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Abstract. We discuss the reliability of a recent global nuclear-structure calcula-
tion in regions far from/_ stability. We focus on the results for nuclear masses, but
also mention other results obtained in the nuclear-structure calculation, for exam-
ple ground-state spins. We discuss what should be some minimal requirements
of a nuclear mass model and study how the macroscopic-microscopic method and
other nuclear mass models fullfil such basic requirements. We study in particular
the reliability of nuclear mass models in regions of nuclei that were not considered
in the determination of the model parameters.

1. Introduction

An understanding of the reliability of nuclear-structure models far from stability is of great
importance for the design of experiments leading to reaction products far from stability, for
astrophysical applications, and for many other applications. Here we discuss several nuclear -
structure models but focus most of our presentation on results obtained in the macroscopic-
microscopic method applied to nuclear masses. In contrast to many other mass models the
macroscopic-microscopic method does not diverge when applied to nuclei outside the region
where its parameters were adjusted It can also describe such diverse properties as nuclear
energy levels, ground-state masses and shapes,/_-decay properties and fission-barrier heights.

In the macroscopic-microscopic method, the energy of a nucleus is calculated as the sum

of two contributions. The macroscopic energy gives the smooth trends, and the microscopic
correction gives the fluctuations about the smooth trends. The former contribution can be

determined from a liquid-drop model, droplet model, Thomas-Fermi model, or similar macro-
scopic model. In nuclear mass calculations two radically different approaches have usually
been used to determine the latter contribution. In one approach the microscopic correction is
determined from calculated single-particle levels by use of Strutinsky's method. In the other
approach an expression for the microscopic correction is postulated, with the parameters of
this expression adjusted to reproduce experimental data. In this latter approach different pa-

rameters are required for each deformed region. Other nuclear mass models are based on other
concepts, such as the nuclear shell-model and the Garvey-Kelson mass relations. We discuss

here the relative merits of the different models and make detailed comparisons.

Like any physical theory, a theory of nuclear masses should fulfill certain standard re-
quirements. For example, it should be able to describe several related phenomena in terms



of a few simple assumptions, have predictive power, be able to provide new physical insight.
and be capable of being disproved. It is reasonable to require that a theory of nuclear masses

predict the energy of any minimum that occurs when the shape of the nucleus is varied, irre-
spective of whether it is the lowest, ground-state minimum or a shape-isomeric minimum. It

is also natural to require that it predict the next magic proton and neutron numbers beyond
2°apb. If this is not possible one cannot have confidence that it can correctly predict effects

related to gaps in regions far from d-stability. To study the reliability of different ma.ss mod-

els far from/:_-stability, we investigate the results of various approaches when applied to new

regions of nuclei that were not considered when the theories were formulated or its parameters
determined.

2. Macroscopic-microscopic model

Most models that have been used for calculating a large number of nuclear-structure proper-
ties for extended regions of nuclei are based on the macroscopic-microscopic method. There

are several possible choices of macroscopic models and also several possible choices of single-
particle models. For each of these models several reasonable parameter sets may exist. Thus,
over the years hundreds of different macroscopic-microscopic calculations have been published.
Although many of these calculations are based on very similar models, there usually exist
significant differences between their detailed predictions. It is our experience that to fully un-
derstand nuclear structure in terms of an underlying model, one has to develop the model in
a careful and consistent manner, and avoid switching back and forth between various formu-

lations of the model with no clear idea of which is the preferred formulation. We illustrate
this principle with a couple of examples from our own work over the years. In particular, we
illustrate how improvements of the calculations lead to the discovery of new physical effects.

2. I. Macroscopic models

In most early applications of the macroscopic-microscopic method 1-5) the macroscopic model
of choice has been the standard liquid-drop model 6,_). However, later several extensions to the
liquid-drop model have been developed.

