Proceredings of rhe［nternarlonal Workshop for Elecrroweak Symmerry Beeaklng N．ov．1：－ 15.1991 firoshlma，ed．by．T．Muta

DISCLAMER

 ：

 Hitit！：

Ringwaldmania Reconsidered

Michael P. Mattis ${ }^{\dagger}$
Theoretical Division T-8. Los Alamos National Laboratory
Low Alamos. NM 87545

The exriting powibility that anomaloun beryon and lepton number violatinn might be obwervable at the aext peneration of anpercoiliciers is surfernted by an inntanton c:adoulation due to
 progrem on snveral frosin in deacribed.
[NTRODUCTION. Over two yeares ago, a startling c:alculation by Ringwald ${ }^{[4]}$ and later Espinowaliz] suggesterf the posszbility that anomalous baryon and lepton number (B and L) violation in the Standurd Model might be observable at the uproming generation of supercolliders. From the start, the reaction among thenorists hat run the gamut from anbridled oftimism to extreme skepticism. Remartably. theorists, hoday appear an clower to a consenasus on this iswue. but at least the main feld-theoretic issules are in much sharper focus. In this brief review, I will sketich wome of the recent progresw in the field. with unabawherd emphavis on my own ruceat work. ${ }^{[3.4]}$ For reawras of space. much of what foilows will net:ensiarily be in "journalintic: mode": those readers deniring more detialls are referred to the much more thoroughgoing review. Ref. [5].

$$
\begin{equation*}
q+q \rightarrow i j+3 i+n_{14} \cdot W+n_{1} \cdot \boldsymbol{} \cdot \boldsymbol{Z}+n_{14} \cdot{ }_{n} . \tag{1}
\end{equation*}
$$

whereq and l atiand for quarke and leptons, and n_{14}. n_{1} : and n_{n} wre the numbers
 rhere unita, as required by the chirad anomady at low energies. the dominant:

[^0]aswociated with instannon-mediated tunneling. But at high energies. $\left\langle n_{w} z_{n}\right\rangle$ are enormous. of order π / α_{w}. and the tunneling suppression is potentally compensated by the exponentially large phase space available for producing so many low-energy ("soft") botous. leaving an unsuppressed not result for $\sigma_{\mathrm{p}}{ }^{[6]}$ More concretely. one can show ${ }^{[7]}$
\[

$$
\begin{equation*}
O_{\omega} \sim \exp \left\{\frac{4 \pi}{\alpha_{w}} \cdot\left[-1+\frac{1}{3}(3 \epsilon)^{t / 3}+O\left(\epsilon^{\mathrm{E} / 3}\right)\right]\right\} . \quad \epsilon=\frac{\alpha_{w} E}{4 \pi M_{W}} . \tag{2}
\end{equation*}
$$

\]

So the characteristic energy at which the tunneling suppression might be overcome is the sphaleron scale $E_{\text {mon }} \sim \pi M_{w} / \alpha_{m} \approx 10 \mathrm{TeV}$, the typical scale for ncnperturbative physics in Electroweal theory.

Pictorially, the Ringwald-Espinona calculation is depicted in Fig. 1. Unfortunately, as these authors both accrowiedged, their naive instanton calcularion breaks down long before the energy approaches the interestiog range of the sphaleron. Suberquently, much progress has been made towards classifying the corrections to their calculation. The important corrections are presently understoud rin fall into three major categories:
(i) Finalstate corrections ${ }^{[0-11]}$ (Fig. 2) can be treated semic...ssically. through the construct of distorted instantonn. Nimerically, they tame the rise of σ. and ensure that the unitarity bound is not violared. [11] We will review the "valley method" for summing final-state corrertions. ${ }^{(14.12]}$ and discuss the possibility ${ }^{[13]}$ that $b_{2} f$ urciations in the valley cause a nonana!ytic halt to the smonth exponential rate of 0 , towards an obowervably iarge value.
(ii) Initial-state corrections ${ }^{[13.14 \mid}$ (r'ig. 3) are those involving the highenergy ("hard") incoming quantia. Colike final-state corrections which are charas:tenced by tree graphas and wo can be treated semiclassically. initial-state corrertions are intrinsically quantum effertis: that is. they are dominated by graphe containing nonormons aumbery (order $\mathrm{l} / \mathrm{g}^{\prime}$) of loops. Fiom a calculational foint of view. this fart wnolici appear to be extremely diseniraking. Neverthelesm. wr shall see that -despite the importiance of loops the hard line corrections. loovert at in the reght way. mught be treatable semuchicusticully. that is, by tree graphy alone $1 \cdot 6 \mid$
(iii) Malti-instanton corrections ${ }^{(1 i-i t)}$ (Fix. 4) hecome important., by defidition. when the dilute instantion gad appencination breaks down. Whether this
 is curreatly a burly debaterd question. revimwed below

