
G. Lattice Debign Group - A. M. Weinberg241. Synthetic Slowing Down Kernels in Weter2. Temperature Coerficient in $\mathrm{H}_{2} \mathrm{O}$ Lattice5. Erratum: Transport Kerael. in Cylindrical Coordinates4. Table of Binding Energies
5. Brfect of Maxwellian Fhergy Diffusion in a Lump
H. Pile Design Group - Gale Young29

1. Thick End Caps
2. Warping and Thermal Stresses
3. Frost Test
4. Insulating End Caps
5. Detection of Swellinge in Pile
6. Cartridge Loading
I. Exponential Experimental Group - K. Wey 34
J. Rediation Group - F. Seitz 57
K. Shielding Group - F. L. Friedman 38
7. The Relation of Multigroup Pile Theories to Ferni Theory
8. The Christy-Kernel
9. Pile Theory with Resonance Fission
10. Effects of Resonance Capture in Piles
11. Extrapolation Distance in a IItater Lattice
12. On the Neutron Distribution in Media with Anieotropie Scattering
13. Angular Distribution of Neutrons at a Plane Boundery

mUCLEAR PHYSICS DIVISIOM

During the month of May the P-9 pile at the Arconne Laboratery has been pertly filled with 11quid to the point of aetually reachine the eritioal oondition. It turned out thit the anount of water needed for this was about $20 ; \mathrm{l}$ less then had been estimated from the resulte of the exponential experiment. It is not yet quite elear what the reason is for the diecrepancy. The eonstrustion of the pile is now practionily oceplete, and the machine will be put in operation to power ab soon ap the belance of tho p-9 arrives.

A number of experimenta have been oarried out in Mr. Anderson*a section on mucloer propertios or product, roported in CK-2761.

The long range alpha partioles emitted by 25 under neutron Irradiation have been studied by Mr. Maches in the Mison chmaber. He reports a oross-section of about 2×10^{-24} for the zroduetion of alphe particles of rances between 5 and 10 em., and a oross-seetion of 1.6×10^{-24} for ranges between 10 and 15 cm . The total erosssection of 3.6 for endesion of these mpha particles corresponds to about $1 / 200$ of the absorption eross-section of 25.

1tr. Hughes oarried out acme monauremonta on the alfrusion or therinal noutrons in uranium netal through a thi alcness of 5.5 em . He finde that the average value of the dirrusion lencth is 1.55 cm . With a alight indieation of a gradual hardeninc of the neutrone with Inereasinc dopth.

- Hr. Seren has carried out edditional moasuromenta on the aetivation oross-aeotions of various isotopes. His resulta are sumarised in a table in the report.

Abstract

A measurement was performed in order to determine the increase In neutron density at the end of a W-aluc when alumina spacers of 7/8 "thick are interposed between slugs. It was found that the denalky of neutrons increases by about 40%.

An experiment was performed in order to determine whether the decomposition products of miter by fission fragments reach a saturnti on pressure. Ho indication of a saturation was observed up to 14 atmospheres pressure of the detonation mixture.

Ar. Anderson constructed a Hz_{3} chamber for the detection of very week neutron sources. It is possible with this chamber to detect sources editing about 1 neutron jer second.

In Ar. Morriaon"a group work hasa been going on in order to determing the reproduction fever of various types of lianford lattices. Some points on the technique of the measurement have to be cleared up before final results can be quoted.

1

The relationnhip between ih and periods is given by

$$
1 \mathrm{~h}=\frac{54}{7}+\frac{33}{7+7}+\frac{1139}{7+6.5}+\frac{1793}{7+34}+\frac{581}{7+83}
$$

from which we find for the perioda given in the table that

$$
t h=56 \times(h-122.43)
$$

where h is the height of P-9 in em. and 122.43 em. is the height of the oritiani level. Also

$$
a k=2.32 \times 10^{-5} \mathrm{in} .
$$

and therefore, 1 gm. repreaents about 0.13% in K. If the tank ia rillad, the level above the bettom of the tank will be 2.82 am.. and the refleotor $\begin{gathered}\text { fill heve an effectivenesa of about } i \text { a om. so thet }\end{gathered}$ $h=200$ om. This would give an indiaeted exeess k equal to 10%. This is muoh over ostimated sinoe the sensitivity was measurad for a hoight in which the reacting volume was a oylinder of haight less then ite width, and therefore, was quite sensitive to ohange in this single dimeasion. It in eatimeted; however, thet the exoess K $\mathbf{w i l l}$ bo sbout 6%. This is more then in required for ordinary operation of the machine: in faot, about 3% is adequate for this purpoes. A number of suggestions have been mide for utilising the spare K. These are (1) rejacket the rods with jaekets as thiok ae $1 / 8^{\circ}$: (2) remove some of the rods in suoh a way as to peak the intemsity at the oentral experiment thimble; (3) add several mere control rods whiah should be adjustable; (4) remove some of the roda sind replace them by roda made of ohomioals in whioh ueeful isotopea may be synthesised; (5) add somo poison to the P-9 whioh, at the ame $t i m$. could bo a arrosion inhibitor. Or theae suggestions. Wo. 1 would be the most deairable, but at this stage it would introduee oonsiderable delny in the operation of the mahine.

It has been deolded to add two more oontrol rode whose position will be edjustable by hand and to remove aertain number of the heavy metel rode. How many rods must be removed will be determined by experimont.

Othar than additinn of these control rods, the construation of the machine is substantially completed, and power operation awaits the delivery of a surfioient amount of P-9. It is not thought desirable to operate the machine without some P-9 as refleator in the top part of the tank sinoe exoess radiosotivity would be generated 1 i the upper shield. Therefore, about two tons beyond what is now on hand must be reaeived before power operation oan begin.

Activation Gross-Sections for $n y$ Reactions L. Seren, H. Friedlander and S. Turkel Additional activation measurements completed during the month are listed in the table below. Explenatory remarks concerning these tables are given in (CP-1175) and (CP-1592).

