

Vapor Prensures of Isotopic Molecules*

 by Jueob Bigelelaen Chemiotiry Department Brookheven Netional LaborateryUpton, L. I., New Tork, U.S.A. Ifotopic molecules is. In fact, the oldest experinental and theoretical problen in the chemistry of faotopen. It was recognimad fron the outset by Lindemann and then Stern that the difference in wapor preasure was a reault of the difference in heate of vaporization which resulted from the quantrum mechanical mero polint energy. Although a significunt body of experimental data thes eccumuleted since the discovery of the affference in vapor prassurtss of the neon faotopes by keason and wan Dijk, no quantitative correlations between theoretical calculatione and experimental data were aude wp until the time of the International Conference in Ansterden in 1957. Marked progress has taken pimee In the last five reara, both with respect to refinement of experiaent and the developnent of theery.

The anjor theoretical advance has been the dewelegnent of a theory which explifitily tekes into aceount the role of molecular strueture. The theory leade to porticularly olaple resulea for manil quantum effects. i.e. GNT $<2_{r_{3}}$ or for manil ehanges in iarge quantum affects. Under these conditions, the vapor pressure *Research carried out under the auspices of the U. S. Atonic Energy Commission and the National Science Foundation.
depends upon the mase of the aton which is feotopiceliy subetituted and the poteantiai fiald in whick the aten finde itaelf. If, on the other hand, some of the motsons have latge guantum effectis and others sandi quantum effects, then the mass dependence is meo a function of the maseep of the ether ateme in the molecule. In the latter case. the temperature dependence in aiao conplex and one fragneutiy encounters the crowe over phenemenon. The theory athong that the molet volume is asecond order effeet, but thet gas imperfection plays a mignificont role partieulariy with meapert te deviations from Reoult* Law.

After a Alscumaion of the general theory, a mumberiof aperific different types of etructural effecte will be considered and compered with experlingmtal results. First there it the eftect of nearest neighbor number, which. is cooveniently studied by cempertson of the whpor preseure ratio $\mathrm{Ne}^{20} \mathrm{AN} \mathrm{m}^{23} \mathrm{in}$ the solld and Iiguid at the triple point. Me next conalider the case of coupling of melecular trinsiatlon with other trpos of motion. whlelh in part explaine the ilfference in vapor presesures of HT and D_{2}. The gole of molecalar rotation, per ee, is rather uniguely studied in the
 $14 N^{14} \mathrm{~N}^{18}$ o. Specific chemicai interaction, such se the formetion of dimers, leads to large vapor preawere dififerences. These wite reedily accounted ifor by the theory ond detailed calculations for the ifotopic NO molecules mhoo quantitative agreenent with experiment. An introduction uili be filven to the thepry of quantun effects of hiderer onder.

INHMOUCIXOR

Abstract

A diseusaition of the atete of our fonomledge of the vapor presersite of isotopie molecales is a particulariz appropriste topie to open thia meting on the playsical chemiatry of isotopen. Ristoricaliy. this its the firet difference in physical or chernicel progerty that was studied. (1) Although the proctes may wppear to te a simple one. experiment has ahom it to be one of the moat complex of all the propertiod for whit ieotope effects have been inventigwted. inere are a large number of sanali effecte, which add up to the final difference in vepor pressure. Mnny of these efferte have opposing signo and the final differtnce in vapor presaure may be a anali fraction of that of one of the contributing factors. Yet when afieli explasation It echieved, and this has now been carried through for a number of aignifieantiy different types of systems, we obtain informestion which wili enrich cur underatanding of isotope efiectis in cheatical exchange equilisbria, itan exchange, chromatography, thermal diffusion, chentcal kinetice. ion diffusion. ete. In fact it covere almoet the entire spectrun of subjects under isscuasion at the present whposiun. Purther, the stucy of laotope effects on vapor presaurs hae enlarged eur underatanding of the toenory of the interaction of melecular systems and the ascocieted quantum effezts. te may expect aore Lnformation from future studies.

A ze

It was recognised from the oukset by Lindomann ${ }^{\text {(1) }}$ (the late Lord (\%herneli) that a differtence in vapor pressure of isotopic moleculea wae te be associnted with the zero point vibrational energy. Conuider
a molecule bound in a liquid or eelid by a potential af the fome given in Pig. 1. At the aboolute seco the molecules are in the ground states. which differ for the light and heery molecules. The heats of vaporization will diffitr ty the zero point enorgy airference. $\delta \epsilon_{o}$ Thia siaple considerstion leads one to expeet a differmes in vapor presaures of the form

$$
\text { In } P^{*} / P=\delta_{\Delta H / R T}
$$

In actuality no wystems can be described by this elementary approach. If we comsence the study of Isotope effecte on vapor presaure by considering bystems in order of their normal boiliag points, we mat inmediately talke cognisance of whether the aystem obeys Permi-pirac or Boee-singtein statiatics. This has been found to have a profound effect on the properties of ${ }^{3}$ He and ${ }^{4}$ He. The study of these two interesting substances ia anique and fascinnting one in itself. The considarations iavolved will not be generally applicable to other systems, for which quantimed Boltmann stetistics will auffice. We ahal1, therefore, onlt further consideration of the 3 He-He problem and rafer the reader to the large ititerature on this subject. (2) Por the case of systems obeying Soltamann atatistice, equation (1) fails for two reasons: (1) at any temperature at alath the syatem has a moasurable vapor pressure it is essential to consider the excited states; in fact it is just from these states that the vaporiantion takes place: (2) it is necessary to consider not only the intermolecaiar potential, but ell forces acting on the individual atem in the molecule In the condensed and geseous states.

