WOU-LINEAR BULICH IOTION AT TRANSITION
 ,

Harald Hahn

Decomber 4, 1961
Hifl 3

ACCELERATOR DEPARTMISIVT
(AOS)
Internal Report
BROOKHAVEN HATIOHAL LABORATORX Associated Universities, Ine. Dpton, L.I., M.I.

1.: Introduction

A sumanary of the dynaile behavior of the proton bunches in the Brookhaven Alternating Oradient Synchrotron (AOS) has been given in $[1,2]$. In these reports, the usual linearization of the differential equations involved has been made and the theory was restricted to well bunched beans. The linearized approach is nc longor valid at transition where the actual phase angle of the bunch can dirfer appreciubly for a short time from the stable phase angle ϕ_{0}.

In this report the non-linearity of the differential equations for phase oscillations will no langer be neglected. At tranaition the boan is slow enough so that the electronics of the bootstrap system can be considered as being ideal and the radius servo loop can be characterived by one time constant. Under these assumptions the analysis can be carried out in a two-dinensional phase plane. The essential new result will be the short existence of a stable equilibrium point for the bunch motion not coinciding with ϕ_{0}. The results here derived have been tested eoperimentally and at least a qualitative agreenont vas found. However, the conclusions are no nore valid if dobunching takes place since wo havo still neglected the finite bunch width.

2. The Equations of Votion

The cancoical differential equations for mall-wiplitude or pareacial aotion of an individual partiele with meference to the central equilibriun orbit (trajectory axis) for-a efreolar machine vith constant gradient was corpiled in a previous report $[$ Hiti-2]. Th? seas set of equations remaina valid in the ans, if wo rodurine the coordinates ($\Delta r, \Delta 9)$ as "orbit voordinates" $[3]$.

We consider only the case where a median plane exists at all times and the trajectorife of tho protons are contined to this median plane $(\Delta=-0)$. For a eiven amgnotie field, the posaible elosed (oquilibriun) orbite fors a continuous mesh apaning the median plane. A partiele with moventem Po travels on the central equilibrium orbit of Ingeth C_{e}, which is chosen as reference orbit $(\Delta r=0)$) in the ofse of an intical 20 aynchrotron it is the only arbit ourposod of straight 3 inos and efireclinr aros with radius of curvature P_{0} *

$$
c_{o}=2 \pi r_{a}=2 \pi \rho_{\rho}+\text { total length of straleht sections. }
$$

A particie with monentum $p_{0}+$ Ap travels on a dirforent equiliboriun orbit of length $C_{0}+\Delta C_{3}$ this orbit is labeled by the onordinate A_{r}

$$
\Delta r=\frac{\Delta C}{2 \pi}
$$

Plames normal to the oentral oquilibriun oxijit are labeled by the spetial Aistance s along this trajactery cr oquivalently by

$$
\theta=\frac{A}{r_{0}} \text { or } \Delta \theta-\frac{\Delta_{0}}{r_{0}}
$$

An equilibriun arbit Ar = oonst. Interaecter the pienv $\theta=$ ocnat. at a point whose apatial distance x Pras the trajectory axis is a function of 9 . Bovever the average distance $\overline{\bar{x}}$ is melated to the eoorifnate value Ar byr

$$
\Delta r=\bar{x}=\frac{1}{2 \pi} \int_{0}^{2 \pi} x i \sqrt{i+\left(\frac{d x}{d \theta}\right)^{2}} d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} x d \theta .
$$

Furthermore $\overline{\bar{x}}$ is a function of $A p=A p_{\rho}$; the liner approximation defines the momentum compaction factor a

$$
\frac{\bar{x}}{r_{0}}=\frac{\Delta C}{C_{0}}=a \frac{\Delta p}{P_{0}} .
$$

The differential equations for the bunch motion are obtained by averaging over all particles. If the finite bunch width can be neglected, the equations for the motion of the center of charge are of the sase form as for the individual particle. Consequently these equations are only capable of describing the bunch motion during transition if no debunching occurs.

