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ABSTRACT

Theoretical models for describing electromagnetic production of pions
are reviewed. Recent results of N(7,x), N(e,e'x) and d(e,e'x)
calculated from a Hamiltonian model are presented.

Extensive work on the electromagnetic production of pions on

the nucleon has been carried out since the publication of the

pioneering work by Chew, Goldberger, Low and Nambu 1 (CGLN).

In this talk I will first give a brief review of the main theoretical

approaches developed in the last 34 years, and then discuss a

recently constructed Hamiltonian model which can be applied to

investigate all aspects of physics that is to be discussed at this

conference.

Basically there exist three main approaches. The first one is

the exter.sion of the CGLN model based on the dispersion-relation

formulation. The dispersion-relation approach was subsequently __ _-,_- _.

applied by Fubini, Nambu and Wataghlin 2 to study _l!_t_ _ i!_
electroproduction of pions. It makes use of the properties of " :"-_ _

unitarity, analyticity and crossing symmetry to express the

photoproduction amplitudes in terms of xN scattering amplitudes

and the Born terms calculated from a Lagrangian. Schematically,

the fixed-t dispersion relation for the photoproduction amplitude is

of the following form DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
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where s, t and u are the familiar Mandelstam variables, and AB°rn

can be calculated from the usual pseudoscalar coupling Born terms.

In the static cutoff Chew-Low mode:, the partial-wave solution MK

of Eq. (1) was found in Ref. 1

MBorn
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" where f_ is the _N partial-wave amplitude. It is, however, a very

i difficult numerical task to find the general solution of-the dispersion
relation Eq. (1), mainly because it is a singular integral equation

and no solution exist unless some fall-off behavior of the amplitude

at large s is assumed. One also has to assume that the multipole
expansion of all invariant amplitudes is convergent outside the

physical region (Icos(cosS)l>l) at all energies. This is certainly not

true for the amplitudes A2 and A 5. Nevertheless, numerical

I methods were developed and the solutions for describing the data up

to the A energy region were found, as reviewed by Donnachie 3. It

is however not clear how to interpret the multipole amplitudes

i obtained from these earlier works, since the assumptions that were
made could be inconsistent with the modern theory of strong

interactions. It is an interesting question to explore in the future.

The second approach is the effective Lagrangian method which

utilizes Chiral symmetry. By gauging an effective Lagrangian to

include coupling to the electromagnetic fil_ld, the pion

photoproduction mechanism is calculated with pertl:,rbation theory in

the tree-approximation (only keeping the terms w;.thout loop

integrations). The final rN interaction is accounted for by using

i
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Watson's theorem. This requires that the phase of each

photoproduction multipole amplitude is identical to the rN scattering

phase in the same eigenchannel. This approach was thoroughly

investigated by Olsson and Osypowski 4. They emphasized that the

pion photoproduction mechanism should be calculated with

pseudovector coupling, as required by Chiral symmetry. They also

found that a satisfactory agreement with data can only be achieved

when the exchange of vector mesons, and an explicit treatment of

the A degree of freedom are included. Their approach was further

developed by Wittman, Mukhopadhyay and Davidson 5, as well as

by Sabu_is 6. The model developed by Blomquist and Laget 7 can be

considered as a variation of the effective Lagrangian approach.

Here it is necessary to point out that in the two approaches

described above, the final rN interaction is described only by the

rN scattering phase shifts. Within their theoreticaJ frameworks, no

procedure is defined to calculate the off-shell amplitudes which are

indispensable in nuclear calculations. Clearly we have to go beyond

these two approaches in order to study electromagnetic production

of pions on nuclei, which will be the focus of future experiments.

We now turn to describe the third approach. It is a

Hamiltonian formulation which is closely related to two recent

developments in intermediate energy nuclear physics: (1) the

construction of a nuclear Hamiltonian with _,N and A degrees of

freedom - especially as arising in the extensive studies of the rNN

system 8, (2) the study of nucleon structure and _N scattering within

the chiral bag model 9 or its variations. It is assumed that the rN

interaction Hamiltonian consists of a _N ._ N,A vertex and a _N

potential. The electromagnetic parts of the Hamiltonian are defined

in terms of matrix elements calculated from a Lagrangian using

perturbation theory. The first attempts to construct such a

Hamiltonian model were made by Tanabe and Ohta 10, who

considered only the rN P33 channel, and independently by Yang 11,



who considered ali s- and p-wave amplitudes. These two works

concentrate uIt the determination of magnetic M1 and electric E2

transition strengths of the h excitation. The extent to which the

experimental observables can be described by these two models is

not reported. The most ambitious attempt is the one developed by

Araki and Afnan 12. They employed the diagrammatic method to

derive a set of coupled xN-7N unitary equations from the cloudy

bag Lagrangian. No numerical results based on their approach have

been reported so far.

