LA-UR -2-..
LA-UR--92-76

DE92 007716

ZI% 8.armTs NAP Tt LT A, 5 l0Er3ted v TR _rwersity 31 Caiiora for ‘fe unied Sistes Jeasrt™ment 31 Etergy Lnder tartract N Cans.EnG 6
" . - ' PR 4+ B

TITLE
Ringwaldmanla Reconsidered

’ _
AUTHOMS) Michael P. Mattls

Theoretical Division T-8
Los Alamosg National Laboratory
Los Alamos, NM R7545

UEMTTED T -
0o Proceedings of rhe [nternatlonal Workshop for

Elecrroweak Symmetcy Breaking Nov. 12 - 15, 199]
Hleoshima, ed. bv. T. Mata

DISCLAIMER

Fhix report wis prepued man acenunt oF work sponsared by an aganey s the Uoauterd Sites
Cyovernment. Nether e U oted States Gavarmnent nor oy ageney theraal aoe anv af there
anplovers, mades e vaeeame oaxpreess e anphel, e ssumens iy eti Tuihlite ar respongi
et e aeenewe completeness, or ket udiess b ane ainrmahnn. i his, I LITH I
s -lnclosed, o cepresentn e e ke vl Aol opiege oveder nvensf i, Retor
qee et e ar Lec e ammerennn weduel, grmess u eree e s ade me sidemark,
WHLE G e o W Nervee foen o erenancly cansine woompit e andoree e econt:
nembGic.on e et v che Wl At Cvermpent oo at adem s erenl e e
Ul rnens. et ot et e e Wttt St e e

WMt G Ve anent o e et erenl

By wemgtietem 0oe o yteg e uANArE SEAGNZER ‘POUPR L T Iover e cemne § COrTeciLEive CIVEItY TeR IS 0 Juaner 1wty ce
N RAreRy e T Tt it it o i ey 'a 1o so 't . 1 JovernmeM gui oowes

te o A AR NATIT A A R, @RI R R JUDIATNEY dBRNIY e a1 8 Y oRrinrer der 'Re susDItEe 1 e L Iegm et g,

H_ A Las Alamos National Laboratar,
_@g A @m© Los Alamos.New Mexico 8794

LT LT N - - Wb RISV A
R Y 'Y DIS T Jualp JEEEERRRL C ' l.,' I " -~
| ‘ b
| - B


About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution.  Original color illustrations appear as black and white images.



For additional information or comments, contact: 



Library Without Walls Project 

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544 

Phone: (505)667-4448 

E-mail: lwwp@lanl.gov


LA-UR-92-xxxx

Ringwaldmania Reconsidered

MICHAEL P. MaTTIS!

Theoretical Division T-8. Los Alamos National Laboratory
Los Alamos. NM 87545

The exciting pomsibility that anomalous baryon ind lepton number violation might be
observable at the next generation of supercolliders is suggwated by aa instanton calculation due to
Ringwald and Espincea. Herw, the current concroversial status of these claims w disenssed. and
progress on saveral froaue s described.

[NTRODUCTION. Qver two years ago. a startling calculation by Ringwald!!
and later Espinowal®l suggested the poswibility that anomalous baryon and lepton
number (B and L) violation in the Standwd Model might be observable at the
npcoming generat.on of supercolliders. From the start, the reaction among theorists
has run the gamut from uabridled optimism to extreme skepticism. Remackably.
theorists today appear no closer to a cogsensus on this wsue. but at least the
main field-thenretic imwues are in much sharper focus. [n this brief review, [ will
sketch some of the recent progress in the field. with unabashed emphasin cn my
own recent work. 4 For reascns of space. much of what follows will necessarily be
in “urnalistic mode”: those readery desiring morce details are referred to the much
more thoroughgoing review, Ref. [5].