Using the same notation as in previous roperta, we have the following equations:

$$
\begin{equation*}
\frac{d}{d t}\left\langle\Delta p_{1}\right\rangle=\frac{\Delta v_{a}}{c_{c}}\left(\sin \left\langle\phi_{1}\right\rangle-\sin \phi_{0}\right) \tag{2.2}
\end{equation*}
$$

Equation (2.1) is valid as long as $\left\langle\sin \phi_{1}\right\rangle \geqslant \sin \left\langle\phi_{1}\right\rangle$. The atable phase angle of the reference particle is

$$
\begin{align*}
& \phi_{0}= \begin{cases}3 L^{0} & t<\text { transition } \\
2 L 6^{0} & t>\text { transition }\end{cases} \\
& \frac{\left\langle\bar{x}_{i}\right\rangle}{\bar{x}_{0}}=a \frac{\left\langle\Delta{p_{i}}_{i}\right\rangle}{\bar{P}_{0}} \tag{2.2}
\end{align*}
$$

In the AOS, the rf phase ia given by:

$$
\begin{equation*}
\left\langle\phi_{1}\right\rangle=h\left(F_{b}-1\right) \cdot\left\langle e_{1}\right\rangle+\sigma_{b}-\phi_{x} \tag{2.3a}
\end{equation*}
$$

$F_{b}=$ quasistatie dirforential phase ahift of the bootstrap syetem plue any prograned phase jwp at tranaition.
F_{b} - dynaide transfor fanction of the bootstrap syoten.
It ie wortindalie to note that the bean dynamion allove $\left\langle\phi_{1}\right\rangle$ to jup inatiantaneeualy, though net $\left\langle e_{1}\right\rangle$.

The measuremonts showed for F_{b} a band width of 25 te. At tranaition, the bootetrap aymten is fast eorpared to the bean or the ractius loop and ve are allowed to muke the idealizetion $F_{b}=2$. Therefore

$$
\begin{equation*}
\left\langle\alpha_{1}\right\rangle=\alpha_{b}-\alpha_{x} . \tag{2.3b}
\end{equation*}
$$

d_{x} is produced by the radius ecatrol syatem

$$
\begin{equation*}
x_{2}=r_{r}=\left\langle\bar{x}_{1}\right\rangle . \tag{2.L4,0}
\end{equation*}
$$

In writing (2.4a), the radial picloup electrodes are assumed to be located at a place where $x=\bar{x}$ and to be centered at $\Delta r=0$. The wradial orroet" Is not essential and will be noglected. The radius loop is then described surficientily by

$$
\begin{equation*}
d_{x}+\tau=\frac{d x}{d t}=\gamma\left\{\bar{x}_{1}\right\rangle \tag{4,b}
\end{equation*}
$$

with $T_{r}=0.25 m$

$$
Y={ }^{*} 0.51 /=\quad \begin{aligned}
& t<\text { sense reversal } \\
& t \geqslant \text { sense xeveranal }
\end{aligned}
$$

V reverses sign at the "sense roveraal", statch wo asoune to bo abrupt. In practice, the sense revorsal talkes 1 ms .

Arter elitutnation of the variables $\left\langle\Delta p_{1}\right\rangle$ and ϕ_{x}, we obtain a syytea of two minultaneous firat order non-1inear dirferential equations in $\left\langle\phi_{1}\right.$; and $\left\{\bar{x}_{1}\right\rangle$ (for short ϕ and x), which are both readily acoossible to mengurement.

$$
\begin{align*}
& r_{r} \frac{d g}{d t}+g--\gamma x+g_{b} \tag{2,5}\\
& r_{\gamma} \frac{d x}{d t}+v x=\frac{a}{\cos \eta_{0}}\left(\sin g-\sin g_{0}\right) . \tag{2,5}
\end{align*}
$$

The time constant of the bean T can be assured as constant for the conelderned period

$$
\mathrm{F}=\frac{\mathrm{P}_{0}}{\mathrm{P}_{0}}=\frac{B_{0}}{\mathrm{~B}_{0}}=0.2 \mathrm{a}
$$

0 characterizes the static open loop gain

$$
\begin{aligned}
& 0=v a r_{0} \text { cts } \phi_{0} \\
& ==0.01_{4} \\
& r_{0}=128=\quad|0|=120 .
\end{aligned}
$$

Under these assumptions, elimination of tine is possible

If of $_{b}$ ia constant or a step function (phase-juyp), the equation can be studied in a phase plate (ϕ, x) in tern of its singularities [4].

3. The Equilithriun Points

The equilibrium points $\left(f_{0}, x_{e}\right)$ are given by the singularities or (2.7):

$$
\begin{align*}
& -\phi_{0}-v x_{0}+g_{b}=0 \tag{3.1a}\\
& \frac{a}{\cos g_{0}}\left(\sin g_{0}-\sin \phi_{0}\right)-\gamma x_{0}=0 . \tag{3.2b}
\end{align*}
$$

In contrast to the linearised case, we obtain here two interesting equilibrims points. The munorical values for g_{b} and O are such that an approximate analytical expression can be found.

