
IIII1_""°°°°°'_'_

JPL Publication93-15

System Software and Tools for High
Performance Computing Environments
A Report on the Findings of the Pasadena Workshop:
April 14-16, 1992

Thomas Sterling, USRA CESDIS
Paul Messina, California Institute of Technology, Jet Propulsion Laboratory
Marina Chen, Yale University
Frederica Darema, IBM T. J. Watson Research Center
Geoffrey Fox, Syracuse University
Michael Heath, National Center for Supercomputing Applications
Ken Kennedy, Rice University
Robert Knighten, Intel Supercomputer Systems Division
Reagan Moore, San Diego Supercomputer Center
Sanjay Ranka, Syracuse University
Joel Saltz, University of Maryland
Lew Tucker, Thinking Machines Corporation
Paul Woodward, University of Minnesota

April 1, 1993

Preparedfor

NationalAeronauticsand NationalScienceFoundation NationalInstitutesof Health
Space Administration

NationalInstituteof EnvironmentalProtection
DefenseAdvanced StandardsandTechnology Agency
ResearchProjectsAgency

NationalOceanicand NationalSecurityAgency
Departmentof Energy AtmosphericAdministration
by

Jet Propulsion Laboratory
Califomia Institute of Technology
Pasadena, California

M STE
DISTRIBUTION OF THiS DOCUMENT IS UNLIMITE=O j

Acknowledgments

The workshop on which this report is based was ably supported by many
people. We would like to give particular thanks and praise to the following
people:

Debby Kramer (JPL) and Terri Canzian (Caltech) provided general sup-
port before, during and after the workshop, including compiling and re-
producing the working group presentations and white papers during the
workshop. Kim Dunn (USRA) helped prepare and distribute materials to
workshop attendees prior to the event and was involved in registration.
Pat McLa_e (JPL) was in charge of local arrangements and on-site regis-
tration. She secured excellent facilities for this large yet highly interactive
workshop. Chip Chapman and Paul Angelino (both of Caltech) were re-
sponsible for providing connections to the internet and to video projection
equipment so that live demonstrations of the use of software repositories
could be carried out.

We would also like to recognize the efforts of those who helped cre-
ate this report. Stephen Lundstrom (PARSA) wrote extensive comments
and insightful suggestions for the position papers of all the working groups.
Terri Canzian formatted the many drafts of the report and typed some of

the chapters and appendices. Mike MacDonald (USRA) provided careful

editing of much of the material in this report. Debby Kramer oversaw the
production and dissemination of several intermediate drafts as well as the
final draft.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liabihty or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
once herein to any specific commercial prcstuct, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or any agency thereof.

111

Conference Credits

The Workshop on System Software and Tools for High-Performance

Computing Environments was held in Pasadena, California on April 14-16,
1992. The workshop was conceived, organized, and carried out by

Lee Holcomb (NASA) Workshop Chair

Organizing Committee

Paul Smith, Chair (NASA)

Mel Ciment (NSF) Fred Long (NOAA)
George Cotter (NSA) Jacob Maizel (NIH)
Fred Johnson (NIST) Joan Novak (EPA)

Gary Johnson (DOE) William ScherIis (DARPA)
Carl Kukkonen (JPL)

Program Committee

Paul Messina, Chair (Caltech/Jet Propulsion Laboratory)
Jack Dongarra (University of Tennessee/Oak ledge National Laboratory)

John Dorband (NASA Goddard Space Flight Center)
Brian Ford (Numerical Algorithms Group, Ltd.)

Geoffrey Fox (Syracuse University)
Mark Furtney (Cray Research)

Mike Heath (NCSA/University of Illinois)
Ken Kennedy (Rice University)
Bob Knighten (Intel Supercomputer Systems Division)
H. T. Kung (Harvard University)

Steve Lundstrom (PARSA)
Robert Malone (Los Alamos National Laboratory)

David MizeU (Boeing Computer Services)
Reagan Moore (San Diego Supercomputer Center)
John lEganati (Supercomputing Research Center)

Joel Saltz (University of Maryland)
Thomas Sterling (USRA CESDIS)

Rick Stevens (Argonne National Laboratory)
William Tompkins (United Technologies Research Center)

Lew Tucker (Thinking Machines Corporation)
Paul Woodward (University of Minnesota)
Jerry Yan (NASA Ames Research Center)

iv

Sponsors

The Workshop on System Softwareand ToolsforHigh-Performa_uce

Computing Environmentswas sponsoredby

NationalAeronauticsand SpaceAdministration

DefenseAdvanced ResearchProjectsAgency
Department ofEnergy
NationalScienceFoundation

NationalInstituteofStandardsand Technology

NationalOceanicand AtmosphericAdministration
NationalInstitutesofHealth

EnvironmentalProtectionAgency
NationalSecurityAgency

We gratefullyacknowledgetheirsupportfortheworkshopand theprepa-

rationof thisreport.

This proceedingswas preparedby theCaliforniaInstituteofTechnol-
ogy,supportedby fundingfrom thesesponsoringagencies.The JetPropul-
sionLaboratory,CaliforniaInstituteofTechnologyoversawtheprintingof
thisproceedings.

Abstract

The Pasadena Workshop on System Software and Tools for High Perfor-
mance Computing Environments was held at the Jet Propulsion Laboratory
from April 14 through April 16, 19,_2. The workshop was sponsored by
a number of Federal agencies committed to the advancement of high per-
formance computing (HPC) both as a means to advance their respective
missions and as a national resource to enhance American productivity and
competitiveness. Over a hundred experts in related fields from industry,
academia, and government were invited to participate in this effort to as-
sess the current status of software technology in support of HPC systems.
The overall objectives of the workshop were to understand the requirements
and current limitations of HPC software technology and to contribute to a
basis for establishing new directions in research and development for soft-
ware technology in HPC environments. This report includes reports written
by the participants of the workshop's seven working groups. Materials pre-
sented at the 'workshopare reproduced in appendices. Additional chapters
summarize the findings and analyze their implications for future directions
in HPC softwar_ technology development.

vii

Foreword

I am pleased to have the opportunity to introduce this report on the
Pasadena Workshop on System Software and Tools for High Performance
Computing (HPC) Environments. With the advent of emerging scalable

parallel processing systems and the computational demands of the Grand
Challenge problems, the field of HPC is at a defining moment in its evolu-

tion. This workshop was formulated to set a new course for the near term

and future development of high performance computing software technol-

ogy. This was accomplished by inviting over a hundred experts in related

disciplines to meet and consider critical aspects of the problems and op-
portunities confronting this exciting field. Few occasions such as this have
afforded a better chance to fundamentally influence the direction of the field

of software technology for HPC.
Key areas in science and engineering must now rely on computer model-

ing, simulation, and analysis to enable advances to be made rapidly and at

low risk. U.S. competitiveness and productivity in the global high technology
markets hinge on the ability to bring large computing capabilities to bear on

a wide range of industrial and scientific problems. Parallel processing is key
to orders of magnitude improvement in performance, but must leverage the
simultaneous advances in device technology, processor architecture, scalable

parallel systems, and parallel algorithms. Massively parallel computing sys-

tems have only recently exceeded vector processing supercomputers in peak

performance and memory capacity. This moves massively parallel processing
from the intellectual curiosity of a few years ago to a high technology driven
imperative of immediate importance.

Software technology is the critical area requiring focus for near term
progress in HPC. With the computational problems defined by user needs,

and the computing architectures constrained by commodity workstation
processor designs, new software technology and commercial products must

be developed that address both. Programming environments for facilitating
the development of portable highly parallel applications are needed.

Nine Federal agencies (DARPA, DOE, EPA, NASA, NIH, NIST, NOAA,

NSF, and NSA) contributing to the High Performance Computing and Com-

munications (HPCC) program are proud to have sponsored this workshop

to set new directions in this rapidly progressing field. NASA is particularly

pleased to have played a lead role in the formation of this workshop..4.ll of

us hope that the findings described in this document will be an important

contribution to the research scientists and engineers engaged in advancing

ix

the capabilities of HPC. Rapid progress in these areas is essenti',A. Harness-

ing diverse talents and resources in a coherent and coordinated manner to
establish directions and carry out activities is key to this success. We en-

courage and look forward to the reactions and responses to this report, so

as to continue the process of developing a community consensus.
Please, now read with interest and enjoyment the thoughts of your col-

leagues as they delve into the complex issues confronting this exciting field.

Paul H. Smith

Chairman, Organizing Committee

Contents

Executive Summary xix

PART I

1 Introduction 1

1.1 Context and Motivation for Workshop 2
1.2 Goals and Objectives 4
1.3 Tasks 5

1.4 This Report 5

2 Participants 7

3 Workshop Organization 9
3.1 Purpose of the Workshop 9
3.2 Position Statements 10

3.3 Workshop Agenda 11

3.4 Findings Statements 11

PART II

4 Summary of Working Group Findings 13
4.1 Introduction 13

4.2 Applications 14
4.3 Mathematical Software 16

4.4 Languages and Compilers 18
4.5 Software Tools 20

4.6 Operating Systems 23
4.7 Computing Environments 25
4.8 Visualization 28

xi

CONTENTS

5 Grand Challenge Applications Impact 31
5.1 Introduction 31

5.2 Application Development and ttPCC 32
5.2.1 User Profile 32

5.2.2 The Performance Trade-Offs and Types of Codes . . . 32
5.2.3 The Application Domain 33
5.2.4 The Real World 33

5.3 Requirements for Systems Software and Tools 34
5.3.1 Gradualism and HPCC Software 34
5.3.2 What Do We Want? 35

5.3.3 Template Codes 35
5.3.4 Standards 36
5.3.5 The Environment 37

5.3.6 Computational Science 38
5.4 Particular Application Requirements 38

5.4.1 Visualization 38

5.4.2 Industrial Users of Electromagnetics, Fluids and
Structural Simulations 38

5.4.3 Financial Modeling 39
5.4.4 Battle Management, Command, Control, Communi-

cation, Intelligence and Surveillance 39
5.4.5 Environmental Modeling 40

6 Mathematical Software 41

6.1 Summary 41

6.2 Applications 43

6.3 Algorithms and Data Structures 45
6.4 User Interfaces 48

6.5 Portability and Scalability 51

6.6 Software Engineering 54
6.7 Enabling Technologies 57

7 Languages and Compilers 59
7.1 Introduction 59

7.2 User Needs 60
7.3 Priorities 60

7.3.1 Models: Understanding and Interoperability 61

7.3.2 Compiler Technology and Tools 63
7.4 Investment Strategies 66

I

xii

CONTENTS

7.4.1 Technology Development Investment 66
7.4.2 Evaluation Standards 68

7.4.3 Collaborations with Users 68

7.4.4 Infrastructure Support 68

7.4.5 Software Repository 69

7.4.6 Test Case Repository 69
7.4.7 Role of Standards 70

7.5 Areas for Research Emphasis 70
7.5.1 Basic Research 71

7.5.2 Advanced Development 73

7.6 Summary and Conclusions 74

8 Software Tools 75

8.1 Debugging Tools 75
8.1.1 Tools to Trace the Origin of Known Errors 75
8.1.2 Tools to Verify Correctness of Complex Codes 77

8.2 Performance Tools 77

8.2.1 Performance Measures 78

8.2.2 User's Requirements 79
8.2.3 Role of Compilers 79

8.2.4 Display of Information 80

8.2.5 Collecting Information 80
8.3 Support for Shared Address Spaces 81
8.4 Additional Issues 82

9 Operating Systems 83
9.1 Introduction 83

9.2 Appropriate Division of Labor 84

9.3 Recoverability 86
9.4 Exception Handling 88

9.5 File Systems 89

9.5.1 Problems/Needs 91
9.6 Heterogeneity 92
9.7 Memory Management 96

9.8 Job Scheduling and Resource Management 99

9.8.1 Job Scheduling 99
9.8.2 Resource Management 101
9.8.3 Hardware Support 101

9.8.4 User Support 101

xiii

CONTENTS

9.9 Message Passing 102

10 Computing Environments 103
10.1 Introduction 103

10.2 Objectives 105
10.3 Applications Requirements 106

10.3.1 To Write New Code: A Familiar Environment 106

10.3.2 To Port Code: Standards 107

10.4 Application Data Requirements 107
10.5 Application CPU Requirements 109

10.6 Operating System Requirements 110
10.7 Software Technology Development Area ill

10.7.1 Data Support Systems 111

10.7.2 Summary: Data Storage Requirements 115

10.7.3 Summary: Data Storage Questions 115
10.8 Communication Support Systems 115

10.8.1 Gigabit per second Communication Links: Require-
ments for NREN 116

10.8.2 Data Integrity and Privacy 117
10.9 Heterogeneous Computing Environments 118

10.9.1 Programming Support Environment 118
10.9.2 Resource Management 119
10.9.3 Resource Control 120

11 Visualization Methods 121
ll.1 Introduction 121

11.2 Visualization Needs 121

11.3 Visualization Software 122
11.4 Distributed Visualization Environments 123

11.5 Distributed Visualization in HPC 124
11.6 Conclusion 125

PART III

12 Issues and Observations 127
12.1 Introduction 127

12.2 Shared Goals 127
12.2.1 Performance 128

12.2.2 Portability 128

12.2.3 Usability 128

xiv

CONTENTS

12.3 HPC System Structure 129
12.4 Role of System Software 129

12.4.1 Facilitate Programming 129

12.4.2 Manage Resources 130
12.5 Uncertainties Concerning TeraFLOPS 131
12.6 Immediate Needs 131

12.6.1 Debuggers 132
12.6.2 Performance Profiling 132

12.6.3 Checkpointing 132
12.6.4 MPP C 133

12.6.5 Accomplished through Incrementalism 133

12.7 Sharing 134
12.7.1 Interoperable 134
12.7.2 Standards 134
12.7.3 Libraries 135

12.7.4 Templates 135

12.7.5 Software Exchange 136
12.7.6 Source Codes 136
12.7.7 Test Suites 137

12.8 Resource Allocation and Management 137
12.8.1 Shared Address Space 138

12.8.2 Role of Program, Compiler, Runtime, O/S 139
12.8.3 Philosophy of Efficiency vs. Ease of Use 140

12.8.4 Synchronization and Scheduling 141
12.9 Robustness 141

12.10 Monitoring System Behavior 142

12.11 R&D Priorities and Responsibilities 142
12.12 Points at Issue 144

12.12.1 Who Dictates Requirements 144

12.12.2 Programming Model and Languages 144

12.12.3 When to Address Heterogeneous Processing 145
12.12.4 Degree of Current Successes 146
12.12.5 Role of Architecture 146

12.12.6 What are Reasonable Costs/Hits for Capabilities . . 147
12.12.7 Will Templates Really Work? 147

12.12.8 Value of the Workshop and this Report 148

XV

/

CONTENTS

13 Conclusions and Implications to HPC 149
13.1 Introduction 149

13.2 Summary of Key Findings 150
13.3 Strategy 151

13.4 Implications for Applications 153
13.5 Implications for Architecture 154
13.6 Elements of a Future Course of Action 156

13.6.1 HPC Framework 156

13.6.2 Prerequisites 158

13.6.3 Primary Sources 158

13.6.4 Working Groups 159
13.6.5 Software Exchange 159

13.7 Some Final Thoughts 159
13.7.1 What we need 160

13.7.2 What we don't know 161
13.7.3 What we have to do 161

APPENDICES

.k Working Group Position Viewgraphs 163
A.1 Applications Requirements 163

A.2 Compilers and Languages 168

A.3 Computing Environments 172
A.4 Mathematical Software 179

A.5 Operating Systems 182
A.6 Software Tools 183

A.6.1 Performance Tools 183

A.6.2 Debugging Tools 186

A.6.3 Runtime Support for Irregular and Adaptive Problems 187
A.6.4 High l,evel Programming Environments/Tools for

Specific Application Areas 189
A.6.5 Tools Designed to be Used in Group Environments . . 190

A.7 Visualization 191

B Working Group Findings Viewgraphs 195
B.1 Applications 195

B.2 Compilers and Languages 199
B.3 Computing Environments 201
B.4 Mathematical Software 205

B.5 Operating Systems 206

xvi

CONTENTS

B.6 Software Tools 207

B.7 Visualization 211

C Attendees List 215

xvii

Executive Summary

Introduction

This report summarizes the results of the Pasadena Workshop on System
Software and Tools for High Performance Computing Environments at the
Jet Propulsion Laboratory from April 14 through April 16, 1992. The work-
shop was sponsored by nine Federal agencies committed to the advancement

of high performance computing (HPC), both as a means to advance their
respective missions and as a n_tional resource to enhance American produc-

tivity and competitiveness.

Tile impetus for the workshop was the recognition among the agencies
that significant progress in system software and tools would be required to

improve the usability of HPC systems and to achieve the sustained, scal-
able TeraFLOPS (1012 floating point operations per second) computational

performance needed to support the investigation of Grand Challenge prob-
lems. The organizing committee designed the workshop to draw together

participants from industry, academia and government to review current sys-
tem software and tools and identify needed developments, including software

priorities and mechanisms for creating that software.

Workshop Structure and Scope

System software and tools both include many subjects and interactions

among disciplines. To provide a manageable structure for the workshop,
seven topic areas were identified and assigned to working groups for study:

Applications, Mathematical Software, Compilers and Languages, Software
Tools, Operating Systems, Computing Environments, and Visualization.

These diverse topic areas also ensured that key concepts and technologies
would be addressed. The Applications Working Group played a unique role
by identifying the requirements HPCC applications have for the software

xix

Execu rive Summary

addressed by the other working groups.
Over 120 experts from a wide spectrum of industrial, academic and gov-

ernment organizations contributed to the workshop and its working groups.

Each working group prepared a position paper on its topic before the work-
shop, discussed it with the other groups during the workshop, and revised it
based on the interactions. In their position papers the working groups were

asked to address the following four issues:

1. Identify the important system software problems that need to be solved
if the HPCC program is to be successful.

2. Categorize the software problems as (a.) those that are best left to the
vendors of HPC equipment, (b) those that are primarily the responsi-

bility of the users, (c) those that could benefit from joint government
agency attention, and (d) those whose solution should involve collab-
oration with the vendors.

3. Establish priorities for the software problems.

4. Provide a vision for the HPCC software component.

This report includes the working group position papers, summaries of those

papers, and detailed anMyses of issues, and implications.
A long-term objective of HPC software technology research and develop-

ment is to bring massively parallel processing (MPP) system technology to

a state of applicability and ease-of-use comparable to that of conventional

supercomputers while attaining sustained TeraFLOPS-scale capability. The

challenges involved in attaining this objective, however, have force t the com-
munity to adopt a more pragmatic, near-term objecti_ e: to provide immedi-

ate, practical means for application of MPP capability to Grand Challenge
problems. It was this second objective on which the Pasadena workshop

participants focused their efforts.
Three goals for system software and tools development were considered

essential for achieving the near-term objective: performance, portability,
and usability. Increasing computational performance to levels that render
tractable new classes of engineering and scientific applications is the driving

motivation of the HPC community. Portability of software among computers
of different brands and numbers of processors is critical to achieving program

(i.e., code) longevity and protecting investments in software development.
Portability also is an important factor in scalability to large numbers of

xx

Executive Summary

processors. Interoperability, the ability to combine software modules devel-
oped under independent circumstances to achieve the desired functionality,

contributes to portability as well as to reusability. The third goal, usability,
determines the ultimate ease-of-use of the total HPC systems. While these

three complementary goals are crucial to the viability of the emerging MPP
systems as an enabling technology for science and engineering advancement,

they often lead to conflicting design criteria that demand difficult trade-off
decisions.

In keeping with the emphasis on studying the needs for the first few years

of the HPCC program (i.e., the near-term objective of the HPC community),
workshop participants focused primarily on a single class of machine. The

target MPP was assumed to comprise upwards of a thousand conventional
processors, each associated with large local memory, and interacting through

rapid message-passing communication networks. This is the prevalent archi-
tecture of high-end commercial MPPs and is likely to remain so during most

of the 1990s. Such distributed-memory MIMD multiprocessors are connected
via local area networks to other systems such as file servers, graphical visual-

ization workstations, and SIMD and vector processors. MPPs are invariably

embedded in such heterogeneous environments.
Wide area networks will eventually integrate most such environments into

a single national file system, providing the opportunity and means for shared
computation. Such an environment will present challenges for resource al-

location and management strategies and methods. In all cases, a balance
between efficiency and ease-of-use has to be achieved that takes into account

both system and programming resources. This balance will be realized by
reordering the responsibilities of the programmer, compiler, runtime and op-

erating systems. In managing concurrency, synchronization and scheduling
are particularly important. Synchronization mechanisms must be achieved

with low overhead costs. Scheduling of processes must be provided to sup-
port load balancing. Means for monitoring system behavior will become

more important, both to aid the programmer and to provide feedback to
the compile and runtime automated resource management tools. Many ac-

knowledge that a logically consistent view of the application name space is
required across the physically distributed MPP systems. At the machine

level, this will be manifest as a shared address space.

Issues

No interaction among over 120 experts in a field as dynamic as ours will

xxi

Executive Summary

achieve total unanimity of opinion. Indeed, the richness and power of such

a workshop is achieved primarily through a juxtaposition of complementing
and conflicting views. The Pasadel_a workshop benefited from a wealth of

ideas and differing perspectives. For example, there was no clear picture as

to the ultimate programming paradigm for parallel computation, let alone
the language that should represent it. While data parallel programming and

message-passing techniques are expected to play an important role, it was
recognized that other forms of parallelism also are important and means of

making them available to the programmer are necessary. In establishing pri-
orities, workshop participants expressed strongly differing views about when

the problem of managing heterogeneous systems should be addressed. Some
considered the homogeneous system a difficult enough challenge and the
heterogeneous system problem to be even harder. Others stressed that het-

erogeneous systems already are an important part of the HPC environment
and means for their manipulation are required now. There was considerable

debate about the degree of success already achieved.
It was not clear to what extent architectural considerations should be

incorporated in mapping the future of HPC environments. One school ad-
vocated that economics dictated architectures derived from workstation re-

quirements. However, it was also realized that specific needs of the HPC

community might best be satisfied by modest perturbations to contempo-

rary processors. In making tradeoffs between advanced tools and raw per-
formance, there was much discussion of where the knee of the curve was.

Some insisted that a sacrifice of even a 10 percent performance reduction

was unacceptable, independent of the improvement achieved in other fac-
tors. Others were more than willing to see as much as a factor of two

performance degradation if it would result in a programming environment
as easy to use as today's conventional computers. Finally, there was much

talk about the potential value of templates (i.e., pseudo-code representations
of general algorithms that are language and architecture independent) in fa-

cilitating early portability. While many encouraged this approach, others
contended that the potential effort required to develop templates would be

too great to warrant their use.

Immediate Needs

Some system software and tool inadequacies must be addressed immediately.
The requirements are immediate either because they are fundamental to

work on the near and long range objectives or because they are sufficiently

xxii

Executive Summary

difficult that if work is not started now and supported over the next several

years, solutions are not likely in time to contribute to the HPCC Program.

These immediate needs are shown below (no specific order):

• A key area of compiler technology requiring more research and de-
velopment is exploitation of data locality. Data locality is important

because MPPs have complicated memory hierarchies that can limit
performance severely.

• Many MPPs use cross-compilers that run on workstations instead of on
the MPP. Native compilation would be better because it will increase

programmer productivity by reducing the wall-clock time required for
development.

• One of the hardest challenges facing HPC programmers is debugging
of parallel programs. Both logical and timing considerations lead to

opportunities for error. Debuggers of at least the quality and capa-
bility of uniprocessor workstations should be made available on a per
node basis on MPP systems. Beyond that, means of isolating and cor-

recting timing-related, non-deterministic faults need to be devised and

supported.

• Performance profiling techniques are required to reveal the behavior
of the total system and its components so that the programmer can

evaluate the effects of changes to program mapping. Such tools should
be at least as capable as those found on conventional uniprocessor

workstations despite the additional complexity of parallel flow control
and distributed resources.

• Most Grand Challenge problems require many hours of execution on
even the fastest computers. Therefore, a single problem typically is

split into many runs of a few hours each. To facilitate restarting pro-

grams after a previous partial computation (or after system interrup-

tion), tools for checkpointing intermediate program state are needed.

• Visualization system needs in high-performance computing environ-
ments are primarily infrastructure issues: parallel I/O, availability of

fast and large file systems, and common frameworks for workstations
and high performance systems. Also, the development of scalable algo-

rithms for graphics operations such as volume and polygon rendering,
and grid generation will be useful.

xxiii

Executive Summary

• System programming for MPPs, especially for portable code, requires a
common version of C derived for use with MPPs. A standard C library

of service calls in support of MPP operation is needed to facilitate
system programming and allow sharing of code across systems.

Key Results

Tile seven working groups were comprised of some of the best intellects
and most experienced people in the HPC community. Their interactions
illuminated a number of issues that are having, and will continue to have,

a, significant impact on the development of system software and tools for

massively parallel HPC systems. For many of these issues no clear path to
their resolution is now evident. Yet resolution in some form will be required

if the goals and objectives of the HPCC Program are to be achieved. The
key results that follow are a synthesis of those issues:

• There is insufficient experience with different programming models and
languages to reach a consensus on their applicability and suitability tbr

the various kinds of applications and high-performance systems.

• Realizing balanced TeraFLOPS-scale systems is hindered by insuffi-

cient understanding of resources required to support Grand Challenge
applications. Extrapolation of previous balance points may not be fea-

sible. Even on today's systems, I/O and file handling capability have
not kept pace with processor performance, memory size, and inter-

processor communication speed.

• The use of MPP systems is severely limited by the lack of mathe-

matical software libraries found on more conventional systems. Rapid

development is unlikely because of difficult new issues such as algo-
rithm scalability and more complicated and complex data structures.
Collections of templates are a possible alternative to libraries.

• Debugging and optimization of parallel programs on MPP systems are
poorly supported by existing tools, in pair because certain aspects of

the system state that reflect system behavior are currently inaccessible
by the user. Debuggers and performance measurement tools are the

most urgently needed software tools.

• Programming languages and execution environments have substantial

shortcomings. Any given one tends to support only one of the three

xxiv

Execu tire Summary

prevalent types of parallelism (data, task, and object). Yet, frequently

all three are needed. Language design issues include deciding the

proper semantics for parallel I/O and devising ways to specify data
layout and concurrency.

• The diversity of user interfaces and execution models across the range

of contemporary MPP systems limits portability of application pro-

grams and system software. Furthermore, there is little information
on how to choose one over the other for a given computation.

• Resource management, now left almost entirely to the application pro-

grammer, should be achieved by an appropriate balance of responsibil-
ities among the user, compiler, runtime system, and operating system.

• HPC systems lack mechanisms for fault-recovery, checkpointing of re-
sults, and re-establishment of network connections; yet, because their

reliability is lower, recoverability for ItPC systems is more important
than for conventional systems.

• High-performance computing environments increasingly consist of net-

works of heterogeneous computing systems. Practical methods for ex-
plicit management of these distributed resources are needed in the

near term, even if seamless operation is not achievable. Among the
challenges are the development of scalable, distributed file systems,

support of different data representations, management of remote exe-
cution, and uniform naming.

• Mechanisms for electronic dissemination of software and documenta-

tion developed in the HPCC program are needed to enable and foster

practical software sharing among HPC researchers. Software sharing

will substantially accelerate progress in utilization of high-performance

computing environments.

Suggested Approach

The immediate needs and key results identified in the workshop indicate

that much must be done just to provide acceptable support for H PC re-

searchers. A strong consensus developed that an incremental approach to
system software development is preferable to projects that attempt to pro-
vide revolutionary new capabilities. This conservative approach is more

likely to achieve its more modest goals and to do so quickly, in a few years.

xxv

Execu tire Summary

The workshop clearly illuminated tile need for cooperation and sharing.

Indeed, sharing results, tools, and program modules will be crucial to achiev-
ing the necessary capabilities and environment with tile limited resources
available. This is especially true because although many new elements of

tIPC software technology have to be built, a relatively small proportion of
the worldwide software development effort is being dedicated to HPC related

problems.
Software portability and interoperability are necessary if sharing is to prove

effective. Key to this is the adoption of standards for functionality and in-

terface protocolq so software designers can work with confidence and their
products will merge with the environments of others. Libraries of mathe-
matical routines and repositories of source codes and test suites can and will

be disseminated by means of a national software exchange over the network.

The feasibility, effectiveness and efficiency of templates to transfer software
modules for early portability need to be explored and developed.

Interdisciplinary efforts will be necessary to create tile integrated environ-
ments demanded by HPC system operation. Industry, academic institutions

and government funding agencies all must work together to set an agenda
and order priorities to realize the necessary software technology.

Specific Strategy

The heart of the specific five-point strategy recommended here is sharing:

shared goals, shared resources and shared results. In the scenario most likely
to yield positive results, each organization emphasizes those aspects of the

total problem appropriate to its own mission and shares the results with
others. The five points of the strategy are shown below:

1. Stimulate commercial delivery and support of all necessary system

hardware and software components comprising complete MPP com-
puting environments, once the critical software elements |lave been

developed by research organizations and individuals.

2. Encourage active community dialogue to define technical challenges,
identify approaches, and share results.

3. Foster coordinated multi-agency support for research and advanced

development in areas of importance to shared goals.

4. Fund many small research projects, a number of advanced development

projects, and a few commercialization efforts.

xxvi

F,xecu rive Summary

5. Establish criteria and methods for evaluating intermediate and final
results of tile program as well as means for feedback of assessments to
the research and manufacturer communities.

This strategy will require unprecedented cooperation among all elements of
the HPC community. The vendors of MPP systems will continue to require

the guidance of the users and computer science research community, just
as the users will continue to require the largest, fastest possible systems

from the vendors. This synergism will contribute to rapidly advancing HPC
technology.

Postscript

The Pasadena Workshop clearly was not an end but a start. Even as this

report was being written, a number of plans and actions were under way
to continue and expand upon the results of the workshop. For example,

the Federal agencies conducted several intensive meetings to address the
implications of the workshop for their coordinated HPCC programs. The

agencies also initiated a working group to further explore and develop the

concepts of a HPC framework (i.e., a HPC system software architecture).
Finally, planning was started for an Applications Workshop to extend the

Pasadena work of the Applications Working Group.

xxvii

PART I

Chapter 1

Introduction

The Pasadena Workshop on System Software and Tools for High Perfor-

mance Computing Environments was held at the Jet Propulsion Laboratory
from April 14 through April 16, 1992. The workshop was sponsored by a
number of Federal agencies committed to the advancement of high perfor-

mance computing (HPC) a means to advance their respective missions and
as a national resource to enhance American productivity and competitive-

ness. Over a hundred experts in related fields from industry, academia, and
government were invited to participate in this intense three day forum to
assess the current status of software technology in support of HPC systems.

The overall objective of the workshop was to create a stimulating collegial

environment within which could emerge new understanding concerning the
requirements and current limitations of HPC software technology. The goal

was to provide a basis from which new directions in research and develop-
ment for software technology could be established to enable and accelerate

the effective application of massively parallel processors (MPPs) to Grand

Challenge application problems. Attention was given both to immediate

practical considerations related to current tools and usage and to longer
term requirements and approaches necessary to support TeraFLOPS com-

puting by the end of the decade. This report has been formulated with the
intent to capture and present the issues and findings covered by the work-

shop's seven working groups, and includes reports written by the working

groups' participants. The report summarizes the findings and synthesizes
them into a single cohesive framework with analysis of their implications for
future directions in HPC software technology development.

2 CHAPTER1. INTRODUCTION

1.1 Context and Motivation for Workshop

For the first time in the era of high performance computing, supercomput-
ers based on vector processing principles are being successfully challenged

for performance preeminence by massively parallel processor systems. Com-

prising hundreds or thousands of VLSI processors integrated through high
bandwidth networks, these MIMD and SIMD architectures are exploiting

parallelism at an unprecedented scale while leveraging rapid advances in

semiconductor technology. Together, these complementary trends are yield-
ing the potential for performance gains of two orders of magnitude in the

near term, making TeraFLOPS capability potentially achievable before the
end of the decade.

The successful application of MPP technology and power to Grand Chal-

lenge (GC) problems opens exciting new possibilities in science and engi-
neering by providing new tools for discovery and design. Availability of such
facilities to the industry and research communities will result in increased

American productivity and enhanced competitiveness in the international
high technology marketplace. The impact of these new capabilities will revo-

lutionize how entire disciplines engage in pursuit of their goals. New abilities
in simulation will permit accelerated design cycles of complex engineering

systems unimagined only a few years ago. Scientists will be able to formulate

hypotheses and test their implications at an unprecedented level of resolution
and detail unveiling new opportunities for exploration and understanding.

Responding to these opportunities and after extensive study, the Federal
Coordinating Council on Science, Engineering, and Technology (FCCSET)

recommended a national program to harness the power of massively parallel
processing for applications of strategic, commercial, and scientific impor-

tance. The High Performance Computing and Communications (HPCC)
program was one of only three Presidential Initiatives in 1992. The program

was officially inaugurated with the December 9, 1991 signing of the High
Performance Computing Act of 1991 which received strong bipartisan sup-

port in both houses of Congress. The HPCC program involves nine Federal

agencies, each providing leadership in complementary ways. Of particular
interest to this workshop is DARPA's role in high performance computing

(HPC) systems and the role of NASA coordinating activities in advanced
software technology and algorithms (ASTA). By leadership and funding in
important areas, the HPCC program seeks to achieve a thousand fold in-
crease in sustained computational performance.

While the performance opportunities afforded by scalable MPPs may

1.1. CONTEXT AND MOTIVATION FOR WORKSHOP 3

match the demands of Grand Challenge problems, the means of achieving

an effective fit between the two is another matter. Significant difficulties

arise in attempting to bring parallel computing resources to bear on real
world user applications. These problems involve parallel programming mod-

els and methodologies, parallel resource allocation and management, and
portability and scalability across machines of disparate structure and scale.

Yet only these systems offer the hope of orders of magnitude improvement
in compute power. Such circumstances fix a defining moment in the evolu-

tion of an enabling technology. So it is now with HPC software technology.
The role of software technology in the high performance computing arena is

to provide tile tools, programming environment, and runtime environment
needed to mediate between the user problems and the machine functionality.

Under these prevailing conditions, the need for this workshop was realized

by key people throughout the community who joined together to establish
and organize it.

Software technology encompasses a multifaceted community comprising
many disciplines. These include application algorithms, languages and com-
pilation techniques, operating systems, software support tools, total comput-

ing environments, the emerging field of scientific visualization, and mathe-

matical software. Other delineations are possible, but the overriding feature
is the diversity of needs and methods that make up the complex of elements

contributing to software technology. While all of these are manifest to some
degree within the framework of conventional computation, they must be

rethought in the new context of MPP systems operation. The transition
to MPP technology from conventional supercomputing truly constitutes a

paradigm shift for algorithms, programming models, and resource consider-
ations. For example, adding the dimension of parallelism to the physical and

abstract problem space requires almost every aspect of software technology
to be rederived. Compound this requirement with the notion of distributed

resources exhibiting latency/locality tradeoffs, and the nature of support de-
manded of software technology to provide a tractable program definition and

execution environment transcends anything experienced before in the arena

of computing software systems. This workshop was conceived to define the
set of problems confronting system software developers in the context of the
HPC challenge.

4 CHAPTER 1. INTRODUCTION

1.2 Goals and Objectives

The objective of the workshop was to bring together experts from indus-
try, universities, and government in the field of software technology for high
performance computing environments with special emphasis on massively

parallel processing systems. The goal was to achieve an assessment of cur-
rent systems software and tools for HPC environments and to expose areas

requiring development. While it is clear that current environments are in-

adequate in their support of HPC application programming, less certain
are the specific advances required or the priority in which they should be

pursued. Therefore, it was considered a primary goal of this workshop to

delineate the areas of software technology support needed for HPC systems
and evaluate the degree of success current offerings provide with respect to
these requirements.

The very nature of system software implies collaboration among diverse

groups and activities in development and research. Even before the workshop
was conducted, it was assumed that success in this arena would demand

cooperative development of the needed infrastructure and tools. The size and
diversity of total HPC system software environments dictate the integration

of components from many sources. Success in this venture is assumed to rely
on effective coordination of efforts by many teams of software technology

researchers and developers. A goal of this workshop was to identify major
software development challenges and approaches for improving coordinated

and collaborative development.
An important aspect of the high performance community is the major gov-

ernment sponsorship of the Federal HPCC program. Participating agencies
together sponsored this workshop. Rather than being rigid and constrained,

the HPCC program is an evolving and adaptive set of activities, continuously
adjusting to changing conditions and opportunities. The NASA-led coordi-

nation of the ASTA component within HPCC focuses on issues of software
technology as they relate to making effective use of TeraFLOPS-scale MPPs

for Grand Challenge problems. The research and development plans of the
HPCC ASTA component are still in their formative stages. An ancillary

goal of the workshop is to provide input to that planning process.

1.3. TASKS 5

1.3 Tasks

The workshop was organized into seven working groups spanning a :number

of disciplines that make up the field of HPC software technology. These in-
cluded: applications, mathematical software, languages and compilers, soft-

ware tools, operating systems, computing environments, and visualization.
The groups were tasked to identify in their respective areas the important

systems software problems requiring solutions for the success of HPC.

The groups also were asked to categorize the important software problems
along lines that distinguish them according to who should address them and

how. For example, some of the components of an overall HPC environment

are probably best left to the vendors to provide, while others may always
remain in the domain of the users. However, because of the complexity of

certain challenges or because they cross multiple conventional disciplines,
there may be problems that will require government agency attention to

spawn new initiatives and research. Yet, other goals may, by their very
nature, require collaboration with vendors. Recognizing early on how the

challenges relate to potential resources could result in near term projects to
address these problems.

A final task for each working group was to provide a vision for their re-
spective component of the overall HPC environment. While there was no

anticipation that such a vision could be complete and all encompassing, an

initial cut could set direction and reveal questions that must be resolved
early on before final plans can be set in place.

1.4 This Report

The purpose of this document is to disseminate the experiences and lessons
of the workshop beyond the immediate participants to the broader U.S. HPC
community. A wide circulation is anticipated to distribute the findings to
all those actively involved in software technology research and development

directed to the challenge of harnessing MPP systems for Grand Challenge
problems. While the workshop has made an important contribution by pro-
viding a forum for discussion of the many issues related to HPC software
technology, only a dialogue across the entire community will achieve the
needed perspective and incentive necessary to translate such deliberations
into actions. This document is offered both as a compendium of ideas con-

tributed at the workshop and as a catalyst to elicit broad community re-

6 CHAPTER 1. INTRODUCTION

sponse from which a consensus may emerge.

The intent of this document is to convey to its readership the issues and

findings that emerged from the three day workshop. Because of the com-
plexity of the field, the document is organized to provide the information in

as clear and useful a form as possible. Therefore, the document structure
and content go beyond those of a simple proceedings. It also provides a sum-

mary of the findings, a, synthesis of the issues and ideas, and an assessment
of the implications of the conclusions for HPC research. However, all of the

original information is provided so that our colleagues can form their own

opinions regarding the "raw" results.
This report is organized into four general parts. The first part describes the

workshop, its objectives, organization, participants, sponsors, and agenda.
The second part provides the detailed reports of the seven working groups.

In addition, a summary chapter is included providing an overview of the
working groups' major findings. The working groups were divided along

lines mirroring the conventional disciplines comprising the field of software

technology. But, the major issues dealt with at the workshop related to many
or all of the groups. Part III of this report provides a synthesis of the issues

and key findings into a single well organized presentation, and includes major
implications for future work that are highlighted in the conclusions chapter.
The last part is an appendix section that provides lists of all of the workshop

participants, including the working groups to which they contributed. Also,

the complete sets of viewgraphs presented by the working groups during the
workshop are provided (typeset and compressed). These expose the process

and evolution of ideas during the course of the meetings.
Release of the final draft of this report was timed to coincide with a panel

session conducted at Supercomputing '92 by the chairs of the sessions. This

panel presented the workshop findings to the community and invited com-
ment. Reactions from the community will be accepted over the internet

and assimilated by a group chartered to carry out follow-on activities. This

group will release an additional report incorporating this community wide
feedback. Thus, it is expected that any shortcomings of this workshop re-

port will be reflected by the comments related in the follow-on report and
together they should provide a firm basis for the community as a whole to go

forward with the next generation of system software for HPC environments.

Chapter 2

Participants

By virtue of its software coordination role in the Advanced Software Tech-

nology and Algorithms (ASTA) component of the HPCC program, NASA

took the lead in organizing the Workshop on Systems Software and Tools
for High Performance Computing Environments. An Organizing Committee
for the workshop was formed with one member from each of the nine federal
agencies that are involved in the High Performance Computing and Com-

munications program plus a representative from Jet Propulsion Laboratory,
which hosted the workshop.

The sponsoring agencies were:

National Aeronautics and Space Administration

Defense Advanced Research Projects Agency

Department of Energy
National Science Foundation

National Institute of Standards and Technology
National Oceanic and Atmospheric Administration
National Institutes of Health

Environmental Protection Agency

National Security Agency

Participation in the Workshop was by invitation only. The conference
organizers felt that to achieve the goals of the workshop it was important

to have as small a number of people as possible yet ensure adequate repre-
sentation of experts in each discipline and topic area that would be covered.

Keeping the number of participants small was important if participants were
to have a r¢_al workshop: one in which ideas would be exchanged, position

papers discussed and revised, and controversial concepts presented and de-

8 CHAPTER2. PARTICIPANTS

bated. In addition, some of the participants needed to be familiar with the

roles and needs of the individual agencies involved in the Federal High Per-

formance Computing an t Communications Program. Finally, representation
was sought from users with large-scale computational applications, i.e., the
eventual beneficiaries or "victims" of the research that might evolve from

the workshop findings. Consequently, the process of identifying and select-

ing people who would receive invitations to participate in the workshop was

a lengthy one.
The members of the Program Committee were selected by the committee

Chair and the Organizing Committee. Once formed, the two committees

formulated in detail the goals of the workshop and selected the topics to be

covered. It was decided to constitute a working group to cover each topic
area. Chairpersons for each topic area were chosen and each was asked to

nominate ten people who are experts in the topic covered by the group.
Each sponsoring agency was allowed to nominate five participants in the

workshop. These typically were researchers familiar with the agency's large-
scale computational applications who could help represent the needs of that

agency. Most of this set of participants affiliated themselves with the working

group that most interested them.
Once all nominations were gathered, the committees pared the total num-

ber to about 100 and invitations were issued. Inevitably, some had prior com-

mitments and could not attend the workshop. Appendix C has a complete

list of attendees, grouped by committee and working group assignments.
Probably tile area that was least well represented was applications. Many

Grand Challenge applications have been identified that the tlPCC program
must support. To correct this shortcoming, a separate workshop for |[PC

applications will be held in 1993. One of tile goals of that workshop will

be to gather more information on the application program requirements ['or
system software and tools.

