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1; Introduction

A summary of the dynaic behavior of the proton bunches in the

Brookhaven Alternating Gradient Synchrotron (AGS) has been given in 

f 1,2. In these reports, the usual linearizaticn of the differential 

equations involved has been Made and the theory was restricted to wall 

bunched beans. The linearised approach is ne longer valid at transition

where the actual phase angle of the bunch can differ appreciably for a

short time from the stable phase angle

In this report the non-Linearity of the differential equations for 

phase oscillations will no longer be neglected. At transition the been

is slow encugh so that the electronics of the bootstrap system can be

considered as being ideal and the radius servo loop can be characterised 

by one tine constant. Under these assumptions the analysis can be 

carried cut in a tuo-dinensional phase plane. The essential new result 

will be the short existence of a stable equilibriun point for the bunch 

motiun not coinciding with 0Q. The results here derived have been tested 

eoppsrimentally and at least a qualitative sgreonent was found. However, 

the conclusions are no more valid if debunching takes place since we have 

still neglected the finite bunch width.
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2. The Equationauf.lotisn

The cancnical differential equaticns for —11 a^plltmle or paraxial

aotion of an individual particle with reference to the central equilibriu 

orbit (trajectory axis) for-a circular machine vith constant gradient mm 

compiled in a previous report [m-2 ] . T sma set of equations remains 

valid in the ans, if we redefine the coordinates (Ar, M) as "orbit 
coordinates* (1).

We consider only the case vhere a modian plane exists at all times and

tho trajectories of tho protons aro confined to this median plane (As -O).

For a given magnetic field, the possible closed (oquilibrium) arbits form 

a cant innova mosh apanninc the median plane. A particle with momentum

P. travels on the central equilibrium orbit of length C.» which is chonen 

as reference orbit (&r • o): In the case of en ideal Afl synchrotron it la

the only orbit composed of straght lines and crcrlar arcs ith radius

of curvature p - 
" G

C. " 2nr. " 2np. * total length of straight sections

A part tele vith airs sen tun P.*Ap travels on a different equilibrium orbit 

of length C, ♦ AC; this orbit is labeled by the coordinate Ar

Ar-2.
Planes normal to the central equilibrum or jit are labeled by the spr tial

distance a along Una Lrajectory cr equivalently by

e ! or AB - 2 .
‘o ‘o

An equilbriu rbit Ar = const. intersecta the plens 0 • const, at a point

whose spatial distance x Eraa the trajectory axis is a function of O. Eowever 

the average distance 2 is related to the coor dinate value Ar by:

i
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Ar-- 
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Furthermore a la a function of Ap * 4; the linear appraximation defines 

the macmentum compaction factor a

The differential oquations for the bunch motian are obtained by averaging

over all particles. If the finite bunch width can be neglected, the equaticns

for the motion of the center of charge ar* of the same fare ee for the indivi

dual particle. Consequently these equations are only capable of describing 

the bunch motom (taring transition if no debunching cocure.

Using the same notation as in previous reports, we have the following

oquations:

A (av) • e (sin(,) - sin #. (2.1)

aquation (2.1) is valid ae long as (sin 9,) = sin The stable

phase angle of the reference particle is

0.
( 3L°
[ 116°

t < transition

t > transition

Fo
(Ap,P, (2.2)

in the AGS, the rf phase is given byi

(-a,-) (9,) (2.3a)

A
I
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$, - quasistatio dirferential phame shift of tbe boottrep nystem 

plus any programed phase ju at trona i tion.

F. " dynmic tranafer funetion of the botstrap ayntem.

It is wortndile to note that the bean dynanios allow (9.) to ju 

instantanocunly, though not (,) •

The ita ahawd for F, a band width of IS kc. At transitian.

the bootstrap oymton la fast compared to the boam or tho radius loop and

we are all owed to make the ideal 1 nation F. " 1. Therefore

(2.3b)

s producod by the radus control system

r* (=)- (2.La)
In writing (2.ka), tho radial pickup electroos are assumed to be located 

at a place vhere x=1 and to be centered at Ar - O. The "radiml offset

is not essontial and will be neglected. The radus loop la then describod

sufficiently by

".*Tr a v {H) (2.ub)

with Tr • 0.25 ma

v
t <

0.5 1/cm
sense reversal

t >

sien at the •sense roversalm. which we ansume to be abrunt." •G*= " " =-e- = = " "e =- • "e-= *= -= “ "e " •

In practice, the senne revorsal takes 1 ne.

After elimtnation of the variables (ap.) and we obtain a systev 

of two simultanecus first order non-linear differential oquations in (0,) 

and {=1) (for abort 9 and x), which are both readily accossiblo to

r kt.
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t,2g--y•g, (2.5)

Ty 8 * v cm"'^ (uin - sin d0 • (2.5)

The tlaa constant of the bean T can be moi— d as nme* wit for tho

considered period

P.T = " 
P,

B,

P.

0 characterines the static open loop gain

G

a - 0.014

r. • 128 a
10 I 120 .

Under thooo annumptiono, eliminatien at tine is possible

.j (rtn d - sin <fl) - v
T —X _ Q
r

(2.7)

Ir 0. is ccnstant or • step functicn (phase-ju), tho equation can be 

studiod in a phase plahie (f, x) la tezms of ita singularitios [uj.