The first equiliforiun point $\left(\phi_{e 2}, x_{e 2}\right)$ in in the vicinity of ϕ_{0}, the stable phase angle for the motion of the individual particle.

$$
\begin{align*}
& \phi_{o 1}-\phi_{0}=\frac{1}{1+\sigma}\left(\phi_{b}-\phi_{0}\right) \tag{3.2a}\\
& x_{e 1}=\frac{a}{1+\alpha}\left(\phi_{b}-\phi_{0}\right) \tag{3.23}
\end{align*}
$$

The locus of all first equilibrium points acth of as parameter is therefore a straight line:

$$
\begin{equation*}
r x_{e 1}=a\left(q_{01}-g_{0}\right) \tag{3.3}
\end{equation*}
$$

The use of $(\phi,|\gamma| x)$ rather than (ϕ, x) as coordinates provides a very convenient scale for the plot of the trajectories if the phase plane. This is within geometrical accuracy:

$$
\begin{aligned}
& \phi_{\mathrm{e2}}-\phi_{0}=0 \\
& v x_{\mathrm{e} 1}=\left(\phi_{b}-\phi_{\mathrm{e}}\right) .
\end{aligned}
$$

The second equilibrium point $\left(g_{02}, x_{e 2}\right)$ is in the vicinity or $g_{0}^{*}=180^{\circ}-g_{0}$, the unstable phase angle.

$$
\begin{align*}
& \phi_{02}-\phi_{0}^{*}-\frac{1}{1-0}\left(\phi_{b}-\phi_{0}^{*}\right)=0 \tag{3.ha}\\
& \gamma x_{02}=\frac{-g}{2-0}\left(\phi_{b}-\phi_{0}^{*}\right) \approx\left(\phi_{b}-\phi_{0}^{*}\right): \tag{3.4b}
\end{align*}
$$

The locus of the second equilibrium point is equally a otraight line:

$$
\begin{equation*}
r x_{e 2}=-0\left(\phi_{e 2}-\phi_{0}\right) . \tag{3.5}
\end{equation*}
$$

```
    Dopenting on the valuos for 和 and Y we ean obtain four dirforent
cases at tranaltion:
    Case ( }+,\mp@code{*)
    below trangition energy otg}\mp@subsup{\eta}{0}{}>0\quada>
    bofore sence reversal }\boldsymbol{y}>
    Case ( *, -)
    below tranaition energy atg 㻀}{0}{}>0\quada<0
    arter sense reversal 
    Sage (-, +)
```



```
    before ounse rovereal }\gamma>
    Case (-, -)
    above transition energy otg 的<0 a>0
    after sense reversal v
```

At transition we have to care from ange（,++ ）to $(-,-)$ ．The tine at whish trunsition energy is reached and the time of the sense reversal tricger jitter slightly（ ~ 1 mas）from pulse to pulse，and therefore the case（,+- ） or（,-+ ）characterises the bunch motion for a short interval．Aetually， the timing syston is set so that the sense reversal occurs always a few miliseconds before transition energy is reachod．

Figures 1 and 2 show the plot for the aquilibrium points under the four eonditions．

It is desirable and possible to go through transition without the belp of a phase juw（ $g_{b}=$ const．）and yet without a change in the radial position，if $\phi_{b}=\frac{\pi}{2}$ ．

The electronic eaten of the 103 produces under present conditions, together with the sense reversal, a poaitive-going phase jwip of apprcacisately 50°, partially due to the radial orfeet of the detection diodes [5].
Nevertheless it is possible to ge through transition without changing the radial position by e proper choice of the phase compensating able $[6]$.

f. Stability Analysis of the Boxilibrixe Points

The nature of solutions near a singularity nay be explored by an expansion around this point:

$$
\begin{aligned}
& x=x_{0}+\theta \\
& x=x_{e}+z
\end{aligned}
$$

First equilibrium point $\left(\phi_{01} \geqslant \phi_{0}\right)$:
The solutions depend on the equation

$$
\begin{equation*}
\frac{T_{\gamma d}}{T_{r} d_{\theta}}=\frac{0 \frac{\cos \phi_{01}}{\cos \psi_{0}}-\gamma 5}{-\varphi-\gamma 5} \tag{4.1}
\end{equation*}
$$