The inclusmve 2 — n processes one has in mind are of the form

qrq—=Tj + 3 + ne W + n,cZ + n, o (1)

where ¢ and [ staad for quarks and leptons, and n, . n, and n, are the numbers
of W Z' and Higgs bowons created. Note that B and [ are eich violated by
three unifs, as cequiret by the chiral anomaly At low energies. the dominant
bhoson multiplicities n, ) are small. and the inclusive B-violating ctons section
g e TN T with vy = g5/ 4r = 1)) Thi e the typical exponential suppeession

" Sapported by aJ R, Oppenheimer Followship [nternet. makbvtpwna lanl. gov



associated with instanton-mediated tunneling. But at high energies. (nw :4) are
enormous. of nrder T/, . and the tnnneling suppression is potentially compensated
by the exponentially large phase space available for producing so many low-energy
(“soft™) bnsons. leaving an uasuppressed not result for d,.[‘s‘ More concretely. one
can showl!™

-l?l‘ +/4 - 6/3, (X'E B
g ~ Fxp{; [-1+%(3e) / +(’?(e“3)]} . €= M (2)

So the characteristic energy at which the tunneling suppression might be overcome
is the sphaleron scale E_,  ~ "My /xe = 10TeV. the typical scale for ncnpertur-
bative physics in Flectroweak theory.

Pictorially. the Ringwald-Espinosa calcnlation i3 depicted in Fig. 1. Un-
fortunately. as these anthors both acknowledged. their naive instanton calcula-
tion breaks down long before the energy approaches the interesting range of the
sphaleron. Subsequently. much progress has been made towards classifying the cor-
rections to their calculation. The important corrections are presently understood
to fall into three major categores:

(i) Final-state correctionsl®='! (Fig. 2) can be treated semic.assically.
through the construct of dustorted instantony. Numerically. they tame the rise of 7y
and ensure that the unitarity bound is not violated.'!! We will review the “valley
method” for summing final-state corrections.!!'-'3  and discuss the possibility!™!
that hifurcations in the valley canse 2 nonana'ytic halt to the smooth exponential
nise of 74 towards an observably iarge valuve.

(ii) Initial-state corrections!!?'¥ (¢ig. 1) are those involving the high-
energy ( “hard™) incoming quanta. Unlike final-state corrections which are charac-
terized by tree graphs and so can be treated semiclassically. initial-state corrections
are intrinsically quantum effects; that is. they are dominated by graphs containing
enocmous aumbers (order 1/¢°) of loops. From a calculational point of view. this
fact would appear to be extremely discouraging. Nevertheless. we shall see that -
despite the importance of loops - the hard line courrections. looked at in the right
way. might be treatable yemzclassically. that s, by tree gruphy alone 14

(iii) Multi-instanton corrections!!’~!"1 (Fig. 4) hecome importans. by
defipition. when the dilute instanton gas approximation breaks down. Whether this
oeevies befors 87T e afterdtd W the ope-instanton cesult has a chance S5 grow large
® cureently a hotly debaterd question. reviewerd helow.

Let us now delve a Lttle further into each of these three topues.

FinaL-STATE CORRECTIONS  To understand why 16 s that the backre-
wton of che large number of final-state quanta produced in the process (L) mot
Jdistort the tnstantHn. consder the triivial analogy of a one-dimensional integral

,J‘) = / :t.r r“;: £l (.‘)



for some generic complex function S. [n the limit of small . the leading exponential
hehavior of 4,; will be given by

_.10 -~ es(ﬂn)/"’ (4)

where rg 1s the complex saddle-point of S. and we are ignoring inessentials such
as Gaussian prefactors. Likewise. to this approximation. an nth moment of this
integral will be simply given by

A = /d.:z"est”/" ~ r}eStzal/a (3)

However. what if n is not held fixed as @ — 0. bat is itself scaling like
i/a’ Then Eq. (5) i3 no longer vaiid. Instead. one should rewrite ™ as ¢™'94% and
solve for the new saddle-point r{ by extremizing the full exponent includiag the
logarithm. The analogy to n-point functions in quantum field Lheory is clear: =,
represents the usual zero-energy instanton. n (or rather. n - 2) is the multiplicity
of final-state particles. and rj is the distorted instanton including their effect.