In a collaboration with Nozawa and Blankleider, we have taken

the third approach to constructl3,14 a Hamiltonian model which is

aimed at achieving the following goals: (1) it is unitary and gauge

invariant, (2) it can describe most of the existing data of 7N *. _N

and N(e,e'_)N reactions below the 2x-production threshold, (3) it

accounts for the magnetic Ml, electric E2 and charge form factors

oi: 5 .+ 7N excitation, while at the same time being consistent with

the current understanding of hadron structure, (4) it can be

straightforwardly used in investigating intermediate energy

electromagnetic interactions with two- and many-nucleon systems.

In the past two years, the model has been improved in several

directions. In the remainder of this talk I will describe the main

ingredients of the model and then report on the status of the model

and its application in the study of (e,e'x) reaction on deuteron and

heavier nuclei.

We started with an effective Lagrangian describing interactions

among fields of the nucleon, delta, pion, rho, and omega mesons.

The form of the interaction Lagrangian is constrained only by

various well-established symmetry properties of _N and 7N reactions.

Among them, chiral symmetry is the most important one if the

threshold properties of rN and 7 N interaction can be described in

the tree-diagram approximation. Our interest is, however, not

limited in the energy region near the threshold. We want to

describe all data from the threshold up to the A excitation energy



region. It is therefore necessary to go beyond the lowest order tree-

diagram approximation. Historically, such attempts have been made

to study rr and rN scattering. It was found that the number of

phenomenological parameters needed to regularize the loop

integrations and to describe the data increases as the considered

energy increases. Furthermore, the resulting amplitudes are too

cumbersome for nuclear calculations. The situation is similar in the

recent chiral perturbation theory calculation.

The Hamiltonian formulation can be considered as an alternative

to these higher order calculations based on an effective Lagrangian.

The main advantage is that it is consistent with the existing

nuclear models and hence can be directly applied for nuclear

calculations.

Starting from an effective Lagrangian, it is straightforward to

calculate the lowest order Feynman amplitudes for the

photoproduction of a _N state from a nucleon. In a Hamiltonian

approach, one simply assumes that these amplitudes with all

hadronic external legs put on their mass shell are the lowest order

terms in a perturbation expansion of the scattering amplitude

defined by a Hamiltonian of the following form

H : Hs + f [J#Born(X)+ J#A(X)]A#(x)dx (2)

where A# is the electromagneticfield,J_ are currentoperators.
The hadronic interactions are defined by

Hs : Ho + Hs (3)

with

! _.

Hs _ f_N,B + V_N,_N (4)
B=N,A

where H o isthe sum of freeenergy operatorsfor _, N and A,

f_N,B is arN .-_ B vertex interaction, and V_N,_ N is a

nonresonant rN potential.
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Fig. 1. Photoproduction mechanisms.

The current operators are defined by the Feynman amplitudes

given in Fig. 1. Amplitudes of Fig. l(a)-(f) are traditionally called

the "Born terms'. The matrix elements of the nonresonant current

operator of Eq. (2) are defined by

<_ _'lJ_°rn(6) l_>= [ A2 1A2 + _2 x [Born terms] (5)' " '_ (a)- (f)
_...

where _ is the _N relative momentum and h is a cut-off parameter.

The form factor in Eq. (5) is introduced to assure that the current

operator is integratable. All parameters of the nonresonant terms

(Fig. l(a)-(f)) are taken from the literature.

The A current is defined by Fig. l(g). Its matrix element can

be written as

<_AIJ_(O)I_> = /-,_(PA)r#vu(p) (6)

when _#(PA) is the Rarita-Schwinger spinor. We follow Jones and

Scadron 16 to define the 7N 4--_A vertex as

F#v : GM(q2) KM#v+ GE(q2) K_v + G(q2) Kc/_v" (7)



Note that the form factors GM(q2), GE(q2 ) and Gc(q2 ) in Eq. (7)

are bare form factors which get dressed by pions in the presence of

the hadronic interaction H s defined in Eq. (2). The kinematic

factors K#_ in Eq. (7) are given in Ref. 15.
We mention here that the current matrix elements defined

above involve complicated momentum-dependences which are

expected to be essential in understanding the data at high energies.

We retain all of these features in our formulation of the problem.

No nonrelativistic expansion of the_e matrix elements is made.