Chapter 3

'Workshop Organization

3.1 Purpose of the Workshop

The workshop was organized as an early step in gathering information on re-
search and development needed in the areas of system software and software
tools to improve the usability of high-performance computing systems and
ensure that they will support effectively the investigation of grand challenge
problems. The organizing committee formulated the following statement of
purpose:

This workshop will bring together experts from industry, univer-
sities, and government to review current systems software and
tools for high performance computing environments and identify
needed developments. The workshop will indicate software pri-
orities and mechanisms for creating that software. The workshop
will inform emerging HPCC research and development plans.

System software and tools include many subjects and interactions among

disciplines. To provide a manageable structure, the organizing and program
committees selected seven broad topic areas to be covered at the workshop:

Applications
Mathematical Software

Compilers and Languages
Software Tools

Operating Systems

Computing Environments
Visualization

10 CHAPTER 3. WORKSHOP ORGANIZATION

The role of tile applications group was to identify tile requirements that

HPCC applications have for the software to be discussed by all the other

working groups.

3.2 Position Statements

qb stimulate thinking and to establish a common frame of reference in ad-

vance of the workshop, each working group was asked to address key is-
sues and provide assessments in a consistent format prior to the workshop.

Specifically, each group was asked to write a position paper on its area and
disseminate it to all the participants of the workshop several weeks before

the event. It was hoped this process would enhance the output of the work-

shop by surfacing important issues and even differences of opinion that could
be explored in detail from the start of the workshop.

The groups were asked to address the following questions:

1. WHAT ARE THE SYSTEM SOFTWARE PROBLEMS/NEEDS

(from the application developer's point of view)?

• What are the priorities of the users?

• How is the future likely to differ from the past'_

2. WHAT IS THE STATUS OF SYSTEMS SOFTWARE (from the ap-

plication developer's point of view)?

• What feedback can you provide on the strengths and weaknesses

of the software that already exists?

• What is your forecast of results expected from software currently

under development?

• What is your outlook on research expectations?

3. WHAT ARE OR SHOULD BE THE PRIORITIES FOIl. TIIE FU-
TURE?

• What is next? And for each possibility, what are

- The expected payoffs (to applications)?

- The expected difficulties (computer science and technology)?

- The expected time frames?

3,3. WORKSHOP AGENDA 11

Note: Address portability an you answer all of the questions; this aspect of
software is so important that it deserves special attention.

In addition, working groups could add any questions or issues that they
considered relevant. All working groups did produce position papers and

these were mailed to all invitees before the workshop.

3.3 Workshop Agenda

The workshop spanned three days; each was devoted to a specific purpose,

In a plenary session on the first day, each working group presented the
salient points of its position paper. Appendix A of this report contains the

presentation materials from that session.
The second day's session was held at the Pasadena Convention Center

so that each working group could meet in separate rooms that were close
to each other. On the same floor we also provided rooms with computers

and copiers so that position papers and presentation materials could be

produced on the spot. Each group had a session in which it began modifying
its position paper to take into account tile previous day's discussions. In

addition, working groups spent part of the day sending representatives to
each other's session to ask questions, seek clarifications, or present a point

of view. The applications group tried to have a representative at each of tile
other groups' sessions for at least part of the day. This approach was feasible

because of the close proximity of all the meeting rooms and was judged to
be an especially fruitful way to explore the interactions between the different

topic areas.
The third day consisted of a plenary session in which a spokesperson from

each group presented a revised position based on findings and discussions
from the previous two days. The slides presented at this sessions are repro-

duced in Appendix B.

3.4 Findings Statements

After the workshop, each working group revised its original position paper

to take into account the insights and information gained at the workshop.
These revised papers appear in Chapters 5 through 11 of this report.

In summary, this workshop demonstrated that with care and advance

preparation it is possible to have extensive and substantive interactions even
with a group of over one hundred people.

_

PART_I

Chapter 4

Summary of Working Group
Findings

4.1 Introduction

The Pasadena workshop was organized into seven working groups represent-
ing the principal disciplines conventionally associated with software tech-
nology for high performance computing. These included applications and
algorithms, mathematical software, languages and compilers, software tools,
operating systems, computing environments, and visualization methods and
technology. In no sense was it assumed that this breakdown represented an
orthogonal characterization of the domain of software technology. Rather,

it will be seen that many of the groups dealt with similar or overlapping
topics, although from varied perspectives.

The detailed findings of the working groups are presented in the following
seven chapters (chapters 5 through 11). These reports were written by the
members of the respective working groups and are provided in unedited
form to retain the original intent and tone of the contributors. As a natural
consequence, there is a variation in style among the following chapters which,

while evident, does not detract from their importance to the community.
Because the total length of the collection of the working group reports

exceeds a hundred pages, this chapter is offered as a quick summary and

overview of the topics considered by each group and their principal findings.
A separate section of this chapter is dedicated to each group's results and
every attempt has been made to retain the integrity of the original reports
while achieving succinctness. Even though some information has been ab-

13

14 CHAPTER 4. SUMMARY" OF' WORKING GROUP FINDINGS

breviated out of necessity, it is hoped the important insights and conclusions

of the full reports are conveyed in essential detail. The reader is encouraged
to make extensive reference to the succeeding complete reports using this

chapter as an introduction and guide.

4.2 Applications

Tile Applications Working Group addressed the issues of system software
requirements, direction, and development from the perspective of the user

sophisticated in computational methods but less familiar with massively par-
allel computing systems. The fundamental conclusion from this viewpoint

is that near term development of tools to ease the immediate burden of pro-

gramming MPP systems is a far more advantageous application of currently
available R&D resources than attempting to create total solutions which will
not be ready until the end of the HPCC program. Reinforcing this convic-

tion were the dual considerations of opportunity and understanding. The
markets for large parallel computers and HPCC Grand Challenge applica-

tions are relatively small compared to more conventional computing systems
and the _asks to which they are applied. The opportunity to change the way

high-performance computing is realized is limited in the main to R&D funds

from such programs as HPCC: it is not driven by the commercial market
place which invests vastly greater resources on conventional systems. Thus,

the targets selected for advancement must be chosen for their potential for
immediate gain. Break-even will occur only when application scientists rou-

tinely procure HPC systems, thereby providing market place incentives for
their future development.

The second consideration, understanding of the form such environments
should take, is simply not sufficient to move immediately into total solution

system software development. The needs of scalable applications in terms of

resources are at best poorly understood. Parallel programming paradigms
have yet to be adequately explored, and automatic resource allocation tools
are at their inchoate phase of development. All insufficient base of knowledge

on all these issues exists to establish a single all encompassing vision of sys-

tem software architecture. Complicating the vision creation process are the
apparently conflicting trade-offs between optimal performance and portabil-

ity/programmability. It was not even possible to ascertain the specific range
of applications to be considered.

Tile overriding requirement is for some basic robust tools to enable appli-

n_ •

!
4.2. APPLICATIONS 15

cation scientists to port their problems and algorithms to these new HPC
architectures in the immediate future, albeit with hard work. To achieve

this, a philosophy of "gradualism" was embraced through which the basic
tools would incrementally evolve, to ever more general and sophisticated

program support facilities. Among those of immediate necessity are com-
pile time tools for code migration that perform dependency analysis and

runtime tools for timing code segment execution. Interactive compilers for
user-directed code optimization are desirable but unlikely in the near future.

However, there should at least be node-oriented debuggers and compilers

as well as other Unix-like program development tools such as make. All
these tools should be layered to permit user-prescribed trade-offs. All so-

phisticated system capabilities would be desirable, but only at incidental

cost. This cost-oriented approach supporting user selection of capabilities
was deemed important for successful machine evolution from initial research
platforms to an ultimate dominant commercial force.

Broad exploitation of near term HPC software investment depends on:
(1) the near term adoption of standards for critical components and (2) a

medium of distributing algorithms and applications among distinct centers

of HPC research and disparate system architectures. Standards for message

passing and data parallel language constructs are being specified from the
current base of experience, but less clear is the definition of the user interface
to parallel I/O. At least a temporary model for this interface is needed in

the short term. Still yet to be resolved is the relationship between the new
operating system and HPC hardware systems.

The group strongly advised that dissemination and porting of codes and

algorithms can best be supported in the near term through the adoption of
a scheme of templates for representation of algorithms. Canned packages
have proven too general for efficiency or too specialized in terms of machine

architecture. A templates approach is an alternative to fully documented,

elegant, scalable software implementation, and it offers a realistic goal for

early success. Templates may convey generic parallel codes that can be
modified by users to optimize for specific requirements and systems. Clear

documentation and sample data sets are necessary, but the precise language
is less critical.

16 CHAPTER 4. SUMMARY OF WORKING GROUP FINDINGS

4.3 Mathematical Software

The Mathematical Software working group considered the role and require-
ments of mathematical routines and libraries in the context of massively

parallel processing systems. Consultation with other groups, in particular

applications and languages/compilers, exposed important issues and con-
cerns across the broader community. It has become clear that while reliance

on mathematical software will increase in light of the new high performance

computing technologies, realization of effective and useful software will be
a major challenge. To accomplish this will require a stronger vertical in-

tegration of all system software from language design to operating system
implementation so that mathematical software can be merged cleanly into

the execution framework. But, there is an urgent need for usable mathemat-
ical software capability now, and an incremental approach is required so that

a continuing stream of useful tools and functions is forthcoming. There is
also a need to educate the general users of mathematical software to facilitate

the application of these sophisticated routines to their end problems.
Evolution of mathematical software is driven by the needs of applications

developers. The resulting requirements cover a broad range. Mathematical

library routines must be portable and scalable to run on different configura-
tions of the various new high performance architectures entering the market.

Equally important is access to the internals of the mathematical software to

ensure user confidence in treating such functions as a "black-box". This, in
turn, requires stable, logical user interfaces and robust functionality. A dom-
inant requirement is for some mathematical software capability for parallel

processing in the immediate future. This need should override any tendency
toward more ambitious but longer term goals.

There is some debate as to the real merit of mathematical software as

applied to applications programs. Many difficulties in its use have emerged

over years. While these need to be addressed, little question exists that
mathematical software is valued by a large community of computational sci-

entists and that these tools will be important to users of MPPs as well. In
particular, those who have relied on mathematical software using conven-

tional systems are unlikely to migrate to new HPC systems without such
support.

Numeric algorithms for parallel computation are central to mathematical
software for high performance computing. Development of these algorithms

is complicated by the variations of underlying architectures they are in-
tended to optimize. Additional complications arise from differences in error

4.3. MATHEMATICAL SOFTWARE 17

• generation and propagation with respect to serial algorithms. The accu-
racy, stability, and convergence behavior of parallel mathematical software

must be resolved afresh. Greater information must be provided to the user
concerning resource/performance trade-offs and likely error conditions and

bounds. Data structures employed by mathematical software are not always
convenient for end-user applications. With the added dimension of distrib-

uted data structures in MPPs, this mismatch may only be aggravated. To

alleviate this problem, abstract data types might be standardized as an in-
terface between user and parallel application software. This standardization

could improve portability and ease of use but should not impose a significant
performance penalty for structure transformation. Such translation may be

provided at compile time if appropriate linking mechanisms between appli-
cation code and parallel mathematical software libraries can be established.

How the user will relate to mathematical software for parallel application
execution is unresolved. The major issues are usability and portability. Sev-

eral approaches were examined. The traditional function library might be

minimally adjusted in going from serial to parallel environments. Servers
on a software bus communicating via byte streams could hide complexity

of algorithm details. Generic interactive environments, even incorporating
expert drivers, might be applied in much the same way as is currently done
with Matlab or Mathematica. Domain-specific problem solving environ-

ments could be created to narrow the generality of interface required. Also,

templates that describe the algorithms in pseudocode might be adapted by
the end user to particular problems. None of these, however, fully satisfy

the requirements.
The traditional approach may be necessary for immediate results but will

not yield the performance gains needed in an MPP environment. Templates

might appear most general but they may require more work to implement
than is anticipated, and they expose the dangers of numeric uncertainties

that could easily be improperly addressed by the user. High level represen-
tation of algorithms permits source code translation but precludes optimiza-

tions at the algorithm level in response to machine dependencies. These
problems are most significant in the distributed memory setting. In shared

address space parallel computers, the interface problem will be eased because
the program name space is not fragmented.

Like applications in general, exploitation of emerging MPP technology
requires that mathematical software exhibit properties of portability and
scalability. But, because mathematical functions are usually embedded in-

side larger parallel applications, it may be easier to exploit trivial outer-loop

18 CHAPTER 4. SUMMARY OF WORKING GROUP FINDINGS

application parallelism and keep the mathematical software functionality
essentially serial rather than attempting a new parallel algorithm. This ap-

proach, where appropriate, can provide early utility. It does not address the

broader question.
Developers of mathematical software have requirements which must be

satisfied by the HPC environment. An overriding concern is that the math-
ematical software writer retain sufficient control to guarantee numerical be-
havior. The compilers should respect parentheses in generating code for

floating-point expressions. The runtime environment must provide informa-

tion about the properties of floating-point arithmetic, precision of expression
evaluation, exception handling, and mapping of distributed data types. Ac-

cess to exception handling facilities needs to be permitted at low overhead
costs. Compiler analysis results should be provided to aid in software tool

development. Finally, parallel prefix for arbitrary user-defined associative

operations should be supported.

4.4 Languages and Compilers

The combination of programming language and compiler establishes the log-
ical interface between user application and the operating execution environ-

ment. Together these two components of the computing environment con-

tribute significantly to the effective performance of the overall system as well
as to its ease of use and the portability of its application code. The Lan-

guages and Compilers Working Group considered the problems confronting
users and system software developers in matching the capabilities of MPPs

to the requirements of user applications.
The programming languages for massively parallel processors must go be-

yond conventional languages in expressivity. In addition to the normal re-
quirements, useful languages for MPPs must incorporate semantic constructs

for delineating program parallelism, identifying locality and specifying data
set partitioning. The broad range of HPCC applications may embody a

rich diversity of program structures. It is anticipated that no one parallel

programming model will satisfy all needs. Data parallel, task parallel, and
object parallel forms have all found applicability to end user problems and
are expected to continue to do so. A parallel programming language will

have to permit user accessibility to a mix of parallelism models, either by

incorporating them into a single schema or by providing means for a single
application to use different languages or different parallelism models for sep-

4.4. LANGUAGES AND COMPILERS 19

arate parts of a user problem. In either case, languages and compilers will
of necessity support interoperability among independently derived program

modules, perhaps even running on separate computers in a distributed het-

erogeneous computing environment. Adequate return from the investment in
MPP software development depends on the ability to combine independently

developed software modules.

Languages must provide the means to express locality relationships among
tasks and data objects to minimize performance degradation from access
latency and data migration. What the most general and useful character-

izations of locality are and how they should best be represented are open

questions. Sufficiently rich languages provide the programmer with multiple
ways of representing the applications. Alternatives must be clearly related

to costs in terms of resources and performance so that optimal trade-offs can
be made.

Compiler development will have to be extended to translate new language
semantics for control of parallelism into optimized parallel system operation.

Critical among these is exploitation of locality. Management of the system
memory architecture hierarchy, data placement, and coherency maintenance

as well as interprocessor communications are all strongly influenced by ex-
posed locality. Compilers native to given processor architectures are re-

quired to achieve highest performance through hardware structure-driven

code transformations. But, these same sophisticated code manipulation
methods can obscure the relationship of the actual processing activities to the

original user source code. User productivity is largely derived from this bind-
ing because both program development and performance optimization rely

on it. Advanced compilers will have to provide detailed information about
code optimizing transformations so that debugging and performance mon-

itors can present their findings to the programmer in a meaningful (source
code related) way.

The working group identified key avenues of pursuit considered critical to

the HPCC program that should be conducted during the next two to five
years. Language features and compiler extensions should be investigated

in such areas as parallelism, data placement, parallel I/O, and exception
handling. Compiler optimization techniques should be extended in resource

allocation including program partitioning and mapping with an emphasis
on locality control and task scheduling. Robust programming support en-

vironments for successful experimental languages and compilers should be
implemented and made accessible for rapid assimilation by the GC applica-
tion community. Methods for evaluating alternative parallelism models and

20 CHAPTER 4. SUMMARY OF WORKING GROUP FINDINGS

computing strategies must be devised for meaningful comparisons of research
results. Achieving these goals will involve research and development efforts
as well as an environment conducive to sharing of results, collegial review,

and funding.

The working group identified three stages of evolution for such work: re-
search prototype, advanced development prototype, and commercial prod-
ucts. Many research prototypes reflecting innovative but untested ideas

would receive modest funding. A few of those would be selected through

a process of objective evaluation for advanced prototype development, the
product of which would be disseminated among diverse research groups to

acquire extensive experience. Ultimately, one or more of the most useful and
successful of these would be commercialized and made available to the HPC

community.

It is realized that many enabling factors within the HPC community can
greatly contribute to the likelihood of success, should they be aggressively

encouraged. Strong collaboration between user and system software devel-
opment will greatly ease acceptance of new technology and address most ur-

gent needs first. A shared approach to evaluation of results will favor early

recognition of quality research results. Wide availability of networks and
high-performance computers can accelerate ultimate adoption of research
results by production environments. A globally accessible repository for

software, documentation, and test case data will strengthen and bind to-

gether the community and greatly ease the sharing of project results and
tools. Finally, the early adoption of standards at all levels of the logical
and physical systems will make possible interoperability of diverse program

modules, greatly enhancing the productivity of the entire community.

4.5 Software Tools

Adequate means for program debugging is foremost among the tools needed
for the development of MPP applications software. The software tools work-

ing group observed that manufacturers of MPP systems do not offer de-

bugging facilities capable of systematically detecting and isolating program
errors and relating them back to the original source code. Parallel process-

ing complicates the task of analyzing erroneous system behavior. The lack
of proper debugging facilities severely hampers effective parallel application

program development.
Beyond the more common determinant errors encountered with conven-

4.5. SOFTWARE TOOLS 21

tional sequential programs, parallel processing introduces the possibility of

transient errors which are not easily repeated or diagnosed. These are caused

by timing conflicts, such as race conditions in shared memory systems and
send-receive mismatch and buffer overflow in message-passing systems. Such

errors are particularly difficult to isolate and correct. New debuggers must
be devised to represent the abstract program state of the parallel program-

ming paradigm so that transient errors can be related back to the source
code.

Extensive compiler transformations for automatic optimization further

complicate parallel debugging. The debugger must have access to infor-
mation about these transformations in order to relate machine operations

to their respective source code statements. Ideally, the debugger should be
able to detect and isolate timing errors. But, without such sophisticated

techniques, the debugger must at least be able to characterize sequences and
timing events. A factor complicating debugging of parallel software is the

intrusive nature of debugger operations which 'n easily perturb the real
behavior of the native program, thus obscuring the original errors or inject-

ing new ones. Virtual time strategies may have to be employed to ensure
fidelity of program behavior characterization by tile debugger.

Even if a parallel application code is executing correctly and producing
valid result values, performance may exhibit significant variation depend-

ing on the relationship between the program computing demands and avail-

able parallel computing resources. Programming parallel comp,,ters presents
many more degrees of freedom than the equivalent task with uniprocessors

and therefore requires many more decisions of the end user or his system
software surrogates. The challenge of correctly associating application pro-

gram tasks with parallel computer resources requires user access to system
performance information.

The Software Tools Working Group identified performance evaluation tools

as among the most critical for effective exploitation of massively parallel
computing. Such tools convey how well a program is performing on a given

parallel machine, how performance would alter should parts of the program
be modified, and how performance would scale with changes in problem and
system size as well as changes in architecture. Not only is such insight essen-

tial to the application programmer attempting to realize portable optimal

code, it is imperative to system software and hardware designers developing
the next generation of high performance computing systems and strategies.

Performance is affected by a myriad of sometimes subtle influences dur-

ing the interplay of hardware and software. These influences include pro-

22 CIIAPTER 4. SUMMARY Ol,' WORKING GROUP FINDINGS

gram parallelism, variable latency across ttle hierarchical memory structure,
overhead of parallel resource management and task synchronization, and
contention for shared physical and logical resources. Revealing tile degree
of contribution of each of these factors and relating them to user decisions

in the application programs is the combined responsibility of compiler and
runtime performance analysis capabilities. The compiler must establish the

relationship between performance measurement data and program structure

as represented by the application source code. Tile compiler also must per-
form some analysis, insert software measurement code for traces, and control
hardware instrumentation. Because software for performance measurement

is intrusive, extending the execution time and potentially altering the se-

quence of critical program events, hardware instrumentation may be neces-
sary for certain fine grain measurements. Hardware support also must be

provided for measured parameters that fall outside the programming model
name space. Finally, the wealth of performance related information returned

by the system challenges tile user's capacity for data assimilation. Advanced
methods of visualization, derived expressly for performance information, will

be needed to minimize the program optimization cycle. Ultimately, tile same
techniques of measurement, evaluation, and code modification may be incor-

porated to support automated compile time and runtime optimizers. All of
these problems are extended in difficulty when applied to larger heteroge-

neous parallel computing systems.

While debugging and performance tools were cited as those most urgently
needed to facilitate effective use of MPPs, many other tools could be useful as

well. Among those, support for global shared address spaces and source-to-
source translation were considered explicitly. Shared address space greatly

simplifies application and system programming. All variables, whether lo-
cal or remote may be accessed by the same constructs. As tile program or

host system upon which it is running changes, ttle resulting changes in rela-
tionship between variables and their supporting processors need not require

modifications to programs. Runtime resource allocation is greatly simplified
because any processor has direct access to all memory resources. This does

not eliminate the need for locality exploitation to minimize latency, but it
does ease the complexity of program control.

Many experimental tools to manage parallelism involve the need ';o au-

tomatically convert an original source code to a new source code reflecting
modifications and augmentations resulting from analysis. Meta tools to fa-

cilitate building source-to-source translation tools in the context of parallel
codes would accelerate the rate of experimentation with alternate strate-

AI

4.6. OPERATING SYSTEMS 23

gies. An important aid in this domain would be the inclusion of hooks in

compilers supplied by vendors to provide direct access to internlediate form
representations of source code. Finally, it was the opinion of the working

group that even if the many laudable but aggressive objectives above could
not be met by the research community for some time, it was imperative that

minimalist debuggers and performance measurement tools be provided by
vendors on a per processor basis in the immediate future,

4.6 Operating Systems

The purpose of a computer operating system is to reflect an abstract user
interface to the hardware and firmware resources, provide protection from

other programs resident on the same system, support a file storage capability,
and provide response to exception conditions. With the emergence of high
performance computing systems that exploit parallelism at many levels, the
role of the operating system and its relationship to program execution is
changing in response to the demands and constraints imposed by these new
systems. The operating system working group examined the implications of

this new relationship as it affects the development of future system software
scalable to TeraFLOPS performance.

Conventionally, the operating system is responsible for resource manage-

ment and job scheduling. However, where parallelism is a source of perfor-
mance gain as in MPPs, the finer granularity of tasks makes the overhead of

kernel, calls prohibitively expensive for thread scheduling and message pass-

ing. Instead, a runtime system that exists within the application address
space is used for this functionality. Temporal costs are greatly reduced in
this manner because function calls are used instead of trapping to the kernel

and application derived knowledge can be applied to permit lighter weight,

more specialized functions to be employed.
For very large applications executing on MPPs, the loss of execution time

due to premature termination can be unacceptable. An important capability
for future operating systems is recoverability of application program state

part way through its execution, permitting restart to completion. Long run-

ning applications need to be able to survive hardware and software faults,
system crashes, unintentional network disconnect and logouts, and other

forms of interrupted service without having to restart from the beginning.
Key to achieving execution resumption is operating system support for au-

tomatic checkpointing and restart. User access to checkpointing faci,ities

24 CtlAPTER 4. SUMMARY Ol,' WORKING GROUP FINDINGS

from program code is necessary to optimize recoverability while minimizing

tile overhead of checkpointing. Both software and hardware system develop-
ment must reflect the need for robustness through restart. Many unresolved

issues still undermine realization of production level recoverability oil MPPs.

Among these are migration of checkpoint files to other machines, reducing

checkpointing image sizes, compiler help to optimize checkpoint tile organiza-
tion, hardware and OS kernel support for checkl)ointing, and checkpointing
of distributed programs across heterogeneous systems. Related to recovery

from unintentional termination, is exception handling. Here, hardware sup.

port for managing flag mechanisms is essential, but operating system support
is of less importance. User application code should be able to dictate the

response actions to be taken under exception circumstances.
The central role of the operating system for managing the file system and

general I/O is complicated by the exploitation of parallelism in MPPs. I/O

performance must keep pace with increasing execution rates, although I/O
mechanisms are intrinsically serial in nature. Parallel i/O functionality needs
to be defined and standardized to eliminate ambiguity while beneliting from

parallelism when practical. File storage capacity and transfer rates can be

augmented through technology, but system software must be accelerated as
well so as not to become the bottleneck. An added complication involves
distributed file systems accessed by means of networks. Reliability, latency, !

throughput, and security are all compromised by remote storage of files.
The operating system, through appropriate network file system protocols,
negotiates with remote operating systems to affect the file transport, thus

forming a heterogeneous system in the process. More than any other aspect
of distributed computing systems, file and I/O management may prove the

Achilles' heel of massively parallel processing.
The operating system is responsible for memory management. For MPPs

the memory hierarchy is substantially more complex than for conventional

uniprocessors. A wide range of memory access latency can be experienced

depending on the relative location of the desired data with respect to the so-
liciting processor. Contention among multiple processors for shared memory
units and communication channels further degrades access times. Program

mapping at load time or runtime must consider this complex trade-off space.
Memory management strategies supported by the operating system play an

integral role in these decisions anti control. Currently, distributed memory

MPPs fragment the system memory, identifying bl_cks exclusively with in-
dividual processors. Remote access to a variable requires explicit message

passing and local processor servicing. The operating system needs to man-

.1.7. ('OMI'I'TIN(; EN_'IRONMENTS 25

age all nwm.r.v within the system. It is much easier to write system software

(and alq_lication s(fftware)if thvre is one uniform address space throughoul

the system. At some level of abstraction system software designers should
see a global name space. This does not preclude optimizing for locality, but

it, does simplify memory tnanagement. Also, these early generation MPI's
employ physical address mapping. Program scalability is one of many ad-

vantages to employing virtual memory translation. Managing a distributed
virtual memory is complicated if the task is to be dolw in parallel, This
will be necessary if operating system functionality is to scale with parallel

computer size.

Other issues related to operating system support for MPPs include general
resource management, debugging attd performance monitoring, and message

passing. While all are rellected by conw,ntional multitasking uniprocessors,
the additional burden of parallelism complicates each of these SUplmrt func-
tions. Among the questions to be resolved is how multiph, jobs are to be

supported simultaneously on a given MI'P. Currently, such systems arc par-

titioned by groups of processors with some set of processors dedicated to a
particular job. An alternative is to time slice processors such that a processor
picks tasks from a global queue supporting all active jobs, or even allocat-
ing fixed time segments to a set of assigned tasks on each processor. The

complexities of achieving this functionality go beyond current SUplmrt and
the cost-benefit trade-offs are not clear. The operating system role may be

extended to incorporate all elements of heterogeneous systems. Whether
this is done as a single operating system or as an ensemble of collaborating

operating systems has yet to t)e determined. But at some level of granular-
ity, protocols and strategies for coordinating mutually SUl)porting operating

systems ow:r WANs working on a single problem will have to be devised.

4.7 Computing Environments

The C,omputing Environments Working Group addressed the wide array of

issues associated with the principal classes of resources coral)rising the high
performance computing systems of the future. The objective was to identify

the needs for system software in managing the total system infrastructure as
it is brought to bear on Grand Challenge applications at TeraFI,OPS levels of

l)erformance. Of particular interest were the application driven requirements
for the computing environments envisioned and their scaling behavior for

1/0 bandwidth and 1/0 caching. The three basic areas considered were

26 CIIAI'TER ,I, SUMMAIIY OF WOIIKING GIIOUI' FINDINGS

data support systems, communication support systems, and heterogeneous
computing environments.

These questions were examined within the framework of a computing en-
vironment hierarchy which is expected to encompa_ss all systems within tile
foreseeable future. Parallel computers are ensembles of equivalent computing
elements and include vector supercomputers, SIMD processors, shared mem-
ory MIMD, arid massively parallel distributed memory MIMD systems. The
Meta-computer layer is composed of a heterogeneous collection of disparate
computer systems and data storage systems integrated by high bandwidth
LANs, all at one site. The Meta-center is the top layer and constitutes
multiple computer centers connected by a very high bandwidth WAN. As-

sociated with each level are the resource management and programming
support software necessary to effectively apply the computing facilities to
end-user Grand Challenge scale problems.

Porting and rewriting of applications programs require a support envi-
ronment that encourages code reuse, portability among different platforms,
and scalability across similar systems of different size. Achieving these re-

quires standardization of key programming elements such _ parallel I/O and
message-passing primitives, and parallel programming support tools such a_s
those discussed by the Software Tools Working Group. In addition, appro-

priate Unix tools and accounting mechanisms are necessary to the parallel
computing context.

The data storage requirements for applications operating in the regime
of TeraFLOPS performance are unclear at this time. An important near
term result of the ItPCC Program will be estimates of data storage scaling
behavior for key Grand Challenge problems. What is known is that the

. magnitude of data managed by these systems will be far beyond the capacity
of today's largest systems. Future file sizes may scale with memory size, but,

in any case can be expected to exceed 30 Gigabytes. Many questions remain
concerning the best way to organize such large data sets to achieve acceptable
file retrieval times. Archival storage systems will be more tightly integrated
with primary disk storage systems; the latter caching the most recently used
objects resident on the former. New storage technologies will undoubtedly
play an important role by changing the balance of the component elements,
but not for several years. Meta.computers and meta-centers will require

transparent data exchange with common formats for which standardization
in the near future will be needed. Ultimately, all main file systems across
the meta-centers will be integrated into a single uniform file name space

creating a National File System. But the resulting need to rapidly access a

4.7. (!OMI'ItTIN(; I';NVIRONMENTS 27

wealth of shared data will tlemand that research questions concerning data
compression, data privacy, attti data integrity be resolved.

Application programs being performed at a 'reral,'LOl_S perfi_rmance level
will generate data at rates exceeding a Gigabit per second. Development of
software systems to manage such communications locally and across wide ar-
eas is considered the pacing technology along with development of the actual
high bandwidth communications media. In question is the relative benefit of
packet switched versus circuit switched protocols in achieving such through-
puts. Where applications exploit parallelism across recta.centers, the degree
of latency imposed by the communication subsystem as well as the degree of
uncertainty may have a profound influence on the structure of the programs.
Extensibility of network capacity will require models nf local environments to
include parallel channels to meet increased demand. While the the apparent
speed of a network would need not exceed the memory bandwidth of a given
computer, the integration of multiple computers in a meta.computer can
intpose peak demands exceeding those levels where communication channels
are shared. The need for checkpointing as well as the use of performance
instrumentation will aggravate demands on communication systems. Error
handling standards will have to be developed and applied with the increased
opportunity for data corruption as a consequence of heigtttened data trans-
port. Systems that rely on assumed correct data may experience insufficient
reliability in the environment of TeraFLOPS computing systems.

The motivation for migrating to heterogeneous environmeI_ts is the poten-
tial to apply the most suitable computing systems to the different parts of
a given program, better matching the resources to computing needs. Some
consider this an opportunity to achieve super-linear speedup. Realizing this
possibility will require the development of a uniform programming support
environment and a software resource management infrastructure. Both are
made more difficult than their homogeneous system counterparts because of
the complex trade-offs between data locality and granularity across compo.
nent systems. Analysis tools will have to be provided to assist in determin-
ing the mapping of activities and data to computing elements. The optimal
balance point is a function of many factors, including communication band-
width and latency, size and power of the constituent processors, and software
overhead for coordination within the heterogeneous environment.

28 CIIAPTER 4. SUMMARY OF WORKING GROUP FINDINGS

4.8 Visualization
I

Massively Parallel Processing systems oiler the opportunity and challenge

of generating, manipulating, and managing vastly greater amounts of data
compared to conventional computing environments. User understanding and

response to this wealth of information is impracticable by normal methods.
Scientific Visualization is emerging as an ensemble of techniques for present-

ing data quickly and compactly in a form amenable to rapid user assimila-
tion. While exciting in its recent successes, current tools and systems for

scientific visualization will be severely stressed by the demands imposed by
even near term MPP systems. Anticipated TeraFLOPS-generation MPPs

would overwhelm contemporary visualization systems. The Visualization

Working Group considered the functionality and demands of visualization,
the state of the art in this field, the challenges facing system software sup-

porting visualization, and an approach to evolving such tools to meet the
needs of TeraFLOPS computing environments.

Computational scientists working on Grand Challenge problems employing
MPP architectures will rely on visualization tools for managing the abun-

dance of associated data. Foremost among requirements is rapid high res-

olution presentation of massive data sets generated either from simulation

or as raw output from other systems such as remote sensing. Visualizatiou
of multivariate data structures challenges current methods both in form of

presentation and in speed of enabling technology for storage, transfer, and
rendering. However, the demands imposed by direct presentation of a data
set are dwarfed by the requirements for data navigation and animation. The

former permits the user to conveniently move through a target data set
by examining graphical abstractions of different portions of the data being

searched. The latter presents time dependent results as a time varying se-

quence of frames. Both require a multitude of visualization images of the
target data set to be generated and displayed in near real time.

Visualization also can be extremely valuable in the development of appli-

cation software; both in its debugging/optimization and during execution.

Debugging is helped by showing program state among potentially thousands
of variables. Optimization of resource allocation is greatly aided by depict-

ing the relative utilization and other metrics of processor behavior in large
multiprocessor configurations. Many simulation applications are interactive

requiring user adjustment of critical parameters during run time. Again,
visualization of key datasets on an ongoing basis is important, in providing

key user feedback. In "all these cases, scientific visualization is extremely

Illlll

4.8. VISUALIZATION 29

valuable, even essential, in effectively managing tile vast amounts of data

associated with emerging massively parallel high performance computing.
The opportunities for exploitation of scientific visualization ill the realm

of high performance computing are constrained by current inadequacies in
performance of the graphics infrastructure and tile usability of such sys-

tems. Visualization systenls custom designed for a particular application

and host computing system/environment are too costly and restrictive for
broad community benefit. The software must be easy to use by general sci-

entists for a wide array of applications. Thus, reuse of visualization software

is essential. Modularity of software with clean, well-defined interfaces will

support both ease of programming and software reuse by allowing sophisti-
cated application-specific visualization systems to be simply derived from a
collection of predefined general function modules. Retention of investment

in learning curve and software development requires portability of software
modules among extant platforms and scalability to massively parallel pro-

cessing systems of increasing size and complexity.
Performance limitations of current visualization systems must be ad-

dressed at all points within the visualization system support infrastructure.

Dominant among these are disk and I/O bandwidth. But uniprocessor per-
formance, even with special purpose acceleration hardware, will not keep

up with the demands created by evolving high performance computing sys-
tems. While these areas are conventionally dealt with by operating system

and computing environment design activities, the requirements of visualiza-
tion exceed the capabilities provided by those communities. As a result, the

majority of work engaged in by the visualization community is dedicated to
system software infrastructure development.

The Visualization Working Group concluded that the key approach to ad-

dressing this challenge is development of distributed visualization environ-
ments (DUEs) that exploit parallelism in a heterogeneous framework of mas-

sively parallel processors, graphics workstations, RAID file storage servers,

very high bandwidth fiber optic LAN, and high data rate WANs. The dis-
tributed nature of visualization systems is enhanced by the expectation that

data sources, application computation hosts, and graphic presentation ter-
minals may be widely separated, even spanning the country. A plug and
play programming style permitting graphical datafiow structures of func-
tional modules is anticipated where the modules may be distributed among
appropriate elements of the heterogeneous system or different processors of

a massively parallel processing system. Successful exploitation of this tech-

nology will require better development tools including an effective C based

30 CHAPTER 4. SUMMARY OF WORKING GROUP FINDINGS

programming capability for MPP systems and robust interfaces to Fortran
and its emerging data parallel derivatives.

Chapter 5

Impact of Grand Challenge
Applications on HPCC
Software and Tools

Geoffrey Foz, Chair

Sanjay Ranka, Deputy Chair

5.1 Introduction

This paper presents the issues for development of tools and software for

HPCC from the perspective of Grand Challenge application scientists. The
views in this paper reflect the input of only some dozen individuals, although

in many cases the individuals reflect experience of many others. However,
this small number cannot cover the breadth of requirements of diverse appli-

cations and review of our conclusions by a broader group of users is essen-
tial. We note that our working group's conclusions are quite conservative,

stressing the importance of practical, relatively near term, often seemingly

mundane, goals. Probably the members of our group were more experi-
enced than the "average" user of a parallel machine and we would expect

our conservative approach to be endorsed and perhaps even emphasized by
the broader community.

Parallel computers will only succeed if application scientists find them
useful and purchase them. This leads to a set of sociological and tech-

nical requirements for HPC software. These range from qualitative goals,
such as offering evolution paths from mainframes, workstations and personal

31

32 CHAPTER 5. GRAND CHALLENGE APPLICATIONS IMPACT

computers, to precise specifications of high performance Fortran directives

needed to support a particular application area.

In the following section, we describe the context or ground rules under
which our working group decided to base its conclusions. In section 5.3,

we present our findings, while in the final section some application-specific
remarks are made.

5.2 Context for Application Development and
HPCC

5.2.1 User Profile

We considered that most HPC applications would be developed by talented

and computationally experienced users who may not be very experienced
in the use of HPC architectures. This model certainly describes the Grand

Challenge teams being set up by DOE, NASA and NSF as part of their
component of the HPCC Program. The two industry members of our group

agreed on this for the initial introduction of HPC into their organizations.
We assume that a broader range of users will become involved with HPC

programming in an evolutionary fashion, as the hardware and software ma-

tures. Educational programs will be needed to train the initial cadre of users
whom we expect to be knowledgeable in conventional computation. Later,

education and training programs will be needed for the broad range of users.

Our model for the user suggests that software tools can assume that the
programmer would be willing to "work hard" and that "complete solutions"
would not be necessary, but rather, the systems software should view parallel

programming as a collaboration between user and the software tools.

5.2.2 The Performance Trade-Offs and Types of Codes

Any software and hardware system makes trade-offs between performance

(cost-performance), portability and ease of programming. The research com-
munity, perhaps typified at one extreme by a graduate student, would de-
mand peak performance with codes of modest size (1,000-10,000 lines) with

only a life span of a year or two. At the other extreme, we could see a For-
tune 500 company developing a million line code which could be used with

continued upgrades for twenty years. This HPC application would sacrifice
performance for scalability (portable to future machines) and error free pro-

grams designed for easy evolution. Here the needs of HPC overlap with the

5.2. APPLICATION DEVELOPMENT AND HPCC 33

goals of software engineering. It is worth noting that DoD estimates that
the costs of a large software project can be divided into three stages with

only 10% of the cost for initial development, 20% for testing, and 70% in
maintenance over its life cycle.

Thus, HPC software systems must support a wide range of trade-offs and,
as we start developing major systems, consider not only the initial develop-

ment but also the maintenance and ongoing evolution of large codes.

5.2.3 The Application Domain

Our group had spirited debate as to the range of applications we should

consider. The HPCC Program is built around a set of Grand Challenges
which can be expected to need TeraFLOP and higher performance machines.

These Grand Challenges are critical to the missions of DOE, EPA, NASA,
NIH, and NSF--the latter reflecting fundamental research in the academic

community. We understand that the initial goals of HPCC software should

be to support applications which these Grand Challenges represent.
However, we note there are important government and industry applica-

tions that could make good use of HPC, but have very different software

requirements than the designated Grand Challenges. Two examples are a

battle management system, and the information management, design and
simulation support of concurrent engineering.

The particular application focus of HPCC is important and should be
borne in mind when reading both this report and those of the other working

groups.

5.2.4 The Real World

High performance computing is predicted to gain great importance; a De-
partment of Commerce report estimates that its economic impact will be

$100 billion worldwide by the year 2000. However, at the moment, paral-
lel computing is a minor component of the total computing arena. Personal

computers, workstations, mainframes running large information systems, are
each more than an order of magnitude larger than the parallel compl_.ting

arena. Further, scientific computing--the current application focus of the
HPCC ProgramJis not in total a large market. Teradata, a parallel data-

base company, is currently the largest parallel computer vendor.
The small size of the HPCC field today has implications for software sys-

tems that may not be very technical, but are nevertheless important. Parallel

34 CHAPTER 5. GRAND CHALLENGE APPLICATIONS IMPACT

computing needs to offer great cost performance advantages over conven-
tional approaches to entice users to make the switch. HPC software systems

need to consider carefully the implications of migrating codes and users from

the dominant software paradigms of conventional computing.

5.3 Requirements for Systems Software and
Tools

5.3.1 Gradualism and HPCC Software

The working group took a conservative attitude summarized a_ "gradual-

ism" by the mathematical software group. In general, we suggested that
HPCC needed far more emphasis on modest, robust software than on com-

plete all-encompassing tools, compilers, mathematical libraries, operating
systems and environments. The visualization group termed these needs as

systems infrastructure. The operating environments on the different parallel
machines are at different levels of maturity. The sample requirements listed

below are satisfied on some current systems, but not all.
We did not doubt that a fully functional High Performance Fortran parallel

compiler would be useful. We agree with the compiler group that long-term

priorities include high performance, portability, usability, consensus on a
few key programming paradigms, and their integration into the program-

ming environment. However, it was suggested that these long-term goals be
accompanied by important short-term objectives.

Software tools are two types: compile-time and run-time. For the compile-
time type we need tools which will allow us to analyze the data accesses and

modifications to arrays everywhere in a code. In particular, a simple mi-

gration tool would be a very useful product. This could be built around
the High Performance Fortran compiler but would assume the user responsi-

ble for the parallel code. The migration too] would supply dependency and
other code analysis but not make any parallelism decisions. The following
simple features would be desirable: the number of clocks a loop will execute,

detection of cache associativity conflicts, MegaFLOP counters, and a run-

time ability to instrument code through the debugger, so that timing results
can be obtained on portions of code. Both elapsed time and processor time

are required in order to infer memory system delays. Further, the compiler
should be interactive. It should be able to ask you questions, if necessary,
whose answers will help it produce better code. In other words, it could

5.3. REQUIREMENTS FOR SYSTEMS SOt:TWARE AND 'I'OOLS 35

support dialects of I_ORTRAN having compiler cues to help optimization.
Other important sample tools needed include good, robust node debuggers,
node compilers, and a [)NIX make command. Stated more generally, we

want the basic UN]X (operating system) tools to be available on the parallel

machine. These are tools with no deep parallelism issues except that they
need to recognize the individual nodes and that a single user al)plication

consists of an ensernble of programs running on different nodes.