How to solve for the distorted instanton? In practice. the best way is with
the help of the optical theorem: one extracts the imaginary part of a nonanomalous
2 — 2 forward scattering amplitude. restricting attention to intermediate siates
comprising an instanten-antiinstanton (I7) pair (see Fig. 5).1711 The IT attraction
leads inevitably to their cigar-shaped distortion along the axds of their separation.
This distortion s governed by a clavsical equation of motioa. the so-called valley
equation.!'*! whose solution is formally equivalent!!? to summing the infinite set of
final-state trees such as Fig. 2. The valley equation w simply the Euler-Lagrange
equation subject to a set of Faddeev-Popov constraints on the quasi-zeromodes of
the problem. namely the scale sizes p; and pp. relat’ve separation A. and global
wospin orientations of [ and [. and with the boundary coadition that as A — x,
[ and [ relax to their nsual zero-energy undistorted form. On general grounds. the
“valley” coafigurations which solve this equatioa interpolate smoothlv hetween this
long-distance boundary condition on one end of * aramerer space. and the pertur-
hative vacunm on the other end as B — 0 and [ and [ aarihilate ('

Unfortunately. the exact form of the valley s unknown in Electroweak the-
ary. Jdue to the dimeasionful Higgs VEV ». bat in pure Yaag-Mills theory, which is
conformally invanant. it . /'* Given knowledge of the Yang-Mills valley. Khoze and
Ringwald have proposed an interesting toy model foe B violation in Electroweak
theoey whick we now review  The Khoze-Rungwald model w0 summaruzed by the
following »xpeessonittl

Ty - [m /:erturtl/)r wxp L ER = Syqtpr. np Ry = 10003 s ity (6)

Hers the integration ouns cver the eelevant quasi-zeco modes {p, 00 B of the []
systery The theee terms in the sxponent have the following meaning  The Hest



is dne to the mefzalstate quanta. whose effects are otherwise suppressed 1n this
model. This term s the Euclidean coatinnarion of the intial-state phase factor
ptPlc e ptPc 2 ghere pp (L) is the center of the (antiiinstanton, R = rp — ;.
and the total +momentum of the system P, is tak:n in the center of mass frame.
P... = (E.0). The second term. S,.. i3 the Euclidean action for the Yang-Mills I
valley. !4 The third term is an infrared cutoff on large-size (anti)instantons due to
the Higgs. "2l whose degrees of freedom are otherwise ignored.
We wish to estimate this integral in the limit ¢° — 0 with £/E_, _ fixd.
In this regime. the dominant values of p;. p; and R are expected o scale likeld!
MG' so that an overall factor of g~ factors smoothly out of all three verms 2
the exponent of Eq. (6). The integral is then ripe for a saddle-point analysis. It i3
easy to show that p; = p; = p at the saddlepoint. (1211 Switching to dimensionless
vanables vy = R/p. £ = gvp/2 and ¢ a3 in Eq. (2). we can rewrite the exponent
.‘1.3"‘1]
e o e - 50 - L) (7)
Yoy Yoy =
where the rescaled action § = e Svay/ 47 18 a g-independent function of y only. The
sauldle-point equations read

‘}r ‘:'F S/
0 = ¥=F"—E' ():aTzef--b(")_ (8)
Eliminating £ then leaves
v = Sy . (9)

Asseen in Fig 6. Eq. (9) can be solved graphically for the staticnary value
of y. which we shall call y.. as a function of «. For large [[ separations. one ran
<how! 1+

-

6 )
— + O™ (10)

5-'(\,) -1 - "

-

the first ferm on the nght-hand side being just twice the rescaled instanton action
[n this hmut. Eq (9 becomes 2 ye = 247y} w0 that

\.:(—,) NI PRSI (L1)

We then eecover the leading expoaen.al growth of 7, L (2) from (7). (1)) and
1 Note that Lluwrge ¢ coreespoads to low energy

Conversely, as energy inceeases v, teads to zerol hener &, and indesd the
Fall exponent [ tend o zeen as well and 7y averromes (hs expoaential suppreession
Chis plienomenon bappens not asymptotically as ¢ — ~ aw one mught think hut



rather at a finute critical energy ¢..,. which is the energy for which the dashed line
in Fig. 6 is tangent to the curve. Eq. (9) allows us to solve for e, :

T VS”(O) (12)

For the pu'r'u ular valley action used by Khoze ari Ringwald. one finds S(y) =
3 \ - —x + .- 30 that 74 sheds its exponential suppression when ¢, = /12/5.