Natural Isotope	Abundance 8	Hale Life of $A+1$	$\begin{aligned} & \text { Isotopic } \\ & \text { Cross- } \\ & \text { Section } \\ & \times 10^{2} 4^{\mathrm{cm}^{2}} \\ & \hline \end{aligned}$	Atomic CrossSection $\times 10^{24} \mathrm{~cm}^{2}$	$\begin{aligned} & \frac{\mathrm{cm}^{2}}{\mathrm{~g}^{n}} \text { Al Mass } \\ & \text { Absorntion } \\ & \text { of } \beta \text { - Ravs } \\ & \hline \end{aligned}$	Where Irrafia- ted	Remarks
$20 C a^{48}$	0.19	30 min .	0.55	. 00105	≈ 5.85	Pile	Gives rise to 57 min. $21^{\text {Sc }}{ }^{i, e^{\text {e }}}$ daughter. Nuclear Isomer

Gives risfoto 57 min. $21^{\mathrm{Sc}}{ }^{49}$ daughter. Nuclear Isomer
$20^{C a^{40}}$
96.96
8.5 days $<0.00 \mathrm{CBI}<0.0003$
K-capture
X-rays \quad Pile
$277^{59} \quad 100$.
10.7 min.
0.73
0.73

147 and 12.9
$41^{\mathrm{Cb}^{93}} 100$.
6.6 min .
0.0099
$0.0099 \approx 11.6$
$50^{\mathrm{Sn}^{124}}$
$50^{\mathrm{Sn}^{425}}$
$50^{\mathrm{Sn}^{-125}}$
$50^{5 n^{112}} \quad 1.1$
26 hr .
105 days 1.1
0.072
75.
$0.012 \begin{aligned} & \text { K-capture } \\ & \text { X-rays }\end{aligned}$

Pile	Gives risefto 57 min. $21^{5 e^{49}}$ daughter. Nuclear Isomer
Pile	Upper 1 imit of cross-section calculated assuming 1.1 Mev -ray per disintegration.
Thermal Column	Two groups of particles observed. See description below.

Thermal
Column
Pile
Pile
Pile
Pile Gives rise tijg 105 min. $49^{\text {In }}{ }^{113}$. The efficiency of the 3-u counter for 4 p $^{\text {Ja }} \mathrm{X}$-rays was computed.

898
008

$\begin{aligned} & \text { Natural } \\ & \text { Isotope } \end{aligned}$	$\begin{gathered} \text { Abundance } \\ x \end{gathered}$	$\begin{aligned} & \text { Half Life } \\ & \text { of } A+1 \end{aligned}$	Isotonic GrossSectition $\times 10^{24} \mathrm{~cm}^{2}$	Atomic CrossSection $\times 10^{24} \mathrm{~cm}^{2}$	cm^{2} al trass Absorotion of A-Rays	There Irradia- ted	Remariks
$52^{7 e^{126}}$	19.0	9.3 hr .	0.78	0.15	27.2	P1]e	Tuc lear Isomer
$52^{\text {Te }}{ }^{126}$	19.0	90 tays	0.073	0.014	=24.	Pile	Gives risilitio 9.3 1 ra . $52^{\mathrm{Te}} \mathrm{IK}$.
$52^{7 \mathrm{Te}^{128}}$	32.8	72 min .	0.133	0.0436	12.6	pile	thelear Isoner,
$52^{\text {Te }}{ }^{128}$	32.8	32 days	0.0154	0.00504	12.6	pile	Huelear Isomur Givas riseto 72 min. ${ }_{52} \mathrm{Te}^{129}$
$52^{\text {Te }}{ }^{130}$	33.1	25 min .	0.242	0.0801	7.1	Thermal Colum	Nuelear Taonar
$52^{\mathrm{Te}}{ }^{130}$	33.1	30 hr .	<0.008	<0.003	≈ 7.1	Pile	
$52^{\mathrm{Te}}{ }^{130}$	33.1	B. 0 days daughter	0.242	0.0802	$\begin{aligned} & 28 \text { for } \\ & 53^{1}{ }^{1} 3{ }^{2} \end{aligned}$	Pile	Cross-section calculated from 8 day $53^{I^{131}}$ daughter Which grows from 25 min . and 30 hr . activity
$76^{0 s^{192}}$	41:0	17 days	5.34	2.19	187.	Pile	Rance of A-rays $-20 \mathrm{mgr} / \mathrm{cm}^{2} \mathrm{Al}$ or 0.12 Huv
$80^{H 8}{ }^{2014}$	6.7	5.5 min .	0.37	0.0248	9.4	Thermal Column	
$881 \mathrm{Tl}^{203}$	29.1	4.23 min .	0.30	0.087	10.0	Thermal Column	

The decay of ${ }_{20} 0^{\mathrm{Ca}}{ }^{49}$ requiret a somemhat unusual treatment to obtain the cross-sections because its isomerie activitios of 150 minutes and 30 minutes half life, respectively, both gave rise to the same 57 minute half life daughter, ${ }_{21} \mathrm{Sc}^{49}$. This in turn decayed to the stable $22^{\mathrm{Ti} 49}$. Graphs were firat drawn from values obtained from the theoretical equations of such relationship in order to study the lecay. These were approximate because the equations assumed the initiol number of daughter atoms to be zero, whereas they actenily more grow-

Ing and decaying exponentially with the decay of the parent while being irradiated. A general equation was then derived in which the entire activity, without approximations, was extrapolated to include all the growth and decay, during irradiation ant afterwards. The cross-sections submitted are a result of the application of. this equation.

Concerning the 10.7 minute $C_{0}{ }^{60}$, Livingood and Seaborg ${ }^{2}$ suggested that the radiation consisted largely of conversion electrons resulting from an isomeric transition to the longer lived (5.3 year) Co ${ }^{60}$. Later Nelson, Pool and Kurbatov ${ }^{2}$ elsined that the radiation was that of continuous beta rays of end point $1.35 \pm$ 0.1 seV and a γ-ray of $1.5 \pm .02$ ils but no conversion electrons. Finally, Deutsch and Elliott ${ }^{3}$ found that the direct transitions constitute only 10% or less of the Aisintegrations. The P-ray has a maximum energy of $1.50 \pm 0.15 \mathrm{itv}$ and is followed by a γ-ray. At least 906 of the disintegration proceed by an isomeric transition by a 0.056 ± 0.003 佔V Y-ray with corresponding conversion electrons. Our findings are, as a whole, in accord with that of Deutsch and Elliott. We find that 10.8% or less of the disintegration produce a Pray whose μ / P in Al is $12.9 \mathrm{~cm}^{2} / \mathrm{gm}^{\mathrm{m}}$ while the rest of the disintegration (89.2%) show up in the form of low energy electrons whose μ / ρ in Al is $147.5 \mathrm{~cm}^{2} / \mathrm{gm}$. These. low energy electrons must have been produced by a $\mathcal{\gamma}$-ray of greater than 0.07 MsV In order for our counter to observe them. The cross-section has been calculated on the basis of this β, γ branching, assuming that each particle (hard or soft) represented a disintegration.