We endorsed the philosophy ef the operating systems working group that
an tIPC O/S should be able to deliver high performance. It should get out

of the way when it is not needed and not over-engineer and hence lower
performance of its services when they are required. This probably implies

a layered structure where the user can obtain from the sarne O/S a given
service with different trade-offs between functionality and performance. For

instance, message passing internally to an MPP requires low software over-
heads; however, on a network with lower bandwidth and higher hardware

latency, message passing can afford more software overhead and could use
this to implement a more robust protocol.

5.3.2 What Do We Want?

Many working groups asked us what the applications needed in the areas of
software tools, machine capabilities, mathematical software, etc. We suggest

a different approach_as we will surely take anything offered. Rather, we
suggest that you ask us to choose between a set of trade-offs. For instance,
we stated in section 5.3.1 that we would rather have some modest tools

in the near future, even if they delay a system offering automatic seamless

parallelism. We were asked if we wanted virtual shared memory, automatic

checkpointing, and accurate treatment of race conditions in debugging. In
each of these three cases, we certainly wanted these features if they were

zero cost. tlowever, we were doubtful if we were willing to pay a significant
price in either performance or dollar cost for them.

5.3.3 Template Codes

We proposed an experiment for improving the communication of parallel

algorithms (such as a parallel FFT or adaptive multigrid) and applications
between users. Fully documented, elegant, scalable software iml)lementa-
tions would be a wonderful goal for either mathematical libraries or a new

parallel application to be distributed among several users. However, this

3_i ('IIAPTER .5. GRAND CtiALLENGE ,.II'I_LI(:ATIONS IMI_ACT

may be too ambitious and unnecessary. We suggest templates as an alter-
native to fully functional library routines. These would be generic parallel
codes that could be modified by any user. These modifications could involve

optimizations for a particular parallel platform or tuning the functionality

of the algorithm. It was noted that "canned packages" tended to be ei-

ther too general or too specialized. At this stage, we are in an exploratory
mode with parallel computing where both the needs and implementation

are hard to specify. Obviously, a template requires more effort from the
user than a full, functional, flexible library. However, remember that our

ground rules implied sophisticated users. Further, fully functional libraries
are hard to produce, while templates are easier to produce and would be of

great value. Thus we felt it was better to set a realistic goal (of templates)
and succeed quickly, rather than wait for the design and implementation

of libraries. Currently, much duplication exists in algorithm development
for parallel computers. One possible reason is we lack a realistic way to
communicate results.

Experimentation will be needed to determine the best template formats.
We suggest clear documentation and the provision of sample data sets so

the user can test implementation on at least one computer system. We
felt we should not specify a precise template format. In particular, the

language used is not important--Fortran, C, C++, and Pascal are all rea-
sonable choices. Templates could have significant educational value in both

courses and training sessions. They would enable the communication of
results between different application disciplines and between users and the

mathematical software community.

The arguments in this section also show the importance of the availability
of source code for any parallel algorithm or application to be used outside the

group that originally developed it. It is likely the original implementation

will need changes due to either a new machine or environment changes such
as a new message-passing subsystem.

5.3.4 Standards

We strongly support the development of standards appropriate to HPC. In
particular, we believe the community has gained sufficient experience with

message passing and data parallel languages to realistically codify the expe-
rience in the form of standards. We are concerned that other trends towards

standardization may be premature, focusing as they do on standards primar-
ily designed for sequential architectures (POSIX) or shared memory systems

5.3. REQUIREMENTS FOR SYSTEMS SOFTWARE AND TOOLS 37

(MACtl, OSF/1). We are particularly concerned that some standards, e.g.,
POSIX on every node of an MPP, that were treated as unassailable and self-
evident facts framed the OS working group's discussions. Unfortunately,
time constraints prevented us from bringing our concerns directly to the
attention of the OS working group.

We are also concerned about a perceived difference ill "world view" be-
tween the OS designers and the application writers. Generally speaking,
application writers perceive they are writing a single program which hap-
pens to run, with occasional communication and synchronization, on many
processors. (Obviously, there are important exceptions to this generaliza-
tion.) Resources like I/O and CPU, which are allocated by the OS, are
thought of as pertaining to the entire application, i.e., tile potentially large
collection of individual processes. Conversely, OS designers perceive as a
process the fundamental unit of computation. Individual processes are as-
signed resources (CPU, I/O descriptors) as they request them. Some atten-
tion is paid to the fact that multiple processes may be acting in concert, but
not nearly as much as the application writers may expect. We believe this
difference in viewpoint stems from background. OS designers are steeped in
the traditions of distributed computing over networks. Client/server models,
issues of name binding and reliability in the face of uncertainty are critical.
Conversely, application writers are used to writing a single program to do
a single task. They would prefer to hide as much as possible the fact their
single program is actually running on a number of individual processors.
The issue becomes painfully clear when one discusses parallel I/0. A par-
ticipant asked the floor what one should expect from calling the C library
routine printf (equivalently PRINT in FORTRAN) from a parallel pro-
gram. The answers were varied and mutually incompatible. They clearly
reflected the divergent world views associated with the OS and applications
camps. Apparently, the answer is not likely to be addressed by the emerging
specification for High Performance FORTRAN. At the very least, we con-
clude that a temporary working model for parallel I/O acceptable to both
OS and application designers is urgently needed.

5.3.5 The Environment

The environment working group asked us searching questions about tile re-
source needs for future parallel computer service centers built around a Ter-
aFLOP parallel machine. We could not give authoritative answers to re-
quests for needs of CPU memory, disk and archive as a function of available

;38 ('HAPTER 5. GRAND CtlALLENGE APPLICATIONS IMPA('T

machine performance. We were sure that applications would use all they
were given and so tile philosophy of section 5.3.2 is important. We need
to examine trade-offs between different resources with realistic cost assigned

to each component. We anticipate that simple linear scaling of the current

use at Cray Supercomputer centers will be misleading. However, this is an
important area and we suggest it be examined by a qualified group.

Our group was not enthusiastic about discussing the needed support for a
seamless distributed heterogeneous collection of MPI)s. We thought it would

be better to understand a single seamless homogeneous machine first! Our
conservative comments did not apply to functions such as visualization and

common file systems which are already distributed. Clearly this practice will
and should continue.

5.3.6 Computational Science

One can argue that parallel computing will require closer ties between appli-
cations and computer science as an ongoing practice. Thus, successful use of

a parallel machine requires mapping (matching) the application to the ma-
chine requiring the user understanding the machine (as in the Fortran plus

message-passing programming paradigm), or systems software understand-

ing the application. In the latter case, languages such as high performance
Fortran need directives which are based on application requirements. Thus

we can argue that development of computational science educational pro-
grams will help to produce and properly evolve effective systems software.

5.4 Particular Application Requirements

5.4.1 Visualization

The visualization group identified a selected set of Grand Challenges, includ-

ing computational chemistry, geophysics, fluid dynamics and plasma physics,

that are particularly important. They also gave a complete analysis of I/O

requirements that could have general applicability.

5.4.2 Industrial Users of Electromagnetics, Fluids and Struc-
tural Simulations

An industry meeting sponsored by United Technologies produced a concept
similar to the templates of section 5.3.3. The participants suggested collab-

5.4. PAR77CULAlt APPLICATION REQUIREMENTS 39
!

oration in forming "non-proprietary codes". This base set could be shared
among different companies that could extend the "templates" by optimizing

them to proprietary code for their particular applications. For fluids, this
couhl vary fronl internal flow in an air-conditioner or a jet engine, to airframe
simulations.

This industry group also has stressed the need for standards for multidisci-

plinary design environments which integrate fluid flow, structures, thermal,

propulsion, controls, and perhaps radar signature.

5.4.3 Financial Modeling

High performance computing could have a major impact in financial mod-
eling. Further, the dollar volume in many problems could justify very large

MPPs. The financial community is interested in portability, but especially

rapid prototyping. The cycle of a typical financial application is very short
a few weeks to a few months.

5.4.4 Battle Management, Command, Control, Communica-

titan, intelligence and Surveillance

The software that enables the integration and operations of large complex

systems is the focus of this application area, often referred to as the "systems
of systems" problem. In the language of section 5.4.2, it is a multidisciplinary
application with a very broad suite of disciplines to be integrated. We char-
acterize this as a concurrent ensemble of multiple, interacting functions, and

include functional parallelism, which may be geographically distributed, data
parallelism, and control parMlelism. The DoD Software Technology Strategy,
December 1991 (draft), explicitly used two "systems of systems" concepts
envisaged for 2007 to motivate their technology requirements: Integrated
Combat Systems tICS) and Corporate Information Management (CIM). We

have adopted the term BMC3IS, for battle management command, control,
communications, intelligence, and surveillance to more explicitly express the

challenge of this difficult software application area.
A BMC3IS system is required to collect, integrate, and present informa-

tion to a human decision maker, the Commander, and to distribute derived

tasking for execution by others. Critical issues for the BMC3IS system are

controllability and observability if it can be adequately tested anti its per-

formance predicted with confidence. Leading approaches to address these
issues are the use of simulation and "test-beds," a software version of a

40 CttAPTER 5, (;RAND (:HALLENGE API'LIt'ATIONS IMI'ACT

wind tunnel fortile ItMC31S test article. Such tests must allow inclusion

of highly nonlinear effects such as C.onlnlander error or natural or induced
environments. The complexity of the test-bed software can daunt that of
its intended test article. Tools and environments are needed for developing

these systems

5.4.5 Environmental Modeling

Currently, second generation regional scale models run at about 100--200 !

MegaFLOPS on a CRAY Y-MP. The EPA is developing a "super model"
system (Models3) to address issues critical to environmental analysts and
regulators over the next generation. For Models3 to be of significant use, the
EPA estimates it will need at least 1,000 times the current computing power
within the next four years. This seems attainable only through algorithm
and software development that takes maximum advantage of the emerging

massively parallel and distributed computing environments. To get this
performance the task requires everything, from compilers and profilers to
high-speed communications protocols and distributed operating systems.

After 199fi the performance/power needs for modeling will continue to
soar as scientific improvements are added to the system and reasonable turn-
around times are provided for regulators and scientists to conduct credible
and defensible studies into the causes, fate and effects of environmental pol-
lutants.

I [I I II

Chapter 6

Mathematical Software

Mike Heath, Chair

6.1 Summary

This white paper summarizes discussions of the Mathematical Software
Working Group at the Workshop on System Software and Tools for High
Performance Computing Environments, held in Pasadena, California, April
14-16, 1992. Our goal was to identify the major issues in mathematical
software that may influence the success of the Federal Government's High
Performance Computing and Communications (HPCC) Program, and to
provide a vision for the future development of the mathematical software
component of HPCC environmevts. We did not expect to resolve any of
these difficult issues immediately, and in this expectation we were not dis-
appointed.

In the interactions among the various working groups, it became apparent
that the new difficulties posed by solving Grand Challenge problems on
massively parallel architectures require a major reassessment of each group's
model of the others' needs. Mathematical software must be rethought in
light of new applications, languages and architectures, and compilers and
languages must be rethought in light of new applications, architectures and
mathematical software needs. Supplying slightly improved but essentially
similar versions of old tools will not solve our problems in the near term or
the longer term.

Also apparent was the insufficient communication among the various
groups to convey their real needs rapidly, and there was ample evidence

41

42 CIIAPTER 6, MATHEMATICAL SOFTWARE

of serious misunderstandings of what others want and need. For example,
the Mathematical Software group assumed that users want user-friendly soft-

ware with complexity hidden as much as possible. This is embodied in the

encapsulated "black box" modules supplied by conventional libraries and the

higher-level abstractions and hierarchies that can be built on top of them.
However, our sample users from the Applications working group emphati-

cally expressed a preference for "nuts and bolts" templates they could modify
manually to suit their needs.

Another example is provided by our interaction with the compiler group,
which was surprised by several of the requests we made of them. They

apparently expected much higher-level requests dealing with help in laying
out data and expressing parallelism. Thus, the compiler community had
been unaware of some basic needs of their user community (matimmatical

software developers), just as the mathematical software community was not

fully aware of the real needs of the applications user community,
Thus, one of the main conclusions to be drawn from the discussions at the

workshop is that there should be much greater vertical integration of HPCC
software research and development. Collaborative teams are needed in which

researchers in systems, languages, compilers, software tools, mathematical
software, and applications end-users work directly together on Grand Chal-

lenge applications so that their results will be highly relevant and useful.

Because the normal professional incentives of peer-reviewed publication and
departmental appointments will continue to militate against such vertical

integration, it will not be easy to build and hold together such teams. Ap-

propriate incentives must be found to encourage computer scientists and
mathematicians to get their hands dirty with real world problems, while at
the same time recognizing that they must be given scope to exercise their

professional skills and abilities. The results of such collaborative efforts must
be communicated to as broad an audience as possible for the lessons learned

to be propagated throughout the wider scientific community and the multiple

disciplines involved.
Another conclusion is that there is an urgent need for near term results.

Grand new schemes will undoubtedly be needed to solve some of the out-

standing problems in high performance computing, but applications devel-

opers cannot wait for long term projects to pay off in useful products. They
need immediate help in making the transition to massively parallel architec-
tures. Thus, there should be a blend of projects having relatively modest

objectives and promising near term results, along with grander designs that

promise to reinvent the future, but may take several years to accomplish.

6.2, APPLICATIONS 43

Finally, marly of the suggestions we received from the applications users
were really a plea for help in learning effective numerical and parallel pro-

gramming at an advanced level. Education has not been a traditional goal
of mathematical software, but we seem to have been singled out on this

occasion as tile most likely candidate to be able to provide such services.

Although the mathematical software community certainly has a great deal
to offer in this regard, clearly such educational activity must be pursued
in a much broader context. Thus, it appears that educational initiatives in

parallel computing should receive very high priority, and would likely have
a greater immediate impact on the effectiveness and success of HPCC than

any other software component of HPCC.
In the remainder of this white paper we give a more detailed report on the

Mathematical Software working group's wide-ranging discussions, which for
convenience have been organized into six categories:

1. Applications

2. Algorithms and Data Structures

3. User Interfaces

4. Portability and Scalability

5. Software Engineering

6. Enabling Technologies

These topics are listed above roughly in top-down logical order; no im-

plications are intended as to their relative importance or urgency. We now
summarize the discussions of each topic.

6.2 Applications

Since applications were the main topic of another working group at tile
workshop, the Mathematical Software working group made no attempt to
discuss individual applications in detail. However, mathematical software

development is ultimately driven by the needs of applications software de-
velopment, and therefore we needed a critical reassessment of applications
requirements. We were aided in this effort by a visit from the Applications

working group, which led to a lively, and sometimes surprising, discussion

of what users really want. It soon became apparent that "users" are not a

44 CHAPTER 6. MATHEMATICAL SOFTWARE

monolithic entity, but in fact represent a wide diversity of individual needs,

from the sophisticated computational scientist who eagerly adapts to each
new architecture in search of ever higher performance, to the relative com-

putational novice who may approach change with reluctance and mistrust.
Also, there is a wide range between users who want to see implementation

details and those who prefer that such details remain hidden. Mathematical
software developers must keep in mind this range of potential users, and

realize it may not be possible to meet all of their needs simultaneously.
The strongest desire expressed by these users was simply to satisfy the

urgent need to get applications codes running on parallel machines as quickly

as possible. This pressing need leads such users to be wary of any grandiose
plans by developers of systems software and tools. In contrast to the usual

expectation that users will "ask for the moon," this group of users instead
insisted that the goals of software developers should be sufficiently modest
that useful results can be made available on a very short timetable, say

within six months. They have simply seen too many grand designs that
never bear fruit, at least not in time to be helpful in real applications of
immediate interest.

These users also took issue with the entire conception of mathematical
software as it is traditionally understood. Their claim was simply that con-

ventional mathematical software has often not been a critical component of

many real applications codes. For a variety of reasons, many such applica-
tions developers find they must write custom software for their mathematical

subproblems. Reasons given included inadequate functionality in existing
software libraries, inappropriate data structures that are not the most nat-
ural or convenient for a particular problem, and overly general software that

sacrifices too much performance when applied to a special case. These con-

siderations led to the suggestion that easily customizable software templates
might be more useful for many purposes than the encapsulated "black box"
routines usually supplied in conventional software libraries. It was also felt

such templates could play a valuable educational role in teaching numeri-
cal techniques and parallel programming, and they would tend to enhance

the understanding and confidence of users, compared to impenetrable "black
box" software. We will discuss this concept further under the heading "User
Interfaces" below.

This indictment of conventional mathematical software is somewhat unfair

in that it is based on hindsight, and it ignores the state of hardware, and

particularly software (languages, compilers, operating systems) technology
available in the late 1960s and early 1970s when the mathematical software

6.3. ALGORITHMS AND DATA STRUCTURES 45

industry initially took shape. Moreover, the mathematical software industry

can point to many valuable successes: widely used public domain packages
such as EISPACK and LINPACK; at least two viable commercial suppliers

of general purpose mathematical software libraries plus many other vendors

of more specialized software; and the fact that repositories such as Netlib
ship out hundreds of megabytes of mathematical software per week to na-

tional and international users via the Internet. Nevertheless, even without a

nudge from users, mathematical software specialists had already taken the
transition to scalable parallel architectures as an occasion for completely

rethinking the design and structure of mathematical software libraries; if
indeed the term "library" is even appropriate in this new computing en-

vironment. For example, the Mathematical Software working group had
already discussed the "reusable template" concept, along with several other

potential new paradigms, before it was mentioned by the visitors from the

Applications group.
A detailed discussion of the mathematical software requirements of specific

HPCC applications is far beyond _he scope of the working group discussions
or of this report. Suffice it to say that user needs are both diverse and urgent,

that we should consider anew the best framework for meeting those needs,
and that genuine usefulness should be our paramount criterion in develop-

ing and evaluating mathematical software. Clearly, mathematical software
should be broadly interpreted to include symbolic and statistical, as well as
numerical, computation and also should include computational paradigms,

such as n-body solvers, that arise frequently in many applications, but have
not usually been within the scope of mathematical software libraries. More-

over, these diverse components and capabilities should be integrated to the

greatest degree possible.

6.3 Algorithms and Data Structures

Parallel algorithms are obviously a prerequisite for parallel mathematical
software. The development of parallel algorithms is currently an extremely

active area of research by numerical analysts and others, and it warrants
continued substantial effort and support. This is such an enormous topic,

however, that we could not begin to scratch the surface in a day's discussion
or in this report. The study of practical parallel algorithms is still in its

infancy, with many difficult problems outstanding that are too numerous
to list here. One of the few things one can say with confidence is that

46 CHAPTER 6. MATHEMATICAL SOFTWARE

parallel algorithms universally applicable to a broad range of problems and

architectures are likely to be rare, and thus polyalgorithms will likely be even
more important in the parallel world than they are for serial computation.

An implication of this is that functions will have to provide performance

estimates (of time, space, and accuracy) in order to guide the polyalgorithm.
Error analysis and computer arithmetic are important facets of numerical

algorithm design. They have a direct and fundamental bearing on mathe-
matical software development but have received too little attention to date in

a parallel computing context. Parallel computation introduces a number of
potentially thorny issues in these areas that are of obvious concern in the de-

velopment of parallel algorithms and mathematical software. The effects of
finite precision floating-point arithmetic on serial numerical algorithms have

long been studied and are reasonably well understood. However, parallel
counterparts of such algorithms may or may not enjoy the same proper-

ties with regard to accuracy, stability, and convergence. The most readily

parallelizable algorithms are sometimes less stable than the best serial al-
gorithms. Their speed makes such algorithms very attractive despite their

possible inaccuracy or failure. This feature makes inexpensive error bounds
or warnings of inaccuracy essential. For example, the fastest practical par-

allel algorithms currently known for tile nonsymmetric eigenproblem fail a
few percent of the time, much more frequently than their serial counterpart.

Also, parallel prefix computations can be fast but over/underflow quite often
in intermediate results even though the final result does not. This means

that we need good floating-point exception handling capabilities. Exception
handling needs to be carefully thought out in data parallel programming

models as well. Even if we use algorithms that appear to be equivalent to
serial ones, the lack of associativity of floating-point arithmetic may yield

different rounding properties and different results, such as when computing
a sum in parallel by a standard tree-like algorithm compared to conventional

serial summation of consecutive terms. The order of operations may also be
nondeterministic, yielding results that are not exactly repeatable or of easily

assessed accuracy.

These considerations suggest that the presumption of "clean" standard-
ized floating-point arithmetic, with powerful exception handling capabilities,

on the individual processors (e.g., IEEE floating-point standard) is prepon-
derantly more important for parallel mathematical software than it is in the
serial world. Going beyond this, it may also be essential to establish new

concepts, techniques, and standards for error analysis and computer arith-
metic addressed specifically to parallel computation. In any case, results

6.3. ALGORITHMS AND DATA STRUCTURES 47

produced by risky algorithms should always be accompanied by computed
error bounds, and reliable alternative algorithms provided when necessary.

Such error bounds must be obtainable cheaply or they will not likely be used.
Data structures is another vital topic in the design of scalable parallel li-

braries. We have already noted the difficulty of matching generic library data

structures with user needs in specific applications, even for serial programs.
This difficulty is substantially worse in a massively parallel environment,
where an enormous variety of distributed data structures are potentially

viable options. Our discussion of this topic focused on the desirability of
formulating basic categories of abstract data types that would enable the

implementation of parallel algorithms in terms of higher level objects that

are independent of the details of the data structure implementation. Exam-
ples of such objects include

• matrices: dense, sparse, block-structured, etc.

• grids: regular, irregular, composite, multilevel, adaptive

• graphs: undirected, directed

• splines

• discretizations: interior, boundary

• time-step structures for the above

• sets (e.g., of particles)

• functions

• constraints

A great deal of intellectual economy, as well as software portability across
different architectures and applications contexts, could be gained by stan-

dardizing and encapsulating such objects and the operations defined upon
them.

Intimately connected with parallel algorithms and distributed data struc-
tures are the problems of how to partition the work of a computation into

concurrent tasks, how to map those tasks and corresponding problem data
onto multiple processors and memories, and how to schedule the resulting

tasks for efficient concurrent execution. Principal responsibility for these
problems does not properly lie in the software library development effort;

48 CHAPTER 6. MATHEMATICAL SOFTWARE

but they obviously affect such central library issues as problem representa-

tion, portability, and the user interface, so that progress in all of these areas

will likely proceed in tandem. The close interdependence among these is-
sues underlines the need for vertically integrated, interdisciplinary research

efforts in which specialists in each area work together to obtain comprehen-
sive solutions to the outstanding problems.

6.4 User Interfaces

As computer architectures and programming paradigms become increasingly
complex, it becomes desirable to hide this complexity as much as possible

from end users. The traditional user interface for large, general-purpose
mathematical software libraries has been for users to write their own pro-

grams that call on library routines to solve specific subproblems that arise

during the course of the computation. The pervasiveness of a single basic

architectural paradigm (von Neumann), tightly coupled with a single stan-
dard programming language for scientific computing (Fortran 77), enabled
a complete and reasonably concise description of the problem in terms of

the parameters in a subroutine call. Adapted to a shared-memory paral-
lel environment, this conventional interface still allows some ability to hide

underlying complexity. For example, the LAPACK project incorporates par-

allelism in the level-3 BLAS (Basic Linear Algebra Subprograms), where it
is not directly visible to the user. But, when going from a shared-memory

paradigm to the more readily scalable distributed-memory paradigm, the
complexity of the distributed data structures required is more difficult to

hide from the user because the problem decomposition and data layout must
be specified. Moreover, different phases of the user's problem may require
transformations between different distributed data structures.

These deficiencies in the conventional user interface prompted extensive

discussion of alternative paradigms for scalable parallel software libraries of
the future. Possibilities suggested included:

1. traditional function library (i.e., minimum possible change to the sta-

tus quo in going from serial to parallel environment)

2. reactive servers on a software bus communicating via byte streams

3. generic interactive environments like Matlab or Mathematica, perhaps

with "expert" drivers (i.e., knowledge-based systems)

6.4. USER INTERFACES 49

4. domain-specific problem solving environments, such as those for struc-
tural analysis

5. reusable templates (i.e., users adapt "source code" to their particular
applications)

Options 1-4 are listed above in increasing order of their potential for hid-
ing implementation complexity from the user. These four options are not

incompatible, however, in that option 4 could be implemented on top of op-
tion 3, which in turn could sit on top of option 2, whose servers could in turn

be based on modules from option 1. A user could interact with such a system

at whatever level of detail and complexity was desired and appropriate for
a particular application.

Little enthusiasm was expressed for option 1 as an end in itself, but it could
nevertheless remain useful as a lower-level construct. Option 2 has a num-

ber of attractive features, including finessing the problem of interoperability
among multiple languages, facilitating the integration of numeric, symbolic,

statistical, and graphical modules, and fitting well into a networked, hetero-
geneous computing environment with various specialized hardware resources

(or even the heterogeneous partitioning of a single homogeneous parallel ma-

chine). Option 3 and option 4 reflect the growing popularity of the many
integrated packages based on these paradigms, and would provide an in-

teractive, graphical interface for specifying and solving scientific problems,
with both algorithms and data structures hidden from the user because the

package itself is responsible for storing and retrieving the problem data in
an efficient distributed manner. In a heterogeneous networked environment,

such interfaces could provide seamless access to computational engines that
would be invoked selectively for different parts of the user's computation

according to which machine is most appropriate for a particular subprob-
lem. Moreover, environments like Matlab and Mathematica have proven to

be especially attractive for rapid prototyping of new algorithms and systems

that may subsequently be implemet:ted in a more customized manner for
higher performance.

Option 5, reusable software templates, does not fit conveniently into the

above hierarchy of paradigms 1-4. In fact, option 5 seems somewhat ret-

rogressive in terms of hiding implementation complexity from users, since
users would be directly involved in the details of adapting templates for

their particular applications. On the other hand, templates offer the oppor-
tunity for whatever degree of customization the user may desire, and could

50 CHAPTER 6. MATHEMATICAL SOFTWARE

also potentially serve a valuable pedagogical role in teaching parallel pro-

gramming and instilling a better understanding of the algorithms employed
and results obtained. These factors accounted for some of the enthusiasm

for templates evidenced by our sample users from the Applications working

group, who asked for modules at the scale of about 1,000 lines of code. An
even more significant factor was their belief that such templates could be
made available on a relatively short tinie scale.

Although the Mathematical Software working group was sympathetic to
the concerns of such users, we nevertheless noted some fundamental prob-

lems with the template approach in supplying mathematical software to

users. First, there are delicate numerical details in many algorithms that
are best left to experts. One simply cannot modify cavalierly the numerical

details of some algorithms without seriously degrading, or even invalidat-

ing, the integrity of the numerical results. Could novice users be trusted to
recognize which parts of the program are essential details and which parts

are replaceable generic code? Experience with "cookbooks" like Numerical
Recipes suggests perhaps not. Second, the template idea sounds seductively

attractive until one asks just what level of detail is appropriate for such
"prototype" programs. To be at all readable and understandable by other

users, a program must be extraordinarily well structured and thoroughly
documented, which would require a substantial polishing effort. Moreover,

it is often difficult to find either the people or the funding to do such work.
Indeed, one could argue that the messy details of Fortran code are simply

not the right vehicle for pedagogical purposes. Bu_; any higher level of ab-
straction risks the same mistrust (and potential disuse) by users mentioned

earlier. It is also worth noting that users sometimes express requirements
that seem mutually contradictory, such as desiring powerful data structures

and well structured codes, but insisting that it all be done in Fortran, which

greatly inhibits such features. Thus, we expect a continuing need to explore
a variety of approaches, with an emphasis on hierarchical systems with which
users can interact at whatever level they choose.

Novel user interfaces that hide the complexity of scalable parallelism will

require new concepts and mechanisms for specifying and representing scien-
tific computational problems, and how those problems relate to each other

when more than one is involved. New very-high-level languages and systems,

perhaps graphically based, would not only facilitate the use of mathematical
software from the user's point of view, but would also facilitate automating
the determination of effective partitioning, mapping, granularity, data struc-
tures, etc. However, new concepts in problem specification and representa-

i

6.5, PORTABILITY AND SCALABILITY 51

tion may also require new mathematical research oil the analytic, algebraic,

and topological properties of problems, such as the existence, uniqueness and
sensitivity of solutions. The wide applicability of software depends not only
on the traits of the software itself, but also on the mathematical generality

of the underlying methods and algorithms. Moreover, new computational

paradigms that emerge--such as neural networks, genetic algorithms, and
cellular automata--require mathematical analysis for a full understanding

of their fundamental properties and applicability. Whatever preferred in-
terface, or interfacas, are eventually adopted, it should be emphasized that

substantial efforts are already underway to promote software reuse, includ-

ing Netlib, GAMS, and the HPCC Software Sharing Experiment, and these
should continue to be encouraged and supported.

6.5 Portability and Scalability

It is unrealistic to expect users to adapt their codes to an ever-widening

diversity of parallel architectures. Portability of programs has always been

an important consideration, but it was easier to achieve when there was a

single basic architectural paradigm (the serial yon Neumann machine) and a
single programming language for scientific programming (Fortran) that em-
bodied that common model of computation. Such a uniform architectural
and programming model facilitated both major facets of portability, namely
the portability of program correctness and the portability of program per-
formance. Architectural and linguistic diversity have made portability much
more difficult, but no less important, to attain. Users simply will not want
to make the investment required to create large-scale applications codes for
each particular machine that may come along. By hiding machine-specific
details, parallel software libraries can play a vital role in providing a large

degree of portability for the applications codes that invoke them. Of course,
this issue is intimately bound up with several other issues, such as parallel

algorithms, data structures, and user interfaces. The concept of a problem

solving environment seems to offer some hope for portability from the user's
point of view, since new machines would simply be added to the network,
where they would become new compute engines supplying cycles for that
share of the load for which they were most appropriate. Of course, to sup-

ply such a seamless view to the user may require heroic efforts on the part
of the developers of the underlying libraries and environment, especially if
numerical consistency is required between processing resources in a hetero-

52 CttAPTER 6. MATHEMATICAL SOFTWARE
i

geneous system.
In addition to portability from the user's point of view, portability also is

important from the mathematical software developer's point of view. Econ-
omy in development and maintenance of mathematical software demands

that the effort that goes into a package be leveraged over as many different
computer systems as possible. Given the great diversity of parallel archi-

tectures, this type of portability is attainable to only a limited degree, but
machine dependencies can at least be isolated as much as possible. LAPACK

is again an example of a mathematical software package whose highest-level
components are portable, while machine dependencies are hidden in lower-

level modules. Such a hierarchical approach is probably the closest one can

come to software portability across diverse parallel architectures. It should
also be noted that the high premium usually placed on portability is pred-

icated in part on the high cost of software development and maintenance;
new software development methodology that substantially reduced this cost

might alter the relative value placed on portability.
General agreement existed in the Mathematical Software working group

that the concept of scalability, however defined, is perhaps best viewed as
simply a new facet of performance portability. In a sense, portability refers

to running a single program on different machines, while scalability refers to

running a single program on different instances of the same machine (pos-

sibly with vastly differing numbers of processors). Note, however, that as
both the problem size and the machine size scale up, the physical model
may change in ways that require different algorithms, such as the transi-

tion from two-dimensions to three-dimensions in a PDE model. Scalability

in this sense is an extremely stringent requirement that clearly demands a
deep understanding of the specific application in order to devise appropriate

polyalgorithms to handle the full range of machine and problem sizes.
Portability always should be considered in terms of the effectiveness of a

program, not simply whether the program will run at all on a different ma-
chine. Likewise, scalability demands that a program be reasonably effective

over a wide range in number of processors. We did not try to go beyond

this intuitive level and supply a precise definition of scalability, as this is
the subject of numerous papers and some controversy. Moreover, scalability
is clearly problem dependent. People buy ever larger computers to solve

ever larger problems, but the manner in which a particular problem scales
with the number of processors varies with the application and the purpose

in solving it. Thus, while scalability is a very desirable trait, it is not easily
defined or attained.

6.5. PORTABILITY AND SCALABILITY 53

The scalability of parallel algorithms, and software libraries based on them,
over a wide range of architectural designs and numbers of processors will

likely require that the fundamental granularity of computation be adjustable
to suit the particular circumstances in which the software may happen to

execute. One plausible approach to this problem is block algorithms with
adjustable block size, but in marly cases it is clear that polyalgorithms may

be required to deal with the full range of architectures and processor mul-

tiplicity likely to be available in the future. The situation is further com-
plicated by sensitivity to context, even for the same type of problem on tile

same machine. For example, some very effective parallel algorithms have

been developed for solving individual systems of linear equations oil multi-
ple processors. But, if an application calls for solving one hundred modest

sized systems of equations on an architecture with one hundred processors,
then the best approach is likely to assign a separate system to each proces-

sor, rather than spreading each system across all of the processors. Thus, it
is important not only to have parallel algorithms available, but also to know
when to use them.

Before significant effort is expended in developing mathematical software
libraries for massively parallel machines, consideration should be given to

what software would actually be useful for very large scale applications on
massively parallel architectures. It is not clear that parallel counterparts

of the traditional mathematical software library contents are necessarily the
most appropriate. For example, many existing serial programs tend to be

adapted to parallel machines at a very coarse level of granularity, so that
many of their mathematical software needs are simply for serial routines to

run on individual processors. Indeed, one significant use of parallel machines
is simply to replicate many copies of a serial code across many processors

in order to compute many individual cases simultaneously, thereby reducing
the time to solve the overall problem. Attention also must be paid to how

given applications scale as they become larger: do the relevant subproblems

become larger, or do they simply become more numerous? For example,
is there a real need to solve arbitrarily large, general dense systems of lin-

ear equations, or does enormous size usually imply some sort of additional
structure that should be exploited?

54 CIIAI'TEI_ 6. MATIIIf, MATICAL SOI,'TWAItE

6.6 Software Engineering

The internal design and structure of mathematical software libraries is an-
other important research issue. Again, dealing with increasing complexity

is the driving force. Even for conventional architectures and programming

environments, large software development projects are notoriously prone to
chaotic organization, missed deadlines, and buggy results. Given the added

complexity implied by the requirements of scalable parallel systems, it is
likely that this situation will be worse still for the exotic new computing

environments of the future. Code reuse has long been one of the unique
strengths of mathematical software; as larger and more sophisticated proce-

dures are built, the amount of internal reuse can be expected to increase.
Higher levels of rigor in development methodology, testing, and validation

must be pursued.
Scalable parallel architectures of the future are likely to be based oil a

distributed memory architectural paradigm. In the longer term, progress in

hardware development, operating systems, languages, compilers, and com-
munications may make it possible for users to view such distributed architec-

tures, without significant loss of efficiency, as having a shared memory with
a global address space. For the near term, however, the distributed nature

of the underlying hardware will continue to be visible at the programming
level, and therefore efficient procedures for explicit communication will con-

tinue to be necessary. Given this fact, standards for basic message pass-

ing (send/receive), as well as higher-level communication constructs (global
summation, broadcast, etc.) become essential to the development of scalable

libraries that have any degree of portability. In addition to standardizing
generic communication primitives, it also may be advantageous to establish

standards for problem-specific constructs in commonly occurring areas such

as linear algebra (e.g., the BLACS, Basic Linear Algebra Communication
Subroutines). As it becomes more feasible to support a programming model
with a global address space across distributed memories, new optlmizations

will come into play, including prefetching, cache management, and other
aspects of dc ling with memory hierarchies.

Rather th_ _ appearing as a monolithic entity, software libraries of the
future will need to be very flexible in their potential uses. Some users will

want to do little or no programming, turning over all details to the generic
setting of the library, while other users will want to access individual modules

from the library for use in a detailed code of their own devising that is

tailored and tuned to a specific problem. An intelligent hierarchical structure

6.6. SOFTWARE ENGINEERIN(I 55

would seem to be the most apl, ropriate approach to this issue. Another
sense in which libraries must be ttexible is in the interrelationships of tile
individual library modules. There must be a mechanism to allow various
modules to be used interchangeably or "mixed and n,,_,tched" within a given
application when users need such capability. This i3 a stringent constraint on
the algorithms and data structures involved, as their problem representations
and data layout must either be compatible or easily transformable.

One trend in scalable parallel architectures that is already apparent is the
emergence of hierarchical and heterogeneous systems. This trend is moti-
vated by a number of technological factors, such as the sharing of memory
or other resources by local clusters of processors and the introduction of
special-purpose processors (e.g., systolic arrays) into a general-purpose com-
puting environment. The problem solving environments we have envisioned
might be most naturally supported by a heterogeneous collection of computa-
tional resources interconnected by a local- or wide-area network. Here again,
however, architectural diversity and lack of standards greatly complicate
matters. For example, the coordinated use of heterogeneous computational
resources in solving a single problem requires that we deal with incompat-
ible byte orders, word lengths, floating-point formats, etc., not to mention
the logistical problems of compiling for multiple target architectures and co-
herently maintaining and updating the resulting executable modules. Such
details will have to be handled transparently by the library/environment if
users are to benefit from heterogeneous systems without excessive effort.

Another sense in which heterogeneity may arise is that a homogeneous
parallel architecture may be best used in a heterogeneous manner. For ex-
ample, a given application may be best implemented by allocating clusters of
processors within a homogeneous architecture to various special purposes,
with data flowing through the system from cluster to cluster as such ser-
vices are needed. This point of view is quite consistent with the networked
problem solving environments discussed earlier, except that now the various
computational resources may be further subdivided and allocated in new
ways. Such use would require new techniques for partitioning and mapping
the computation, including the optimal allocation of computational resources
and balancing the computational load among the processors.

Another area greatly complicated by the complexity of scalable parallelism
is the monitoring and analysis of program behavior and performance. Yet,
it is precisely in such a complex environment that an understanding of pro-
gram behavior is most vital for both debugging and performance tuning. The
automatic collection of performance data, as well as the provision of graph-

_,6 CilAPTER 6. MATtlEMATICAL SOFTWARE

ical and statistical tools for comprehending it, will be an essential factor in

ensuring that the library itself is efficient and that it is used effectively in
solving applications problems. In general, instrumentation and performance
monitoring should be implemented at a lower level than mathematical soft.
ware libraries, specifically in the operating system, compilers, communica-
tion systems, and hardware, llowever, additional insight into performance
can often be gained from higher-level, problem-dependent knowledge, atld
hence it may be desirable to instrument mathematical software libraries as

well. Library modules also could be accompanied by operation counts and

performance predictions for comparison with results actually obtained; and
perhaps deviations from "expected" performance should be flagged to alert

I

users to possible mismatches in algorithms or data structures.
Mathematical software that is intelligently designed and highly useful must

take into account not only the machine environment but also the overall com-

putational context in which it will function. For example, choices made in
polyalgorithms may depend not only on issues like granularity and portabil-
ity, but also on the location of the input and other such factors relating to
the surrounding computation of which the library routine is only a part. A

typical question is whether it is better to redistribute the input data to meet
the assumptions of the mathematical software or to provide mathematical
software that can deal effectively with a broad class of input distributions.
The answers to these questions depend on the usual trade-offs such as per-
formance vs. ease of use (i.e.., machine efficiency vs. human efficiency).

Another issue that arose repeatedly in our discussions was the need to
have library source code available, whether the user interface is in the form
of reusable templates or of a more conventional variety. Compilers need
source code for all modules in order to do interprocedural analysis on the
whole program. Intelligent resource management, whether automated or
manual, may require knowledge and control of internal algorithmic details
that would be unavailable with an encapsulated, "black box" approach to
mathematical software. Understanding and improving performance, and

incorporating improvements from one domain to another, may also require
access to source code. Users may want source code in order to customize

it for a particular application or for educational purposes. Access to source
code is no problem for public domain software, but it will require some

rethinking and a new attitude by the commercial vendors of proprietary
mathematical software. In general, a number of issues regarding intellectual

property rights are raised by this new demand for providing source code,
reusable templates, and other novel user interfaces.

6.7. ENABLING TECIlNOLO(;IES 57

6.7 Enabling Technologies

Tile developme it and use of mathematical software for high performance
computing cannot take place in a vacuum. A substantial array of enabling

technologies must be in place, or at least under development, in order to
provide a meaningful context for mathematical software libraries. Such tech-

nological areas include architectures, algorithms, data structures, program-

ming languages, compilers, operating systems, and software tools. Successful
establishment of a rich environment for high performance computing will re-

quire concurrent progress in all of these areas. Because many of these areas
were themselves topics for other working groups at the workshop, in our

discussions we addressed only how these issues interact with mathematical
software libraries and their development. Our discussions resulted in the

following list of needs that mathematical software requires from compilers
and/or operating systems:

• Provide correctly rounded conversions between decimal and binary.

• Allow the programmer to insist that the compiler respect parentheses

in generating code for floating-point expressions. It should be possible
for the user to turn off compiler optimization for portions of the code.

• Supply run-time environmental enquiries to:

- discover properties of floating point arithmetic

- determine how (with what precision) expressions are evaluated

- determine how exceptions are handled

- determine how distributed data types are laid out in memory

Attempts by language and compiler people to handle the first three
items have failed because the needs of the mathematical software com-

munity were not understood. It is the responsibility of the mathemat-
ical software community to write the specifications for these enquiries

and then to collaborate with the compiler and language people to have
them correctly implemented.

• Permit access to exception handling facilities, such as IEEE floating

point sticky flags, provided by the architecture. Low-overhead ex-
ception handling should be provided, such as an OR flag of recent

exceptions that can be queried cheaply at the end of a series of com-
putations. Precise interrupts are too expensive to expect on heavily

58 CHAPTER 6. MATHEMATICAL SOFTWARE

pipelined architectures, so we need to determine appropriate alterna-
tive strategies.

• In order to build software tools, results of internal compiler analysis

should be provided, including: symbol table, parse tree, type analysis,

and mapping from source to optimized code.

• Parallel prefix for arbitrary user-defined associative operations should

be supported. Conflicts between system and library (e.g., in message

types) should be automatically avoided. There should be better sup-
port for mixed language programming.

Chapter 7

Languages and Compilers

Ken Kennedy, Chair
Marina Chen, Deputy Chair

7.1 Introduction

This report is a summary of the discussion by members of the working

group on Languages and Compilers, for the Workshop on System Software
and Tools for High Performance Computing Environments. The members

include: Ken Kennedy (Chair) of Rice University, Marina Chen (Deputy
Chair) of Yale University, Jeff Brown of LANL, Nick Carriero of Yale

University, Mani Chandy of Caltech, John Dorband of NASA Goddard,
Mark Furtney of Cray Research, Maya Gokhale of SRC, Jim McGraw of

LLNL, David MizeU of Boeing, David Padua of CSRD, Bernardo Rodriguez
of NOAA, Burton Smith of Tera Computer, Lauren Smith of DoD/SRC,

Larry Snyder of University of Washington, and Thomas Sterling of USRA.