£ = OTeV beyond the range of SSC bat still formally of order E_,_ . and
r.herefure of great interest to theonsts.

How robust is the Khoze-Ringwald model? That is. to what extent are its
optimistic conclusions toy-model-independent? On this question. the jury is still
out. To pinpoint a potential problem, 3l let us poader the first-principles behavior
of the action =3 y — 0. In this limit. the valley collapses into the perturbative
vacuum. wlnch implies $(0) = 0. while stability of the perturbative vacuum further
implies that §'(0) = 0 and §”(0) > 0. However. we know of o general principle
governing the sign of the shird derivative S"'(0)! Accordingly. let us consider a
seemingly minor modification of Fig. 6. one in which §/(v) is positive rather than
negative. as showa in Fig. 7. There are now twe critical energies in the problem.
¢ and €. For ¢ < «. there are two solutions as before, the perturbative vacuum
at v = 0. and the B-violating solution at large y. Starting at « = «;, a third
solution to Eq. (%) is boru out of the perturbative vacuum. As ¢ is then increased
to €. this middle root migrates outward towacds the far root: they coalesce precisely
when ¢ = «y. For still larger energies. these “wu roots split off into complex conjugate
pairs. The B-violating solntion can then be said to have bifurcated the perturbative
vacunm 18 probably never reached: and presumably 74 always remains exponentially
suppressed

[n Lght of this pessimistic scenario. how does one decide on plysical grounds
whether it is Fig. 6 or Fig. 7 that is relevant? [ would claim. one cant. The reason
s that the valley itself. and hence the valley action as a function of the coller-
tive coordinates. is not a weil-defined conenpt:('*! it depends on how one chooses
to implement the Faddeev-Popov procedure. i.e.. on the “weight function™ oa roo-
iguration space that one uses in solving the valley equation. In Ref (3] it is
demonserated (at least for generalized Khoze-Ringwaid models. if not necessanly
tor the teue Electroweak valley which s unknown) that dufferent chowes of wewght
Functiong allow one to swntch at unll between the two seenarioy. Fig. 6 and Fig. 7

OFf course. measurable physical quantities such as cross sertions caanot
depead on mathematical coaventions such as one’s chotce of weight function. The
resnl'1ti0n of this apparent paradox is the following. The valley method only deals
with o prere of the total problem. the final-state corrections. Once the coerections
wyolving the high-energy tnitial-state particles are added (n. the total answer will
tedoer] be independeat of weight function B3N Qg the initial-state corrections
teuly cannot he avowdedd aad (h 10 to thewe that we next turn our aktention



INITIAL-STATE CORRECTIONS. The importance of initial-state corrections
to the probiem of B violation was driven home by a surprising calculation due to
Mueller.'3 He examined propagators G(p.q) in the instanton background. in the
relevant kinematic regime where p-q ~ (E_ . )? while p?> and ¢° ~ M3 . The result
is that the ratin of the ostensibly periurbative propagator correction. Fig. 8b. to
the Ringwald approximation to the 2-point function shown in Fig. 8a. goes like
YD q_ll;“'. Therefore. rather than being smaller by a factor of a,. Fig. 8b is
actnally bigger by a factor of 1/ae. Furthermore, corrections involving loops such

as Fig. 8¢ are bigger still. dominating Fig. 8a by a factor of ag''*!'. | being the
number of loops. The dominant loop graphs turn out to be of a special type:
they can all be pictured as squared trees in which the leaves from each tree are
tied together in all possible ways. Similar statements hold for 3- and higher-point
functions as well.