$$
\begin{equation*}
A_{1}=\int \operatorname{tar} \cdot n \tag{131}
\end{equation*}
$$

for some generic complex function S. In the limit of small α, the leading exponential behavior of -4) will be given by

$$
\begin{equation*}
-\mathcal{L}_{1} \sim e^{S\left(x_{1}\right) / 1 x} \tag{t}
\end{equation*}
$$

where x_{1} is the complex saddle-point of S. and we are ignoring inessentials such as Gallsiaian prefactors. Likewise. to this approximation, an nth moment of this integral will be simply given by

$$
\begin{equation*}
A_{n} \equiv \int d \Sigma \Sigma^{n} e^{S(x) / x} \sim x_{1}^{n} e^{S\left(x_{0}\right) / \alpha} \tag{5}
\end{equation*}
$$

However. what if n is not beld fixed as $\alpha \rightarrow 0$. bitt is itself scaling like i / α ? Then Eq. (5) is no longer vaiid. Instead. one should rewrite x^{n} as $e^{n l o s f}$. and solve for the new saddle-point x_{0}^{\prime} by extremizing the full exponent including the logarithm. The analogy to n-point functions in quantum field theory is clear: x_{0} represents the malual zero-energy instanton. n (or rather. $n-2$) is the multiplicity of final-state particles, and s_{0}^{\prime} is the distorted instanton including their effect.

How to solve for the distorted instanton? In practice, the best way is with the help of the optical theorem: one extracts the imaginary part of a nonanomalous 2-2 forward wattering amplitude. restricting attention to intermediate states \therefore ompriving an instantirn-antiinstanton ([IX) pair (sep Fig. 5) $\left.\right|^{|7.11|}$ The $[\bar{I}$ attraction peads inevitably to their cigar-shaped distortion along the axis of their separalion. This distortion is governed by a classzcal equation of motion. the so-called valley equation. [1] whose solution is formally equivalent ${ }^{19]}$ to summing the infinite sett of final-state treesen such as Fig. 2. The valley equation is simply the Euler-Lagrange equation subject to a wet of Faddeev-Popov constraints on the quasi-zeromodes of the problem. namely the wale sizes ρ_{f} and ρ_{I}. relative separation R., and globad asospon orientations of I and \bar{X}, and with the boundary condition that as $R \rightarrow x$. I and \dot{I} relax to their nasual zern-energy madiszortied form. On general grounds, the "valley" configurations which solve this equation interpolate smoothly between this bonc-listiance houndary condition on one end of : aramerar spare, and the pertiorbative varinum on the other end as $R-1$ and I and \dot{l} anrihilate. |la
C. nfoctionately the exart form of the valley is unirnown in Elertroweak theary. due tio the dimensionful Figgs VEV" n. biat in pire Yang-Mills theory, which is ionformally invanant. it is Gital Given knowledge of the Yank-Mills valley. Khore and Ronrwald have propomed an interesting toy model for B volation in Elortrowak
 (i) ${ }^{(l)}$
 varem The there trems in the expoonent have the fillowing maning The tirut
is due to the entual-stiate quantia whore pefferts are otherwise suppessed in this model. This term to the Euclidean continuarion of the intiad-atate phase farmor
 and the total t momenam of the system $P_{\text {tot }}$ is taran in the cenner of mass frame. $P_{\text {r., })}=(E .0)$. The second term. $S_{\text {val }}$. is the Euclidean antion for the Yang-Mills [\tilde{I} vadley. ${ }^{1}$: The third term is an infrared cotioff on largesize (anti) instantions diae to the Higgs. 1 . 21 whose degrees of freedom are otherwise ignored.