In this report, we identify key challenges in the realm of languages and
compilers for high performance computing, and suggest strategies which will

enable the HPCC effort to meet those challenges.
We start with an assessment of user needs in section 7.2. A rich base of

ideas is being proposed in new languages and in new compilation techniques
to exploit parallelism. We recognize that understanding various models and

approaches and their interoperability is crucial in providing solutions or par-
tiaJ solutio:Ls to the user needs. These issues are elaborated in Section 7.3.

We find obstacles, however, to the widespread dissemination of these ideas.

The path from research prototype to usable prototype to commercial prod-

59

60 CHAPTER 7. LANGUAGES AND COMPILERS

uct is hampered by a lack of generally available tools, standard tests, and

evaluation standards. In Section 7.4 we suggest a prioritized plan to remedy
this situation. We then discuss areas of research which should be emphasized
in the five year time frame in Section 7.5. Our intent is that the research

emphasis and technology development strategy proposed here will help to

ensure long term success of the HPCC program as well as visible short term
results in the two- to five-year time frame.

7.2 User Needs

Although parallel computing has been widely available for over half a decade,
scientists and engineers are still reluctant to use it. A major reason is par-

allel machines lack software systems that would make them easy to use.

The application developer wants to program in a standard language which
is portable across a broad range of platforms. Compilers for these standard

languages should deliver consistently high performance, so that the program-
mer can avoid consideration of low-level details of managing parallelism and

the memory hierarchy unless it is absolutely necessary to achieve the de-
sired level of performance. Tools such as intelligent editors, debuggers, and

performance monitors and tuners should be available, along with access to

standard math libraries through well-defined interfaces.
The user should not have the expectation that a sequential Fortran 77 pro-

gram can be automatically transformed into a massively parallel one. How-
ever, the user does expect a program written to exploit massive parallelism
to be retargetable to different and future generations of parallel machines

with only minor adjustment.

Thus high performance delivered to the application requires a combination
of (1) the user's expertise in recognizing the parallelism in the problem and in

understanding how to map it onto a parallel computing model, (2) language
expressivity, (3) compiler technology, and (4) debugging and performance
tuning tools. Feedback and well-defined interfaces are needed among these

components of the process.

7.3 Priorities

In this section we elaborate on the user needs identified in section 7.2. We

begin by addressing issues related to the understanding and interoperability

7.3. PRIORITIES 61

of programming models. We then explore those issues regarding compiler
technology and tools.

7.3.1 Models: Understanding and Interoperability

Broadly speaking, parallel computing can be classified into three program-

ming models: (1) data parallel, (2) task parallel, and (3) object parallel.
In data parallelism concurrency is achieved with a single thread of control

operating over elements of large distributed data structures such as arrays.
Implementation of a data parallel program can be either SIMD or SPMD. In

addition to entirely new data parallel languages, data parallel extensions ex-
ist for various dialects of Fortran, C, and Lisp. For example, Fortran 90, with

operations over arrays and array sections, can be considered a data parallel

language. An important issue in efficient implementation of data parallel
algorithms is proper management of locality. For a data parallel program

to run efficiently on large distributed memory SIMD and MIMD machines,
data should reside in memories as close as possible to the processors that will

need them. Data placement can be directed by the user through language
extensions or directives, and enhanced by compiler optimization of inter-

processor communication costs and the interaction of compiler and memory

architecture in maintaining memory coherency across the processor array.
For task parallelism, a program is partitioned into cooperating tasks.

These tasks can be quite different from one another, execute asynchronously,

and use a variety of techniques for synchronizing with each other. Examples

of task parallel languages are process-based languages: Linda, Schedule,
Concurrent Logic Programming, Strand, PCN, and applicative languages

such as SISAL. Many languages support some degree of both dat_ and task
parallelism. Locality is once again an issue in task parallelism on most ar-

chitectures. Language extensions and directives can be used to distinguish
local, private, or global data, and the compiler can play a role in manag-

ing uniprocessor memory hierarchies. As in data parallelism, the compiler
and memory architecture can interact to maintain global memory coherency.

Another issue in task parallelism is concurrency specification. Language con-

structs are necessary to allow the user to exploit fine-grain and coarse-grain
parallelism, as well as levels in between.

The problems of locality and concurrency also affect parallel object-

oriented programs. Examples of parallel object-oriented languages include

concurrent C++, concurrent Smalltalk, and languages based on monitors
and actors. Parallelism in object-oriented languages is achieved in different

62 CHAPTER 7. LANGUAGES AND COMPILERS

ways: (a) a member function of one object can call a public member function
of another (remote) object, and (b) an abstract data type, such as an array,

can be implemented in a distributed manner.
This partitioning of programming models into three categories is incom-

plete and fuzzy; it is intended to serve only as a rough guideline. Fur-

thermore, a finer categorization--for instance partitioning task parallelism
into functional programming, communicating processes, etc.--has not been
carried out in the interests of brevity.

Understanding the Choices. Our treatment of the various computing

models in some ways mirrors the situation with parallel languages today:

a number of good ideas have been proposed, and some implemented, but

little or no effort has been made to provide an organizational framework
which would help the user decide on the appropriate model for a particular
application. 1 As a result, the typical user pays a high "mental" start up

cost attempting to provide this structure for himself. Often one does a poor
job, getting so lost in the details that one never arrives at a coherent picture

of the whole. And not just the end users--new or even relatively seasoned
researchers in the field could benefit from a better organized context to help

place their current work and guide future explorations. Such a framework
would form the foundation for a methodology for parallel programming and

would begin to elucidate ways in which paradigms might profitably be inte-
grated.

Interoperability of Models. For many applications, a combinations of

paradigms will be the most effective to solve the problem. This could ei-
ther be achieved in a single language (e.g., by including both data layout

directives and task-oriented extensions in the same language) or by making
it easier for the user to use different languages/models for different parts of

an application. In fact, it is very desirable to standardize parameter passing

data descriptors, and calling conventions, so that different languages can
communicate. The various computing models also must deal with issues

such as concurrency specification, parallel I/O and exception handling in a
consistent fashion.

l In fact, it is likely that a combination of methods is required. Weaddress this problem
below.

7.3. PRIORITIES 63

Language Expressivity and Trade-offs. Programming language fea-
tures must allow for portability across machines, must be expressive and yet

must also expose concurrency and locality information to enable exploitation
of the underlying machine's potential. These demands present a number of

challenges. For example, how can users of these systems represent the paral-
lelism inherent in nature in easy-to-grasp ways? What language constructs

are necessary and sufficient to exploit fine-grain and coarse-grain paralJ.elism,
and those in between? Given the distributed and hierarchical nature of many

hardware systems, what easy-to-understand and use mechanisms for specify-
ing data layout for managing locality should be standardized and promoted?

Some models also deal with non-determinism. One technical challenge is to

integrate deterministic and nondeterministic constructs in such a way that
those who want determinism can get it easily and cheaply. The additional

expressivity of non-determinism comes at a price but can still payoff due to
the nature of applications such as command and control systems. Such cost

should be made apparent for those models that support such expressivity so
that users can make intelligent trade-offs.

After stressing the importance of understanding parallel computing mod-
els and expressivity of languages, we now turn to the issues of compiler

technology and parallel programming tools.

7.3.2 Compiler Technology and Tools

High performance and usability of massively parallel machines and other

types of high performance platforms require compilers and tools that can
help map the user's conceptualization of the problem to the target configu-

ration easily and efficiently.
Given the concurrency and locality information specified in the program,

the target code performance depends critically on how this information can

be used to expose the structure of the problem (to match it with the most
suitable target execution model based on static or dynamic profiling infor-

mation) and to apply optimization strategies wherever possible.
One major technical issue in optimization involves the exploitation of lo-

cality. To obtain high performance and portability at the same time, native
compilation capability is required. High performance obtained at the expense

of usability cannot be a lasting solution and the balance between the two is
a challenging issue. Tools that promote end-user productivity are needed to

support true usability.

64 CHAPTER 7. LANGUAGES AND COMPILERS

Exploit Locality. Because parallel machines are typically synonymous
with complicated memory hierarchies, efficient programs must exploit data
locality as much as possible. In this context, data locality means having the
data reside in memories as close as possible to the processors that will need

them. Over the past several years a great deal of progress has been made in

compiler exploitation of data locality. We believe this will be a key area of

research and development emphasis because the data locality problem will
be so central to parallel processing.

Among the techniques that should be considered in this category are lan-
guage extensions and the corresponding compiler techniques to enhance data

locality, compiler management of uniprocessor memory hierarchies, compiler
optimization of interprocessor communication costs, and the interaction of

compiler and memory architecture in maintaining memory coherency across
a processor array.

Native Compilation Capability. While translators can be used to

achieve trivial portability (e.g., NAG's Fortran 90 to C translator), their
lack in performance prevents them from being serious contenders to native

compilers. Native compilation technology aiming at top performance, how-
ever, must deal with issues such as the complexity rising from the prolifera-

tion of hardware components as well as system configurations (e.g., memory

system, operating system software, interconnection networks, etc.).
Exploitation of instruction-level parallelism is essential in attaining over-

all performance since the node processor performance is the basis for the

performance of a massively parallel machine.

Balance between High Performance and Usability. Future compil-

ers for high performance computing should be components of integrated
programming environments designed to maximize end-user productivity and
reduce time to solution.

Performance of the generated code is a primary goal of a high performance

compiler. This is accomplished by applying increasingly complex program
transformations and optimizations to the user source code. The resulting
machine code can be difficult to map back to the original source, limiting

the effectiveness of source-level software tools operating on the compiler-

generated code, such as debuggers and performance analyzers. A net re-
duction in end-user productivity can result from a programming environ-
ment that emphasizes performance at the expense of debugging, performance

7.3. PRIORITIES 65

analysis and verifying program correctness.
Thus, a high performance compiler should provide detailed information

about optimizations applied for possible use by source-level software tools
through a standard interface mechanism. Ideally, this could be accomplished

in a way that would not constrain the compiler and provide optimal perfor-
mance along with a robust programming environment.

The debugger and performance analyzer would use this information to

map the optimized program back to the source code while providing correct
information about program state. Performance data should be fed back into

the compiler to provide more effective optimizations in the next develop-
ment cycle. The compiler can assist gathering performance data through

instrumentation of the generated code, although this might be done in a less
intrusive way by the debugger via dynamic instrumentation at run time.

In short, the effectiveness of future compilers for high performance com-

puting should be measured by how well they balance performance with net
end-user productivity.

Usability. In a more general context, actual use is a critical component

in the evaluation of languages and compilers for parallel systems during the
advanced development phase. Usability, almost tautologically, encourages

(indeed, enables) use. So, by usability we mean not expressivity (impor-

tant though that may be) or commercial quality software (desirable though
that may be), but software mature enough that others can be reasonably
expected to use it. Thus, it is a set of practical considerations that need to
be addressed. These include:

• Clearly characterized domain of applicability, for instance, a list of

unimplemented operations that, if used, cause the system to fail. Sim-
ple tools that scan for code inconsistent with the current domain would
be desirable.

• Responsive processing time for those codes in the current domail_ of

applicability.

• Trivial applicability. It should be possible to push a trivial code

through the system and get a working output (even if the result is

uninteresting). This lays the foundation for a comfortable introduc-
tion to the system and could be the starting point for a step-wise
refinement approach to using the system.

66 CHAPTER 7. LANGUAGES AND COMPILERS

• Stability. Fight the attitude that it is just research code, so it's okay
if the system or the output routinely crashes.

Clearly, different levels of usability are required at different points in a

project. Accordingly, software development needs to be designed from the
start to be staged, i.e., to yield a series of usable (within designed con-

straints), well-defined intermediate systems. For example, early on in the

development of a compiler, some subset of analysis or optimizations might be
developed, while a language system might implement a subset of operations
or use restricted semantics. As the development continues, and the com-

plete compiler or language emerges, usability concerns shift to debuggers,

performance tools, manuals, tutorials and making the system more widely
available. However, to achieve usable tools, some initial thought and design

to later incorporate such objects into a programming system needs to be
done.

One valid strategy for making the transition from research prototype to

production tools is to start with a basic product familiar to users and in-
crementally introduce advanced features on top of a familiar base. This

strategy leads users into using advanced capabilities without the "culture
shock," and provides a way to get early feedback of the usa)ility of research
ideas.

Finally, we believe that a strategy to address these priorities in a timely
manner is critical to the success of HPCC over the next 2-5 years. We must

choose which paths to follow based on the best information available, and

start working on the solutions. Some of these topics are clearly research
issues, but we must recognize the necessity of moving from research to de-

velopment faster than we like.

7.4 Investment Strategies

In this section we recommend a number of HPCC investment strategies that

we believe will have a substantial impact on the success of the program. We
postpone the discussion of specific areas of research investment to the next
section.

7.4.1 Technology Development Investment

Our primary strategic recommendation is that HPCC should make a major
investment in technology development. Currently, we see three stages in the

7.4. INVESTMENT STRATEGIES 67

development of a new language or compiler system from idea to product.

1. Research Prototype

A research prototype is the typical result of a single-investigator basic
research project. Such prototypes are typically used for concept val-

idation and are not ready for use by real users because they are not
robust or general enough.

2. Advanced Development Prototype

To be useful, a typical research prototype needs to go through a de-
velopment effort that will complete the implementation and make it

ready for evaluation by real users. We call the result of such an effort,

which is typically five to 10 times as expensive as development of the

research prototype, an advanced development prototype. Examples of
such prototypes are Berkeley Unix, Mach, X windows and the gnu C
compiler.

3. Commercial Product

The final stage in the technology development cycle is production of a
commercial product, which will be robust, tuned and fully supported.

This is typically done by a vendor.

In the United States we have good methods for supporting the develop-
ment of research prototypes and the transition from advanced development
prototype to product, but we have not developed a standard method for

moving research prototypes to advanced development prototypes. We rec-

ommend that the HPCC program make a substantial investment in this
stage of technology development.

We see several aspects of such a program. First is a need for a well-
developed method for evaluating research prototypes and selecting the most

promising ones ior further development. We expect iewer than one in ten
research projects would be so selected. The next subsection will develop this

notion more fully.
Second, there needs to be an investment in infrastructure to be used in

both research and technology development projects. Important parts of this

infrastructure would be a shared software repository and a repository of test
cases. These will be discussed in later subsections.

Finally, we believe the evaluation process should involve end users--

scientists and engineers who will contribute ideas, criticism and meaningful
applications.

68 CHAPTER 7. LANGUAGES AND COMPILERS

7.4.2 Evaluation Standards

We believe the success of the HPCC Program will depend to a large extent

on making the right choices for investment. Currently, the computer science
community has not developed a strong and consistent way of evaluating the
results of research in system building. Without evaluation standards, we will

not be able to make intelligent investment choices. Therefore, we recommend
that the HPCC Program foster development of such standards.

Several methods could be used to develop evaluation standards. First,
we must construct a repository of test problems for investigation of parallel

programming languages, compilers and paradigms. This repository will be

discussed in a later section. Second, the agencies should make the use of test
cases in project evaluation a requirement for funding. This would imply that

sufficient resources be provided to carry such evaluations out. Finally, the
agencies should require each project to contribute the code and experimental

data (this might be thought of as the laboratory notebook) to the repository.

7.4.3 Collaborations with Users

A useful strategy for insuring that new programming systems are responsive
to the needs of users is to fund projects which are collaborations between

computer scientists and applications researchers. These collaborations could
be in the form of efforts to exercise the results of language and compiler re-

search in Grand Challenge implementation efforts. We believe that inclusion
of users in an active way is essential if the HPCC evaluation process and

technology development efforts are to result in useful products.

7.4.4 Infrastructure Support

Investments in infrastructure will result in an accelerated rate of progress in
all areas of the HPCC research and development. Infrastructure can mean

software resources or shared hardware systems. An example of hardware
resources is a special parallel machine with extensive instrumentation hard-

ware that could be used for non-invasive studies of performance. Of course,
all projects will need access to some massively parallel computing resource.

Two critical pieces of software infrastructure that will be essential to the

success of the technology development efforts: a shared software repository
and a repository of test cases.

7.4. INVESTMENT STRATEGIES 69

7.4.5 Software Repository

The software research community needs a better method of software sharing.
All too often valuable project time is lost in redeveloping standard compo-
nents that have already been developed in other projects. Other times, effort
is wasted on building standard software components that have no inherent
research value but are required to build a useful prototype. Examples of the
latter are scanners and parsers. We recommend that the ItPCC program

invest in the construction of a repository of useful software components.
We see two mechanisms that could be used to develop such a repository.

First, standard components like scanners and parsers could be directly con-
tracted for with software vendors. These vendors would be required, as
part of a continuing contract, to m_ntain these components and integrate
improvements and extensions that are developed by the research community.

The second method is through the technology development projects them-
selves. Enough funding should be included in such projects to permit the
resulting sot'tware systems to be incorporated into the software repository
and maintained. The project would thus control the integration of exten-
sions to the system, whether developed inside or outside the project. We
note that inclusion in the repository could nevertheless require a license for
use. This is much like the mechanism used in Unix and the gnu tools.

The software repository would build on the technology development effort
to insure that researchers can build on the efforts of others within the pro-
gram. However, by concentrating on the technology development efforts, we
can insure a degree of quality for the included software systems.

7.4.6 Test Case Repository

A successful software evaluation program must be built on a comprehensive

library of test problems. Test problems need to range in size (in both execu-
tion time and code size) from small applications to full application systems,
with different data set s_z_,s also included. This would enable researchers

to test their programming languages systems test at different ends of the

spectrum, depending on where their project is in development, and what
type of computing resources they have.

The same two strategies could be used to build this library as well. Initial
versions of the repository could be built via direct contract. Subsequently,

requirements for project funding should insure that the byproducts of each
evaluation--rewritten code for the problems, parameters of the experiment

70 CHAPTER 7. LANGUAGES AND COMPILERS

such as machine configuration and performance statistics--would be con-
tributed to the repository. Titus researchers could compare their own results
to the results from other languages attd compilers.

7.4.'/ Role of Standards

We believe standards efforts are an important tool for ensuring early capi-
talization of research efforts. For example, a new set of features to address
a specific problem area in a particular language could be standardized to
make sure the same features will be implemented by all vendors.

Other areas appropriate for standardization include standard procedure
calling conventions and data descriptors, and standard interfaces for run-
time environments and operating systems.

Massively parallel machines today differ wildly in their runtime environ-
ments and their homegrown methods in dealing with I/O and other operat-

ing system issues. Standard interfaces for such should be established, and
viewed a_ a,t integral part of the end-user/language interfaces.

It is quite reasonable to invest HPCC resources to foster such standardiza-
tion efforts for the results of technology development projects. However, care
should be exercised to ensure that standards do not become strait,jackets
that stifle creativity rather than foster it.

7.5 Areas forResearch Emphasis

As partofourgroupdiscussion,we addressedtheissueofidentifyingspecific

areasoffundingwithinthecategoryofCompilersand Languagesthatwe
perceivedas havingthemost leverageforHPCC funding.Our recommen-

dationsforareasofemphasiscan be summarizedasfollows:

• Build robust environmentsfor successful,high performancelan-

guages/compilers

- emphasizeprogrammer productivity
- continueperformanceenhancementsinthecompiler

- extendperformanceanalysisand debuggingtoolsforuser
- expand informatiordisclosureby compilertotoolsand user

• Propel"qualified"emergingresearchlanguagesintoadvanceddevel-
opment stage

7.5. AREAS FOR RESEARCtf EMPIIASIS 71

- support "non-research" activities: documentation, basic tools, ro-

bust implementations, conventional optimizations, user interfaces
- emphasize teams of compiler and applications personnel (also in

strategy section of this document)

• Expand optimizations for critical compilers--focus on peak perfor-
mance

- Automatic techniques sad Advice schemes

- Key areas: partitioning, mapping, scheduling, locality management

• Investigate language features/compiler extensions that address areas
of critical weaknesses

- concurrency specification

- data layout

- parallel I/O
- exception handling

• Continue funding of promising basic research efforts

• Explore schemes for paradigm evaluations and integration

- hea_l-to-head shoot-outs using a spectrum of applications, with an
emphasis on algorithms having complex parallelism

- evaluate all parallelism forms: data parallel, message passing, func-
tional, shared address space, object-oriented, distributed data struc-
tures

- encourage schemes for integrating different forms in one model

Note that we do not give a relative ranking among this list of candidates.

Our inclusion of topics in this list is designed to maximize the likelihood

of substantial impact on the outcome of the HPCC effort and also to best
position the field of Higher Performance Computing for continued success

beyond the specific five year timeframe. In the following, we describe these
topics in two groups according to their primary nature as research or ad-

vanced development.

7.5.1 Basic Research

In the area of basic research, we begin with the comment that we do not
yet know the best or even generally-accepted languages and compilers for

UlUIIIII--IIIII
---_

i
[

72 CHAPTER 7. LANGUAGES AND COMPILERS

parallel computing. As such, it is imperative that new ideas be fostered and
developed to the point that they can effectively tested.

Approaches that create new paradigms need to be given priority for basic

research funding. Likewise, efforts that explore strategies for integrating dif-
ferent paradigms into a coherent parallel computing model deserve careful
attention. Given the current models, it is fairly clear that no one model

is best for the broad spectrum of applications the HPCC Program needs

to address. In funding s_udies of parallel paradigms, high priority should
be given to those effort geared to detailed and thorough comparisons of

different models (including data parallel, message passing, shared address
space, object-oriented, functional, and distributed data structures). These

efforts should provide objective results on the relative merits of each style
on a significant cross section of applications requiring varying complexities

of concurrency. Also, basic research that addresses the issue of whole so-

lutions to Grand Challenge problems is important (e.g., methods that will
allow integration of various models and paradigms using homogeneous or

heterogeneous ensembles of machines).
Our group also recognized the need for funding to address several specific

needs in terms of known critical weaknesses in the area of language design.

Two well-known and yet still unresolved areas of work are the specification
of concurrency and the specification of data layout. These two topics com-

prise the two most critical areas for high performance on almost all parallel
machines. In addition, two lesser identified but critical topics for the future

are parallel I/O and exception handling. For large complex applications,
both of these areas must have far better solutions than we have at present

or the process of developing new applications will be slowed substantially.
The one topic area that seems to span both basic research and advanced

development is that of expanded optimizations for critical compilers. The

goal here would be peak performance. We believe that in the next five years
the state-of-the-art in both automatic techniques and advice techniques for

partitioning, mapping, scheduling, and locality management is ready to show
substantial gains. Such additions to heavily used compilers will enhance

experimentation with massively parallel systems and dramatically improve
both the quality and quantity of results on these machines. Technically solid

proposals in this area of study need and deserve priority for funding.

7.5. AREAS FOR RESEARCH EMPHASIS 73

7.5.2 Advanced Development

The key issue in advanced development is supporting the transition from
good technical research ideas to production quality tools in heavy use by

applications developers. Our point here is to identify the best candidates for

moving to the next phase of development and providing adequate support
to make that next step possible.

Successful and qualified research efforts in languages and compilers need

time to develop a solid testbed and a willing applications effort to use and

evaluate their potential. It has been our experience that people developing
real applications need a level of tool development and sophistication that

cannot be attained under research funding. Likewise, tools developed too
far without substantial input from potential users will likely suffer major

weaknesses. For those projects identified as the best candidates for ad-
vanced development funding (i.e., solid positive research results, potential

for substantial use by applications, and sufficient technical expertise to make
the next level of advances), we encourage substantial funding for teams of

compiler/language personnel working closely with a challenging application
effort. We would expect that funding would be needed to cover the appli-

cation team as an integral part of the effort. In this stage of development,
funding would cover many aspects of development thai would be necessary

to project success, but that would not generally constitute research. For
example, developing solid documentation on how to use a system, adding

conventional optimizations that are well known but need to be adapted for

this system, building helpful user interfaces to better understand what the
software is doing, consulting with users on how to use the system to best ad-

vantage, and implementing robust implementations of the software that wiU
permit users to reliably evaluate the software. This kind of HPCC fundiag

is expensive, but imperative to the long-term success of parallel comput, ,_.
In the case of successful, high performance software that has pas:',ed .5_

above level of testing, the greatest need is for robust software that ',,ti_..
ers peak performance of both the computer and the user. Where tl:,: _-.T,_-
vious described software needed basic tools, this software needs th.- mo_i_

sophisticated tools available. At this point it would be most valuaN_ _c,,,_

tegrate the languages and compilers thoroughly into the best user-interr_ ,"
tools available. Detailed cooperation between the compiler and oth_:' _;' ':

(e.g., debuggers, performance analyzers, mathematical libraries, and e2(':z o
ing systems) must be made to enhance maximum performance. The int(:n:

of funding for this work would be to emphasize programmer productivity,

74 CHAPTER 7. LANGUAGES AND COMPILERS

continue performance enhancements in the compiler, extend the perfbrmance
analysis and debugging tools available to users, and expand tile amount of

information to everyone about what kind of optimizations the compiler can
and cannot perform. Funding for projects fitting this profile will probably

have the greatest near-term impact on software for ttPCC efforts.
In our group discussions, we recognized that although HPCC is a large

new funding program, it includes a large spectrum of goals we must achieve.
In trying to give our best recommendations on how to prioritize projects

in languages and compilers for potential funding, a few principles became
apparent. First, begin with a broad range of paradigms for parallel com-

puting because we cani_t authoritatively identify for you the best approach

for the work supported by the HPCC Program. Second, use a combina-
tion of review by technical peers and foresighted users to select projects for

advancement to higher expectations and higher funding levels. Third, rec-
ognize that system software development is a costly but critical component

of high performance computing. Acceptance of new styles takes high quality
software and experience in using it by applications people. Give it the nec-

essary time. And finally, encourage tight collaborations among applications
and systems teams by offering appropriate incentives. Recognize that tim

highest risk is incurred by those applications groups using the latest ideas

i in system software.

7.6 Summary and Conclusions
In this chapter, we identify important user needs in the area of languages
and compilers, and priorities critical to the success of the HPCC Program.

Motivated by the identified user needs, we elaborate on a set of priorities
to be addressed. The key recommendation of this report is a set of invest-

ment strategies we believe will have a substantial impact on the success of
the program. We pinpoint the weak link in the process of taking a bright

idea to successful commercial product, i.e., moving research prototypes to
advanced development prototypes, and recommend substantial investment

in this technology development step. We believe a well developed evaluation
method selecting promising research prototype for further development is

critical. We also view investment in infrastructure support, software and
test case repository, and collaboration with users to be necessary part of

this strategy. Finally, we discuss areas for research emphasis, focusing on
the next 2-5 years, both in basic research and advanced development.

Chapter 8

Software Tools

Joel Saltz, Chair

Frederica Davema, Deputy Chair

8.1 Debugging Tools

8.1.1 Tools to Trace the Origin of Known Errors

The feedback a user needs from a debugger depends heavily on the types of
errors the user will encounter, and these are a function of the user's choice

of programming paradigm and language constructs. Errors fall into two

classes: determinate errors and indeterminate (or transient) errors. Deter-
minate errors always arise on each execution of a program given a particular

input data set. Such errors are fairly straightforward to isolate with tra-

ditional source-level debugging facilities. Transient errors that arise during
executions of explicitly parallel programs are considerably more difficult to

isolate. Transient errors typically arise through race conditions. When using

a shared-memory paradigm, races include conflicting, unordered accesses by
multiple processes to values in a shared data array; when using a message-

passing paradigm, races arise through indeterminate matching of sends and
receives. Buffer overflow in message-passing programs also is another com-
mon source of transient errors.

Single-threaded languages in which users specify data distributions (e.g.,
Fortran D, Vienna Fortran, and the emerging High Performance Fortran

standard), prevent (or discourage) programmers from explicitly describing
the details of how programs on each processor coordinate and share data.

Because interacting processes are generated automatically by a compiler,

75

76 CHAPFER 8. SOFTWARE TOOLS

users do not have tile freedom to introduce synchronization or message-

passing errors. Although we expect a large fraction of scientific programmers

will use single-threaded data distribution languages, systems programmers
and many applications developers will continue to use other programming

paradigms.
Debuggers need to be able to trace errors back to source code. This is

likely to be a particularly challenging problem when a compiler carries out
radical transformations during compilation. With the growing interest in

High-Performance-Fortran-like languages, compilers performing aggressive
transformations will become commonplace. To provide source-level debug-

ging i%r such language models, it is clear that debuggers must have access
to compilers' symbol tables and to extensive information about program
transformations the compiler has peribrmed.

A crucial unresolved issue is determining good ways to abstract program

state. Program state abstractions should reflect the programming para-

digm employed by the user. We might expect a debugger associated with
a High Performance Fortran program to describe program state using the

same address space seen by the programmer. Through the use of a debugger
associated with a High Performance Fortran compiler, a user should be able

to obtain values of globally indexed array elements. When programmers
employ paradigms that support explicitly specified parallelism, a debugger

will need to be able to represent the program state of individual proces-
sors. Because we can expect TeraFLOP multiprocessors to have thousands

of processors, debugging tools will need methods making it possible for users
to obtain information summarizing the state of a large number of processors.

Programmers should be able to easily pose queries concerning the values of
variables stored on specific groups of processors. In addition, a debugger

for such machines may have to represent the state of a large interprocessor
communications network.

Debuggers either need to automatically support isolation of transient
errors (e.g., data races in shared-memory programs or buffer overflow in

message-passing programs), or they need to supply users with information
about sequences and timing of events, leaving the fault isolation to the users.

Debugging support for automatically pinpointing causes of transient errors
is complex. While significant progress has been made in this area, the as-

ymptotic space and time requirements for using such techniques may be
unacceptable for users pushing the limits of a parallel machine. In the ab-

sence of automatic support for detection of transient errors, perturbation of

the program by the debugger can make isolation of transient errors difficult.

8.2. PERFOt[,MANCE TOOLS 77

It is not clear at this point what degree of performance perturbation will be
acceptable in practice. Itowever, to minimize the impact of performance per-

turbation on debugging, virtual time strategies should be used for analyzing
event orders whenever possible.

Among members of the software tools group, there was a consensus that
funding agencies insist that vendors support rudimentary source-level de-

bugging tools for parallel ,nachines they offer. The lack of such basic tools
for some commercially available parallel machines substantially impedes the

progress of applications development on those machines.

8.1.2 Tools to Verify Correctness of Complex Codes

Current software tools used for establishing confidence in the correctness of

applications in all possible situations are extremely inadequate--especially
since the functionality provided has not scaled up with the added complex-

ity of multidisciplinary applications and the added complexity of scalable
parMlel computers, Classical debuggers are very low-level and are helpful

in fixing known specific problems; but generally they are not helpful in es-

tablishing confidence in the application as a whole. Software engineering
methods need to be adapted to maintain test suites that can be used to

verify program correctness.

8.2 Performance Tools

To determine what performance methodologies and what tools need to be

developed, we need to identify the prospective users of performance methods
and tools and to define the users' expectations and needs. We can identify

the following categories of potential performance tool users: (1) end-users or

application developers, (2) applications software package developers, (3) the
system software (programming model, language or environment, and oper-

ating system) developers, and (4) hardware designers. Each user category
has a set of specific requirements.

We make the following observations:

Several major parallel architectural approaches and programming par-

adigms are represented in prototypes and products. Most current
architectures are homogeneous systems consisting of many identical

computational processors. Some of these architectures include hard-
ware support for a (logically) shared memory paradigm, and others

78 CHAPTER 8. SOFTWARE TOOLS

support a (logically) distributed memory paradigm. The situation is

complicated by the fact that virtually all vendors promise in the near
future to support shared address spaces by some combination of hard-

ware, operating system and compiler support. There are also examples

of heterogeneous parallel architectures in which not all processors are
identical and examples of compound parallel architectures in which

multiple parallel architectures are interconnected. We need to know
the extent, to which we can support the same performance methodolo-

gies and tools for different architectures and programming paradigms.

Many factors influence performance of programs on parallel systems.

The architecture of the base processor of the parallel system and the

complex memory hierarchy (cache, local memory, disk) of the tradi-
tional uniprocessors is further augmented by the off-processor memory
hierarchy in the parallel systems. This more complex hierarchy con-

tributes to many differing time delays associated with accessing data

spread among the various levels of the hierarchy. The system software

(operating system, programming model, compilers, etc.) also affects
performance. For instance, loop transformations and data partition-

ings carried out by compilers are designed to have substantial perfor-

mance impacts. Latency hiding methods carried out by programmers,
compilers and operating systems also are designed to impact perfor-
mance.

8.2.1 Performance Measures

In discussing performance tool requirements, it is useful to first define the

kinds of performance measures that various tool users might want. A number
of performance measures are possible and users from the different categories

we listed above might be interested in different (but probably overlapping)
subsets. The following are a subset of potentially useful performance mea-
SU res:

Total wall-clock (or elapsed) time to execute a given problem

Overall computation and communication time, profile of communica-

tion and computation time spent in various procedures

Breakdown of the time spent in computation and the time spent ac-

cessing each level of the memory hierarchy

8.2. PERFORMANCE TOOLS 79

Speedup or etiiciency as tile number of processors increases

The total CPU time, the MegaFLOPS and MIPS attained

A communication time breakdown consisting of hardware delays, and

the overhead imposed b_ the system software (which varies depending

on the methods used by the system software to manage tile communi-
cation)

Contention at each level of the memory hierarchy

8.2.2 User's Requirements

Many users will want tools to help make decisions needed ill performance

tuning, or in studying the effects of incremental changes made to optimize the
performance of a pre-existing code. Users want fast feedback--performance
tuning should not require a lengthy and time consuming series of trial and
error experiments.

Many performance measurements are likely to be made using a small pro-

totype of a given highly parallel architecture. Much code development will
probably be carried out on small local multiprocessors, and codes may be

designed with next generation hardware in mind. The capability of method-
ologies to support predictions and extrapolations to larger and/or faster
systems is consequently very important.

To a limited degree, hardware designers already use application-driven
performance analysis to design machines. Vendors could use performance

projections to predict consequences of architectural changes and as guidance
to architectural choices. Therefore, from the hardware designers' perspec-
tive, there is a need to predict performance of code on new or scaled-up
hardware.

8.2.3 Role of Compilers

Performance tools need to be closely coupled to compilers. To relate per-

formance to user programs, performance tools may need access to extensive
inforraation about program transformations by a compiler, hfformation on

code structure can potentially be used to make predictions on how perfor-
mance of a program will scale with problem size or number of processors.
Performance tools can also be fed back and used to allow users to determine

interactively which strategies will be used to partition data or work.

I

80 CHAPTER 8. SOFTWARE TOOLS

8.2.4 Display of Information

Programmers are interested in performance measurements for individual sec-
tions of executed code, especially in cases where the total performance is be-
low what the user might expect. Tools should provide the capability for the
user to zero in on portions of code that exhibit poor low performance. Per-

formance feedback then needs to be related to specific lines of code. There
currently exist a small number of tools able to elucidate the relationship

between performance and code text.
Methods for performance display have to be appropriate for machines with

thousands of processors. The content and presentation of performance feed-

back should take into account the programming paradigm employed. For
instance, in High Performance Fortran directives are used to control the dis-
tribution of data and work. Users will need performance predictions and

feedback to ensure they are making good partitioning choices. Performance

feedback and predictions associated with a High Performance Fortran pro-
gramming environment need to be analyzed and presented in a way that

provides insight on the relationship between performance and distribution
decisions.

At this point, except for the kinds of general principles stated in the last
two paragraphs, it is not clear how performance information should best

be depicted. There was a consensus that funding agencies insist that ven-
dors support obvious extensions of standard profiling tools. On many com-

mercially available machines, performance profiling support is much more
rudimentary than that c)ffered on workstations.

8.2.5 Collecting Information

It is clear that the process of collecting performance information will itself
have an effect on performance. Hardware instrumentation and monitoring

subsystems can and have been designed to minimize the impact on the un-
derlying executing applications and to improve the quality and quantity of

performance information. Also, software instrumentation can be designed in
a way that attempts to minimize the performance impact on the underlying

application. Clearly, one would like to minimize the performance impact as-
sociated with gathering information. To the extent this can be done cheaply.

it is clearly desirable. It is not clear that users are willing to pay a significant
performance or monetary price for a non-intrusive performance monitoring
capability.

[

8.3. SUPPORT FOR SHARED ADDRESS SPACES 81

8.3 Support for Shared Address Spaces

At the present time, shared address spaces in multiprocessors are currently

supported by compilers, by the operating systems, by procedures explicitly
invoked by users, and by hardware.

Distributed shared memory mechanisms support shared address spaces in
different manners. On some architectures, such as tile Kendall Square and

Alliant, extensive architectural support is provided for address translation
and data migration. Distributed shared memory on other architectures, such
as the Intel or nCUBE, can only take advantage of much more rudimentary

hardware support.

These mechanisms move fixed sized chunks (pages or snbpages) of data
between processors in response to the patterns of data referenced in each

processor. Distributed shared memory mechanisms determine data layout

dynamically, pages or subpages migrate to processors where data is read or
written. Different distributed shared memory mechanisms are designed to

take advantage of varying types of hardware support.
Compilers for languages like High Performance Fortran can generate pat-

terns of explicit communication calls to transport data. The compiler allo-
cates memory on each processor to store portions of distributed arrays. Ill

High Performance Fortran type languages, data layout is specified by user
directive. The compiler transforms loops so that the code on each processor

will reference the appropriate locally stored distributed array elements.

In irregular problems, shared address spaces can be supported by tools
that are invoked explicitly by users. Procedure calls are used to specify ir-

regular (or regular) distributed array data layout. Runtime preprocessing
procedures are employed to coordinate interprocessor data movement and

to manage the storage of, and access to, copies of off-processor data. High
Performance Fortran compilers are being extended to support irregular prob-

lems through the use of these kinds of procedures.
The compilers, distributed shared memory mechanisms, and tools outlined

above show strengths in their ability to handle different types of problems. In
the coming years, we anticipate the development of increasingly integrated

strategies for supporting shared address spaces. This integration should
reduce some of the overheads that result when these software systems are

designed separately and integrated in an ad-hoc manner.

82 CHAPTER 8. SOFTWARE TOOLS

8.4 Additional Issues

The need is growing for robust, well-documented tools that can be used to

transform source codes. The widespread availability of such transformation

tools would greatlj increase the productivity of researchers and vendors in
their efforts to produce compilers, debuggers, performance estimation and

monitoring tools. Such transformation tools can also play a role in the
development of a _,ariety of specialized tools. One example of such a tool is

ADIFOR. This tool generates as an output a code that produces derivatives
of variables calculated by input codes.

Chapter 9

Operating Systems

Bob Knighten, Chair

9.1 Introduction

This chapter presents issues and recommendations for the evolution of op-
erating systems in support of high performance computing.

After a substantial discussion the Operating Systems working group
reached a consensus that the traditional organization of operating systems

does not lend itself to achieving the highest performance. This is the most
controversial aspect of this chapter. As it also affects all other parts, the

recommendation and the reasoning supporting it are presented in the next
section.

The most requested feature from others at the conference was for check-

point/restart and recovery features. We discuss these issues in Section 9.3
below.

A number of other topics were considered as well, and they are discussed

below, each in its own section.

The general model we followed in our discussion and presentation was to
try and address the following series of questions offered to the work groups

Dy the program committee:

1. What are the system software problems and needs (from the

application developer's point of view)?

(a) What are the priorities of the users?

83

84 CHAPTER 9. OPERATING SYSTEMS

(b) How is the future likely to differ from the past?

2. What is the status of systems software (from the application

developer's point of view)?

(a) What feedback can you provide on the strengths and weaknesses
of the software that already exists?

(b) What is your forecast of results expected from software currently
under development?

(c) What is your outlook on research expectations?

3. What are or should be the priorities for the future?

4. What is next? And for each possibility, what are

(a) The expected payoffs (to applications)?

(b) The expected difficulties (computer science and technology?

(c) The expected time frame?

9.2 Appropriate Division of Labor Among the
Hardware, the Kernel, the Runtime, and the
Application

The fundamental goal of a high performance computing system is to deliver

high performance. The operating system must facilitate rather than impede
this goal.

In a traditional operating system design, the kernel (the guts of the op-
erating system) provides a great deal of functionality, while the runtime

(which sits between the kernel and the application and consists of library
code written by the operating system and/or compiler implementors) is a

relatively "thin" layer. In particular, functions such as thread scheduling and
inter-node communication within a single application are perfbrmed within

the kernel, in addition to functions such as address space maintenance and
processor allocation that transcend a particular application.

It is becoming increasingly clear that this organization does not lend itself
to achieving the highest performance. Functions such as thread scheduling
and inter-node communication can be handled by system-provided runtime

9.2. APPROPRIATE DIVISION OF LABOR 85

(library) code executing in the application address space, where these func-
tions can bc implemented with greater efficiency and where the knowledge
resides to make appropriate decisions.

The efficiency gains in this organization arise from a variety of sources.

"Common case" operations are supported without kernel intervention. This

provides several performance benefits. The kernel is accessed by means of a
trap and context switch, whereas the runtime library is accessed by means

of a (much more efficient) procedure call. Further, functions implemented
within the kernel must be fully general (supporting the union of the services
required by all applications), whereas the services provided with the runtime

can be tailored to the requirements of a particular language or a particular
class of applications.

The role of the kernel in an organization such as this is to mediate between

separate applications (for example, to partition the machine and/or perform
processor allocation to applications) and to vector information to the runtime

of an application, allowing it to make its own decisions (e.g., concerning
thread scheduling). The kernel attempts to keep out of the way of a single

application, yielding control to the runtime.
It is important to emphasize that this organization does not result in in-

creased complexity in the high-level application code, or place any additional
burden on the application programmer. Rather, it simply gives the compiler

and runtime system more opportunity to optimize the use of system re-
sources so they can provide a more efficient implementation of the user's

program. The application and programmer interfaces don't change: 'ls' still
works, as do the traditional library calls.

Nor is it the case that this organization necessarily compromises pro-
tection, provided that adequate hardware support is available. We con-

sider inter-node communication as an example. The communication net-
work hardware must support message containment--that is, messages from

a given application must be restricted to destination node addresses assigned

to that application. (Messages can be sent to other network addresses via
the operating system kernel--the same way all messages are sent in the tra-

ditional operating system organization.) Also, communication registers that
control the transmission and receipt of user messages must be directly ac-
cessible to the runtime layer. Given this support, inter-node communication

within an application can be supported without kernel intervention with

greatly increased efficiency, but protection is not compromised.
The operating system kernel should be written in such a way that relevant

state information is vectored to the runtime system layer. This information

86 CHAPTER 9. OPERATING SYSTEMS

might concern page faults, exceptions, disk I/0 events, and information nec-
essary for the efficient implementation of checkpoint/restart by the runtime.

