion rate 0.060 1.024 1.031 0.074 0.193 0.011 0.052 0.140 0.059 0.044
Beef Transport Time <0.000> 1.000 1.000 0.000 0.498 0.000 0.000 <0.075><0.032> 0.008
Biological Half-Life 0.999 1.500 1.716 0.802 0.277 0.276 1.018 0.676 0.221 0.510
Breathing Rate 0.464 1.204 1.268 0.446 0.168 0.107 0.534 0.344 0.146 0.190
Feed-to-Meat transfer factor 0.060 1.024 1.132 0.097 1.307 0.020 0.042 0.1 28 <0.006> 0.081
Feed-to-Milk transfer factor 0.074 1.030 1.063 0.138 1.310 0.041 0.087 0.1 75 0.021 0.035

Frac. of leafy veg. from garden 0.069 1.028 1.049 0.034 0.073 0.006 0.044 0.140 0.033 0.055
Frac. of produce from garden 0.333 1.143 1.161 0.1 99 0.073 0.040 0.293 0.128 0.084 0.074
Fraction from pasture (beef) 0.060 1.024 1.105 0.079 0.986 0.013 0.036 0.053 <0.018> 0.039
Fraction from pasture (milk) 0.074 1.030 1.057 0.1 25 1.006 0.030 0.076 0.053 0.018 0.036

LeafyVeg. Consumption Rate 0.068 1.028 1.126 0.325 1.394 0.053 0.081 0.203 0.017 0.116
Mass of Soft Tissue <0.999> 1.500 1.323 0.568 0.075 0.140 0.995 <0.414><0.093><0.261>

Meat Consumption Rate 0.060 1.024 1.111 0.320 1.735 0.042 0.053 0.203 0.1 24 0.105
Milk Consumption Rate 0.074 1.030 1.052 0.204 2.1 88 0.036 0.041 0.1 28 0.059 0.063
Milk Cow ingestion rate 0.074 1.030 1.013 0.092 0.202 0.014 0.065 <0.053> <0.028> 0.020

Milk Transport Time <0.000> 1.000 1.000 0.000 0.577 0.000 0.000 <0.075> <0.026> <0.003>
Percent Water in Vegetation 0.537 1.241 1.093 0.1 06 0.006 0.021 0.515 0.075 0.002 0.029
Plant/Atm HTO Ratio 0.537 1.241 1.170 0.436 0.228 0.138 0.740 0.344 0.114 0.219

Produce Consumption Rate 0.334 1.143 1.380 0.673 1.823 0.1 69 0.215 0.540 0.261 0.380

*values in brackets are negative.



Table 6. Sensitivity Measures by parameter and partitioned distribution method.

Smirnov Cramer-von Mises Mann-Whitney* Squared Ranks*

Parameter Median 90th% Median 90th% Median 90th% Median 90th%

Absolute Humidity 0.094 0.059 0.746 0.069 <240599> <448366> 153 300.3

Atmospheric Concentration 0.364 0.450 18.911 8.494 1 86671 425381 <164> <295.5>
Beef Cow ingestion rate 0.104 0.099 0.844 0.234 236946 446648 1 67 <294.9>
Beef Transport Time 0.078 0.078 0.325 0.078 <243335> <449310> 1 65 299.2

Biological Half-Life 0.386 0.379 17.336 6.305 1 89875 428540 1 48 295.4
Breathing Rate 0.156 0.204 2.370 1.613 227990 439266 <164> 300.2
Feed-to-Meat transfer factor 0.060 0.080 0.221 0.146 243767 447460 165 <299.1>
Feed-to-Milk transfer factor 0.086 0.104 0.669 0.423 238357 444693 163 <300.3>

Frac. of leafy veg. from garden 0.068 0.046 0.370 0.025 242019 <449960> 1 62 <300.1>
Frac. of produce from garden 0.058 0.210 0.205 1.698 243795 438976 1 65 297.5
Fraction from pasture (beef) 0.044 0.136 0.061 0.512 249155 444533 <163> <297.2>
Fraction from pasture (milk) 0.046 0.076 0.089 0.068 249182 <449456> <163> 298.1
Leafy Veg. Consumption Rate 0.110 0.080 1.056 0.142 235605 448737 1 56 296.5
Mass of Soft Tissue 0.1 96 0.196 4.257 1.262 <220324> <441152> <160> <300.3>

Meat Consumption Rate 0.112 0.152 1.017 0.379 236456 445948 148 298.1
Milk Consumption Rate 0.072 0.174 0.365 0.767 241 759 44341 6 1 56 291.7
Milk Cow ingestion rate 0.066 0.066 0.318 0.063 <243007> 450446 <164> <299.4>
Milk Transport Time 0.062 0.114 0.264 0.326 <244307> 4461 81 163 300.4
Percent Water in Vegetation 0.058 0.129 0.138 0.361 245472 445501 1 66 298.5
Plant/Atm HTO Ratio 0.172 0.208 3.373 1.557 223509 439951 <164> <293.1>

Produce Consumption Rate 0.256 0.489 8.300 8.608 207762 425335 1 09 273.3

*values in brackets have been normalized (see text).