We shall consider firat the effect of the higher exeited etates
for atonic syatems. We asmume that the Born-Oppenhefmex approximetion Is a good description of the electronic energy states of this yyatem. In this apprearinetion the potential energy of tise syatem is independent of the naclear mass. For such a syotem, Lindemann showed thet a solid, with a mamonte pebye lattice freguency distribution, is equililbriva with an tieal gee leeds to a $1 / \mathrm{P}^{2}$ dependence to the vapor preasure ratio. The result found was

$$
\begin{equation*}
\ln P^{\prime} A P=\frac{3}{40 T^{2}}\left(\theta^{.2}-\theta^{2}\right) * \ldots \tag{2}
\end{equation*}
$$

where θ° and θ are the Debye cherecteriatic temperatures for the 1ight and heavy mons maich have vapor pressures P^{\prime} and P respectively. Some twenty years inter Herafeld and Telier ${ }^{(3)}$ ahowed that the same type of temperature dependence could be obtalmed for any arbitrary frequency distribution through the use of Wigner"s formalation af the quantum mechanical partitton function in terms of the ciassical distribution in configuration space. One obtalna quantum correations ordered in powers of (h/NT) ${ }^{2 n}$. Nore recentiy Mayer and Bend (4) have given a reformulation of wigner's theorew wich permita ita extension to syeters af mavy particies with significant quantus effects. One obtains to order m=1

$$
\begin{equation*}
\ln Q_{4 . m .}=\ln Q_{e 1}-\frac{1}{34}\left(k /(2 T)^{2} \sum_{i}\left\langle\frac{1}{m_{i}} \frac{\partial^{2} v}{\partial x_{i}{ }^{2}}\right\rangle\right. \tag{3}
\end{equation*}
$$

where $Q_{\text {g. }}$. and $Q_{e l}$ are respectively the quantum mechanical and ciassical partition fumations. Froa eq. (3) it Zollows for a iiguid or solid in equilibrium with an ideal monatoric gas

$$
\begin{equation*}
\operatorname{la} P^{*} P=\frac{1}{24}(\hbar / R)^{2}\left(\frac{1}{x^{*}}-\frac{1}{m}\right)\left\langle\frac{\partial^{2} v}{\partial x^{2}}\right\rangle \tag{4}
\end{equation*}
$$

Quite amalogous to this development is the de Bopr method (5) which develops quantum deviations from the law of correngonding atates in terms of the parameter $\Lambda^{*}=s,\left\langle(m \in)^{i / 2}\right.$, where σ le the range of the intermolecular foree and \in ts the depth of the Intermoleculse potemtial.

For the real ges, winken obeyw an oquation of state af the form

$$
\begin{equation*}
P V / A X P=1 * B_{0} P * C_{o} P^{2} \tag{s}
\end{equation*}
$$

one obtains (6) after taking cognsmance of the fect thet at aguilibrium the Gibbs free energies and not the Heimhoitz free energies of the two phases are equal

$$
\begin{aligned}
& \ln P^{*} A P=\frac{1}{24}(h / R X)^{2}\left(\frac{2}{N^{*}}-\frac{1}{m}\right)\left\langle\frac{\partial^{2} v}{\partial x^{2}}\right\rangle+(E X)^{-1}\left(P^{*} v^{*}-P N\right) \\
& -\left(B_{0} P+1 / 2 C_{0} p^{2}\right)+\left(B_{0} P+1 / 2 C_{0} p^{2}\right) \\
& \text { (6) }
\end{aligned}
$$

A test of this development cen be mede pitt the tieta of Keeson and Hant ges (7) on the vapor pressurea of the meon isotspas, 20 Ne and ${ }^{28}$ No. The comparison 1 . ahown in pig. 2. The solid tise threagh the origin is dram tn accord with eg. (2) and the 9 for neon, 63°. is taken from heat sepacity meseurements. We note thot the wata for the solid give a finste intercept at infinite teaperature. More extensive caleusletions by Johne, ${ }^{(8)}$ who used an anheramenic Binsteln mode1. failed to remove the discrepancy. It was necesteary for Johnas to assums a difference in the potential for the two neon isetopes in order to reconelle his caleulations with the Leflden date. The discrepancy is actualiy worse than that calculated by Jotnns, for in faet the lettice dietrace in aolid neon 1 as $4.439 X^{(9)}$ rather then the values $4.539-4.581 \AA$ derived by Johns by minimisivg lais Iree energy
function with reapect to the lattioe distance. Tri adscrepancy has been shown to be a reault of the inadequacy of she Letclen data for a test of this theory and the extension of the theory to snclude higler ordiex guantua correctiona.