Let us admit the following: If a believable estimate for oy truly requires
an accurate evaluation of complicated multiloop diagrams, then the problem is
hopeless. The reason is that it will not be semiclassical there will exist no classical
equation that can be fed to a computer with appropriate boundary conditions.
whose solution will give the leading exponential behavior of 74. (Remember that
classical equations only sum tree graphs.) Conversely, if the problem of high-energy
B violation can ultimately be solved. it must be the case that Muneller's loops.
looked at the right way. can be reproduced by tree graphs alone. I will now review
a promising indication that this is, in fact. the case.!¥l

For convenience, in order to isolate the effect of high-energy lines. we will
not allow the multiplicity to grow large. [nstead. let us focus oa an ezclusnve process,
say 2 — 1 an pictured in Figs. 9-11. in the limit that a lc: of energy has been pumped
into the system. so that all the p,-p, 3 M3, i # j. The associated 5-peint function.
treated in Ringwald approximation. is shown in Fig. 9: the leading and subleading
“corrections” (actually. as already noted. they are bigger than Fig. 9) are shown in
Fige. 10 and L1. respectively For explicit formulae corresponding to these fifures.
the reader v referred to Ref [1}]: the important point emphasized by Mueller is
that loops and trees conspire to give a relatively simple result.

Now let us repeat this calculation in a different. and seemingly more awk-
wari way. using an »ffective action approach ¥ We avalnate the n-poiat function

/D.-t A* ¥ (py) ARt (pa) etSTA (13)

by <plitting the fields nto rlassical and tluctuating components, and making the
replarement

T 3 [T N ", o b, & .““‘ ol (p|)
ARt () = A% (p) = 0 AN (p) = A% p) explog [ 1+ -‘———“',‘_( ) (14)
. p.

ant.

Taylor »xpanding the logarithms then leads to an infinite number of new interaction
vertices which we shall denote graphically by thick blobs  Other vertices come from



the usual action S[A] which we likewise expand about 4,5,.. Note that unlike
usual vertices. m-point blobs ~ g™ from ( A5, )”"". Another difference is that blobs
are real whereas the usual vertices come with the standard factor of i attached.
Finally. they are local in momentum-space. not position-space. Evaluating the n-
poiut functiou (13) now becomes equivalent to calculating the effective action in the
presence of the new interactions generated by

n ,ﬁ..‘u.ﬂ.(p‘))
! l+ —4—] . 15
2w (14 s (5)

and exponentiating the result. The contributions to the effective action analogous
to Figs. 10 and 11 are pi tured in Figs. 12 and 13. respectively.

Of zourse. if carried out eractly. both calculational methods must precisely
agree. The nontrivial observation is this:i*l If. following Mueller. one only keeps
terms contributing to the leading exponential behavior of o4, then in the effective
action approach it suffices to keep the tree graphs alone. Figs. 12a. 13a and 13b.
Equivalently. the loop contributions to the effective action all cancel to these orders.
Granted. this has only been shown explicitly at the one-loop level. but the tentative
moral is: despite Mueller's loops. the problem of high-energy B violation appears
to be semiclassical after all.

MULTI-INSTANTON CORRECTIONS. Thus far. we have restricted our in-
stanton calculations to the diute gas approximation. That is. we have considered
perturbation theory about a single instanton [ and neglected I[[I. ITII]. ete. In-
deed. most of the workers in B violation who have speculated on the role of such
multi-instanton configurations have assumed that these cannot be significant until
sich energies that single-instanton amplitudes themselves have gotten observably
large (if that ever happens). at which energies the multi-instantons help to unita-
nze 74.%'3 This intuition is ingrained from quantum mechanical examples such
as the doub.e well. where back-and-forth transitions between the two wells can be
aeglected nnti the energy reaches the potential barner £, . which is precisely the
point where the one-instanton tunneling amputude loses 1ts exponential suppression.
[f this is also the case in field theory. then multi-instantons can be safely ignored
it piirposes of answening the fundamental question. Dows 74 become observably
large At acrelerator energies”

