A differential equation from the theory of

 NEUTRON THERMALISATION

ABSTRACT

The "heavy gas model" using a synthetic kernell leads to the following coupled equations for the determination of the neutron flux $\neq=\phi(\mathrm{E})$ in a bare reactor:
$\int-\left(\Sigma_{a}+B^{p} D\right) \notin+\frac{\partial q}{\partial E}+s=0$ $\left\{q=\epsilon \Sigma_{s}\left[(\beta E-T) \notin+E T \frac{\partial \phi}{\partial E}\right]-\epsilon \epsilon E S+\epsilon \in E B^{2} D \notin\right.$.

$$
B=1+\epsilon \frac{\Sigma_{\mathrm{a}}}{\Sigma_{\mathrm{s}}}
$$

This paper deals with the very special problem of solving analytically the definiog equation or the energy dependent neutron flux in a region for which there are no source terme and wherein $\Sigma_{\text {a }}$, and Σ_{s} are constant. Thas, various forms of the solutions of the equation:
$x \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\lambda y=0 ; \quad 0<\lambda<1$
may be derived for the two-point boundary value problem (a<b):
$\left\{\begin{array}{l}y(a)=A \\ y(b)=B\end{array}\right.$

$$
\text { where we have writen } \begin{aligned}
& \text { ABSTRACT (conviaued) } \\
& x=M E, \\
& y=\phi_{*} \\
& \lambda=\frac{N}{M}, \\
& N=\frac{1}{T}\left[1+\frac{\epsilon}{\Sigma_{s}}\left(\Sigma_{a}+B^{2} D\right)-\frac{\Sigma_{a}+B^{2} D}{S \Sigma_{\mathrm{a}}}\right], \\
& M=\frac{1}{T}\left[1+\frac{\epsilon}{\Sigma_{\mathrm{s}}}\left(\Sigma_{a}+B^{2} D\right)\right] .
\end{aligned}
$$

Some of these forms are derived, and the problem of accurakely evaluating them aumerically in discussed.

The author is well aware of the rather arcificial nature of the physical model embodied in this equation. However, the extreme simplicity of the fanctional forms of the coefficients poses the question whether $w e$ may wse the results here obrained to interpret the anture of the finm values for a more realistic model -- one in which $\Sigma_{a}, ~ D, \Sigma_{s}$, etc. are varimble functions of the independent variable (energy) and not merely constants. A subsequent paper will include E discussion of this question, and an assessment of che accuracy atrainable by substituting the 'constans-paramezer' model successively and collectively over sufficiently small energyintervals.

CONTENTS

Page

1. INTROLUCTION 1
2. DERIVATION OF THE DIFFERENT FORMS OF TME FUNDAMENTAL SOLUTIONS 2
2.1 Series Solutions 2
3. 2 Solutions in Terms of Definite and Indefinite Integrals 4
2.3 Concinued Fraction Solutions 6
4. NUMERICAL EVALUATION OF THE SOLUTIONS 7
5. 1 Series Solutions 7
3.2 Solutions in Terms of Defiaite and Indefinite Integrals 9
3.3 Continued Fraction Solutions for y^{\prime} / \mathbf{y} 9
6. CONCLUSION 19
7. REFERENCES 20

1. INTRODUCTION

aid in the deulations of the energy-dependence of the neurron flux in a bure reactor are in progress to Lid in the deternination of the perfermances of some thermal-intermediate power reactors (this rork is
being done by the Engineering Research jection of this establishment.) These involve the "numerical" solution, using a digital compurer, of the following equations (for Equation 2 see Rubbra and Pollard
sind solution,

$$
\left\{\begin{array}{l}
-\left(\Sigma_{a}+B^{2} D\right) \phi+\frac{d q}{d E}+S=0 \tag{1}\\
q=\xi \Sigma_{s}\left[(B E-T) \notin+E T \frac{d \phi}{d E}\right]-\in S E S+\in \xi E B^{2} D \phi
\end{array}\right.
$$

This system is equivalent to a linear second order inhomogeneous defining equation for ϕ or for q, equatron slowing down density. Dering an investigation into the properties of the solutions of
equorint boundary and initial-value probiems, it was discovered that under certain simplifying conditions it is possible to solve this equation explicitly in a variety of ways. Furcher, it can be shown that all these forms can be numerically evaluated to a high degree of aceuracy.

2eported here, then, are different forms of some amalytical solutions of (1) and (2) for the special These solutions (the linearly independent, 'fundamental' solurions correspending to a c , tue or initial the linearly independent, 'fundamental' solutions corresponding to a two-point boundary are presented to provide a method of checking the so-called "numerical solutions" for these special ondicions.
Differentiating (2) and substituting into (1),there results, for constant values of $\mathrm{D}, \Sigma_{\mathrm{a}}, \Sigma_{\mathrm{s}}$, the

$$
\begin{equation*}
E \frac{d^{2} \phi}{d E^{2}}+M E \frac{d \phi}{d E}+N \phi=S_{0} \text {. } \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& M=\frac{1}{T}\left[1+\frac{\epsilon}{\Sigma_{s}}\left(\Sigma_{a}+D^{2} D\right)\right] . \\
& N=\frac{1}{T}\left[1+\frac{\epsilon}{\Sigma_{s}}\left(\Sigma_{a}+B^{2} D\right)-\frac{\Sigma_{a}+B^{2} D}{\zeta \Sigma_{s}}\right], \\
& S_{0}=\frac{1}{T}\left[\frac{(\epsilon \xi-1) S+\epsilon \zeta E \frac{d S}{d E}}{\zeta \Sigma_{s}}\right] .
\end{aligned}
$$

In a region where $\mathrm{S}=0$ this becomes

$$
\begin{equation*}
E \frac{d^{2} \phi}{d E^{2}} \cdot M E \frac{d \phi}{d E}+N \neq-c \tag{4}
\end{equation*}
$$

which is essentially the equation with which the remainder of this report is concetned.
Note here two other formuiations of the problem, coupling the heavy gas thermailsation model
synathetic kernel slowing down model (Thompson and Lawrence 1960; Thompson 1962). The with a synchetic kernel slowing down model (Thompson and Lawrence. 1960; Thompson 1962). Then
respective expressions for a are

$$
\begin{equation*}
q=\xi\left(\Sigma_{s}+\epsilon \Sigma_{a}\right)\left[(E-T) \phi+E T \frac{d \phi}{d E}\right]-\epsilon \xi E S+\epsilon \xi E B^{2} D \phi \tag{5}
\end{equation*}
$$

and

$$
\begin{aligned}
q=\delta \Sigma_{s} & {\left[(E-T) \notin+E T \frac{d \phi}{d E}\right]+\epsilon \xi\left[(E-T)\left(\Sigma_{a} \phi+B^{2} D \phi-S\right)\right.} \\
& \left.E T \frac{d}{d E}\left(\mathbb{Z}_{\mathbf{a}} \notin+B^{2} \mathrm{D} \notin-S\right)\right] .
\end{aligned}
$$

which give rise to the same Equation 3 with

$$
\begin{aligned}
& M=\frac{1}{T}\left[1+\frac{\epsilon B^{2} D}{\Sigma_{s}+\epsilon \Sigma_{a}}\right], \\
& N=\frac{1}{T}\left[1+\frac{\epsilon B^{2} D}{\Sigma_{s}+\epsilon \Sigma_{a}}-\frac{\Sigma_{a}+B^{2} D}{S\left(\Sigma_{s}+\epsilon \Sigma_{a}\right)}\right], \\
& S_{0}=\frac{1}{T}\left[\frac{S(\epsilon \xi-1)+\epsilon \xi E \frac{d S}{d E}}{\xi\left(\Sigma_{s}+\epsilon \Sigma_{a}\right)}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& M=\frac{1}{T} \\
& N=\frac{1}{T}\left[1-\frac{\Sigma_{a}+B^{2} D}{\xi\left\{\Sigma_{s}+\epsilon\left(\Sigma_{a}+B^{2} D\right)\right\}}\right] \\
& S_{0}=\frac{1}{T}\left[\frac{S(\epsilon \xi-1)+\epsilon \xi E \frac{d S}{d E}+\epsilon \xi E T \frac{d^{2} S}{d E^{2}}}{\xi\left\{\Sigma_{s}+\epsilon\left(\Sigma_{a}+B^{2} D\right)\right\}}\right]
\end{aligned}
$$

respectively.
We are therefore concerned with the fundamental solutions of the linear, second-order, homogeneous equation

$$
\left\{\begin{array}{r}
x \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\lambda y=0 \tag{7}\\
x>0,0<\lambda<1
\end{array}\right.
$$

2. DERIVATIDN DF THE DIFFERENT FDRMS DF THE FUNDAMENTAL SOLUTIONS

Three basically different approaches can be made in attempring to obtain explicit solutions of Equation 7:
(i) power series solutions;
(ii) solutions in cerms of definite and indefinite integrals;
(iii) continued fraction solutions for the logarithmic derivatives.

Perhaps the most convenient to calculate numerically are the series solutions.
2.1 Series Solutions
$x=0$ is a regular singular point of (7) and so each of the fundamental solutions can be expressed as a power series in x. It curnsout chat because $0<\lambda<1$ we may use chese series solutions to obrain accurate (1 part in 10° or better) values of $y(x)$ in the range $0<x \leq 5$. If $x>5$, asymptotic series solucioss can be formulated which are al so extremely accurate.

In either range, wc can estimate the error involved in truncating a particular series at a given remm (see Section 3).