The reaults of the recent invostigation of the neon isotopes by Bigeleiaen and Roth ${ }^{(10)}$ are given in sig. 3. The gumentity groted is

 partiticen function ratio is selates so the vapor prossure ratio in the general case by the equation (b)

$$
\text { In } P^{\prime} P=\ln A \delta^{\circ} f_{e}-\ln s / s^{\circ} f_{g}+(R T)^{-1}\left(P^{\circ} V^{\circ}-P N\right)-\left(E_{0} P+1 / 2 C_{o} P^{2}\right)^{0}
$$

$$
\begin{equation*}
+\left(B_{0} p+1 / 2 c_{0} p^{2}\right) \tag{7}
\end{equation*}
$$

where $s / 3^{\circ} f_{g}$ is the well known reduced partittoa Eunction ratio for the ideal gas introduceu by Bigelefeen and Mayer. (11) Por a monatomie solid with a harmealic potential $(6,10)$

$$
\begin{align*}
& \ln \epsilon_{e}=\sum_{j}(-1)^{j+1} \frac{3 B_{2 j-1}(n / x)^{2 j}}{2 j(2 j)!} \quad\left[1-\left(x^{\circ}, \operatorname{Han}\right)^{j}\right] \mu_{2 j} \tag{8}\\
& {\left[\begin{array}{ll}
\mathrm{h} 2 & \max <2 \pi]
\end{array}\right.}
\end{align*}
$$

wiere $U_{Z j}$ is the $2 j^{\circ}$ 㭥 moment os tise lettice vibration

$$
\begin{equation*}
N^{-1} \sum^{3 N} x_{1}^{2 j}=32_{2 j} \tag{9}
\end{equation*}
$$

For the Debye dietribution, one hes the well hnosen relation

$$
\left.\mu_{2 j}=\left[3\left(1,4, M^{2}\right)^{2 j}\right]<2 j * 3\right)
$$

It is apparent thet there is curvature in a plot of in ifevo. i/5 tue to the higher order cusuntum corrections. The extrapolation to the
origin is facilistaced by the use of the Debye distribution and a Detve of 74.6% gives an excellent fit of the data. The discreparey between this value of 0 and the one cerived from heat capeciey measurenents, 65.70 K . (12) has beess shows to be a consequence the anisarmonicity of the iattice vibratiens. The behavior of the ilquid between the maiting point and the normal boiling point can be described by the change in the soordinstion mumber of the solidd, 12, to 8.8 neareat neighborw in the ilquid. The neareat neighbor distance in the liguid differs by a negligible amount from the lattice dintance in the solid. This leads to a eharacteristic temperature of $63^{\circ} \mathrm{R}$ for the 1 gquid, thich is in exceilent agroement with tre experimental data.

The contribution of the gas imperfection to the vapor preasure ratio can be tented exparimentaliy. For a solution of teotopers with a negilgible voluse change on mixing

$$
\begin{align*}
\ln P^{\prime} / P & =(\ln \alpha)[1-P(B-V / R T)] \tag{ii}\\
& \left.=\left(N^{\circ} N\right)^{\operatorname{gan}} N N^{\circ} \text { N }\right)_{\text {inguid }} \tag{12}
\end{align*}
$$

Thus comparing eqs. (7) and (21)

$$
\begin{equation*}
\ln \epsilon=\ln \varepsilon_{c}-\ln E_{g} \tag{23}
\end{equation*}
$$

The fractionation experiment givea directiy the difference between the partition function retio los tise conclensed phase and the ideal gas. The physicai inteapretasion of the difference between the solution expariment and the experiment with the pure phased is the following. In the eciution experiment both isotopes are present in the gas plase at the same density. Ir the approxination that the virial coefficieats are the wame, any effect pf the fas density cancels and the oyntem
behaves as though an ideal ges mixture were in eguilibrium with the condensed phase. In the case of the pure conponents, the equilibzine vapor pressure of a ifgaid io greater than thet which would be obtained for the hypotinetical ideal gas. This is due to the attractive Forces in the ges. In Fig. 4 we give a comparison of in $\mathrm{P}_{20} \mathrm{NNe}^{\mathrm{P}} \mathrm{P}_{22} \mathrm{Ne}$ from measurements on pure phases and from solution equilibration.(13) The agreentent is excelient. Further confirmations of the theory are given in the coamunscation to this aymponium by Boato. (14)

The present theory has been applied to the isotopes of argon by Boate and co-workers, tho have in addition made an evaluation of the Fole of the anharmonic effecta. (14) The agreement between theory and experiment is excelient. We may thus conclude that the difference in Vapor pressures of the isotopes of the rere gases can be quantitatively described within the Born-Oppemheflaer approximation by atraigheforward quantum statletics.

MOR HCULAR SYSTEES
It has been lanown for a long time that the deseription given ebove for atoaic syatems is grosely inadequate even in a qualitative way to describe the difference in vapor pressures of isotopic polyatoms molecules. In the case of hydrocarbons, deuterium substitution for protiun usually leads to a higher gather than o lower vapor'pressure, In such systems the sign of the vapor.pressure difference depends on the temperature and. the behwitior is lonown as the cross over phenosenen. Numerous extmples are avallable to show that for isotopic aystems the vapor pressure does not depend on the molecular weight but rather wast be correlated with the structure of the molecule and its interaction with other molecules in the condensed phase.