3. The EgolUhrlM Point*

The equilbriu point* x.) are ziven by the singularities 

ar (2.7)»

O- 0.1*)

CM (min 9. (3.1b)Y”e - o .

la contrast to Um linearined case, we obtain here two interesting equili- 

briun points. The nunorical values tar g, and 0 are such that an 

roxinate analytical expression can be found.
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SH. On* ratal C"e• ‘22 u in tha vicinity ar “o the
• tabla phane angle for th* motien of th* individual particle.

,1 - i ♦ C (3.2a)

• 1. «** - (3.21)

The locus of all first oquilibriu points with 9. as parawter is therefere 

a etraight Inez

- 0(9-9.)- (3.3)

The use of (9, Iviz) rathor than (/, x) as coordinates provides a very 

convenient scale for th* plot of th* trajectories lx the ph*** plan*. 

This is within gocmetrical accuracy:

9-9 "0
yel * CL - 0. -

Th* xoond *<ytlllhrlw* point (9.z, X,z) in in th* vicinity of 

- 180° - g,, the unstable phase angle.

,2-." - 1- • o (3.ha)

y,2 - rS - s.") = c9, - g,") . (3.1b)

Iba locus of th* beccnd equilbriu point 1* agnail jr a straight line:

- - O • (3.5)
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Dap ending on the values for d. and Y we can obtain four different

cases at transtion:

below transition enersy

before sense reversal

Ctg > o

V > o
a * O

Case ( -)
below transition enersy

after aenaa reversal

ets “o > 0 

v<o
GcO

Gase (-, ♦)

abova transtion energzy
G < 0

hef-wre sense reversal
ctg . < o

Y > o

Case -)

above transition energy

after sense reversal

ctg < o
V < o

0 > O

At transition we have to cone from case (+, *) to -). The tine at

which transition enerzy is reached and the ties of the sense reversal trieger

jittar slightly (~ l ns) froa pulse to pulse, and therefore the case (♦, -)

or ♦) characterises the bunch notion for a short interval. Actually,

the timing system is set so that the sense reversal occurs always a few 

■dlllee rondo before transition energy is reached.

Figures 1 and 2 show the plot for the aquilibrium points under the 

four conditions.

It is desirable and possible to go through transition without the help 

of a phase junp (9, • const.) and yet without a change in the radial 

position, if 9. = n
7 •
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The eloctronic systen of the MB produces under present cenditiens.

together with the cense reversal, a ponitive-ccing phane jup of “ppraimately 
so®, partially duo to the radial orfset of the detoction diodes [ S j .

Nevertheloss it is possible to go t hr noth transition without changinE the

radial position by • prcper choice of the phase copensating cubble [6].

a

L.
The nature of eolutions near a singularity may be explored by an

epansion around this point:

g
I

Flrat oqullibrium point (9. =®.):
The solutiens depend on the equation

T y d * 
p

cos .10 ssry*
-p-

(L.1)

The character of the solutions is independent of 9, as lone as the 

appreximation holds

co* gelcos9. 1 .

The characteristic equatian is then

2 • (4 * 0 ‘ (L.2)

with the two characteristic roots

1 / G Tr l * Vl-L -,f (U.3)

where we wedo uso of

T - T » | G 1 - 1, L J G ( “F a os.
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As expected, the first equilibrium point is a stable node forG-O 

wtteh can be seen from the numerical values for

X1 X 2
r

Solution curves in nornal fona are siven by
32

y2 - cons . 1
5.7

const. Y1 (L.1)

A transforaation gives the solution curves in general form:

* - -1*32
y < - - 0-85 Y1 - 0-15 2

(L.5a)

(L.5b)

Figure J shous solution curves around a node for warhine parameters assudne 

y > 0. The curves for Y < 0 are mirror mymeetric to the *Ks 5-0-
A larger radial time constant T, or a aigher gain would change the 

stable node inte a less destrablo stable focus. The gain netting is mainly 

deterdned by requtrements at injection and we find thus an upper limit for Tr-

On the other hand, the first equilibrium point is an unstable saddle 

for O < o, as seen from the values for

X1
0,22

%2
2,22 

Tr

This situation is currently encountered when the sense reversal occurs

I
defore transition energy is reached.

Solution curves in normal fora are given by:

10
const. (L.6)

A linear trannformation gives the solution curves in general form:

V1 * -2

Y 5 " - i.n Y1 ♦ o.u 2

(L.7a)

(L.7b)
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Figure 4 shows solution curves around a saddle for Y > 0. The curves for

Y < O are mirror symmetric to the axis 5 = 0.
4

Second equilibrium point (9.2 = .") :

The solutions depend on the equation

Tvd5 =TrdP
. cos 2
° cos <fo ” - V 5 - G ? ~ y g .

-o-ys- P “ Y 3
= d

The second equilibrium point is an unstable saddle for G > 0 and a stable g
node for G < 0. The solution curves near this equilibriu point are 

identical to those shov in Figures 3 end L.

When the sense reversal occurs before transition energy is reached, we 

find - due to the non-linearity of the equations - a new stable equilibrium 

point for the bunch motion near The notion of the individual particle

in the Lanch, however, is unstabe and a gradual debunching occurs. The 

pxperence has shown that an acceleraticn on this stable second equilibiua 

point is possible for several milliseconds ( ~ 5 ms) without detectable 

particle losses.

Sta! ility of ilotion

Case
First equilibrium point 

1*0
Second equilibrium point

®. n - <.

Bunch Particle Bunch Particle

(+, +) Stable Stable Unstable Unstable

(+, -) Unstable Stable Stable Unstable

Unstable Stable Stable Unstable

--) Stable Stable Unstable Unstable

1I
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