The solution $y=\sum_{n=0}^{\infty} A_{n}{ }^{n+s}$ has associated with it the indicial equation:

$$
s(s-1)=0
$$

and a recursion relation:
$(n+s)(n+s+1) A_{n+1}+(n+s+\lambda) A_{n}=0, n=0,1,2, \ldots$
and it is clear that only for $s=1$ does there exist a (fundamental) solution of this form. Thus we have:

$$
\begin{align*}
& y_{1}=\sum_{n=0}^{\infty} A_{n} x^{n+1} \tag{8}\\
& \frac{A_{n}}{A_{0}}=(-1)^{n} \frac{(1+\lambda)(2+\lambda) \ldots(n+\lambda)}{L^{n}+1}, n-1,2, \ldots \tag{9}
\end{align*}
$$

The other fundamental solution is of the focu:
where

$$
\begin{equation*}
y_{2}=c(\log x) y_{2}+\sum_{n=0}^{\infty} B_{n} x^{n} \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
0=A_{0} c+\lambda B_{0} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
(n+1)(n+2) B_{n+2}+(n+1+\lambda) B_{n+1}+c\left\{A_{n}+(2 n+3) A_{n+1}\right\}=0 . \tag{12}
\end{equation*}
$$

If x is much greater than $5, y_{1}$ and y_{2} are represented by series which are coo slowly convergent for convenient numerical computation. In this case, we resort to the use of asymptotic series.

Let the adjoint of y be y^{*}. Then if primes denote differentiation with respect to x, we have:

$$
\begin{equation*}
y=x e^{-x} y * \tag{13}
\end{equation*}
$$

where y * satisfies the confluent hypergeometric equation:

$$
\begin{equation*}
x y^{* \prime \prime}+(2-x) y^{\prime \prime}-(1-\lambda) y^{*}=0 . \tag{14}
\end{equation*}
$$

Now the asymptotic solutions of the confluent hypergeometric equation:

$$
\begin{equation*}
x y^{* \prime \prime}+(c-x) y^{*}-a y^{*}=0 \tag{14a}
\end{equation*}
$$

are

$$
\begin{equation*}
y_{2} \cong x^{-a} \sum_{n=0} \alpha_{n} x^{-n} \tag{15a}
\end{equation*}
$$

and $\quad y_{2} \cong e^{x} x^{a-2} \Sigma_{n=0} \beta_{n} x^{-n}$,
where:

$$
\begin{equation*}
\frac{\alpha_{n}}{\alpha_{0}}=(-1)^{n} \frac{\Pi_{k=0}^{k=n-1}(a+k) \prod_{k=1}^{k=n}(a-c+k)}{L n} \tag{17a}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\beta_{n}}{\beta_{0}}=\frac{\prod_{k=0}^{k=n-1}(c-a+k) \Pi_{k=1}^{k=n}(k-a)}{\underline{n}} \tag{18a}
\end{equation*}
$$

Substituting $c=2, a=1-\lambda$ in these equations we get:

$$
\begin{align*}
& y_{2} * \cong x^{-(1-\lambda)} \sum_{n=0} \alpha_{n} x^{-n}, \tag{15}\\
& y_{2} * \cong e^{x} x^{-(1+\lambda)} \Sigma_{n=0} \beta_{n} x^{-n}, \tag{16}
\end{align*}
$$

where:

$$
\begin{equation*}
\frac{\alpha_{n}}{\alpha_{0}}=(-1)^{n+1} \frac{\lambda(n-\lambda) \Pi_{k=1}^{k=n-1}(k-\lambda)^{2}}{\underline{n}}, \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\beta_{n}}{\beta_{0}}=\frac{\lambda(0+\lambda) \Pi_{k=1}^{k=n-1}(k+\lambda)^{2}}{\underline{n}} \tag{18}
\end{equation*}
$$

Therefore the asymptotic forms of the solutions of (7) may be written:

$$
\begin{align*}
& \bar{y}_{2} \cong x e^{-x} y_{1} *=e^{-x} x^{\lambda} \sum_{n=0} \alpha_{n} x^{-n} \tag{19}\\
& \bar{y}_{2} \cong x e^{-x} y_{2} *=x^{-\lambda} \Sigma_{n=0} \beta_{n} x^{-n} \tag{20}
\end{align*}
$$

2.2 Solutions in Terms of Definite and Indefinite Integrals

A solution of the adjoint Equation 14 is:

$$
\begin{equation*}
y_{1} * 1=\int_{0}^{\infty} e^{-x t}\left(\frac{1+t}{t}\right)^{\lambda} d t \tag{2i}
\end{equation*}
$$

so that a solution of (7) is:

$$
\begin{equation*}
y_{2}=x e^{-x} \int_{0}^{\infty} e^{-x t}\left(\frac{1+t}{t}\right)^{\lambda} d t . \tag{22}
\end{equation*}
$$

another linearly independent solution is given by

$$
\begin{equation*}
y_{z}=\int_{0}^{x} e^{-t}\left(\frac{t}{x-t}\right)^{\lambda} d t \tag{23}
\end{equation*}
$$

Equation 23 may be obtained formally by applying the Laplace transform to (7). Writing

$$
L\{y(t)\} \equiv \int_{0}^{\infty} e^{-s t} y(t) d t \equiv f(s)
$$

we have

$$
L\left\{t y^{\prime \prime}(t)+t y^{\prime}(t)+\lambda y(t)\right\}=0 ;
$$

this gives:

$$
s(1+s) f^{(1)}+(1+2 s-\lambda) f=0,
$$

that is,

$$
\begin{equation*}
f(s)=\frac{h}{s^{1-\lambda}(1+s)^{1+\lambda}} \tag{24}
\end{equation*}
$$

where $h=$ constant. Now

$$
\begin{aligned}
& \left.L^{-1}\left\{\frac{\Gamma(1+\lambda)}{(1+s)^{1+\lambda}}\right\}=e^{-t} t^{\lambda}\right\} \\
& L^{-1}\left\{\frac{\Gamma(1-\lambda)}{s^{1-\lambda}}\right\}=r^{\lambda} \quad s>1 .
\end{aligned}
$$

Therefore the convolution theorem gives:

$$
\text { constant } \cdot y=L^{-1}\left\{\frac{\Gamma(1+\lambda) \Gamma(1-\lambda)}{s^{1-\lambda}(1+s)^{1+\lambda}}\right\}=\int_{0}^{t} e^{-u}\left(\frac{u}{t-u}\right)^{\lambda} d u .
$$

To make the derivation of (23) rigorous, we must establish the existence of the transforms of y, y^{\prime}, and $y^{\prime \prime}$. We have, assuming all the integrals exist,

$$
\begin{aligned}
& L\left\{y^{\prime}(t)\right\}=\left[e^{-s t} y(t)\right]_{0}^{\infty}+\frac{1}{s} L\{y(t)\}, \\
& L\left\{y^{\prime \prime}(t)\right\}=\left[e^{-s t} y^{\prime}(t)\right]_{0}^{\infty}+\frac{1}{s} L\left\{y^{\prime}(t)\right\}
\end{aligned}
$$

The asymptotic solutions (19) and (20) clearly show that $\mathcal{L}\{y(t)\}$ must exist and that moreover $\left[e^{-s t} y(t)\right]_{0}^{\infty}=0$ if $y(0+0)=0$; hence the existence of $L\left\{y^{\prime}(t)\right\}$ is also demonstrated. The existence of $L\left\{y^{\prime \prime}(t)\right\}$ by establishing that of $\left[e^{-s t} y^{\prime}(t)\right]_{0}^{\infty}$ may be shown by examining the asymptotic solutions of the second order equation satisfied by $Y(t) \equiv y^{\prime}(t)$. In Equation 7 , put $Y(x) \equiv y^{\prime}(x), \quad X \equiv-x$ to give, after differentiation,

$$
X \dot{Y}^{\prime \prime}+(1-X) Y^{\prime}-(1+\lambda) Y=0
$$

The asymptocic solutions of this equation are:

$$
\bar{Y}_{1} \cong x^{-(1+\lambda)} \Sigma_{n=0} \alpha_{n} x^{-n}=(-x)^{-(1+\lambda)} \Sigma_{n=0}(-1)^{n} \alpha_{n}(-x)^{-n}
$$

and

$$
\bar{Y}_{2} \cong e^{X} x^{\lambda} \Sigma_{n=0} \beta_{n} x^{-n}=e^{-x}(-x)^{\lambda} \Sigma_{n=0} \beta_{n}(-x)^{-n}
$$

so that

$$
\left[e^{-s t} y^{\prime}(t)\right]_{0}^{\infty}=-y^{\prime}(0+0)
$$

Thus y_{2} is a valid solution of (7); but we must prove it to be linearly independent of y_{1} by employing a reductio ad absurdum method as follows:

If y_{1} and y_{2} are linearly dependent, put

$$
\begin{equation*}
y_{1}=k y_{2}, \tag{25}
\end{equation*}
$$

where k is a constant. This implies:

$$
\begin{equation*}
\frac{x e^{-x} \int_{0}^{\infty} e^{-x t}\left(\frac{1+t}{t}\right)^{\lambda} d t}{\int_{0}^{x} e^{-t}\left(\frac{t}{x^{-t}}\right)^{\lambda} d t}=k \tag{26}
\end{equation*}
$$

Now choose $A>1,0<\epsilon<1$ such that $\frac{\epsilon e^{A}}{\epsilon+A}>1$ and $p u t x=A+\epsilon, x=\epsilon$ successively in (26). After equating the two expressions for k and multiplying up. we get