We wish to estimate this integral in the limit $g^{2}-0$ with $E / E_{\text {what }}$ fircd. In this repime. the dominant values of ρ_{I}, ρ_{I} and R are experterd. wo scale like ${ }^{[\boldsymbol{j} \mid}$ M_{W}^{-1}. 10 that an overall factor of g^{-2} fartors smoothly out of all three berme in the exponent of Eq (6). The integrad is then ripe for a saddle-point analysis. It is pasy to show that $\rho_{I}=\mu^{\prime} i \equiv \rho$ at the saddlepoint. ${ }^{[10,11]}$ Switching to dimensionlesis varables $k=R / \rho$. $\xi=g: \rho / 2$ and ϵ as in Eq. (2), we can rewrite the exponent: : a^{11}

$$
\begin{equation*}
\frac{4 \pi}{x_{w}} \Gamma=\frac{4 \pi}{x_{*}}\left\{\epsilon x \xi-\dot{S}(x)-\frac{1}{5} \xi^{2}\right\} \tag{i}
\end{equation*}
$$

where the rescaled action $\bar{S}=\alpha_{\infty} S_{\text {val }} / 4 \pi$ is a g-independent function of vonly. The suddle-point equations read

$$
\begin{equation*}
1)=\frac{\partial \Gamma}{\partial \xi}=c r-\xi \quad 0=\frac{\partial \Gamma}{\partial r}=\epsilon \xi-\bar{s}^{\prime}(r) \tag{8}
\end{equation*}
$$

Eliminating sthen leaves

$$
\begin{equation*}
\therefore r=\dot{s}^{\prime}(r) \tag{9}
\end{equation*}
$$

A.s aren in Fif. B. Eq. (9) can be solved graphically fire the stationary value of r. whech we shall call r. . ati a function of e For large [í separations, one ran -how ${ }^{\text {re! }}$

$$
\begin{equation*}
S(r) \quad-1-\frac{5}{r^{4}}+\theta\left(r^{-5}\right) \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
r_{0}=\left(\frac{24}{2}\right)^{1 / 4} \quad \therefore=(264,15 \tag{1101}
\end{equation*}
$$

rather at a finute critical eqergy en... which is the energy for which the dashed line in Fig 6 is tangent rio the curve. Eq. (9) allows as to solve for $\epsilon_{\text {erit }}$:

$$
\begin{equation*}
\epsilon_{\mathrm{Tr\mid}}=\sqrt{\bar{S}^{\prime \prime}(0)} \tag{L2}
\end{equation*}
$$

For the particular valley action used by Khoze ar. 1 Ringwald. one finds $\bar{S}(x)=$ $\frac{0}{5} x^{2}-\frac{4}{5} x^{3}+\cdots$ so that σ_{m} sheds its exponential suppression when $\epsilon_{\text {ant }}=\sqrt{12 / 5}$. i.e. $E \approx 10 \mathrm{TeV}$. heyond the range of SSC bat still formally of order $E_{\text {unad }}$ and therefire of great interest to theorists.

How robisst is the Khoze-Ringwald model? That is. to what extent are its optimistic conclusions toy-model-independent? (on this question. the jury is still ontr. To pinpoint a potential problem. ${ }^{[3]}$ let as ponder the first-principles behavior of the action ats k - 0 . In this limit. the valley collapers into the perturbative varuum. which implies $\dot{S}(0)=0$. while stability of the perturbative vacuum further implies that $\bar{S}^{\prime}(0)=0$ and $\bar{S}^{\prime \prime}(0)>0$. However. we know of oo general principle governing the sign of the thard derivative $\dot{S}^{\prime \prime \prime}(0)$! Accordingly. let us consider 2 seemingly minor modification of Fig. 6. one in which $\bar{S}^{\prime \prime \prime}(x)$ is positive rather than negative. ats showa in Fig. i. There are anw twe critical energies in the problem. $\overbrace{1}$ and s. $_{2}$. For $e<\epsilon_{1}$. there are two solutions as before. the perturbative vacuum at $x=0$. and the B-violating solution at large x. Starting at $e=e_{1}, 2$ third solution to Eq. (\mathcal{G}) is born out of the perturbative vacuum. As e is then increased ti) e2. this middile ront migrates outward towaids the far root: they coalesce precisely when: = en. For still larger energies. these :wos roots split off into complex conjugate pairs. The B-violatizg solution can then buesaid to bave bifurcatert the perturbative vainum an probably never reached; and presumably σ_{0} always remains exponentially - uppresserti ${ }^{[3]}$