Moving support from the kernel to the runtime is an example of delayed
binding: an application can employ a runtime that provides precisely the

right functionality, and various programming paradigms, checkpoint/restart
strategies, etc., can be supported efficiently.

9.3 Recoverability, Checkpoint/Restart, and Job
Swapping

For many reasons recoverability mechanisms are important for both batch
and interactive systems. Specifically, we see that long-running applications
need to deal with:

• error conditions (both hardware and software generated)

• user requested checkpoint

• network disconnect situations

• intentional logouts

• dedicated system time interruptions and

• unexpected system crashes.

In these cases, the user code requires means by which the program can

control a graceful abort that can be later restarted, or the means by which
to continue execution independent of the disruption (such as network dis-

connects).
Recoverability mechanisms include the ability to reconnect an interactive

session after disconnect, or conversely to hang up a disconnected session; and

of course, a reliable means to create checkpoint files that can be restarted. It
is important to note that such restartable checkpoint files should be migrat-

able so they can be stored on archival storage systems and later retrieved
and restarted. It is desirable for these files to be system independent, that

is, restartable on similar hardware and software systems, independent of

whichever system was the original environment.
We further see that some of these same mechanisms are required for de-

bugging. Users need tile means to "save" and "restore" an executable image

9.3. RECOVERABILITY 87

from within the debugger, and also to edit an executable image and then
continue its execution.

In addition to the above, the kernel itself can use these mechanisms for

efficient job swapping and resource management. It should be m,,ted that

we consider the image saved and restored by the kernel during job swap-
ping to be a different object from the traditional restartable checkpoint file.
However, there is no inherent reason why the kernel has to make this differ-

entiation; some systems use only a single object for both functions.
It is important to the users that recoverability mechanisms be accessible

from tile user-level. It should be relatively easy for users (both from the

keyboard and from within the executing program) to create a checkpoint file

and/or to specify actions to be taken upon logout or network disconnect,
etc.

Future systems should take these features into account when designing the

hardware. In particular, checkpoint may be more efficiently implemented
with hardware support. And certainly, distributed memory architectures re-

quire different checkpoint mechanisms than do shared-memory multiproCes-
sors and vector supercomputers.

Today, there are no production-quality recoverability mechanisms for _PP

systems. Most MPPs today do not have an efficient job swapping mech-
anism. Research prototypes are being developed, however. Some vector

systems have comprehensive checkpoint/restart and reconnect capabilities,

but they are based on dying technologies. Other vector systems based on
new technologies have immature recoverability. They have restrictions on

applications' checkpoint and do not provide migratable checkpoint images.
Reconnect functionality is rarely implemented today.

The research community has a large body of literature on checkpoin_ for
database systems, and distributed systems, but most research results do

not apply to checkpoint for MPPs. The research checkpoint prototypes for
MPPs are just emerging and they are implemented without adequate kernel

support. They have restrictions on file accesses, interprocess communica-
tions, and resource sharing. In the next few years, we hope that production

quality checkpoint mechanisms will be available.
Many research issues are relevant to recoverability:

• Reconnect capabilities

• Concurrent checkpoint

• Low latency mechanisms

88 CHAPTER 9. OPERATING SYSTEMS

• Migration of checkpoint files to other machines

• Saving checkpoints on archive systems

• Reducing checkpoint image sizes

• Compiler help to optimize checkpoint file organization

• Interfaces with high-level tools

• OS kernel support for checkpoint

• Hardware support for checkpoint

• Removing restrictions on checkpoint

• Checkpointing distributed programs on heterogeneous systems

• Active checkpoint vs. system swap images

• Standardization of checkpoint image contents

The items outlined above require algorithm studies and collaboration with
OS kernel designers, architects, and compiler researchers.

9.4 Exception Handling

Support for efficient exception handling is important for high performance

computation because some numeric routines generate floating point excep-
tions as part of their normal operation. These routines fall into two classes.

The first consists of routines that do not need to check for or respond to indi-

vidual exceptions, but simply need to know an exception has occurred (and if
an exception has occurred, some of these routines are likely to have generated

a large number of exceptions). This class of routines is best supported by a
"sticky" bit that records exception occurrence (set by an exception, cleared

by runtime software). The most reasonable place to implement this is di-
rectly in the hardware (in a user-accessible register), as this will be at least

an order of magnitude faster than entering the operating system for each
exception. Maintaining a separate "sticky" bit for each type of exception

is a valuable aid to the after-the-fact analysis performed by these routines
because the implications of different classes of exceptions (e.g., underflow,

overflow, imprecision) vary based on the routine that generated them. For

9.5. FILE SYSTEMS 89

example, many floating point routines can make use of imprecise results, but
this is not the case if the floating point unit is being used to perform integer
arithmetic.

i

Routines in the second, less frequent, class need to respond to individual

exceptions, but usually not in a precise fashion; an exception usually causes

a line of computation to be abandoned (instead of correcting the problem

that caused the exception and continuing). Hardware support {'or imprecise
exceptions is sufficient, provided compilers can generate code that produces

precise exceptions (e.g., for debugging purposes). The Unix signal mecha-
nism provides sufficient (even if inefficient) support for this class of routines.
The existence of both classes of routines requires that hardware support the

ability to mark (and change) types of exception events as signalling and

non-signalling (IEEE terminology). In general the primary responsibility for
servicing exceptions rests with applications and runtime systems, and oper-

ating systems should implement only those mechanisms necessary to notify
these components of the occurrence of exceptions.

9.5 File Systems and I/O

We need to define some basic parallel I/O modes and standardize them,

including their normal behaviors. It may be necessary to say that some
properties are undefined. Suggested modes include node-synchronized and
node-independent modes. Another candidate for standardization and com-

mon support on distributed memory systems is distributed file pointers, i.e.,

allowing the multiple parts of an SPMD program to have either shared or
separate file pointers into a single file.

Standardization is also needed for user interfaces to I/O in a parallel en-

vironment at various levels. The POSIX P1003.4 working group is currently

specifying, for example, the behavior of "printf" in a multithreaded program,
but questions raised during the discussion session show that standards are

needed at higher levels as well.
Buffered I/O modes tend to fall apart on parallel machines, unless the

application programmer is conscious of buffering issues and addresses them

directly. This is something which is typically not an issue on serial machines,
so may come as a surprise to the programmer.

Different technologies may be applied to improve I/O system performance.
Examples include RAID subsystems, Solid State Disks, and simpler tech-

niques such as disk striping. However, the actual performance afforded by

90 CHAPTER 9. OPERATING SYSTEMS

these technologies will be system-dependent, because the system architect

will be responsible for attaining that performance. Regardless, parallel I/O

can be defined at a logical level and left to the vendor to implement. Ap-
plications can select the model that suits their structural and performance

requirements.
Distributed file systems are clearly desired. However, I/O to networks

and local disks is already a potential source of performance limits, so I/O
to remote disks will surely be more so.]'his will require serioas attention

to get right. The Andrew File System offers some suggestions, as does the
IEEE Mass Storage Reference Model.

Intermittent connections: how to deal with less than reliable services in

a distributed processing environment. Long run times in a less than perfect
world imply that loss of service is an eventuality. It may be desirable to

start by defining fatal vs. non fatal interruptions. This is a current area of
research in the context of distributed computing environments and network
file systems.

Network I/O is seen by some users to be a problem, especially in the
meta-computer environment, and for users of work stations acting as front-

ends or data analysis platforms. Again, the OS can support logical parallel

Ii:O modes, but it may be up to the vendor (or a resourceful application
programmer) to make it work well for a given machine. Both bandwidth
and latency are important.

File system security: local file system security is fairly well understood.
Network file systems security is less so. These issues apply, but have been

addressed elsewhere. DCE, ONC, and Kerberos are examples of this work.

Unlike some operating systems issues, where the user/programmer wants
control over the internal operation of things, file system security, once en-

abled by the system manager, must be not be something that can be disabled

or circumvented by a clever programmer.
Hardware requirements: specific to a given hardware platform and

typically handled by the vendor. For performance, the clever" programmer

may wish to explore I/O modes which map well to the underlying hardware,

although one would hope these modes would be equally well supported.
Information required from higher levels: information from applica-

tions, runtime libraries, and/or the compiler regarding I/O access patterns
and modes. It may be possible for the OS to schedule I/O operations more
efficiently given good clues about the expected access modes and patterns.

9.5. FILE SYSTEMS 91

9.5.1 Problems/Needs

User priorities:

• Faster I/O (file system and otherwise), is necessary to support current

and future high performance CPU speeds. The dramatic speedups in
computation afforded by high performance systems can turn a CPU-
bound application into one that is bound by I/0 performance or other
communication performance limits.

• Parallel I/O is not well defined. For example, the question of the
behavior of the "Hello World" on a parallel system was raised dur-

ing the general discussion of operating systems. Even though this is
a programming model issue, rather than an operating system issue,
standards do need to be defined, even if the definition is undefined.

How is the future likely to be different from the past?

• The I/O supported by the system must scale to match the computa-
tional power. Some applications will apply the greater power to faster

results, others may desire to process more data. It is not likely I/O
capacities will keep pace with increasing processor power, leading to

a growing gap. This will put greater pressure on file systems to be
efficient, and not slow things down any more than necessary, given

that the limitations of the underlying hardware will likely remain a
bottleneck.

• Increased exchange of data between large machines and work stations
will impose a burden on the smaller systems. Unfortunately, not much

can be done from the large machine's perspective.

• Files will be larger than 232 bytes, meaning that many (if not most)
smaller machines will not be able to handle them. Support for files

greater than this limit should be planned for, standardized, and ex-
tended to smaller systems as it becomes practical to do so.

Status:

• strengths/weaknesses

• forecast results of current work

92 CHAPTER 9. OPERATING SYSTEMS i

• outlook on research expectations

Priorities:

• Faster I/O is crucial to the successful application of supercomputing
technology to data-intensive processing tasks. It is Mso crucial to dis-
tributed computing issues.

• Disk throughput is fundamentally limited by the physics of disk drives.
Solid State Disks are still very expensive with respect to the price of

CPUs. Parallel disks and RAID systems may help.

9.6 Heterogeneity

Most of the issues related to supporting distributed applications in a hetero-

geneous environment fall within the domain of the runtime laver in keeping
with the philosophy presented in Section 9.2. However, the operating sys-
tem implementors do need to concern themselves with a few basic underlying
issues. This section discusses these basic issues.

An application programmer who attempts to implement a distributed ap-

plication spanning a heterogeneous network of machines faces several serious
problems today. In a few important ones the operating system facilities or

lack thereof play a significant part. These are:

• Lack of network and architecture transparent communication among
programs executing on different machines with different environments

In order to provide network and architecture transparent communi-

cation the issues that need to be addressed by the operating system
community are:

- Data representation and conversion

- Management of remote execution

- Uniform naming

- Seamlessness, i.e., application does not have to know what sort

of system it is talking to

Each of these areas is addressed, to some extent, similarly but dif-

ferently in DCE and ONC. DCE and ONC provide technology that

9.6. ItETEROGENEITY 93

addresses the concerns of the IIPCC community in the short term.
There is a need for a single agreed upon set of programming interfaces

that provides this functionality.

Considerable variation exists in how floating point_ numbers are repre-
sented in the various existing high performance systems, which makes

it hard to provide a seamless interface among components of an ap-

plication executing on machines that use different floating point rep-

resentations. There is a need for a single agreed upon standard for
representation of floating point. Currently, the only existing standard

is the IEEE _andard, and it is not used by all the important vendors
in high performance computing.

• Data storage format (archival storage interaction)

It is important to have the ability to use data independent of storage
format. Data stored in natural format is easier to use and wastes

less time in repeated conversion to and from formats that cannot be

directly used in computation. However, this is an issue that concerns
the Computing Environments group more than the Operating Systems
group.

• Efficient communication among programs on single machine

Distributable interfaces based on RPC schemes are not efficient when

the two modules communicating through the interface happen to be
colocated on the same machine. There needs to be a way to plug

in different runtime systems, depending on the relative locations of
the modules. Ideally, one would like to be able to use the location

transparent interface but allow change in underlying implementation
for speed for the local case.

Existing software and operating systems present certain areas of strengths

and wet_knesses in dealing with heterogeneous environments. Broadly speak-
ing these are as follows:

• Ubiquitous availability of networking is an area of strength in current

operating systems. Networking is now expected of operating systems.
Base technology (e.g., TCP/IP, etc.) is available widely.

• Current networking technology that is widely deployed may not be

adequate for efficient communication over future high-speed networks.

94 CHAPTER 9. OPERATING S)_STEMS

This is an area of weakness that needs to be addressed both in the
academic and vendor communities.

• Heterogeneity support currently available is relatively weak, and there
is much room and need tbr improvement. The weaknesses in this area

have been discussed at some length in this section. While some tech-
nology is available in the form of DCE and ONC for hiding details

of communication mechanisms from applications, they do not perform
well when the correspondents are colocated. Floating point related

issues are generally ignored. While seamlessness as an absolute re-

quirement may be a myth, there is room for improvement in the area
of reducing the visibility and roughness of the seams.

In the future, many more applications will span multiple machines of di,Ter-
ent architectures with different computation models (e.g., MPP and vector).

Components of applications will be mapped to different machines based on
matching the computational needs of the component and the capabilities of

the machine. Application programmers will be able to do this using a rela-
tively uniform programming interface for inter-module communication. This

phenomenon will be made possible by the availability of industry-standard
technology to support distributed heterogeneous systems.

In the short term, DCE, ONC and similar technologies will provide ac-
ceptable solutions to much of this problem. They will provide a reference

model for the type of capabilities needed to form part of the infrastructure

for heterogeneous systems. Eventually, a single programming interface will
evolve through the application of persistent user demand upon the vendors.

For the longer term, it has been mentioned that the data representation
conversion, etc., as done in both DCE and ONC are not fast enough for

HPCC. More efficient RPC for high speed networks requires further research,
but an evolution towards a single standard representation is unlikely to hap-

pen on its own. The chances of it happening are considerably enhanced if
the user community persists in requiring it of their system vendors.

The following activities are recommended for ensuring that required sup-
port for heterogeneous environments is incorporated into operating systems
in the near future:

• In the short term, DCE, ONC or similar technologies need to be
broadly deployed to achieve heterogeneous interoperability. Broad

availability of such technologies and experience in using them in real

life applications also will help in flushing out a single interface. Some

9.6. HETEROGENEITY 95

work in that area is already taking place as a part of the OMG Com-

mon Object Request Broker (CORBA) effort. Such activities should

be encouraged, and vendors should be encouraged to participate in
such activities, in order to deliver a single interface paradigm in a

timely manner. Developments in this area need to be closely moni-

tored by tile HPCC user community to ensure the performance needs
of the HPCC community are met by the technologies and the vendors

provide efficient and quality implementations of these technologies in
products.

Considerable overlap exists between the operating system and the corn-

puting environment in this area. Issues that do not need direct oper-

ating system intervention should be handled by the computing envi-
ronment.

Payoff: Heterogeneous interoperability.

Problem: Agreement on single interface and software integration

Time frame: Next 12 to 24 months.

Action: Users encourage vendors to deliver these technologies in the
form of implementations of adequate performance and quality, and

persuade them to converge to a single set of interfaces.

• Floating point format support needs to be added to DCE, ONC, etc.

Payoff: Automatic conversion among several floating point formats in
the process of doing an RPC.

Problem: This is a standards issue, and it impacts more than just the

high performance computing community.

Time frame: 12 to 24 months.

Action: Influence the vendors to add functionality to DCE, ONC, and
to future interface technologies like OMG's.

• There is a need to identify and convert to a standard fioatiag point

representation adequate for HPCC for all future systems. If IEEE 754
is found to be adequate for the purposes for HPCC, then it could serve
as this future standard to move to.

Currently, IEEE 754 is a standard which is not adhered to by many
vendors. Does it meet the requirements of the tIPCC community? If

it does, then the user community should encourage the vendor commu-

nity to conform to IEEE 754. If not, then there is a need to understand

96 CHAPTER 9. OPERATING SYSTEMS

where it falls short and fired research and standardization activity to

address those problem areas.

Payoff: Gets rid of floating-point conversion problem on new systems.

Problem: Some hardware vendors may not want to do this for perfectly

good business reasons. In general this is a hardware issue.

Time frame: Could be forever. (Depends on vendors).

Action: Determine if IEEE 754 is adequate as standard floating-point
representation. If so, encourage vendors to change to IEEE 754.

9.7 Memory Management

The memory management issue for high performance computing is under-
going a fundamental change. In the past, hardware designers have debated

the wisdom and utility of providing virtual memory management support
(i.e., a memory management unit) in high performance computing systems.

There are examples of successful high performance systems with and with-
out hardware support for virtual memory management. Hardware technol-

ogy has changed to the point that the next generation of high performance
systems will be massively parallel systems based on industry standard micro-

processor chips. These chips include hardware support for virtual memory

because the work station market (which consumes the bulk of these chips)
requires that support. Thus, the area of memory management is changing

from a hardware issue, to one of whether to provide support to a software
issue and how to use the available hardware support. At the same time,

the underlying memory system architecture is changing from a single pool
of memory shared by all processors to distributed pools based on the distri-

bution in an MPP architecture; this provides new challenges to the software
that manages the memory resource. This section concerns itself with thei

memory management component of system software for MPP systems.
The high performance computing community harbors at least two unfor-

tunate misconceptions about memory management hardware:

• It slows down the processor by increasing the cycle time.

• Using memory management hardware automatically means that the
operating system will implement paging, which also costs performance.

The first assertion is no longer true for the industry standard microprocessors
of interest; the fundamental cycle time does not depend oil whether memory

9.7. MEMORY MANAGEMENT 97

management (i.e., translation) hardware is enabled. A second order effect
is caused by misses on translation buffers (hardware cache of translation

information) and the resulting refills, but the impact of this is very small for
reasonable system designs. The second assertion represents a fundamental

misunderstanding of the potential uses of memory management hardware.
Memory management hardware has found uses far beyond its original use

to support applications whose address space exceeds the size of physical

memory (i.e., paging). Among the uses made by operating systems in the
commercial and research communities are:

• Support for shared memory programming models on machines and

configurations without hardware shared memory

• Use of memory mapped files to improve I/O efficiency

• Operating system optimizations, such as copy-on-write

• Efficient support for the memory related features of programming lan-

guages, especially garbage collection

• Efficient support for memory-based update checkpoints (only differ-
ences from the previous checkpoint need be recorded)

For the purposes of this discussion, we distinguish these new uses of mem-

ory management hardware from paging by referring to them as memory
management and paging. It should also be noted that the distributed mem-

ory architecture of MPPs provides new opportunities for use of paging tech-
niques:

• Paging among nodes, rather than to and from disk.

• Extend address space beyond size of physical memory in a single node.

One of the consequences of these uses is that industry standards for oper-

ating systems are now requiring features that can only be implemented on
hardware with memory management capabilities (e.g., mapped files, shared

dynamically loadable libraries).
The use of standard microprocessors in MPP systems creates expectations

in the area of software portability. Not only will users expect to be able to use

the industry standard programming interfaces present on the corresponding
work stations, but they also will expect the ability to freely move binaries

that do not depend on MPP features between the MPP and corresponding

98 CHAPTER 9. OPERATING SYSTEMS

work stations. This is a major advantage for MPP systems in that it avoids

the need to rewrite large pieces of software that are not performance critical

(e.g., program development tools that are not specific to high performance
applications), but it Mso creates corresponding requirements for the MPP
to fully support the binary interfaces that such software expects. Needless

to say, this includes memory management. For example, at least one work
station vendor's program development tools rely on memory mapping for file

access; MPPs based on this chip will have to provide mapped file support to
run these tools effectively.

From the user's standpoint, the following priorities are identifiable:

t Efficient and effective use of MPP hardware, including both processor

and memory resources

• The ability to run standard software and use standard programming
interfaces, including those that depend on memory management

• The ability to run work station software binaries on an MPP when the
work station and MPP use the same microprocessor

• Support for innovative uses of memory management in application do-
mains and languages that can take advantage of it

System software for MPPs is still in a relatively early stage of development.
Most MPPs are back end machines that require support from a host system.

The memory management systems are primitive, and often place limits on
application size and functionality. In some cases these limits are direct con-

sequences of hardware design decisions (e.g., an architecture that requires

that physical addresses be exposed to applications). Work is in progress at
levels ranging from research to product development to improve the level of

memory management functionality in MPP systems. This mixture of work
is productive, as the problems being addressed range from research (e.g.,

effective support for shared memory programming on non-shared memory
MPPs) to product development (e.g., mapped file support). In addition,

having active projects at these levels makes it that much easier to transition
technology from research through advanced development to products that

are of use to the high performance computing community.
We believe that memory management functionality can be a valuable and

important feature of MPP systems. Vendors should be encouraged to provide
it. Shared memory across MPP nodes should be investigated as a program-

ming paradigm even for machines with no or incomplete hardware shared

9.8. JOB SCHEDULING AND RESOURCE MANAGEMENT 99

memory functionality. MPP operating systems should evolve to incorporate
better management of the memory resources of the MPP; the multiple pools

of distributed memory are more difficult to manage than a single pool of cen-

tralized memory. Hooks should be provided to applications so that runtime
systems can provide information about memory usage and access patterns

to help the operating system better optimize memory usage. This should

include the ability to exercise suitable control over paging behavior, and pre-
vent runtime page faults (as opposed to TLB misses) in high performance

applications.
The benefits of making this functionality available include:

• portability and reusability of software among MPP and work station
systems

• support for shared and extended (virtual to physical) memory pro-
gramming models makes it easier to program some classes of applica-
tions

• improved utilization of MPP systems based on better resource man-

agement.

These benefits and others can be achieved in the next few years with a

continued investment of resources in systems software development for MPP

systems. The appropriate source of this funding varies with the maturity
of the effort; product development efforts should be funded primarily by

vendors, whereas government agencies clearly have a role to play in funding
both research and advanced development.

9.8 Job Scheduling and Resource Management

9.8.1 Job Scheduling

Job scheduling is concerned with the scheduling of single jobs in a het-
erogeneous computing environment. It differs from CPU scheduling which

schedules processes and threads for execution in a timesharing environment.
Job scheduling deals with the relatively infrequent tasks of initiation, pre-

emption and termination of jobs while CPU scheduling deals with a much
finer time scale. Typically, CPU scheduling is implemented inside the OS

kernel, while job scheduling is implemented outside the kernel, possibly as a
daemon.

100 CHAPTER 9. OPERATING SYSTEMS

There are two levels of job scheduling that need to be implemented, a local
scheduler and a global scheduler. It is assumed the global scheduler has
hooks into the local scheduler to inquire about the availability of resources
at the local host and to reserve resources on a local host.

It is assumed that the resource of the MPP (such as nodes) can be par-
titioned into local interactive jobs, local batch jobs and global batch jobs.

The partitioning can vary from prime time to non-prime time. It is assumed

that global interactive jobs are very difficult to schedule and so are not dealt
with here.

The local scheduler needs to be able to properly schedule local batch and
interactive jobs. It also needs to respond to queries and scheduling requests

by the global scheduler. Some resources that can be scheduled are the fol-
lowing:

• Computing nodes

• Disk space (how much and how long)

• Priority of job

• Time limit

• Accounting group

• Minimum resource requirement (computing nodes only)

• Maximum resource request (computing nodes only)

The global scheduler must be distributed. It is assumed that the local

scheduler is local to a single machine. The global scheduler may be hi-
erarchically distributed. Each computing center is responsible for its own

machines but may cooperate with other centers to run large applications.
If a job is scheduled to run, it first needs to check that all of the resources

are actually available even though they have been reserved. Also, scheduled

jobs need to be able to preempt running jobs.
Currently, the standard scheduling mechanism is NQS. NQS is a queuing

system originally intended for scheduling batch work on single processors.
It is not a true scheduler. At a minimum, it needs to be extended to do

scheduling for an MPP machine and for global scheduling. This extension
may not support the dynamic issue of interactive execution. It should at least

recognize the resources that are reserved for interactive uses and refrain from
allocating these resources to batch jobs.

9.8. JOB SCHEDULING AND RESOURCE MANAGEMENT 101

9.8.2 Resource Management

Resource management in concerned with the management of compute nodes,

disk space, network bandwidth, and time in a heterogeneous computing en-

vironment. Resource management on a distributed system is difficult. Iibr
accounting purposes, an accounting group ID is needed. The user group

ID is for file access privileges and not very useful for accounting. A single
user may be part of several accounting groups, one for each project. It is

also anticipated that accounting will need to be collected locally and queried
from other systems. A user should be able to specify his default account or

an account during job submission.

Usage statistics are collected by system daemons.

Other Issues

Other issues of importance that are open research topics are graceful degra-

dation of a distributed job, load balancing on a single MPP and in a distrib-
uted environment and dynamic resource allocation during job execution on

a single MPP and in a distributed environment.

Who Does the Work?

Tile development of job scheduling and resource management facilities
should be done by collaboration of vendors with universities.

This area is another example where a collaboration with compiler special-

ists could be useful since some information known to the compiler would be

beneficial for job scheduling and resource management.

9.8.3 Hardware Support

Very minimal additional hardware support is needed. One possibility is an
additional built-in instrumentation that may provide more timely data about

current resource status for resource management and job scheduling, espe-

cially in heterogeneous systems. (Part of this issue is one of standardization
on the representation of information needed for management of heteroge-

neous systems.)

9.8.4 User Support

The user needs to specify resource requirements and accounting group when
submitting a job.

1(12 CHAPTER 9. OPERATING SYSTEMS

9.9 Message Passing

Massively parallel systems fundamentally depend on inter-node communica-

tion ("message passing"). Managing this message passing is a basic operating
system task on such a system, though, as explained in Section 9.2, one that
should be done outside of the kernel.

On many massively parallel systems, message passing is an explicit inter-

face. In particular the send/receive model is extremely common. One of the
tasks which has just begun and which should be completed within the next

year or so is standardization of such send/receive interfaces for interprocessor
communication.

Although the understanding of inter-node communication is sufficiently

advanced that it is wise to standardize the send/receive model, the best
model is not yet clear and support for development and experimentation

with alternative models jointly by academia and vendors is very important.

Chapter 10

Computing Environments

Reagan Moore, Chair

10.1 Introduction

The computing environment topics include data storage, communications,
and programming support environments. Applications are inherently limited
by the capabilities and access the computing environment provides. One way
to analyze the application requirements for high performance computing
is to examine the associated requirements for the computing environment
software infrastructure.

The hardware computing environment provided by vendors consists of
heterogeneous computing platforms with associated data storage devices,
linked by communication channels. The computing environment needed by
application developers is support for rapid porting or prototyping of soft-
ware codes that can make efficient use of the vendor supplied hardware.
The software infrastructure that normally provides the interface between
the application developers and the computer hardware is seriously lagging
hardware advances. Difficulties also exist in providing system software for
heterogeneous platforms since historically system software is developed by
vendors who optimize the software for only their own platform. This has
become further exacerbated by bottlenecks in the development of applica-
tion software because of associated paradigm shifts that are now occurring.
They comprise:

1. Development of massively parallel computers.

103

104 CHAPTER I0. COMPUTING ENVIRONMENTS

2. Integrationofeitherhomogeneous or heterogeneouscomputing plat-

formsintometacomputers.(The metacomputerisa uniforminterface

todisparatecomputingplatforms,providingtheapplicationprogram-
mer theopportunitytodecomposean applicationacrossmultiplema-

chines.)

3. Integrationofmultiplecomputercentersintoa metacenter.(Themeta-
centerprovidesthesame capabilitiesas themetacomputer,but across

geographicallyremotecomputercenters.)

The needsoftheapplicationdeveloperin thisrapidlychangingenviron-

ment aredominatedby thedifficultyinprogrammingparallelcomputers.For

the nextfiveyears,thecomputingenvironmentsystemssoftwarerequire-

ments can be categorizedintoimmediategoals,and three-year,four-year,
and five-year goals:

Immediategoals

• ParallelComputer SupportEnvironment(distributedmemory)

• StandardsforParallelComputing Support Environment,including
supporttools

• StandardforparallelI/O

• Standardformessagepassingon distributedmemory machines

One to three-yeargoal--Metacomputer

• Integrationofmultiplehomogeneouscomputingplatforms(clusterof
workstations)todynamicallysupportmultiplejobsdistributedacross
thecluster

• Uniform environmentforfileformatsand job checkpointsto allowa

job tobe restartedon anotherplatform

Four-ye,.rgoal--Heterogeneousmetacomputer

• Integrationofmultipleheterogeneouscomputingplatformstodynam-
icallysupportmultiplejobs

Five-yeargoal--Metacenter

10.2. OBJECTIVES 105

• Integration of multiple geographically distributed metacomputers into
a national machine room

The computing environment software must provide the support needed
to create a balanced system that masks or moderates throughput bottle-

necks. This support includes the resource management to control diverse
computer architectures (e.g., traditional vector supercomputers, massively
parallel processors, clusters of homogeneous compute platforms, and combi-

nations of these platforms). Future throughput bottlenecks may be driven by
memory constraints,diskstorageconstraints,I/O channelrateconstraints,

or even datalocalityconstraints.Itisexpectedthatjobswillbe executed
thatuse a sizablefractionofany combinationof theseresources,without

necessarilyusingallof the availableCPU power. Job schedulingwillbe

necessaryto maximizeutilizationoftheresources.

10.2 Objectives

One approach to understanding the High Performance Computing technol-

ogy requirements is to use the Grand Challenges as case studies rather than
as end goals. This ensures the required systems software will be available

• to support particular Grand Challenge applications, while allowing develop-

ment of a uniform systems software computing environmer, _.
The system software problems currently confronting apphcation developers

can be summarized by six areas:

1. Provision of a uniform programming environment allowing portability
of codes across heterogeneous environments

2. Program decomposition support for optimizing hardware resource se-
lection and utilization in homogeneous and heterogeneous computing
environments

3. I/O support for moving large fries or storing massive amounts of data
in real time

4. Development of scientific database interfaces for supporting access to
massive data sets

5. Development of a national file system with uniform file names and uni-
form access to allow users to move program execution between com-
puter centers and promote collaboration among scientific teams

106 CHAPTER 10. COMPUTING ENVIRONMENTS

6. Resource management infrastructure allowing execution of programs
in an heterogeneous environment

Solution requirements to these problems are driven by application devel-
opers and by operating system development.

10.3 Applications Requirements

The requirements for the computing environment software are most strongly
driven by the needs of the application developers, but also are driven by sys-
tem managers, service providers, and service developers who are attempting
to provide a stable environment. The most urgent need is to be able to use
parallel computers efficiently. This implies the ability to write new applica-
tions and the ability to port applications.

10.3.1 To Write New Code: .4, Familiar Environment

The computing environment for parallel computers should be familiar, sup-
porting the same UNIX tools as currently provided on supercomputers
(make, dbx, Is, ps, etc.). The associated systems software needed for account-
ing, resource management, and scheduling should support multiple users of
the parallel computers, as is currently done on vector supercomputers. A
system that works and is in place is much better than prototype research
software systems. A strong concern was expressed that it is better to sup-
port the simple computer environment utilities, make them work, and only
then move on to the more ch_nenging end goals such as the metacomputer
and the metacenter.

Providing efficient UNIX tools, however, is dependent on research and
development of new technology, such as parallel I/O. What is a familiar I/O

interface? When the user runs a simple command on an MPP, what actually
happens? Does a 'printf' statement print n times when the job runs on n
nodes? A standard for parallel I/O is needed. Vendors are independently
creating this technology for parallel computers. Coordination of the effort
to make the MPP programming environment look like that of a workstation
may need to be done under government grants. This is a hard problem, and
may become more difficult unless a standards effort is started now. One hope
is that supercomputing centers can have a big impact on the development of
these standards by providing common, uniform environments. An informal
collection and distribution of a set of current and/or recommended practices

10.4.APPLICATION DATA REQUIREMENTS 107

could be useful in the long run as a way to promote the creation of a standard
environment.

10.3.2 To Port Code: Standards

Users want tools for porting strategies. A need is evident for a standard, or
set of standard parallel programming support environments (at the level of
Express, PVM, ISIS, etc.). For message-pa_sing architectures, the current
programming support environments need a standard message-passing library
to facilitate porting to similar hardware architectures. The standards should
include some cost/benefit analyses and trade.offs so that the user can make
reasonable choices between the programming support environments.

10.4 Application Data Requirements

Even with a standard environment, applications may generate more data
on TeraFLOP computers than disks can hold. TeraFLOP computers will
produce proportionally more data than GigaFLOP computers of today, re-
quiring an equivalent jump in storage technology and availability. This may
mean a 1000-fold increase in storage need, something not practical with to.
day's disk technology. There is no foreseeable limit to the amount of data
that may be manipulated. It is not at all clear how to scale up the I/O re-
quirements from today's machines to the TeraFLOP environments. Efforts
to predict future data support requirements are currently too simplistic. A
major difficulty is that future architectures will probably not comprise the
same environment as we are working in today.

What are the data storage constraints? Previously, the major constraint
was memory size, so mecha_sms were developed to page or swap jobs to
disk. In the future, it appears the major constraint may be disk size. Will
scientists be able to live within memory and storage constraints by changing
their _igorithms to be more efficient in terms of how much data needs to be
saved?

One possibility for expanding the amount of tota_ storage is the use of
archive storage systems to integrate local supercomputer disks and archive
storage devices. Such attempts must handle the maximum future working
file set size. The working file set size, however, may be limited by the local
disk size because it may not be an advantage to manipulate data larger than
this. On the other hand, observational data sets will be generated in the
future that will be arbitrarily large. Creating subsets of such data that can

I

108 CHAPTER 10. COMPUTING ENVIRONMENTS

be manipulated e_ciently will require major advances in scientific database

technology. The maximum acceptable working file set is effectively governed
by the rate at which it can be archived or restored. Users need to be able to
access their working file sets on time scales of at most minutes. This implies
that the maximum amount of data a user can manipulate effectively should
be on the order of (100 seconds) x (total i/O channel rates in bytes/second).
Alternatively, users will need to access their data through caching file systems
such as the Andrew File System. The effective use of such a caching system
for manipulating large remounts of data will still be highly dependent on the
communication channel rate.

The data storage environment aiso must be significantly enhanced to han-
dle future memory sizes. Observations of current applications suggest that
rougbJy a gigabyte of memory should be provided per GigaFLOP of CPU
performance. For a TeraFLOP computer, current applications would then
use a terabyte of memory. One model for predicting memory size is to
assume that the algorithm complexity measured in operations per bit of
memory determines the maximum amount of memory to associate with a
CPU for a given CPU execution time. Assuming the algorithm complexity
remains invaxiant, larger memory jobs may not be computed fast enough on
TeraFLOP computers and therefore may not be run. This implies jobs may
scale up by the same factor in CPU time and memory. Extensions to larger
relative memory sizes may then not be needed.

Alternatively, if massively parallel processors are made up of current tech-
nology components, such as workstation processors, then i*_may be possible
to apply current technology to data storage and I/O requi, ements. If both
are scaled in a parallel fashion (a disk for each processor, etc.) and the
problem complexity becomes greater as problem size grows, then one could
predict that these very large problems running on MPPs will require less
I/O performance than today's less complex computations running on work-
stations. These may be naive models for predicting future needs.., but are
other models less naive?

An associated aspect of data storage requirements is network performance.
A predictable performance is more desirable than great performance one day
and substantiMly less on another. The point is a balanced system. The need
in terms of capacity or performance will be dictated by the performance and
capacity of the other components in the system (disk, network, tape, mem-
ory, CPU). The appropriate scheduling of resources on TeraFLOP computers

is a major design consideration for the computing environment software.
Future systems must be able to manipulate massive amounts of data. If

10.5. APPLICATION CPU REQUIREMENTS 109

a certain error rate is introduced by networks, channels, storage, etc., what
effect will this have on the application? Future archive storage devices will
have non-zero error rates. Applications assume data are reliable and errors
ace unacceptable. The computing environment currently guarantees to the
application that the data are reliable. These guarv.ntees have mainly been
implemented in hardware. An example is the use of SECDED (single bit
error correcting, double bit error detecting) in CRAY memory. This is a
hardware solution: 72 bits are stored for each memory word with eight bits
used for error detection/correction. A similar technique may need to be used
with archive storage devices. Detection may be good enough as long as the
application is checkpointed and the results are partitioned so the error can
be isolated. Otherwise fault-tolerant applications will be needed.

10.5 Application CPU Requirements

Heterogeneous distributed systems are interesting for some problems, but
probably very few problems can be automatically distributed by a program-
ming support environment. Initially, the user will need explicit control.
Before automated tools are created to handle heterogeneous environments,
homogeneous environments must first be understood.

Massively parallel processors constitute the simplest possible homogeneous
environment. However, even for MPPs, it is not yet clear what level of kernel
functionality needs to be on each MPP node. Current support ranges from
a minimum of basic message passing to a complete implementation of the
full UNIX environment. This is a cost trade-off question. The majority of
data parallel codes would not work well with high operating system latency
levels. But if there were no latency cost, the more functionality supported
on the node by the operating system, the easier the application developer's
job would be. Often the trade-off is in the amount of memory on each node
dedicated to the operating system--some message-passing kernels cost on
the order of 30% of the memory on each node, a high cost!

Part of the functionality supported by the operating system is the parti-
tioning of resources for multi-user access. Amdahl's law predicts the ma.x-
imum number of nodes an application should use to achieve a given CPU
node utilization for a given para_lelization level. High utilization may be
easier to achieve by executing multiple applications on the parallel processor
than by highly parallellzing a single program. This is another trade off ques-
tion. Should the computing environment sacrifice CPU power and memory

II0 CHAPTER 10. COMPUTING ENVIRONMENTS

to support multiple users rather than provide the optimal environment for a
single application which may not run as efficiently? An alternate way to view
the choice is whether utilization should be maximized for the entire multi-

user workload or for a single application? Application development research
efforts have been primarily evaluating the computing environment as a sys-
tem on which to execute a single computation, and have been having great
diffculty in achieving the required para_.lelization level. Heterogeneous com-
puting systems impact this choice. They provide a distributed environment
in which to work with the computation processed on some of the platforms,
storage provided elsewhere, visualization and control provided yet elsewhere.
The heterogeneous environment may be predominantly a multi-user environ-
ment because coordination of dedicated access for a single application maY
be very difffcult to achieve.

Is there a viable metacomputer for optimization of single applications?
Perhaps the metacomputer is too difficult to optimize to be useful to the
applications scientist in the next two years. Is there an ideal application
working environment to migrate and run applications on a metacomputer?

One possibility is to start with a homogeneous computing environment of
multiple similar compute platforms.

10.6 Operating System Requirements

The computingenvironmentsoftwarealsoisdependenton requirementsfrom

theoperatingsystem.Thesearedrivenby theneedtoselecttheappropriate
softwarelevelforimplementingnew functions.The operatingsystem also

imposesa significantdata.handlingloadon thecomputingenvironment.

The operatingsystemfunctionalitycan be dividedintoconceptuallay-
ersconsistingofthe kerneland run-timesupportenvironments.The ker-

neltakescareofa singlecompute serverand itslocalresources,whilethe
run-timeenvironmentsupportsothernetwork-connectedresourcessuch

storagedevices,otherhosts,threadmanagement,and resourcemanagement.
Applicationsaccesstherun timeenvironmentforallrequiredsupport.The

computingenvironmentsoftwareresidesmainlyattherun-timelevel.
Operatingsystem requirementsfor data support includefilesystem

cachingand networkI/O caching.Both need supportforI/O stripingto

4 improvebandwidth.Forparallelcomputers,supportforparallelI/O isbe-
coming increasinglyimportant,withdiskspossiblybeingdedicatedto sub-
setsofprocessors.Standardizationoffileformatsand dataformatsisneeded

10.7. SOFTWARE TECHNOLOGY DEVELOPMENT AREA 111

to simplify archival storage interface and parallel I/O support.
In addition, the operating system may severely stress the data systems

through checkpointing of job images and through collection of performance
statistics. Both of these system support functions can generate as much data
as executing applications. The issue of checkpointing is strongly governed
by the cost trade-off between saving an entire execution state, saving only
a portion of the execution state needed for an application to restart, or
saving none of the execution state and reexecuting from the beginning of
the run. The choice must be made between local use of disk space and use
of additional CPU execution time. Only the application researcher has the
knowledge required to make the decision.

10.7 Software Technology Development Area

The computing environment system software that addresses these issues can
be sorted into data support systems, communications support systems, and
heterogeneous computing environments. Each of these areas has critical ele-
ments, some of which are currently being explored through research efforts.
Important technology development efforts in each of these areas are outlined
in the following sections, with an attempt to identify the organizations pro-
viding the driving technology push and the time scale needed for the systems
software development.

10.7.1 Data Support Systems

Key elements in the technology associated with data support systems are I/O
scaling (including data distribution), archival storage (including network at-

tached peripherals, third party data transfer, and caching file systems), a
national file system, scientific database interfaces, data format standardiza-
tion, data manipulation tools, and data privacy.

I/O Scaling. I/O scaling of computer center data storage requirements

to TeraFLOP compute platforms is needed to understand how to construct

balanced systems. If the systems are poorly designed, bottlenecks in either
provision of disk space or sustainable communication rate to archival storage
could limit the performance of the center.

Estimates for how data storage/rates scale to TeraFLOP computers are
highly application dependent. For example, it is expected that chemistry,

computational fluid dynamics, and lattice gauge theory will have quite dif-
ferent scalings as a function of CPU power for memory and disk space re-

112 CHAPTER 10. COMPUTING ENVIRONMENTS

quirements. It may be possible to define categories of general computers
for which these applications can be analyzed for current resource usage, and

then develop scaling requirements across the categories. Additional analyses
defining the major types of applications are also needed to determine the

number of different application classes for which scaling should be done.

Analysis of the performance of the overall data storage system should
include effects associated with data distribution. Data movement in cur-

rent parallel computers limits program efficiencies because of relatively poor
communication bandwidth compared to CPU execution power. To mini-

mize data movement between different sets of distributed memory, current

paraUelization efforts attempt to localize data to the distributed memory
associated with the compute CPU. This restricts the variety of applications
that can be successfully ported to parallel computers. Architectures which

allow decoupling of the data space from the compute CPU space will be able
to execute a more general mix of applications.

A similar approach is needed to understand future I/O scaling. Data
movement may occur not only between segments of distributed memory and
the executing CPU, but also between memory and disk and between disk and

archival storage. A data flow analysis is needed to understand the degree to

which data space can be decoupled from the CPU space. Data access can also
be viewed from the perspective of whether it is better to move the process to

the data or whether it is faster to move the data to a supercomputer. For a
sufficiently complex algorithm, the total execution time for a single process
can be minimized by moving the data to a supercomputer. This may not
maximize the overall job throughput since some compute resources will end

up being used to manage the data movement.