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-\epsilon t}\left[e^{-A t}\left(\frac{1+t}{t}\right)^{\lambda}\right] d t \int_{0}^{\epsilon} e^{-t}\left(\frac{t}{\epsilon-t}\right)^{\lambda} d t \\
&-\frac{\epsilon e^{A}}{\epsilon+A} \int_{0}^{A+\epsilon} e^{-t}\left(\frac{t}{A+\epsilon-t}\right)^{\lambda} d t \int_{0}^{\infty} e^{-\epsilon t}\left(\frac{1+t}{t}\right)^{\lambda} d t
\end{aligned}
$$

from which it follows that:

$$
\begin{equation*}
\int_{0}^{\epsilon} e^{-t}\left(\frac{t}{\epsilon-t}\right)^{\lambda} d t>\frac{\epsilon e^{A}}{\epsilon+A} \int_{0}^{A+\epsilon} e^{-t}\left(\frac{t}{A+\epsilon-z}\right)^{\lambda} d t \tag{27}
\end{equation*}
$$

But

$$
\begin{equation*}
\int_{0}^{\epsilon} e^{-t}\left(\frac{t}{\epsilon-t}\right)^{\lambda} d t<\int_{0}^{\epsilon} \frac{d t}{(\epsilon-t)^{\lambda}}=\frac{\epsilon^{1-\lambda}}{1-\lambda} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{A+\epsilon} e^{-t}\left(\frac{t}{A+\epsilon-t}\right)^{\lambda} d t>\int_{0}^{\frac{1}{2}(A+\epsilon)} e^{-t} d t=1-e^{-\frac{1}{2}(A+\epsilon)} \tag{29}
\end{equation*}
$$

Equation 27 holds, by virtue of the assumed linear dependence of y_{2} on y_{2}, for all values of A and $\in>0$. Bur for a given λ. we may choose an $\epsilon \ll 1$ and an $A \gg 1$ such that (28) and (29) taken together contradiet (27); thus (25) is false and y_{1} and y_{2} are linearly independent solutions of (7).

2.3 Continued Fraction Solutions

Consider the linear, second-order, homogeneous equation in the form:

$$
\begin{equation*}
y^{\prime \prime}+A_{2} y^{\prime}+A_{0} y=0, \tag{30}
\end{equation*}
$$

where A_{2} and A_{0} are infinitely differentiable functions of x in a particular region $x_{2} \leq x \leq x_{2}$. Then it is possible to obtain a formal continued fraction solution in the form:

$$
\begin{equation*}
\frac{y^{\prime}}{y}=\frac{1}{a_{0}}+\frac{b_{1}}{a_{1}}+\frac{b_{2}}{a_{2}}+\ldots \tag{31}
\end{equation*}
$$

as follows:

$$
y=a_{0} y^{*}+b_{1} y^{*}, \quad m_{0}=\frac{-A_{1}}{A_{0}}, b_{2}=-\frac{1}{A_{0}} ;
$$

a second differentiation gives:

$$
y^{\prime}=a_{1} y^{\prime \prime}+b_{2} y^{\prime \prime \prime}, \quad a_{2}=\frac{a_{0}+b_{1}^{\prime}}{1-a_{0}^{\prime}}, b_{2}=\frac{b_{1}}{1-a_{0}^{\prime}}
$$

Combining these last two equations gives:

$$
\frac{y}{y^{x}}=a_{0}+\left\{\frac{b_{1}}{a_{2}}+\frac{b_{2}}{a_{2}}+\ldots\right\}
$$

where

$$
\begin{align*}
& a_{0}=\frac{-A_{2}}{A_{0}}, b_{2}=\frac{-1}{A_{0}}, \tag{32}\\
& a_{n}=\frac{a_{n-1}+b_{n}^{\prime}}{1-a_{n-2}^{\prime}}, \quad \text { and } \tag{33}\\
& b_{n}=\frac{b_{n-1}}{1-k_{n-2}^{\prime}} \tag{34}
\end{align*}
$$

Applying this algorism in turn to (7) and its adjoint, (14), we get:

$$
\begin{align*}
& \frac{y_{2}^{\prime}}{y_{2}}=\frac{1}{a_{0}}+\frac{b_{2}}{a_{2}}+\ldots \tag{35}\\
& a_{0}=\frac{-x}{\lambda}=b_{2} \tag{36}\\
& a_{n}=-\frac{n+x}{n+\lambda} \tag{37}\\
& b_{n}=-\frac{x}{n-1+\lambda} \tag{38}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{y_{2}^{\prime}}{y_{2}^{\prime}}=\frac{1}{\alpha_{0}}+\frac{A_{1}}{\alpha_{2}}+\ldots \tag{39}\\
& \alpha_{0}=\frac{2-x}{k} \quad \tag{40}\\
& A_{1}=\frac{x}{k} \quad \tag{41}
\end{align*}
$$

$$
\begin{align*}
& a_{n}=\frac{n+2-x}{n+k} \tag{42}\\
& A_{n}=\frac{x}{n-1+k} \tag{43}\\
& k=1-\lambda \tag{44}
\end{align*}
$$

Obviously, there will be a certain value of $n_{,}$, way N, beyond which α_{n} and A_{n} are always positive; for $x \leq 10$ we may take $N=8$. Assuming y_{i} and $y_{z}=x e^{-x} y$ to be linearly independent (see Section 3) the logarithmic derivatives of the fundamental solutions of (7) may be written:

$$
\begin{align*}
& \frac{y_{1}^{\prime}}{y_{2}}=\frac{1}{a_{0}}+\frac{b_{3}}{a_{2}}+\frac{b_{2}}{a_{2}}+\ldots \tag{35}\\
& \frac{y_{2}^{\prime}}{y_{2}}=\left(\frac{1}{x}-1\right)+\frac{1}{a_{0}}+\frac{A_{2}}{a_{2}}+\frac{A_{2}}{a_{2}}+\ldots \tag{45}
\end{align*}
$$

The conditions for the existence of these continued fraction solutions presuppose that $y_{i} f 0$ ($i=1,2$) in $\left(x_{1}, x_{2}\right)$, and that the limits

$$
\lim _{n \rightarrow \infty} a_{n}, \lim _{n \rightarrow \infty} b_{n}
$$

actually exist and are finite.
The coefficients in (7) and (14) are such as to ensure the existence of the corresponding continued fraction expansions (35) and (39). (See, for a list of these existence conditions, Erdelyi, A. (editor) "Higher Transcendental Functions" - volume 3).

3. NUMERICAL, EVALUATION OF THE SOLUTIONS

Having derived the mathematical solutions (i), (ii), and (iii) above we turn to the problem of their numerical evaluation. The author used an "I.B.M. 1620 " type digital comparer to calculate numerical values in all three cases.

In what follows, the accuracy of these numerical evaluations will be discussed.

3.1 Series Solutions

From (8), $y_{1}(x)$ is obviously represented in the rage $0<x<$ o by atricely alteramiag aeries for which

$$
\left|\frac{A_{n+1} x^{n+2}}{A_{n} x^{n+1}}\right|<1 \text { for some value of } a \geq N .
$$

(In the range $0<x \leq 5$, the output from the co purer programmes designed to calculate $Y_{a}(x)$ for various values of λ with $A_{0}=1$, indicated that we may take $\mathrm{N}=12$).

With regard to the second solution $y_{x}(x)$, we note first that none of A_{0}, B_{0}, E is zero; their otherwise arbitrary values are limited by the condition imposed by (18). Next, putting $\mathrm{B}_{3}=0$, we get:

$$
\begin{aligned}
& \frac{B_{2}}{A_{o c}}=\frac{1+3 \lambda}{4}<1 \\
& \left|\frac{B_{3}}{A_{o c}}\right|=\left|\frac{1}{36}\{5+15 \lambda+7 \lambda)\right|<\frac{3}{4}, \\
& \left|\frac{B_{3}}{A_{o c}}\right|-\frac{B_{2}}{A_{o c}}=-\frac{1}{36}\left\{4+12 \lambda-7 \lambda^{2}\right\}<0 .
\end{aligned}
$$

so that

$$
\mathbf{B}_{=}\left|<\left|\mathbf{B}_{2}\right| .\right.
$$

Now $\frac{1}{A_{0}}\left\{A_{n}+(2 n+3) A_{n+1}\right\} \leqslant 0$ according as n in even or odd respectively. Therefore,

$$
(n+1)(n+2) \frac{B_{n+2}}{A_{0} c}=-\left[(n+1+\lambda) \frac{B_{n+1}}{A_{c} c}+\frac{1}{A_{0}}\left\{A_{n}+(2 n+3) A_{n+1}\right\}\right],
$$

and remembering that $\frac{B_{2}}{A_{0} c}>0$, it follows by indaction that

$$
\frac{B_{a k}}{A_{0} C}>0, \frac{B_{a k+1}}{A_{0} c}<0 . \quad k=1,2, \ldots
$$

and

$$
\Sigma_{n=0}^{\infty} B_{n} x^{n}
$$

is thus a strictly alvernating aerien.
To complete the analysis of the convergence rate of this series, we prove the following:

$$
{ }^{\prime} \mathbf{I} \mathbf{f}\left|\mathrm{B}_{\mathbf{N}+1}\right|>\mathbf{T}\left|\mathbf{B}_{\mathbf{N}+2}\right| \quad, \quad \mathbf{T} \leqslant \mathbf{N}
$$

chen $\quad\left|B_{N+k}\right| \geqslant \mathbf{T}\left|B_{N+k+1}\right| * \quad k=1,2, \ldots \quad$ *
PROOF: We have:

$$
\left|\frac{B_{N+2}}{A_{0 c}}\right|=\frac{1}{(N+1)(N+2)}\left\{(N+1+\lambda)\left|\frac{B_{N+1}}{A_{0} c}\right|+\left[\frac{(1+\lambda) \ldots(N+\lambda)}{[N+1}\right]\left[(N+1)^{n}+(2 N+3) \lambda\right]\right\} ;
$$