In lught of this pessimistic semario. how does one decide no physical grounds whether it in Fif. 6 or Fig. \bar{i} tibat is relevant? I would claim, otie cant. The reama w that the valley itself, and beace the valley artion as a tunction of the collerrive coortinates. is ant a weil-definet concept: ${ }^{[t I l}$ it depends on bow one chooses fio implement the Faddeev-Popov proceriure. i.e. os the "weight function" on rontiguration apare that one nases in solving the valley equation. In Ref. i.3|. It is dermonstrationd (at least for geqeralized Khoze-Ringwaid models, if note nereswarly

If cinurwe. measurable physical quantitiess such as romew wertions cannots
 resolution of thas apparent paratox is the following. The valley method only deals with t. puer of the totial prohlem. the final-state rorrertions. Once the corrections

Initial-State Corrections. The importance of initiad-state corrections to the probiem of B violation was driven home by a surprising calculation due to Mueller. ${ }^{[13]}$ He examined propagators $G(p, q)$ in the instanton background. in the relevant kinematic regime where $p \cdot q \sim\left(E_{\text {want }}\right)^{2}$ while p^{2} and $q^{2} \sim M_{W}^{2}$. The result is that the ratio of the ostensibly perurbative propagator correction. Fig. 8b. to the Ringwald approximation to the 2-point function shown in Fig. 82 goes like
 actially bigger by a factor of $1 / \alpha_{\mathbf{w}}$. Furthermore, corrections involving lonpe such as Fig. $8 c$ are bigger still. dominating Fig. 82 by 2 factor of $\alpha_{-}^{-(l+1)}, l$ being the number of losps. The dominant loop graphs turn out to be of a special type: they can all be pictured as squared trees in which the leaves from earh tree are tied together in all poseible ways. Similar statements hold for 3- and higher-point functions as well.

Let us admit the following: If a believable eatimate for σ, $:=u l y$ requires an accirate evaluation of complicated multiloop diagrams, then the problem is hopeless. The reason is that it will not be semichasicat there will exist no classical equation shat can be fed to 2 computer with appropriate boundary conditions. whowe solution will give the leading exponensial behavior of σ_{g}. (Remember that clasicical equations only sum tree graphs.) Conversely, if the problem of high-energy B violation can ultimately be solved. it miast be the case that Mneller's loops. looked at the righr way. can be repronluced by tree graphs alone. I will now review a promising indication that this is. in fact. the case. 41

For convenience. in order to isolate the effect of high-energy lines, we will ant allow the midtiplicity to grow large. Instead. let in focis on an exchunve processs. say 2-3 as pictured in Figs. 2-11, in the limit that a 6 . of energy has been pumperd into the system. so that all the $p_{1} \cdot p_{1}>M_{W}^{2}, i \neq j$. The awociated 5 -point function. tireated in Ringwadd approximation, is stown in Fig. 9: the leading and subleading "rortertions" (artisally, at already noted. they are bigger than Fig. 3) are shown in Figs. 10 and 11. respertive!y For explirit formulae corresponding to therse fiyures. the reader is refertert in Ref. [13]: the important point emphasized by Mieller is that loops and trees roaspire to give a relatively simple result

Now lett tas repeat this ralculation in a different. and seemingly more awkwarif way, using an effertive artion approarb. |4| We pvalisate the n-point function

$$
\begin{equation*}
\int D A \cdot A^{\alpha_{1} \cdot b_{1}}\left(p_{1}\right) \quad A^{A_{n} b_{1}}\left(p_{n}\right) e^{. J|A|} \tag{1.3}
\end{equation*}
$$

hy whitiong the fields into rlamical and tiurtiating componentas, and making the replamerant