The character of the solutions is independent of q_{b} as long as the approximation holds

$$
\frac{\cos g_{02}}{\cos \phi_{0}}=1
$$

The characteristic equation is then

$$
\begin{equation*}
x^{2}+\left(\frac{1}{x_{r}}+\frac{1}{T}\right) x+\frac{1+0}{T_{r}}=0 \tag{4.2}
\end{equation*}
$$

with the two characteristic roots

$$
\begin{equation*}
\lambda=-\frac{1}{2 T_{r}}\left(1 \pm \sqrt{1-4 \frac{G T_{r}}{T}}\right) \tag{4.3}
\end{equation*}
$$

where we made uso of

$$
T \gg T_{r},|a| \gg 1,4|a| \frac{T_{r}}{T}=0.5 .
$$

As expected, the first equilibriun point is a stable node for $Q>0$ which oan bo soen from the nuserical values for

$$
x_{1}=-\frac{0.3}{2 x_{r}} \quad x_{2}=-\frac{1.7}{2 T_{r}}
$$

Solution ourves in nomal forna are given by

$$
\begin{equation*}
y_{2}=\text { oona } \cdot y_{1}{ }^{\frac{y_{2}}{\lambda_{1}}}=\text { onnet. } y_{1}^{5.7} \tag{4.4}
\end{equation*}
$$

A linear transformation gives the molution curves in genoral forma

$$
\begin{align*}
& \psi=y_{1}+y_{2} \tag{4.5~m}\\
& Y=-0.85 y_{1}-0.15 y_{2} \tag{4.5b}
\end{align*}
$$

Figure 3 shows solution curves around a node for machine paraneterw assurding $\gamma>0$. The curves for $\gamma<0$ are airror aymetrice to the extw $;-0$.

A larger radial time constant I_{r} or A aicher gain would change the stable node inte a lens Leairable stable focus. The gain aetting in nainly detemined by requirements at injection and we rind thue an tuper limit for $\mathrm{T}_{r^{*}}$

On the othor hand, the firat equiliterium point ia an tanstable anddle for $a<0$, as seen from the values for

$$
\lambda_{1}=\frac{0.22}{2 T_{2}} \quad \lambda_{2}=-\frac{2.22}{2 T_{2}}
$$

This situation is currentiy encountered when the sense reversal oocurs oefore transition enersy is reachad.

Solution curves in nonaal form are given by:

$$
\begin{equation*}
y_{2} y_{1}^{10}=\text { const. } \tag{4.6}
\end{equation*}
$$

A linear transformation gives the solution curves in general forma

$$
\begin{align*}
& \varphi=y_{1}+y_{2} \tag{4.7a}\\
& \gamma 5=-1.11 y_{1}+0.11 y_{2} \tag{4.7b}
\end{align*}
$$

Figure 4 shows solution curves arouns a saddle for $\gamma>0$. The curves for $\gamma<0$ are mirror symmetric to the axis $\xi=0$.

Second equilibriui point $\left(\phi_{e 2} \approx \phi_{0}^{*}\right)$:
The solutions depend on the equation

$$
\frac{T}{T_{r} d \xi}=\frac{G \frac{\cos \dot{\phi}_{e 2}}{\cos \phi_{0}} \varphi-\nu \xi}{-\varphi-\gamma \xi}=\frac{-Q \rho-\gamma \xi}{-\varphi-\gamma \xi}
$$

The second aquilibrium point is an unstable saddle for $G>0$ and a stable node for $G<0$. The solution curves near this equilibriun point are icientical to thase shom in Figures 3 and 4 .

When the sense reversal occurs before transition energy is reached, we find - due to the non-linearity of the equations - a new stable equilibrium point for the bunch motion near \varnothing_{0}^{*}. The motion of the individual particle in the sunch, however, is unstabir and a gradual debunching occurs. The pxper:ence has shown that an acceleration on this stable secand equilibinua point is possible for several milliseconds ($\sim 5 \mathrm{~ms}$) withcut detectable pacticle losses.

Ste? Ility of Motion

Cuse	First equilibriun point	Second equilibriun point	
$(4,+)$	Bunch	Particle	Bunch
$(+,-)$	Stable	Stable	Unstable
$(-,+)$	Unstable	Stable	Stable
$(-,)$.	Unstable	Stable	Snstable

Acknowlecigementa

The experimental study of the machine behavior during transition has been carried out together with H.J. Halama and E.C. Raka, and most of the ideas contained in this report resulted from discussions with them.

References

[I] E.R. Courant
Internal Resport EDC-LA, ENL, October 1960.
[2] E.C. Raka
Internal Heport ECR-5, BHL, August 1551.
[3] L.C. Tens fieport ANLAD-60, ilay 1960.
[4] W.J. Cunninghan
Introduction to Non-Linear Analysis, Chapter 5, :icGraw-Hill 1958.
[5] H.J. Halana
Internal Report HJH-5, BNL, April 19.51
[S] M. Plotkin
1960 I.R.E. National Convention Record, Part 9.

HH/yew
$12 / 6 / 61$
Distribution: $A D B 1, B 2$

Piti. 3. Solution curven for atable node $(y>0$)

Page 35 Aconlerator Dept.
Hiris 12/4/61

Plif. H. Solution curves for agddle ($v>0$)