The indium K -rays produced by the K -capture of $50^{\mathrm{Sn}^{113}}$ were detected by taking absorption curves with 4.5 rhodium, 46 palladium and 47 silver absorbers. From Compton and Allison's book on X-rays:

```
1 Living.o: and Seaborg,"Phy. Rev."60, 913 (1941)
898
2 Nolson, Pool and Kuribatov, "Phy. Rev.", 62, 1(1942)
3 Doutech and Elliott, "Phy. Revv." . 62, 559(19%,2)
```


Note that both the K_{2} and $\mathrm{K}_{\alpha_{2}} \mathrm{X}$-ray lines of 49 In would be strongly absorbed in 45^{Rh} but not in 46 Pd or 47^{Ag}. The K_{1} and K_{2} comprise 84.36 of the X -ray transltions of 49^{In} and the K_{β} lines the remainder. On the accomnanyine absorption curve, the absorption points taken with $45^{\text {Rh }}$ absorbers fall lower than the 46^{Pd} or 47^{Ag} absorber points due to the presence of In $\mathrm{K}-\mathrm{X}$-rays. The Sn foil was covereff first with lucite to remove all the electrons. S. 7. Barnes has produced the Sn^{113} isotope by proton bombardment of 49 In and finds $2 \quad 3$-rays, 085 LtV and 0.39 ut V in equilibrium with the 105 day X-rays. The production and detection of $3 \mathrm{n}^{113}$ by a slow neutron (n, γ) reaction has not been reported previous to this.

Both the 25 min . and 30 hr . periods induced in $52^{\mathrm{Te}}{ }^{130}$ by neutron capture decay into 8.0 day $53^{I^{131}}$. The cross-section computed on the basis of the latter activity is almost exactly equal to the cross-section computed on the basis of the two former activities, but this is more of a coincidence rather than a demonstration on the accuracy of our measurements. Note that the cross-section of all three isotopes $52^{\mathrm{Te}} \begin{aligned} & 126,128 \text { and } 130 \\ & \text { is only } .293 \times 10^{-24} \mathrm{~cm}^{2} \text { per natural atom, }\end{aligned}$

Aluminum end apo have been proposed to cool the ends of Hanford slugs. These on l ape, however, separate the slugs so much that the neutron density at the ends is increased. For slugs separated by $7 / 8^{\prime \prime}$ nlunimum opaecre the heat production at the ends is 40% higher than if the ends are in contact.

The hoot production in uranium is due almost entirely to fission. Since tho X activity of irradiated uranium ia also almost entirely due to fission, the hoe production ia conveniently measured by observing the γ activity. Uranium notus dak of diameter equal to the plug diameter and oo 2" thick were placed at the ends of the slugs. In a given irradiation one of these disks wo sandwiched between the ends of two bare uranium slugs and another between the end of a slug and the aluminum separator. The distance between the two disks was very nearly equal to one period for the argonne lattice $\left(\theta_{4}^{\prime \prime}\right)$ so that the neutron environment of the two disk e was quite ainiliar. To avoid any asymmetry in the lattice the positions of the uranium-uranium interface and urnifum-aluminum interface in auccoseive experiments were interchanged. The sketch show the disposition of the slugs, the wafers and the disk e in the two cuss.

A11 irrediations were made identically and $211 \gamma^{\prime}$ wetivities sere measured through un aluminum absorber with an ionization chamber connected todarPSS amplifier. The X activities observed nero all reduced to a fixed time after the end of irradiation by reference to a typleal deary curve for the partieulg ρ_{8} irradiation used.

The experiment was done rirat inthout mater in the annulus nad inter with water in the annulus. The results are tabulated belotr.

- 12 -

The advantage of the thiok alunimut ond oapo is dininished by these moeulte.

Hiph Sonatifytry Heatron Doteotor - H. L. Anfermon, E. J. Sturn and J. Debbe

A Iarge BI_{3} partiole ionization ohmber has been oonstrueted whioh is Intended to meacure the mumber of meutrons enitted frem weak neutrion enitters. The ohmber eontaine 0.8 moles of HF_{3} and is embedded in a large porarrin bloek. The noutron souroe is pineed in a oavity which extends into the eonter of the ohmeber. Fant meutrons enitted by the souroe aro slomed down in the eurroundIng pararrin and ceteoted as themnal noutirons in the ohamber.

The background is largely tue to \Rightarrow contaninati on of the obmeber nelle. About $1 / 3$ of the beokground prises are acnemhet lagger then thoe of the boron A1eintegrations. Deing a diserininator oirouit deaigned by Mr. Exill the larger pulses are not eounteq, and it 18 possible to operste mith a baekground eount of 10 per minute.

The epontaneous meutron enisaion from a 1.91 kslogrene uranium metal lupp eives 30 oounts per minute above bookground. Sinee the neutron enisesion frim suoh a lump is known to be 28 neutrons per seoond, the effieleney of the ohember 10 oetimated to be 1.a\%. Inis errieienoy dopende oonembet on the energy dietribution of the souree but for moet meutron enitters the dependenee is not very - marked.

838

The prosent epperatuo cen meacuro the emingion of \mathbf{I} meution per seoond in 6 howrs of obecarvation with a statiatical aecuraey of $\geqslant .25$ neutrons per seeond. Plepogintion Proneung of Zater Due to Finaton - H. L. Andereon and R. Formil The gat preseare cevelopud in a olosed veesel containing a water solution of uranyl mittrato undor nautron bomburtmant was observed up to 14 atmosphoros. The prossuro Inereased Ifpoarly with uniform irradiation. There wea no indicetion of a anturation pressure at whioh the rate of combination equale the rate of tiasoelation. The $l o w$ zave of mooombination may be two to memoval of oxprean by come alternative process, or to som inhibiting action of the walle - we have not been able to ohook thees pointa as yot.

A aketeh of the arrangenent is elvon whioh mhowe a solution of 2.4×10^{-4} moles of 25 in about 1.2 oe of solution as unf. The solution ia onolosed in a tyrox clase tube provided with eaplilery tubling at oach ond. The prosmaro mar observed by observing the diapleoemont of a moroury pellet tomerd the eloned end of one of the eapillary tubes.

The amount of ens produced mas approximately what might be expeeted from
 water disaoelated per 100 ev of fiasion oneref.

DIFFUSION EXPERTMENTS IN THE MEST STANDS

D. Hell

The work of this group on exponential piles in the West Stande 18 nearly terminated. Measurements on Hanford lattices, besides those already reported, have ceen mede to show the effect on the Laplacian of thick Al end-caps, of safety rods, of poison slugs, and of the replacement of air by tank He.

These reeults will be reported about June 1 , when a measurement of the effect of a suspected wall reflection, which influences all of them, will have been completed.