shen if $\left|\mathrm{B}_{\mathrm{N}+1}\right|>\mathrm{T}\left|\mathrm{B}_{\mathrm{m}+\mathrm{F}}\right|$, it follows that
$\left\{\frac{T\left[(N+1)^{*}+(2 N+3) \lambda\right]}{(N+1)(N+2)-T(N+1+\lambda)\}}\right\}\left\{\frac{(1+\lambda)(2+\lambda) \ldots(N+\lambda)}{\frac{N+1}{N}+2}\right\}<\left|\frac{B_{N+1}}{\Lambda_{0} C}\right|$
and, converwely, if this last relarion holds, then $\left|\mathrm{B}_{\mathrm{N}+\mathrm{i}}\right| \geqslant \mathrm{T}\left|\mathrm{B}_{\mathrm{N}+\mathrm{i}}\right|$. Now from the asaumed relationship between $\left|\mathrm{B}_{\mathrm{N}+2}\right|$ and $\left|\mathrm{B}_{\mathrm{N}+\mathrm{n}}\right|$ we have

$$
\left.\begin{array}{rl}
\left|\frac{B_{N+z}}{A_{0} c}\right| & >\left\{\frac{(N+1)^{2}+(2 N+3) \lambda}{(N+1)(N+2)}\right\}\left\{1+\frac{T(N+1+\lambda)}{(N+1)(N+2)-T(N+1+\lambda)}\right\}\left\{\frac{(1+\lambda)(2+\lambda) \ldots(N+\lambda)}{L N+1}\right\} \\
& =\frac{N+2}{N+1+\lambda}\left\{\begin{array}{l}
(N+3)\left[(N+1)^{2}+(2 N+3) \lambda\right] \\
(N+1)(N+2)-T(N+1+\lambda)
\end{array}\right\}\left\{\frac{(1+\lambda)(2+\lambda) \ldots(N+1+\lambda)}{[N+2}[\mathbb{N}+3\right.
\end{array}\right] .
$$

The proof is completed by showing that:

$$
\frac{(N+3)\left[(N+1)^{*}+(2 N+3) \lambda\right]}{(N+1)(N+2)-T(N+1+\lambda)} \geqslant \frac{T\left[(N+2)^{2}+(2 N+5) \lambda\right]}{(N+2)(N+3)-T(N+2+\lambda)} .
$$

and wich some rearrangement, this can be prowed when $\mathrm{T} \leqslant \mathrm{N}$.
Thus, wisg this lemma, we can set an upper bound to the magnitude of the truncation erzor obrained by cerminating the series at the term in $x^{n}, n \geq N$, provided that $x \leq N$. (This upper bound is of course the magnitude of the first neglected term of the series).

To the range $0<x \leq 5$, at most fifteen terms were required to obtain mumerical values of y_{1} and y_{2} accurate to better than 1 part in 10^{*}.

From (17) and (18):

$$
\begin{gather*}
\lambda(1-\lambda)(2-\lambda) \ldots(n-1-\lambda)>\left|\frac{a_{p}}{\alpha_{0}}\right|>\frac{\lambda}{n}(1-\lambda)(2-\lambda) \ldots(n-1-\lambda) \\
\left|\frac{a_{n} x^{-n}}{\alpha_{n-1} x^{-(n-1)}}\right|<1, \quad x 2 n-1 . \tag{46}\\
\lambda(n+\lambda)(1+\lambda)(2+\lambda) \ldots(n-1+\lambda)>\frac{A_{n}}{\beta_{0}}>\lambda(1+\lambda)(2+\lambda) \ldots(n-1+\lambda) \\
\frac{\beta_{n} x^{n}}{A_{n-2} x^{-(n-1)}}<1 . \quad x 2 n+1 \ldots \tag{47}
\end{gather*}
$$

Equations 46 and 47 fix the end terms of the asymptotic series (19) and (20) reapectively, and therefore the correaponding error terma may be calculated by taking them to be at moat the abwolute value of the following term in the appropriate series. For x moderately larger than 5 , the errora incurred by using the asymptotic forma (19) and (20) are negligible.

3.2 Solurions in Terms of Definite and Indefinise Intertals

The nolutions y_{1} and y_{2} of (22) and (23) [which are not aecessarily proportional to the corremponding y_{i} and y_{z} of (8) and (10)] may be numerically computed asiag well-known quadrature formulae.

In the range $0<x \leq 5$ the series solutions (Section 3.1) and iategral solutiona (Section 3.2) of boundary value problems of the type:

$$
\begin{equation*}
y(a)=A, \quad y(b)=B, \quad a<b, \tag{48}
\end{equation*}
$$

mere compared and shown to agree. It is worch notiag that the solution of (7) in terme of (22) and (23) is not limited aumerically to the relatively small range, $0<\pi \leq 5$.

3.3 Continued Fraction Solutions for $\frac{y^{*}}{y}$

The contimued fraction solutions were computed numerically for x in the range $0<\pi<12$ ad the convergence rate was very bigh in both cnaen.

The analywis of the rrancation error of the continued fraction form of $\mathrm{Z}_{\mathrm{z}}{ }^{*}$ is wery wimple for x in the mbove range:

For $x=20$, we calculate the firwt eightewn convergents, and wite:

$$
\begin{equation*}
\geqslant=\frac{1}{\alpha_{0}}+\frac{\beta_{2}}{\alpha_{1}}+\ldots+\frac{\beta_{10}}{a_{10}+P_{12}} . \tag{49}
\end{equation*}
$$

where:

$$
\begin{equation*}
P_{10}=\frac{A_{30}}{\alpha_{10}}+\frac{\beta_{20}}{\alpha_{20}}+\ldots \frac{A_{n}}{\alpha_{n}}+\frac{A_{n+1}}{\alpha_{n+1}}+\ldots, \tag{50}
\end{equation*}
$$

and all the A_{i}^{\prime} s and $a_{i}{ }^{*}$ * are positive for $i \geqslant 19$.
Now P_{10} lies between the values of auccenwive convergents to that we may calculate P_{10}

The analyais of the truncation error incurred by terminating the continued fraction in (35) ia mot quite so simple. Te write:

$$
\begin{equation*}
F=\frac{1}{a_{0}+\frac{b_{1}}{a_{1}+R_{1}}} \tag{51}
\end{equation*}
$$

$$
-10-
$$

where:

$$
\begin{aligned}
\dot{\mathbf{x}}_{2} & =\frac{b_{z}}{a_{z}}+\frac{b_{z}}{a_{z}}+\ldots \\
& =\frac{\left|b_{z}\right|}{\left|a_{z}\right|}-\frac{\left|b_{y}\right|}{\left|a_{z}\right|}-\ldots
\end{aligned}
$$

that is,

$$
\begin{equation*}
\mathbf{R}_{1}=\frac{b_{1}}{\underline{e}_{1}}-\frac{b_{2}}{a_{2}}-\ldots \tag{52}
\end{equation*}
$$

where:

$$
b_{n}=\left|b_{n+1}\right|, a_{a}=\left|a_{n+1}\right| \text {. }
$$

In the sequel we will need certain general lemmas and theorems associated with infinite continued fractions. These properties are now listed, together with their proofs, before continuing with the error analysis of the numerical evaluation of \mathbf{R}_{2}.

Let V be the infinite continued fraction

$$
\begin{equation*}
\mathbf{v}=\frac{w_{1}}{v_{1}}+\frac{w_{2}}{v_{2}}+\ldots \tag{53}
\end{equation*}
$$

and let

$$
V_{n}=\frac{P_{n}}{q_{n}} \text { be the } n^{t h} \text { convergent to } V \text {. }
$$

Then the following propositions are true.
$\left.\begin{array}{ll}\text { PROP, 1 }\end{array} \quad \begin{array}{l}\quad P_{n}=w_{n} P_{n-1}+v_{n} p_{n-2}, \\ q_{n}=w_{n} q_{n-1}+v_{n} q_{n-2} ; \quad n=2,3, \ldots\end{array}\right\} *$
where $p_{0}=1, p_{2}=w_{1}, q_{0}=1, q_{1}=w_{2} ; \cdots$
[chis is easily established by induction].
PROP. II

$$
\begin{equation*}
{ }^{*} P_{n} 9_{n-1}-P_{n-1} 9_{n}=(-1)^{n-1} w_{1} w_{2} \ldots w_{n} * \tag{55}
\end{equation*}
$$

[for
therefore

$$
P_{n} q_{n-1}-P_{n-2} q_{n}=(-1)=n_{n}\left(P_{n-2} q_{n-2}-P_{n-2} q_{n-2}\right)
$$

$$
P_{n} q_{n-1}-P_{n-1} q_{n}-(-1)^{n-1} w_{n} w_{n-1} \ldots w_{2}\left(P_{1} q 0-P \circ q_{1}\right) .
$$

and the required result follows).

COROLLARY

$$
\begin{equation*}
\frac{P_{n}}{q_{n}}-\frac{p_{n-1}}{q_{n-1}}=(-1)^{n-2} \frac{w_{1} w_{2} \ldots w_{n}}{q_{n} q_{n-3}} \tag{56}
\end{equation*}
$$

PROP. III
*The continued fraction (53) is equivalent to

$$
\begin{equation*}
w=\frac{k_{3} w_{2}}{k_{1} v_{1}}+\frac{k_{1} k_{2} w_{2}}{k_{2} v_{2}}+\ldots+\frac{k_{n-1} k_{n} w_{n}}{k_{n} v_{n}}+\ldots \tag{57}
\end{equation*}
$$

$\left(K_{i} \neq 0, i=1,2, \ldots\right)$ in the sense that $\nabla_{n}=V_{n}$ for all $n^{\prime \prime}$.
$\left\lceil\mathrm{P}_{\mathrm{E}} \mathrm{F}_{\mathrm{n}}=\frac{\overline{\mathrm{P}}_{\mathrm{a}}}{\bar{\Psi}_{\mathrm{n}}}=\right.$

$$
w_{1}=\frac{w_{2}}{\nabla_{1}}=v_{1}
$$

$$
w_{2}=\frac{k_{1} k_{2} v_{2} w_{2}}{k_{2} k_{2} v_{1} v_{2}+k_{1} k_{2} w_{2}}=v_{2} \text {, and }
$$

We can establish by induction that:

$$
\begin{aligned}
& \bar{p}_{n}=\left(k_{1} k_{2} \ldots k_{n}\right) p_{n} \\
& \bar{q}_{n}=\left(k_{1} k_{2} \ldots k_{n}\right) q_{n}
\end{aligned}
$$

so the proposition is proved]
(Te have already used this result to derive (52)).