With the dynamics defined by Eqs. (2)-(4), the photoproduction

amplitude is of the following form

where e# is the photon polarization vectors and X(-) is the _N

scattering state. It is determined from the hadronic Hamiltonian

<X (-) I = <_'1[1 + (E) 1
]_,_, T_N,_N Eo- H + ic] (9)

where T_rN,lr N is the _rN scattering operator defined by

I I 1 I

T_N,_N (E) = Hs + Hs E - Hs + i_ Hs (I0)

Explicitly, we have in the center of mass frame

<X(-) IJBorn (0)I_>

<_' Ia_o rn (0) I _>
: <_lJ_orn(O) l_> + fd_'T,N,,N(_,_',E)

E-E I_')-E _I')+ic

(ll.a)

~ 1

<X(-)IJ_ (0)I_> = f_rNA (_) E - moA - ]CA(E)<PAIJ_ (0)I_>

(11.b)

|
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Fig. 2. Graphical representation of Eq. (11).

where E is the total c.m. energy, moA is the bar mass of the A, F_A

is the A self-energy, and Y_N,A is the dressed xN_-_A vertex. Both

I:A and _'xN,A are calculated from the interaction H_. Equation (11)
is represented diagrammatically in Fig. 2.

The gauge invariance requires that the current matrix elements

satisfy the following current conservation condition

<'x]_,_,(-) lj#(0)_l>q : 0 . (12)

In a Hamiltonian formulation, the above cundition does not follow

automatically from the dynamics defined by Eqs. (2)-(11). This

originates from that the current matrix elements involved in the

integration of Eq. (11) can be off-energy-shell (E#EN(_')+Er(_')) ,

and hence there is an arbitrariness in defining the time component

of the intermediate state in calculating Eq. (5) from each diagram

in Fig. 1. For example, the time component of the intermediate

nucleon of Fig. l(a) could De p_ = qo + EN(_) or

Er(I_) + EN(_'). The choice has to De made such that Eq. (12) is

satisfied. We have found that this can be easily achieved by

equating the intermediate momenta to the sum of the external

I
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momenta according to the momentum conservation at the photon

vertex;i.e.P6 - qo q- EN(_) for Fig l(a). The detailshave been

given explicitly in Refs. 13 and 14. In the model of Yang, he uses

the kinematics which will occur in the application of the model in

two-nucleon calculations to define a procedure. The gauge

invariance condition was not addressed by Tanabe and Ohta 10.

We now turn to describe how the model is constructed in

practice. The first step of course is to determine the hadronic

Hamiltonian H_. This is done by carrying out the fits to the rN

phase shifts. The second step is then to adjust the cutoff h and

the strengths of 7N _'+ A vertex functions GM(0 ), GE(0 ) to get the

best description of "all" observables of 7N+rN reactions, or the

deduced multipole amplitudes. The q2-dependence of form factors

are then determined from the study of N(e,e'r) processes. The

determination of these form factors are in fact thc main goal, since

they contain the information of the structure of N and /_. We

emphasize here that this cannot be achieved in a simple approach

just using the Watson theorem to treat the involved _N dynamics.

For simplicity, separable forms of VrN,_ N are assumed in all
earlier work 10-14. This is of course theoretically very unsatisfactory,

since VrN,_ N plays an important role in determining the off-shell
behavior of the _N t-matrix in the second term of Eq. (ll.a). This

term is call the final-state-interaction (FSI). The importance of

using a correct off-shell t-matrix was first emphasized by Yang.

For example, the threshold of Eo_t_ amplitudes of the 7P + _Op

reaction can vary from -1.92 to -t-0.64 by using different separable

V_N,r N models, which are phase-shift equivalent in the low-energy

region. The focus of our effort in the last two years is to

construct a meson-exchange _N model from an effective Lagrangian.

The procedure is to find a three-dimensional reduction to derive the

scattering Eq. (10) from the rN Bethe-Salpeter equation. This is

being done in a collaboration with Yang's group at Taiwan National

University. At the present time, we 16 are able to get a good fit to
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Fig. 3. The _N s-wave scattering results from the Pearce-Jenning
rN model. 6 is the rN phase shift and s+- =_a3/2. -+ al/2
are the combinations cf two s-wave scattering lengths.

the _N Sll, S31 and P:_3 phase shifts. But the fits to the other

p-waves are only very qualitative. In a separate collaboration with

Pearce and Nozawa, we 17 have succeeded in casting the meson-

exchange _N model of Pearce and Jenning 18 into a form consistent

with Eq. (10). An important feature of the Pearce-Jenning model is

that it has the correct chiral limit, which is illustrated in Fig. 3.