Physice Group VI
(Wi:1tten by D. J. Hughes)

Diffugion Length of Therral Neutronn in Uranium D. Fiughes and K. Bragdon

This experimunt hus boen finishod and as rojort is now boing rublished (CP-1732). The measurenenie, which were ivade in a urariun eylinder, resultcd In a moun value of 1.55 cm for the cirrusion length L for distances or 1 to 4 om fram the base. Calculations give a value bich agrees with the experimantal result and show further that L increases from 1.40 to 1.63 om as the neutrons dirfuse a distance of 5 cm into the uruniun.

Long - "s from Uranium D. Huglies, C. Egglex, and H. Kanner
Since the last monthly report we have done acme sork to check the oaeurrence of α^{*} a only alightly longer (any 4-8 cm) than the natural $\alpha^{*}{ }^{*}$ from uruniun. This was cone by photographing the ruys rran an uncovered enriohed uruniun oxide 5011 (40 meg oxide on $50 \mathrm{~cm}^{2}$) in the eloud chumber. There were about 150 matural α 's fron the foll on eech expanuion (max. wange 3.2 am nir) and one long α (range $>$ 4) per 50 oxpnnsions. Had the roported "one a per two riesiona" of Segra's been true we prould hnve obeerved two long α^{\prime} 's per expansion. The nurber actunlly sb aaned showe thut there are about we many x^{\prime} a in the $5-10$ es es in the 10 - 15 om range.
ws no additional work on the number vs. range relationahip is plunned for the noar ruture, we give in the aceonpanying rieure the results to dite. Purt A shows 40 trucke obtainec from thick uranitun metel eovered with al. The eurres are dravm as integral curvee (number of tracks of range erenter than R vercua R) becaune of the thiokness of the source. For the lower eurve the stopping pocer of tho chamber plus al wue 12 en air ajuivalent (4 tracks vith ranze >12) for the upper 25 on (3 tracke with runge >15). If the α^{2} a hod a aingle runge these curvee woule extrapalate to that rance-about is om-but the extrapolation is not

Juntiried in the light of the work with thin roils discuseed belom. It seegs likely though from ourves A that a majority of tho $x^{*}=$ hnve a maximun range of about 15 em . Part B gives the dirferential range apoctrum of $11210 n \mathrm{c}_{\mathrm{c}} \mathrm{a}$ obtaized with thin (Jom uir equivalent) onalohod oxide foile. The ourve ia a
 Due to goonetry, the ehumber io leas sonsitive to long trueks, and the data ahich make up the eqmosite eurve were eorrected upproximntely for this factor. The nunber of trueke for each range ie roughly eonetunt up to 15 en , with only a Ien sanewhat longer.

Fnoring the neutron rlux, anount of enriched material present and the sensitive time of the ehnmber, it is posaible to ealeulate a rough value for the erosesesestion for long of production. The result is

> 1.3 burns for the $10-15 \mathrm{em}$ eroup
> 2.0 barns for the $5-10 \mathrm{~cm}$ eroup
or a sotal of 3.3 barns. The ealoulations mere aleo earried out very approximately for the tracke from the thiok urunium metol aleo giving about 2 barna for the $10-15$ on groap. This is interosting mainly in thnt it indieatea thnt the \quad 'e are fron 25 boeuuse the 12 fold onrlelment factor ontered the onleulation in the fomer oese and not in the latter.

Woric la now beine started on the coineldence of long $\alpha^{\prime \prime}=$ with risalons and the angular relationahipe involved. For this, thin axide foils on zapon rilme were prepared so that both riselion tracke are observed in the ohurber. In mddition a 5 me Pu roil is to be uned in a searoh for the long * ${ }^{\text {a }} \mathrm{m}$ frce Pu. Deoer of 30^{75} C. Legler and H. Kanner

At the request of M_{r}. Seren we huve invoetignted the mode or diaintegration
75. Thia iaotope could deeny either by positron eniesion or K electron eapture and eniesion of X-rnys. The semple was placed in the eloud ohmber and

Abstract

19 -- photographed both with H_{0} and A gas in the chombor. In A mang short photoeleotrons originating in the gae were obsezved, of range about one min, but no longer olectrons (above the baokground) originating at the foil. In He only a fow photoeleotrons were seen in the gas and an upper limit on the number of -1eotrons aterting from the foll could be fixed. These sesults agree with what would bo expected for Ask K-rays, as will be reported by L. Eeren, and show that less than 1% of the disintegrations are by positron emiseion. Thernal Noztroan Seattering Cross-Sections D. Hughes and E. Bragaon

Proliminary exporimenta are undervay to eatablish a method for determining elestie scattering oross-seotions at thomal enorgies. The method is essentially to mearure the beokecuttering for a fixed solid angle relative to that fram a otqndurd, such as graphite, using samples thin enough so that absorption offects will be negligiblo.

SUNEART OF THE REPORTS TF THE THEORETICAI PHYSICS GROUP
E. P. WIgner

The blueprint work and other direct work for W has sharply decreased during the month under review. Most of the work in this connection was concerned with shielding problems, relating in particular to optical instruments. It was carried out chiefly by Kiss Way. Its main result is that the shielding of opticel instruments is a very serious problem even if plastic rather than glass lenses are used. Thus, for instance, it has been found that even a boroscope with plastic lenses will daricen after a few hours use at unless not only the tube under consideration but also some of the neighboring tubes are emptied of the heavy metal. Similar results were obtained for other arrangements.

The Lattice Design Group under Mr. Weinberg continued to cooperate with Mr. Friedman's group on the elaboration of the two- and three-group theories. In particular the experimentally obtained diatributions of the production of thermal neutrons by a point source of fission neutrons in different moderators was annilyzed and the constante for the two- and three-group theories obtained. The mork on the inprovement of the diffusion theory was continued with particular reference to the velocity distribution of thermal neutrone. Finally, this group devoted considerable attention to the water-uranium lattices and obtained the temperature coefficient of such lattices. These calculations show, as was to be expected, that the leveling effect plays a
very important roile in mater moderated lattioes and givee in soes cases an Increase of tho multiplication constant of the order of one to Itve times 10^{-14} per degree.

The PLie Deaign Oroup under Mr. Young oontinued the work on the thick end caps. It was found in this connection that the energ production at the end of the alugs is inereseed by as much as 305 as compared with the onergy production in a eross seetion torards the middle of the slug. This effect is caused by the neutrons heving rather free access to the onds of the siuges this increases the hest production at the end of the alug and malces a somemhat increased thickness of the conductor type end cap neceseary. A good deal of mork was devoted to an analyais of the frost test and of the possible causes of marping. The thooretical work on certridge type londing (conson Jacket for all the sluga in a tube) was continued mith apeoial aphasis to cartridgen with high heliun pressure but mithout eirculation of heliun. These cartridgee have a preseure gauge on one and which peraite detection of a leek by the ensuing drop of the pressure but are otherise completely senaled off. Mr. Ohlinger collaborated elosoly In this work. The main problem reasins the handifing of the eartildee during and after diecharge mhich is quite dirficult on aceount of the high radionetivity.

