UNCLASSIFIED

Metallurgical Project

A. H. Compton, Project Director

CLASSIFICATION CANCELLED DATE FEB 151957 pet For The Atomic Energy Commission Metallurgical Laboratory
 S. K. Allison, Director
 Chief, Declassification Branch

 $\geqslant * *$

 \section*{PHYSICS RESEARCH}

 \section*{PHYSICS RESEARCH}}
\% \% *

WARPING INSTABILITY II LONG RODS

Gale Young
August 17, 1944

Photostat Price $5 / .80$
 Microfilm Price $\$ \angle 80$
 Available from the Office of Technical Services Department of Commerce Washington 25, D. C.

Abstract
if a pile rod gets bowed within its cooling tube it becomes warmer on the side which approaches the tube will, and thermal expansion tends to warp it in the $s w=$ direction as the original displacement. This was discussed roughly in $N-6 \mathrm{Cl}$, and it was there concluded that the mechanism was not important for an isolated short slug. In connection with current develophent of continuous jacket (cartridge) assemblies, it seams desirable to look at this question again. In this cases it is possible that the effect may be of some concern.

Report received: 8-18-54

Issued: AUG 3.01344

WRLPIIG IHSTABIIITY IN LOWG RODS Gale Young

Variable Transfer Coeffscient

One eoturce of heating on the side where the rod approsches She outer vall is the decrease of the transfer coefficient to the water on that side. The rough considerations of $\pi-601$ suggested that this coarficient h mifit be expected to vary someuthat as the cube root of the Gisictmoss of the mater Layer. Kratz and Schlagel have obtainod in one inatance an experimental indication that the variation is more nearly as the first power of the water thickness. This latter formulation may be approximately expressed as

$$
\begin{equation*}
h=h_{0}\left(1-\frac{y}{t} \cos \theta\right), \tag{1}
\end{equation*}
$$

Where h_{0} is the nomal value of h when the rod is centered, y is the diaplncenent of the rod from its contral position, t is the normal thiclonoss of the vater layer, and the angle θ is measured around the perineter of the rod fron the direction of its displacement. Thus $\theta=0$ is the plsce where the water layer is thinnest.

Snall temperature variations at the rod surface do not greatly affect the flow of heat G from unit area of the rod. Thus for small displacoments it mill be correct, on the assumption (1), to write the film drop $T=\frac{G}{h}$ as

$$
\begin{equation*}
T=\frac{G_{0}}{h}=\frac{G_{0}}{h_{0}}\left(1+\frac{y}{t} \cos \theta\right)=T_{0}\left(1+\frac{y}{t} \cos \theta\right) \tag{2}
\end{equation*}
$$

where G_{0} and T_{0} are the normal values then the rod is centered.
If then we suppose the balk water temperature to be constant around the rod, and if the sing-to-jacket contact is also constant around the rod, he temperature field in the rod will have a constant arcilent $g=\frac{T_{o}}{\text { fit }}$, where R is the radius of the rod. This gives rise (CP-14C1; CP -1693) to a bonding moment of magnitude $\alpha \mathrm{Bg}, \propto$ being the Invar coefficient of expansion of the rod and $B=E I$ being its flexaral rigidity. The usual bean equation is $B y^{\prime \prime}=$ bending moment, and upon choosing signs properly we obtain for a weightless rod

$$
\begin{align*}
y^{\prime \prime}+K^{2} y & =A \\
K^{2} & =\frac{\alpha T_{0}}{R t} \tag{3}
\end{align*}
$$

where A depends upon how the ends of the rod (where $y=0$) are secured and upon the magnitude of the rod displacement.

Suppose the power production along the rod to be uniform, so that T_{0} and K are constant, and that the ends of the rod are free to turn, so that $\mathrm{A}=0$. Then (3) has a simple solution in the form of cos F r, which vanishes at the ends of the rod if the rod halr-length I satisfies $\mathrm{KL}=\frac{\mathbb{T}}{2}$. This corresponds to equation (7) of $2-601$. Being the snare values as in that memorandum, namely $T_{0}=20^{\circ}$, $\alpha=1.5 \times 20^{-5}, t=.22 \mathrm{~cm}$, and $\mathrm{R}=1.75 \mathrm{~cm}$, gives $\mathrm{L}=56 \mathrm{~cm}$ instead of the value 85 em obtained there.

If the ends of the rod are clamped to make y^{t} vanish there In adilition to y, the solution becomes $y=\frac{A}{K^{2}}(1+\cos K)$ with $\pi L=\pi$ and with A an arbitrary constant. Thus clanging the ends of the rod derablea iss eritien length.