The droplet model s-l°) expands the energy to one higher order in A -1/3 and relative

neutron excess I = (N - Z)/(N + Z), which allows for the inclusion of compressibility effects

and a neutron skin. However, many applications of the droplet model 10,11) to the calculation
of nuclear masses far from stability indicated that the nuclear mass surface was too soft. As a

consequence, the neutron drip line was predicted to be about 20 neutrons further from stability
than indicated by astrophysical evidence.

In a different approach, the liquid-drop model was generalized to the finite-range liquid-

drop model x9,13) by modification of the surface-energy term to account for the finite range of
the nuclear force. This reduces the surface energy for shapes with a pronounced neck or for

configurations of nearly touching nuclei in heavy-ion collisions. Thus, fission-barrier heights for
nuclei in the vicinity of A = 100 are calculated to be about 40 MeV, in good agreement with

measured values. In contrast, the liquid-drop model and droplet model both give substantially
higher barrier heights for nuclei in this region. For the interaction barrier in heavy-ion collisions

the finite-range liquid-drop model gives results that are similar to those obtained by use of the
proximity-force model 14), but is more general.

The combination of this macroscopic term with the folded-Yukawa single-particle model
we designate the finite-range liquid-drop model (FRLDM)15), which abbreviation is also used

for the macroscopic model only. In an application 16,1r) of the first formulation of this model

to the calculation of nuclear masses and fission barriers throughout the periodic system the



I"RI,I)M g;ave excellent results. However. tile ma.croscopic paxt ia this formulatiou ctoo._ t_ot

describe such fea.tures a,s nuclear compressibility and corresponding va.riatiovls in the protovl
and neutron radii.

The droplet model 8-m), an extension of the original liquid-drop model6), does describe

such features. The well-known deficiencies of its original formulation led Myers to suggest
that the surface-energy terms of the droplet model be generalized to account for the finite

range of the nuclear force. During this work it also became apparent that the description of
nuclear compressibility needed improvement. The new macroscopic model is,t9) that resulted,

the finite-range droplet model, is labeled by FRDM, which also denotes its combination "vith
the folded- Yukawa single-particle model.

2.2. Microscopic models

In the more fundamental version of the macroscopic-microscopic approach the microscopic cor-

rection is determined from calculated single-particle levels by use of Strutinsky's method I,_).

Reviews of early work may be found in refs. 4,20,21). Commonly used potentials are the folded-

YukawaS'16'22), Woods-Saxon23), modified-oscillator 3) and two-center oscillator 24) single-
particle potentials. The pure single-particle models alone are inappropriate for calculating

total potential energies or transition probabilities. In potential-energy calculations it is nec-

essary to include residual pairing interactions treated in either the BCS 20,25-2s) or Lipkin-
Nogami 29-3a) approximation. In calculations of transition rates additional residual interac-
tions, specific to the transition operator, must also be included. In studies of Gamow-Teller

fl-decay a residual Gamow-Teller interaction is treated in the quasi-particle random-phase

(QRPA) approximation 34-as).

3. Calculated nuclear-structure properties

As a first step in studying nuclear decay properties it is natural to determine the nuclear

ground-state shape. Once the ground-state deformation parameters are known, the nuclear
ground-state mass and nuclear wave functions may be calculated. Matrix elements giving

/_-decay transition rates and many other quantities of interest can also be determined. Studies

of fission properties require calculating the nuclear potential-energy surface for shapes relevant
to the fission process. In addition, the inertia tensor must be determined.

3.1. Nuclear potential energy of deformation

To determine the nuclear ground-state shape one must minimize the nuclear potential energy

with respect to the shape of the nuclear surface. This cannot be done analytically so i_ practice
one calculates the potential energy for a set of deformation parameters and determines tile

minimum numerically from the energy in the calculated grid points. A common method is to

draw an energy contour diagram based on the energy in the calculated grid points and locate
the minimum in the contour diagram.