Wiee tiey's group, in addition to the morlic mentioned in the firat paragraph, continuea' the review of the exponential experinente carried out hitherto. In particular a comparison of the experimente on the Henford type latticea givee rather consietent resulte ehoming,
however, that the offect of the water on the malelplication constant may have been sifghtiy-perhaps br as much es ly-underestinated. The ceuse of this diecrepancy is not knom at prosent.

The Radiation Group under itr. Seltes oontinued the theoretieal Inveatigation of the effect of radiation on materiale. It aleo eooperated mith the Technical Diviston to prepere for the experimental detection of posesible hasards at flanford.

As montioned before, the Shielding Group under Mr. Friedman continued to develop the tmo- and three-group theorien in collaboration with Mr. Weinberg'a group. These theories endeavor to elve a deacription of the pile and are thas subetitutes for Fernite pile equetions. Their main advantage is that they are much more easily menable to an securate solution than Fermi's equations are. The accuracy of the equations is somenthat lomer than that of Fernis's equations in ease graphite is used as a moderator. Homever, the aceuracy 18 aetaa11y higher if nater is used instead of graphite. The idea is to distinguieh only betmeen two or three kinde of neutrone. One kind are aleags the thernal neutirone mhtle the non-theranal neutrons are the other kind in case of the two-group theory. The three-group theory Aistinguishes further between raet neutrons ahich are above resonance and faet neutrons elthin the resonance region. It is evident that the restriction to only two or three klinds of neutrons as coepared with a continuous variety intirodunes a considerable simplifieetion. Leet month's work was malniy concerned with the efrect of the remonance

```
absorption and mith applications of the general theory to mater re-
flectors.
    In addition, the erfect of resonance riselion (as found lately
In 49) on the eritical sise has been investigeted.
```


Lutrics pesicu croup

A. M. Weinberg

Smthatio alozing dom lomele in wnter

Ur. Cahn has ritted various analytie funotions to Anderson's experimental distribution (at Indiun resonence) of figeiton neutrons in mater. Beeh type of function mes adjusted to efve the sene age ($32.33 \mathrm{~mm}^{2}$) es the experimental distribution. The functione uned (for a plane sourse) mers

1. Single exponential; this givee rise to the alfuple two group plle theory.
2n. Convolution of two exponentinal with equal rolasention lengths.
2b. Convolutition of two exponentinle with unequal roleuchtion lengthe. Funetione of type 2 give riae to the three group plle theorg.
2. Convolution of exponentinl and Couselian ("Chriaty" keernel).
3. Singlo Gamasian Function.
or theee rive functions, the Chriaty leomel givee the beet representetion of the experimental diatribution while the Gemeeian is the morst. the eingle exponential is found to be a maoh better fit in the ease of mater than in the ease of grophito.

While sueh erptriteal eurve riteling io of no particular theorstienal oignificenoe, it io uneful for purposes of ealeulating eritiend messee of meall $\mathrm{H}_{2} \rho$ moderated ayytes. In such ealeulations the sloming toren kernel is required; if thle herrnel can be ropresented adequately by a aimple analytie function (euch as an exponential) whioh is a soureo
function for a simple differontial equation, the solution of the pile equation, eopecieliy with a refleotor, is enomously simpliried.

Temperature coefficient in $\mathrm{H}_{2} \mathrm{O}$ lattice

The neutron temperature coefficient of k in a water moderated syatem is vory probobly positive noar the optimung i.e., as the neutron temperature riaes, such a atructure becomes more chain reacting. In this rospect a water lattice differs from a graphite one, and the roason for this difference is two-foldt
(a) Tho thermal part of the migration area in water is practically neplipible cocapared with the fast part, and so the leakago of themal neutrons is correspondingly unimportont. For this reason there is very 1ittle increase in the total leakage of neutrons as the neutron temperaturo rises. This stateront is not true, of course, if the water temperature rises aurficiently to lower the water donsity aipnificantly.
(b) The leveling effect in a water lattice noar the optinum is almost twice as large as in a eraphite lattice near the optinum. The reason for this is that the scattoring cross scetion in water decreases atroncly as the temperature increases (roughly as $\mathrm{T}^{-1 / 3}$); consequentiy. the dirfusion of hot neutrons in the water is considerabiy easior than the dirfuaion of cold neutruns. "Leveling" in a aater lattice therefore results both from the $\frac{1}{\mathrm{~V}}$ dependence of the metal and $\mathrm{H}_{2} \mathrm{O}$ absorption eross eections and froc the $\frac{1}{v^{2 / 3}}$ dependence of the $\mathrm{H}_{2} \mathrm{O}$ acattering aroas aection.

These conaiderations may prove to be of sone importance in determining whether an $\mathrm{H}_{2} \mathrm{O} \rightarrow$ metal lattice will chain react. The old

Abstract

calculations of the probable values of k were based on a wator diffusion length of $2.85 \mathrm{~cm} ;$ i.e., the value for room temperature neutrons. These calculations gave a best k of about 0.97%. However in a mixture which contains the very largo anounts of metal found in a water lattice, the averape neutron torferature is probably soveral hundred degrees hicher. Consequently tho water diffusion longth is much longer in a lattice, and the leveling offect is appreciable even if tho $\mathrm{H}_{2} \mathrm{O}$ is at room temperature.

Very rough eatimates of the neutron temperature coefricients in several water lattices follow:

```
    \#ater volune
Fetal volume
        .44
        1.25
        2.24
        3.42
        4.76
    9.9
        \(-4.4 \times 10^{-5}\)
\(2.7 \times 10^{-5}\)
        \(2.7 \times 10^{-5}\)
        \(14.7 \times 10^{-5}\)
    \(30 \times 10^{-5}\)
    \(47 \times 10^{-5}\)
    \(98 \times 10^{-5}\)
```

The \geqslant effect has been assumed the same for each lattice $\left(=-6 \times 10^{-5} / 0 \mathrm{C}\right)$ in these estimates.

Tihile the temperature coefflicients probably decroase with hiphor temperatures, they are still sufficiontly bis to pive important increases in k as the neutron temperature rises.