Typical struetural effects are the wapor prosastres of the methames ${ }^{12} \mathrm{CH}_{3} \mathrm{D}>{ }^{12} \mathrm{CH}_{4}>{ }^{13} \mathrm{CH}_{4}$. In a homologous sertes the rule of the mena is obeyed, e.g. $\mathrm{P}_{\mathrm{HD}} \approx\left(\mathrm{P}_{\mathrm{H}_{3}}{ }^{\mathrm{D}_{2}}\right)^{1 / 2}$. Successive isotopic substitution. e. E. K, D. T. leads to a very much fagter leveling off iwitho increasing mase than thet to be expected from aimple considerations of spherical
 found to be 1.37 rather than 1.90 to be expected from masses 28.19 and 20. (15) These findinge can be readily understood if one buildo a theory thich takes cognizance of the molecular atructure. In addition to the contribution of the translation (nolecular veight effect) to the vapor pressure, one muet conalder the molecular rotation and the mutual interaction of these modes sa well as their coupling with the molecular vibretions. In a formal way this is inherent in eq. (7). The problem then becomes the evaluation of $\ln s / \mathrm{s}_{\mathrm{c}} \mathrm{I}_{\mathrm{c}}$ for molecular symten. In the harmonic approxiantion
$2 n s / s^{*} I_{c}=N^{-1}\left\{\frac{m c}{2 \pi T} \sum_{i=1}^{3 n \| I}\left(\nu_{i}{ }^{*}-\nu_{i}\right) \cdot \sum_{i=1}^{3 n N} \ln \frac{u_{i}\left[1-\exp \left(-u_{i}{ }^{*}\right)\right]}{u_{i}{ }^{*}\left[1-\exp \left(-u_{i}\right)\right]}\right\}$
The vapor preseure equation then beconea
$1 n P^{*} / P=N^{-1}\left\{\frac{\operatorname{hc}}{2 k T} \sum_{i=1}^{3 n N}\left(\nu_{i}{ }^{*}-\nu_{i}\right)_{c}-\left(\nu_{i}^{*}-\nu_{i}\right)_{g}\right.$
$\left.+\sum_{i=1}^{3 n s v} \operatorname{In}\left(u_{i} \mu_{i}{ }^{\circ}\right)_{e}\left(u_{i}{ }^{*} \mu_{i}\right)_{g}\left[\frac{1-\exp \left(-u_{i}{ }^{*}\right)}{1-\exp \left(-u_{i}\right)}\right]_{c}\left[\frac{1-\exp \left(-u_{i}\right)}{1-\exp \left(-u_{i}{ }^{*}\right)}\right]_{\varepsilon}\right\}$
$-G\left(\sigma, \sigma^{*}\right)_{g}+(R T)^{-1}\left(P^{*} V^{*}-P V\right)-\left(B_{0} p+\frac{1}{2} c_{0} p^{2}\right)^{*}+\left(B_{0} p+\frac{1}{2} c_{0} p^{2}\right)$
where $G\left(\sigma, \sigma^{*}\right) g$ ie correction for non classical rotation of the molecule in the gas phase. If the internal vibration are not much different in
the condensed phate fron the gaseous state and if the quantum levels aseociated with the tranalation and rotation in the condensed phase have energies not more than 2rikT, then

$$
\begin{equation*}
1 n P^{n} n=\frac{1}{2 \pi}(\hbar / n a r)^{2} \sum_{i=1}^{3 n v t}\left(\mu_{i} *-\mu_{1}\right)\left(\mathrm{a}_{11}-b_{11}\right)+\ldots \tag{16}
\end{equation*}
$$

The aumpation in eq. (16) runs over ail atoms in the condensed phase. The reciprocal menses μ^{*} and μ are atomic masses and the Cartesian force constants a_{14} and b_{14} are the reatoring forces shen the i*th ston is displaced from its equilibrium position in the condensed and gea phases respectively. Up to onder (Kh/na) ${ }^{2}$ the harmonice opprocimation is not necessary fot the derivation of oq. (16). The derivation proceeds directiy from the Mayer-Band theoren. (26) Under the conditions there eq. (16) is mpplifable (these are discupsed in detail along with its derivation ${ }^{6}$) one obtaine directiy the rule of the mean. Die relative behavior of different iaotopes of the same elemeat is unifualy oftwen by the stonic maswes and in the case of H, D, T the ratio

$$
\frac{\operatorname{In} a(H / T)}{\text { In } a(H / \hbar)}=1.33
$$

Is In excellent egrenment with the aforenentioned experinents of Avinur and Nir. One sees directiy thet the vapor preasuree of ${ }^{12} \mathrm{CH}_{3} \mathrm{D}$ and ${ }^{13} \mathrm{CH}_{4}$ can never be equal, except by some fortuitous elrcumetance. A difference arises in eq. (16) between these molecules both freat the $\left(\mu^{*}-\mu\right)$ term and the force torn $\left(\mathrm{a}_{\text {ii }} \mathrm{b}_{\text {iii }}\right)$, which are both alfferent for the carbon and hydrogen wtom. Even for a molecule where ($\mathrm{a}_{\mathbf{1 4}} \mathbf{b l}_{\mathbf{i f}}$) is the anme for different atoms, the vepor preaaure doew not depend on the molecular weight. One is led to predict differences in vapor
pressures betveen $\boldsymbol{\Gamma} \mathrm{Fr}$ and D_{2}. We point out that eq. (16) is not applifable to such ilght melecules ot such lew temperatures. Neverthelese, In a gualitative way wo are led to expect a difference due to the fact thet in this approwimation the vapor preasure depends on the reelprocal atomic mases. From a molecular polnt of view, a difference is to be expected as a conseguence of the perturbation of the translation and Internal vibration by the rotation in the ifquid. Such a difference has been found experimentaliy. (17) A theoretical treatment which considers oaly the tranelation-rotet ion has been given by Babloyants (18) and extended by Friediann. (19) A more general treatment within the framework of perturbation theory is given in the peper presented at this sympoaitu by Molfaberg. (20) Hie calculations show the rotationvibration interaction to be significant.