The values of L obtained in this way are those at which the assembly beocnes unstable; for smaller values of L a disturbance in the rod shape would be unable to maintain itself, and for larger values of I a disturbance of the right shape mould grow larger.

The above discussion was limited, in (2), to very mall displacements, and this led to a temperature gradient E given by $\frac{H-}{T_{0}}=\frac{Y}{t}$. For large dioplacencents the temperature field in a bonded \because slugs has been studied by Nurrcy under the assumptions of constant water bulk temperature and transfer coefficient as in (1). From his calculations Lir. Hurray has kindly furnished us values for the effective warping gradient E , which varies as sicetched in Fig. 1. Our calculations

above ers basal on the lower dotted line which underestimates the warping moments tet up. Use of the upper dotted line overestimates the moments, and has the effect of Increnaing our previous value of $x^{2} \mathrm{by}$ a factor of 3.7 . This in turn would divide the critical lengths by $\sqrt{3-7}=1.9$.

Thus ur d Sf anil displacements the (weightless) rod will becone unstable at the lengths first enleulated. Under large displacemental it becomes unstable at lengths which are somewhat shorter but greater then $\frac{1}{2}$ the first values. Ituray's values for the bending moment as a function of y could be used to replace the second term in (3), and the rod length needed to maintain a given contrail displacement could then be found by numerical quadratures. This, however, has not been carried through. It is not known how good assumption (1) is, and it surely break a down to considerable extent when boiling sets In.

Variable Bulk Tenparature

Another source of heating on the side of the sod where the water is thin is the increase in water bulk temperature there because of poor mixing around the annulus (see eq. CEx-2UC-114). io give only, a rough calculation on this point.

Lot T_{1} bo the normal rise in bulk temperature of the water in moving unit distance along the centered rod. The usual hydraulic

formulae indicate that under a given pressure drop the total rate of How in a layer varies as the $5 / 3$ power of the layer thickness. For small displacements the outward heat flow ia practically uniform around the rod, as mentioned earlier, and thus the temperature rise per unit
length is

$$
\begin{equation*}
\frac{T_{1}}{\left(1-\frac{y}{t} \cos \theta\right)^{5 / 3}}=T_{1}\left(1+\frac{5}{3} \frac{7}{t} \cos \theta\right) \tag{4}
\end{equation*}
$$

which in form is analogous to (2).
Thus, assuming no nixing, we have after the water has travelled
a distance 2 L alchg a rod with constant displacement y, a gradient
$g=\frac{2 L \cdot T 2.5 y}{R 3 t} ;$ and, averaged over the length of the rod,

$$
\begin{equation*}
\bar{z}=\frac{5 r_{2} I}{3 R^{R} t} \bar{z} \tag{5}
\end{equation*}
$$

If we suppose, craciely, that this on-the-average relation holds between ε and y at asch print along the rod, then the result is to increase the value of K^{2} in (3) to

$$
\begin{equation*}
z^{2}=\frac{\alpha}{2 t}\left(T_{0}+\frac{5}{3} T_{2} L\right) \tag{6}
\end{equation*}
$$

Conaiderlag that the water temperature rlaes about 700 along 700 em of rod, and that its rate of rise at the center is $\frac{\pi}{2}$ times the average, gives $T_{1}=\frac{\pi}{20}$ degrees per cm . Then the parenthesis in (6) becomes $20+\frac{L}{3.8}=20\left(1+\frac{L}{76}\right)$. Solving $L \sqrt{1+\frac{I}{76}}=56$ gives $L=45 \mathrm{~cm}$, and $L \sqrt{1+\frac{I}{76}}=112$ gives $L=79 \mathrm{~cm}$. These are the values to which
the former critical lengths for mall displacements are reduced when variation in bulk temperature around the annulus is taken into account in the present rough fashion.

The above considerations for weightless rods apply in the case of vertical rods, as contemplated in som of the P-9 designs, and to horizontal warping of sections of \bar{I} rods which may have been LIfted by vertical mapping to clear the ribs below. They apply beat to solid rods, and less well to separate slugs in a continuous jacket where B varies alone the rod (er. CP-1940).