PROP. IV

"If the ∇_{i} and v_{i} of the continued fraction (53) are all positive, then the value of the continued fraction V lies between the values of successive convergents. Also, each convergent is nearer than the preceding convergent to the value of the continued fraction".
[Convert the continued fraction V into its equivalent continued fraction (Equation 57). Choose the k_{i} such that $k_{i} \mathrm{v}_{\mathrm{i}}>1$.

Then $\bar{q}_{\mathrm{n}}>\bar{q}_{\mathrm{n}-\mathrm{z}}>0$, since $\bar{q}_{\mathrm{n}}=\mathrm{k}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}} \bar{q}_{\mathrm{n}-1}+k_{\mathrm{k}_{\mathrm{n}}} \mathrm{k}_{\mathrm{n}} \mathrm{m}_{\mathrm{n}} \bar{q}_{\mathrm{n}-2}$. The proof is completed by applying (56) and noting that

$$
\left.\left|\left(\frac{\bar{p}_{n}}{\bar{q}_{n}}-\frac{\bar{P}_{n-1}}{\bar{q}_{n-1}}\right) /\left(\frac{\bar{P}_{n+1}}{\bar{q}_{n+1}}-\frac{\bar{p}_{n}}{\bar{q}_{n}}\right)\right|=\frac{\bar{q}_{n+1}}{\left(k_{n} k_{n}+1 \bar{\sigma}_{n}+1\right.}\right) \bar{q}_{n-1}>1 .
$$

This too was used in the discussion of the truncation error associated with the continued fraction $P_{1 e}$ of (50).
PROP. v
"The continued fraction V is equivalent to

$$
\begin{equation*}
Y=\frac{1}{g_{1}}+\frac{1}{g_{2}}+\ldots+\frac{1}{g_{n}}+ \tag{58}
\end{equation*}
$$

$\mathbf{s i z}_{\mathbf{2 k}}$

$$
\begin{equation*}
=\frac{\nabla_{1} w_{0} w_{8} \ldots \omega_{2 k-1} a_{2 k}}{\omega_{2} w_{4} w_{0} \ldots \sigma_{2 k}} \quad \cdots \quad ; \tag{59}
\end{equation*}
$$

[this is easily shown by induction, or by applying proposition III].
PROP. VI

$$
\text { "Let } \quad v=\frac{\nabla_{2}}{\nabla_{2}}+\frac{\nabla_{2}}{v_{2}}+\ldots+\frac{\nabla_{N}}{v_{N}}+\frac{\nabla_{N}+2}{\nabla_{N}+1}+\ldots
$$

and let

$$
\mathbf{R}=\frac{\ddot{v}_{\mathrm{N}+2}}{\nabla_{\mathrm{N}+2}}+\frac{\frac{\overbrace{N+2}}{v_{N}+2}+\ldots}{}
$$

be convergent.

Then, if

$$
\begin{aligned}
& \mathbf{v}_{\mathrm{n}}=\frac{P_{N}}{\varphi_{N}}-\frac{\nabla_{1}}{v_{1}}+\frac{\nabla_{2}}{v_{2}}+\ldots+\frac{\bar{w}_{N}}{v_{N}} \\
& \mathbf{v}=\frac{w_{1}}{\nabla_{1}}+\frac{w_{2}}{\nabla_{2}}+\ldots+\frac{w_{N}}{\nabla_{N}+R}
\end{aligned}
$$

provided that

$$
q_{0}+R_{N} q_{N-2} \neq 0^{\prime \prime} .
$$

$\left\lceil\mathbf{v}=\lim _{\mathrm{e} \rightarrow \infty}\right.$
v_{n} by definition.
Now let $\left|\mathbf{v}-\mathbf{v}_{\mathbf{M}}\right|<\epsilon$ where ϵ is an arbitrarily small positive number, and $\left|\mathbf{V}-\mathbf{V}_{\mathrm{n}}\right|<\epsilon$ whenever $n \geqslant M$. Then if M is large enough, $\left|R-R_{n}\right|<\epsilon$, where we write R_{n} for
and che inequality holds for $N+a \geqslant M$.

Now

$$
v_{n}=\frac{w_{1}}{\nabla_{2}}+\frac{w_{2}}{\nabla_{2}}+\ldots+\frac{w_{N}}{\nabla_{N}+R_{n}}=\frac{P_{N}+R_{n} P_{N-1}}{T_{N}+R_{n} q_{N-1}}
$$

thus $\lim _{n \rightarrow \infty} v_{n}=v=\frac{P_{N}+R_{P_{N-2}}}{I_{N}+R_{N-1}} \boldsymbol{q}_{N-1}$,
provided that che denominator $\neq 0$].
This result is used continually in all our discussions concerning the continued fractions F and 3 .

PROP. VII

${ }^{*}$ Let $v=\frac{w_{1}}{v_{1}}-\frac{w_{2}}{v_{2}}-\ldots-\frac{w_{n}}{v_{n}}-\ldots$
where $\nabla_{i}, w_{i}>0, i=1,2, \ldots$
Then if $\boldsymbol{w}_{\mathrm{a}} \geqslant 1+\omega_{\mathrm{n}}$ for all values of n , we have:
(i) V is convergent,
(ii) if $\nabla_{n}=1+w_{n}$ for every $a_{\text {, }}$ and the series $1+b_{2}+b_{2} b_{2}+\ldots+\left(b_{1} b_{2} \ldots b_{i n}\right)+\ldots$ converges to sum $v, i-\frac{1}{s}$, but if the series diverges, $V=1$,
(iii) if $\mathrm{v}_{\mathrm{n}} \geqslant 1+\mathrm{w}_{\mathrm{n}}$ with the inequality holding for at least one value of n , then $0<\mathrm{V}<\mathrm{I}^{\prime \prime}$.
[Fe first show that p_{n} and q_{n} are positive and increase with n :
therefore

$$
P_{n}-P_{n-1}=\left(w_{n}-1\right) P_{n-1}-w_{n} P_{n-2} \geqslant w_{n}\left(P_{n-1}-P_{n-2}\right) ;
$$

$$
\begin{aligned}
& P_{n}-p_{n-1} \geqslant w_{n} w_{n-1} \ldots w_{2}\left(p_{1}-p_{0}\right) \geqslant w_{n} w_{n-1} \ldots w_{1}, \\
& q_{n}-q_{n-1} \geqslant w_{n} w_{n-1} \ldots w_{2}\left(q_{1}-q_{0}\right) \geqslant w_{n} w_{n-1} \ldots w_{2}\left(v_{2}-1\right), \\
& \geqslant w_{n} w_{n-1} \ldots w_{2} w_{1},
\end{aligned}
$$

also,

$$
\text { so } P_{n}>P_{n_{-1}} \text { and } q_{n}>q_{n-1}
$$

Again, the convergent themselves form an increasing sequence of positive numbers, because:

$$
\frac{P_{n}}{Q_{n}}-\frac{P_{n-1}}{q_{n-1}}=\frac{w_{1} w_{2} \ldots w_{n}}{q_{n} q_{n-1}}>0 .
$$

Now it hats been shown that:
and

$$
\begin{align*}
& P_{n}-P_{n-1} \geqslant w_{2} w_{2} \ldots w_{n}, \\
& q_{n}-q_{n-1} \geqslant w_{1} w_{2} \ldots w_{n} \quad ; \\
& p_{n} \geqslant w_{2}+w_{1} w_{2}+\ldots+\left(w_{1} w_{2} \ldots w_{n}\right) \tag{a}\\
& q_{n} \geqslant 1+w_{1}+\ldots+\left(w_{1} w_{2} \ldots w_{n}\right) . \tag{b}
\end{align*}
$$

hence

If $v_{a}=1+w_{a}$ for all n, then from (a) and (b):

$$
q_{n}-P_{n}=1 \cdot \frac{P_{n}}{q_{n}}=1-\frac{1}{q_{n}}
$$

Thus $\lim _{n \rightarrow \infty} \frac{P_{n}}{q_{n}}=1$ or $1-\frac{1}{s}$ according as the series

$$
1+w_{1}+w_{1} w_{2}+\ldots+\left(w_{1} w_{2} \ldots w_{n}\right)
$$

converges to a sum sor diverges. This proves the second part of the proposition.
Now let N be the least value of a for which
let

$$
\begin{gathered}
v_{n}>1+w_{n} ; \text { pur } v_{N}-\left(1+w_{N}\right)=\eta \text { and } \\
x_{n}=(1-k) q_{n}-P_{n}, \text { where } 0<k<\frac{\eta}{q_{N}-q_{N-1}} ;
\end{gathered}
$$

then from (a) and (b) we bave, for $n \leqslant(N-1)$:

$$
\begin{equation*}
x_{n}=1-k q_{n} \tag{c}
\end{equation*}
$$

Now:

$$
\begin{gathered}
q_{N}=q_{N} q_{N-1}-w_{N} q_{N-2}>\left(\nabla_{N}-w_{N}\right) q_{N-1}>(\eta+1) q_{N-1} \text { so } \\
0<k<\frac{\eta}{q_{N}-q_{N-1}}<\frac{1}{q_{N-1}} ;
\end{gathered}
$$

thus, $\quad{ }^{x_{N-1}}>0$,
and $\quad x_{N}-x_{N-1}=\left(v_{N}-1\right) x_{N-1}-\eta_{N} x_{N-2}=\eta x_{N-2}+w_{N}\left(x_{N-1}-x_{N-2}\right)$
that is, $\quad x_{N}-x_{N-1}=\eta-k\left(\eta q_{N-1}+w_{N} q_{N-1}-w_{N} q_{N-2}\right)$, by (c)

$$
=\eta-k\left\{\left(v_{N}-1\right) q_{N-1}-w_{N} q_{N-2}\right\}
$$

$$
=\eta-k\left\{q_{N}-q_{N-1}\right\}
$$

$$
>0
$$

Also $\quad x_{n}-x_{n-1} \geqslant w_{n}\left(x_{n-1}-x_{n-2}\right)$, so $x_{n}>x_{N-1}>0$ for $n \geqslant N$. Therefore
$(1-k) q_{n}>P_{n}$ for $n \geqslant N$; bence $\frac{P_{n}}{q_{n}}<(1-k)$. Bur since $\frac{P_{n}}{q_{n}}$ increases with n and is positive it must cend to a positive limit less than unity].