Erratum: Tranaport kernel in exlindrieal coordinates
The transport kernel in cylindrical coordinates yuoted in last month's report was incorrect. The correct expression (S. Dancoff) for the probability that a neutron starting anywhere on an infinitoly long
eyilindricel eurface of radius r^{t} will make a colliaion on ite rirut flipht in a unit volume elenent anywhere on a conoentric cylindrical surface of radius r is

$$
\begin{array}{rlr}
p\left(r, r^{v}\right) & =\int_{1}^{\infty} \mathrm{I}_{0}(\alpha r) I_{0}\left(\alpha r^{\prime}\right) d \alpha \quad r^{\prime}<r \\
& =\int_{1}^{\infty} \mathrm{I}_{0}\left(\alpha r^{\prime}\right) I_{0}(\alpha r) d \alpha & r^{\prime}>r
\end{array}
$$

whore the unit of length is the sean froe path. This kernel leads, by a simple integration, to the values for the fast effeet in cyilinders quoted in CP-614.

Teble of binding enorgtes

Kise Castlo has propared a table which pives the binding energles for all the knom isotopee of the 15 lightest elemente. The values are based on the nuclear masses given in the project handbook. This table, which will be lesued as a report, is convenient for calculating the reaction energies of reactions involving light nuelei.

Effect of taxemellian energy dietribution on neutron difruation in a lump

Kr. Plase has continued his investigation of the variation of x, the reciprocal dirfuaion length, with the radius of the metal lump, caused by the distribution in veloeity of thermal neutirons in a plle. Last month's report contained the variation with radius of a x defined as that aingle dirruaion length which givee a rit to the neutron density curve at tho center and the surface of the lump. Er. Plass has
noer investigated the variation of another r, derined so that the astual flux into the setal lump piven by this theory equals the flux given by the almple $\frac{\text { ahatr }}{x+}$ eurve. The dopendence of this x on the radius is very sinilar to that roported last month. It is Interestine that adth elther derinition of 2 r , in the 21 mit of manil radis, the sane are is obtained whose square is equal to $\int_{0} x^{2}(v) \mathbb{E}(v) d v$, where $\mathcal{L}(v)$ is the normalised traonell distribution function. A explete report on the s:bjeet has been aritten and will be distributed soon.

PTLE DESIGN GROUP

Gale Toune

Thick Find Caps

Nr. Eilkins has carried out a rather difricult caleulation and obtained the neutron density distribution in a slug with thiok anc eape. The density is hipher and more unlform over the end of the slue tian it is cver a crosa-section sone distance frow the end. The density decreases as one noves into the interior from the siug end, the decroase beine more rapid alone the axis than along the aurface. For caps of 1 an thickness he eomputes the averape dinsity over the end of the slug to be 2.34 tines the average over a crous-section far from the end. This increase is thought to be roughly proportiomal to the thitekness of the cap.

Nr. सeinberg arranged with L'r. Anderaon for an experiment to be made on t):is point, and the value for the above ratio obtained by Mr. Anderson is 2.37.

This effect will incroase aunewhat the eap tenperatures reported in CP-1580. Calculations have not yet been made to see how awch this increase may be.

Warping and Thermal Stresses

A number of results on these topics have been assembled in CP-1698. From these results one can compute, for example, the stresses produced by a long defective strip in the bond, which problem was proposed by Quinn in IUE-TDGE-173. The greatest tensile stress in this case occurs near the edge of the defect and is in the longitudinal direction. For a defect .6 cm wide this maximum stress is about 68 of the stress existing normally at the surface in the absence of a defect. This enleulation is given in CP-1707.

Mr. Murray has made calculations to determine the shape assumed by the eross-section of a slug which is heated unsymmetriealiy.

Frost Test

Mr. Surrey ${ }^{\text {M }}$ calculations of the power distribution in a long core within a long induction coil are given in CP-1692.

Kr. Karush and Mrs. Wonk discuss in CP -1671 the temperature rise of a coating; over metal and aluminum cores, under certain aimplifying assumptions. I'r. Karuah is now extending the theory to allow the power production to be any function of tine, and to include a finite bond resistance to heat flow.

It appears that the standard frost test procedure may not be suitable for testing unbonded slugs, aline the heating of the jacket may expand it away from the slug and materially reduce the conductance between them. Studies of the transfer in unbonded slugs are being made by : *r. Kratz by other experimental methods.

Inaulating Find Capa

The current deaign (detail 64299) of inaulating end eap for unbonded slugs involves considerable waste of k becaune of the large amount of aluminum used. A design which is superior in this respect Is discussed in LUC-GY-?

For certain types of sensitive leak tests (aee CT-1599) a large air volume within the can is a diaadvantage. The thielcness of the air in a conventional air gap inaulator is much grenter than is needed thermally, but the gap would be difficult to control aechanically If made much thinner. However, the resistance to heat flowing perpendIcularly through a pile of thin plates nay be considerable without a great deal of air being present in the interfaces between plates, and to some extent this makes use of very thin air films as insulation. This Idea of an Insulator made up of a stack of plates was augeseated by I'r. Iyon, and has been recently revived by $\mathrm{I}^{2} \mathrm{r}$. Creuta and ${ }^{\prime}$ rr, Sailard as a possible way of reducing air volume within the can. I'r. Erats is making measurements on the thermal resistance of plates stacked up in this manner. Since alumi aun reacts with the alug motal at high temperatures, Kr. Sailard suggesta that at least sone of the plates next to the slug would presumably be of magnesium. This type of insulator raiaes questions about the thermal contact and flow of heat at the lateral edges of the dises.

In the ahsence of difriculties connected with bonding, a solid insulator such as I 'gO may again be conaidered. However, there remain fundanental uncertainties about the behaviour of such substanees under operating conditions.

Dotection of 3wellinge in P17e

Mr . Iron hes set up equirment and gained sune preliminary "experience with the behaviour of wires, cords, and collars in an annular strean. Actually, homever, the situation is atili much as outlined in the senthly report $\mathrm{CP}-1389$, exeept that it is now known that awelline may so so far as to brak the graphlte. Ir. Norrison thinke that 13 of the suggestions 11 sted in the above roport may actually be used, nanely te pueh the slugs tack and forth occasionally. In z'uC-Cr'C-202, I'r. Cooper points out that the hoter metal of the slug end mipht play the role of the water senaitive substance of sugceation F5, and by ita rasetion encourage the release of activity inte the water strean. I'f. Onlinger adds that it mipht also function as the awelling substance of 76 , and give a algnal by expanding the row of sluge lengthwise, though it may be difricult to disentangle this small motion fran the larger thermal expanaion. Since the effecta of water reaching the slug end have to be reckoned with in any case, it would seen desirable to undertake heated experiment.s to see to what extent these effects may be thus turned to useful rurpose.