The detalled deseribetian of the normal modes and their perturbation fron various types of interaction is unneceseary for aubstances with smail quentum effecte. It is only necesaary to knov the change in the mean force betwoen the condeneed and geseous state. When the guentum effects associated either wizh the translation or rotation or thies ehifts in the internal vibrations are large. then eq. (16) is no ienger applicable. In the latter case

$$
\begin{aligned}
& 1 n P^{*} P P=\sum_{j=1}^{\infty}(-1)^{j+1} \frac{B_{2 j-1}(h / n a r)^{2 j} 6\left(\mu_{2, j}-\mu_{2,1}\right)}{2 j(2 j)!}+1 n \cdot\left(3_{8}\right) \\
& \bullet(R T)^{-1}\left(P^{*} Y^{*}-P N\right)-\left(B_{e} P+\frac{1}{2} C_{o} P^{2}\right)^{*}+\left(B_{\theta} P \cdot \frac{1}{2} C_{0} P^{2}\right)-O\left(\sigma_{,} \sigma^{*}\right)_{\xi} \\
& \text { where } \mu_{2 j}^{*} \text { and } \mu_{2 j} \text {, are the vibrational moments mosociated altb the } \\
& \text { translation and retation sud }
\end{aligned}
$$

The surmation in eg. (18) runs over the internal vibretions of the moleoule. In the firat approximation eq. (17) reduces to one of the fore

$$
\begin{equation*}
\ln P^{*} P=\frac{A}{T^{2}}-\frac{B}{T} \tag{19}
\end{equation*}
$$

The T^{-2} tern is associated with tranniation and notation; the T^{-1} term with shifts in the sero point energies of the intercal vibrations on coademsation. We have al ready pointed out that one contribution to these ahifts arises from the coupling af the vibrations with the tranalation and rotation. A more uaual effect arisea froe the van der Wals ${ }^{*}$ s forces. Thls has been discussed by Beuer and Magat ${ }^{(21)}$ and more recently by aaertachi and Kuhn ${ }^{(22)}$ and by Molfaberg. ${ }^{(20)}$ Bquation (19) directiy predicts the erose over phencaenon. At low temperatures the $A A^{2}$ tern predealnates and the 11 ght isotope has the higher vapor pressure. At high tamperatures the B/T tera becones greater than the A / T^{2} term and the heavy laotope has the higher vapor preasure. At still bigher temperatures eq. (17) goes over to eq. (16). the laght feotope again has the indger vapor pressure and then fineliy at atill higher temperatures the vapor presaure difference vaninhes.

pressure ratio has been established. (6) In Pig. 5 ve give a correlation of the experimentel date on the isotopie 2 iguid hydrogens with the theory.

The number of moleculsr ayetans in alich isotope vapor preesure differences have been studied is large. Very few otudies have been subjected to theoretical analyais and we shali deal vith those eyatems where a quantitative theoretical analysis has been carried through. Three syatems heve now been analyaed in conplete detail: the wo syotem, (23) the $\mathrm{N}_{2} \mathrm{O}$ aysten, (24) and the ethylene syotem. (25) In the present paper we shall give a sumany of the bebovier of the nitrogen oxides. A discussion of the ethylene syoten ts given elsenthere in this symposiun. (25) To these we may add the calculation of the van der Wasis ahift in ifquid CCl_{4} and the resulting vapor pressure difference for ${ }^{12} \mathrm{C}-{ }^{13} \mathrm{C}$ and ${ }^{35} \mathrm{Cl}-{ }^{37} \mathrm{Cl}$ in this molequie. (20)

The isotopic $\mathrm{n}_{2} \mathrm{O}$ aolecules afford a simple and eirect method for the study of thie effect of hindered rotetion in the ilquid on the vaper pressure. By aingle isotopic subetitution one ean atudy $14 N^{14} N^{16} O,{ }^{14} N^{15} N^{16} O,{ }^{15} N^{14} N^{16} O$, and ${ }^{14} N^{14} N^{18} 0$. The atiody of all of these species by the method of colum distillation has been cerried through by Bigeleisen and Ribaikar(24) subsequent to the Ralefgh distillation experiments of Kuhn, Nerten and Therkeuf. (26) The latter workers measured the ${ }^{14} \pi^{14} \pi^{16} 0 /^{14} \pi^{14} N^{18} 0$ and $143 /^{15}$ fractionation fectora. Siroultaneousiy with the experiments of Bigeleisen and Ribniker, Clusius and Schleich (27) mosaured the vaper pressure difference betweien ${ }^{14} N^{14} N^{16} 0$ and ${ }^{25} N^{14} N^{16} 0$. The experimental resules of all these workers by different methods are in sood agreesent with
one another, mitmin the limita of the experimontal errors. The elementary eeparation fector, InP' P, is of etwe arder $1-2 \times 10^{-3}$ and the agreement is 10% of the eaparation facter.