[n light of this iatuition come the surprwing claims by Zakharov!!'%  and
Magore and Shifman/!’l (ZMS) that multi-instanton effects berome importaat long
hefore the one-instanton amplitude has grown large The basic argument iy easily
simmanzed. ZMS use at offective Lagrannan approach in which (anti)instanton
Inftrractions are eepemsented hy effective nonrenormalizable multiparticle verti-ms {2
[n thie language. a forward 2 — 2 amplitude will have multi-instanton conteibutions
“uch an ww shown in Fig 4 .74 s thena oxteacted via the optical theorem through
Appeprusie cuttings



Now attach a tunreling suppression factor of e 7"/~ to each effective ver-
tex. and attach the exponentially growing part of o4 to each “boud™ connecting an

I to an I. For example. trunczting Eq. (2) at the «*/3 order. we would associate the
AT

bond with exp {—: : %(36)"'/3}. So the IT and ITI] contributions to 74 (Fig. 5 and

x

Fig. 4) go like exp { iz [— 1+%(.‘k)*/3] } and exp {if [-2+%(3€)‘/3] } respectively.
The simple observation of ZMS is that the latter exponential reaches unity when
the former is still tiny, e~#*/39=  In fact. iterating the same bond function. one
easily finds that the chain consisting of an infinite number of /1 pairs reaches unity
when the one-instanton result is e~2"/?~ —the geometric mean of the few — few
(~ e~%*/@~) and the many — many (~ 1) anomalous cross sections. Obviously this
argument is independent of one's choice of bond functior. so long as it grows with
energy.

What is the consequence of this proposed breakdown of the dilute instan-
ton gas approximation? In principle. the sum of all multi-instanton contnbutions
could be either suppressed or unsuppressed. ZMS guess that they assemble into a
geometric series. ¢.4..

g ~ exp{:—:[—lﬁ-%(:!e)‘”]} - exp{:—r[—2+%(3e)‘“]}

+ exp{%’;r-[_3+%(3€)4/a]} - (16)
= %e--:r/-!-sech{z—w —1+(3€)‘/J]} < e~/a=

in which case B violation is never observable. The alternating signs in (16) pre-
sumably come from counting a Gaussian factor of ¢ for each unstable mode of
the multi-instanton configuration. If this is eventually confirmed. it would paint a
striking picture of the structure of the electroweak vacuum. or at least of the com-
poaents thereof that couple to high-energy modes: a dense “liquid™ of instantons
as in QCD. but in stark contrast to QCD. a liquid in which anomalous processes
are exponentially suppressed at zero temperature.

The ZMS scenano is intniguing. but at this writing is yet to be bolstered by
a compelling ralculation. For one thing. it is based on nearest-neighbor two-body
infteractions. whereas at high energies the typical I separation measurerd in units of
p 18 small. and consequently next-nearest-neighbor as well as three- and higher-hody
forees should play a role. Furthermore. multi-instaaton configurations such as Fig. 4
admit a richer class of tree-graph corr<rtions than dees Fig. 5. Finally there s the
(question of how one cuts these diagramas to reveal purely B-violating amplitudes.
Whether. when these 1ssues are all incorporated. it will still be true that the multi-
instanton contributions ratch up to the one-instanton amplitnde when the latter (3
nny. 14 a completely open question



Fortunately, the Khoze-Ringwald model discussed earlier generalizes in a
natural way to the case of multi-instantons and so serves as a laboratory for exam-
ining the ZMS scerario.¥ * To proceed. we need to establish one piece of notation.
Let us split up the rescaled I] valley action S from Sec. 2 into an -infinite-distance™
piece and a “potential™ piece,

S(x) =1+ Vipx) . (17)

The short- and long-distance boundary conditions on the valley are then V;;(0) =
—land Vip(x)=0
How to generalize Eq. (17) to the case of I] chains such as Fig. 4? Let us
go beyond the nearest-neighbor approximation of ZMS (though still preserving the
2-body nature of the interaction for convenience), and postulate a multi-instanton
action
M) =+ VR0 + VP + ViR - (18)