Tevfor "xpanding the logarithmathen leala tio an infinitie number of new intoraction

the usual action $S[A]$ which we likewise expand about $A_{\text {inat }}$. Note that unlike usual vertices. m-point blobs $\sim g^{m}$ from $\left(A_{\text {nate }}\right)^{-1 m}$. Another difference is that blobe are real whereas the usual vertices come with the standard factor of i attached. Finally. they are local in momentum-space. not position-space. Evaluating the npoint functiou (13) now becomes equivalent to calculating the effective action in the presence of the new interactions generated by
and exponentiating the result. The contributions to the effective action analogons to Figs. 10 and 11 are pi tured in Figs. 12 and 13. respectively.

Of course. if carried out exactly, both calculational methods must precisely agree. The nontrivial obeervation is this: ${ }^{|4|}$ If. following Mueller. one only keeps terms contributing to the leading exponential behavior of σ_{0}, then in the effective action approach it suffices to keep the tree graphs alone. Figs. 12a. 13a and 13b. Equivalently, the luop contributions to the effective action all cancel to these orders. Granted. this has only been shown explicitly at the noe-loop level. but the tentative moral is: despite Mueller's lonps, the problem of high-energy B violation appears to be semiclawical after all.

Multi-Instanton Corrections. Thins far. we have restricted our instanton calculations to the dalite gay approximation. That is, we have considered pertirbation thenry about 2 single instanton I and neglected $I \bar{I} I$. $I \bar{I} I \bar{I} I$. etc. Indeed. wost of the workers in B violation who have speculated on the role of such multi-instanton configurations have asoument that these canoot be significant until surh energies that single-instantion amplitides themselves have gotten observably large (if that ever happeas), at whirh energies the multi-instantons help to unitanize $\sigma_{0}{ }^{\text {(6.15] }}$ Thus intuition is ingrained from quantum merhanical examples such as the donbie well. where bark-and-forth transitions between the two wells can be nexperted until the energy rearbee the potential barmer $E_{\text {.unal }}$. Which is precisely the point where the oneinstanton tunneling amputide loses its exponentiad suppreswion. If thus is also the case in field thenry. then multi-instantons ran be safely ignored fir pirpoues of andwenag the fundamental guestion. Does σ, bernose obarervably large at arrelerator energies"'

In light of this intuition iome the aroprosing claims by Zakharovilsi and Magkore and Shifman ${ }^{[17]}$ (ZMS) that multi-instanton efferes bernme importiant long before the noe-instanton amplitude has grown large The hasic argiment is eanily -ummarized ZMS use aff efferitum Larringian approarh in which (anti)inatantion interartinna are erpemsenteri hy efferitumnonemnormalizable multipartirle vertiom : ali In this larguage a firwaril $2 \rightarrow$ amplitucte will have multi-instanton enntributions
 approprisie coutiong

Now attach a tunceling suppressiou factor of $e^{-3 \pi / \infty_{0}}$ to each effective vertex. and attach the exponentially growing part of σ_{p} to earh "bond connecting an I to an \bar{I}. For example. truncating Eq. (2) at the $e^{* / 3}$ order. we would associate the bond with $\exp \left\{\frac{4 \pi}{x-} \cdot \frac{1}{2}(3 \epsilon)^{4 / 3}\right\}$. So the $I \bar{I}$ and $I \bar{I} I \bar{I}$ contributions to σ_{0} (Fig. 5 and Fig. t) go like $\exp \left\{\frac{4 \pi}{\alpha_{\infty}}\left[-1+\frac{1}{2}(3 \epsilon)^{4 / 3}\right]\right\}$ and $\exp \left\{\frac{4 \pi}{\alpha_{\omega}}\left[-2+\frac{3}{2}(3 \epsilon)^{4 / 3}\right]\right\}$. respectively. The simple observation of ZMS is that the latter exponential reaches unity when the former is still tiny. $e^{-4 \pi / 3 a=}$. In fact. iterating the same bond function. one easily finds tiat the chain consisting of an infinite number of $I \bar{I}$ pairs reaches unity when the one-instanton result is $e^{-2 F / a}$-the geometric mean of the few \rightarrow few $\left(\sim e^{-4 \pi / \sigma_{-}}\right)$and the many \rightarrow many (~ 1) anomalous croses sections. Obviously this argument is independent of one's choice of bond function. so long as it grows with energy.