A sumary of the relative and absolute aappration factors is given in Tables I and II. The relative separation factor* are rather afmgiy calculated in this perticular case. $N_{2} O$ is inneax molecule which concleases into the solid random end for end. (28) The Intermolecular forces actlmg on the end nitrogen atom and the orygen atem are therefere neariy identical. The center of gravity of the molecule is within a fev parts $1 n 10^{5}$ at the central nitrogen atcm. (39) Inmanueh as the molecule has a very small dipole moneat and pelarizability, It is reasonable to seausie that the internal vibrations are not much perturbed on condensation. These faets and the iast assumption lead to the reiation

$$
\left(a_{1 i}-b_{1 i}\right)_{0}=\left(a_{11}-b_{i 1}\right)_{\operatorname{Lin}} N
$$

Prom eq. (16) we can now write

The ratio $\left.\left.\left[\in f^{14} N^{14} N^{26} o, 15 N^{14} N^{16} O\right)\right] /\left[\in f^{24} N^{14} N^{16} 0 /^{14} N^{15} N^{26} O\right)\right]$ requirea some knowledge about the force field and the Erequency distribution for the translatioaml and rotational modes. Ue assume an isotrogic force, in Binstein diatribution for the rotekion and both Einstein and Debye diatributions for the transistian. The ratios to be calculated are the coefficients of the (h/kr) tern in eq. (17). We find

3lnatenin Transiation
$\frac{\epsilon\left({ }^{24} \mathrm{~N}^{14} \mathrm{~N}^{16} o^{25} \mathrm{~N}^{14} \mathrm{~N}^{16} \mathrm{o}\right)}{\epsilon\left({ }^{16} \mathrm{~N}^{14} \mathrm{~N}^{16} \mathrm{o}^{16} \mathrm{~N}^{15} \mathrm{w}^{26} \mathrm{O}\right)}$

3
-

Debye Translation

The agreement between theory and experiment ia rathes good. It is a direct conflrmation of hindered rotation fin the liquil through the use of isotopite substitution in non-equivalent positions. The aboolute elementary separation parameters are calculated through the above theoretical ratios and the theorettend calculation of $\in\left({ }^{14} N^{14} N^{16} 0 /^{14} N^{15} N^{16} 0\right)$, whets is directly given by the transantionas contribution. One $x^{\text {Ina }}$ (24) $\in\left(14 N^{14} N^{16} 0 /^{14} N^{13} 3 N^{16} 0\right)=8.2 \times 10^{-4}$. This fozm the busis guantity for the calculation of the theoretical separation factors given in Table IX. The agreement between theory end experianent is: all that could be deaired.

We now consider the case of a polyatomic molecule whith has atrcong association in the liquid ghase. In the case of no definite tilmers exist, which are negilgibly diasociated in the jiguid but completely dis soctated in the gas phase. (30). The vapor pinssaures of all the three ${ }^{15}$ N and ${ }^{18} 0$ swbetituted $N O$ mosecules have been studied as a function of temperature by Clusius and co-workess. (31) A sumany of their experimeatal observathons la given in Table III. We note that a rather large effect has been found and empirically the syatem olvegs the rule of the mean,

This is just the behavior to be expected if the syeten has amell guantum affects and/or mall perturbations of the iarge quentum effeeta. A very good criterion for this description is given in the published
theery of the veper pressures of the faotopic nitric oxide molecules. (23) If the aystem obeys eq. (16). then by strajghtorvard ciassacal thermocymanice

$$
\begin{equation*}
d(A H)_{T} v=-2 R E \ln \left(P^{3} / P\right)_{T} \tag{20}
\end{equation*}
$$

A comparison between the "experimental" values and the orea calculated Isomeg. (20) is given in Table IV. This dezinitely establishes the effect as a sumali quantuan affect. if dependence, with mo ifi mor temgerature indepentant teriss isu the vapor presure reete. As such, we may proeend to apply eq. (16) directiy.

Licguid NO has random dimers. In the dimer, diaplacement of oxygers along or perpendicular ts valence bonds is equivalent to displacement of nitrogen. Thus iz one neglects interactions across the ring
 predicte the $\left.\left({ }^{18} 0,160\right), A^{15} N f^{14} \mathrm{~m}\right)$ isotope effects in the vapor pressure. and related guantities to be 2.46 . These are comparea with experiment In Table V. The contribution of the dimeriantion process to the Afference in vapor pressure hes been calculated to be 0.021 for
 contribution of the dimers. Following the procedure given in our diactassion for $\mathrm{N}_{3} \mathrm{O}^{\text {, we calculate the translation and rotation to }}$ sontribute 5×10^{-3} for a bebye transzation. If a different Erequency epectrum is used, then a new characteristic temperature needs to be defined and the reault will be the same. This new calculation of the translationmrotation contributson leads to the theoretical velue of $\ln \left(P_{14_{N O} 16} / P_{15_{N}} 160\right)=0.027$ et $115^{\circ} \mathrm{K}$ (previousiy we had calculated 0.025). The result is in good agreement with experiment. The
calouliation to further confinmed by recent emperineents of ciusise, Schleich, PLeabergen, and varde. (32) By corgarison of the 15 Practionastion in a Aliute solution of wo in Chy with the vapor pressure ratio of the pure liquid, they set a lower 1 组哂 of 0.018 for the contribution of the dinerization procens to the logarithe of the vapor pressure ratto at $111{ }^{\circ} \mathrm{R}$.