As the pion mass approaches zero, the chiral limit of the s-wave

scattering lengths s+ + s_ * 0 is obtained. At higher energies, the

FSI calculated from this meson-exchange model is very different

from our previous calculation using separable VrN,r N. The best fit

to all differential cross sections of 7N'_rN are achieved by setting h

= 550 MeV, GM(0 ) = 3.065 and GE(0 ) = 0.07. These are
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Fig. 4. The differential cross section of 7p*x°p for using the
meson-exchange _N model (solid curves) and separable xN
model (dashed).

significantly different from the values A = 600 MeV, GM(0 ) = 2.28

' and GE(0 ) = 0.07 determined in our earlier workl3,14 using the

separable rN model. In general, two calculations give an equally

• good description of the differential cross section of charged pion

production. The main difference is that the meson-exchange model

. gives a significantly better account of the data of 7P + _Op

processes, as illustrated in Fig. 4. Note that the results in the low-

|
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energy regions Er _ 156.17 eV are scaled by a factor of 0.8 and

hence our meson-exchange calculations do not give a quantittive

account of the data near the threshold. It is, however, interesting

to note that our Eo_t_ amplitudes (Fig. 5) are not too different from

that deduced from the Mainz data. The structure near 152 MeV is

due to the cusp effect. It can be calculated naturally in our

Hamiltonian approach, as discussed in detail in Ref. 19. I will not

further discuss pion photoproduction near the threshold. This will

be discussed by the next speaker. I o_ly want to point out that

we now have concluded that because of the approximations, such as

the use of a three-dimensional reduction, involved in constructing

the Hamiltonian model from a chiral invariant Lagrangian, our

approach cannot be used to explore the interesting question

concerning the low-energy theorem. We are more interested in

obtaining a model which can account for very intensive data from

the threshold up to the A region. It then can be used to explore

nuclear dynamics.
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In Figs. 6-g, we display some selecte:d results from our extensive

calculations published in Refs. 13, 14 and 17. We see that our

model can give a good account of the existing data. An important

feature of our approach is the calculation of the FSI from the off-

shell rN t-matrix. This is illustrated in Fig. 10. We see that a

very large part of the calculated cross section is from the FSI term.

This further indicates the importance of developing a theoretically-

sound _N model.

!
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In Fig. 11, we show the fit to amplitudes in the P33 A-

excitation channel. The dashed curves are from the Born term Eq.

(ll.a) which is sensitive to the choice of V_N,r N. The fits (solid

curves) are obtained by adjusting GM(0 ) and GE(0 ) of Eq. (7).

The large difference between the solid and dashed curves explains

why the values of GM(0 ) and GE(0 ) determined from our recent

meson-exchange calculation are significantly different from our earlier

results. We emphasize that only when the meaning of the

dynamical content of V_rN,rN is well defined, such as the meson-

exchange model, the physical meaning of the extracted forms of

GM(0 ) and GE(0 ) can be interpreted.
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Further work with Pearce and Nozawa is underway to pin

down the forms of GM(q2 ), GE(q2 ) and Gc(q 2) by carrying out

extensive calculations of various spin observables of both the photo-

and electroproduction of pions. Our results will be published in the

near future.

In Fig. 12, we show our prediction of p(e,e'x °) for the

NIKHEF kinematics. It is seen that it has a strong q2-dependence.

Comparison with the data will be interesting. In Fig. 13, we

compare our recent calculations of p(e,e'_) with the data from
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Saclay 20. We see that both the & term and the Born term are

important in determining the transverse component of the cross

section. However, the longitudinal part is completely dominated by

the Born term. It was suggested in Ref. 20 that by choosing

kinematics that _o is in the direction of the virtual photon, the

lon£:_udinal cross section is dominated by the pion-exchange term,

and hence it can be used to determine the pion form factor. This,

however, is a very model-dependent statement. Within our model,

the pion-pole term does not dominate the cross section at all angles,

as illustrated in Fig. 14.
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Only very limited progress has been ma_e in applying the

model to study reactions on nuclei. At the present time, we just

finished the study of the d(e,e'r-F) reaction. Our results are

compared with the data 21 in Fig. 14. We see that the predicted

shape and magnitudes are in excellent agreement with the data.

However, the position of the plate is about 5 MeV off the data.

The reason is unclear at this time. The most difficult part of this

calculation is the final nn scattering. This is done by using the

l
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• NN model developed 22 at Argonne. In Fig. 15, we show that the

nn final-state interaction then can give significant contribution to

the d(e,e'_r+p) cross section.
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Our calculations of d(e,e'x) is the first step toward the

application of our model to investigate nuclear dynamics. We are

forming a collaboration to apply the model to study 3He(e,e'x) and

A(e,e'NN). Both involved large-scale calculations, and it will take

us some time to obtain results for these complicated coincidences

kinematics.

To end my talk, Z would like to say that the theoretical effort,

in particular the manpower, needed to explore new physics from the

forthcoming precision data is currently very thin. Any rigorous

calculations of the processes involving multi-particle final-states

and/or polarizations are beyond the capability of a single person or

even a group of two or three people. It is exciting to see new

facilities, such as NIKHEF, Bates and CEBAF, will soon provide us

with new data; but the data will serve no purpose unless the

funding agencies start no___wto build the needed theoretical effort.
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