Archival Storage. A significant advance in data support systems has
been the creation of the IEEE Mass Storage Systems Reference Model. It

provides a conceptual architecture and a set of common terminology. This
effort has been vigorously supported by commercial software vendors, but it

is not yet certain whether these distributed systems will be able to support
TeraFLOP computers.

At issue is the expected performance of storage systems based on the IEEE
model. Archival storage systems must support not only multiple users with a

sustainable aggregate I/O rate, but also the expectations of retrieval time for
individual files. If very large files are being moved, user expectations of short

retrieval times can force a requirement for much higher communication rates
than needed to support the average communication load. Data access in

archival storage systems in the future must support a wide range of methods,

10.7. SOFTWARE TECHNOLOGY DEVELOPMENT AREA 113

such as sequential access or random access, for various types of applications.
Archival storage performance can be enhanced by the use of third party

file transfer which avoids forcing the data flow through the archival storage
server's CPU. Software development efforts are currently being done on the
support of network attached peripherals and caching file systems. The need

for third party transfer from network attached peripherals is currently dri-

ven by the difficulty of supporting 100 megabytes/sec communication rates
using the TCP/IP protocol. Competing technologies include processing the

TCP/IP protocol in hardware or managing the data flow with higher speed
protocols. The development of powerful microprocessors, provided I/O bus
and memory speeds increase proportionally, may make it no longer an issue
whether data is moved through a controlling CPU, if the controlling CPU is
substantially faster than the other computational resources.

Archival storage systems at present support the migration of data through
a hierarchy of caches from the supercomputer local disk to archive tape
storage devices. Software development efforts are being done to integrate
caching file systems to allow the transparent movement of data from the
archival storage system back to the supercomputer disk.

National file system. The creation of a national file system will have
the same impact as that of the creation of the original Arpanet. Collab-
oration between researchers will become significantly easier when they can
share the same files. A national file system will be a basic infrastructure RE-

QUIREMENT for High Performance Computing and Communication work.
An implicit assumption is that the underlying technologies will be in place
to support the associated data movement, including gigabit networks, stor-
age technology, and interfaces between caching file systems. Government
leadership is needed to ensure that these technologies will be put in place to
satisfy the expectations.

Prototype versions of a national file system are already occurring, led by
efforts at Carnegie Mellon University in the development of the Andrew File
System (AFS) and archival storage integration efforts at the National Sci-

ence Foundation supercomputer centers. National AFS cell registration is
being done by Transarc today. In the future, the Andrew File System will
be subsumed within the OSF DCE/DFS environment. Specific technology
issues include generalization of user/address registration, the guarantee of
data privacy and file sharing between DFS and NFS. The creation of gate-
ways may make it possible for anyone to hook into the National File System,
perhaps by becoming DFS clients. Equally important is the issue of intellec-
tual property protection. General usage of the National File System is not

114 CHAPTER 10. COMPUTING ENVIRONMENTS

likely to be successful until some means is provided to give data owners con-
fidence that data and information will be handled consistent with ownership

rights and usage authorization.
Scientific database interfaces. The object of storing large amounts

of data is the creation of knowledge. Scientific database interfaces have
the capability of making knowledge storage and retrieval much easier. The

important data to store may then be the knowledge learned about a given

data set (metadata) rather than the data set itself. The organization of large
data sets is an important research effort. Should data be stored as one large

file (100 GB) or as lots of smaller files? How should large files be indexed
to maximize knowledge retrieval? How can random access retrieval of large

archived files be supported? Observational data set storage, image sequence

generation (two dimensional and volumetric) and visualization processing
will be major users of scientific database technology.

Databases to date axe based on relational or object oriented interfaces
and require well-defined classes of object. Scientific users are interested in

abstractions of the data points, e.g., surfaces, itow lines, etc. The creation

of interactive mechanisms for generating the data abstractions is a research
effort. The data flow paradigm used by graphics packages (AVS, Explorer,

Ape, Chorus) for constructing visualization interfaces is a possible solution.
Integration of research efforts in this technology with large object manipu-

lation research and archival storage research is needed.
Data format standards and conversion tools_ XDR/data com-

pression tools. There are many "standard" data file formats, usually dis-

cipline specific. Conversion tools that translate between the existing stan-

dards axe beginning to appear. Examples are the NASA effort for supporting

the Astrophysical Data System and the IEEE standards effort for creating
a Scalable Coherent Interface (SCI) standard. The SCI standard has been

developed specifically for the support of gigabit interconnection of hetero-
geneous systems and addresses communication and data format issues. The

development of standard file formats can be used to help define I/O stan-
dards for parallel systems. At issue is the parallel-to-serial data stream

conversion required when an MPP transmits data to networks or to archival

storage.
Unfortunately, data format conversion tools (e.g., XDR) are still needed to

convert between different binary data formats. The IEEE floating point for-
mat is now the data standard. Conversion routines between IEEE, CRI, and

VMS floating point formats exist. The conversion problems are "man-made"
and vendors should standardize on IEEE Floating point and standards (such

10.8. COMMUNICATION SUPPORT SYSTEMS 115

as "big endian/little endian" byte ordering, character format) even at the
chip level.

Standards for compression of scientific data are being initiated for lossless

compression. Lossless compression techniques (e.g., in hardware) for scien-

tific data would be helpful. One difficulty is the decompression of the data
when the compression hardware is no longer available.

Privacy. Guaranteeing the privacy of data is a central issue for both
networking and data storage. The fundamental problem is trusting the au-

thentication of users and hosts--that they are who they say they are. Pos-
sible approaches include the implementation of time-based authentication

systems such as Kerberos. A second approach that might be provable is to

be able to guarantee you will know when your data has been compromised,
even if privacy cannot be guaranteed.

10.7.2 Summary: Data Storage Requirements

Large file access (response time for gigabyte files)
Location transparency (National file system with uniform naming conven-

tions)
Petabyte storage archives (distributed IEEE reference model)

Associated data reference (Scientific database systems--knowledge storage

rather than just data storage)

10.7.3 Summary: Data Storage Questions

Is there a "standard" data hierarchy for the storage of data? (Data: Dis-
tributed memory, ram disk, local disk, remote disk, tape or optical robot;

Scientific database: metadata file systems, archive storage system)
Should data be stored or regenerated? Are there viable technologies such

as holographic storage or chemical/optical storage devices that can make
data storage cheaper than CPU reexecution of programs?

Should data storage devices be error free, or should error correction be an

attribute of the stored data? Bit error rates of one in 1012 are too high when
terabytes of data are stored.

10.8 Communication Support Systems

Key elements in the technology associated with communication support sys-

tems are software support for gigabit per second communication links (in-

116 CHAPTER 10. COMPUTING ENVIRONMENTS

cluding high-speed protocols, levels of service for bandwidth reservation,

and data integrity), communication media standardization, data privacy,

and parallel network I/O.

10.8.1 Gigabit per second Communication Links: Require-
ments for NREN

A dominant element needed for communication systems is development of

the software infrastructure for controlling gigabit per second communication

links. With the advent of TeraFLOP computers, data will be generated by

a single application at rates higher than a gigabit per second. This is a
government-led, high priority research project to develop a basic underly-

ing technology. Gigabit per second testbeds axe expected to be up within a
year, with the production gigabit per second NREN available in five years.

Government funding includes high-speed protocol research and investigation
of possible communication paradigms. At issue is whether packet switched

networks will be sufficient for high performance application bandwidth re-
quirements? Applications will need to be able to get low latency or uniform

latency access for distributed processes. Other types of services (guaranteed

integrity, real-time bandwidth reservation, etc.) are also being investigated.
High-speed communications support is needed for many small users (work-

stations) as well as large users (supercomputers). In such a heterogeneous
environment, it may not be enough to reduce network latency to a minimum;

it may be necessary to figure out how to deal with variations in latency, both
unpredictable (due to operating system scheduling, network load, etc.) and

predictable (due to finite speed of light, e.g., satellite based links). Latency

effects may dominate algorithm design for efficient use of a wide area net-
work spanning the continent. Algorithms may need to optimize message size

versus frequency of messages, and develop mechanisms for communicating
without doing lots of round trips. The trade-off for the algorithm develop-

ers will be between communication efficiency and computing efficiency for a
given wallclock turnaround time. Analyses axe needed to provide algorithm

and applications developers with strategies for dealing with latency.
Heterogeneous networks comprised of IPI-3 channel oriented traffic and

IP and ATM packet/cell oriented traffic will need to be controlled. Issues
include control of frame buffer streams or IPI-3 data blocks over a network.

Research efforts are being done to understand advantages of packet switched,

circuit switched, and virtual circuit paradigms for high-speed networks.
A current issue is the rapid growth of the number of addresses needed to

10.8. COMMUNICATION SUPPORT SYSTEMS 117

support just the current network infrastructure. A future need will be to
support addressing of entities besides hosts (e.g., individual or subsets of
MPP processors, processes, etc.). The addressing requirements may require
conversion to the OSI addressing model.

A related need is for networks that can scale to higher communication
rates, and not just provide point-to-point access. As we go to lVIPP, the
aggregation of many processors communicating in parallel will mean higher
effective LAN rates than a single pipe will be able to support. The model
of local environments with higher speed communications than wide area
networks will probably continue with new technologies being needed beyond
HIPPI and fiber channel. It is anticipated that LANs will take advantage
of parallelism on a larger scale than HIPPI (which is 32 or 64 bit parallel).
The upper limit for the required speed of the LAN is probably less than
the memory bandwidth of the computers. Lower bounds may be derived
from application workload data distribution requirements, archival storage
requirements, aud local disk speeds.

A more realistic bound of the required speed of LAN networks is going to
be needed by the Grand Challenge applications. A study of this in today's
gigabit per second testbeds may be possible along with a forecast for the
TeraFLOP environments.

Application bandwidth requirements are not sufficient for designing appro-

priate LANs and WANs. Within a computer center, checkpointing will be
a very high bandwidth operation. Other sources of operating system band-
width include collecting instrumentation/performance monitoring data.

If the operating system is distributed, e.g., via multiple functional servers,
additional bandwidth requirements are imposed on the network because it
becomes the computer backplane. A distributed operating system in the
true sense of the concept will not be here within five years. Instead, we
are going to see a meta-operating system above individual local operating

systems in the HPCC time frame. The concept of a network server will be
important as the interface between the local backplane LAN and the wide
area network.

10.8.2 Data Integrity and Privacy

Standards are needed for error handling. The transmission of large amounts
of data will mean errors are even more an issue. Even very low error rates

with transmission of very large amounts of data will translate into almost
a guarantee of an error. Correction of errors without packet retransmission

118 CHAPTER i0. COMPUTING ENVIRONMENTS

will be needed for supporting networks with high latency.

One networking viewpoint is that security is the responsibility of the host
because the host is the entity that does authentication. It is indeed not a

physical transport network issue, but a network service issue in terms of joint
responsibility between the network and host (operating system, application)
communities. If "the network is the computer" then security issues span
the entire environment. This should be a base-level function of the entire

environment, not just an issue for one or another community.
The higher the level of 'security' the distributed environment has, the more

danger there is in losing functionality that users need (e.g., if we do not allow

"r" commands, we lose some functionality). The key is to figure out how
to provide the functionality in a secure way rather than simply remove the
functionality.

Kerberos seems to be the best common denominator for authentication for

the vast majority of users. Distributed environments such as Express and
PVM/hence must address security.

10.9 Heterogeneous Computing Environments

Key elements in the technology associated with heterogeneous computing en-
vironments axe programming support environments, resource management,
and resource control.

10.9.1 Programming Support Environment

Dominant elements needed for the creation of heterogeneous computing en-
vironments are the standardization on a uniform programming support en-
vironment (perhaps within four years) and the development of software re-
source management infrastructure. Current programming support systems

span multiple software levels, including entire application environments such
as provided by Express, ISIS, and PVM/Hence, languages such as Linda, and
even performance analysis tools such as IPS-2.

Standardization of the programming environment is complicated by the
competing factors of data granularity versus data locality. Data granular-
ity is a decomposition metric with the issue of whether one should restrict
fine-grained decompositions to local environments (i.e., within one machine)
or to very tightly coupled machines in the same machine room (e.g., the
communications path between an MPP and its front end is as fast as the
inter-node rates within the MPP).

10.9. HETEROGENEOUS COMPUTING ENVIRONMENTS 119

Data locality is a data distribution metric which addresses the issue of
whether a particular application will work well on distributed memory ar-
chitectures. Because the application algorithms may require a particular
data locality/data granularity pattern for efficient execution, there may be
multiple programming environments that will need to be supported.

Increasing the user friendliness of parallel computers requires the automa-
tion of parallel code creation. Similar efforts took about ten years for success-
ful automation of vectorization directives for vector supercomputers. Pro-

viding users with systems that make generation of efficient parallel codes
less painful is a harder problem and may not be completed within five years.
Possible approaches include object oriented programming or identification of
an easily parallelized subset of Fortran. Other examples arise in the graph-
ics data flow systems such as AVS/Chorus. As mentioned in the discussion
of application requirements for parallel computers, optimizing resource uti-
lization for heterogeneous computing environments may require supporting
multiple users working on problems that efficiently use a subset of the dis-
tributed resources. A closely related issue is the development of tools for
supporting a distributed environment. Tools which are appropriate for a
single computer may not be easily extended to the distributed environment.
An example is the creation of distributed debuggers.

10.9.2 Resource Management

A central component of the metacomputer will be distributed resource man-
agement. This consists of remote system status, error handling, and ac-
counting. Systems are being developed to provide support for homoge-
neous environments. Examples are DQS (Florida State), NQS Exec (trade-
mark, Cummings Group), and Condor (University of Wisconsin). Condor
checkpoints jobs when user interface activity is detected to allow "personal"
workstations to be integrated into a homogeneous metacomputer. Enhance-
ments are needed for these environments. For example, accounting should

be integrated as part of a 'metamanager' resource scheduling system. The
metamanager services would also include scheduling, resource management
(including load balancing), security, remote status, and possibly even data
collection for application workload characterization. Most software develop-
ments in this area are still basic research efforts, with some initial working
systems that are primarily coming out of universities and government labo-
ratories.

120 CHAPTER I0, COMPUTING ENVIRONMENTS

10.9.3 Resource Control

Resource control is needed to do load balancing at all levels of the computing
environment hierarchy, from parallel computers to metacomputers to meta-
centers. The operating system architecture is moving towards the concept
of distributed servers. This effectively Is the basis of the metacomputer and
the metacenter. However, the issues and problems are still being identified.
For example, how wlll distributed scheduling systems co-exist with distrib-
uted programming environments? One approach wili be to put PVM on top
of DCE (i.e., implement the application environment on top of the resource
management systems.)

In summary, the heterogeneous computing environment may be a straight-
forward extension of the parallel computing homogeneous environment.
Many of the same issues will be appropriate for both systems. For instance,
the question "Should parallel computers be treated as CPU limited resources
or as memory limited resources?" could apply equally well to the heteroge-
neous computing environment. The answer may be that the scientist does
not care about this if the turnaround is better. Perhaps the efficiency of in-
dividual distributed applications should not be so important if the resources
can be more efficiently shared. The ultimate goal of doing heterogeneous
computing is to achieve super-linear speedup of the execution of an applica-
tion. The mechanisms for doing this will be distributed between the appli-
cations, the computing environment, and the operating system kernel. An
integrated solution is needed, not only to avoid bottlenecks in performance,
but also to minimize the effort needed to create this new environment.

Chapter 11

Visualization Methods

Lew Tucher, Chair
Paul Woodward, Deputy Chair

II.I Introduction

Today the importance of visuMization is dearly recognized in scientific com-
puting. Exploration of large datuets, display of simulation results and in-
teractive steering of computation all requiresome component of data visuM-
ization. Recent advancement in musively parallel systems and the demands
of Grand Challenge problems, however, severely test the limits of today's
graphics systems. Despite many advances in VLSI and graphics processing
engines, many problems remain in scientific visualization that touch upon
almost all aspects of high performance computing. These include network-
ing, parallel programming languages, data storage, data formats, and the
use of distributed resources.

11.2 Visualization Needs

Application developers in high performance computing have before them a
wide range of options for graphics processing. TraditionM graphics systems,
however, have been developed in large part for realistic rendering and are
not Mways suitable for the display of scientific data. Systems are required
that provide flexible methods for displaying large arrays of multi-variable
information with implicit or explicit geometries.

121

122 CHAPTER 11, VISUALIZATION METHODS

Moreover,thesizesofthedatasetsproducedby today'sGrand Challenge
problemsexceedthecapabilitiesoftraditionalgraphicsprocessingplatforms.

Visualizationsystemsmust thereforebe designedto handlelargedatasets,
to scalewith increasingprocessingresource,and functioneffectivelyin a

heterogeneousenvironment.
VisuMizationneedsofapplicationscientistsfallintoseveralcategories:

• Data navigation.Very largedata setsdefymanual inspectionof

numericoutput. Visualizationcombined withnavigationallowsthe

scientisttoexplorerapidlyextremelylargedatasets.

• Presentation of results.Pictorialform isincreasinglybeing used
to communicate resultsto otherscientists,sponsors,or the general

public.

s Animation. Animationisneededto show time.varyingimagespxo-
ducedby longrunningsimulations.Videotapeproductionfacilitiesare

becomingcommonplace butimposesignificantdelaysbetweenthe"ex-
periment"and viewingof r_sults.Advancesin mass storagesystems

basedon RAID technologyofferone solutionforimmediatestorage

and playbackofimage sequences.

• Interactivesteeringof computation. Displayofintermediatere-
sultspermitsthe scientistto modify or abortcomputationsbefore

completion.In some problems,feedbackfrom the investigatormay
be requiredtosteercomputationaroundlocalminima.

• Applicationdevelopment and debugging. In thedevelopmentof

parallelapplications,visualizationisoftenthe only way to examine

thousandsof variablesor the behaviorof asynchronouslyexecuting
tasks (see Chapter 8).

• Remote access. Scientists working on high performance systems in-
creasingly use remote network-based access methods. High-speed na-
tional networks are clearly required for remote visualization of results
(see Chapter 12).

11.3 Visualization Software

Goals for the development of scientific visualization software in high perfor-
mance computing include:

11.4.DISTRIBUTED VISUALIZATION ENVIRONMENTS i23

• Ease of use. Computational scientists are experts in their own dis-
ciplines and in general do not want to spend time learning about or
programming computer graphics. Visualization software needs to be
easy to use, intuitive and flexible.

• Software reuse. Supercomputer centers typically employ staff to as.
sist in developing visualization software. This is costly and it is there-
fore desirable to obtain the highest benefit by developing software that
may be reused in a variety of applications.

• Software modularity. Modular development of software has proven
to be essential for increasing productivity in systems design. Separa-
tion of visualization modules from specific application solutions makes
systems easier to develop and maintain.

• SealabUity. High performance systems generate extremely large
datasets. Visualization systems designed for parallel machines are re-
quired if scalabUity is to be achieved.

11.4 Distributed Visualization Environments

In today's computing environment, graphics workstations provide cost-
effective solutions for visualization of scientific data. Client-server graphic
protocols such as X Windows and PEX have also emerged as standards, mak-
ing it possible to envision delivery of visualization to the scientist's desktop.

Software-ba_ed distributed visualization environments (AVS, SGI Ex-
plorer, Chorus, etc.) also are gaining popularity. Although originally de-
signed for workstation operation, the framework provided by these systems
offers a means by which distributed systems may be connected, be they
workstations or high performance computing systems.

Distributed visualization environments (DVEs) are characterized by a
user-built framework of interconnected modules representing the datafiow
for a given visualization application. Such systems support rapid proto-
typing, interactive application steering, and device independence. From the
application writer's perspective, this approach relieves the programmer from
needing a detailed understanding of graphics and offers significant software
savings through the reuse of visualization modules. Because the interfaces
between modules are well defined, modules developed at different computer
sites may be freely shared.

124 CHAPTER 11, VISUALIZATION METHODS

The dataflow network, constructed at run tin, e, supports distributed com-
puting in a heterogeneous LAN or WAN network environment of high per-

formance systems and graphics workstations. Modules themselves perform

the underlying work of data input, feature extraction, data-mapping, render-
ing, and output. DVEs hide the inherent complexities of different internal
numerical representation, byte ordering, vector/scalar/parallel visua_zation

algorithm dependencies, or seri_l/parMlel I/O constructs in a modular HPC
heterogeneous framework. Overall, DVEs give the user control over the op.
timization of heterogeneous resources and network capabilities.

Users may interactively steer simulations through adjustment of an ap-

plication's critical psrameters. Also, modification and adjustment of the
visualization process that may be performed in an interactive manner. The
same framework which facilitates the easy creation of complex visualiza-

tion applications also provides for its quick modification to include new and
different data-mapping and feature extraction functions.

The modular approach of DVEs lends its, if well to software sharing, mod-

ule reuse, extensibility and flexibility. Software sharing means that modules

created for one high performance graphics architecture can readily be ported
to another similar architecture. The reusability aspect of DVEs means that
HPC visuMization code and algorithms are modularly developed apd com-
piled once, and then reused indefinitely in a plug-and-play mode in a variety
of diverse scientific applications. The extensibility of DVE frameworks is
such that users may write their own modules in their favorite HPC language
binding.

11.5 Distributed Visualization in HPC

In summary, distributed visualization systems offer many advantages for high
performance computing in terms of software reuse and modularity. For such
systems to be effective, attention needs to be given to several key software
issues:

• High Bandwidth Parallel I/O

While the separation of visualization modules from the application
provides an intuitive mapping of processes to a distributed system, it
is not without cost. Performance of these systems on massively parallel

machines will in large part depend upon the systems' ability to transfer
quickly massive amounts of data between modules. System software is

11.6. CONCLUSION 125

needed to support high-bandwidth parallel I/O and/or shared memory

segments between processes. Protocol standards are needed to support
communication between different parallel machines.

• Common framework for workstations and high performance systems

To leverage the growing software base of modules developed for work-
stations, the frameworks provided by various distributed visualization
systems need to be extended to include the execution of remote mod-
ules on high performance machines. At run time, scientists should be
free to mix local and remote modules into a common network.

• Development of massively parallel visualization modules

Serial modules developed for workstations will not be sufficient for vi-
sualizing the large datasets of high performance machines. Modules
designed to execute on massively parallel machines need to be devel-
oped. This implies support for research and development of parallel
rendering techniques.

• Distribution and sharing of modules

To take advantage of the reusability of visualization modules, a na-
tional repository and distribution center of visualization software writ-
ten for high performance systems needs to be identified. Individual
centers should be encouraged to share their development efforts.

11.6 Conclusion

DVEs allowtheresearcherto concentrateon analysiswithoutthe need for

code editing,compilingand reruncyclesassociatedwithmore traditional

monolithicapplicationapproaches.The resultingvisualdataflowgraphof-

feredby theDVE graphicaluserinterface(GUI) providesan intuitivevisual
map of networkedremoteinformationresourceutilization.DVEs therefore

allowtheresearcherto focuson dataexploration,leavingthe detailsofdis-

tributedcomputingand graphicstosystemsoftycareand librarydevelopers.

PART III

Chapter 12

Issues and Observations

12.1 Introduction

The working groups addressed the challenge and problems of exploiting mas-
sively parallel processing systems from the perspective of their respective
disciplines. But the split into working groups was along the lines of con-
ventional disciplines and did not constitute an orthogonal set of viewpoints
across the domain of interest. Many underlying issues were dealt with by
several, if not all, of the working groups. The purpose of this chapter is to
provide a synthesis of the observations contributed by the groups concerning

the issues that dorainated the workshop. Also, we highlight important points
of disagreement about which multiple contending views were expressed. Fi-
nally, we suggest topics that did not receive much attention that raight be
considered relevant by others in the comm.unity.

12.2 Shared Goals

The goals of system software in the context of high-performance comput-
ing were uniformly embraced. Where these goals were in conflict, different
balances in trade-offs were supported by various parties. However, consen-
sus quickly emerged on the key attributes of the computing environment
that systems software should provide or enable and that can be developed
through near-term research.

127

128 CHAPTER 12. ISSUES AND OBSERVATIONS

12.2.1 Performance

The foremost objective of all work in systems software is to exploit the raw

peak performance potential of large ensembles of very high-speed micro-

processors in solving Grand Challenge end user problems. It is expected
that hardware vendors will supply the best technology available for process-

ing, interprocessor communication, file storage, and wide area networking.
System software will provide the glue, hooks, and handles to tie the pieces to-

gether into a logically consistent whole and to give user access to it. System
software will expose the performance opportunity, not consume or inhibit
useful cycles for ancillary purposes.

12.2.2 Portability

The single greatest hindrance to significant penetration of MPP technology
in scientific computing is the absence of common programming interfaces

across various parallel computing systems. The effective lifetime of a major
piece of code is cut short if the programming model and underlying execution

substrate change continually. Such variability precludes investment in large
mathematical libraries or major applications. System software is required

that bridges the gap between long term code investment and continuously

evolving systems. Further, the same programming model must reside on
diverse platforms so that the value of code development can be shared among

a broad user community. Finally, MPP systems are characterized by scale. A

given program should run on small or large configurations without rewriting,
and preferably without recompilation. All of these requirements fall into the

category of portability. A parallel program, once developed, should operate
effectively on different system types, of variable scale, over many generations.

12.2.3 Usability

If lack of portability inhibits broad acceptance of MPP technology for oper-

ational scientific computing, the complexities of marshaling its capabilities
in support of real world problems severely limits the productivity of those

who try. The combination of parallel computing elements and disparate ac-

cess latency times greatly compounds the problem of effectively matching
the demands of the problem with the resources of the system. In compar-
ison, conventional uniprocessor programming is relatively simple. It must

be the goal of system software research to harness the capabilities of MPPs

while protecting the user from its low level details. Where details must be

12.3. HPC SYSTEM STRUCTURE 129

confronted, tools must be devised to assist the programmer in rationally se-

lecting among a clear set of choices with all necessary information readily
available and conveniently presented.

12.3 HPC System Structure

While many variants are possible, a general and clear consensus existed
about the basic form that high-performance computing systems are likely to
take over the next couple of generations, including the first TeraFLOPS sys-
tems. This shared view simplified discussion of the role and nature of system
software evolution. The principal components and structural attributes are
summarized as follows:

• MPP component processors off-the-shelf from commercial fabrication
lines

• High density local memory

• Rapid messag_passing interprocessor communications

• Multiple computers of different types integrated by LANs forming com-
posite heterogeneous systems

• Very high bandwidth wide area networks interconnecting geographi-
cally separated computing centers for shared computation and uniform
national file system

• User interface via graphics workstations

12.4 Role of System Software

Within the framework of these goals and class of systems, system software
must play multiple roles. These can be grouped in two major categories:
facilitating the task of programming these complex computing systems, and
contributing to the runtime management of the resources themselves.

12.4.1 Facilitate Programming

System software, which includes programming languages and compilers as

well as debuggers and performance monitoring tools, presents a logical view

130 CHAPTER 12. ISSUES AND OBSERVATIONS

of the parallel execution system to the applications programmer. All machine

resources are acquired and manipulated through this sometimes convoluted

layer of abstraction. To the extent that the programmer controls the system,
all media of manipulation are granted by means of system software. While

there were many opinions of what exactly is the proper balance between

programmer and system responsibilities, the following were recognized as key

requirements of system software imposed by the applications programmer:

• Language includes all basic operations

• Means of representing program parallelism

• If part of the programming paradigm, direct message processing

• If part of the strategy, direct resource mapping notation

• Debugging tools for program correctness

• Performance monitoring and presentation

12.4.2 Manage Resources

Many approaches to resource management are possible, as will be discussed
in succeeding sections. The main objective is to be able to apply available
resources to pending work with minimum loss to overhead, contention, and

latency. In many instances this means that resource management is driven

directly by application program specification. In other cases, system software
is responsible for allocating processor and memory resources as a function

of runtime status and compile time analysis. While distinctions do exist

among approaches to controlling MPP resources to best support parallel
applications, the following dominant capabilities are shared by most system
architectures.

• Interprocessor communication and buffering

• Interprocess synchronization

• Program task processor assignment

• Memory hierarchy management including cache and page tables

• Task scheduling and context switching

12.5. UNCERTAINTIES CONCERNING TERAFLOPS 131

• Collaboration, coordination, and management in heterogeneous com-
puter ensembles

• Exception handling, and checkpoint/restart for robustness

• Observability of performance and correctness sensitive mechanisms

12.5 Uncertainties Concerning TeraFLOPS Re-
source Requirements/Balance

Although representatives from a number of different sectors of the compating

community participated in the workshop, it became clear that predicting the
nature of behavior and requirements of TeraFLOPS scale MPPs with any
confidence was not possible with the knowledge base available. Experience
with this class of computing system is sufficiently novel and the two to three
orders of magnitude performance ratio between the largest of today's systems
and the TeraFLOPS systems overwhelmed what little could be said concern-
ing actual scaling attributes. Of particular concern are the relative ratios of
resources. For example, how much memory will be required per processor?
What will be the ratio of computing operations to I/O operations? What
size backing store will be necessary for the resulting data sets?

The confusion regarding requirements at the TeraFLOPS scale is com-
pounded because of uncertainties of the methodologies to be used. It can
be anticipated that programming models, software environments, and hard-
ware support will alter measurably, in certain cases dramatically, over the
next few years as a consequence of the widely shared base of experience that
will accrue throughout the intervening period. Therefore, the programming
driven demands and balance between system software and hardware sup-
port may exhibit little resemblance to the relatively primitive systems and
strategies only just emerging.

12.6 Immediate Needs

It is clear that the problem definitions and system hardware are more ad-
vanced than the corresponding system software. An urgent need exists for
some basic tools to help applications and systems programmers grapple with
the immediate programming activities. While favorite hit lists may vary
among individual users, broad, even enthusiastic, agreement was evident
about the following needs.

132 CHAPTER 12. ISSUES AND OBSERVATIONS

12.6.1 Debuggers

Writing correct programs requires the means to examine program state at
any point within its execution, reconstruct the flow control sequencing (some-
times incrementing one step at a time), and relating the memory content
transitions back to source code variables and flow control. While reasonable

tools for debugging programs on uniprocessors have been available for some
time, this same capability is not generally available on vendor MPP offerings.
The problem of debugging in the context of parallel execution is aggravated
by the potential for race conditions, message send/receive mismatches, and
other concurrency-related timing errors. Contending with this form of prob-

lem is largely beyond the capabilities of almost all debugging tools. At this
stage, even the most basic debugging facilities that make available the state
of the distributed processors would be a major improvement. Without these
tools, parallel programming is difficult.

12.6.2 Performance Profiling

While correct program execution is essential for useful problem solving, al-
most as critical is the effective use of parallel resources in delivering scal-
able performance. At this stage in the evolution of MPP techniques, users
contribute significantly to the determination of resource allocation in order
to satisfy application program demands. Dealing with the complexities in-
volved requires feedback depicting the behavior of the parallel system while
executing the parallel application. The nature of this feedback needs to be
such that the programmer can recognize the sources of performance degra-
dation and can institute corrective measures. In the long term, performance
monitoring systems will have to be implemented combining hardware and
software instrumentation in conjunction with appropriate visualization sub-
systems. But before such capabilities are realized, it is at least necessary
to provide profiling tools on a per-processor basis similar to those found on
conventional uniprocessors.

12.6.3 Checkpointing

Checkpointing facilities are essential in large-scale computing. Solving a sin-
gle problem often requires more hours than one can run in a single shot, and
even mature computer systems with conventional architectures break occa.

sionally; saving intermediate results is essential. Current generation MPPs

12.6. IMMEDIATE NEEDS 133

are still experimental and suffer from problems of hardware and software re- !
liability. Checkpointing is the generally applied method of offsetting the bad
effects of crashes, etc., by preservingthe partial results of programexecution
and enabling a restart without having to initiate computing at the begin-
Ring. MPP operating system and compiler support for checkpointing/restart
are urgently required. While it may not be possible to achieve transparent
recovery, at least the means for explicit user-specified checkpointing should
be made available.

12.6.4 MPP C

While most scientific applications can be expected to be crafted using one
of many variants of Fortran, development of system software is better done
using C, which has become the de facto standard for such work, at least in
the context of Unix like environments. With the added complexities associ-
ated with parallelism in MPP structures, hooks to the additional resources
and controllers such as message-passing hardware should be easily accessible
to the systems programmer from C in the most efficient way. Near term
augmentation of C to incorporate such facilities is critical to support rapid
and reliable implementation of system programming. An MPP C needs to
be developed and at least informally standardized so that systems program-
mers can work effectively and systems source code can be easily portable
among compilers.

12.6.5 Accomplished through Incrementalism

The urgency of demand for the above tools emphasizes utility and immediacy
over sophistication and finality. Basic but trustworthy tools were universally
preferredover sophisticated but unreliable or inefficient systems. Progress in
each of these areas cannot be delayed in order to benefit from research results
downstream. Thus, a philosophy of incrementalism was adopted which en-
couraged "picking the low hanging fruit" by making frequent gradual changes
to tools to gain some benefits in the near term. This overt pragmatism from a
research community reflects the intensity of the demands for even the most
primitive tools to assist in grappling with the challenge of harnessing the
potential power of MPPs.

134 CHAPTER 12. ISSUES AND OBSERVATIONS

12.? Sharing

Key to early success in system software for HPC is sharing of results and

tools throughout the community. Scientific computing is a relatively small
part of the world's total computing budget, and parallel processing is a small
portion of even that. The resources available to address the MPP system
software problem are minuscule in comparison to the rest of the computing
market. For this reason, any investment by the research community in ad-
vanced system software development must leverage preexisting components
as much as possible _nd must be made available to as broad a community as

possible. Sharing in this context is very difficult and requires some discipline
in how software and information in genera_ are represented and distributed.
These issues were encountered repeatedly throughout the workshop and are
summarized below.

12.7.1 Interoperable

System software is an assemblage of many logicaJly interconnected compo-
nents whose true v_lue is only res]ized through their synergistic interaction
as a software system. To share system software components among separate
research STOUPS,the components must be designed in a way that makes as-
sembly reasonably straightforward without prior knowledge of the tots] sys.
tern in which they are to reside and to which they are to add functions]ity.
InteroperabiIity is that characteristic of a component software module that
ensures compatibifity with other appropriately designed software modules.
Interoperabitity is an evolving software engineering discipline incorporating
ideas from functions] programming, object oriented programming, and plug-
a_d.play methodologies. True robust, mindless interoperability is probably
beyond the capability of current techniques. However, if intent for seam-
less interface is part of adapted software design style, ease of integration
will be greatly enhanced, facilitating software sharing. Of utmost impor-
tance is that portability, one of the three critics] attributes of HPC software
environments, relies on effective interoperabUity techniques.

12.7.2 Standards

l_epeatedly throughout the workshop, areas were identified where standard-
ization was deemed essential. Interoperability of independently developed
experiments] software modules is greatly facilitated where interface stan-

12.7. SHARING 135

dards have been devised and adhered to. Standardization at a/l levels of

user interaction with system software enhances the utility and extends the
lifetime and value of software investment. It shortens the design cycle be-

cause target I/O and interface formats are then already thought out and
guaranteed to correctly support logical data transport. A number of op-
portunities were cited for which the adoption of standards would greatly
enhance sharing _d development of software. These opportunities included
message-passing constructs, compound data formats, data parallel language
syntax, distributed file system protocols, and support libraries. Together,
such standards provide an infrastructure that establishes the means by which
software can be written to be shared and, of more immediate value, borrowedr

to reduce development time to operation.

12.7.3 Libraries

Conventionally, libraries have been used to archive large, important, and
widely applicable software packages such as scientific mathematical routines.
More recently, libraries have been well.defined substructures of a system hier-
archy which defines much of the functionality of a computing environment.
With the advent of MPP systems, many of the highly valued libraries no
longer are germane because they either can not serve the needs of the multi-
ple processor system structure or (more usuaJly) they can not take advantage
of the class of parallelism offered by MPPs to achieve may,imum performance
for their respective functions. If MPPs are to become truly as useful to the
scientific community as conventional supercomputers have been, then the
important libraries upon which much of the scientific computing community
has come to rely must be replaced with identically functional libraries de-
signed to exploit the new capabilities of MPPs. But, in assuming a parallel
execution model, many subtle algorithmic considerations arise, not only for
performance through concurrent flow control but with regards to determi-
nacy and correctness as well.

12.7.4 Templates

The need for collections of usable software modules for scientific computing
and system management is immediate and can not possibly be met with the
limited available resources in the near future. An aggravating problem is
the number of different host parallel systems and system environments for
which such software is required. A possible compromise, advocated by some

136 CHAPTER 12. ISSUES AND OBSERVATIONS

workshop participants, is the heavy use of templates. A template, in this
instance, is a description of a general algorithm rather than the executable
object code or source code more routinely found in conventional libraries.
In a template, many of the system dependent details can be supplied by the
end user, configuring it for the specific system upon which it is intended
to run. Templates exhibit two significant properties, First, templates are

general; they can le_d to ports to diverse machines. Second, they allow
for anonymous collaboration. The expert algorithmist creates a template
reflecting in-depth knowledge of a specific numerical technique or, in the case

of & functional driver, the component (]oglcal or physical) to be managed.
The user of a template then provides the value added capability to the
general template description that customizes it for the specific context or
environment needed. Templates are not language specific and will no doubt
be captured in some algol-like pseudo code {perhaps not even rigorously
formalized) that is readily translatable into the target high level language. It
was thought that for practical use, an example of one template instantiation
into a real world language and a test suite should also be provided.

12.7.8 Software Exchange

Beyond constructing software to be reusable, means are needed to dissem-
inate both the code and knowledge of the existence of the code. A sim-
ple and uniform method of accessing such data from widely disparate sites
would greatly facillt_te the evolution of MPP application and system soft-
ware. Such a system is being developed, incorporating many data bases
around the world and providing uniform interface to software library repos-
itories with differing requirements. The IIPCC National Software Exchange
combined with an on-going software exchange experiment is to determine
the viabUity and utihty of such a global software system.

12.7.6 Source Codes

When dealing with diverse systems and research software, many subtle inter-
actions with unforeseen consequences may occur, often to bad effect. Track-
ing down the exact nature of the cause can be difficult, even with all of the
information available. Without source code for all constituent elements of

the software environment, it is frequently impossible. If, as was the general
consensus, sharing of experimental software will be an essential element of
successful HPC system evolution, then two aspects of this context demand

12.8.RESOURCE ALLOCATION AND MANAGEMENT 137

that availability of source code be mandatory. First, experimental code,
by its very nature, will be capable of unanticipated behavior under circum-
stances other than those explicitly imposed by the originators. Only access
to the source code can provide the means for active users to ascertain the
cause of a problem and exact a fix, recompiting and linking prior to new
runs.

Even if no bug is experienced, recompUation may often be necessary be-
cause of the peculiar nature of a particul,_r experimental parallel system
which may, in part, be reflected by the local compiler. The second aspect
of shared experimental software is that documentation is rarely provided
in sui_cient detail, or correctness, to provide all necessary information to
system software integrators. The source code becomes the documentation
and is therefore essential for the code to be useful outside the environment

in which it was originally developed. With source code, experimenters are
much more likely to be willing to take a chance and, therefore, the work of
a few may have a positive impact on many. An added advantage is that
with source code, an experimental software package may be extended by
others, enriching its capability and robustness beyond that provided by the
originators.

12.7.7 Test Suites

In any experimental environment, few things are stable. Yet a given problem
should return the same results (if deterministic and driven by the same
input stream) even as the underlying computing system is permuted. For
shared software modules and tools, contributors should include test suites
of input data sets and corresponding result data against which execution on
experimental systems can be tested and verified. While it is naive to think
that any suite or set of suites will be capable of finding all possible kinds of
errors, the most likely and egregious errors caused by system software faults
will be detectable through this means. Without it, even the most simple
and obvious mistakes could go undiscovered for some time, confusing other
observations and possibly corrupting other software components.

12.8 Resource Allocationand Management

EffectiveperformancewithintheHPC arenaisachievedthroughapplication
program parallelism,hardwarespeed,and optimalmapping of computing

138 CHAPTER 12, ISSUES AND OBSERVATIONS

requirements to physical resources. Allocation of resources to program de-
mands is a major component of the challenge of realizing the full potential

of these experimental systems. System software, much yet to be developed,
is the principal means of managing the parallel computing resources of MPP
systems. Indeed, how the end-user perceives these systems is largely a con.

sequence of how they are presented to the user by the intervening system
software. Currently, because the user must be so intimately involved in every

aspect of resource allocation decision-making, the machines are viewed as
truly distributed ensembles of separate computers and networks. This con.
truts markedly from a users perspective of a conventional uniprocessor in
which ahnost no resource related decisions are required and attention can
be given exclusively to efficiency of code itself. To close the gap between
these two viewpoints (making MPP systems more application friendly), is-

sues concerning the nature of the virtual machine that should be reflected
by the systems software received much attention throughout the workshop.
The recurring issues are highlighted below.

12.8.1 Shared Address Space

Direct access to programs and data on a distributed memory computer is
av_able only locally to the node upon which the access request originates.
Access to data on remote nodes is acquired through the explicit intervention
of service routines executed on both processors coordinated via interproces-
sor messages conveying the request at a higher level protocol. The most basic
system support relies on programmer specification of all such transactions.
The environment presented to the programmer, therefore, is truly that of a
multiple computer system. Conceptually, the variable and control state of
a user's application makes up a single name space that is independent of its
assignment to an MPPs distributed resources.

For reasons of programmability, scalability, and portability a global ref.
erence space should be presented at least at the source code level. This is
often referred to as a "shared address space" but should not be confused
with only those specific systems using snooping bus based cache coherency
schemes. Message-passing mechanisms can be employed in systems that
support global reference space semantics. Indeed, for MPPs this is probably
essential for limiting communicatiol_ contention through split transactions.
However, the programming model presented is not that of message passing
semantics. It is still important to understand the physical distribution of the
objects and their relationship to tasks applied to them. This is necessary for

i i I I[1|

12.8. RESOURCE ALLOCATION AND MANAGEMENT 139

latency reduction through locality exploitation and register data passing in
lieu of message packet transfers.

12.8.2 Role of Program, Compiler, Runtime, O/S

Once, the operating system was assumed to perform all resource manage-
ment and allocation responsibilities within a computing system. With the

advent of MPP system architecture, efficient exploitation of parallelism re-
quires a readjustment of responsibilities among the programmer, compiler,

operating system, computing environment, and runtime system. There are
two reasons for this. The operating system mechanisms have to be fully

general so they may support all conceivable needs of any program being exe-

cuted by the system. For this reason, the mechanisms are often cumbersome.
This is exacerbated by the need to trap to the kernel for each service call,

performing a context switch in the process. The resulting large overheads

make it inefficient to use any but the coarsest grain tasks, thus limiting the
amount of parallelism available and consequent potential scalability.