In fig. 1 we show a typical result of a calculation of the nuclear potential energy of
deformation for the nucleus _4_Tu. The calculation was carried out for a two-dimensional grid in

the Nilsson perturbed spheroid parameterization in 378 gridpoints by using 27 equidistant val-

ues of e2 (e2 = -0.30, 0.25,..., 1.0) and 14 equidistant values of e_ (e_ = -0.24,-0.20,..., 0.28),
!

where e_ = e4 if e2 _< 0.25 and e4 = e4 + (e2 - 0.25)/5.0 if e2 > 0.25 Since the appearance of
a contour diagram is strongly dependent on the particular variables in terms of which it is

displayed it is normally best to avoid displaying the calculated results in terms of the pat'am-

eters of the actual parameterization. Instead it is best displayed in terms of parameters that
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Figure 1. Calculated potential-energy surface for 24°pu for symmetric deformations. The
insert corresponds to the potential energy along the dotted line.

characterize the shape in a more general way. One possible choice would be to display the
contour diagram in terms of the multipole moments of the shape. However, then the inertia

of two separated fragments would not be constant, which would complicate the interpreta-

tion of fission potential-energy surfaces. Therefore we have often chosen to display calculated
potential-energy surfaces in terms of the two moments r and o'39,4°), where r is the distance

between the centers of mass of the two halves of the system and a is the sum of the root-mean-
square extensions along the symmetry axis of the mass of each half of the system about its
center of mass.

Figure 1 is based on a sufficiently large grid to show almost the entire barrier that a

nucleus undergoing symmetric fission would have to penetrate. Fission and barrier penetration
are multidimensional concepts, but to obtain a one-dimensional picture one often plots the

energy along a path through the minima and saddle points in the multidimensional space
versus r. In the insert we see such a one-dimensional fission barrier corresponding to the

dotted path in the two-dimensional contour diagram. The contour diagram illustrates that

there are several minima in the potential-energy surface. The minimum at r/Ro = 1.12 is the

fission isomeric state. The deepest minimum at r/Ro = 0.87 is the nuclear ground state. The
contours are plotted relative to the spherical macroscopic energy. A third minimum in the

lower left corner represents an oblate local minimum.



3.2. ilutdequaey of mMels without deformation

Oblaa.e mininla can sometimes become lower than tile prolate minima.. Ill out' calculations _,[
ground-state shapes of 8979 nuclei we find that for 771 nuclei _2 _<-0.10 and for 5558 nuclei
_2 > 0.10. The occurrence of oblate nfinima is the reason we feel that models t,hat do not
incorporal;e deformation can never properly describe nuclear masses. To illustrate this, let
us for simplicity discuss the case of a multiparameter mass model of a type that contains an
expression whose parameters axe adjusted by minimizing the rms deviation between calculated
and measured masses. Suppose further that in some region of the nuclear chart nuclei have
both oblate and prolate minima but that the oblate minima for all known masses are about.
1 MeV higher than the prolate minima. The nuclear mass "model" describes the nuclear masses
corresponding to these prolate minima well. Now we assume that new nuclei are discovered
in this region, and that the oblate minima, becomes lower than the prolate minima by say
2 MeV, because for oblate shapes a large energy gap appear:" in the level diagrams at the
appropriate nucleon numbers. In tiffs situation the multiparameter model that does not account
for deformation would predict a mass corresponding to the prolate minimum, and be in error
by about 2 MeV.

3.3. Nuclear masses

Our own work on nuclear mass modds has now resulted in a preferred formulation based
on the folded-Yukawa single-paxticle potential and the finite-range droplet model. It will be
completely specified in a forthcoming contribution to Atomic Data and Nuclear Data Tables 29).
This model has its origin in a 1981 nuclear mass model Is) which utilized the folded-Yukawa
single-paxticle potential developed in 1972s). One important feature of the 1981 calculation
was the use of an improved choice 22) for the spin-orbit and diffuseness parameters of the
potential. Another was the use of the finite-range liquid-drop model as the microscopic model.
The FRLDM is of importance both for the calculation of the effect of higher multipoles on
the ground-state mass and for the calculation of fission-baxrier heights. Because of these
intprovements, the 1981 calculation was sufficiently accurate to sho_' P3 (octupole) effects
on masses near 222Ra and P6 effects on masses near 252Fm. The observation of the octupole
effects on nuclear masses provided the seed stimulus for a revi_ed interest in the properties
of nuclei near 222Ra, as summarized in the extensive paper 41) by Leander and Chen. The
improved model also showed the presence of a peninsula of stability lz) extending from the
superheavy island towards the heaviest known elements.