What is the consequence of this proposed breakdown of the dilute instanton gas approximation? In principle, the sum of all multi-instanton contributions could be either suppressed or unsuppressed. ZMS guese that they assemble into a gemmetric series. e.g.

$$
\begin{align*}
& 0 \sim \exp \left\{\frac{4 \pi}{\alpha_{w}}\left[-1+\frac{1}{2}(3 \epsilon)^{4 / 3}\right]\right\}-\exp \left\{\frac{4 \pi}{\alpha_{w}}\left[-2+\frac{3}{2}(3 \epsilon)^{4 / 3}\right]\right\} \\
& +\exp \left\{\frac{f \pi}{\alpha_{m}}\left[-3+\frac{5}{2}(3 e)^{4 / 3}\right]\right\}-\cdots \tag{16}\\
& =\frac{1}{2} e^{-2 \pi / x} \operatorname{sech}\left\{\frac{2 \pi}{x_{\omega}}\left[-1+(3 \epsilon)^{4 / 3}\right]\right\}<e^{-2 \pi / a} .
\end{align*}
$$

in which rase B violation is never obeervable. The alternating signs in (16) presumably rome from counting a Gaussian factor of i for each unstable mode of the: multi-instanton configuration. If this is eventually confirmen, it mould paint a siriking picture of the structure of the electroweak vacuum. or at leas: of the enmpoopnts.s thereof that couple to high-energy modes: 2 dense "liquid" of instantons as in QCD. bust in stark contrast to QCD. a liquid in which anomalous procenses are exponentially suppreserd as zero temperature.

The ZMS scenano is intriguing, but at this writing is yet to be bolstered by a compelling calculation. For one thing, it is based on nearest-neighbor two-body interartions. whereas at bigh energies the typiral II separation measured in units of it is small. and consequently next-nearent-neighbor as well as throe- and higher-hody foress should play a role. Furthermore. coulti-instanton ronfigurations such as Fif. $\&$ admut a richer clans of trem-graph enerertions than drees Fig. 5. Finally there is the question of how one rutes these diagrams to reveal purely \boldsymbol{B}-violating amplitudes. Whether. when these ssiues are all incorporateit it will still be terie that the multiinatiantion rontributions ratch up to the onematianton amplitude when the latiter is tiny wa rompletely open quastion

Fortunately, the Khoze-Ringwald model discussed earlier generalizes in a natural way to the case of molti-instantons and so serves as a laboratory for examining the ZMS scerario. ${ }^{(अ)}$ * To proceed. we need to establish one picce of notation. Let us split op the rescaled $I \bar{I}$ valley action \bar{S} from Sec. 2 into an "infinite-distance ${ }^{-}$ piece and a "potential" piece.

$$
\begin{equation*}
\bar{S}(x)=1+V_{I I}(x) . \tag{17}
\end{equation*}
$$

The short- and long-distance boundary conditions on the valley are then $V_{I I}(0)=$ -1 and $V_{I f}(x)=0$.

How to generalize Eq. (17) to the case of $I \bar{I}$ chains snch as Fig. 4? Let us go beyond the nearest-neighbor approximation of ZMS (though still preserving the 2-body nature of the interaction for convenience), and postulate 2 multi-instanton action

$$
\begin{equation*}
\bar{S}^{(n)}(x)=n+V_{I I}^{(n)}(x)+V_{I I}^{(n)}(x)+V_{I I}^{(n)}(x) . \tag{18}
\end{equation*}
$$

Here n denotes the aumber of $I \bar{I}$ pairs in the chain. and the various 2 -body potentials are defined as

$$
\begin{equation*}
V_{I I}^{(n)}(x)=\sum_{k=1}^{n}(2 \pi-2 k+1) V_{I I}((2 k-1) \chi) \tag{19}
\end{equation*}
$$

and (by $I \rightarrow \bar{I}$ symmetry)

$$
\begin{equation*}
V_{I I}^{(n)}(x)=V_{I I}^{(n)}(x)=\sum_{n=1}^{n-1}(n-k) V_{I I}(2 k x) . \tag{20}
\end{equation*}
$$