Sungeayy
It is appersnt that sas jor progresib bas been made both in the experimental and theoretheal study of the vapor pressures of fsotopic molecules in the last five years. Vapor pressure mesurements are being made in different laboratories by different methode mieh mgree with one another within a fev hundredels of one percent. The theory hes advanced to the point where sarge body of experimental deta can be syetemetiaed and understood. Quantitative calculetions hoval buen carries out wheh verify the mass, temperature, and potential energy depandence espects of the theory. An old aubject has been revived by advances in modern experfmontel and theoretleal methods and is now useful far the study of qusntum effects and stractural effecta in 1iguids and sailis.

ACACNOWE EDGUREMT

The preparation of this manuscript was delayed by unforeeen Ciremmstances until after the XIIemp reunion anmuelle in peris. It is a pleesure to thank professor H. H. Gunthard for the hoopitaluty of the Laborntorium fir phystikalische Czense at the sis, Zurich, where the writer was a Natimal Science Poundation Fellow.

Table I. Relative eldentary separation parnmetere for the
Letopic $\mathrm{N}_{2} \mathrm{O}$ mol eculea. (25)
$\epsilon_{j}=\ln \left[\left({ }^{14} \mathrm{~N}^{14} \mathrm{~N}^{16} 0 / \mathrm{N}_{2} \mathrm{O}\right)\right.$, vapor $\mathrm{N}^{14} \mathrm{~N}^{14} \mathrm{~N}^{16} \circ \mathrm{~N}_{2} \mathrm{O}_{3}$, $\left.12 q u i a\right]$
1sotopic Species Bxperimental Theoretical
$\epsilon_{14} \mathrm{~N}^{14} \mathrm{~N}^{18} \mathrm{O}^{1} \epsilon_{15} \mathrm{~N}^{14} \mathrm{~N}^{16} \mathrm{C} \quad 1.38 \pm 0.07 \quad 1.46$
$\epsilon_{15 \mathrm{~N}^{14} \mathrm{~N}^{16} \mathrm{O}^{1}} \epsilon_{14 \mathrm{~N}^{15} \mathrm{~N}^{16} \mathrm{O}} \quad 2.10 \pm 0.10 \quad 1.67$ Einatein
2.11 Debye

Table 11. Absolute elementary aeparation parameters for the faotepic

$\mathrm{N}_{2}{ }^{\circ}$ molecsies at $184^{\circ} \mathrm{K}$

1eotopic apecies	$\underset{\text { Raleigh }}{\text { dsetilletion }(26)}$	Mercury manometry pure apecies ${ }^{(27)}$	Columing (24)	nieory
$14 . \mathrm{N}^{14} \mathrm{~N}^{16} \mathrm{O} /^{14} \mathrm{~N}^{14} \mathrm{~N}^{18} \mathrm{o}$	$18 \pm 5 \times 10^{-4}$		$22 \pm 2 \times 10^{-4}$	25×10^{-4}
$14 \mathrm{~N}^{14} \mathrm{~N}^{16} \mathrm{O} / 15 \mathrm{~N}^{14} \mathrm{~N}^{16} \mathrm{o}$		$19.3 \pm 2 \times 10^{-4}$	$16.2 \pm 2.8 \times 10^{-4}$	17×10^{-4}
${ }^{14} \mathrm{~N}^{14} \mathrm{~N}^{16} \mathrm{O} \gamma^{14} \mathrm{~N}^{15} \mathrm{~N}^{16} \mathrm{o}$	\geqslant		$7.8 \pm 2.4 \times 10^{-4}$	$s \times 10^{-4}$
$\left[14 \mathrm{~N}^{14} \mathrm{~N}^{16} \mathrm{O} /\right.$		-		
$\left.\left.\mathrm{c}^{15} \mathrm{~N}^{14} \mathrm{~N}^{16} \mathrm{O} *{ }^{14} \mathrm{~N}^{15} \mathrm{~N}^{16} \mathrm{O}\right)\right]$	$11.6 \pm 0.6 \times 10^{-4}$		$12 \pm 2 \times 10^{-4}$	13×10^{-4}

Table III. Properties of isotopic $w 0$ molecules

	$15 \mathrm{~N}^{16} 0$	$14 w^{18} 0$	$15 \mathrm{~N}^{18} \mathrm{O}$
	0.0295	0.0406	0.0701
S Triple Point (${ }^{(10} \mathrm{N}_{0}-{ }^{14} \mathrm{~N}^{16} \mathrm{O}$)	$0.099^{\circ} \mathrm{K}$	$0.130^{\circ} \mathrm{K}$	$0.222^{\circ} \mathrm{K}$
δ Boiling Point ($\left.{ }^{(10 \%} 0-{ }^{14} N^{16} 0\right)$	$0.228^{\circ} \mathrm{K}$	$0.313^{\circ} \mathrm{K}$	$0.528^{\circ} \mathrm{K}$
δ Heat of Vaporization			
$\left({ }^{2} \mathrm{~V}^{\prime} \mathrm{O}-14 \mathrm{~N}^{16} \mathrm{O}\right.$) in cal mole ${ }^{-1}$	14.1	20.4	33.5

Table IV. Calculeted and oqperimental differences in heat of vaporiantion of wo molecules (cel mole e^{-1})