Garthidee landtne

The eyatem whioh puts a nymber of sluga in one long jocket appears to be eaining favor, and may receive ereater eaphasis.

Present preference is for an arrangosent which puts hich pressure helium into the eartridge, but is free of connections to any outaide helium aupply aysten. The activity of producte recosiling into

```
the heliun is serious. However, evan with the sluge unconted, it is
hoped that by multable arrongement of free volume wdthin the eartridige
and care in the design of the eartridge end it say be poesible to in-
9tall e pressur, enuge at the end of each cartridge and thus have a
aignal if a laak oceurb.
```


EXPCER2TTIAL EXPFRITESTRAL CROUP

Katharine Zay

Calculations for \mathbf{k}, the multiplication factor, and for ? * the number of neutrons produced per thermal neutron absorbed in uraniun, have bean aade for seven recent exponential piles by Itr. Caahwell. The lattices involved are the "old" Hanford lattice, the Hanford 305 lattice, and the current Hanford lattiee.

The basriag of the experiments on the k aituation at Hanford has already bean discussed by Mr. deinberg so special attention is directed hera only to the ealculations for the quantities entering Inte k and the algnificance of the conputed values of 7 . A table deacribing the plles and showine the resulte is attached.

The structure of the lattice does not afrect \geqslant in any way. Therefore shan nearly equal values of this quantity are found by calculations lasad on different exponential experiments the resulta are taken to indicate reliable methods of calculation and a good chofee of the constants Involved. The rigures found for the seven experiments in question pive a value of $?$ equal to $1.315 \pm .004$. The derintion seons eratifylngiy sall but the plles in question were all very similar and so the reaults for 3 do not really furnish a good test of many of the points Involved in lattice theory.

In all the piles in question the metal was in the fort of cylinders and the lattice apocing was elther $8^{\prime \prime}$ or $6-3 / 8^{\prime \prime}$. Ames metal was used throughout and the graphite-metal ratio romined very nearly
the same. The chief difference between piles was the introduction of aluminum or aluminum and water, two of the series having been planned te measure just the affect of the addition of these materials. The const icy of i In this group of experiments shows therefore only that the methods of calculation take the aluminum tubes and the coolIng mater into account pretty well. There does seen to be a alight consistent drop in ? between $\$ 39$ and $\$ 40$ and between $\$ 4.5$ and $\$ 46$. Bach of the latter of these pairs differ from the former only by the adilition of water. " However there is practically no difference between 145 and 747 . These last two piles differ in water and also in graphite, and give very nearly the same ? , but this mi the mean that the diffusion length of Kendall used in the calculations is too mall.

[^0]

suotaticus cacur

Freserick Selte

Work has progreased on pland for the teatling grocren at
 freparstion of an assenaly ter one of the test hales at llanferd. Thas
 belve conotracted at the traory under the mapervialon of Jr. Dallaper.

Sepeesthoms mere sulmitted te the Dperatine Divislos for a

 mennurline thw el-etrinel ponturt 1 wity of a apecinem of eraghise somtInaoaliy The seoond arranement Inearperates a Ieatire athois malhes It ponatile. to kuep the appelinex cool.

Mr. Sevelinler has been reviealine the eslewluthons which were recent2y oanpleted (sene repert (al-1662) an the nanges of kipchet-an atone
 on the sure sulbyect

تr. Melifterger is undertalicinc ealecalatlions on ther anfluenoe of eryatal ativucturn on the seattering of slow newtrons In eraghite ans arnalum. These ealculationd meve, atimulated ty the experisental work of Ralrnester and Kavens at Columbla Bniversity, deacrilied in the prewiaus manthly report.
serzuatio inu

F. L. Mriabian.

$$
F(s)=\frac{\pi_{2}^{2}}{x_{x}^{2}+c^{2}}
$$

 are megual is

$$
\frac{1}{2 x} \int_{-\infty}^{\left[2+\left(\frac{\pi}{n}\right)^{2}\right]=-1} \frac{e^{-1 m x}}{[2 n} \text { de }
$$

Since the age τ equals $\frac{n-1}{\alpha^{2}}$, the denominator of the integrand becomes

$$
\left[1+\frac{\tau}{n-1} s^{2}\right] \frac{n-1}{\tau^{2}} \tau s^{2} \longrightarrow 0 \tau s^{2} \quad \text { ss } n \longrightarrow \infty,
$$

and

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-T s^{2}} e^{-1 s x} d s=\frac{e^{-x^{2} / 4 \tau}}{2 \sqrt{\pi^{2}}}
$$

Wore details of the transition from n group to Fermi theory have been developed and the characteristics of n group theories in general should be reported soon.

The Chriaty-Kernel (Friedman).-In order to approximate the slowing down distribution, for example in water, the convolution of an exponential and a Gaussian, a monochromatic diffusion with a Fermi type slowing down, has been used by Christy and others (er. weinberg's monthly report). In order to use the description in the theory of a going pile we add a description of the thermal dirrusion and look for the characteristic equation connecting the diffusion lengths, the age, and the reproduction constant with the "Laplacian" of the pie. This equation 1 s

$$
e^{-T \rho^{2}}\left(1-L_{1}^{2} \rho^{2}\right)\left(1-L_{s}^{2} \beta^{2}\right)=k
$$

L_{f} is the fast diffusion length, τ the ace of the Gaussian, L_{s} the thermal diffusion length, k the reproduction factor and j^{2} is the "Laplacian".

There is only one negative real root for ρ^{2}, As expected,
its value for $k-1 \ll 1$ is $(1-k) / k^{2}$ where

$$
u^{2}=L_{s}^{2}+L_{L_{r}}^{2}+\tau
$$

P1le Theory with Resonance Fission (Weinberg and Friedman). -
The diacovery of a strong resonance in 49 at 0.3 woits makes it worthwhile to investigate the "Laplacian" of a region in mich resonance risaion is supposed to occur just above thercal energy. This has been done both on the two-group theory (exponential slowing down) and on the

$$
\begin{aligned}
& \text { Fermi theory (Oaussian slowing) - The negative maplacians are } \\
& \qquad \frac{\left\{x_{t}^{2}+x_{t}^{2}\left[1-(1-p) v_{R}\right]\right\}}{2}\left\{\sqrt{1+\frac{4(k-1) x_{t}^{2} x_{t}^{2}}{\left\{x_{t}^{2}+x_{r}^{2}\left[1-(1-p) r_{R}\right]\right\}^{2}}}-1\right\}
\end{aligned}
$$

on the two group theory and β^{2}, the positive real root of

$$
\left.[1]-(1-p) r_{R} e^{-\beta^{2} / x_{r}^{2}}\right]\left(\beta^{2}+x_{t}^{2}\right)=\left[k-(1-p) r_{R}\right] x_{t}^{2} e^{-\beta^{2} / x_{r}^{2}}
$$

ph the basis of Fermi*s theory. In the above p is the resonance eacape probability, γ_{R} the number of neutrons produced per resonance capture, X_{t} the reciprocal of the thermal dirfusion length, X_{f} the reciprocal of the fast dirfusion length or of the square root of the age, k the reproduction constant.