PROP VIII

$$
\begin{equation*}
\text { "Let } \quad v=\frac{w_{1} x}{v_{1}}-\frac{w_{2} x}{v_{2}}-\ldots-\frac{w_{n} x}{v_{n}}-\ldots \tag{62}
\end{equation*}
$$

where $v_{n}, w_{n}>0$ for all n and $0<\pi \leqslant 1$. Then if:
(i) $v_{2 n-1} \geqslant w_{2 n-1}+w_{2 n}$ and $v_{2 n} \geqslant 2$ for all n.
(ii) $\frac{w_{1}}{w_{2}}+\frac{w_{1} w_{3}}{w_{2} w_{4}}+\ldots+\frac{w_{2} w_{3} \ldots w_{2 n} n}{w_{2} w_{4} \ldots w_{2 n}}+\ldots$ converges to a sum s,
then

$$
0<v \leqslant \frac{2 \times s}{1+2 s}
$$

If the series (ii) diverges, then $0<v \leqslant x^{\prime \prime}$.

$$
\begin{gathered}
{\left[q_{2}-q_{1}=\left(v_{2}-1\right) q_{1}-w_{2} \times q_{0} \geqslant q_{1}-w_{2} \geqslant w_{1}\right. \text {, so }} \\
q_{2}>q_{1}>w_{2} q_{0}>0 .
\end{gathered}
$$

Suppose that $q_{2 n-2}>q_{2 n-3}>w_{2 n-2} q_{2 n-4}>0$. Then

$$
\begin{align*}
& q_{2 n-1}=v_{2 n-1} q_{2 n-2}-w_{2 n-1} \times q_{2 n-3} \geqslant\left(w_{2 n-1}+w_{2 n}\right) q_{2 n-2-} w_{2 n-2} q_{2 n-3} ; \\
& q_{2 n-1}-w_{2 n} q_{2 n-2} \geqslant w_{2 n-1}\left(q_{2 n-2}-q_{2 n-3}\right)>0 . \tag{a}
\end{align*}
$$

therefore
Again,

$$
\begin{align*}
& q_{2 n}=v_{2 n} q_{2 n-1}-w_{2 n} \times q_{2 n-2} \geqslant 2 q_{2 n-1}-w_{2 n} q_{2 n-2}, \text { and so } \\
& q_{2 n}-q_{2 n-1} \geqslant q_{2 n-1}-w_{2 n} q_{2 n-2}>0 . \tag{b}
\end{align*}
$$

Therefore $q_{2 n}>q_{2 n-1}>\dot{w}_{2 n} q_{2 n-2}>0$ and it follows (by induction) that all the above relations hold for every n .,

Now from (a) and (b).

$$
\begin{array}{ll}
& q_{2 n}-q_{2 n-1} \geqslant w_{2 n-1}\left(q_{2 n-2}-q_{2 n-3}\right) ; \\
\text { hence } & q_{2 n}-q_{2 n-1} \geqslant w_{2 n-1} w_{2 n-3} \ldots w_{3}\left(q_{2}-q_{1}\right) . \tag{c}\\
\text { put } & P_{n}=w_{1} w_{3} \ldots w_{2 n-2}, \quad Q_{n}=w_{2} w_{4} \ldots w_{2 n} .
\end{array}
$$

Then because $q_{2}-q_{1} \geqslant w_{1}$ we have, from (a) and (c):
$\left.\begin{array}{l}q_{2 n}-q_{2 n-2} \geqslant p_{n} \\ q_{2 n-1}-w_{2 n} q_{2 n-2} \geqslant P_{n}\end{array}\right\}$
whence by addition $q_{2 n}-w_{2 n} q_{2 n-2} \geqslant 2 P_{n}$,
and

$$
\frac{q_{2 n}}{Q_{n}}-\frac{q_{2 n-2}}{Q_{n-1}} \geqslant \frac{2 P_{n}}{Q_{n}}
$$

Now $\quad \frac{q_{2}}{Q_{1}} \geqslant 1+2 \frac{w_{1}}{w_{2}}$, so

$$
\begin{equation*}
\frac{q_{2 n}}{Q_{n}} \geqslant 1+2 s_{n} \tag{d}
\end{equation*}
$$

where:

$$
s_{n}=\frac{w_{1}}{w_{2}}+\frac{w_{1} w_{3}}{w_{2} w_{4}}+\ldots+\frac{w_{2} w_{3} \ldots w_{2 n-1}}{w_{2} w_{4} \ldots w_{2 n}}
$$

Put $y_{n}=q_{n}-\frac{p_{n}}{x} ; \quad$ then $y_{n}=v_{n} y_{n-1}-w_{n} \times y_{n-2}$ and $y_{0}=1$;
also, $y_{1}=v_{1}-w_{2} x \geqslant w_{2}, y_{2}-y_{1}=\left(v_{2}-1\right) y_{1}-w_{2} x y_{0} \geqslant 0$, so

$$
y_{2} \geqslant y_{1} \geqslant w_{2} y_{0},
$$

and by inductive reasoning exactly the same es that which led to (a) and (b) we can show that $y_{2 n}-y_{2 n-1} \geqslant y_{2 n-1}-w_{2 n} y_{2 n-2} \geqslant 0$. Therefore $y_{2 n} \geqslant w_{2 n} y_{2 n-2}$, and so $y_{2 n} \geqslant Q_{a}$.

Hence $\quad q_{2 n}-\frac{\rho_{2 n}}{x} \geqslant Q_{n}$,
and, using (d) and the fact that $\frac{P_{n}}{q_{n}}$ is a positive monotonic increasing function of n, we have:

$$
\frac{p_{2 n-1}}{q_{2 n-1}}<\frac{p_{2 n}}{q_{2 n}} \leqslant x\left(1-\frac{Q_{n}}{q_{2 n}}\right) \leqslant x\left(1-\frac{1}{1+2 s_{n}}\right)
$$

Therefore, if the series $\Sigma \frac{P_{n}}{Q_{n}}$ converges to a sum s, and
$h=\frac{2 x s}{1+2 s}$, then $\frac{P_{n}}{q_{n}} \leqslant h$, so $\lim _{n \rightarrow \infty} \frac{P_{n}}{q_{n}}=k \leqslant h$.

If on the other hand, $\Sigma \frac{P_{n}}{Q_{n}}$ diverges, $\frac{P_{n}}{q_{n}}<x$ and $\left.\lim _{\mathrm{D} \rightarrow \infty} \frac{P_{n}}{q_{n}}=k<x\right]$.
Returning to the problem of evaluating the truncation error associated with the continued fraction

$$
\begin{equation*}
R_{1}=\frac{b_{1}}{{\underset{\sim}{2}}_{1}}-\frac{b_{2}}{{\underset{\sim}{2}}_{2}}-\cdots \tag{52}
\end{equation*}
$$

using PROP. V and PROP. III, we convert R_{1} into the equivalent fraction:

$$
\begin{equation*}
R_{1}=\frac{1}{g_{1}}-\frac{1}{g_{2}}-\frac{1}{g_{3}}-\ldots \tag{1}
\end{equation*}
$$

where

for $k=1,2, \ldots$
Now

$$
g=k-1=g_{2 k-1}(k, x, \lambda)=\frac{(1+\lambda)(3+\lambda)(5+\lambda) \ldots(2 k-1+\lambda)}{(2+\lambda)(4+\lambda)(6+\lambda) \ldots(2 k+\lambda)}\left[1+\frac{2 k}{x}\right] \text {. }
$$

and

$$
g_{2 k}=g_{2 k}(k, x, \lambda)=\frac{(2+\lambda)(4+\lambda)(6+\lambda) \ldots(2 k+\lambda)}{(1+\lambda)(3+\lambda)(5+\lambda) \ldots(2 k-1+\lambda)}\left[\frac{2 k+1+x}{2 k+1+\lambda}\right]
$$