The operating system should support program execution but stay out of
the way of task scheduling and synchronization. These can best be performed

by the compiler when sufficient knowledge is available at load time, or by a
runtime system if dynamic mechanisms are necessary. Access to the runtime

system is simply a compiler managed subroutine call. Runtime mechanisms

are generally light weight and are chosen for the particular job they are to
do within an application. Indeed, runtime library modules can be compiled

with the application source code in some cases to provide the benefit of user
program knowledge in compiler optimization and runtime servicing. It would

be excellent if the compiler could solve the dusty-deck problem, detecting all

parallelism, resolving all dependencies, and precluding all conflicts and race
conditions. In many cases, the compiler can do much of this. However, at

least currently, parallelism must be considered as part of program structure
and the means of representing parallelism must be part of the semantic
constructs of the programming formalism employed by the user. What is

less clear is to what degree the programmer must also intervene in making
explicit resource management decisions. This is discussed in more detail in
the next section.

While the role of the operating system may be diminished in controlling
some of the details of application program execution, its responsibilities will

become more important in managing the distributed file name space and
supporting heterogeneous computer system processing. MPP computers find

140 CHAPTER 12. ISSUES AND OBSERVATIONS

themselves in a rapidly expanding distributed file system that will shortly
evolve into a National File System, i.e., a large hierarchical uniform file

name space such as CMU's Andrew experiment. Operating systems will

directly access and cache files from around the country in real time as well
as supply local file access support to other remote facilities. When more

than one computer is applied to the execution of a single program, the

operating systems of all computers involved have to automatically integrate
their logical functionality, reserve appropriate capacity on each system, and

coordinate the program flow control. These requirements exist right now
when integrating a graphics workstation with an HPC compute server.

12.8.3 Philosophy of Efficiency vs. Ease of Use

At one time, programmers explicitly managed data placement and movement
in registers, main memory, and on disks (and drums). The advent of vir-

tual memory, automatic cache management mechanisms, and sophisticated
. optimizing compilers largely eliminated the need for direct programmer su-

pervision. This is not to say that a programmer can be totally ignorant of

the implications of program structure on storage facility usage. But at a

sacrifice of some performance, the memory system hierarchy can be largely

transparent. The occasional cache and disk thrashing can usually be avoided
through some care. With MPPs, memory access times experience a broad

range of latencies as well as latency variance. The question of relative degree
of transparency of memory and processor supervision by the programmer

must again be addressed.
Programming MPPs is greatly complicated by the presence of multiple

resources and the need to coordinate them. If such issues could be ignored
by the programmer, the difference in ease of use would be dramatic. But

wisdom drawn from experience indicates that the degradation in efficiency

and performance also would be dramatic should such issues be ignored. The
other extreme is full programmer specification of the mapping of program

activities and data blocks to system processors and memory blocks, including

explicit control of message passing and synchronization. Scientists seeking
the fastest available systems have little sympathy with sacrificing perfor-
mance for almost any reason. Yet, to the extent possible, software tools and

analyzers must remove much of the burden of the programmer performing
tasks that had conventionally been done by operating systems. Some associ-

ated performance degradation is likely. Therefore, programmer hooks must
always be available to override control decisions when user intervention can

12.9. ROBUSTNESS 141

significantly enhance effective performance.

12.8.4 Synchronization and Scheduling

Except for the most complicated systems codes, uniprocessor application
programs rarely are required to consider issues of synchronization and sched-

uling. Parallel processing brings these operations to the forefront of program-

mer consideration. Both synchronization and scheduling relate to the time
ordering of concurrent program activities on multiple computing resources.
A difference between the two is that synchronization is more closely asso-

ciated with program flow control semantics and manipulated by the pro-

grammer whereas scheduling may be done entirely by the compiler, runtime
system, or operating system. Synchronization relates the interdependencies

of the program tasks and scheduling associates pending tasks with available
resources. Scheduling also may take into consideration the logical locality of

tasks and data sets. Thus, although not explicitly part of the program se-

mantics, this implicit information may be necessary for effective scheduling
and efficient resource management. Currently, spatial scheduling is usually

done explicitly, often through program annotation of data partitioning. But
as compilers become smarter and more closely tied to the runtime system,

these responsibilities may become transparent to the programmer.

12.9 Robustness

Reliability takes on many facets in the exploitation of the potential of MPP
systems. Hardware transient errors, system software errors, subtle user pro-
gram stimulated timing or coordination errors, and even administrative er-

rors all contribute to reduction of effectiveness of these systems in solving
large end-user problems. Because of the complexities and experimental na-

ture of these systems, reliability is more fragile than users have come to
expect from their computing support environments. Yet, due to the relative
scale of the problems being attempted and the difficulty in crafting an ap-
plication problem on these systems, the relative impacts of failure and cost
of recovery are substantially larger. In the near term, more robust systems
will be realized through advances in system software that both reduce the
likelihood of catastrophic error and ease the recovery cycle. Central to en-

hanced effectiveness is improved software (and possibly hardware) support
for checkpointing.

142 CHAPTER 12. ISSUES AND OBSERVATIONS

12.10 Monitoring System Behavior

Among the hottest topics at the workshop was the need for many forms
of feedback from the system to the user to help in building correct and
effective programs on MPPs. Those discussed extensively were debugging
and performance monitoring support. Debugging parallel programs takes

on a complexity beyond that experienced in a uniprocessor environment.
Not only are there many processors independently capable of error, but the
temporal dependencies among processors can invoke subtle and insidious

bugs. While it is necessary for previous debugging facilities to be ported to
these new systems, new kinds of debugging tools need to be developed to
detect and isolate timing race conditions and message send-receive conflicts,
as well as other timing-related difficulties.

Even correct programs may behave poorly due to ineffective program map-
ping. It is essential that parallel systems provide the means by which pro-
grammers may observe the program behavior to determine the sources of
performance degradation. Such tools are not so easily devised. Software
tools are intrusive and under certain conditions can grossly alter the execu-
tion flow of a program and at a minimum will change the timing somewhat.
Hardware support tor performance monitoring may be essential but is not
easy to come by. Fortunately, there is a trend by vendors towards supply-
ing some hardware hooks for collecting statistics on performance. This is
particularly important when there is no software-accessible measurement of
an important parameter like bus contention which falls below the semantic
horizon of software obserwbility.

12.11 R&D Priorities and Responsibilities
(FundingPolicies)

Much considerationwasgiventotheproblemofapplyinglimitedresourcesto

achievingthesystemscapabilitiesneededtomake HPC technologyroutinely

applicableto scientificproblems.Many practicalconcernswererecognized,
especiallythoserelatedtothesharingofexperimentalsoftware.In spiteof
the bestintents,earlyexperimentalsoftwareisinfrequentlyina form that

can be usedby otherthan theoriginatingindividualor group.The codeis

notrobust,doesnotencompassthegeneralcases,and has inadequatedocu-
mentation.Yet,itisfromthesesourcesthatthegroundbreakingworkoften
comes.Itisrecommended thatfundingagencies,academicinstitutions,and

I I

12.11. R&D PRIORITIES AND RESPONSIBILITIES 143

SOFTWARE TECHNOLOGY DEVELOPMENT

INFRASTRUCTURE

ID

,,. PRODUCTS
D,

-- _ X $.10 cost , ,

BASIC TECHNOLOGY COMMERCIAL
RF.SEARCH DEVELOPMENT DEVELOPMENT

I Pn°T°T', I IDEVELOI'MENTI
I PIRO_rOTyPE,I
I EVALUATIONI

EVALUATION J I WrrH I

FEEDBACK AT ALL STAGES

industrialvendorscollaboratetofacilitatea processby whichresearchcodes

may eventuallyfindwide use inthecommercialcomputingcommunity. A

three-stageprocessisrecommended;the abovefiguredepictsthestrategy.
Smallresearchgrantswould be provided,as iscurrentlythecase,to many

researcherstotryout new ideas.An evaJuationprocesswould selecta small

percentageofthese.For thosechosen,additionalfundswould be provided
fordevelopmentof prototypeversionsof the experimentalcodes. These

prototypeswould be usedby friendlyteamsto shakeout theideasand im-

plementation.Aftersufficientexperiencehas beenattmned,a smallnumber
of thosemay be selectedforcommercialization,agmn sponsoredat leastin

partby fundingagencies.These finalproductswould thenbe availableto
allusersofMPP technology.

144 CHAPTER 12. ISSUES AND OBSERVATIONS

12.12 Points at Issue

Any conference dedicated to exposing the opportunities and challenges of an

exciting new technology will be permeated with differing views, sometimes

enriching understanding, and other times simply exposing (through conflict)
collective confusion. Rather than obscure these differences, we take this op-

portunity to convey them for the sake of fidelity in capturing the experience
of this workshop. Below are some, but by no means all, of the issues and

positions that spawned debate and that will ultimately have to be resolved

if MPPs are to replace prosaic supercomputing architecture in advancing
computational performance.

12.12.1 Who Dictates Requirements

For these experimental machines, it is far from clear from whom the system

specifications are derived. In certain well behaved cases, the application pro-

grammers can predict how extant codes will scale on future larger systems;
however, in many instances program scaling into new performance regimes
is simply unexplored territory. Vendors are constrained by the capabilities

of their present device technology and processor architectures. So they must

operate within a narrow window of implementation feasibility. Parallel pro-

gramming and execution models are still evolving and it is not apparent
which ones should ultimately achieve direct architecture support. Finally,

• even if added functionality can be provided, the cost in performance may be
unacceptable to the application community. A healthy tension exists that

will probably endure throughout the evolution of HPC systems.

12.12.2 Programming Model and Languages

Great uncertainty exists regarding the user interface to parallel systems. The
parallel programming model and its representation as a computer language

is complicated by at best modest underlying resource management systems

software. Programmers are often driven to a hands-on approach; sometimes
resorting to as,,_embly level programming. This inhibits portability and ex-
tends software development time while severely limiting its utility lifetime.

While Fortran derivatives appear to be the syntax of choice among the sci-
ence community, embellishments are slow to come and tools are required now

to harness MPP potential. Even with message passing or data parallel forms
of Fortran, the user is limited to a constrained, albeit useful, parallel pro-

12.12. POINTS AT ISSUE 145

gramming model and must consider the physical distribution of the program
subcomponents. At the other extreme are parallel programming languages

that explicitly reveal the program's parallelism, but do not demand user in-

tervention in resource management. While this allows an HPC to be treated

as a single entity, it distances the programmer from the means of control
that might be essential in optimizing performance. A built-in conservatism

prevails because of the investment required to realize a new programming
environment and the low probability that it will be widely embraced by the

user community; the learning curve being a sometimes impassable obstacle.
To paraphrase an unfortunate statement of a recent senior political leader:

we want the status quo to remain just as it is.

12.12.8 When to Address Heterogeneous Processing

The question of how the heterogeneous processing problem should be ad-

dressed from a systems software perspective was one of considerable debate.
On the one hand, it was felt that the homogeneous processing problem was
still unsolved, was tough enough, and that heterogeneous processing would

require even more effort. To focus resources on the heterogeneous issue

would be to dilute the more valuable effort on homogeneous computing.
However, a strong contrary opinion was voiced as well. It was pointed out

that the heterogeneous system issue is integral to even current networked
computing environments. MPPs and high-speed vector machines are served

by large distributed file servers and are controlled from graphic workstations
with visu',Aization requirements. These distinct systems need to operate as

a synergistic ensemble, working together on a single user problem. Without
proper direction and coordination, any one could become a severe bottleneck,

degrading ghe performance potential of the others.
Part of the discussion revolved around the level of seamlessness or trans-

parency afforded by the system software supervising heterogeneous re-

sources. One camp felt it necessary for the programmer to be protected
from the possible complexities of such systems and that this capability was

unlikely to emerge in the near term. The alternate view was that the het-

erogeneous structure should be exposed to the user, but through an object
oriented model which describes the coarse structure of an application in
terms of separate execution environments that form client-server relation-

ships and support each other's needs. Such a program organization, it is

imagined, would permit a plug-and-play programming approach that would
readily map onto elements of a heterogeneous system. Between these too

146 CHAPTER 12. ISSUES AND OBSERVATIONS

viewswerenumerous compromisesthattendedtoseeka balance.

12.12.4 Degree of Current Successes

Therewas evensome debateabouthow good/notgood thingsareatthecur-
renttime.This was spawned by thewidelydistributed(intellectually)and

sparsenatureofthecollectiveexperiencebase.Over thelastdecade,many
differentparallelprogramming models and systems,resourcemanagement

and allocationstrategies,and performancevs. programmabilitytrade-off
philosophieshave been pursuedthroughouttheacademic,industrial,and

governmentcommunities.The dilemma of how much has been achieved

versushow much thereisyetto achieveisakinto thehalffull/halfempty
bottleargument. Many experimentalprogramming systemsappliedto a

spaceofapplicationson one (orsometimesa few)machineshaveshown real
potential.Many more models,languages,and evenarchitectureshavebeen

proposed.The questionwould oftenbe castas,what a usercan gettoday

on a specific system to make his programming easier and more effective? it
was recognized that select experimental systems must be commercialized if
their potential benefits axe to be embraced by the user community.

12.12.5 Role of Architecture

Surprisingly, as indicated in an early section, there was a basic expectation
of the class of system that was the target for HPC system software. Yet,
it was understood that many of the costs in managing computation with
the current architectures severely limited the freedom for adjusting resource
allocation to program demands on the fly. Overheads for communication and

" synchronization as well as data migration and coherency can easily become
unacceptable on MPP architectures. More prosaically, bandwidth for I/O

to external networks, distributed file systems, and graphics workstations is
anticipated to be insufficient for many applications. Therefore, it is also
recognized that new architectures at the processor and system level will be
needed to provide more efficient mechanisms in support of advanced semantic
policies of flow control and resource management.

Even if the opportunity to devise a new architecture existed, a financially
daunting prospect, there is no consensus as to what capabilities it should
embody. The same uncertainties that confront system software are equally
germane to decisions about parallel architecture. There is even a school of

thought from the RISC philosophy that says that all but the most basic

I

12.12. POINTS AT ISSUE 147

and widelyusedmechanismsshouldbe insoftware:minimizingthecostof

hardware,making possibletheshortestcycletimes,and givingthecompiler

completecontrolat the microcyclelevel.But, with the realizationthat
cachesarebecominga significantportionofthesystemtotalcost,theidea

ofcheapprocessorsmay benon-viable.What was notadequatelydiscussedis

how theexperiencebasefromdevelopingapplicationand systemsoftwarefor
MPPs shouldbe appliedto theprocessorand systemvendorstoencourage

architecturechanges.Itwas consideredby some thatthiswas outsidethe

scopeofthe workshop;othersthoughtitrelevant.

12.12.6 What are Reasonable Costs/Hits for Capabilities

The trade-offspacebetweenperformanceon the one hand and portability

and programmabilityon theotherisperceivedby many to be wide. How
much one iswillingto tradeforusabilityin termsof performancevaries

significantlyamong usersand applicationrequirements.One groupasserted
that 10% performancedegradationoversome imaginedbestperformance
would be unacceptableevenforrealimprovementsinprogrammingenviron-

ment. Othersrecognizedthatthetimetodebugand optimizean application

was important,especiallyforexperimentalcodesthathaveshortlifetimes.
Ifan orderofmagnitudeimprovementincodewritingorportingtimecould

be achievedthroughhighlevelprogramming tools,some would gladlyac-
cepta factorof two performancereduction.What many would likeisthe

opportunityto make thatdecisionon a per casebasis,optimizingcritical
code,but havingtheopportunityto getrealcode up and runningquickly

ifitisdesirable.This isprobablyan importantgoalforsystem software

development.

12.12.7 Will Templates Really Work?

Recognizingboth theneed and difficultyofsoftwaresharingtoenhancethe
rateatwhich thesesystemsbecome usefultoa broadspectrumofproblems,

more thanonce group suggestedtemplatesas an intermediateform foral-
gorithmexchange.There isa questionabout thelikelysavingsoftime or

usefulgeneralityof the approach.It has been observedthata template,
when offeredtothecommunity,shouldbe accompaniedby thesourcecode

of at least one actual instantiation of the template into a working program
and a test suite of input/output data to verify correct ports. Whether this

saves time or costs time is a question. From the writer's point of view, clearly

I •

148 CHAPTER 12. ISSUES AND OBSERVATIONS

on top of the added effort of writing a working program, a carefully crafted
abstraction of that program needs to be formulated at the same time. But
it is not clear how much time would be saved by the user in conducting the

port. For a template to have generality, it must be largely machine indepen-
dent. But most of the work in achieving best performance for an application
comes from making the detailed machine dependent decisions. A question
arises as to how far the implications of a machine's structure and execution
model must affect the algorithm in order for efficiency to be achieved. If it is
too high, templates could become inconsequential. And yet, a programmer
must start somewhere in the search for algorithms. The merit of program

templates is still an open and important question.

12.12.8 Value of the Workshop and this Report

As a meta-comment, there were differing opinions about the degree of success
of the workshop and the long term value of this report to the community. It
was clear by the end of the workshop that there was much more to be done
and that the workshop had at most scratched the surface. Some felt that
the focus was too narrow, excluding important areas of concern or major
alternatives to the specific system types being considered. Others felt that
the focus was too broad, permitting insufficient depth in any single area.
There were concerns that the list of invited attendees was biased toward

certain viewpoints. Others felt that there were too many participants as
it was and that fewer people, not more viewpoints, would have improved
substantive interaction. And there was disappointment that a final answer
had not emerged from this major collaborative enterprise. What really hap-
pened, of course, was that the goals of the workshop were satisfied and that
the workshop was a success. Its intent was to bring together many experts
across the wide array of related fields to consider the issues confronting ef-
fective use of massively parallel processing from the standpoint of software
technology. The workshop was to identify research directions and set prior-

ities. All of these things were accomplished. If some came away daunted by
the task ahead, and disappointed that the workshop had not caused those
challenges to be dissipated, then that too was an important outcome of the
workshop and a contribution to the community. By the end, we learned
that the need is real, the challenge is real, and this workshop had been an
important beginning.

Chapter 13

Conclusions and

Implicationsto HPC

13.1 Introduction

The PasadenaHPCC SystemsSoftwareWorkshop provedto be an impor-

tantand timelymeeting.The radicalchangeofsupercomputerarchitecture
from vectorcomputingto massivelyparallelprocessingdemands an equally

fundamentalchangeinprogrammingmethods and environments.Both the
immediateneedsof pathflndingcomputationalscientistsand the ultimate

long term goalsfora fullyintegrateddistributedcomputingenvironment
wereexaminedindetailfrom diverseperspectivesoverthethreeday period.

Approach,requirements,feasibility,and resourceswere consideredin de-
lineatingtheopportunitiesand challengesforsystemsoftwareresearchand

developmentinthehigh-performancecomputingarena.The largenumber of

highcalibreparticipantsguaranteedthattheresultsofthisworkshopwould
be a criticaland accurateappraisalofthe__rrentstateofsystemsoftware

technologyformassivelyparallelprocessing.The conclusionsemergingfrom

thisintenseexchangeof ideasand experienceswere both stimulatingand
sobering.Stimulat'ngbecausetheyrevealedthemany possibilitiesopening

up forthe highpe _'ormancecomputingcommunity;soberingbecausethey
exposedthedauntingdii_cultiesthatmust be overcomeand thesubstantial

investmentofresourcesand timerequiredtoattainthefullpromiseofthese
systems.

A widelyembraced longterm HPC goalisto:

Bring MPP system technologyto a stateof applicabilityand

149

150 CHAPTER 13. CONCLUSIONS AND IMPLICATIONS TO HPC

ease.of.use comparable to that of conventional contemporary
computers while attaining sustained TeraFLOPS performance.

Recognizing the current dls_arity between hardware capacity and software
capability, an immediate implication of the workshop sentiment is that a

second short term goal must be aj_gressively encouraged as well, to:

Provide immediate practical means for application of MPP ca-
pability to Grand Challenge problems.

The philosophy that emerged from the workshop was that synergism

among system components and among professional organizations is crucial
to success in _hieving these goals. The complexity of current and future
MPP systems demands that the knowledge and investment dedicated to
implementing any part should be accessible to all developers and users. Co- i
ordination of ll_D in system software and software tools is considered the
only viable means of _hteving the critical mass of talent and resources to
address key problems in an acceptable time frame. Much thought was given
to the tactics of capability integration, from the requirements for software

tools interoperabiUty to the mechanisms for collegial result sharing. The
important pragmatic issues of funding, commercialization, application de-
m_ads, and architecture limitations were considered throughout the work-
shop deliberations with particular emphasis on their influence on methods
for _chieving near term objectives. Underlying the urgency of the discussions

was the prevalent dissatisfaction with the available tools for application pro.
gramming on MPP systems. A second element of the adopted philosophy
was referred to as gra_iualism or incrementalism, i.e., the small changes to
existing tools that would produce near term useful res.ults.

13.2 Summary of Key Findings

Major conclusions of the workshop axe summarized here to highlight the
issues that must be resolved to ensure the success of the HPCC Program.
Their implications for potential follow.on actions are then discussed. These
findings are presented in terms of the elements missing from, but required
for, a fully effective programming sad execution MPP environment. This
summary is intended to provide the basis for prioritizing needs and specifying
actions.

1. Today's MPPs have inadequate programming models for representing
application par_llelism and locality.

13.3. STRATEGY 151

2. There is insufficient understanding of resource balance required for
applications/systems at TeraFLOPS-scaJe processing. Also, the work-
shop had insufficient representation from the application community
to provide a broad base of application experience.

3. Mathematical software libraries are largely unawilable for new com-
puting systems.

4. Current MPPs provide limited user access to system state and behavior
for debugging and performance optimization.

5. Disparate user interfaces and execution models across systems hinder
portability.

6. Concerns about hardware/software reliability necessitate check.
point/restart and exception handling.

7. Dynamic resource management/task allocation is usually left to the
programmer; it should be achieved by integration of the user program,
compiler, and runtime system.

8. Seamless heterogeneous para/lel processing is measurably more difficult
than managing ensembles of uniform processors. But heterogeneous
systems are essentiaJ and techniques at least for overt explicit control
are required in the immediato future.

9. I/0 and file handling capability development are not keeping pace with
processor performance evolution.

13.3 Strategy

A broad strategy encompassing the resources and shared goals of indus-
try, academia, and government is required to address the needs exposed by
the above findings in order to ensure success of HPCC. These needs arise
largely due to the inability of vendors in the MPP arena to play the role
conventionally attributed to computer companies. Specifically, computer
manufacturers of production grade systems have provided complete resource
management and programming environments for their customer base. But
]vIPP vendors are delivering experimental systems with minimal environ-
ments because it is not clear what kind of software support is required or
feasible to implement. Thus, the vendors require guidance from the users and

152 CHAPTER 13. CONCLUSIONS AND IMPLICATIONS TO HPC

thecomputerscienceresearchcommunity whiletheusersrequirethelargest

possiblesystemsto achieveresearchbreakthroughs.This veryhealthysyn-
ergismwillcontributetoa rapidadvanceofHPC technology(this"friendly

buyer"approachbetweenthegovernmentHPC community and thevendors
has considerablehistoricalprecedentsand has been effective).But itre-

quires unprecedented cooperation among MI elements of the community. To

paraphrase the sentiment of the workshop, now and in the foreseeable future,
"business as usual" is synonymous with "going out of business". The follow.

ing points make up the major tenets of an evolving strategy of cooperation
that many consider to be the path to TeraFLOPS computing.

• Stimulate commercial delivery and support of all necessary system
hardware and software components comprising complete MPP com-
puting environments.

• Encourage active community dialogue to define technical challenges, '
identify approaches, and share results. Cross disciplinary efforts will
be required to produce the necessary integrated environments.

• Foster coordinated multi-agency support for research and advanced
development in areas of importance to shared goals.

• Researchfundingstrategyshouldincludemany smallresearchprojects,
a number ofadvanceddevelopmentprojects,and a fewcommercializa-
tionefforts.

• Establishcriteriaand methods forevaluatingintermediateand end

resultsoftheprogram aswellasmeans forfeedbackofassessmentsto
researchand manufacturercommunities.

At the heartofthisstrategyissharing:sharedgoals,sharedresources,

sharedresults.Implicitisloosecoordinationand cooperationacrossthe
community evenasindividualorganizationsquiterightlyfocuson theirown
selfinterest.Inthescenariomost likelytoyieldpositiveresults,eachorgani-

zationemphasizesthoseaspectsofthetotalproblemappropriatetoitsown
missionand sharestheresultswithothers.Redundancy canbe wasteful--or

itcan be useful.Organizationsshouldbe preparedto leveragethe work of
othersratherthanbuildingtheirown, despitethepernicious"Not Invented

Here" syndrome. Beyond that,the community as a whole must discover
where thereisno coverage,and fundingagenciesshouldencourageappro-

priateentitiestofillthesegaps.

13.4. IMPLICATIONS FOR APPLICATIONS 153

13.4 Implications for Applications

As much value as the Applications Working Group rendered to the quality of

the workshop results, it is clear that more understanding of the requirements

of applications on MPPs is necessary. Without this understanding, there is

little certainty that near term software development efforts are adequately
addressing the most important needs. An insidious trap occurs in a context
such as this. We want to know how systems should evolve to support the

needs of applications. We run experiments on current systems, imperfect as

they may be. We select application problems that are suitable for execu-
tion on these existing machines and we collect measurements. What do we
learn from this process? We usually learn how to build the same kind of
machine we already have. Perhaps this scenario is slightly simplistic. But,

the programs we are running tend to be those reasonably well suited for the
current systems. One dimension of the problem is that the shape and form

of applications studied need to be extended to encompass a broader class of
problems.

Applications scaling problems are not well understood. As larger systems
approaching TeraFLOPS capacity are realized using many more increasingly
powerful processors, it is not understood how the relative balance of resources

will change to best service these new scale problems. It is thought that larger
machines will host larger versions of current problems. But, subtle scaling

factors can introduce unexpected and undesirable performance degradation.
The I/O requirements and secondary storage demands may scale linearly,

much less, or much more; it's not currently known which. The critical path
time of problems that are expanded in scale may increase. Increased memory

latency on larger systems may alter cache behavior. With potentially larger
address space, Translation Lookaside Buffers for virtual-to-physical address

translation may experience more frequent flushing.

Because of the costs of task and data migration on current distributed
memory MPPs, most application experience is with statically mapped and

scheduled programs. If, however, program demand is data dependent and
time varying runtime scheduling decisions may be necessary, perhaps on

a continuing basis. The overhead requirements of such problems are not
understood due to the limited hands-on experience with them. Yet, they

may constitute an ever increasing portion of the total application program
demand. The tradeoff between runtime load balancing and the inefficiencies
load balancing may introduce is subtle and requires much more study.

The Applications Working Group concluded that optional system capabili-

154 CHAPTER 13. CONCLUSIONS AND IMPLICATIONS TO HPC

ties need to be offered to the applications programmers with some indication

of the performance cost likely to be incurred by their use. This conclusion
reflects the nature of the current approach to application programming. His-

torically, applications programmers will do whatever is necessary to get the

program running: dealing with all levels of system complexity if need be,
even with the most primitive support tools. This approach will not serve the

general community in the MPP regime. Even the biggest problems should
be reasonably straightforward in their formulation for HPC system execu-
tion. It is incumbent upon the applications community to better articulate

their requirements for programming environments and resource management

so tha_ systems designers can target the most critical needs in the immedi-
ate future. Where there are uncertainties due to lack of data, experiments
should be formulated and sponsored for the express purpose of determining
future resource demands.

Despite early hopes for automatic parallelizing compilers, programmer in-

dependent delineation and management of program parallelism is unlikely
to be generally viable in the near future, at least with regards to execution

on the current generation MPPs. Many important codes need rewriting, in-
cluding those comprising heavily subscribed mathematical software libraries.

This is not just because parallelism intrinsic to applications programs needs
to be exposed, but also because alternate algorithms will be needed for more
effective parallel execution. Unfortunately, the investment in labor required
for such rewrites will be at risk because of the uncertain future of parallel

programming languages and system architecture. While many contributors
may be prepared to rewrite their codes once, it is not likely that they will

be willing to do so multiple times as environments change. Without stable

platforms ensuring longevity to which programmers can target new codes,
rewrites are going to be limited to the immediate needs of the individual,
rather than the broader needs of the community. However, not all serial

subroutines will need rewriting. Given the prevalence of large grain tasks

and the current inef_ciencies of fine and medium grain parallelism, routines
employed in the inner loops of application programs can probably be used

as is since no practical gains would be achieved through parallelization.

13.5 Implications for Architecture

For the purposes of this workshop, an evident but unspoken assumption was

that the MPP architectures to be used by the HPC community would be

13.5. IMPLICATIONS FOR ARCHITECTURE 155

vendor-provided systems derived from microprocessors developed primarily

for the high performance workstation market. This assumption excluded
SIMD architectures such as the CM-2 and MasPar-1. It also precluded the

likelihood of MPPs with processors designed expressly for the purpose of en-

gaging in collaborative/coordinated computation with other like processors,
with the possible exception of the Tera Computer.

The SIMD issue touches on the question of diversity of execution models,

and is important in its own right. The general issue of processor archi-
tecture vis a vis the requirements of parallel computation is at the core of

the relationship between the HPC user community and MPP vendors. The
costs and tradeoffs of processor architecture today make it difficult to jus-

tify investments in hardware and code for special interests that make up
a relatively small part of the microprocessor consumer market. HPC falls
into this category, although market share is expected to grow substantially
through the decade. A second equally important aspect of this relationship,
however, inhibits the realization of symbiotic processors, (i.e., processors de-
signed to work together, forming a single holistic entity comprising many
components). Simply put, the HPC community does not know exactly what
it wants. It continues to experiment with various programming models,
relationships among operating systems and runtime systems, compiler tech-
niques, and I/O demands. With such uncertainty at all levels of parallel
system utilization, inclusion of hardware support for any one approach im-
poses unacceptably high risk on chip suppliers.

While all these factors constrained workshop consideration of proces-

sor architecture as a valid degree-of-freedom for MPP evolution, several
architecture-related issues were uncovered and discussed. Architecture sup-
port in MIMD architectures for the following functionality would be useful m
or even necessarymif HPC system architecture continues on its current
course.

• global shared reference space support mechanisms

• instrumentation for behavior monitoring

• synchronization mechanisms

• debugging; especially traps for timing conflicts/race conditions

• support for checkpointing and restart

• rapid context switching for latency hiding

156 CHAPTER 13. CONCLUSIONS AND IMPLICATIONS TO HPC

• data stream (prefetching) access to reduce impact of cache miss

Some of these capabilities have already found at least simple representa-
tion in MPP architectures. The MultiKron instrumentation chip developed
at NIST will be included in the Intel Paragon. The CM-5 incorporates
a global synchronization network for efficient SPMD barriers. The BBN
TC-2000 supported a shared address space. In general, however, the above
capabilities are not available to the user. Some are not as high risk as others
because they do not require additional circuitry on the processor chip itself,
but rather, additional components at the system level. Increases in inter-
processor communication have benefited greatly from new communication
chips external to the processor. Still more experience will be required with
runtime systems, and dynamic task scheduling, and data migration before it
will be understood how architectural advances can best enhance efficiency.

One way in which early understanding of architectural alternatives can be
acquired is by collaboration between the HPC applications community and
architecture research groups in academia. A number of experimental systems
have been devised that address these issues. But in many cases, architecture
research groups do not have access to important real-world codes to test their
ideas. Applications programmers have little interest in using such systems
because the programming environments are ordinarily poor and the systems
are often too small to provide competitive performance levels. Yet, these two
communities need to be brought together if essential data is to be produced
that can force architecture advances in commercial MPP systems.

13.6 Elements of a Future Course of Action

The general strategy defined earlier set overall directions for the HPC com-
munity to pursue development of environments for rapid and effective pro-
gramming of massively parallel processing systems. The strategy outlined
the principal initiatives and relationships to be established among the par-
ticipating groups and agencies. While useful, it alone does not clarify the
actions to be taken to ensure HPCC success. Some important elements of
such a course of action are suggested here.

13.6.1 HPC Framework

Coordination and collaboration on a complex system such as MPP environ-
ments among distributed organizations require an agreed-upon framework

13.6. ELEMENTS OF A FUTURE COURSE OF ACTION 157

to which all components can be configured. Such an abstract infrastructure
defines the general types of elements required to flesh-out the framework
and the interfaces between them. If adhered to, the framework will ensure

interoperability, portability, and source code longevity. It will also provide
the intellectual basis for identifying critical leverage points that will yield

the greatest benefit in the near term and on which funding agencies should
concentrate resources.

The framework constitutes a system architecture. Many possible imple-
mentations can be realized for a given architecture and, indeed, many will

be expected to evolve over time. But the replacement of any one component

with a newer routine will work in concert with the remaining older compo-
nents. Unlike most architectures, an MPP software environment framework

must remain flexible to new functionality. Hooks to the system using the
software bus concepts can permit new capabilities to be incorporated in

much the same way that external I/O devices can be attached to a worksta-

tion backplane. But, more is implied. The evolving functionality may vary
in the quantity and kind of information it provides to other components

within the system. Not all data required by one element may be accessi-

ble from another. Components must be designed to interpret the nature of
their connecting pieces, with protocols that adapt, and functions that config-
ure themselves according to available resources. Thus, an MPP environment

framework interface will be specified by a meta-protocol, i.e., an information
exchange logical medium that negotiates its final form. Numerous examples

of simpler versions exist in the networking and operating system commu-

nity where installation and runtime techniques achieve compatibility among
independently derived software components. The personal computer mar-
lcet place thrives on interoperability facilitated by de facto standards which

permit upward compatibility as new capabilities become price affordable.

An all-encompassing MPP environment framework with its myriad in-
terfacing meta-protocols might appear exotic, but pragmatic considerations
dictate modest goals for the near term. A framework with interfaces that

permit incomplete exchanges (i.e., some information is ignored and the lack

of other information results in reduced functionality) is all that can be hoped
for. But even this is sufficient to provide the commonality necessary for code
longevity, interoperability, and extensibility.

158 CHAPTER 13. CONCLUSIONS AND IMPLICATIONS TO HPC

13.6.2 Prerequisites

With the establishment of a target system software architecture, prerequi-
sites for filling in the framework will need to be determined. Understanding,

however, will be insufficient to immediately embark on implementation of all
essential components. One result of the workshop was that not even all the
requirements are understood at this time. Determining those requirements,
or at least an operational subset, will provide the basis for defimng a set of

specifications for the framework, its logical interfaces, and the functionality
of its constituents.

Not all the requirements known now can be satisfied with current knowl-

edge and experience. Critical path research questions which impede the
implementation of key components will be exposed. Such questions will pro-
vide target goals for near term studies. For those studies central to realizing
a healthy production environment, encouragement should be provided by

funding agencies.
It is likely that certain capabilities that are currently unavailable will be

required to implement a full environment, and that these may be identi-
fied through the process of devising an HPC system software architecture.

Identification of enabling technologies is yet one more key activity to be
performed in the immediate future and is a direct consequence of the sys-

tem software architecture derivation. For example, high bandwidth or low
latency communication channels may not exist in a required form. Software
engineering practices may not fully encompass the needs for development.

These constitute enabling hardware and software technologies that will make
practical the realization of effective MPP environments.

13.6.3 Primary Sources

The HPC community is a diverse collection of resources and talents which,

if brought together appropriately, can accelerate the pace of high perfor-

mance computing advances. The problems challenging such progress are as
disparate and imposing as this research community is capable. The many

demands implicit in realizing a fully functional production level MPP envi-
ronment will be met with talent drawn from all organizations and agencies
comprising the HPC community. Identifying the primary sources of capa-

bility to address the program needs is an important action. Talent and
capability from government agencies, academic institutions, and hardware
and software vendors can be matched with identified needs of the aggregate

13.7. SOME FINAL THOUGHTS 159

program through appropriate mechanisms. These mechanisms include the

High Performance Computing, Communications and Information Technol-

ogy (HPCCIT) Subcommittee of the Federal Coordinating Council on Sci-

ence, Engineering and Technology (FCCSET), professional organizations,
consortia, workshops, colloquia, etc. A requirements.capabilities matrix can

be developed to reveal potential means of addressing critical questions. This
matrix will prove useful in focusing funding on crucial leverage points of

activity for rapid results.

13.6.4 Working Groups

To monitor the progress toward deriving a complete and consistent system
software architecture and achieving a production level MPP environment,

working groups for each of the key components and focus points should be
established under the sponsorship of the HPCCIT. Their members should

be drawn from across the HPC community. To a significant degree, these

working groups will be an extension and refinement of the workshop sessions
that proved so effective in ferreting out the major issues. But, they will also

reflect the component breakdown and context as prescribed by the emerging
framework. These working groups will apply their detailed intimate knowl-

edge to ensuring the quality of the infrastructure and ensuing component
implementations. As occurred at the workshop, these working groups will
have to interact to come to a fully satisfactory architecture which meets the

needs and realistic constraints of a production environment.

13.6.5 Software Exchange

Software sharing is a theme central to attaining the stated goals. Mecha-

nisms for facilitating sharing of information, software, and results are cru-
cial. The HPCC National Software Exchange (NSE) experiment initiated by

NASA is an important endeavor for delivering such global mechanisms to the
HPC community in the immediate future. Early interest and participation

by the community in this experiment will expedite its results and enhance

the quality of the experience base.

13.7 Some Final Thoughts

This report has attempted to capture the full scope and breadth of issues

considered and views expressed: usually strong, occasionally conflicting, but

160 CHAPTER 13. CONCLUSIONS AND IMPLICATIONS TO HPC

always thoughtful. Because of the complexity of the issues and the systems
they reflect, the report has endeavored to articulate the workshop conclusions

from three different vantage points:

1. The raw and summarized representations of the findings from each of

the seven working groups convened to explore the HPC system software
question from their respective disciplines

2. A global synthesis of the major outcomes of the workshop to provide
a single characterization of its results

3. An assessment of the implications of the workshop results to the high

performance computing community and suggested direction of activi-

ties that it should consider pursuing to realize its near term needs and

long term goals

The motivation for this effort was to provide a useful tool and point of
reference for determining future actions by individuals, groups, and the HPC

community. Its value is in its timeliness and breadth of representation. Its

ultimate worth will be the initiatives it encourages.
We conclude here by revisiting the highlights and major results of the

workshop from an action oriented viewpoint, briefly reviewing the critical

findings from three perspectives:

• What we need,

• What we don't know, and

• What we have to do.

13.7.1 What we need

Qualitatively,we needperformance,portability,and usability.Performance
isforemostbecauseitisthe reasond'etreforthe MPP classof system.

Portabilityisessentialforcodelongevityand scalabilityforeasymigrationto
machinesofdifferentsizeand configuration.Portabilitydemands interoper-
abilitybetweendisparateand independentlydevelopedsoftwaresubsystems

residingon the same or separatenetworkedhardwareplatforms.Usability
encompassesprogrammingmodelsforrepresentingparallelismand resou:_ce

assignmentpragmas,toolsforobservingand optimizingsystembehaviorin

13.7. SOME FINAL THOUGHTS 16i

terms of correctness and performance, and robust recovery methods from

system failures and software exceptions.
Specific capabilities urgently required ar° dbx-like debugging tools and

profiling tools on at least on a per node basis. Means for checkpointing
and restart are necessary for breaking up very long runs into manageable
time frames and for robust recovery from all too frequent system failures.
Message passing protocol standards and data parallel constructs in popular
languages are required now for ease of programming and portability of source
code. This involves to be agreed-upon extensions to Fortran and C (for
system programming). Runtime service routines are required for efficient
message passing, synchronization and context switching overhead, and (in
the long term) load balancing. Operating system support and subroutine
libraries are needed for convenient heterogeneous processing. Also, means
for representing and performing parallel I/O must complement facilities for
parallel computation.

13.7.2 What we don't know

From this workshop, the HPC community learned how much it has yet to
learn. For applications targeted toward TeraFLOPS-scale MPP, we don't
know the relative balance of resources to achieve efficient execution. Pro-

gramming models differ, sometimes markedly, as do the representation needs

of parallel algorithms. We don't understand enough about which paradigms
are appropriate to what application problems. Debugging parallel programs
is greatly complicated by insidious timing errors and we don't know how to
best capture, isolate, identify, and present these elusive bugs, let alone how to
systematically eliminate them. Ultimate system behavior is a consequence of
a collaboration between applications programmer, compiler, operating sys-
tem, and runtime system. With the harnessing of algorithmic and processor
parallelism on a massive scale, a change in emphasis in the roles and interplay
of these entities is implied but the necessary balance is unknown.

13.7.3 What we have to do

In the broadest sense, we have to share; we have to nurture a sense of
community; we have to standardize; we have to encourage and fund research;
we have to evaluate and fund prototypes and commercialized key software
subsystems; we have to experiment, evaluate, and learn; and we have to
educate. At that point, the easy part is done. Because then we have to

162 CHAPTER 13. CONCLUSIONS AND IMPLICATIONS TO HPC

work with the MPP vendors to evolve and enhance their architectures at

the processor and systems levels to facilitate parallel computing so that we
can begin the entire cycle all over again; but at a higher plane of eiticiency,

performance, and ease-of-use. Ultimately, we will approach the threshold
of sustainable TeraFLOPS capability, perhaps wondering what the big deal

was? because then it will have become easy.

More specifically, work to fill urgent needs such as debuggers and profilers
has to be performed immediately. Longer term work in both areas needs to

be initiated toward global system handling. Checkpointing and restart mech-

anisms need to be incorporated into MPP operating systems immediately.
Inter-computer hooks for distributed inter-process communication need to

be standardized soon and included in all networked computing systems.
A framework needs to be defined for system software supporting HPC sys-

tems. This system software architecture will provide an infrastructure spec-
ifying functional characteristics and interface protocols essential for interop-

erability and code longevity. We need to identify the critical components of

this system software architecture and apply funding to the leverage points
that will yield the greatest return for the community. Also, prerequisites for

achieving the functionality of the various components must be determined,

including research questions and enabling technologies. Funding agencies
need to ascertain where their common interests lie and pool their resources

to gain greater leverage on the problem space by concentrating mass. Eval-
uation criteria, benchmarks, and measurement models and techniques need

to be devised to permit meaningful comparative studies that can be shared
and appreciated by the community as a whole.

Methods for sharing information, software, results, and ideas are needed.

These methods include automated global access to databases, and organiza-
tions within the community to oversee its evolution and monitor its successes.
Working groups need to be established to monitor development of critical

elements within the system soft'clare architecture. Follow-on workshops such

as this one need to be organized to periodically sample the state of progress,
knowledge, and consensus within the community for mid-course corrections.