In 1984 it was shown that the incorporation of the finite-range surface energy and an
exponential term Is) to the original droplet model s-t0) resulted i_Ldramatic improvements in its
predictive properties, as summarized in the discussion of table A in ref. 1_). Mass calculations
based on both the FRLDM 15) and the FRDM 19) were presented in the 1988 review of mass
models in Atomic Data and Nuclear Data Tables. These calculations also used an improved
pairing model relative to that used in the 1981 work. In the 1988 results the error in the FRDM
was about 10% lower than that in the FRLDM.

There were two major unresolved issues in the 1988 calculations. First, there still existed
some deficiencies in the pairing model and parameter choices that were used. Second, _3

and E6shape degrees of freedom were still not included, so deviations between calculated and
measured masses due to the omission of these shape degrees of freedom were still present.
Extensive investigations of pairing models and their parameters have now been completed and
resulted in an improved formulation of the pairing model 33). We have now also minimized the
potential energy with respect to _3and Esshape degrees of freedom. An overview of the results
has been given in a paper on Coulomb redistribution effects 42).
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Figure 2. Comparison of experimental and calculated microscopic corrections for 1654
nuclei, for a macroscopic model corresponding to the finite-range droplet model. The bot-
tom part showing the difference between these two quantities is equivalent to the difference
between measured and calculated ground-state masses. There are almost no systematic
errors remaining for nuclei above N = 65, for which region the theoretical error is only
0.448 MeV. The results shown in this figure represent our new mass model.

3.4. Recent mass model improvements

The FRDM, which includes Coulomb redistribution effects, is now the preferred nuclear mass

model. Relative to the work described in refs. 42,43) further improvements have been incorpo-

rated into the model. First, it was found that the _, zero-point energy could not be sufficiently
accurately calculated in our current model. It is therefore no longer included, whereas the e

zero-point energy is retained. Second, we have also returned to the original prescription of
including basis functions corresponding to 12 oscillator shells for all A values, instead of using

somewhat fewer basis functions for lighter nuclei42,43). Third, we now use an eighth-order

Strutinsky shell correction with a range 7 = 1.0 hw instead of our earlier choice of a sixth-order

Strutinsky shell correction with the same range. The change in zero-point energy reduced the
error in the calculated neutron separation energies from 0.551 MeV to 0.444 MeV and the mass

error from 0.778 MeV 42,43) to 0.773 MeV. The second and third improvements further reduced
the separation-energy error to 0.411 MeV and the mass-model error to 0.669 MeV.

Figure 2 shows the results of the FRDM calculation. As usual; the top part shows the

differences between measured masses and the spherical macroscopic FRDM contribution plotted
against the neutron number N, with isotopes of a particular element connected by a line. These

"experimental microscopic corrections" are to be compared with the calculated microscopic

corrections, which are plotted in the middle part of the figure. When the macroscopic and
microscopic parts of the mass calculation are combined and subtracted from the measured

masse_ the deviations in the bottom part of the figure remain. The trends of the error in the

heavy region suggest that this mass model should be quite reliable for nuclei beyond the current

6
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Figure 3. Analogous to fig. 2, but for the finite-range liquid-drop model, which contains
no Coulomb redistribution terms. This leads to the systematic errors in the heavy region,
where the negative errors indicate that calculated masses are systematically too high.

end of the periodic system. When E3and e6 shape degrees of freedom were included in the mass
calculations it became clear that the FRLDM, which does not treat Coulomb redistribution

effects, is deficient in the heavy-element region, as is seen in fig. 3.