	$15 \mathrm{~N}^{16} 0$	$14 \mathrm{~N}^{18} \mathrm{O}$	$15 \mathrm{~N}^{18} \mathrm{o}$
"Experimental"	14.1	20.4	33.5
Calculated (0q. 20)	13.5	18.7	32.3

Table v. Relative ${ }^{18} \mathrm{O}$ and ${ }^{15} \mathrm{~N}$ isotope effects In the vapor pressure of no

BYBLIOGRAFHY

(1) F. A. Lindemann. - Phis. Mag. . 1919, 38. 173.
(2) K. R. Atkins. - Liquid Eleliun, Combridge University Press: Cambridge, Engiand, 1959.
(3) K. F. Herzfeid and R. Teller. - Phys. Rev. . 1938. S4, 912.
(4) J. E. Mayer and W. Band. - J. Chens. Phys., 1947, 15, 141.
(5) See Chap. 6 by J. de Boer and R. B. Bird in J. O. Hirschfelder. C. F. Curtiss, and R. B. Bird, Molecular Theory of Geaes and Liquide, John Wiley \& Sons, Inc.: New York, 1954.
(6) J. Bigelelsen. - J. Chom. Phys., 1961, 34, 1485.
(7) W. H. Keesom and J. Heant jes. - Physica, 1935. 2. 986.
(8) T. P. Jahns. - Phil. Meg., 1958, 27. 229.
(9) D. G. Henshav. - Phys. Rev. . 1953, 122, 1534.
(10) J. Bigeleisen and E. Roth. - J. Chem. Phys. 1961, 35, 68.
(11) J. Bigeleisen and M. G. Mayer. - J. Cham. Phya.. 1947, 15. 261.
(12) K. Clusius, P. Elubacher, U. Piesbergen, K. Schieich, and A. Sperandio. - 2. Naturforsch. 1960, 159. 1.
(13) G. Boate, G. Casanova, G. Scoles, and M. B. Vallauri, - Xhovo Cimento Serie $\bar{x}, 1961,20,87$.
(14) G. Boato. - Paper presented at XII Reunion Annuelle. Soclete de chimie Physique, Paris. June 4-8, 1962.
(15) P. Avinur and A. Nir. - Meture, 1960, 188, 652 .
(16) J. Bigeleisen. - J. Chem. Phys.. 1955, 23, 2264.
(17) J. Bigeleisen and E. C. Kers. - J. Chen. Phys.. 1955, 23, 2442.
(18) A. Babloyantz. - J. Mol. Phys., 1959. 2. 39.
(19) H. Priedmann. - Adivances in Chemical Physica, Vol. IV (in prese). Interscience Publishere: New York, I. Prigogine, edator.
(20) M. Wolfaberg. Paper presented at XII Rounion Ammuelle. Societe de Chinte Phyetgue, Parte. Jume 4-3, $19 e 8$.
(21) E. Baver and M. Magat, phyolen, 1938, 5, 718.
(22) P. Baertechs and w. Kuhn, - Helv. Chim, Aete, 1957, 40, 1034.
(23) J. Bigeleieen. - 3. Chen. Yhys.. 1960. 33. 1775.
(24) J. Bigelefiaen and S. v. sabndtar. - 3. Chen, Thys.. 1961. 35, 1297.
(25) J. Bigelefieen, S. V. Rtbikiker, M. J. Stern, and w. A. Van Mook, Peper presented at XII Reunion Annuelle. Societe de Chinie Physique, Parls. June 4-8, 1962.
(26) W. Kuhn, A. Nertem, and m. Thurkauf. - Helv. Chin. Acte. 1950 , 42. 1433.
(27) K. Ciuelus and K, Schleich. - Helv, Chin. Acta, 196i, 43, 1132.

b. W. C. Hanilton and M. Netrie. - J. Phye. Chene 1001, 65, 1453.
(29) D. K. Colee and R. H. Mughea. - Furs. Rev. . 1900. 78. 178.
(30) A. I. Smith and H. H. Johnten. - Ja An. Chen. Soe. $4958,74.4696$.
 42. 2654.
(33) K. Cluains. K. Sehieleh. U. Pleabergen, and it. varde. - Paper presented at xat Reunilon Annuelle. Societo de Chtmie Firyalque. Parle. June 4-8. 1963.

Pig. 2. vapor prossure ratic ${ }^{30}$ ive f^{22} ive (date of reesen and Hanat Jes). Upper 1 Am through tate on setid meen. tover line 1 ifquid neon.
 ant. Neg. 1-326-60
 Pig. 3. Partition function ratio for the meon feotopeo in the colid and ifquid derived fron vaper preseure meneurenente. Batt. Neg. 1-325-60

Fig. 4. Comparison of manometric vapor pressure meseurenents 0 with solution equilibria for the neen teotepes BNL. Neg. 9-92-60

Pig. S. Correlation of molal volumes of the 1 figsid hydregens with vepor preseure. (The epperent Ifinte intercept at log $\left(\mathrm{P}_{\mathrm{H}_{2}} \mathrm{~N}_{\mathrm{x}_{2}}\right.$) $=0$ ts of course fictatious. See the original ifterature ${ }^{(6)}$ for the epanling of the Intereapt.)

BNL. Neg. 8-215-60

BNL NEG:\#1-325-60. FIR\# 3

BNL NEG. $\# 9.92 .60$. FIG. 4

END