And we need methods to foster closer associations of the applications com-
munity and computational scientists with the computer scientists committed
to fully realizing the manifestation of the HPCC system software architec-
ture.

Appendix A

Working Group Position
Viewgraphs

This appendix reproduces the slides that were presented by each working
group on the first day of the workshop.

A.1 Applications Requirements

Presentation by Geoffrey C. Fox (Syracuse University)

What will Application Report look like?

• GenerM Remarks

• Loop overseveralapplicationareas

- Requirements

- Case historiesinParallelism

- N Volunteers

, SpecialFeaturesofCodes

, Performanceneeded

, Functionalityneeded-- SIMD v. MIMD

* I/O -- (a) visualization, (b) databases

- Capture some of issues in benchmark set of "kernels"

163

164 APPENDIX A. WORKING GROUP POSITION VIEWGRAPHS

- What benchmarkscoverreasonablesetofalgorithms/Issuetocer-
tifysoftware?

• Interactionofapplicationareaswithotherworkinggroups--sixvol.
unteers

A.I. APPLICATIONS REQUIREMENTS 165

Why are Application--Software Linkages Important?

1. Technical

"Compiler" or "user" or some mixture of these, needs to "understand"
problem structure to be able to parallelize it.

This knowledge needs to be more precise than for other (non.parallel)
architectures--penalty for failure high! (performance degraded by a
factor of 1/Number of Processors...).

This will be addressed at length in other working groups, e.g. by high
performance Fortran directives, etc.

2. "Political" -- Market Issues

Parallel computing will only succeed if appUcation scientists buy them!

What axe user desires and priorities?

Performance Portability

• Physics graduate student • Fortune 500 Company developing
wanting to get Nobel Prize milllon-Line code to last
with best QCD (Quantum 20 years
Chromodynamics) Simulation

• Redo many times • ttedo once
• Real cost is critical

166 APPENDIX A. WORKING GROUP POSITION VIEWGRAPHS

We have learnt about importance of edge over areal

edgez Interface between Parallel Computing -, Real World of Computing

areas Software internal to HPCC

Need more attention to %dgesoftware"
Surface Tension effects are holding back par_Uelcomputing?
Need to integrate Parallel Computing with larger fields of

• Personal Computers

s Workstations

s Distributed Computing

• DARPA SWTS

IllllIllll/ Illll

UUl_ lUll_ow_wIl__

A.1. APPLICATIONS REQUIREMENTS 167

Many Application Areas

• e.g., BMC3IS or Manufacturing Systems

• Integrate components

- AI

- Science and Engineering

- Real time constraints

- Visualization (VR)

- Databases

naturally supported with different software paradigms

- Application Specific Languages

- *Data

- *Functional

- *Object

*Parallelism

• e.g., need Linda, and Express, and Fortran D not either/or

• Application scientists don't often speak to computer scientists

• Even worse, one application group doesn't often interact with groups
in a different discipline

• Adaptive multigrid developed for aerodynamics not used (yet) for
study of colliding black holes

• Fast multipole method developed for astrophysics not used (much) in
chemical molecular dynamics

• Neural network algorithm developed for vision not used in GIS

• Need to integrate computational science techniques between fields

168 APPENDIX A. WORKING GROUP POSITION VIEWGRAPHS

A.2 Compilers and Languages

Presentation by Ken Kennedy (Rice University/CRPC)

Compilers and Languages

• User needs and priorities

• Current systems: strengths and weaknesses

• Paradigms and prototypes

• Standards

• Compilers

Needs

• Standard language

• Avoid low-level details

• High efficiency

• Powerful tools

• Libraries with standard language interfaces

• Protection of programming investment

User Priorities

• High performance

• Minimum effort

• Machine independence

• cost/performance

A.2. COMPILERS AND LANGUAGES 169

Problems with Current Systems

• Low level

• Machine specific

• Varied paradigms

• Low reliability

• Poor relative performance

Machine independence

• Current systems expose architecture

• Cost of reprogramming

• Lesson of vectorization

- dusty deck problem unsolved

• Need: vehicle for portable parallel programming

Strengths

• Programming systems available

- explicit message passing

- Fortran 90 (data parallelism)

• Many programming systems available

• AutoparaUelization for shared-memory

Paradigms

• Data parallelism

• Task parallelism

• Object parallelism

• Instruction parallelism

170 APPENDIX A. WORKING GROUP POSITION VIEWGRAPHS

Research and Development I

• Data parallelism

- Fortran D

- Fortran 90

• Task parallelism

- Schedule

- PCN

• Object parallelism

- C++

Research and Development II

• General shared memory

- PCF Fortran

• Simulated shared memory

- Linda

- Virtual shared memory

• Functional languages

- Sisal

Technology Development

• Three System Levels

- University prototype

- Usable prototype

- Commercial product

• Problem: step from university to usable prototype

A.2. COMPILERS AND LANGUAGES 171

Compiler Challege

• Mapping to parallelism is complex

- Deep program knowledge

- Broad (interprocedural) knowledge

• Use mixed types of parallelism

• Compile good code for the nodes

Standards

• Promote machine independence

• Encourage manufacturers

• Essential to users

• Ensure interoperability of parts

Summary

• Exploration of paradigms

• Research on complex compilers

• Technology development of selected prototypes

• Standardization

172 APPENDIX A. WORKING GROUP POSITION VIEWGRAPHS

A.3 Computing Environments

Presentation by Reagan Moore (San Diego Supercomputer Cen-
ter)

Computing Environment Topics

• Data Support Systems

• Communication Systems

• Heterogeneous Computing Environments

Working Group Agenda

• Identification of system software issues and paradigm shifts for the
next five years

• Identification of current software infrastructure and research efforts

• Identification of key technologies for future development

Computing Environment Hierarchy

• Parallel Computers

- Distributed memory

• Metacomputers

- Heterogeneous computing platforms within a computer center

• Metacenters

- Multiple computing centers within a national machine room

A.3. COMPUTING ENVIRONMENTS 173

System Software Issues

• Performance

- Data distribution

, Data/CPU no-locality

- Appropriate resource selection

, Functional decompositions

• Data Support for TeraFLOP Computer

- Large files

- Location transparency

• Data Distribution

- Decoupling data space from CPU space

- HPF assumes tight coupling

• Data Access

- Move process to the data- ttPC

, Assumes CPU resources available

- Move data to the process -- use supercomputer

, Always faster for sufficiently complex algorithm

Perspectives

• Application Performance

- Shortest wall clock time for job to complete

• System Performance

- Maximum utilization of resources

174 APPENDIX A. WORKING GROUP POSITION VIEWGRAPHS

Data Support Systems

• I/O Scaling

• ArchivalStorage

- Network attachedperipherals

- Thirdpartydatatransfer

- Cachingfilesystems

• NationalFileSystem

- Filesharingbetweenfilesystems

• ScientificDatabaseInterfaces

- Data formatstandardization

- Data formatconversiontools

- XDR/data compressiontools

Examples

• Data StorageRequirements

- Largefileaccess

- ResponsetimeforGigabytefiles

- Locationtransparency

- Nationalfilesystem

- Petabytestoragearchives

- IEEE MSSRM -- distributed

- archivalstoragesystem

- Associativedatareference

- Scientificdatabasesystems

- Knowledgeaboutthedataismore importantthan thedata

A.3. COMPUTING ENVIRONMENTS 175

Data Storage Questions

• Is there a "standard" data hierarchy?

- Distributed memory

- Ram disk- SSD

- Localdisk

- Remote disk

- Tape robot

- Scientificdatabase

- Metadatafilesystems

- Archivalstoragesystem

• Can theamount ofdatabe minimized?

- Applicationshiftto directmethods and code reexecutionrather
than datastorage.

• Will futuretechnologiesmake data storagedevicescheaperthan
CPUs?

- Holographic storage

- Chemical/optical storage

• Should data storage be error free?

- Bit error rates of 1-12 are too high

Communication Systems

• Gigabit/second Communication Links

- High-speed protocols

- Multimedia protocols

• Communication Media Standardization

- HIPPI, fiberchannel, SCNET

• Distributed Application Control

- HIPPI RPC mechanisms

- Synchronization of distributed programs
i

• Data Privacy

176 APPENDIX A. WORKING GROUP POSITION VIEWGRAPHS

Communication Questions

• High-speed Transfers

- Bit error rates of network (assuming no packet loss) same as stor-
age device. Should error correction be a property of the data
instead of the network?

• Data Privacy

- Is knowing when data has been compromised sufficient? Authen-

tication mechanisms relying on tickets have time windows during
which encryption can be broken.

• Communication Hierarchies -- What Comes Next?

Ethernet T1

FDDI T3

ttIPPI SONET
77 77
• i • 6

Heterogeneous Computing Environment

• Programming Support Environments

- Decomposition metrics

- Coupling metrics

• Resource Management

- P_emote system status

- Error handling

- Accounting

• Resource Control

- Load balancing

- Job scheduling

A.3. COMPUTING ENVIRONMENTS 177

Heterogeneous Computing

• Should parallel computers be treated as CPU limited resources or as
memory limited resources?

• Amdahl's Law

• Maximum number of processors usable for given efficiency is

1/E- fN =
1-f

E - efficiency

f - parallelization fraction

E f N

10% 50% 19

90% 91

5O% 50% 3
90% 11
99% 101

90% 50% 1
89% 2

98.8% I0
99.4% 20

99.9% 112

Parallel computers are multiprocessors

178 APPENDIX A. WORKING GROUP POSITION VIEWGRAPHS

Heterogeneous Computing

• Super-linear Speedup

-Functional decomposition to distribute computation between
multiple heterogeneous computer platforms

- Implementation through:

• Application level
• Explicit decomposition

• Program support environment

• Compiler/Libraries
, R,PC servers

, System level

, Job scheduling

A.4. MATHEMATICAL SOFTWARE 179

A.4 Mathematical Software

Presentation by Michael T. Heath (University of Illinois_ NCSA)

• What will a scalable parallel math software library look like, and how
will it be used?

• How will it differ in structure and content from conventional mathe-
matical software libraries?

• Will portability be achievable at a reasonable cost in performance (or
at any cost)?

• What standards will be necessary to ensure portability, to whatever
degreeispossible?

• What isthemeaning ofscalability,and isittrulyachievableinprac-
tice?

• Can thecomplexityofparallelarchitecturesand algorithmsbe hidden
from userswithoutsacrificingperformance,and isa math software

librarya suitablevehicleforattemptingtodo this?

• What are the implicationsof parallelismfortheaccuracy,stability,
and convergenceofnumericalalgorithms?

• Can we, or shouldwe, expectexactlyrepeatableresults,giventhe
potentialnondeterminismintroducedby parallelism?

180 APPENDIX A. WORKING GROUP POSITION VIEWGRAPHS

Enabling Technologies

• Architectures

• Algorithms

• Data Structures

• Programming Languages

• Compilers

• Operating Systems

• Communication Systems

• Partitioning, Mapping, and Scheduling

• Software Tools

Applications Development

• Motivation and Market for Math Software

• Real Software Needs

• Operational Context

User Interface

• Hiding Complexity from Users

• Problem Specification and ttepresentation

• Data Management

• Problem Solving Environments

• Mathematical ttcsearch

• Graphics and Visualization

A.4. MATHEMATICAL SOFTWARE 181

Portability

• Scalability

• Flexibility

• Standards

• Computer Arithmetic

• Nondeterminism

Software _ngineering

• Programming Paradigms

• Structure of Modules and Libraries

• Encapsulation

• Communication Primitives

• Adaptable Granularity

• Reusable Templates

• Hierarchical and Heterogeneous Systems

• Testing and Validation

• Error Handling and Reporting

• Instrumentation and Performance Analysis

182 APPENDIX A. WORKING GROUP POSITION VIEWGRAPHS

A.5 Operating Systems

Presentation by Robert L. Knighten (Intel Supercomputer Sys-

tems)

Basic Assumptions

• Heterogeneous Networks of Computers

• Massively Parallel Processors with Physically Distributed Memory

• POSIX CompLiantOperatingSystem

Major Areas

• Memory Management

• MessagePassing

• I/O and FileSystems

• SupportforDebuggingand PerformanceMonitol-ing

• ResourceManagement

• Job ScheduLing

Problems and Needs

• Performance

• Ease ofUse

• PortabilityofCode,Developers,and Users

• ReLiability

• RecoverabiLity

• Debugging(includingperformancemonitoring)

• ResourceManagement

• Large Scale I/0

• Memory Management

A.6. SOFTWARE TOOLS 183

A.6 Software Tools

Presentation by Joel Saltz (University of Maryland)

Major Areas

• Performance Tools

• Debugging Tools

• Runtime Support for Irregular and Adaptive Problems

• High Level Programming Environments

• Tools Designed for Group Environments

A.6.1 Performance Tools

Application developers want tools to help make decisions involved in tuning
performance

• Incremental changes to optimize performance in preexisting code

• Use performance predictions to guide application code development

Predict performance of code on new or on scaled-up hardware

• Most code development will probably be carried out on "small" local

multiprocessors

• Codes may be designed with next generation hardware in mind

• Vendors could use performance projections to predict consequences of
architectural changes

184 APPENDIX A. WORKING GROUP POSITION VIEWGRAPHS

Many interacting factors influence performance of programs on scalable
architectures

• Processor Architecture

• Time delays associated with accessing data residing in various places

(e.g., cache, local memory, off-processor memory)

• Degree to which communication latency can be hidden

• Data reference patterns resulting from choices made in partitioning
data or work

• Program Transformations

Performance information should be presented in ways that relate to users'
language and programming tools

• Fortran D/High Performance Fortran compilers allow users to control
data distribution

• Feedback is needed on performance impact of a programmer's choices
about data or workload partitioning

• Compilers may sometimes attempt to optimize partitioning

- user needs to know what compiler has decided along with perfor-

mance impact of compiler's partitioning decisions

• How to best display performance impact of partitioning?

Current User Priorities

• Source-level Debugging

• Debugger checkpointing to perform debugging _.xperiments in the mid-

dle of long program executions

• Support for isolating transient errors (data races, indeterminate match-
ing of synchronization primitives, send/receive matching)

• Hooks to apply scientific visualization tools from debugger without
prior arrangement

• Watchpoints that pinpoint changes to a data value

A.6. SOFTWARE TOOLS 185

Status of Systems Software

• Most commercial parallel debuggers are ill-equipped to address issues
peculiar to developing parallel software

- little support for examining and experimenting with issues related
to communication and synchronization

- no commercial debuggers support debugging of code with trans-
formations that provide MIMD parallelism

- no commercial debugging tools adequately support pinpointing of
causes behind timing-dependent errors

- inadequate support for watch points

- a few debuggers provide support for lightweight instrumentation
useful for low overhead conditional break points

Priorities for the Future

• Tools used to tune application codes need to be interactive

• Users need to get feedback on consequences of possible decisions con-

cerning data layout, workload partitioning, loop restructuring

• New visualization methods needed to capture the effects of user deci-
sions on interaction between data and workload partitioning and the
performance of various levels of memory hierarchy

• Instrument to minimize impact of monitoring on performance. Possible
that hardware support will be required

186 APPENDIX A. WORKING GROUP POSITION VIEWGRAPHS

A.6.2 Debugging Tools

Goal -- provide a level of debugging support to make development of a

multiprocessor code as simple (or difficult) as development of a sequential
code.

• Programming paradigm has great influence on errors introduced, re-

quired debugger functionality

Explicit shared memory program:

- complex synchronization conditions, data races, etc.

Message passing program:

- examining message patterns, pairing send and receive calls

High Performance Fortran program

- relate execution state back to source program specifying sequen-
tial thread of control constrained style may reduce errors

Applications developers want to avoid time consuming cycle of running
and recompiling code when they tune performance.

• Possible Methods:

1. A priori performance predictions based on compiler analysis of
program text

2. Performance tool generates program that would allow user to in-
teractively explore wide range of partitioning alternatives

3. Performance tools could checkpoint save state and repeatedly
restart using modified program

A.6. SOFTWARE TOOLS 187

Status of System Software

• Tools exist to monitor execution, collect performance related data,
present data on (distributed memory architectures)

- data presented from viewpoint of hardware and operating system
(processor utilization, idle time, pattern of message traffic)

- users can arrange to indicate when tasks are active

- ability to relate performance data back to source code

- but information about impact of data, workload partitioning must
be inferred

- neither compiler nor performance tools have shared name space

Priorities for the Future

• Support debugging of radically transformed programs

• Hooks for data visualization to provide users support in verifying cor-
rectness

• Support for isolating transient errors

Develop programmer support to establish confidence (or lack thereof) in
the application as a whole.

!

• Verifying "correctness" of multidisciplinary parallelized application
code

A.6.3 Runtime Support for Irregular and Adaptive Problems

Programs associated with many applications involve complex or irregular
data access patterns.

To solve:

• Partition (dynamically) data and work

• Coordinate irregular patterns of interprocessor data movement

• Manage storage of, and access to, local copies of off-processor data

Applications developers want to be able to get good performance from

their irregular applications without having to deal explicitly with problem
partitioning, load balancing, communication scheduling.

188 APPENDIX A. WORKING GROUP POSITION VIEWGRAPHS

Status of Software Systems

Distributed Shared Memory,

• Move fixed sized data blocks (pages or subpages) in response to data
access patterns

• Easy to use but inefficiencies can result when data access patterns do
not conform to memory layout of pages

• Kai Li, Thierry Priol, Kendall Square Research

Linda

• Supports shared tuple space data accessed from tuple space in variable
sized chunks

• Programmer must carry out preprocessing to obtain judiciously defined
tuples

Fortran with irregular distributions, compiler embedded mappings

• Same advantages as any High Performance Fortran type language--
user is protected from partitioning, load balancing details

• Several rudimentary compiler prototypes but no fully operational com-
piler

• Cannot (asyet)handlemany importantclassesofirregularand adap-
tiveapplications.

- FortranD project,superb

Proceduresactingon irregulardistributedarrayreferencepatterns

• Procedurescalledfrom applicationcode to partitiondata,work and
togenerateoptimizedcommunicationschedules.

• Manage storageof,and accessto,localcopiesofoff-processordata

• Limitedinscopeofirregularproblemshandled

- F_tgraph,PARTI

A.6. SOFTWARE TOOLS 189

ProblemsolvingenvironmentsforclassesOfsparse,irregular_adaptiveproblems

• DIME -- unstructuredmesh CFD

Prioritiesfor the Future

• Methods to efficientlyimplementon scalablearchitecturesthe wide

rangeofirregularand adaptivecomputations

• Transformationsand runtimesupporttomake itpossibleforcompil-

ersand problemsolvingenvironmentstoefficientlyincorporatethese
methods

• Use highperformanceFortran,problemsolvingenvironments,etc.

- choose between strategies to be used in data and workload parti-
tioning, communication optimizations, etc.

- avoid having to get involved with details of dealing with low-level
support for irregular problems

A.6.4 High Level Programming Environments/Tools for
Specific Application Areas

Problem solving environments

• Big win for personal computers in non-scientific applications
i

• Mathematica, matlab, maple examples in the
math/engineering/science domain

• Very little for scalable architectures

Tools should hide any networking

• Different portions of code should run transparently on different plat-
forms

Standardized Object Oriented Libraries for specialized application areas

190 APPENDIX A. WORKING GROUP POSITION VIEWGRAPHS

A.6.5 Tools Designed to be Used in Group Environments

Basic software engineering:

• Portions of complex project will be numerous and interdependent

• Coordinatedependencies

• Releaselevelmanagement

- versioncontrol

• Testcasemanagement

- login and automaticallyuse testcaseswhen verifyingsoftware
correctness

A.7. VISUALIZATION 191

A.7 Visualization

Presentation by Lewis W. Tucker (Thinking Machines Corpora-
tion)

Visualization in High Performance Computing

• Goal: integration of visualization into large scale computations

• Why needed?

- communication/understanding of results

- application development and debugging

- interpretation of results

- insight

What do Users Want? They want it all

• Real-time animation • On their workstation

• Volume visualization • Video-tape production
• Polygon rendering • Image archiving
• Wireframe modelling • Graphical user-interface
• Ray tracing • Data plotting capability
• Iso-contouring • Numbers behind the image

• Gigabytes of mass storage

• Fly through their data

• Interactive rendering

• Standard image formats

• Interoperability with desktop publishing

• Easy to use without programming or expert knowledge of graphics

..... and they want it now.

192 APPENDIX A. WORKING GROUP POSITION VIEWGRAPHS

Choices facing developers of visualization systems

• Emphasize distributed visualization systems to spread work between

high performance supercomputers and workstations?

• Develop graphics libraries for parallel machines?

• Improve ease of use and production of publication-quality imagery?

• Target users remote of X Windows terminals?

• Promote standards for exchange of scientific datasets?

• Integrate video production capabilities?

Current Technology Trend

•• Graphics workstations are dropping in price and increasing in perfor-
mance

• Network bandwidths are slowly increasing in speed

• RAID technology promises high bandwidth mass storage capabilities

• Standards are emerging for exchanging graphical information

• Software systems for distributed visualization are gaining in popularity

Position Statement

• Ultimate target is the scientist's desktop.

• Systems must be both scalable, adaptable, and integrated into an envi-
ronment of high performance systems, large mass storage units, graph-
ics workstations and networks of various kinds.

• Must leverage as much "workstation" software as possible while build-
ing organizational structures for sharing and reusing software and sys-
tems.

• Recognize that HPC visualization systems have significantly different
requirements in terms of dataset size, bandwidth, and interactivity.

A.7. VISUALIZATION 193

Current Technology Trend continued

- but -

• The datasets produced by Grand Challenge problems on massively
parallel systems are increasing in size at a much faster rate

• Network bandwidth in the typical computing environment is limited

• Visualization software and algorithms for parallel machines are still
immature

Appendix B

Working Group Findings
Viewgraphs

This appendix reproduces the slides that were presented by each working

group on the final day of the workshop.

B.1 Applications

Presentation by Geoffrey C. Fox (Syracuse University)

Ground Rules

"Naive User" _ "Talented but inexperienced _ HPC
in parallel computing user" Systems

This will be methodology for developing HPC applications in both

1. Grand Challenge Teams (NASA, DOE, NSF ...)

2. Industry

---* GRADUALISM WILL WORK

Systems Software should try to help dedicated talented users

195

196 APPENDIX B. WORKING GROUP FINDINGS VIEWGRAPHS

• Our findings come from a small unrepresentative groupmneed to be

validated, e.g., by Grand Challenge teams which can confirm, deny or
quantify our findings

• There is a spectrum of needs which can trade off between

Performance Portability
"Small" evolving Large Institutional
codes codes

i

• HPC is currently a small fraction of world computer market

• HPCCP is focussed on Grand Challenges

• Concern that need more coordination between HPC software and other

efforts, e.g., software engineering

Template Codes

• Alternate to Libraries

• Communicate generic applications (parallel FFT ... Adaptive multi-
grid) between disciplines and between mathematicians and application

• Clear Documentation

• Test Cases, i.e., template should run on some computer

• Exact details, e.g., language, not so important (C + +, Fortran, Pascal)

• Significant educational value courses --* training sessions

• Canned Packages bound to be

- either too general

- too specialized

B.1 APPLICATIONS 197

Need Standards

as in

• Message Passing

• High Performance Fortran where we have application experience

But need to do research and gather experience in

- Parallel I/O

- POSIX Compliance

What are the Application Requirements?

• Need world view and agreed terms?

Sequential Process = Program

Parallel N Processes = Program

• Need Agreed (set of) Paradigm/Virtual Machines

Gradualism

Far more emphasis on modest, robust software than on flashy complete
tools / compilers / math libraries / operating systems / environment s

We need to quantify needs but include

• Node debuggers

• Node compilers

• Porting tools _- need to analyze requirements

e.g., as well as HPFortrsn compiler, need dependency analysis tools to
aid user parallelism

Not clear that we need a

• Seamless heterogeneous metacenter before we have experience with

• Seamless homogeneous single machine

198 APPENDIX B. WORKING GROUP FINDINGS VIEWGRAPHS

Interaction with Environment Group

• We do not know application requirements for ratio

- CPU Power

- Power

- Memory

- Disk

- ArchiveStorage

• Not clearifrealistictoextrapolatetoTeraFLOP performance

Application Requirements

• Don'tAsk us what we want aswe willtakeanythingyou offer

Rather,describeallowedtradeoffs,e.g.,

- VirtualSharedMemory

- Checkpointing(automatic)

- TreatmentofRacesinDebugging

- ZeroCost -- Yes!

- 10% Cost- No.

B.2, COMPILERS AND LANGUAGES 199

B.2 Compilers and Languages

Presentation by Ken Kennedy (Rice University/CRPC)

Outline

, User needs

p. Priorities
i

, Strategies

, Research emphases

Needs

• Knowledge base about appticabiUty of paradigms to problems

• Standardized languages

- portable, vendor.supported, scientific, scalable

• Avoid low-level details

• High efficiency

• Language and paradigm interoperability

• Powerful tools

• Libraries with standard language interfaces

• Protection of programming investment

• Higher-level (domain-specific) languages

Program Priorities

• High performance

• Portability

• Usability

• Locality management

• Paradigm understanding

• Paradigm integration

200 APPENDIX B. WORKING GROUP FINDINGS VIEWGRAPHS

Strategies

• Technology Development

- research prototypes

- advanced development prototype

- commercial product

• Evaluation standards for all projects

• Standards to enhance portability

• Infrastructure development

- software exchange via software repository

, contract development

, advanced development projects

- test case repository for support of evaluations

Research Areas of Emphasis

• Robust environment for successful high-performance languages

• Advanced Development for qualified emerging research languages

• Optimize critical compilers for peak performance

• Define language features or compiler extensions for known critical
weaknesses

• Continue funding of promising basic research efforts

• Paradigm evaluations (head-to-head)

B.3, COMPUTING ENVIRONMENTS 201

B.3 Computing Environments

Presentation by Reagan Moore (San Diego Supercomputer Cen-
ter)

issues

• Understand minimal application requirements for computing environ-
ment

• Understand application scaling requirements for I/O bandwidth and
I/0 caching

• Understand _tpplication data integrity requirements

• Estsblish go*Is for HPCC software technology for next five years

Initial Requirements for porting/rewriting codes for parallel com-
puters

• To Port Codes

- Standards for parallel programming support environment

• To Rewrite Codes

- Standard for parallel I/O

- Standard for message pMsing

- Working parallel programming support environment

- Unix tools

- Accounting

202 APPENDIX B. WORKING GROUP FINDINGS VIEWGRAPHS

I/0 Scaling Methodology for Predicting Archival Storage Require-
ments

• Data distribution between local disk/archivaJ storage

- Estimates from analysis of application-specific memory band-
width scaling as a function of CPU power

, Chemistry

, Quantum Chromodynamics
, CFD

, Weather

, Visualization

Data Support Systems

o I/O Scaling (Rese_ch- 1)
• Archival Storage (Vendors- 2)
• National File System (Government Lead - 5)
• Scientific database prototype (Research - 5)
• Data format standardization (Users - 2)
• Data Compression (Research - 5)
• Data Privacy (Research - 5)
• Data Integrity (Research- 1)

• Archival Storage

- Current file sizes -- 200 MB
d,

- Future file sizes -- memory size or 30+ GB

, File retrieval time determines the acceptable I/O rate

• National File System

- Current efforts AFS -- CMU

- Future efforts with DFS

- Equiwdent of ARPAnet

B.3. COMPUTING ENVIRONMENTS 203

Communication Systems

e Gigablt/second networks (Government lead -- 5)

- Requirements for NREN

, Latency tolerant applications
, Bamdwidthreservation
, Levels of service

, Data integrity
, Packet switched vs circuit switched

• Computer center backbone I/O requirements

• Data Privacy -- performance cost (Research -- 3)

• Network _lgorithms (Research -- 1)

• St_Lndarddata integrity mechanism for memory/network/storage (Re-
,earth- 2)

• Parallel I/O across networks -- staadard file format

Computer Center I/O Requirements

• Upper limit < memory bandwidth

- Local disk access

- Checkpointing
- Performance statistics

- Archival Storage

• Bandwidth supportable by Operating System

204 APPENDIX B. WORKING GROUP FINDINGS VIEWGRAPHS

Heterogeneous Computing Environment

, Prograxnming support environment (vendor -- 5)

- APPL/ISIS/PVM Hence/LINDA/IPS-2 i

- Requirement for application metadata

, Decomposition -- gr_ularity

• Automatic data para_.lel decomposition

• L_nguage drive -- C++/LINDA/Object Oriented
. Coarse grained decomposition

• Homogeneous metacomputers

s Meta-manager (Research -- 5)

Resour©e Partitioning for Meta-Centers

e Local Resources -- controlled by run-time scheduler

- Interactive users

- Production usage

s Meta-- Resources

- Production usage

, Tennis court reservation by meta-manager

Meta-- Managers

e Existing Systems

- DQS (Florida State) Heterogeneous queue management

- NQS Exec (NASA) M_.nage ItS 6000 cluster

- Condor (University of Wisconsin) Workstation cluster manage-
ment with job checkpointing queuing, and remote I/O access

e Future requirements

- Accounting

- Scheduling

- Resource management

- Load bal_cing
- Remote status

- Security

B.4. MATHEMATICAL SOFTWARE 205

B.4 Mathematical Software

Presentation by Michael T. Heath (Universityof Illinois,NCSA)

Questions

!.Who aretheusers,and what do theywant/need?

2. What iscurrentstatusofmath software?

3. What areprioritiesforfutureresearch?

Math Software Issues

1. AppUcations

2. Algorithms/Data Structures

3. User Inter/ace

4. Portability/ScMability

5. SoftwareEngineering

6. EnablingTechnologies(e.g.,compilers,languages,operatingsystems,
architectures)

PlausibleParadigms for HPC Math Software

1.Minimum changeto statusquo

2. Reactiveserverswithbytestreaminterface

3.'Problemsolvingenvironments

4. Reusabletemplates

IdentifiedNeeds

i Greaterverticalintegration

• Neax-termresults

• Rethinkboth librarystructureand userneeds

• AvailabUityofsourcecode

• Education

206 APPENDIX B. WORKING GROUP FINDINGS VIEWGRAPHS

B.5 Operating Systems

Presentation by Robert L. Knighten (Intel Supercomputer Sys-
tems)

Basic Issue

• The fundamental goal of a high performance computing system is to
deliver high performance. The operating system must facilitate rather
than impede this goal.

The Other Issues--- I

• File Systems and I/0

- Define basic parallel I/O modes

• Debugging and Performance Monitoring

- Checkpoint/modify/restart

- Control of event tracing

The Other Issues-- II

• Heterogeneity

- Priority -- transparency

• Job Scheduling and Resource Management

• Memory Management

• Exception Handling

Checkpoint/Restart and Job Swapping

• The Hot Issue

• No Production Facilities for MPP systems

• Research Prototypes Under Development

• Research Needed Particularly for Networks

B.6. SOFTWARE TOOLS 207

B.6 Software Tools

Presentation by Joel Saltz (University of Maryland)

Short term requests

, DBX

• Simple profiling info

Debugging

• Test coverage

- how do we know whether program is correct?

- what aspects of this can be automated?

• Debugging heterogeneous systems

- uniform remote debugger interface

- more ambitious ideas

• Post-mortems

- what information to keep

- where to keep (disk, memory)

• How compulsive do we need to be about timing information

- sequences of events

- real vs. virtual time

• Decent vendor support for the basics!!

- funding agencies should insist on "minimal" level of support

- dbx running on each node

208 APPENDIX B. WORKING GROUP FINDINGS VIEWGRAPHS

• Different programming paradigms introduce different kinds of bugs

- shared memory (race conditions)

- distributed memory (send/receive matching, buffer overflow)

- High Performance Fortran (single thread is advantage, but watch
out for trapdoors)

• Abstraction of program state

- debugging for 1000s of processors

- visualization

- programmed probing into program state

• Trace errors back to source

- radically transformed code

- link to compiler essential

B.6. SOFTWARE TOOLS 209

Performance Tools

• Some performance issues

- how would performance change if program was modified (e.g.,
change data distribution)

- how good _speed, efficiency, utilization} is program X making of
parallel machine Y

- how would performance of program change if _problem size,
#processors, memory access speed} changed?

• Types of performance tool users

- domain experts

- application software developers

- system software developers

- hardware developers

• Hierarchy of performance considerations

- questions asked

- information displayed

- trace (information to be displayed)

- invasiveness of measurements

- hardware monitoring/instruction level simulation

210 APPENDIX B. WORKING GROUP FINDINGS VIEWGRAPHS

Performance Tools II

• Layered analysis

- memory hierarchy effects
, cache effects

, communication delays

• Role of Compiler

- relating performance to program (portion of program text, data
distributions, etc.)

- compiler instrumentation to produce traces

- compiler generates info for scaling predictions

-performance predictions/measurements used as compiler feed-
backs

• Display performance information _ abstraction of program state

- animation

- representation in terms of programming paradigm

Additional Issues

• Tools for Transforming Source Code

- Facilitate design of useful tools

, compilers
, performance tools
, ADIFOR

• runtime compilation

, debuggers

• Support of shared address space

- specifically irregular problems but raises general issue

, HPF compiler

• runtime compilation support (Parti, Fastgraph)

, distributed shared memory

• Graphical User Interfaces/Problem solving environments

• Adaptation of basic software engineering to HPC arena

B.7. VISUALIZATION 211

B°7 Visualization

Presentation by Lewis W. Tucker (Thinking Machines Corpora-
tion)

Motivation

• Select set of Grand Challenges (output and resolution):

- Geophysical Apps.

- CFD

- Plasma Physics

- Remote Sensing

TeraPLOP Computations Will

1. Generate terabyte to 100 terabytes datasets

2. Data streams of four to 400 MB/s

3. High Resolution stereo animation

1 stereo pair at 1 K x 1 K pixels generated from 5123 data requires
1 GByte data +17 GFLOPS processing on TeraFLOP Machine
2 K × 2 K pixels from 10003 data

Need _ New Visualization Software

To support: browsing, animation, interactivity, distributed, extensible,
parallel

Goal: distributed parallel heterogeneous visualization framework

212 APPENDIX B. WORKING GROUP FINDINGS VIEWGRAPHS

Heterogeneous Computing Environment

• TeraFLOPS machine, large fast disk (RAID), tape archiving, hardcopy
output devices, workstations, HIPPI framebuffers

Near Term Development* Needs to Focus on Two Main Problems:

1. Performance of Graphics Infrastructure 30%

2. Performance and Functionality of Graphics Libraries and Paradigms
70%

Infrastructure Items:

1. Parallel I/O

2. Fast and Large Filesystems

Other technologies the market is addressing (displays, VR, multimedia)
IDEALLY OS and Systems Projects WOULD PROVIDE solutions. How-

ever, in practice solutions are inadequate!! To a lesser extent, MPP C needs

attention. 90% of new visualization software is in C.

•5-7 years

ParallelI/O forVisualizationideallywould include:

• InteRigent negotiation of:

- Bandwidth

- Data format

- # Parallel data channels

- Grouping and ordering of data blocks

- Data compression

- Buffer sizes

- Use shared memory when possible

B,7, VISUALIZATION 213

Module Functionality (user., developers)

• Parallel versions of (scslability is important)

- Volume rendering

- Polygon rendering

- Contour surface or line generation

- Tracer particles, smoke injection, ribbons

- Grid generation

- Interpolation

- Animation

Module Structure

• Modules built from layers

- Math libraries

- Low-level graphics primitives (vendors)

- High-level graphics primitives (tool developers)

• Need parallel version of everything

Summary

• Current problems are system infrastructure!!

• Visualization resources currently are solving systems problems ¢==

• Need MPP C, interfaces to Fortran D and Fortran 90

• Parallel I/O. Large fast file system (vendors, OS)

• Distributed graphics framework (vendor, gov, users)

Appendix C

Attendees List

Lee Holcomb, Workshop Chair (NASA)

Organizing Committee

Paul Smith, Chair (NASA)

Mel Ciment (NSF)

George Cotter (NSA)

Fred Johnson (NIST)

Gary Johnson (DOE)

Carl Kukkonen (JPL)

Fred Long (NOAA)

Jacob Maizel (NIH)

Joan Novak (EPA)

WUliaxnScherlis(DARPA)

215

216 APPENDIX C. ATTENDEES LIST

Program Committee

Paul Messina, Chair (Caltech/Jet Propulsion Laboratory)

ja_.k Donsarra (University of Tennessee/ORNL)
John Dorbamd(NASA Godd_rd)
Brian Ford (NAG)
Geofl'reyFox (Syracuse University)
Mark Furtney (Cray Research)
Mike Heath (NCSA/University of nUnois)
Ken Kennedy (Rice University)
Bob Knighten (Intel SSD)
H. T. Kung (Harvard)
Steve Lundstrom (PARSA)
Robert Malone (Los Alamos National Laboratory)
David M|zeU (Boeing)
Rea_n Moore (SDSC)
John Riganati(SRC)
JoelSaltz(UniversityofMaryland)
Thomas Sterling(USRA CESDIS)
RickStevens(ArgonneNationalLaboratory)
WilliamTompkins(UTRC)
Lew Tucker(ThinkingMachinesCorporation)
PaulWoodward (UniversityofMinnesota)
JerryYan (NASA Ames)

@

217

Applications Working Group

Geoffrey Fox, Chair (Syracuse University)
(315) 443-2163

gcfOnovL.npsc.syr.edu

Member8

Rick Impett (SRC)

Don Lesldw (The Ultra Corporation)

Richard Metzger (Rome Laboratory)

Gary Montry (Southwest Software Structures)

Hush Nicholu (Pittsburgh Supercomputing Center)

Marcia Pottle (Cornell University)

$anjay Ranka, Deputy Ch_ir (Syracuse University)

Mamny Salu (NASA Langley)

John SaLmon(California Institute of Technology)

WiUitunTompkins (United Technologies Research Center)

Jeffrey Young (EPA)

218 APPENDIX C. ATTENDEES LIST

Languages and Compilers Working Group

Ken Kennedy, Chair (Rice University)
(713) 527-4834
kenOrice.edu

Members

Jeff Brown (Los Alamos National Laboratory)

Nicholu C_riero (Yale University)

K. Man] Ch_dy (Californi_ Institute of Technology)

Marina Chen, Deputy Chair (Yale University)

Mzy_ Gokhale (Supercomputing ltese_rch Center)

Jim McGraw (Lawrence Livermore National L_boratory)

David MizeU(Boeing Computer Services)

Burton Smith (Ter_ Computer Compm_ly)

Lauren Smith (NSA)

Larry Snyder (University of Washington)

219

Computing Environments Working Group

l_.eagan Moore, Chair (San Diego Supercomputer Center)
(619) 534-5073

mooreOsds.sdsc.edu

Members

CharUe Catlett (National Center for Supercomputing Applications)

Gregory Fol]en (NASA Lewis)

Tom Henderson (NOAA)

Alan Kleitz (Minnesota Supercomputer Center)

Ada_n Kolawa (ParaSoft Corporation)

Barry Leiner (Advanced Decision Systems)

Christopher Ma_er (Pittsburgh Supercomputing Center)

Bernard T. O'Lear (NCAR)

Bernie A. Peretla (NSA)

Peter IDgsbee (Cray Research, Inc.)

Mark Seager (Lawrence Livermore National Laboratory)

Bruce Shapiro (Frederick Cancer Research Development Center)

220 APPENDIX C. ATTENDEES LIST

Operating Systems Working Group

Bob Knighten, Chair (Intel Supercomputer Systems Division)
(503) 629-4315

knighten@ssd.intel.com

MemberQ

Eric Baxszcz (NASA Ames Research Center)

David Black (Open Software Foundation)

David E. Cutler (University of California, Berkeley)

Howard Gordon (NSA)

Steve Groom (Jet Propulsion Laboratory)

Dan Kopetzky (SRC)

Roger Lee (Thinking Machines Corporation)

Kal Li (Princeton University)

Lex Lane (University of Illinois)

Ed La_owska(University of Washington)

Rick Light (Los Alamos National Lvhoratory)

Jishnu Mukerji (Unix System Laboratories)

Ed Upchurch (JPL)

Mike Wan (San Diego Supercomputer Center)

221

Mathematical Software Working Group

Mike Heath, Chair (NCSA/University of Illinois)
(217) 333-6268

heath@ncsa.uiuc.edu

Members

Ronald Boisvert (NIST)

Tony Cha_ (University of Califoraia at Los Angeles)

CarrieCoats(EPA)

James Demmel (UniversityofCalifornia,Berkeley)

Jack Dongarra(UniversityofTennessee/ORNL)

BrianFord (NumericalAlgorithmsGroup,Ltd.)

EricGrosse(AT&T BellLaboratories)

Sven J.Hammarling (NumericalAlgorithmsGroups,Ltd.)

LennartJohnsson(ThinkingMachinesCorporation)

JorgeMord (ArgonneNationalLaboratory)

Jean Patterson(JetPropulsionLaboratory)

Anthony SkjeUum (LawrenceLivermoreNationalLaboratory)

BrianT. Smith (The UniversityofNew Mexico)

FrancisG. Tower (NOAA)

222 APPENDIX C. ATTENDEES LIST

Software Tools Working Group

Joel Saltz, Chair (University of Maryland)
(301) 405-2669

saltz@cs.umd.edu

Members

Donna Bergmaa (Cornell Theory Center)

Christian Bischof (Argonne National Laboratory)

Dianna Crawford (Cray Research Park)

John Mellor-Crummey (Rice University)

Frederica Darema, Deputy Chair (IBM T. J. Watson Research Center)

Dennis B. Ga_non (Indiana University)

Ray Glenn (SItC)

Andrea Overman (NASA Langley)

P. Sadayappan (The Ohio State University)

ttobert Schnabel (University of Colorado)

Roy Williams (California Institute of Technology)

223

Visualization Working Group

Lew Tucker, Chair (Thinking Machines Corporation)
(617) 234-1000

tucker@think.corn

Members

Chuck Hansen (Los Alamos National Laboratory)

Ray Idaszak (North Carolina Supercomputer Center)

Paul Woodward, Deputy Chair (University of Minnesota)

Eric de Jong (JPL)

Other Participants

Kamal Abdall (NSF) Adolfy Hoisie (Cornell) Bruce Shapiro (NIH)
Brian Boesch (DARPA) Barry Jacobs (NASA) Walter Shackelford (EPS)
Art Cullati (EPA) Gordon Lyon (NIST) Mike Steuerwalt (NSF)
Robert Ferraro (JPL) Robert Martino (NIH) Walter Stevens (CARB)
John Gary (NIST) Erik Mettala (DARPA) Francis Sullivan (NIST)
Leslie Hart (NOAA) Merrell Patrick (NSF) Robert Voigt (NSF)
Tony C. Hearn (RAND) Bernardo Rodriguez (NOAA)