$$
\text { when } k-1 \ll 1 \text { we may mrite }
$$

$$
\beta^{2}=\frac{k-1}{x^{2}}
$$

with

$$
u^{2}=\frac{1}{x_{1}{ }^{2}}+\frac{1}{x_{t}^{2}}\left[1-(1-p) r_{R}\right]
$$

for the two group and this applies also in Fermi's theory.
It must be remembered that k is changed by the resonance fission erfect when k_{o} is the k assuming $p=1$

$$
\begin{gathered}
k=p k_{0}+(1-p) \gamma_{\mathrm{i}} \\
\text { Effects of Resonance Capture in Piles (williamson and Friedman).-- }
\end{gathered}
$$ A change in the amount of resonance capture in a reproducing region changes the "Laplacian" of the region not only through its effect on k, the reproduction factor, but also by changing the migration area \mathbf{m}^{2}. The migration area is the sum of $L^{2} f, L^{2} m$ and $L^{2} s$, the diffusion area in the slowing down process above the resonance region, in the resonance region, and during the thermal diffusion in the thermal region of these three contributions to m^{2} only $L^{2} m$ is changed by a change in p, the resonance escape probability. (or course other constants may be changed simultaneously as in the addition of more metal.) ahen p is near $1, L_{m}^{2}$ varies directly as p.

The division into above, in, and below resonance suggests that a three group theory is the natural theory to apply to calculations of resonance effects. For this reason, we have computed the "Laplacians" for various k's and p^{\prime} s using the three group theory.

The "Laplacian" determines the size of a pile without a reflector. When reflectors are used the other two roots of the characteristic equation of the region (see report CP-1574) are needed to describe the effect of the reflectors. These roots have also been studied and will be used in computations to determine the resonance
escape bonus, the additional saving effected in the pile sise by the use of reflectors arising from the possibility that neutrons may escape resonance capture by entering the reflector above the resonance region and returning to the pile beneath it.

For the special case of $k-1 \ll 1$, the formula for the
"Laplacian" is always

$$
\frac{1-p \operatorname{pr}}{L_{p}^{2}+p\left(L_{m}^{2}\right)_{p}=1^{+L_{s}^{2}}}
$$

where $f=$ thermal utilization and $\varepsilon \eta=$ the number of fast neutrons per thermal neutron captured in uranium.

The detailed results of the three group theory $w 111$ be reported soon.

Bxtrapolation Diatance in
a Hater Lattice (Oinsburg, Cahn and Friedman). - ithen $k-1 \ll 1$ the tro group and three group theories of piles with reflectors give simple forms for the effective size of piles and for the neutron distributions near the pile boundaries (see CP-1554 and CP-1574).

The two group theory has been applied to these problems for the water lattice experiments at X. The effect of different dirfusion constants inside the pile and in the reflector is not as yet considered. The three group theory is also under way. The mreliminary results of the two group theory for the increase in the size of the pile size are:

Cell radius
Rod radius $\quad \begin{gathered}\text { Addition to the length } \\ \text { of each side }\end{gathered}$
1.46

1. 64
17.9 cm
17.1 cm

Hr. Weinberg has kindly supplied us the

theraal utilization and resonance escape constants used.
On the Neutron Distribution in Media with Anisotropie Scst-
tering (Friedman) - - in Investigated the neutron distribution in a system in which a scattering but non-absorbing medium filis the space from $x=-\infty$ to 0 and the space fron $x=0$ to ∞ is empty. The neutrons are considered monoenergetie. This problen has been diveussed by Placzek and his collaborators by the Hop f-aiener nethod. The problem becomes more complex as the scattering of a neutron in a single col1ision departs from isotropy. For alight anisotropy, however, that is when the probability of scattering through a given angle is linear in the cosine of that angle, the solution is simply related to the solution in the case of isotropic scattering. The angular distribution of neutrons emerging from the plane surface at $x=0$ is the same, and the neutron density is related to the density in the isotropic case by the formala

$$
\rho=\rho_{\text {isotropie }}+31 \overline{\cos \theta} \frac{x}{\lambda}
$$

$\rho=$ the density, $j=$ the ourrent, $\overline{\cos \theta}=$ the average cosine of the angle of scattering in one collision (positive for formard anisotropy), and $\lambda=$ the free path.

We are indebted to Professor Placsek for pointing out this possibility; the result was also found by Mark using the Hopr-wiener method.

Angular Distribution of thoutrons at a Plane Boundary (Boyd).=

 For the protion described in the preceding section no solution in simple form is known. Cood approximations to the angular distribution of neutrons emerging from the plane surface nay, however, be riven in teas of well lanown elementary functions. The exact solution given numerically by Plseseli (IT-6) serves for comparison. Three particularly simple approxisnations are$$
\begin{equation*}
P(\mu)=\frac{1+\sqrt{3} N}{1+\frac{1}{2} \sqrt{3}} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\phi(\mu)=\frac{1}{2}\left[2+\sqrt{3} \mu+-345793 \mu \ln \left(1+\frac{2}{3 \mu}\right)\right] \tag{2}
\end{equation*}
$$

and

$$
p(\mu)=\frac{1}{2}\left[1+1.31926 \mu \div .412788 \mu(\mu+1.09847) \ell n\left(1+\frac{1}{\mu}\right)\right](3)
$$

where \mathcal{H} is the cosine of the angle between the outward nominal of the surface and the direction of the emergent neutron and $\varphi(\mu) d \mu$ is the number of neutrons at the surface with direction f in $d \mu$. The density at the surface, $\int_{0}^{1} \varphi(N) d \mu$, is normalized to 1.

The current at the surface is the rigorously $\frac{1}{\sqrt{3}}$ (see Placzok and Seidel, MT-5). (1) and (3) five this answer exactly, while (2) falls by only 1 in 50000.

The first of those approximations, Fermis, has a maximum error of $T \approx$, the second 0.2%, and the last . 063 .

These approximations are useful, for exnnple, In Albedo theory. Detail of the monk all be reported later.

[^0]: This suggests that the hydrogen to uranium absorption eross-section ratio of, 0415 based on $\tau_{H}=0.295$ and $\sigma_{U}=7.1$) ia too low.