The sum in Eq. (19) accounts for the $2 n-1$ nearest-neighbor III pairs. the $2 n-3$ next-aext-nearest-aeighbor [\bar{I} pairs. and s forth. and similarly for Eq. (20). The long-distance boundary condition $\dot{S}^{(n)}(x) \rightarrow \pi$ as $x \rightarrow x$ is antomatically satisfied simply by letting $V_{I I}$ and $V_{I I} \rightarrow 0$ as $\ell \rightarrow x$. Conversely. if the short-distance boundary condition reflecting the collapse of the $[\tilde{I}$ chain into the perturbative vacumm. $S^{\prime n}(x) \rightarrow 0$ as $x \rightarrow 0$. is to be valid for all 7. one requires

$$
\begin{equation*}
V_{I t}(0)=-V_{I I}(0)=1 . \tag{21}
\end{equation*}
$$

We then tiake as our generalization of the Khoze-Ringwald exponent (i) the following:

$$
\begin{equation*}
\Gamma^{\prime n}=(2 n-1) \kappa x \xi-\bar{S}^{\prime n}(x)-\frac{1}{2} n \xi^{2} . \tag{22}
\end{equation*}
$$

[^1]The $2 n-1$ multiplying the first term measures the distance in units of R between the endpoints of the chain. assuming an equally-spaced chain for convenience. While the n in front of the third term reflects the additional simplifying assumption that the (anti)instanton scale sizes are all equal.

The critical energies $\epsilon_{\text {erit }}^{(s)}$ at which the n-instanton, n-antiinstanton cross sections $\sigma_{0}^{\prime \prime \prime}$ overcome their exponeatial suppression are easily solved ior exactly as before. by matching shopes at the origin as per Fig. 6. A few minutes' algebra gives: ${ }^{[3]}$

$$
\begin{align*}
\epsilon_{c r i t}^{(n)} & =\left[\frac{n}{(2 n-1)^{2}} \sum_{k=1}^{n}\left\{(2 k-1)^{2}(2 n-2 k+1) V_{I I}^{\prime \prime}(0)+8 k^{2}(n-k) V_{I I}^{\prime \prime}(0)\right\}\right]^{1 / 2} \\
& =\left[\frac{n^{3}}{3(2 n-1)^{2}}\left(\left(2 n^{2}+1\right) V_{I I}^{\prime \prime}(0)+\left(2 n^{2}-2\right) V_{I I}^{\prime \prime}(0)\right)\right]^{1 / 2} . \tag{2}
\end{align*}
$$

Therefore. assuming non-perverse ${ }^{*}$ choices of $V_{I I}^{\prime \prime}(0)$ and $V_{I I}^{\prime \prime}(0)$, the ordering of the critical energies is

$$
\begin{equation*}
\epsilon_{a r i t}^{(1)}<\epsilon_{\mathrm{amt}}^{(\mathrm{a})}<\epsilon_{\mathrm{amt}}^{(1)}<\cdots \tag{24}
\end{equation*}
$$

which is precisely retersed from the ZMS scenario. and consistent instead with the naive intuition that says that multi-instanton contributions can indeed be ignored visi-kis the one-instanton sector.

This admittedly toy-model calculation suggests that the ZMS effect is an artifact of the nearest-neighbor approrimation. Similar conclusions are reached from the low-energy; end by Khoze. Kripiganz and Ringwald. [18]

In summary. we have examined several current controversies in the study of high-energy B violation. and. in all honesty, have emerged with more incisive questions than derisive answers. to wit: Does the true Electroweak valley bifurcate? Is the process semiclassical? Are multi-instantons important? And of course, the key question that continues to confound us. Does the \boldsymbol{B}-violating cross section overcome aty expenertial suppression at a few times the sphaleron energy?