Forgiven k, x, since $\frac{\partial_{g_{2 k}-1}}{\partial \lambda}>0$ and $\frac{\partial_{g 2 k}}{\partial \lambda}<0$, we have

$$
\begin{aligned}
& {\left[g_{2 k-1}\right]_{\min }=\frac{1 \cdot 3 \cdot 5 \cdot \ldots(2 k-1)}{2 \cdot 4 \cdot 6 \cdot \ldots 2 k}\left[1+\frac{2 k}{x}\right]>\frac{1 \cdot 3 \cdot 5 \cdot \ldots(2 k-1)}{2 \cdot 4 \cdot 6 \cdot \ldots 2 k}\left[\frac{2 k}{x}\right],} \\
& {\left[g_{2 k-1}\right]_{\max }=\frac{2 \cdot 4 \cdot 6 \ldots(2 k)}{3 \cdot 5 \cdot 7 \ldots(2 k+1)}\left[1+\frac{2 k}{x}\right]>\frac{2 \cdot 4 \cdot 6 \cdot \ldots(2 k)}{3 \cdot 5 \cdot 7 \cdots(2 k+1)}\left[\frac{2 k}{x}\right],}
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left[g g_{2 k}\right]_{\min }=\frac{3 \cdot 5 \cdot 7 \ldots(2 k+1)}{2 \cdot 4 \cdot 6 \ldots(2 k)}\left[\frac{2 k+1+x}{2 k+2}\right],} \\
& {\left[g_{2 k}\right]_{\max }=\frac{2 \cdot 4 \cdot 6 \ldots(2 k)}{1 \cdot 3 \cdot 5 \ldots(2 k-1)}\left[\frac{2 k+1+x}{2 k+1}\right] .}
\end{aligned}
$$

Now

$$
\frac{g_{2 k-1}}{g_{2 k}+2} \text { and } \frac{g_{2 k}}{g_{2 k}+2} \text { rapidly approach unity as } k \rightarrow \infty \text {, and both } g_{2 k-1} \text { and } g_{2 k} \rightarrow \infty \text { with } k \text {. }
$$

Now

$$
g_{2 k}(k, x, \lambda)>\frac{3 \cdot 5 \cdot 7 \ldots(2 k+1)}{2 \cdot 4 \cdot 6 \ldots(2 k)}\left[\frac{2 k+1}{2 k+2}\right]=\phi(k) \text {, say, where } \phi(k) \text { is a strictly }
$$

increasing function of k.

```
Therefore }\phi(k)>2\mathrm{ for all k}\geqslant4\mathrm{ and so Eek> 2 for all }k\geqslant4
```

Now

$$
g_{2 k-1}>\left[g_{2 k-1}\right]_{\min }>\frac{1 \cdot 3 \cdot 5 \ldots(2 k-1)}{2.4 \cdot 6 \ldots 2 k} \cdot \frac{2 k}{x}=\frac{3.5 \ldots(2 k-1)}{2.4 \ldots(2 k-2)} \cdot\left[\frac{1}{x}\right] \text {. }
$$

and certainly g ak-2 >2 if $2 x<\frac{3.5 \ldots(2 k-1)}{2.4 \ldots(2 k-2)}$
so for $x \leqslant 1, k \geqslant 5, g_{2 k-1}>2$.
Therefore, by PROPOSITION VII of VIII we can put

$$
\left\{\begin{array}{r}
R_{1}=\frac{1}{g_{2}}-\frac{1}{g_{2}}-\ldots-\frac{1}{g 7-\varepsilon}=\frac{p_{7}-\varepsilon_{p_{0}}}{q_{7}-\varepsilon q_{0}} \tag{63}\\
\text { where } \quad 0<\varepsilon<1, \quad 0<x<1
\end{array}\right\}
$$

of course, we can evaluate ε quite accurately. We have

$$
\begin{equation*}
\varepsilon=\frac{1}{g_{0}}-\frac{1}{g_{0}}-\frac{1}{g_{10}}-\ldots=\frac{1}{f_{2}}-\frac{1}{f_{2}}-\frac{1}{f_{3}}-\ldots \tag{64}
\end{equation*}
$$

where we have writen $f_{n}=g_{n+7}$. Ftom the proof of PROP. VII we showed that $P_{n}>w_{1} w_{2} \ldots w_{n}+P n-1, \quad q_{n}>w_{2} w_{2} \ldots w_{n}+q_{n-1}$; hence applying chis to (64) we get;

$$
q_{n}>1+q_{n-1}, P_{n}>1+P_{n-1} ;
$$

but $q_{1}=f_{1}>2$, so $q_{2}>3, q_{a}>4$, and generally, $q_{p}>n+1$. Thus the difference between the value of the $N^{\text {th }}$ convergent to ε and \mathcal{E} is less than the quantity

$$
s=\frac{1}{(N+1)(N+2)}+\frac{1}{(N+2)(N+3)}+\cdots=\frac{1}{N+1}
$$

This concludes the analysis of the convergence note of the continued fraction (52) for x in the sange $0<x \leqslant 1$. For $x>1$ this technique is a little awkward because of the far larger number of convergents needed before we can introduce E. To handle this case we write $a_{2 k}=2 \mu$ ak and express R_{1} as the equivalent continued fraction

Now the relation

$$
a_{2 n-1} \geqslant \frac{b_{2 n-1}}{\mu_{2 n-2}}+\frac{b_{20}}{\mu_{2 n}}
$$

implies

$$
\begin{equation*}
n \geqslant x\left\{\frac{2 n+\lambda}{2 n+x-1}+\frac{2 n+1+\lambda}{2 n+1+x}-\frac{1}{2}\right\} \tag{66}
\end{equation*}
$$

and the converse.
Suppose the relation (66) holds for a particular value of n; then, for $\mathrm{x}>1$,

Now the relation

$$
\begin{equation*}
n+1 \geqslant \frac{n+1}{n}\left\{\frac{2 n+1}{2 n+x-1}+\frac{2 n+1+\lambda}{2 n+1+x}-\frac{1}{2}\right\} x . \tag{67}
\end{equation*}
$$

$$
\begin{equation*}
n+1 \geqslant\left\{\frac{2 n+2+\lambda}{2 n+1+x}+\frac{2 n+3+\lambda}{2 n+3+x}-\frac{1}{2}\right\} x \tag{68}
\end{equation*}
$$

implies

$$
\begin{equation*}
a_{2 n}+1 \geqslant b_{2 n+1} / \mu_{2 n}+b_{2 n}+2 / \mu_{2 n+2} \tag{69}
\end{equation*}
$$

Therefore, if we can show that for a certain value of n, (66) is true, and

$$
\begin{equation*}
\frac{n+1}{n}\left\{2 \frac{2 n+1}{n+x-1}+\frac{2 n+1+\lambda}{2 n+1+x}-\frac{1}{2}\right\} \geqslant\left\{\frac{2 n+2+\lambda}{2 n+1+x}+\frac{2 n+3+\lambda}{2 n+3+x}-\frac{1}{2}\right\} \text {. } \tag{70}
\end{equation*}
$$

we will have shown that for this and all subsequent values of n,

$$
\begin{equation*}
\operatorname{an-1} \geqslant \frac{b \operatorname{sn-1}}{\mu_{2 n-2}}+\frac{b_{2 n}}{\mu_{2 n}} \tag{71}
\end{equation*}
$$

Now (70) is equivalent to:

$$
\frac{(n+1)(2 n+\lambda)}{2 x+x-1} \geqslant \frac{n(2 n+3+\lambda)}{2 n+3+x}+\frac{x-(1+2 \lambda)}{2(2 n+1+x)}
$$

or,

$$
\frac{6 n^{x}+(9+6 \lambda-x) n+\lambda(3+x)}{(2 n+x-1)(2 n+x+3)} \geqslant \frac{x-(1+2 \lambda)}{2(2 \pi+1+x)}
$$

If $x \leqslant 1+2 \lambda$, we may take $n \geqslant 2$ in (71). Ocherwise, we have to show thatr

$$
\psi(x, n, \lambda)=\frac{2\left[6 u^{x}+(9+6 \lambda-x) n+\lambda(3+x)\right][2 a+1+x]}{(2 n+x-1)(2 n+3+x)[x-(1+2 \lambda)]} \geqslant 1
$$

where n is the particalar value which maken (71) trae.

$$
\text { Now } \frac{\partial \psi}{\partial \lambda}>0
$$

so

$$
\psi>\frac{2(2 n+1+x)\left(6 n^{x}+(9-x) n\right]}{x(2 n+x-1)(2 n+x+3)}=\psi(x, n, 0)
$$

Also, (66) holds for $a * 7$ and $1<\pi<7$, while $\psi(x, 7,0)>1$ for $1<x<7$. Heace (71) holde for $\mathrm{n} \geqslant 7,1<x<7$, and we may put:

$$
\mathbf{R}_{2}=\frac{\mathrm{b}_{1}}{{\underset{\sim}{1}}^{2}}-\frac{\mathrm{b}_{2} / \mu_{2}}{2}-\ldots-\frac{\mathrm{b}_{12} / \mu_{12}}{2-\varepsilon^{2}}=\frac{\mathrm{P}_{12}-\varepsilon_{p_{11}}}{\mathrm{q}_{12}-\varepsilon_{q_{12}}}
$$

and $0<\varepsilon^{\prime}<1$, by PROPOSITION VIII.
When estimating ε^{\prime} it is to be noted that the succensive convergents are positive and increane
with
Also, if we wrice:

$$
\varepsilon^{\prime}=\frac{B_{1}}{\alpha_{1}}-\frac{\beta_{z}}{2}-\ldots=\frac{b_{1 a} / \mu_{12}}{2^{10}}-\frac{b_{10} / \mu_{14}}{2}-\ldots{ }^{*}
$$

where $\int \beta_{2 k-1}=b_{1 x+2 k} / \mu_{10+}=\frac{2 k}{2 k+11+x}$

$$
\begin{aligned}
& B_{2 k}=\frac{b_{2 v+} k / \mu_{2 q}+2 k}{}=\frac{2 k+13+\lambda}{2 k+12+\lambda} \cdot \frac{2 x}{2 k+13+x} \int_{k=1,2, \ldots}=\frac{2 k+12+x}{2 k+12+\lambda}, a_{2 k}=\frac{2 k+13+x}{2 k+13+\lambda} \\
& a_{2 k-1}=
\end{aligned}
$$

then from the proof of PROPOSITION VIII we have

$$
q_{2 n}>\beta_{\text {an }} q_{2 n-2} ;
$$

therefore

$$
\frac{\beta_{2 n}}{q_{2 n}}<\frac{1}{q_{2 n-2}} ; \text { hence } \frac{\beta_{1} \beta_{2 \ldots} \beta_{2 n}}{q_{2} q_{n-1}}<\frac{\beta_{1} \beta_{2 \ldots} \beta_{2 n-1}}{q_{2 n-1} q_{2 n-7}}
$$

and so $\quad 0<\left(\frac{P_{\text {an }}}{q_{2 n}}-\frac{P_{2 n-1}}{Q_{2 n-1}}\right)<\left(\frac{P_{2 n-1}}{q_{2 n-2}}-\frac{P_{2 n-2}}{q_{2 n-2}}\right) \quad$ for all n.