Here n denotes the aumber of IT pairs in the chain. and the various 2-body poten-
tials are defined as
Viz'(x) = Z(?n-2k+1)V”((2k—1)x) (19)
h=1
and (by [ — [ symmetry)

n=1

Vir'(x) 110 = Z(ﬂ"k)Vn(ﬂ:x). (20)

h=1

The sum in EqQ. (19) accounts for the 2n — 1 nearest-neighbor [ I pairs. the 2n -3
next-next-nearest-neighbor /] pairs. and s. forth. and similarly for Eq. (20). The
long-distance boundary condition $*'(y) — n as x ~ x is automatically satisfied
simply by letting V7 and Y,y — 0 as y — x. Conversely. if the short-distance
boundary condition reflecting the collapse of the [] chain into the perturbative
vacuum, §'"'(y) — 0 as ¢ —~ 0. is to be valid for all 7. one requires

Ti(0) = =Vi0) = 1. (21)
We then take as our geueralization of the Khoze-Ringwald exponent (7) the follow-

Ing:
" = 2n~1)exé -85 (v - ‘"'s . (22)

* [a what follows. we will ignare the specter of valley hifurcations raised earlier.
the philosophy heing that if the mingle-wnstsaton roatribution by itself always remains
~xpunentially suppressed. then the 1eane of multi-instantons is moot.



The 2n — 1 multiplying the first term measures the distance in units of R between
the endpoints of the chain. assuming an equally-spaced chain for convenience. while
the n in front of the third term reflects the additional simplifying assumption that
the (anti)instanton scale sizes are all equal.

The critical energies ¢... at which the n-instanton. n-antiinstanton cross
sections cr""‘ overcome their exponential suppression are easily solved for exactly
as be%lre. by matchiug slopes ot the origin as per Fig. 6. A few minutes’ algebra
gives:

[ n 1/2
er = (—2?-':-1—)3 2 {(21: - 1)¥(2n — 2k +1)V[}(0) + 8k*(n — k)V,”,(O)}]
. k=1

nd

L_3(27‘; -1)2

1/2
((2n? + 1)V}3(0) + (20 - 2)V,”,(0))] _

(23)
Therefore. assuming non-perverse® choices of V;;(0) and V}(0). the ordering of the
critical energies is

eV < ¢? < YV < ool (24)

ars “eme ams

which is precisely reversed from the ZMS scenario. and consistent instead with the
naive intuition that says that multi-instanton contnbutions can indeed be ignored
vis-a-vis the one-instanton sector.

This admittedly toy-model calculation suggests that the ZMS effect is an
artifact of the nearest-neighbor approximation. Similar conclusions are reached
from the low-energy end by Khoze. Kripfganz and Ringwald.(!®

In summary. we have examined several current controversies in the study of
high-energy B violation. and. in all honesty, have emerged with more incisive ques-
tions than decisive answers. to wit: Does the true Electroweak valley bifurcate? s
the process semiclassical? Are multi-instantons important? And of course, the key
question that continues to confound us, Does the B-violating cross section overcome
ity erpenential suppression at a few timea the spheleron energy?

* Reqniring that tke pertn-iLative vacunm be aot only stationary tut also stable [or
all n impliew $75(0) > 9 and V{3(0) +87,:9) 2 0. in which case the argument of the square
root 10 (23) 19 always positive [o the gartow window —V75(0) € V(;(0) < —QV"I(()). the

W
Arat iequality 1o (24) 18 reversed.



(1]
2]
[3]

[5]

(6]
[7]
8]

References

A. Ringwald. Nucl. Phys. B330. 1 (1990).

O. Espinosa. Nucl. Phys. B343, 310 (1990).

N. Dorey and M. Mattis. Los Alamos preprint LA-UR-91-3892. Physics Letters
B (to appear).

M. Mattis. L. McLerran and L. Yaffe. Washington preprint UW/PT-91-14
(1991).

M. Mattis. “The Riddle of High-Energy Baryon Number Viclation™ [revised
and expanded version|. Physics Reports (in press).