[^2]
References

[1] A. Ringwald. Nucl. Phys. B330. 1 (1990).
[2] O. Espinosa. Nucl. Phys. B343. 310 (19:0).
[3] N. Dorey and M. Mattis. Los Alamos preprint LA-UR-91-3892. Physics Letters B (to appear).
[4] M. Mattis. L. McLerran and L. Yaffe. Washington preprint UW/PT-91-14 (1991).
[5] M. Mattis. -The Riddle of High-Energ] Baryon Number Violation" [revised and expanded version]. Physics Reports (in press).
[6] L. MrLertan. A. Vainshtein and M. Voloshin. Phys. Rev. D42. 171. 180 (1990).
[7] V. Zakhirov. TPI preprint T :-MINN-90/7-T.
[8] P. Arnold and M. Mattis. Phys. Rev. D42. 1738 (1990): Phys. Rev. Lett. 66. 13 (1991).
[9] L. Yaffe. in Baryon Number Violation at the SSC? Proceedings of the Santa Fe Workshop. eds. M. Mattis and E. Mottola. Singapore. World Scientific. 1990.
[10] S. Khlebnikov. V. Rubatov and P. Tinyakov. Nocl. Phys. B350. 44 (1991).
[11] V. V. Khoze and A. Ringwald. Nucl. Phys. B355 351 (1991); Phys. Lett. $B 259$ 106 (1991).
[12] A. Yung. Nucl. Phys. B297, 47 (1988): I. Balitsky and A. Yung. Phys. Lett. 168B. 113 (1986).
[13] A. Mueller. Nucl. Phys. B348, 310 (1991); Nacl. Phys. B353. 44 (1991).
[14] X. Li. L. McLerran. M. Voloshin and R. Wang. TPI preprint TPI-MNN-91/16T (1991).
[15] H. Aoyama and H. Kiruchi. Phys. Letr. B247. 75 (1950): Phys. Rev. D43. 1999 (1991).
[10̄] V. Zakharov, Nucl. Phys. B353. 683 (1901): Max Planck preprint MPIP.AE/PTh 91-11 (1991).
[17] M. Maggiore and M. Shifman. TPI preprints TPI-MINN-91/2+T and 91/27-T (1991).
[18] V. Khoze. J. Kripfganz and A. Ringwald. CERN preprint CERN-TH.6311/91.
[19] P. Arnold and M. Mattis. Phys. Rev. D44. 3650 (1991).
(20] G. t Hooft. Phys. Rev. Di4. 3432 (1976): D18. 2:99(E) (1978).
[21] I. Afferk. Nucl. Phys. B191. 445 (: 281).
[22] S Kblebnikov and F. Tinyaico: Dhys. Lett 269B. 14y (1991).
[23] M. Shifman. A. Vainshteic and V. Zakharov. Nucl. Phys. B165. 45 (:080).

1. $\mathbf{A} 2 \rightarrow n$ amplitude in "Ringwald approcimation." meaning that $\Phi \rightarrow$ © n for fach fold Φ in the problem. This subaricution is denoted by a danhed line terminaciag in a nircie.

 ion bun:hatiound.

2. A simple initial-ytace correction to Fig. 1.

3. \ddagger yimple multi-inuanton chain contribution to $a 2 \rightarrow 2$ for mard scattering maplitude, which confributes to σ_{0} via the oprical theorem. I (f) denoce the eflective (anti)ineranton-induced verticen.

4. Iforwarid wiactimag ampliended with an If intermerdiaten stach.

5. The graphical solution of Eq. (9). The slope of the danhed line is the square of the reaciled

 $x=0$. The latefer does aoc concribute to the imapinary pert of the amplitude aw it is stable, while the

$: 1$

 reme" (terepexs).

 have been (omt).

6. The there (thiv multuphative

al

b)

1:
 rffertive interaction. Eq. 1.5)

121

(1)

5)

b)

(e)

(h)

(6)

(i)

il

[^0]:

[^1]: " Ia what followy. will ignore the specter of valley bifurcations raised earlier. the phalomphy beigg that if the sugle-nastifating routribution by itself always remaias "xpuneatially suppremed, then the isnne of multi-instantions in mont.

[^2]: * Requiring that ite rortusidative varunm be ant only stationary bint aloo stable for all n implien $V_{t}^{\prime \prime \prime}(0)>0$ and $V_{f}^{\prime \prime \prime}(0)+V_{r i}^{\prime}(0) \geq 0$. in which rase the argument of the square
 firyt inequality in (2t) is empersent.