Because the Coulomb redistribution term that is included in the FRDM is proportional to
Z_A 1/3 this term grows very rapidly for increasingly heavy nuclei. One therefore expects that

masses calculated in models that do not account for Coulomb redistribution effects will diverge
as one moves towards heavier nuclei. This is borne out by our calculations where we find, for

example, a 3-MeV difference for 2r2110 between the FRDM prediction of 133.82 MeV and the
FRLDM prediction of 136.61 MeV. Thus, according to the FRDM, in heavy-ion reactions the

compound system is created at a higher excitation energy relative to predictions of models that
do not account for Coulomb redistribution effects.

Finally, we compare in fig. 4 our results to those calculated with the ETFSI- 1 model 44._ ).

It is the only other recent global mass calculation based on a quantal treatment of the nucleon

interaction that we are aware of. In the graph we show the difference between measured

masses and calculated masses for the two models. For the FRDM we have limited the plot to
A >_36, which is the region considered in the ETFSI-I calculation. Because slightly different

experimental data bases were used in the two investigations, the number of nuclei in the top and
bottom parts of the figure are not the same. One observes that the FRDM has considerably

smaller errors i_ the heavy region, and that the strong odd-even staggering present in the
ETFSI-I results is absent in the top curve.
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Figure 4. Comparison of discrepancies between measured and calculated masses for two
models. The ETFSI-I model shows a strong odd-even staggering, indicating a problem in
the pairing model. The FRDM gives better agreement with experimental masses, especially
in the heavy region.

3.5. Estimation of model ewors

In most earlier studies 16,46), the error of a theoretical mass model was taken to be the root-

mean-square (rms) deviation

i=1

and the parameters of the model were determined by minimizing arm in eq. (1). Iiere M_h is the

calculated mass and M_xp is the measured mass for a particular proton-neutron combination
specified by Z and N. If one assumes that the calculated masses have a Gaussian distribution

around the true mass with zero mean deviation and if the measured masses have zero error, then
the maximum-likelihood estimate for the standard deviation of the Gaussian distribution of

the model error is ezactly arms. In the more general and realistic situation where the measured

masses are associated with errors, eq. (1) is an incorrect estimator of model error since it will
contain contributions from the experimental errors. It is reasonable to define model error as

before, with the further assumption that the model error may have a non-zero mean deviation
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Figure 5. Calculation to show model reliability in new regions of nuclei. Here we used a
smaller set of measured masses to adjust the model parameters than in the full calculation
shown in fig. 2. The errors for nuclei not included in the adjustment are displayed in this
figure. The error is only 2% larger than in the region to which the model parameters were
adjusted. The larger deviations for two oxygen nuclei 6 and 7 neutrons from D-stability
may indicate that light nuclei this close to the neutron drip line are outside the range of
model applicability.

fLth from the experimental masses. With these definitions the equations that determine the

model adjustable parameters p_ and the error quantities O'th and #th are:

i=n i _ (M_ h gth*)] Ol_/l_h[M;,,, + = o, _ = 1,2,...,., (2)
i= 1 (7ixp 2 + O'th2* Opu

i=n i 2*

E [M_xp -- (l_//_h _" _th*)]2 -- (O'/xp2 + O'th ) "- 0 (3)

i=1 (,_,_,,p2+a_h2,)2
and

[_o,,o- (M;a+_,,h)]
_-, " -Y_---2_ =o (4)
i=1 . (O'exp _- O'th )

A more complete discussion of our error analysis is presented in refs. ls,43). To allow
for a single error measure that is similar to an rms deviation between the data and model we

also calculate the square root of the second central moment of the error term, ath;_,=0. This
quantity is obtained by setting #th = 0 when solving eq. (3). In contrast to the rms measure,

it has the advantage that it has no contributions from the experimental errors.

A common misconception is that one has to "throw away" data points that have errors
that are equal to or larger than the error of the model whose parameters are determined. When

the above formalism is used, this is no longer necessary.