Harping of tiofehter Rod

Let the rod have weight * per unit length, let it be of length 21 between points of support, and measure x froe the center. Then (3) becomes

$$
\begin{align*}
y^{n}+x^{2} y & =a\left(L^{2}-x^{2}\right)+A \\
a & =\frac{\pi}{2 B} . \tag{7}
\end{align*}
$$

with the general solution

$$
\begin{equation*}
y=\frac{A}{K^{2}}+\frac{2 a}{K^{4}}+\frac{a}{K^{2}}\left(I^{2}-x^{2}\right)+F \sin F x+G \text { cos } F x \tag{8}
\end{equation*}
$$

where A, F, G are arbitrary constants. Determining these to mike $y^{\prime}(0)=y^{\prime}(L)=y(L)=0$ gives

$$
\begin{align*}
y & =\frac{a}{K^{2}}\left(L^{2}-x^{2}\right)+\frac{2 a}{K^{4}} \frac{K I}{\sin K L}(\cos K L-\cos K x) \\
y^{\prime \prime} & =-\frac{2}{K^{\prime}}\left(1-\frac{K L}{\sin K I} \cos K x\right) \\
y(0) & =\frac{2 a}{\pi^{1}}\left(\frac{K I}{\tan \pi}+\frac{K^{2} I^{2}}{2}-\frac{K I}{\sin K L}\right) \tag{9}\\
y^{\prime \prime}(L) & =A=\frac{2 a}{K^{2}}\left(\frac{K L}{\tan K L}-1\right)
\end{align*}
$$

For KL < π the quantity $y(0)$ is negative and hence a physically meaniryeful solution does not exist, this eorrosponding to the result obtained above for a weightless rod clamped nt the ends. For T $<\mathrm{KL} \leqslant 2.49$ (which is a root of $x=\tan x$) there exists a solution which is everynthere non-negative, and thus physically meaningful. For KL >4.49 the solution again becomes nogative at sone points. Upon differentiating the parenthesis on the right side of the expression for $y(0)$ it is found to have a positive minimum for $\mathrm{KIL}=\tan \mathrm{KL}=4.49$, and this minimum value gives

$$
\begin{equation*}
r(0)=33.4 \frac{a}{r^{4}} \tag{10}
\end{equation*}
$$

This value of $\mathbb{C L}$ also males $A=0$, so that there is no bending moment trensenteod serous the ends to the portions of the rod adjoining the warped arch.

Ir we set $A=0$ and remove the requirement that $J^{\prime}(L)=0$, which amounts to cutting the rod at its ends so these are free to turn,
wa get Instead of (9)

$$
\begin{align*}
y & =\frac{a}{K^{2}}\left(L^{2}-x^{2}\right)+\frac{2 a}{k^{4}}\left(1-\frac{\cos \pi x}{\cos K L}\right) \\
y^{\prime \prime} & =\frac{2 a}{K^{2}}\left(\frac{\cos \pi x}{\cos \pi L}-1\right) \tag{11}\\
y(0) & =-\frac{2 a}{K^{2}}\left(1+\frac{K^{2} L^{2}}{2}-\frac{1}{\cos K L}\right) .
\end{align*}
$$

It is now found that $y(0)$ is nogative for $\mathrm{KC} \leqslant \frac{\pi}{2}$, in agreement with the previous result for an unelenped weightless rod; for $\frac{\pi}{2}<$ KL $\leq T$ there is a solution which is everywhere non-negative; and on this range the parenthesis in $y(0)$ has its minimum value for $K L=\frac{\tan K L}{\cos K C}=2,22$, this minimus giving

$$
\begin{equation*}
y(0)=10.2 \frac{a}{K^{4}} . \tag{12}
\end{equation*}
$$

With $B=6 \times 10^{6} \mathrm{~kg} \mathrm{~cm}{ }^{2}, \mathrm{w}=.18 \mathrm{~kg}$ per cm , we rind
$a=1.5 \times 10^{-8} \mathrm{~cm}^{-3}$. For the lower dotted line in Fig. 1 we have $K=2.3 \times 10^{-2} \mathrm{~cm}^{-1}$. ISth these values (10) gives $y(0)=-82$ an and (12) gives $y(0)=.25 \mathrm{~cm}$.

Such $y(0)$ values represent the Alsplacesente at which the rod beeves unstable; mailer displacements would not be maintained. The above values are greater than the thickness of the \mathbb{Z} annulus, so that such forces as used in the computation would not be able to maintain an upward warp against gravity. However, we have here neglected the mapping
सिदाधुाध
due to variable bulk tenperature, and have uaed the lower dotted line of $\mathrm{FA}_{2} \mathrm{~g}$. 2 wheh mifereatimates the marping forcea produced by large tisplacements. If we used inatend the upper dotted line, the above $y(0)$ ralues would be dfrided by $3.7^{2}=13.7$ and mould thus becone consider ably less then the thickness of the annulus, and so these larger forces nre euite expable of holinne the rod up agninst the top of the tube. Thus it is porsible that this may happen in the plle.