Table 7. Ranks of the sensitivity measures by parameter and method.

Parameter PD +_20% +_SD SI II FO _ _ SRC FRC

Absolute Humidity 5 4 1 7 1 1 2 0 1 3 7 1 5 1 9 13.5

Atmospheric Concentration 2 2 1 1 1 1 2 2.5 1 5 1
Beef Cow ingestion rate 17.5 17.5 1 8 1 8 1 5 1 8 14.5 10.5 9.5 13.5
Beef Transport Time 20.5 20.5 20.5 20.5 1 0 20.5 20.5 1 7 1 2 20
Biological Half-Life 2 2 2 2 1 2 1 1 2 2 2
Breathing Rate 7 7 5 5 1 6 6 5 5.5 3 6
Feed-to-Meat transfer factor 17.5 17.5 8 1 5 6 1 5 1 7 1 3 20 9
Feed-to-Milk transfer factor 11.5 11.5 1 3 1 2 5 9 1 0 9 1 5 1 7

Frac. from pasture (beef) 17.5 17.5 1 1 1 7 8 1 7 1 9 2 0 16.5 1 5
Frac. from pasture (milk) 11.5 11.5 1 4 1 3 7 1 2 1 2 2 0 16.5 1 6
Frac. of leafy veg. from garden 14.5 14.5 1 6 1 9 1 9 1 9 1 6 10.5 1 1 1 2
Frac. of produce from garden 8.5 8.5 7 1 0 1 8 1 0 8 1 3 8 1 0
Leafy Veg. Consumption Rate 14.5 14.5 9 7 4 7 1 1 7.5 1 8 7
Mass of Soft Tissue 2 2 4 4 1 7 4 2.5 4 7 4

Meat Consumption Rate 17.5 17.5 1 0 8 3 8 14.5 7.5 4 8
Milk Consumption Rate 11.5 11.5 1 5 9 1 1 1 1 8 1 3 9.5 1 1
Milk Cow ingestion rate 11.5 11.5 1 9 1 6 1 4 1 6 1 3 2 0 1 3 1 9
Milk Transport Time 20.5 20.5 20.5 20.5 9 20.5 20.5 1 7 1 4 21
Percent Water in Vegetation 5 5.5 1 2 1 4 21 1 4 6 1 7 21 1 8
Plant/Atm HTO Ratio 5 5.5 6 6 1 3 5 4 5.5 6 5
Produce Consumption Rate 8.5 8.5 3 3 2 3 9 3 1 3
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Table 8. Sensitivity ranks by parameter and partitioned distribution method.

Smirnov Cramer-von Mises Mann-Whitney Squared Ranks

Parameter Median 90th Median 90th Median 90th Median 90th

Absolute Humidity 1 0 2 0 1 0 1 8 1 1 1 6 4 1 9

Atmospheric Concentration 2 2 1 2 1 2 14.5 5.5
Beef Cow ingestion rate 9 1 4 9 1 4 9 1 4 21 4
Beef Transport Time 12 17 14 17 , 15 18 18 13.5
Biological Half-Life 1 3 2 3 2 3 2.5 5.5
Breathing Rate 6 6 6 5 6 5 14.5 1 7
Feed-to-Meat transfer factor 1 7 15.5 1 7 1 5 1 6 1 5 1 8 13.5
Feed-to-Milk transfer factor 1 1 1 3 11 1 0 1 0 1 0 10.5 1 9

Frac. from pasture (beef) 21 1 0 21 9 2 0 9 10.5 8
Frac. from pasture (milk) 2 0 1 8 20 1 9 21 1 9 10.5 10.5
Frac. of leafy veg. from garden 14 21 12 21 1 3 20 8 1 6

Frac. of produce from garden 18.5 4 1 8 4 1 7 4 1 8 9
Leafy Veg. Consumption Rate 8 15.5 7 1 6 7 17 5.5 7
Mass of Soft Tissue 4 7 4 7 4 7 7 1 9

Meat Consumption Rate 7 9 8 11 8 12 2.5 10.5
Milk Consumption Rate 13 8 13 8 1 2 8 5.5 2
Milk Cow ingestion rate 1 5 1 9 15 20 1 4 21 14.5 15

Milk Transport Time 16 1 2 16 13 1 8 13 10.5 20
Percent Water in Vegetation 18.5 11 19 12 1 9 11 20 1 2
Plant/Atm HTO Ratio 5 5 5 6 5 6 14.5 3

Produce Consumption Rate 3 1 3 1 3 1 1 1
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Table 9. Comparison of the "true" ranking order and the sensitivity index ranking.