L. McLerran. A. Vainshtein and M. Voloshin. Phys. Rev. D42. 171. 180 (1990).
V. Zakh.rov. TPI preprint T~ -MINN-90/7-T.

P. Amold and M. Mattis. Phys. Rev. D42. 1738 (1990): Phys. Rev. Lett. 66.
13 (1991).

L. Yaffe. in Baryon Number Violation at the SSC? Proceedings of the Santa Fe
Workshop. eds. M. Mattis and E. Mottola. Singapore, World Scientific. 199).
S. Khlebnikov. V. Rubakov and P. Tinyakov. Nocl. Phys. B350. 441 (1991).
V. V. Khoze and A. Ringwald. Nucl. Phys. B355 351 (1991): Phys. Lett. B259
106 (1991).

A. Yung. Nucl. Phys. B297, 47 (1988): I. Balitsky and A. Yung. Phys. Lett.
168B. 113 (1986).

A. Mueller. Nucl. Phys. B348. 310 (1991); Nucl. Phys. B353. 44 (1991).

X. Li. L. McLerran. M. Voloshin and R. Wang. TPI preprint TPI-MINN-91/16-
T (1991).

H. Aoyama and H. Kikuchi. Phys. Lett. B247. 75 (1990): Phys. Rev. D43,
1999 (1991).

V. Zakharov. Nucl. Phys. B333, 633 (1991); Max Planck preprint MPI-
PAE/PTh 91-11 (1991).

M. Maggiore and M. Shifman. TPI preprints TPI-MINN-91/24-T and 91/27-T
(1991).

V. Khoze. J. Kripfganz and A. Ringwald. CERN preprint CERN-TH.6311/91.
P. Arnold and M. Mattis. Phys. Rev. D44. 3650 (1991).

G. 't Hooft. Phys. Rev. D14. 3432 (1976): D18, 2!99(E) (1978).

[ Afleck. Nucl. Phys. B191. 445 (1981).

S. Khlebnikov ard P. Tinyakov. Phys. Lett 269B. 14y (1991).

M. Shifman. A. Vainshteic and V. Zakharov. Nucl. Phys. B165. 45 (1980).



1. A 2 — n amplitude in “Ringwaid approximation,” meaning that @ = @i for rmch fleid ¢ in che
prablem. This subsatitution is denoted by a dashed line terminacing in a <ircle.

- —_—
3. A tvpical inal-srate correction to Fig. L. Solld linen henenforth denote propagacors in the nsfan
tan haaiground,



4. \ simple multi-inscanton chain contribution to a 2 — 2 for #ard scattering amplicude, which con-
tributes to @, via the opcical theorem. [ ([) denace the effective (aati)inscanton-induced vertices.

—i

3. A forward scactering amplicnde with an [ intermediate stace.



8. The graphical solution of Eq. (9). The slope of the dashed line is the square of the rescaled
energy ¢. ¢4 loses it exponential suppresion at ¢ = «_,,, where the curves are tangent. For a < 4.,
there are always two roots: the purely 5-violating root ac ¢ > 0. and the perturbacive vacuam ac

v = 0. The laster does 20t contribute to the imaginary past of the amplitude as it is stable, wiule che
fo mer always haa precisely one unstable mode which <ives a factor of : by asalytic col .auation.

:'- \ vitwtion of Fig. 8. 1 which the chued dwrivat va of the VAllny u fion ip now pomeve 4 ¢ = 00
OW thiere are two crtead snecws, ¢, and ey, oindieased. Sen text for dimensmmt.



Lliree contnbunions to the 2-paint fuacron. & The 2-poiat fuaction in Ringwald apprommation.
h. The peopagator correction to & ¢ A @multi-loap concnburion, which can he viewed as 3 “squared
Free” (Yow rext).

O ~
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o Q

)

v o pene Mneton o angwad approximation.



10. The leading Ofay, ) multiplicative contnbution fto Fig, 9 (#ace two instanron factors of ¢!
have heen loat).

LL. The theme Otvd, - mulfipheative coresetions to Fig. 9



al . b e

12. The Oty concnburtions 1o the effective action approach. Thick blob verticey come from the
effective interaction. Eq. 1 13).

cer s

‘a) rhi )
vd) 1) ()
K) th i)

. U T
13 The Ovd, | contnbafions w the stfective ation approwch Diagrama wich only aae biol are
neceawdnly b-exponental and e goe thawn



