AUSTRALIAN ATOMIC ENELGY COMRISSION

RESEARCH ESTABLISHMENT

LUCAS HEIGHTS

A 1620 FORTRAN PROGRAMME FOR THE CALCULATION OF BRAGG AZGLES FOR USE IN POWDER X-RAY DIFFRACTION INVESTIGATIONS

by
D. G. WALKER

ABSTRACT

An I.B.M. 1620 programme is described which calculates the Bragg angles for cubic, hexagonal, and tetragonal crystal systems for use with powder X-ray diffraction techniques. Allowance is made for absent reflections in the case of face - and body - centred cubic and close-packed hexagonal materials.

1. GENERAL CONS IDERATIONS

The existence of tabulated data giving the Bragg angles for various wavelengths allows much time to be saved in extensive powder X-ray diffraction investigations on a particular material. For example, it allows rapid selection of wavelength to give optimum line positions, rapid indexing of patterns and rapid setting. of a diffractometer when oniy a few lines are to be scanned. All that is required for the calculations are values of the lattice parametors, which may be more or less accurete depending on the application of the resulting data. However, such calculations are too tedious and time-consuming oxcent where computer facilities are available.

Most powder investigations are restricted to unit cells having hot more than two paraneters (cubic, hexagonal, and tetragonal) and the programme described has boen linited to theso cases. If necessary it could be extended to deal with more complex erystal systems.

The programe calculates the Bragg angles of all reflecting planes of the form ($\mathrm{h}, \mathrm{k}, \mathrm{l}$) once only up to the Bragg cut-off. In the simple cubic system, this condition may be expressed as:
$h \geqslant k \geqslant 1$ for $\sin \theta \leqslant 1$,
and for the simple hexagonel and tetragonal systoms as:
$h \geq k$ for $\sin \theta \leqslant 1$.
Further restrictions arise in the case of lattices exhibiting characteristic absences. In generil, the computation con be carried through for the simple latticc, and the ibsent reflection deleted subsequentiy by the user. However, two special cases, the face and body - centred cubic structures, warrant further attention. In those enses, the number of possible rofloctions is substantially loss than for a simple cubic structuro of the same porameter (approximately one third for the face-centred cubic), so thet there is considerablo wastage of machine time if the calculation is made for the primitivo cell. For this roason the programme has becn arranged to allow the selection of the conditions:
h, k, and 1 either all odd or all oven, and
$h+k+1$ even,
for the face - and body - contred structures respectively. Although less importont in torms of machinc time, the condition:

$$
h=k \text { only for } 1 \text { even }
$$

hns beon included to deal with close packed hexagonal structures, since these zrisc frequently in work dono by the Materials Physics Section.

The logic used in this procramne is illustratcd in Figure 1 which shows a flow dingram for the computation of all possible roflections for a face-centred cubic lattice. Similar logic and arrangement are used for other cases.

2. PROGRAMME DETAILS

The programmu is written in Fortran I with Formnt and is ist-d in Appondix 1. Roforence to this will show that the first dnta input contains, in soquence, the numbur of wavulengths to be computed, the crystal systom index, tie charactoristic absonces index and the "a" and "c" parameters. The first three of these are in fixed point and have boen allotted fivids of 3,2 , and 2 respectively. The coding for the indices is as follows:
(s) Crystal System Index

1 = Cubic; $2=$ hexasonal; $3=$ tetragonal
(b) Characteristic Absences Index

Reflections only when:

$$
\begin{aligned}
& 1=h, k, 1 \text { all odd or all even; } 2=h+k+1 \text { even } \\
& 3=(h=k) \text { only for } 1 \text { oven; } \quad 4=\text { all } h, k, 1 .
\end{aligned}
$$

The parameters are in flonting point and have each been allottod a fiold of 9 with 5 pinces of decimals. In the case of Cubic crystals, any value (or blanks) may bo uscd for the "e" ptrameter. Aftor reading, the parametors are printod and punched for reforence. The various wavelengths are thon road in on separate cards, each having a field of 8 with 5 decimal places. For example, consider the calculation of reflections from a body centred cubic structure, " ${ }_{\mathrm{a}}$ " $=2.652$, for copper $K \alpha$, and $\mathrm{K} \epsilon$ radiation. The data would be as follows, where "b" is used to indicate blanks:

Card 1 bb2b1b2bb2.625bbbb0.
Card 2 bl. 54050
Card 3 bl. 39217
The Bragg angles for each whvelength are computed in a "DO" loop and at the start of each loop the corresponding wavelength is printed and punchod. Fixed point arithmetic is used to decide between odd and even $v=l u e s$ where charactoristic absences are involved. The output consists of the Brag? angles (in degrees of ө) terminated at 3 decimal places together with the corresponding Miller indices, arranged in columns and headed, respectively, H, K, L, THETA. Sense switch 1 is used to give the output as punched (off) or printed and punched (on). After the values for all the input wavelengths have beon computod, the instruction "FINISH LOAD NEXT DATA" is printied on tho typewriter. Further calculations can then be initiated by plneing the corresponding data cards in the reader hopper and pressing "Reader Start".

An average value of the speod of computation for this programme using the I.B.M. 1620 computer with punched output is about 25 reflcctions per minute.

APPEMDIX 1

PROGRNMIS LISPING

DIMENSIUN NAV（SU）\＆NC（כU）\＆THETA（SU）
1 REAU IUUU ，N，NS，NCA ，A ，C
PRINT IUOI，A．C
PUNCH luOl，A，C
DO $27 \quad 1=1$ ．N
READ Luvz＊WAV（I）
PRINT $1 \cup 03$ ，WAVII）
PUNCH luU3，WAV（I）
IF（SENSE SWITCH 1） 3 ， 6
5 PRINT 1 UUG
6 PUNCH IUUG
$J=1$
$K=0$
$\mathrm{L}=\mathrm{u}$
2 GO＇TUT 3，8，9，111，NCA
3 JK＝JーK
$K L=K-L$
$J K 2=J K / 2$
$\mathrm{KLL} 2=\mathrm{KL} / 2$
IFIJK－2＊JKZ）28．28．29
28 IF（KL－2＊KL2） 11,11 ＊21
29 IF（KL－2＊KLZ）19．19．21
$8 \mathrm{JS}=\mathrm{J}+\mathrm{K}+\mathrm{L}$
JS $\angle=J 5 / 2$
1F（JJ－2＊JS2）19．11．19
9 IF（JーK）11．1し＊11
1u $L 2=L / 2$
1F（L－2＊L2）19，11，19
11 GO TU（12，13，14），NS
$1<\mathrm{X} J K L=\{J * J\}+\{K * K\}+\{L * L\}$
SN（1）＝WAV（1）＊SQRT（XJKL）／（2＊＊A）
GO TO 16
$13 Y J K=(J * J)+(J * K)+(K * K)$
$X J K=4 \cdot 13$－$*$ Y JK
GO TU 15
$14 \times J K=(J * J)+(K=K)$
1） $\mathrm{XL}=\mathrm{L}$＊ L
SN（I）＝wAV（I）／2＊＊SGKT（ $(X J K /(A * A))+(X L /(C *()))$
16 1F（SN：1）－1．）17， 27,20
17 THETA\｛I）＝37－29S7B＊ATAN\｛SURT（iSN（I）＊SN（I））f（1e－（SN（1）＊SN（1）））））
IFISENSE SWITCH 1）18．7
1甘 PRINT LUUつ，J，K，L，THETA（I）
PUNCH luub，J ，K，L，THETACI）
$19 J=J+1$
GO TU 2
2u 1F（K＋1－J）21，22，22
$21 \mathrm{~K}=\mathrm{K}+1$
$J=K$
GO TU

-2-
 APPIADIX 1 (oontinued)

```
    LL GO TU(23.25.25),NS
    <3 1F(L-K)24,*\,27
    <4 L=L+i
        K=L
        J=K
        60 10 2
        25 1F:(k,27.27.26
26 L=L+1
        k=0
        J=0
        GO 1O 2
        27 CONTINUE
        PRINT IUG4
        GO TO 1
1000 FOKMAT (13,12,12,F9.5,F9.5)
IUU1 FOKMAT I11H PARAMETERS.5X F9.5.5X F9.5)
1002 FOKMAT (FB.S)
1004 FORMAT (11H WAVELENGTn,כX FB-S)
10U4 FOHMAT &TH FINISH,SX 15H LOAD NEXT DATAL
1005 FORMAT (13.2X 13,2X 13.14X F7.3)
LUUG FORMAT (SH H. 2X 3H K. 2X 3H L. 15X 5HTHETA)
```


FIGURE I
BLOCK DIAGRAM OF SCHEME OF COMPUTATION FOR A FACE-CENTRED CUBIC MATERIAL