Similarly, the relation $\left(\frac{P a n+1}{q 20+1}-\frac{P a n}{q 2 n}\right)<\left(\frac{P_{2 n}}{q_{2 n}}-\frac{P a n-2}{q 2 n-1}\right)$ implies
$\frac{\beta_{2 n+1}}{Q_{2 n+1}}<\frac{1}{q_{2 n-1}}$ or $\beta_{2 n+1} q_{2 n-1}<q_{n n+1}$, and the converse.

But $2 B_{2 n+3}=\frac{4 \pi}{2 n+13+x} \leqslant \frac{4 x}{27+x}$ for $a \geqslant 7$, and if we confine x to the region $1<x \leqslant 7$, then $2 \beta_{2 n+1} \leqslant \frac{14}{17}<1<\alpha_{2 n+1}$.
Also, because $\mathrm{qm}_{\mathrm{m}}>\mathrm{qman}_{\mathrm{a}}$. we have finally:
$\alpha_{2 n+2} q_{\text {mn }}>2 \beta_{2 n+1} q_{2 n-1}$ and so $0<\left(\frac{P_{2 n+1}}{q_{2 n+1}}-\frac{P_{2 n}}{q_{2 n}}\right)<\left(\frac{P_{2 n}}{q_{2 n}}-\frac{P_{2 n-1}}{q_{2 n-1}}\right)$
Thun, $\frac{P_{n}}{q_{n}}$ it closer to $\frac{\mathrm{Pa}_{\mathrm{n}}-1}{\mathrm{qn}_{\mathrm{n}} \mathrm{s}}$ than the latter is to $\frac{\mathrm{P}_{\mathrm{n}-\mathrm{z}}}{\mathrm{qn}_{\mathrm{n}} \mathrm{z}}$.
Again, $\quad\left(\frac{P_{2 n+1}}{q_{2 n+1}}-\frac{P_{2 n}}{q_{2 n}}\right) /\left(\frac{P_{2 n}}{q_{2 n}}-\frac{P_{2 n-1}}{q_{2 n-1}}\right)=P_{2 n+3} \frac{q_{2 n-1}}{q_{2 n+1}}$

$$
\begin{aligned}
& =\frac{1}{\frac{g_{2 n}}{q_{2 n-1}} \frac{\alpha_{2 n+3}}{p_{2 n+3}-1}} \\
& <\frac{1}{2} \text { for } x<1<7, n \geqslant 13 .
\end{aligned}
$$

Al vo, $\quad\left(\frac{P 2 n+2}{q_{2 n+2}}-\frac{P_{2 n+1}}{q_{2 n+1}}\right) /\left(\frac{P_{2 n}}{Q_{2 n}}-\frac{P_{2 n-1}}{q_{2 n-1}}\right)=\beta_{2 n+1} \beta_{2 n+2} \frac{q_{2 n-1} q_{2 n}}{q_{2 n+1} q_{2 n+2}}$

$$
<\frac{\beta_{2 n+1} q_{2 n-1}}{q n+2}
$$

$=\frac{\beta_{2 n+1} 9_{2 n-1}}{\alpha_{2 n+2} \alpha_{2 n+1} q_{2 n}-\left(\alpha_{2 n+2} \beta_{2 n+1} q_{2 n-1}+\beta_{2 n+2} q_{2 n}\right)}$
$=\frac{\beta_{m+1}}{\left[\alpha_{2 n+1} \alpha_{2 n+2}-\beta_{2 n+1}\right] \frac{s_{m}}{q_{m n-1}}-\alpha_{2 n+2} \beta_{m+1}}$
and for $n \geqslant 15$, this law r ratio is $<\frac{2}{3}$, provided $1<x<7$.
Thus if we put $\Delta_{n}=\frac{P_{n}}{q_{n}}-\frac{P_{n-1}}{Q_{n-1}}$ we haver

$$
\Delta_{3=}<\frac{2}{3} \Delta_{\text {mo }} \quad \Delta_{s e}<\left(\frac{2}{3}\right)^{2} \Delta_{s 0} . \quad \Delta_{s e}<\left(\frac{2}{3}\right)^{*} \Delta_{s o} . \quad \cdots \quad ;
$$

$$
\Delta_{a 1}<\frac{1}{2} \Delta
$$

and

$$
\Delta_{m 0}<\frac{\Delta_{m 0}}{3}, \quad \Delta_{m 0}<\frac{2}{3}\left(\frac{\Delta_{00}}{3}\right), \quad \Delta_{07}<\left(\frac{3}{3}\right)^{2} \frac{\Delta_{30}}{3}, \quad \cdots \quad ;
$$

Therefore

$$
\begin{aligned}
\varepsilon^{\prime}-\frac{P_{20}}{920} & =\Delta_{20}+\Delta_{21}+\Delta_{22}+\cdots \\
& <\frac{9}{2} \Delta_{20} .
\end{aligned}
$$

Obviously, if $\frac{\Delta_{20}}{P_{20} / q_{20}} \ll 1$ then $\frac{P 2 \theta}{q 2 \theta}$ will be an accurate estimate of ε^{\prime}, ta practice, $\frac{P z p}{q_{20}}$ is
extremely close to $\frac{P_{N}}{9_{N}}$, where $N<10$, and thin value differs very little from E ?
For $7<\pi \leqslant 12$ asymptotic methods are probably better and certainly more convenient.
However, by writing $B_{n}=\frac{3}{2} \theta_{n}$ in $\left(52^{1}\right.$, page 15) we have:

$$
\mathrm{F}_{1}=\frac{1 / \theta_{2}}{3 / 2}-\frac{1 / \theta_{1} \theta_{2}}{3 / 2}-\ldots
$$

and we can show that $\frac{3}{2}>1+1 / \theta_{n} \theta_{n+1}$ if $a \geqslant 27, \quad 7<x<12$.
Thus:

$$
R_{1}=\frac{1 / \theta_{2}}{3 / 2}-\frac{1 / \theta_{2} \theta_{2}}{3 / 2}-\ldots-\frac{1 / \theta_{20} \theta_{20}}{\frac{3}{2}-e^{*}}=\frac{P_{20}-\varepsilon^{\prime \prime} P_{2 s}}{\mathbb{R}_{20}-\varepsilon^{*} q_{2 \theta}}
$$

where $0<e^{\prime \prime}<1$.
Before concluding we note that the continued fractions
(35)

$$
\frac{y_{1}^{\prime}}{y_{1}}=\frac{1}{a_{0}}+\frac{b_{i}}{a_{3}}+\ldots
$$

and (39) ,

$$
\frac{y_{2} 0^{*}}{y_{2}}=\frac{1}{\alpha_{0}}+\frac{B_{1}}{\alpha_{1}}+\ldots
$$

must be linearly independent because $\beta_{n} \neq b_{n}$ and $\alpha_{n} \neq \omega_{n}$ for all a_{*} and $\frac{A_{0}}{\alpha_{0}} f \frac{b_{n}}{\beta_{2}}$
Hence

$$
\frac{y_{i}^{\prime}}{y_{2}} \text { and } \frac{y_{2}^{*}}{y_{2}}=\left(\frac{1}{x}-1\right)+\frac{1}{a_{0}}+\frac{\beta_{2}}{\alpha_{2}}+\ldots
$$

are Linearly independent solutions for the logarithmic derivative $\frac{y^{\prime}}{y}$.

4. CONCLUSTON

For $0<x<7$ we may calculate the fundamental solutions of Equation 7,

$$
x y^{\prime \prime \prime}+x y^{\prime}+\lambda y=0
$$

using either infinite series or a combination of definite and indefinite integral a. If $x>7$ we can obtain accurate asymptotic series of we may still use the "mixed integral" form of the solution.

For $0<x \leqslant 12$ there exist rapidly convergent continued fraction expansionaof the logarithmic derivatives of the fundamental solutions, and their accuracy can be checked fairly easily by converting them into equivalent forms.

In terms of the original physical model, this means that we con accurately evaluate the solution of the system represented by Equations 1 and 2 for the special case of constant Σ_{a}, Σ_{s}, D and zero wowarce term S.

Thus we have established a criterion for checking the accuracy of "numerical** solutions of the system (1) and (2) for this model; solutions which are generally much easier to programme on a computer than "analytical" solutions.

5. REFERENCES

Rubbra, F.T., and Pollard, J.P., (1962). - Seudiea in thermalisation - A modified heavy gas equation. AAEC/TM129.

Thompson, J.J., (1962). - The second order mass ratio expansion of the neutron slowing down
Thompson, J.J., and Lawrence, B. R., (1960). - A formulation of age diffusion theory for thermal intermediate reactors. Internal Report AAEC/X 352.