9
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Figure 6. Analogous to fig, 5 but for the model of yon Groote et ai. 47). For this model
with postulated shell corrections and more adjustable parameters than our model with
calculated shell corrections, the errorgrows by 72% in the new region relative to the error
in the region where the parameters were adjusted. There is also a systematic increase in
the errorwith increasing distance from _-stability.

3.6. Eztrapability of nuclear mass models

One test of the reliability of a nuclear mass model is to compare deviations between measured

and calculated masses in new regions of nuclei that were not considered when the model pa-
rameters were determined to deviations in the original region. This type of analysis was used

earlier by Haustein46). However, we here considerably modify his analysis. In addition to ex-
amining the raw differences between measured and calculated masses, we use these differences

to determine the model mean discrepancy #th from the true masses and the model standard
deviation ath around this mean. Whereas the raw differences do not show the true behavior

of the theoretical error because errors in the measurements contribute to these differences, by

use of the ideas developed in the previous section we are able to estimate the true mean and

standard deviation of the theoretical error term eth.

Since our new mass model was developed only recently, we cannot test its reliability in
new regions of nuclei because sufficiently many new data points are not available. Tlmrefore,

we have resorted to a simple simulation, in which we adjusted the model parameters to the

same experimental data set that was used in our 1981 mass calculation 16). Consequently,
this calcu!ation is not quite identical to the one on which fig. 2 is based. The differences

between the 351 new masses that are now measured 4s) and the calculated masses are plotted
versus neutrons from /_-stability in fig. 5. We note no systematic increase in the error with

increasing neutrons from fl-stability. For the new region of nuclei the square root of the second
central moment is 0.686 MeV, compared to 0.671 MeV in the region where the parameters were

adjusted, representing an increase of only 2%.

i0
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Figure 7. Comparisonoferrorbehaviorfortwomodelsappliedtonew nucleiversus
distancefrom,8-stability.Comparethisfiguretofig.8,whichisplottedtothesamescale.

Mass models based on postulated shell-correction terms and a correspondingly larger
number of parameters normally diverge outside the region where the parameters were deter-
mined. As an example of such behavior, we show in fig. 6 the error of the yon Groote et al. 4T)

mass cMculation for the same region of nuclei.

To study more quantitatively how the error depends upon distance from _-stability, we

introduce bins in the error plots sufficiently wide to contain about 10-20 points and calculate
the mean error and standard deviation about the mean for each of these bins. The results for

the two models shown in figs. 5 and 6 and for five other models are displayed in figs. 7 and 8.

For each model the central, light-gray band representing the original error region extends
one standard deviation on each side of zero. The solid dots connected by a thick black line

represent the mean of the error for nuclei that were not considered when the model parameters
were determined. The dark gray area extends one standard deviation on each side of this line.

The properties of the seven models displayed in figs. 7 and 8, as well as those of a recent neural

network calculation49), are summarized in table 1.

In is of interest to note that for the three models that are based on a quant'al treatment

of the nuclear interactions, namely the three models in the lower part of fig. 8, only two of

ll
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Figure 8. Comparison of errorbehavior for five mass models applied to new nuclei versus
distance from _3-stability. Compare this figure to fig. 7, which is plotted to the same scale.

the points representing the mean deviation fall, just barely, outside the original error region.
Also, the full error of the three models for new nuclei usually falls inside the error region

corresponding to the original d_ta set. Also, there _re no systematic increases of the error
with increasing distance from/_-stability, with the possible exception of the Seeger-How_rd
model on the neutron-rich side. This model is based on a Nilsson modified-oscillator single-
particle potential. The spin-orbit and pseudo-diffuseness p_r_meters of this potential v_ry
rather dramatically over the periodic system, in contrast to the behavior of these parameters

in the folded-Yukaw_ single-particle potential used in the FRLDM and FRDM calculations.
Therefore,even thoughtheyarebasedon a quantaltreatmentof thenuclearinteraction,the

Seeger-Howardresultsm_y be lessreliablefornew regionsof nucleithan calculationsbased

on folded-YukawaorWoods-Saxon potentials.In summary, we feelthatat leasttheFRLDM
aad FRDM show substantialpromiseofbeingreliableas theprotonand neutrondriplines_re

approa_ahed.