"True" Sensitivity Index Squared

Parameter Ranking Ranking Difference

Te 1 2 1

Ca 2 1 1

Uv 3 3 0

M 4 4 0

Rpa 5 6 1
BR 6 5 1

Ub 7 8 1

Ul 8 7 1

fv 9 10 1

Um 10 9 1

fm 11 12 1
H 12 11 1

fpm 13.5 13 0.25

fw 13.5 14 0.25

fb 15 15 0

fl 16 19 9

Ib 17 18 1

Im 18 16 4

fpb 19 17 4

tb 20 20.5 0.25

tm 21 20.5 0.25

Performance Index: 29
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Table 10. Sensitivity ranking based on overall rank. Ten most sensitive parameters shown for each method.

"True"
Rank Parameter S! I:¢) _ +SD PR(_ RDR PD +_20% SRC II

1 Biological Half-Life 2 1 2 2 2 1 2 2 2
2 Atmospheric Concentration 1 2 1 1 1 2.5 2 2 5
3 Produce Consumption Rate 3 3 3 3 3 9 8.5 8.5 1 2
4 Mass of Soft Tissue 4 4 4 4 4 2.5 2 2 7
5 PlantJAtm HTO Ratio 6 5 5 6 5.5 4 5 5.5 6

6 Breathing Rate 5 6 6 5 5.5 5 7 7 3

7 Meat Consumption Rate 8 8 8 1 0 7.5 4 3
8 Leafy Veg. Consumption Rate 7 7 7 9 7.5 4
9 Frac. of produce from garden 1 0 1 0 1 0 7 8 8.5 8.5 8

1 0 Milk Consumption Rate 9 9.5 1
1 1 Feed-to-Milk transfer factor 9 9 10 5

1 2 Absolute Humidity 7 5 4
13.5 Frac. from pasture (milk) 7
13.5 Percent Water in Vegetation 6 5 5.5
1 5 Feed-to-Meat transfer factor 9 8 6

1 6 Frac. of leafy veg. from garden
1 7 Beef Cow ingestion rate
1 8 Milk Cow ingestion rate 9.5
1 9 Frac. from pasture (beef) 8
20 Beef Transport Time 1 0
21 Milk Transport Time 9

Performance Index 29 30 152 190 202 291 370.5 377.5 524 1404

i



Table 11. Sensitivity ranking based on "true" ranking. Ten most sensitive parameters shown for e_=ch

partitioned distribution method•
Smirnov Cramer-von Mises Mann-Whitney Squared Ranks

Parameter Median 90th Median 90th Median 90th Median 90th

Biological Half-Life 1 3 2 3 2 3 2.5 5.5
Atmospheric Concentration 2 2 1 2 1 2 5.5
Produce Consumption Rate 3 1 3 1 3 1 1 1
Mass of Soft Tissue 4 7 4 7 4 7 7
Plant]Atm HTO Ratio 5 5 5 6 5 6 3

Breathing Rate 6 6 6 5 6 5
Frac. of produce from garden 4 4 4 9
Meat Consumption Rate 7 9 8 8 2.5 10.5
Leafy Veg. Consumption Rate 8 7 7 5.5 7
Milk Consumption Rate 8 8 8 5.5 2
Feed-to-Milk transfer factor 1 0 1 0 1 0 10.5

Absolute Humidity 1 0 1 0 4
Percent Water in Vegetation 1 2

Frac. from pasture (milk) 10.5 10.5
Feed-to-Meat transfer factor

Milk Cow ingestion rate
Frac. of leafy veg. from garden 8
Beef Cow ingestion rate 9 9 9 4
Frac. from pasture (beef) 1 0 9 9 10.5 8

Beef Transport Time 10.5
Milk Transport Time



Table 12. Sums of the squared rank-differences between tests. [

Sensitivity
Test +_20% SI +_SD PD II RD RDR PRCC SRC

SI 366
+SD 552 198
PD 1.5 362 534
II 2163 1335 1433 2156

RD 393 22 180 384 1291
RDR 100 312 422 94 2164 291

PRCC 729 291 348 720 !399 263 542
SRC 1002 594 699 996 1408 603 925 414
RRC 640 181 157 645 1387 217 540 176 515



Table 13. Sums of the squared rank-differences between tests

on partitioned distributions.

Sensitivity
Test S (50) S (90) CM (50) CM (90) MW (50) MW (90) SR (50)

S (9O) 731
CM (50) 13 752
CM (90) 724 25 740
MW (50) 28 691 14 670
MW (90) 745 48 754 10 690
SR (50) 904 1311 904 1303 935 1294
SR (90) 1111 743 1114 827 1049 867 1384
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