In contrast,itisclearthattheremainingmodelsthatarenot basedon a quantaltreat-
ment ofthenuclearinteractionquicklydivergewhen appliedto nucleioutsidetheregionwhere

theirparameterswereoriginallyadjusted.One can expectthattheywould become evenmore
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Table 1. Comparison of errors of different mass calculations. Tile errors are tabulated
both for tile region in which tile parameters were originally adjusted and for a set of new
nuclei that were not taken into account in the determination of the parameters of the mass
models. The errorratio is tile ratio between the numbers in cohunns 9 and 3, except for tile
last line, where column 6 is used instead of column 9. It would have been preferableto use
the error in column 4 instead of that in column 3, since ath does not contain contributions
from the experimental errors. However, as can be seen in the table, the difference between
the rms error and O'this small in the original region, where masses can be measured with
smaller experimental errors than is possible far from '_-stability.

Original nuclei New nuclei ....

_'Model Npar firms O'th _Vnuc O'rms ' "_th {Yth O'th;#= 0 Error

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) ratio
J. (G.-K.) ~ 5OO 0.118 337 1.461 - 0.278 1.428 1.455 12.33
v. G. et al. ,_ 50 0.67 351 1.193 0.612 0.978 1.154 1.72

H. et al. ,_ 50 0.66 351 1.271 0.519 1.124 1.237 1.87
L.-Z. 178 0.276 346 0.912 - 0.044 0.736 0.738 2.67

S.-H. 9 0.704 309 0.976 0.289 0.910 0.956 1.36

FRLDM 9 0.835 0.831 351 0.911 - 0.321 0.826 0.884 1.06

FRDM 14 0.673 0.671 351 0.735 - 0.004 0.686 0.686 1.02 -
Neuralnet 421 0.828 351 5.981 7.22

unreliablewhen appliedevenfurtherfrom stability.

3. 7. Other properties of nuclear mass models

For some nuclear mass models, it has not been possible for us _o study their behavior for new

nuclei far from E-stability for several reasons. Some models have been developed only recently,
so there is not yet sufficiently many new masses to make a statistically significant analysis.
Others have been developed sufficiently long ago that new mass measurements are available,

but the models were originally applied to such a limited region of nuclei that again a statistical
analysis is not possible. However, for any model one may discuss how it fulfills the few standard
requirements for a physical theory that were discussed in the introduction.

We have not been able to test the extrapability of the ETFSI-I model but have in-
vestigated the differences between the FRDM and the ETFSI-I model far from E-stability.
Normally, the differences between the models are only an MeV or so, but close to the neutron

drip lines the FRDM masses are about 3 MeV more bound in the region below Pb. Above
Pb the situation is reversed and the FRDM masses may be 3 or more MeV less bound than

the ETFSI-1 masses near the neutron drip line. In the neutron-deficient superheavy region the
FRDM masses are more bound by 2-4 MeV relative to the ETFSI-I masses.

3.8. Ground-state spins

The most important parameters in the folded-Yukawa single-particle model are the diffuseness
and spin-orbit parameters, which were determined 22) in 1974 in the rare-earth and actinide

regions from comparisons between calculated and experimental single-particle level ordering.
The global nuclear-mass study 16) in 1981 introduced a parameter set valid for the entire nuclear

chart in terms of an expression for the spin-orbit parameter that is linear in A = N + Z, with

the expression fully defined by the previously determined parameter values in the actinide

and rare-earth regions. The parameter-determination procedure is fairly subjective, because
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Model spin and parity compared to experiment
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Figure 9. Comparisonof calculated and experimental nuclear ground-state spins for odd-
even nuclei. Spherical spin assignments are used in the calculations when [_2i < 0.15. Many
of the discrepancies occur in transition regions between spherical and deformed nuclei or
where several levels are grouped close together.

it is not based on exact comparisons between all available data and calculations. Instead,
it typically proceeds by calculating single-particle level diagrams as functions of deformation
for several parameter sets, comparing their structure to a few selected nuclei and forming an

opinion on which of the parameter sets gives the best agreement.

Because we now have available nuclear ground-state shapes from our calculations of
ground-state masses, we are in a position to compare calculated and experimental ground-
state spins in a weU-defined manner, as ,_hown in figs. 9 and 10. The only ambiguity is how
to compare the spins for nuclei calculated to be weakly deformed. We have chosen to base
the comparison on spherical assignments if IE21< 0.15 in the calculations. With this rule we
obtain agreement in 446 cases and disagreement in 267 cases, corresponding to 63% agreement.
When the ground-state energy is not minimized with respect to E3 and _6 the agreement we
obtained in a previous calculation, as expected, slightly less favorable results: agreement in 428
cases and disagreement in 285 cases, corresponding to 60% agreement. This result is not very
sensitive to changes in the rule concerning when to use spherical assignments. In fact, if we in
the study without minimization with respect to _3 and Ee always choose spherical assignment if
this choice yields agreement with data we obtain agreement in about 450 case and disagreement
in 248 cases, so that the improvement in the agreement is only 4%. The disagreements between
the calculated and experimental spins usually arise because several deformed or spherical levels
lie very close together, making accurate calculations difficult. For magic numbers there is an
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Model spin and parity compared to experiment
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Figure 10. Similar to fig. 9 but for the heavy region. The discrepancies in the heaviest
part of the actinide region occur because here severs] neutron single-particle levels are
greuped very close together.

almost stunning agreement, which, taken together with our analysis of the disagreements in
other regions, makes it unlikely that a significantly better global parameter set can be found.
The existing disagreements probably have to be explained in terms of residual interactions
outside the framework of the single-particle model.

4. Conclusions

Although mass models based on postulated microscopic corrections with a large number of
adjustable parameters have small errors in the region where the parameters were adjusted,
they diverge severely when applied outside this region. The error is typically larger by 100%
or more in the new region than in the region where the model parameters were determined,
and the errors in most cases grow with distance from/3-stability. In contrast, models based on
a quantal treatment of the nuclear interaction show remarkable stability when applied to new
nuclei that were not considered when the models were initially formulated and their parameters
determined.

Another tremendous advantage of the micr"qcopic mass models is that their sound phys-
ical basis makes it possible to interpret discrepancies between calculated and experimental
masses in terms of new physical effects. In our own work, this has allowed the identification of
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octupole effects on nuclear masses in the 222Ra. region, tile discovery (in parallel but indepen-
dently of experiments) of a deformed neutron-deficient superheavy region, and the discovery
of Coulomb redistribution effects on nuclear masses.

From the developments in nuclear-structure models over the last several years and the

application of these models to astrophysical calculations one can draw the following conclusions:

• Mass models based on postulated microscopic corrections and a large number of param
eters are no longer worthwhile, and a disproportionate amount of effort on such models

should be avoided. Instead, the focus should be to develop further the microscopic models

that have provided so much insight into nuclear structure.

• Mass models based on calculated microscopic effects are now sufficiently reliable far from
B-stability to contribute to the understanding of the r-process so).

• The macroscopic-microscopic approach, in particular the FRDM version, is now used

for not only mass calculations, but also for the calculation of/5-decay rates, delayed
neutron emission probabilities, fission barriers, pairing gaps, spins of the ground-state

and excited-state levels, and level densities, which are then used in various astrophysical
studies.

• Our unified approach, based on actually calculating microscopic nuclear-structure effects
o

in a single model by solving the Schr6dinger equation, is now in some cases making it
possible to identify characteristic features in astronomical data as clear nuclear-structure

signatures or, alternatively, as stellar dynamical effects.

This work was supported by the U. S. Department of Energy.
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